]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
gold: Properly align the NT_GNU_PROPERTY_TYPE_0 note
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 lto_slim_object_(false),
470 script_output_section_data_list_(),
471 segment_states_(NULL),
472 relaxation_debug_check_(NULL),
473 section_order_map_(),
474 section_segment_map_(),
475 input_section_position_(),
476 input_section_glob_(),
477 incremental_base_(NULL),
478 free_list_(),
479 gnu_properties_()
480 {
481 // Make space for more than enough segments for a typical file.
482 // This is just for efficiency--it's OK if we wind up needing more.
483 this->segment_list_.reserve(12);
484
485 // We expect two unattached Output_data objects: the file header and
486 // the segment headers.
487 this->special_output_list_.reserve(2);
488
489 // Initialize structure needed for an incremental build.
490 if (parameters->incremental())
491 this->incremental_inputs_ = new Incremental_inputs;
492
493 // The section name pool is worth optimizing in all cases, because
494 // it is small, but there are often overlaps due to .rel sections.
495 this->namepool_.set_optimize();
496 }
497
498 // For incremental links, record the base file to be modified.
499
500 void
501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503 this->incremental_base_ = base;
504 this->free_list_.init(base->output_file()->filesize(), true);
505 }
506
507 // Hash a key we use to look up an output section mapping.
508
509 size_t
510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512 return k.first + k.second.first + k.second.second;
513 }
514
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519
520 static const char* gdb_sections[] =
521 {
522 "abbrev",
523 "addr", // Fission extension
524 // "aranges", // not used by gdb as of 7.4
525 "frame",
526 "gdb_scripts",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 // "gnu_pubnames", // Fission extension
536 // "gnu_pubtypes", // Fission extension
537 "ranges",
538 "str",
539 "str_offsets",
540 };
541
542 // This is the minimum set of sections needed for line numbers.
543
544 static const char* lines_only_debug_sections[] =
545 {
546 "abbrev",
547 // "addr", // Fission extension
548 // "aranges", // not used by gdb as of 7.4
549 // "frame",
550 // "gdb_scripts",
551 "info",
552 // "types",
553 "line",
554 // "loc",
555 // "macinfo",
556 // "macro",
557 // "pubnames", // not used by gdb as of 7.4
558 // "pubtypes", // not used by gdb as of 7.4
559 // "gnu_pubnames", // Fission extension
560 // "gnu_pubtypes", // Fission extension
561 // "ranges",
562 "str",
563 "str_offsets", // Fission extension
564 };
565
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568
569 static const char* gdb_fast_lookup_sections[] =
570 {
571 "aranges",
572 "pubnames",
573 "gnu_pubnames",
574 "pubtypes",
575 "gnu_pubtypes",
576 };
577
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581
582 static inline bool
583 is_gdb_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587 if (strcmp(suffix, gdb_sections[i]) == 0)
588 return true;
589 return false;
590 }
591
592 // Returns whether the given section is needed for lines-only debugging.
593
594 static inline bool
595 is_lines_only_debug_section(const char* suffix)
596 {
597 // We can do this faster: binary search or a hashtable. But why bother?
598 for (size_t i = 0;
599 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600 ++i)
601 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602 return true;
603 return false;
604 }
605
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608
609 static inline bool
610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612 // We can do this faster: binary search or a hashtable. But why bother?
613 for (size_t i = 0;
614 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615 ++i)
616 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617 return true;
618 return false;
619 }
620
621 // Sometimes we compress sections. This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections. This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629
630 static bool
631 is_compressible_debug_section(const char* secname)
632 {
633 return (is_prefix_of(".debug", secname));
634 }
635
636 // We may see compressed debug sections in input files. Return TRUE
637 // if this is the name of a compressed debug section.
638
639 bool
640 is_compressed_debug_section(const char* secname)
641 {
642 return (is_prefix_of(".zdebug", secname));
643 }
644
645 std::string
646 corresponding_uncompressed_section_name(std::string secname)
647 {
648 gold_assert(secname[0] == '.' && secname[1] == 'z');
649 std::string ret(".");
650 ret.append(secname, 2, std::string::npos);
651 return ret;
652 }
653
654 // Whether to include this section in the link.
655
656 template<int size, bool big_endian>
657 bool
658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659 const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661 if (!parameters->options().relocatable()
662 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663 return false;
664
665 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666
667 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669 return parameters->target().should_include_section(sh_type);
670
671 switch (sh_type)
672 {
673 case elfcpp::SHT_NULL:
674 case elfcpp::SHT_SYMTAB:
675 case elfcpp::SHT_DYNSYM:
676 case elfcpp::SHT_HASH:
677 case elfcpp::SHT_DYNAMIC:
678 case elfcpp::SHT_SYMTAB_SHNDX:
679 return false;
680
681 case elfcpp::SHT_STRTAB:
682 // Discard the sections which have special meanings in the ELF
683 // ABI. Keep others (e.g., .stabstr). We could also do this by
684 // checking the sh_link fields of the appropriate sections.
685 return (strcmp(name, ".dynstr") != 0
686 && strcmp(name, ".strtab") != 0
687 && strcmp(name, ".shstrtab") != 0);
688
689 case elfcpp::SHT_RELA:
690 case elfcpp::SHT_REL:
691 case elfcpp::SHT_GROUP:
692 // If we are emitting relocations these should be handled
693 // elsewhere.
694 gold_assert(!parameters->options().relocatable());
695 return false;
696
697 case elfcpp::SHT_PROGBITS:
698 if (parameters->options().strip_debug()
699 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 {
701 if (is_debug_info_section(name))
702 return false;
703 }
704 if (parameters->options().strip_debug_non_line()
705 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 {
707 // Debugging sections can only be recognized by name.
708 if (is_prefix_of(".debug_", name)
709 && !is_lines_only_debug_section(name + 7))
710 return false;
711 if (is_prefix_of(".zdebug_", name)
712 && !is_lines_only_debug_section(name + 8))
713 return false;
714 }
715 if (parameters->options().strip_debug_gdb()
716 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 {
718 // Debugging sections can only be recognized by name.
719 if (is_prefix_of(".debug_", name)
720 && !is_gdb_debug_section(name + 7))
721 return false;
722 if (is_prefix_of(".zdebug_", name)
723 && !is_gdb_debug_section(name + 8))
724 return false;
725 }
726 if (parameters->options().gdb_index()
727 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 {
729 // When building .gdb_index, we can strip .debug_pubnames,
730 // .debug_pubtypes, and .debug_aranges sections.
731 if (is_prefix_of(".debug_", name)
732 && is_gdb_fast_lookup_section(name + 7))
733 return false;
734 if (is_prefix_of(".zdebug_", name)
735 && is_gdb_fast_lookup_section(name + 8))
736 return false;
737 }
738 if (parameters->options().strip_lto_sections()
739 && !parameters->options().relocatable()
740 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 {
742 // Ignore LTO sections containing intermediate code.
743 if (is_prefix_of(".gnu.lto_", name))
744 return false;
745 }
746 // The GNU linker strips .gnu_debuglink sections, so we do too.
747 // This is a feature used to keep debugging information in
748 // separate files.
749 if (strcmp(name, ".gnu_debuglink") == 0)
750 return false;
751 return true;
752
753 default:
754 return true;
755 }
756 }
757
758 // Return an output section named NAME, or NULL if there is none.
759
760 Output_section*
761 Layout::find_output_section(const char* name) const
762 {
763 for (Section_list::const_iterator p = this->section_list_.begin();
764 p != this->section_list_.end();
765 ++p)
766 if (strcmp((*p)->name(), name) == 0)
767 return *p;
768 return NULL;
769 }
770
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear. Return NULL if there is none.
773
774 Output_segment*
775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776 elfcpp::Elf_Word clear) const
777 {
778 for (Segment_list::const_iterator p = this->segment_list_.begin();
779 p != this->segment_list_.end();
780 ++p)
781 if (static_cast<elfcpp::PT>((*p)->type()) == type
782 && ((*p)->flags() & set) == set
783 && ((*p)->flags() & clear) == 0)
784 return *p;
785 return NULL;
786 }
787
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section. This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors. Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run. This set just keeps track of
796 // these sections which need to be reversed. It is only changed by
797 // Layout::layout. It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804
805 bool
806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809 != ctors_sections_in_init_array.end());
810 }
811
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS. NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key. ORDER is where this should appear
815 // in the output sections. IS_RELRO is true for a relro section.
816
817 Output_section*
818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820 Output_section_order order, bool is_relro)
821 {
822 elfcpp::Elf_Word lookup_type = type;
823
824 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
826 // .init_array, .fini_array, and .preinit_array sections by name
827 // whatever their type in the input file. We do this because the
828 // types are not always right in the input files.
829 if (lookup_type == elfcpp::SHT_INIT_ARRAY
830 || lookup_type == elfcpp::SHT_FINI_ARRAY
831 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832 lookup_type = elfcpp::SHT_PROGBITS;
833
834 elfcpp::Elf_Xword lookup_flags = flags;
835
836 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837 // read-write with read-only sections. Some other ELF linkers do
838 // not do this. FIXME: Perhaps there should be an option
839 // controlling this.
840 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841
842 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843 const std::pair<Key, Output_section*> v(key, NULL);
844 std::pair<Section_name_map::iterator, bool> ins(
845 this->section_name_map_.insert(v));
846
847 if (!ins.second)
848 return ins.first->second;
849 else
850 {
851 // This is the first time we've seen this name/type/flags
852 // combination. For compatibility with the GNU linker, we
853 // combine sections with contents and zero flags with sections
854 // with non-zero flags. This is a workaround for cases where
855 // assembler code forgets to set section flags. FIXME: Perhaps
856 // there should be an option to control this.
857 Output_section* os = NULL;
858
859 if (lookup_type == elfcpp::SHT_PROGBITS)
860 {
861 if (flags == 0)
862 {
863 Output_section* same_name = this->find_output_section(name);
864 if (same_name != NULL
865 && (same_name->type() == elfcpp::SHT_PROGBITS
866 || same_name->type() == elfcpp::SHT_INIT_ARRAY
867 || same_name->type() == elfcpp::SHT_FINI_ARRAY
868 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870 os = same_name;
871 }
872 else if ((flags & elfcpp::SHF_TLS) == 0)
873 {
874 elfcpp::Elf_Xword zero_flags = 0;
875 const Key zero_key(name_key, std::make_pair(lookup_type,
876 zero_flags));
877 Section_name_map::iterator p =
878 this->section_name_map_.find(zero_key);
879 if (p != this->section_name_map_.end())
880 os = p->second;
881 }
882 }
883
884 if (os == NULL)
885 os = this->make_output_section(name, type, flags, order, is_relro);
886
887 ins.first->second = os;
888 return os;
889 }
890 }
891
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894
895 bool
896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898 if (! this->script_options_->saw_sections_clause())
899 return false;
900
901 Script_sections* ss = this->script_options_->script_sections();
902 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903 Output_section** output_section_slot;
904 Script_sections::Section_type script_section_type;
905 bool keep;
906
907 name = ss->output_section_name(file_name, name, &output_section_slot,
908 &script_section_type, &keep, true);
909 return name != NULL && keep;
910 }
911
912 // Clear the input section flags that should not be copied to the
913 // output section.
914
915 elfcpp::Elf_Xword
916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918 // Some flags in the input section should not be automatically
919 // copied to the output section.
920 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921 | elfcpp::SHF_GROUP
922 | elfcpp::SHF_COMPRESSED
923 | elfcpp::SHF_MERGE
924 | elfcpp::SHF_STRINGS);
925
926 // We only clear the SHF_LINK_ORDER flag in for
927 // a non-relocatable link.
928 if (!parameters->options().relocatable())
929 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930
931 return input_section_flags;
932 }
933
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
936 // linker created section. IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file. ORDER is where this section should appear in the output
939 // sections. IS_RELRO is true for a relro section. This will return
940 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943
944 Output_section*
945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947 bool is_input_section, Output_section_order order,
948 bool is_relro, bool is_reloc,
949 bool match_input_spec)
950 {
951 // We should not see any input sections after we have attached
952 // sections to segments.
953 gold_assert(!is_input_section || !this->sections_are_attached_);
954
955 flags = this->get_output_section_flags(flags);
956
957 if (this->script_options_->saw_sections_clause() && !is_reloc)
958 {
959 // We are using a SECTIONS clause, so the output section is
960 // chosen based only on the name.
961
962 Script_sections* ss = this->script_options_->script_sections();
963 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964 Output_section** output_section_slot;
965 Script_sections::Section_type script_section_type;
966 const char* orig_name = name;
967 bool keep;
968 name = ss->output_section_name(file_name, name, &output_section_slot,
969 &script_section_type, &keep,
970 match_input_spec);
971
972 if (name == NULL)
973 {
974 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975 "because it is not allowed by the "
976 "SECTIONS clause of the linker script"),
977 orig_name);
978 // The SECTIONS clause says to discard this input section.
979 return NULL;
980 }
981
982 // We can only handle script section types ST_NONE and ST_NOLOAD.
983 switch (script_section_type)
984 {
985 case Script_sections::ST_NONE:
986 break;
987 case Script_sections::ST_NOLOAD:
988 flags &= elfcpp::SHF_ALLOC;
989 break;
990 default:
991 gold_unreachable();
992 }
993
994 // If this is an orphan section--one not mentioned in the linker
995 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996 // default processing below.
997
998 if (output_section_slot != NULL)
999 {
1000 if (*output_section_slot != NULL)
1001 {
1002 (*output_section_slot)->update_flags_for_input_section(flags);
1003 return *output_section_slot;
1004 }
1005
1006 // We don't put sections found in the linker script into
1007 // SECTION_NAME_MAP_. That keeps us from getting confused
1008 // if an orphan section is mapped to a section with the same
1009 // name as one in the linker script.
1010
1011 name = this->namepool_.add(name, false, NULL);
1012
1013 Output_section* os = this->make_output_section(name, type, flags,
1014 order, is_relro);
1015
1016 os->set_found_in_sections_clause();
1017
1018 // Special handling for NOLOAD sections.
1019 if (script_section_type == Script_sections::ST_NOLOAD)
1020 {
1021 os->set_is_noload();
1022
1023 // The constructor of Output_section sets addresses of non-ALLOC
1024 // sections to 0 by default. We don't want that for NOLOAD
1025 // sections even if they have no SHF_ALLOC flag.
1026 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027 && os->is_address_valid())
1028 {
1029 gold_assert(os->address() == 0
1030 && !os->is_offset_valid()
1031 && !os->is_data_size_valid());
1032 os->reset_address_and_file_offset();
1033 }
1034 }
1035
1036 *output_section_slot = os;
1037 return os;
1038 }
1039 }
1040
1041 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042
1043 size_t len = strlen(name);
1044 std::string uncompressed_name;
1045
1046 // Compressed debug sections should be mapped to the corresponding
1047 // uncompressed section.
1048 if (is_compressed_debug_section(name))
1049 {
1050 uncompressed_name =
1051 corresponding_uncompressed_section_name(std::string(name, len));
1052 name = uncompressed_name.c_str();
1053 len = uncompressed_name.length();
1054 }
1055
1056 // Turn NAME from the name of the input section into the name of the
1057 // output section.
1058 if (is_input_section
1059 && !this->script_options_->saw_sections_clause()
1060 && !parameters->options().relocatable())
1061 {
1062 const char *orig_name = name;
1063 name = parameters->target().output_section_name(relobj, name, &len);
1064 if (name == NULL)
1065 name = Layout::output_section_name(relobj, orig_name, &len);
1066 }
1067
1068 Stringpool::Key name_key;
1069 name = this->namepool_.add_with_length(name, len, true, &name_key);
1070
1071 // Find or make the output section. The output section is selected
1072 // based on the section name, type, and flags.
1073 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078
1079 template<int size, bool big_endian>
1080 Output_section*
1081 Layout::init_fixed_output_section(const char* name,
1082 elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084 unsigned int sh_type = shdr.get_sh_type();
1085
1086 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087 // PRE_INIT_ARRAY, and NOTE sections.
1088 // All others will be created from scratch and reallocated.
1089 if (!can_incremental_update(sh_type))
1090 return NULL;
1091
1092 // If we're generating a .gdb_index section, we need to regenerate
1093 // it from scratch.
1094 if (parameters->options().gdb_index()
1095 && sh_type == elfcpp::SHT_PROGBITS
1096 && strcmp(name, ".gdb_index") == 0)
1097 return NULL;
1098
1099 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1103 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1104 shdr.get_sh_addralign();
1105
1106 // Make the output section.
1107 Stringpool::Key name_key;
1108 name = this->namepool_.add(name, true, &name_key);
1109 Output_section* os = this->get_output_section(name, name_key, sh_type,
1110 sh_flags, ORDER_INVALID, false);
1111 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1112 if (sh_type != elfcpp::SHT_NOBITS)
1113 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1114 return os;
1115 }
1116
1117 // Return the index by which an input section should be ordered. This
1118 // is used to sort some .text sections, for compatibility with GNU ld.
1119
1120 int
1121 Layout::special_ordering_of_input_section(const char* name)
1122 {
1123 // The GNU linker has some special handling for some sections that
1124 // wind up in the .text section. Sections that start with these
1125 // prefixes must appear first, and must appear in the order listed
1126 // here.
1127 static const char* const text_section_sort[] =
1128 {
1129 ".text.unlikely",
1130 ".text.exit",
1131 ".text.startup",
1132 ".text.hot",
1133 ".text.sorted"
1134 };
1135
1136 for (size_t i = 0;
1137 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1138 i++)
1139 if (is_prefix_of(text_section_sort[i], name))
1140 return i;
1141
1142 return -1;
1143 }
1144
1145 // Return the output section to use for input section SHNDX, with name
1146 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1147 // index of a relocation section which applies to this section, or 0
1148 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1149 // relocation section if there is one. Set *OFF to the offset of this
1150 // input section without the output section. Return NULL if the
1151 // section should be discarded. Set *OFF to -1 if the section
1152 // contents should not be written directly to the output file, but
1153 // will instead receive special handling.
1154
1155 template<int size, bool big_endian>
1156 Output_section*
1157 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1158 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1159 unsigned int sh_type, unsigned int reloc_shndx,
1160 unsigned int, off_t* off)
1161 {
1162 *off = 0;
1163
1164 if (!this->include_section(object, name, shdr))
1165 return NULL;
1166
1167 // In a relocatable link a grouped section must not be combined with
1168 // any other sections.
1169 Output_section* os;
1170 if (parameters->options().relocatable()
1171 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1172 {
1173 // Some flags in the input section should not be automatically
1174 // copied to the output section.
1175 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1176 & ~ elfcpp::SHF_COMPRESSED);
1177 name = this->namepool_.add(name, true, NULL);
1178 os = this->make_output_section(name, sh_type, flags,
1179 ORDER_INVALID, false);
1180 }
1181 else
1182 {
1183 // All ".text.unlikely.*" sections can be moved to a unique
1184 // segment with --text-unlikely-segment option.
1185 bool text_unlikely_segment
1186 = (parameters->options().text_unlikely_segment()
1187 && is_prefix_of(".text.unlikely",
1188 object->section_name(shndx).c_str()));
1189 if (text_unlikely_segment)
1190 {
1191 elfcpp::Elf_Xword flags
1192 = this->get_output_section_flags(shdr.get_sh_flags());
1193
1194 Stringpool::Key name_key;
1195 const char* os_name = this->namepool_.add(".text.unlikely", true,
1196 &name_key);
1197 os = this->get_output_section(os_name, name_key, sh_type, flags,
1198 ORDER_INVALID, false);
1199 // Map this output section to a unique segment. This is done to
1200 // separate "text" that is not likely to be executed from "text"
1201 // that is likely executed.
1202 os->set_is_unique_segment();
1203 }
1204 else
1205 {
1206 // Plugins can choose to place one or more subsets of sections in
1207 // unique segments and this is done by mapping these section subsets
1208 // to unique output sections. Check if this section needs to be
1209 // remapped to a unique output section.
1210 Section_segment_map::iterator it
1211 = this->section_segment_map_.find(Const_section_id(object, shndx));
1212 if (it == this->section_segment_map_.end())
1213 {
1214 os = this->choose_output_section(object, name, sh_type,
1215 shdr.get_sh_flags(), true,
1216 ORDER_INVALID, false, false,
1217 true);
1218 }
1219 else
1220 {
1221 // We know the name of the output section, directly call
1222 // get_output_section here by-passing choose_output_section.
1223 elfcpp::Elf_Xword flags
1224 = this->get_output_section_flags(shdr.get_sh_flags());
1225
1226 const char* os_name = it->second->name;
1227 Stringpool::Key name_key;
1228 os_name = this->namepool_.add(os_name, true, &name_key);
1229 os = this->get_output_section(os_name, name_key, sh_type, flags,
1230 ORDER_INVALID, false);
1231 if (!os->is_unique_segment())
1232 {
1233 os->set_is_unique_segment();
1234 os->set_extra_segment_flags(it->second->flags);
1235 os->set_segment_alignment(it->second->align);
1236 }
1237 }
1238 }
1239 if (os == NULL)
1240 return NULL;
1241 }
1242
1243 // By default the GNU linker sorts input sections whose names match
1244 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1245 // sections are sorted by name. This is used to implement
1246 // constructor priority ordering. We are compatible. When we put
1247 // .ctor sections in .init_array and .dtor sections in .fini_array,
1248 // we must also sort plain .ctor and .dtor sections.
1249 if (!this->script_options_->saw_sections_clause()
1250 && !parameters->options().relocatable()
1251 && (is_prefix_of(".ctors.", name)
1252 || is_prefix_of(".dtors.", name)
1253 || is_prefix_of(".init_array.", name)
1254 || is_prefix_of(".fini_array.", name)
1255 || (parameters->options().ctors_in_init_array()
1256 && (strcmp(name, ".ctors") == 0
1257 || strcmp(name, ".dtors") == 0))))
1258 os->set_must_sort_attached_input_sections();
1259
1260 // By default the GNU linker sorts some special text sections ahead
1261 // of others. We are compatible.
1262 if (parameters->options().text_reorder()
1263 && !this->script_options_->saw_sections_clause()
1264 && !this->is_section_ordering_specified()
1265 && !parameters->options().relocatable()
1266 && Layout::special_ordering_of_input_section(name) >= 0)
1267 os->set_must_sort_attached_input_sections();
1268
1269 // If this is a .ctors or .ctors.* section being mapped to a
1270 // .init_array section, or a .dtors or .dtors.* section being mapped
1271 // to a .fini_array section, we will need to reverse the words if
1272 // there is more than one. Record this section for later. See
1273 // ctors_sections_in_init_array above.
1274 if (!this->script_options_->saw_sections_clause()
1275 && !parameters->options().relocatable()
1276 && shdr.get_sh_size() > size / 8
1277 && (((strcmp(name, ".ctors") == 0
1278 || is_prefix_of(".ctors.", name))
1279 && strcmp(os->name(), ".init_array") == 0)
1280 || ((strcmp(name, ".dtors") == 0
1281 || is_prefix_of(".dtors.", name))
1282 && strcmp(os->name(), ".fini_array") == 0)))
1283 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1284
1285 // FIXME: Handle SHF_LINK_ORDER somewhere.
1286
1287 elfcpp::Elf_Xword orig_flags = os->flags();
1288
1289 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1290 this->script_options_->saw_sections_clause());
1291
1292 // If the flags changed, we may have to change the order.
1293 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1294 {
1295 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 elfcpp::Elf_Xword new_flags =
1297 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1298 if (orig_flags != new_flags)
1299 os->set_order(this->default_section_order(os, false));
1300 }
1301
1302 this->have_added_input_section_ = true;
1303
1304 return os;
1305 }
1306
1307 // Maps section SECN to SEGMENT s.
1308 void
1309 Layout::insert_section_segment_map(Const_section_id secn,
1310 Unique_segment_info *s)
1311 {
1312 gold_assert(this->unique_segment_for_sections_specified_);
1313 this->section_segment_map_[secn] = s;
1314 }
1315
1316 // Handle a relocation section when doing a relocatable link.
1317
1318 template<int size, bool big_endian>
1319 Output_section*
1320 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1321 unsigned int,
1322 const elfcpp::Shdr<size, big_endian>& shdr,
1323 Output_section* data_section,
1324 Relocatable_relocs* rr)
1325 {
1326 gold_assert(parameters->options().relocatable()
1327 || parameters->options().emit_relocs());
1328
1329 int sh_type = shdr.get_sh_type();
1330
1331 std::string name;
1332 if (sh_type == elfcpp::SHT_REL)
1333 name = ".rel";
1334 else if (sh_type == elfcpp::SHT_RELA)
1335 name = ".rela";
1336 else
1337 gold_unreachable();
1338 name += data_section->name();
1339
1340 // If the output data section already has a reloc section, use that;
1341 // otherwise, make a new one.
1342 Output_section* os = data_section->reloc_section();
1343 if (os == NULL)
1344 {
1345 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1346 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1347 ORDER_INVALID, false);
1348 os->set_should_link_to_symtab();
1349 os->set_info_section(data_section);
1350 data_section->set_reloc_section(os);
1351 }
1352
1353 Output_section_data* posd;
1354 if (sh_type == elfcpp::SHT_REL)
1355 {
1356 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1357 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1358 size,
1359 big_endian>(rr);
1360 }
1361 else if (sh_type == elfcpp::SHT_RELA)
1362 {
1363 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1364 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1365 size,
1366 big_endian>(rr);
1367 }
1368 else
1369 gold_unreachable();
1370
1371 os->add_output_section_data(posd);
1372 rr->set_output_data(posd);
1373
1374 return os;
1375 }
1376
1377 // Handle a group section when doing a relocatable link.
1378
1379 template<int size, bool big_endian>
1380 void
1381 Layout::layout_group(Symbol_table* symtab,
1382 Sized_relobj_file<size, big_endian>* object,
1383 unsigned int,
1384 const char* group_section_name,
1385 const char* signature,
1386 const elfcpp::Shdr<size, big_endian>& shdr,
1387 elfcpp::Elf_Word flags,
1388 std::vector<unsigned int>* shndxes)
1389 {
1390 gold_assert(parameters->options().relocatable());
1391 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1392 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1393 Output_section* os = this->make_output_section(group_section_name,
1394 elfcpp::SHT_GROUP,
1395 shdr.get_sh_flags(),
1396 ORDER_INVALID, false);
1397
1398 // We need to find a symbol with the signature in the symbol table.
1399 // If we don't find one now, we need to look again later.
1400 Symbol* sym = symtab->lookup(signature, NULL);
1401 if (sym != NULL)
1402 os->set_info_symndx(sym);
1403 else
1404 {
1405 // Reserve some space to minimize reallocations.
1406 if (this->group_signatures_.empty())
1407 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1408
1409 // We will wind up using a symbol whose name is the signature.
1410 // So just put the signature in the symbol name pool to save it.
1411 signature = symtab->canonicalize_name(signature);
1412 this->group_signatures_.push_back(Group_signature(os, signature));
1413 }
1414
1415 os->set_should_link_to_symtab();
1416 os->set_entsize(4);
1417
1418 section_size_type entry_count =
1419 convert_to_section_size_type(shdr.get_sh_size() / 4);
1420 Output_section_data* posd =
1421 new Output_data_group<size, big_endian>(object, entry_count, flags,
1422 shndxes);
1423 os->add_output_section_data(posd);
1424 }
1425
1426 // Special GNU handling of sections name .eh_frame. They will
1427 // normally hold exception frame data as defined by the C++ ABI
1428 // (http://codesourcery.com/cxx-abi/).
1429
1430 template<int size, bool big_endian>
1431 Output_section*
1432 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1433 const unsigned char* symbols,
1434 off_t symbols_size,
1435 const unsigned char* symbol_names,
1436 off_t symbol_names_size,
1437 unsigned int shndx,
1438 const elfcpp::Shdr<size, big_endian>& shdr,
1439 unsigned int reloc_shndx, unsigned int reloc_type,
1440 off_t* off)
1441 {
1442 const unsigned int unwind_section_type =
1443 parameters->target().unwind_section_type();
1444
1445 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 || shdr.get_sh_type() == unwind_section_type);
1447 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449 Output_section* os = this->make_eh_frame_section(object);
1450 if (os == NULL)
1451 return NULL;
1452
1453 gold_assert(this->eh_frame_section_ == os);
1454
1455 elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457 Eh_frame::Eh_frame_section_disposition disp =
1458 Eh_frame::EH_UNRECOGNIZED_SECTION;
1459 if (!parameters->incremental())
1460 {
1461 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 symbols,
1463 symbols_size,
1464 symbol_names,
1465 symbol_names_size,
1466 shndx,
1467 reloc_shndx,
1468 reloc_type);
1469 }
1470
1471 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472 {
1473 os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475 // A writable .eh_frame section is a RELRO section.
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 {
1479 os->set_is_relro();
1480 os->set_order(ORDER_RELRO);
1481 }
1482
1483 *off = -1;
1484 return os;
1485 }
1486
1487 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488 {
1489 // We found the end marker section, so now we can add the set of
1490 // optimized sections to the output section. We need to postpone
1491 // adding this until we've found a section we can optimize so that
1492 // the .eh_frame section in crtbeginT.o winds up at the start of
1493 // the output section.
1494 os->add_output_section_data(this->eh_frame_data_);
1495 this->added_eh_frame_data_ = true;
1496 }
1497
1498 // We couldn't handle this .eh_frame section for some reason.
1499 // Add it as a normal section.
1500 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 reloc_shndx, saw_sections_clause);
1503 this->have_added_input_section_ = true;
1504
1505 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507 os->set_order(this->default_section_order(os, false));
1508
1509 return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515 // If we never found an end marker section, we need to add the
1516 // optimized eh sections to the output section now.
1517 if (!parameters->incremental()
1518 && this->eh_frame_section_ != NULL
1519 && !this->added_eh_frame_data_)
1520 {
1521 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522 this->added_eh_frame_data_ = true;
1523 }
1524 }
1525
1526 // Create and return the magic .eh_frame section. Create
1527 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533 const unsigned int unwind_section_type =
1534 parameters->target().unwind_section_type();
1535
1536 Output_section* os = this->choose_output_section(object, ".eh_frame",
1537 unwind_section_type,
1538 elfcpp::SHF_ALLOC, false,
1539 ORDER_EHFRAME, false, false,
1540 false);
1541 if (os == NULL)
1542 return NULL;
1543
1544 if (this->eh_frame_section_ == NULL)
1545 {
1546 this->eh_frame_section_ = os;
1547 this->eh_frame_data_ = new Eh_frame();
1548
1549 // For incremental linking, we do not optimize .eh_frame sections
1550 // or create a .eh_frame_hdr section.
1551 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1552 {
1553 Output_section* hdr_os =
1554 this->choose_output_section(NULL, ".eh_frame_hdr",
1555 unwind_section_type,
1556 elfcpp::SHF_ALLOC, false,
1557 ORDER_EHFRAME, false, false,
1558 false);
1559
1560 if (hdr_os != NULL)
1561 {
1562 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1563 this->eh_frame_data_);
1564 hdr_os->add_output_section_data(hdr_posd);
1565
1566 hdr_os->set_after_input_sections();
1567
1568 if (!this->script_options_->saw_phdrs_clause())
1569 {
1570 Output_segment* hdr_oseg;
1571 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1572 elfcpp::PF_R);
1573 hdr_oseg->add_output_section_to_nonload(hdr_os,
1574 elfcpp::PF_R);
1575 }
1576
1577 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1578 }
1579 }
1580 }
1581
1582 return os;
1583 }
1584
1585 // Add an exception frame for a PLT. This is called from target code.
1586
1587 void
1588 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1589 size_t cie_length, const unsigned char* fde_data,
1590 size_t fde_length)
1591 {
1592 if (parameters->incremental())
1593 {
1594 // FIXME: Maybe this could work some day....
1595 return;
1596 }
1597 Output_section* os = this->make_eh_frame_section(NULL);
1598 if (os == NULL)
1599 return;
1600 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1601 fde_data, fde_length);
1602 if (!this->added_eh_frame_data_)
1603 {
1604 os->add_output_section_data(this->eh_frame_data_);
1605 this->added_eh_frame_data_ = true;
1606 }
1607 }
1608
1609 // Remove all post-map .eh_frame information for a PLT.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 size_t cie_length)
1614 {
1615 if (parameters->incremental())
1616 {
1617 // FIXME: Maybe this could work some day....
1618 return;
1619 }
1620 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1621 }
1622
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Layout::add_to_gdb_index(bool is_type_unit,
1629 Sized_relobj<size, big_endian>* object,
1630 const unsigned char* symbols,
1631 off_t symbols_size,
1632 unsigned int shndx,
1633 unsigned int reloc_shndx,
1634 unsigned int reloc_type)
1635 {
1636 if (this->gdb_index_data_ == NULL)
1637 {
1638 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639 elfcpp::SHT_PROGBITS, 0,
1640 false, ORDER_INVALID,
1641 false, false, false);
1642 if (os == NULL)
1643 return;
1644
1645 this->gdb_index_data_ = new Gdb_index(os);
1646 os->add_output_section_data(this->gdb_index_data_);
1647 os->set_after_input_sections();
1648 }
1649
1650 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651 symbols_size, shndx, reloc_shndx,
1652 reloc_type);
1653 }
1654
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1656 // the output section.
1657
1658 Output_section*
1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660 elfcpp::Elf_Xword flags,
1661 Output_section_data* posd,
1662 Output_section_order order, bool is_relro)
1663 {
1664 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665 false, order, is_relro,
1666 false, false);
1667 if (os != NULL)
1668 os->add_output_section_data(posd);
1669 return os;
1670 }
1671
1672 // Map section flags to segment flags.
1673
1674 elfcpp::Elf_Word
1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677 elfcpp::Elf_Word ret = elfcpp::PF_R;
1678 if ((flags & elfcpp::SHF_WRITE) != 0)
1679 ret |= elfcpp::PF_W;
1680 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681 ret |= elfcpp::PF_X;
1682 return ret;
1683 }
1684
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate. ORDER is the order in which this section should
1687 // appear in the output segment. IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689
1690 Output_section*
1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692 elfcpp::Elf_Xword flags,
1693 Output_section_order order, bool is_relro)
1694 {
1695 Output_section* os;
1696 if ((flags & elfcpp::SHF_ALLOC) == 0
1697 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698 && is_compressible_debug_section(name))
1699 os = new Output_compressed_section(&parameters->options(), name, type,
1700 flags);
1701 else if ((flags & elfcpp::SHF_ALLOC) == 0
1702 && parameters->options().strip_debug_non_line()
1703 && strcmp(".debug_abbrev", name) == 0)
1704 {
1705 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706 name, type, flags);
1707 if (this->debug_info_)
1708 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709 }
1710 else if ((flags & elfcpp::SHF_ALLOC) == 0
1711 && parameters->options().strip_debug_non_line()
1712 && strcmp(".debug_info", name) == 0)
1713 {
1714 os = this->debug_info_ = new Output_reduced_debug_info_section(
1715 name, type, flags);
1716 if (this->debug_abbrev_)
1717 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718 }
1719 else
1720 {
1721 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722 // not have correct section types. Force them here.
1723 if (type == elfcpp::SHT_PROGBITS)
1724 {
1725 if (is_prefix_of(".init_array", name))
1726 type = elfcpp::SHT_INIT_ARRAY;
1727 else if (is_prefix_of(".preinit_array", name))
1728 type = elfcpp::SHT_PREINIT_ARRAY;
1729 else if (is_prefix_of(".fini_array", name))
1730 type = elfcpp::SHT_FINI_ARRAY;
1731 }
1732
1733 // FIXME: const_cast is ugly.
1734 Target* target = const_cast<Target*>(&parameters->target());
1735 os = target->make_output_section(name, type, flags);
1736 }
1737
1738 // With -z relro, we have to recognize the special sections by name.
1739 // There is no other way.
1740 bool is_relro_local = false;
1741 if (!this->script_options_->saw_sections_clause()
1742 && parameters->options().relro()
1743 && (flags & elfcpp::SHF_ALLOC) != 0
1744 && (flags & elfcpp::SHF_WRITE) != 0)
1745 {
1746 if (type == elfcpp::SHT_PROGBITS)
1747 {
1748 if ((flags & elfcpp::SHF_TLS) != 0)
1749 is_relro = true;
1750 else if (strcmp(name, ".data.rel.ro") == 0)
1751 is_relro = true;
1752 else if (strcmp(name, ".data.rel.ro.local") == 0)
1753 {
1754 is_relro = true;
1755 is_relro_local = true;
1756 }
1757 else if (strcmp(name, ".ctors") == 0
1758 || strcmp(name, ".dtors") == 0
1759 || strcmp(name, ".jcr") == 0)
1760 is_relro = true;
1761 }
1762 else if (type == elfcpp::SHT_INIT_ARRAY
1763 || type == elfcpp::SHT_FINI_ARRAY
1764 || type == elfcpp::SHT_PREINIT_ARRAY)
1765 is_relro = true;
1766 }
1767
1768 if (is_relro)
1769 os->set_is_relro();
1770
1771 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772 order = this->default_section_order(os, is_relro_local);
1773
1774 os->set_order(order);
1775
1776 parameters->target().new_output_section(os);
1777
1778 this->section_list_.push_back(os);
1779
1780 // The GNU linker by default sorts some sections by priority, so we
1781 // do the same. We need to know that this might happen before we
1782 // attach any input sections.
1783 if (!this->script_options_->saw_sections_clause()
1784 && !parameters->options().relocatable()
1785 && (strcmp(name, ".init_array") == 0
1786 || strcmp(name, ".fini_array") == 0
1787 || (!parameters->options().ctors_in_init_array()
1788 && (strcmp(name, ".ctors") == 0
1789 || strcmp(name, ".dtors") == 0))))
1790 os->set_may_sort_attached_input_sections();
1791
1792 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793 // sections before other .text sections. We are compatible. We
1794 // need to know that this might happen before we attach any input
1795 // sections.
1796 if (parameters->options().text_reorder()
1797 && !this->script_options_->saw_sections_clause()
1798 && !this->is_section_ordering_specified()
1799 && !parameters->options().relocatable()
1800 && strcmp(name, ".text") == 0)
1801 os->set_may_sort_attached_input_sections();
1802
1803 // GNU linker sorts section by name with --sort-section=name.
1804 if (strcmp(parameters->options().sort_section(), "name") == 0)
1805 os->set_must_sort_attached_input_sections();
1806
1807 // Check for .stab*str sections, as .stab* sections need to link to
1808 // them.
1809 if (type == elfcpp::SHT_STRTAB
1810 && !this->have_stabstr_section_
1811 && strncmp(name, ".stab", 5) == 0
1812 && strcmp(name + strlen(name) - 3, "str") == 0)
1813 this->have_stabstr_section_ = true;
1814
1815 // During a full incremental link, we add patch space to most
1816 // PROGBITS and NOBITS sections. Flag those that may be
1817 // arbitrarily padded.
1818 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819 && order != ORDER_INTERP
1820 && order != ORDER_INIT
1821 && order != ORDER_PLT
1822 && order != ORDER_FINI
1823 && order != ORDER_RELRO_LAST
1824 && order != ORDER_NON_RELRO_FIRST
1825 && strcmp(name, ".eh_frame") != 0
1826 && strcmp(name, ".ctors") != 0
1827 && strcmp(name, ".dtors") != 0
1828 && strcmp(name, ".jcr") != 0)
1829 {
1830 os->set_is_patch_space_allowed();
1831
1832 // Certain sections require "holes" to be filled with
1833 // specific fill patterns. These fill patterns may have
1834 // a minimum size, so we must prevent allocations from the
1835 // free list that leave a hole smaller than the minimum.
1836 if (strcmp(name, ".debug_info") == 0)
1837 os->set_free_space_fill(new Output_fill_debug_info(false));
1838 else if (strcmp(name, ".debug_types") == 0)
1839 os->set_free_space_fill(new Output_fill_debug_info(true));
1840 else if (strcmp(name, ".debug_line") == 0)
1841 os->set_free_space_fill(new Output_fill_debug_line());
1842 }
1843
1844 // If we have already attached the sections to segments, then we
1845 // need to attach this one now. This happens for sections created
1846 // directly by the linker.
1847 if (this->sections_are_attached_)
1848 this->attach_section_to_segment(&parameters->target(), os);
1849
1850 return os;
1851 }
1852
1853 // Return the default order in which a section should be placed in an
1854 // output segment. This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858
1859 Output_section_order
1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865 bool is_bss = false;
1866
1867 switch (os->type())
1868 {
1869 default:
1870 case elfcpp::SHT_PROGBITS:
1871 break;
1872 case elfcpp::SHT_NOBITS:
1873 is_bss = true;
1874 break;
1875 case elfcpp::SHT_RELA:
1876 case elfcpp::SHT_REL:
1877 if (!is_write)
1878 return ORDER_DYNAMIC_RELOCS;
1879 break;
1880 case elfcpp::SHT_HASH:
1881 case elfcpp::SHT_DYNAMIC:
1882 case elfcpp::SHT_SHLIB:
1883 case elfcpp::SHT_DYNSYM:
1884 case elfcpp::SHT_GNU_HASH:
1885 case elfcpp::SHT_GNU_verdef:
1886 case elfcpp::SHT_GNU_verneed:
1887 case elfcpp::SHT_GNU_versym:
1888 if (!is_write)
1889 return ORDER_DYNAMIC_LINKER;
1890 break;
1891 case elfcpp::SHT_NOTE:
1892 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893 }
1894
1895 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897
1898 if (!is_bss && !is_write)
1899 {
1900 if (is_execinstr)
1901 {
1902 if (strcmp(os->name(), ".init") == 0)
1903 return ORDER_INIT;
1904 else if (strcmp(os->name(), ".fini") == 0)
1905 return ORDER_FINI;
1906 else if (parameters->options().keep_text_section_prefix())
1907 {
1908 // -z,keep-text-section-prefix introduces additional
1909 // output sections.
1910 if (strcmp(os->name(), ".text.hot") == 0)
1911 return ORDER_TEXT_HOT;
1912 else if (strcmp(os->name(), ".text.startup") == 0)
1913 return ORDER_TEXT_STARTUP;
1914 else if (strcmp(os->name(), ".text.exit") == 0)
1915 return ORDER_TEXT_EXIT;
1916 else if (strcmp(os->name(), ".text.unlikely") == 0)
1917 return ORDER_TEXT_UNLIKELY;
1918 }
1919 }
1920 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921 }
1922
1923 if (os->is_relro())
1924 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925
1926 if (os->is_small_section())
1927 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928 if (os->is_large_section())
1929 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930
1931 return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933
1934 // Attach output sections to segments. This is called after we have
1935 // seen all the input sections.
1936
1937 void
1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940 for (Section_list::iterator p = this->section_list_.begin();
1941 p != this->section_list_.end();
1942 ++p)
1943 this->attach_section_to_segment(target, *p);
1944
1945 this->sections_are_attached_ = true;
1946 }
1947
1948 // Attach an output section to a segment.
1949
1950 void
1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954 this->unattached_section_list_.push_back(os);
1955 else
1956 this->attach_allocated_section_to_segment(target, os);
1957 }
1958
1959 // Attach an allocated output section to a segment.
1960
1961 void
1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963 Output_section* os)
1964 {
1965 elfcpp::Elf_Xword flags = os->flags();
1966 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967
1968 if (parameters->options().relocatable())
1969 return;
1970
1971 // If we have a SECTIONS clause, we can't handle the attachment to
1972 // segments until after we've seen all the sections.
1973 if (this->script_options_->saw_sections_clause())
1974 return;
1975
1976 gold_assert(!this->script_options_->saw_phdrs_clause());
1977
1978 // This output section goes into a PT_LOAD segment.
1979
1980 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981
1982 // If this output section's segment has extra flags that need to be set,
1983 // coming from a linker plugin, do that.
1984 seg_flags |= os->extra_segment_flags();
1985
1986 // Check for --section-start.
1987 uint64_t addr;
1988 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989
1990 // In general the only thing we really care about for PT_LOAD
1991 // segments is whether or not they are writable or executable,
1992 // so that is how we search for them.
1993 // Large data sections also go into their own PT_LOAD segment.
1994 // People who need segments sorted on some other basis will
1995 // have to use a linker script.
1996
1997 Segment_list::const_iterator p;
1998 if (!os->is_unique_segment())
1999 {
2000 for (p = this->segment_list_.begin();
2001 p != this->segment_list_.end();
2002 ++p)
2003 {
2004 if ((*p)->type() != elfcpp::PT_LOAD)
2005 continue;
2006 if ((*p)->is_unique_segment())
2007 continue;
2008 if (!parameters->options().omagic()
2009 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010 continue;
2011 if ((target->isolate_execinstr() || parameters->options().rosegment())
2012 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013 continue;
2014 // If -Tbss was specified, we need to separate the data and BSS
2015 // segments.
2016 if (parameters->options().user_set_Tbss())
2017 {
2018 if ((os->type() == elfcpp::SHT_NOBITS)
2019 == (*p)->has_any_data_sections())
2020 continue;
2021 }
2022 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023 continue;
2024
2025 if (is_address_set)
2026 {
2027 if ((*p)->are_addresses_set())
2028 continue;
2029
2030 (*p)->add_initial_output_data(os);
2031 (*p)->update_flags_for_output_section(seg_flags);
2032 (*p)->set_addresses(addr, addr);
2033 break;
2034 }
2035
2036 (*p)->add_output_section_to_load(this, os, seg_flags);
2037 break;
2038 }
2039 }
2040
2041 if (p == this->segment_list_.end()
2042 || os->is_unique_segment())
2043 {
2044 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045 seg_flags);
2046 if (os->is_large_data_section())
2047 oseg->set_is_large_data_segment();
2048 oseg->add_output_section_to_load(this, os, seg_flags);
2049 if (is_address_set)
2050 oseg->set_addresses(addr, addr);
2051 // Check if segment should be marked unique. For segments marked
2052 // unique by linker plugins, set the new alignment if specified.
2053 if (os->is_unique_segment())
2054 {
2055 oseg->set_is_unique_segment();
2056 if (os->segment_alignment() != 0)
2057 oseg->set_minimum_p_align(os->segment_alignment());
2058 }
2059 }
2060
2061 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062 // segment.
2063 if (os->type() == elfcpp::SHT_NOTE)
2064 {
2065 uint64_t os_align = os->addralign();
2066
2067 // See if we already have an equivalent PT_NOTE segment.
2068 for (p = this->segment_list_.begin();
2069 p != segment_list_.end();
2070 ++p)
2071 {
2072 if ((*p)->type() == elfcpp::PT_NOTE
2073 && (*p)->align() == os_align
2074 && (((*p)->flags() & elfcpp::PF_W)
2075 == (seg_flags & elfcpp::PF_W)))
2076 {
2077 (*p)->add_output_section_to_nonload(os, seg_flags);
2078 break;
2079 }
2080 }
2081
2082 if (p == this->segment_list_.end())
2083 {
2084 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2085 seg_flags);
2086 oseg->add_output_section_to_nonload(os, seg_flags);
2087 oseg->set_align(os_align);
2088 }
2089 }
2090
2091 // If we see a loadable SHF_TLS section, we create a PT_TLS
2092 // segment. There can only be one such segment.
2093 if ((flags & elfcpp::SHF_TLS) != 0)
2094 {
2095 if (this->tls_segment_ == NULL)
2096 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2097 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2098 }
2099
2100 // If -z relro is in effect, and we see a relro section, we create a
2101 // PT_GNU_RELRO segment. There can only be one such segment.
2102 if (os->is_relro() && parameters->options().relro())
2103 {
2104 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2105 if (this->relro_segment_ == NULL)
2106 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2107 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2108 }
2109
2110 // If we see a section named .interp, put it into a PT_INTERP
2111 // segment. This seems broken to me, but this is what GNU ld does,
2112 // and glibc expects it.
2113 if (strcmp(os->name(), ".interp") == 0
2114 && !this->script_options_->saw_phdrs_clause())
2115 {
2116 if (this->interp_segment_ == NULL)
2117 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2118 else
2119 gold_warning(_("multiple '.interp' sections in input files "
2120 "may cause confusing PT_INTERP segment"));
2121 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2122 }
2123 }
2124
2125 // Make an output section for a script.
2126
2127 Output_section*
2128 Layout::make_output_section_for_script(
2129 const char* name,
2130 Script_sections::Section_type section_type)
2131 {
2132 name = this->namepool_.add(name, false, NULL);
2133 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2134 if (section_type == Script_sections::ST_NOLOAD)
2135 sh_flags = 0;
2136 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2137 sh_flags, ORDER_INVALID,
2138 false);
2139 os->set_found_in_sections_clause();
2140 if (section_type == Script_sections::ST_NOLOAD)
2141 os->set_is_noload();
2142 return os;
2143 }
2144
2145 // Return the number of segments we expect to see.
2146
2147 size_t
2148 Layout::expected_segment_count() const
2149 {
2150 size_t ret = this->segment_list_.size();
2151
2152 // If we didn't see a SECTIONS clause in a linker script, we should
2153 // already have the complete list of segments. Otherwise we ask the
2154 // SECTIONS clause how many segments it expects, and add in the ones
2155 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2156
2157 if (!this->script_options_->saw_sections_clause())
2158 return ret;
2159 else
2160 {
2161 const Script_sections* ss = this->script_options_->script_sections();
2162 return ret + ss->expected_segment_count(this);
2163 }
2164 }
2165
2166 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2167 // is whether we saw a .note.GNU-stack section in the object file.
2168 // GNU_STACK_FLAGS is the section flags. The flags give the
2169 // protection required for stack memory. We record this in an
2170 // executable as a PT_GNU_STACK segment. If an object file does not
2171 // have a .note.GNU-stack segment, we must assume that it is an old
2172 // object. On some targets that will force an executable stack.
2173
2174 void
2175 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2176 const Object* obj)
2177 {
2178 if (!seen_gnu_stack)
2179 {
2180 this->input_without_gnu_stack_note_ = true;
2181 if (parameters->options().warn_execstack()
2182 && parameters->target().is_default_stack_executable())
2183 gold_warning(_("%s: missing .note.GNU-stack section"
2184 " implies executable stack"),
2185 obj->name().c_str());
2186 }
2187 else
2188 {
2189 this->input_with_gnu_stack_note_ = true;
2190 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2191 {
2192 this->input_requires_executable_stack_ = true;
2193 if (parameters->options().warn_execstack())
2194 gold_warning(_("%s: requires executable stack"),
2195 obj->name().c_str());
2196 }
2197 }
2198 }
2199
2200 // Read a value with given size and endianness.
2201
2202 static inline uint64_t
2203 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2204 const Object* object)
2205 {
2206 uint64_t val = 0;
2207 if (size == 4)
2208 {
2209 if (is_big_endian)
2210 val = elfcpp::Swap<32, true>::readval(buf);
2211 else
2212 val = elfcpp::Swap<32, false>::readval(buf);
2213 }
2214 else if (size == 8)
2215 {
2216 if (is_big_endian)
2217 val = elfcpp::Swap<64, true>::readval(buf);
2218 else
2219 val = elfcpp::Swap<64, false>::readval(buf);
2220 }
2221 else
2222 {
2223 gold_warning(_("%s: in .note.gnu.property section, "
2224 "pr_datasz must be 4 or 8"),
2225 object->name().c_str());
2226 }
2227 return val;
2228 }
2229
2230 // Write a value with given size and endianness.
2231
2232 static inline void
2233 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2234 bool is_big_endian)
2235 {
2236 if (size == 4)
2237 {
2238 if (is_big_endian)
2239 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2240 else
2241 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2242 }
2243 else if (size == 8)
2244 {
2245 if (is_big_endian)
2246 elfcpp::Swap<64, true>::writeval(buf, value);
2247 else
2248 elfcpp::Swap<64, false>::writeval(buf, value);
2249 }
2250 else
2251 {
2252 // We will have already complained about this.
2253 }
2254 }
2255
2256 // Handle the .note.gnu.property section at layout time.
2257
2258 void
2259 Layout::layout_gnu_property(unsigned int note_type,
2260 unsigned int pr_type,
2261 size_t pr_datasz,
2262 const unsigned char* pr_data,
2263 const Object* object)
2264 {
2265 // We currently support only the one note type.
2266 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2267
2268 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2269 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2270 {
2271 // Target-dependent property value; call the target to record.
2272 const int size = parameters->target().get_size();
2273 const bool is_big_endian = parameters->target().is_big_endian();
2274 if (size == 32)
2275 {
2276 if (is_big_endian)
2277 {
2278 #ifdef HAVE_TARGET_32_BIG
2279 parameters->sized_target<32, true>()->
2280 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2281 object);
2282 #else
2283 gold_unreachable();
2284 #endif
2285 }
2286 else
2287 {
2288 #ifdef HAVE_TARGET_32_LITTLE
2289 parameters->sized_target<32, false>()->
2290 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2291 object);
2292 #else
2293 gold_unreachable();
2294 #endif
2295 }
2296 }
2297 else if (size == 64)
2298 {
2299 if (is_big_endian)
2300 {
2301 #ifdef HAVE_TARGET_64_BIG
2302 parameters->sized_target<64, true>()->
2303 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2304 object);
2305 #else
2306 gold_unreachable();
2307 #endif
2308 }
2309 else
2310 {
2311 #ifdef HAVE_TARGET_64_LITTLE
2312 parameters->sized_target<64, false>()->
2313 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2314 object);
2315 #else
2316 gold_unreachable();
2317 #endif
2318 }
2319 }
2320 else
2321 gold_unreachable();
2322 return;
2323 }
2324
2325 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2326 if (pprop == this->gnu_properties_.end())
2327 {
2328 Gnu_property prop;
2329 prop.pr_datasz = pr_datasz;
2330 prop.pr_data = new unsigned char[pr_datasz];
2331 memcpy(prop.pr_data, pr_data, pr_datasz);
2332 this->gnu_properties_[pr_type] = prop;
2333 }
2334 else
2335 {
2336 const bool is_big_endian = parameters->target().is_big_endian();
2337 switch (pr_type)
2338 {
2339 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2340 // Record the maximum value seen.
2341 {
2342 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2343 pprop->second.pr_data,
2344 is_big_endian, object);
2345 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2346 is_big_endian, object);
2347 if (val2 > val1)
2348 write_sized_value(val2, pprop->second.pr_datasz,
2349 pprop->second.pr_data, is_big_endian);
2350 }
2351 break;
2352 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2353 // No data to merge.
2354 break;
2355 default:
2356 gold_warning(_("%s: unknown program property type %d "
2357 "in .note.gnu.property section"),
2358 object->name().c_str(), pr_type);
2359 }
2360 }
2361 }
2362
2363 // Merge per-object properties with program properties.
2364 // This lets the target identify objects that are missing certain
2365 // properties, in cases where properties must be ANDed together.
2366
2367 void
2368 Layout::merge_gnu_properties(const Object* object)
2369 {
2370 const int size = parameters->target().get_size();
2371 const bool is_big_endian = parameters->target().is_big_endian();
2372 if (size == 32)
2373 {
2374 if (is_big_endian)
2375 {
2376 #ifdef HAVE_TARGET_32_BIG
2377 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2378 #else
2379 gold_unreachable();
2380 #endif
2381 }
2382 else
2383 {
2384 #ifdef HAVE_TARGET_32_LITTLE
2385 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2386 #else
2387 gold_unreachable();
2388 #endif
2389 }
2390 }
2391 else if (size == 64)
2392 {
2393 if (is_big_endian)
2394 {
2395 #ifdef HAVE_TARGET_64_BIG
2396 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2397 #else
2398 gold_unreachable();
2399 #endif
2400 }
2401 else
2402 {
2403 #ifdef HAVE_TARGET_64_LITTLE
2404 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2405 #else
2406 gold_unreachable();
2407 #endif
2408 }
2409 }
2410 else
2411 gold_unreachable();
2412 }
2413
2414 // Add a target-specific property for the output .note.gnu.property section.
2415
2416 void
2417 Layout::add_gnu_property(unsigned int note_type,
2418 unsigned int pr_type,
2419 size_t pr_datasz,
2420 const unsigned char* pr_data)
2421 {
2422 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2423
2424 Gnu_property prop;
2425 prop.pr_datasz = pr_datasz;
2426 prop.pr_data = new unsigned char[pr_datasz];
2427 memcpy(prop.pr_data, pr_data, pr_datasz);
2428 this->gnu_properties_[pr_type] = prop;
2429 }
2430
2431 // Create automatic note sections.
2432
2433 void
2434 Layout::create_notes()
2435 {
2436 this->create_gnu_properties_note();
2437 this->create_gold_note();
2438 this->create_stack_segment();
2439 this->create_build_id();
2440 }
2441
2442 // Create the dynamic sections which are needed before we read the
2443 // relocs.
2444
2445 void
2446 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2447 {
2448 if (parameters->doing_static_link())
2449 return;
2450
2451 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2452 elfcpp::SHT_DYNAMIC,
2453 (elfcpp::SHF_ALLOC
2454 | elfcpp::SHF_WRITE),
2455 false, ORDER_RELRO,
2456 true, false, false);
2457
2458 // A linker script may discard .dynamic, so check for NULL.
2459 if (this->dynamic_section_ != NULL)
2460 {
2461 this->dynamic_symbol_ =
2462 symtab->define_in_output_data("_DYNAMIC", NULL,
2463 Symbol_table::PREDEFINED,
2464 this->dynamic_section_, 0, 0,
2465 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2466 elfcpp::STV_HIDDEN, 0, false, false);
2467
2468 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2469
2470 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2471 }
2472 }
2473
2474 // For each output section whose name can be represented as C symbol,
2475 // define __start and __stop symbols for the section. This is a GNU
2476 // extension.
2477
2478 void
2479 Layout::define_section_symbols(Symbol_table* symtab)
2480 {
2481 const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2482 for (Section_list::const_iterator p = this->section_list_.begin();
2483 p != this->section_list_.end();
2484 ++p)
2485 {
2486 const char* const name = (*p)->name();
2487 if (is_cident(name))
2488 {
2489 const std::string name_string(name);
2490 const std::string start_name(cident_section_start_prefix
2491 + name_string);
2492 const std::string stop_name(cident_section_stop_prefix
2493 + name_string);
2494
2495 symtab->define_in_output_data(start_name.c_str(),
2496 NULL, // version
2497 Symbol_table::PREDEFINED,
2498 *p,
2499 0, // value
2500 0, // symsize
2501 elfcpp::STT_NOTYPE,
2502 elfcpp::STB_GLOBAL,
2503 visibility,
2504 0, // nonvis
2505 false, // offset_is_from_end
2506 true); // only_if_ref
2507
2508 symtab->define_in_output_data(stop_name.c_str(),
2509 NULL, // version
2510 Symbol_table::PREDEFINED,
2511 *p,
2512 0, // value
2513 0, // symsize
2514 elfcpp::STT_NOTYPE,
2515 elfcpp::STB_GLOBAL,
2516 visibility,
2517 0, // nonvis
2518 true, // offset_is_from_end
2519 true); // only_if_ref
2520 }
2521 }
2522 }
2523
2524 // Define symbols for group signatures.
2525
2526 void
2527 Layout::define_group_signatures(Symbol_table* symtab)
2528 {
2529 for (Group_signatures::iterator p = this->group_signatures_.begin();
2530 p != this->group_signatures_.end();
2531 ++p)
2532 {
2533 Symbol* sym = symtab->lookup(p->signature, NULL);
2534 if (sym != NULL)
2535 p->section->set_info_symndx(sym);
2536 else
2537 {
2538 // Force the name of the group section to the group
2539 // signature, and use the group's section symbol as the
2540 // signature symbol.
2541 if (strcmp(p->section->name(), p->signature) != 0)
2542 {
2543 const char* name = this->namepool_.add(p->signature,
2544 true, NULL);
2545 p->section->set_name(name);
2546 }
2547 p->section->set_needs_symtab_index();
2548 p->section->set_info_section_symndx(p->section);
2549 }
2550 }
2551
2552 this->group_signatures_.clear();
2553 }
2554
2555 // Find the first read-only PT_LOAD segment, creating one if
2556 // necessary.
2557
2558 Output_segment*
2559 Layout::find_first_load_seg(const Target* target)
2560 {
2561 Output_segment* best = NULL;
2562 for (Segment_list::const_iterator p = this->segment_list_.begin();
2563 p != this->segment_list_.end();
2564 ++p)
2565 {
2566 if ((*p)->type() == elfcpp::PT_LOAD
2567 && ((*p)->flags() & elfcpp::PF_R) != 0
2568 && (parameters->options().omagic()
2569 || ((*p)->flags() & elfcpp::PF_W) == 0)
2570 && (!target->isolate_execinstr()
2571 || ((*p)->flags() & elfcpp::PF_X) == 0))
2572 {
2573 if (best == NULL || this->segment_precedes(*p, best))
2574 best = *p;
2575 }
2576 }
2577 if (best != NULL)
2578 return best;
2579
2580 gold_assert(!this->script_options_->saw_phdrs_clause());
2581
2582 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2583 elfcpp::PF_R);
2584 return load_seg;
2585 }
2586
2587 // Save states of all current output segments. Store saved states
2588 // in SEGMENT_STATES.
2589
2590 void
2591 Layout::save_segments(Segment_states* segment_states)
2592 {
2593 for (Segment_list::const_iterator p = this->segment_list_.begin();
2594 p != this->segment_list_.end();
2595 ++p)
2596 {
2597 Output_segment* segment = *p;
2598 // Shallow copy.
2599 Output_segment* copy = new Output_segment(*segment);
2600 (*segment_states)[segment] = copy;
2601 }
2602 }
2603
2604 // Restore states of output segments and delete any segment not found in
2605 // SEGMENT_STATES.
2606
2607 void
2608 Layout::restore_segments(const Segment_states* segment_states)
2609 {
2610 // Go through the segment list and remove any segment added in the
2611 // relaxation loop.
2612 this->tls_segment_ = NULL;
2613 this->relro_segment_ = NULL;
2614 Segment_list::iterator list_iter = this->segment_list_.begin();
2615 while (list_iter != this->segment_list_.end())
2616 {
2617 Output_segment* segment = *list_iter;
2618 Segment_states::const_iterator states_iter =
2619 segment_states->find(segment);
2620 if (states_iter != segment_states->end())
2621 {
2622 const Output_segment* copy = states_iter->second;
2623 // Shallow copy to restore states.
2624 *segment = *copy;
2625
2626 // Also fix up TLS and RELRO segment pointers as appropriate.
2627 if (segment->type() == elfcpp::PT_TLS)
2628 this->tls_segment_ = segment;
2629 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2630 this->relro_segment_ = segment;
2631
2632 ++list_iter;
2633 }
2634 else
2635 {
2636 list_iter = this->segment_list_.erase(list_iter);
2637 // This is a segment created during section layout. It should be
2638 // safe to remove it since we should have removed all pointers to it.
2639 delete segment;
2640 }
2641 }
2642 }
2643
2644 // Clean up after relaxation so that sections can be laid out again.
2645
2646 void
2647 Layout::clean_up_after_relaxation()
2648 {
2649 // Restore the segments to point state just prior to the relaxation loop.
2650 Script_sections* script_section = this->script_options_->script_sections();
2651 script_section->release_segments();
2652 this->restore_segments(this->segment_states_);
2653
2654 // Reset section addresses and file offsets
2655 for (Section_list::iterator p = this->section_list_.begin();
2656 p != this->section_list_.end();
2657 ++p)
2658 {
2659 (*p)->restore_states();
2660
2661 // If an input section changes size because of relaxation,
2662 // we need to adjust the section offsets of all input sections.
2663 // after such a section.
2664 if ((*p)->section_offsets_need_adjustment())
2665 (*p)->adjust_section_offsets();
2666
2667 (*p)->reset_address_and_file_offset();
2668 }
2669
2670 // Reset special output object address and file offsets.
2671 for (Data_list::iterator p = this->special_output_list_.begin();
2672 p != this->special_output_list_.end();
2673 ++p)
2674 (*p)->reset_address_and_file_offset();
2675
2676 // A linker script may have created some output section data objects.
2677 // They are useless now.
2678 for (Output_section_data_list::const_iterator p =
2679 this->script_output_section_data_list_.begin();
2680 p != this->script_output_section_data_list_.end();
2681 ++p)
2682 delete *p;
2683 this->script_output_section_data_list_.clear();
2684
2685 // Special-case fill output objects are recreated each time through
2686 // the relaxation loop.
2687 this->reset_relax_output();
2688 }
2689
2690 void
2691 Layout::reset_relax_output()
2692 {
2693 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2694 p != this->relax_output_list_.end();
2695 ++p)
2696 delete *p;
2697 this->relax_output_list_.clear();
2698 }
2699
2700 // Prepare for relaxation.
2701
2702 void
2703 Layout::prepare_for_relaxation()
2704 {
2705 // Create an relaxation debug check if in debugging mode.
2706 if (is_debugging_enabled(DEBUG_RELAXATION))
2707 this->relaxation_debug_check_ = new Relaxation_debug_check();
2708
2709 // Save segment states.
2710 this->segment_states_ = new Segment_states();
2711 this->save_segments(this->segment_states_);
2712
2713 for(Section_list::const_iterator p = this->section_list_.begin();
2714 p != this->section_list_.end();
2715 ++p)
2716 (*p)->save_states();
2717
2718 if (is_debugging_enabled(DEBUG_RELAXATION))
2719 this->relaxation_debug_check_->check_output_data_for_reset_values(
2720 this->section_list_, this->special_output_list_,
2721 this->relax_output_list_);
2722
2723 // Also enable recording of output section data from scripts.
2724 this->record_output_section_data_from_script_ = true;
2725 }
2726
2727 // If the user set the address of the text segment, that may not be
2728 // compatible with putting the segment headers and file headers into
2729 // that segment. For isolate_execinstr() targets, it's the rodata
2730 // segment rather than text where we might put the headers.
2731 static inline bool
2732 load_seg_unusable_for_headers(const Target* target)
2733 {
2734 const General_options& options = parameters->options();
2735 if (target->isolate_execinstr())
2736 return (options.user_set_Trodata_segment()
2737 && options.Trodata_segment() % target->abi_pagesize() != 0);
2738 else
2739 return (options.user_set_Ttext()
2740 && options.Ttext() % target->abi_pagesize() != 0);
2741 }
2742
2743 // Relaxation loop body: If target has no relaxation, this runs only once
2744 // Otherwise, the target relaxation hook is called at the end of
2745 // each iteration. If the hook returns true, it means re-layout of
2746 // section is required.
2747 //
2748 // The number of segments created by a linking script without a PHDRS
2749 // clause may be affected by section sizes and alignments. There is
2750 // a remote chance that relaxation causes different number of PT_LOAD
2751 // segments are created and sections are attached to different segments.
2752 // Therefore, we always throw away all segments created during section
2753 // layout. In order to be able to restart the section layout, we keep
2754 // a copy of the segment list right before the relaxation loop and use
2755 // that to restore the segments.
2756 //
2757 // PASS is the current relaxation pass number.
2758 // SYMTAB is a symbol table.
2759 // PLOAD_SEG is the address of a pointer for the load segment.
2760 // PHDR_SEG is a pointer to the PHDR segment.
2761 // SEGMENT_HEADERS points to the output segment header.
2762 // FILE_HEADER points to the output file header.
2763 // PSHNDX is the address to store the output section index.
2764
2765 off_t inline
2766 Layout::relaxation_loop_body(
2767 int pass,
2768 Target* target,
2769 Symbol_table* symtab,
2770 Output_segment** pload_seg,
2771 Output_segment* phdr_seg,
2772 Output_segment_headers* segment_headers,
2773 Output_file_header* file_header,
2774 unsigned int* pshndx)
2775 {
2776 // If this is not the first iteration, we need to clean up after
2777 // relaxation so that we can lay out the sections again.
2778 if (pass != 0)
2779 this->clean_up_after_relaxation();
2780
2781 // If there is a SECTIONS clause, put all the input sections into
2782 // the required order.
2783 Output_segment* load_seg;
2784 if (this->script_options_->saw_sections_clause())
2785 load_seg = this->set_section_addresses_from_script(symtab);
2786 else if (parameters->options().relocatable())
2787 load_seg = NULL;
2788 else
2789 load_seg = this->find_first_load_seg(target);
2790
2791 if (parameters->options().oformat_enum()
2792 != General_options::OBJECT_FORMAT_ELF)
2793 load_seg = NULL;
2794
2795 if (load_seg_unusable_for_headers(target))
2796 {
2797 load_seg = NULL;
2798 phdr_seg = NULL;
2799 }
2800
2801 gold_assert(phdr_seg == NULL
2802 || load_seg != NULL
2803 || this->script_options_->saw_sections_clause());
2804
2805 // If the address of the load segment we found has been set by
2806 // --section-start rather than by a script, then adjust the VMA and
2807 // LMA downward if possible to include the file and section headers.
2808 uint64_t header_gap = 0;
2809 if (load_seg != NULL
2810 && load_seg->are_addresses_set()
2811 && !this->script_options_->saw_sections_clause()
2812 && !parameters->options().relocatable())
2813 {
2814 file_header->finalize_data_size();
2815 segment_headers->finalize_data_size();
2816 size_t sizeof_headers = (file_header->data_size()
2817 + segment_headers->data_size());
2818 const uint64_t abi_pagesize = target->abi_pagesize();
2819 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2820 hdr_paddr &= ~(abi_pagesize - 1);
2821 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2822 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2823 load_seg = NULL;
2824 else
2825 {
2826 load_seg->set_addresses(load_seg->vaddr() - subtract,
2827 load_seg->paddr() - subtract);
2828 header_gap = subtract - sizeof_headers;
2829 }
2830 }
2831
2832 // Lay out the segment headers.
2833 if (!parameters->options().relocatable())
2834 {
2835 gold_assert(segment_headers != NULL);
2836 if (header_gap != 0 && load_seg != NULL)
2837 {
2838 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2839 load_seg->add_initial_output_data(z);
2840 }
2841 if (load_seg != NULL)
2842 load_seg->add_initial_output_data(segment_headers);
2843 if (phdr_seg != NULL)
2844 phdr_seg->add_initial_output_data(segment_headers);
2845 }
2846
2847 // Lay out the file header.
2848 if (load_seg != NULL)
2849 load_seg->add_initial_output_data(file_header);
2850
2851 if (this->script_options_->saw_phdrs_clause()
2852 && !parameters->options().relocatable())
2853 {
2854 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2855 // clause in a linker script.
2856 Script_sections* ss = this->script_options_->script_sections();
2857 ss->put_headers_in_phdrs(file_header, segment_headers);
2858 }
2859
2860 // We set the output section indexes in set_segment_offsets and
2861 // set_section_indexes.
2862 *pshndx = 1;
2863
2864 // Set the file offsets of all the segments, and all the sections
2865 // they contain.
2866 off_t off;
2867 if (!parameters->options().relocatable())
2868 off = this->set_segment_offsets(target, load_seg, pshndx);
2869 else
2870 off = this->set_relocatable_section_offsets(file_header, pshndx);
2871
2872 // Verify that the dummy relaxation does not change anything.
2873 if (is_debugging_enabled(DEBUG_RELAXATION))
2874 {
2875 if (pass == 0)
2876 this->relaxation_debug_check_->read_sections(this->section_list_);
2877 else
2878 this->relaxation_debug_check_->verify_sections(this->section_list_);
2879 }
2880
2881 *pload_seg = load_seg;
2882 return off;
2883 }
2884
2885 // Search the list of patterns and find the position of the given section
2886 // name in the output section. If the section name matches a glob
2887 // pattern and a non-glob name, then the non-glob position takes
2888 // precedence. Return 0 if no match is found.
2889
2890 unsigned int
2891 Layout::find_section_order_index(const std::string& section_name)
2892 {
2893 Unordered_map<std::string, unsigned int>::iterator map_it;
2894 map_it = this->input_section_position_.find(section_name);
2895 if (map_it != this->input_section_position_.end())
2896 return map_it->second;
2897
2898 // Absolute match failed. Linear search the glob patterns.
2899 std::vector<std::string>::iterator it;
2900 for (it = this->input_section_glob_.begin();
2901 it != this->input_section_glob_.end();
2902 ++it)
2903 {
2904 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2905 {
2906 map_it = this->input_section_position_.find(*it);
2907 gold_assert(map_it != this->input_section_position_.end());
2908 return map_it->second;
2909 }
2910 }
2911 return 0;
2912 }
2913
2914 // Read the sequence of input sections from the file specified with
2915 // option --section-ordering-file.
2916
2917 void
2918 Layout::read_layout_from_file()
2919 {
2920 const char* filename = parameters->options().section_ordering_file();
2921 std::ifstream in;
2922 std::string line;
2923
2924 in.open(filename);
2925 if (!in)
2926 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2927 filename, strerror(errno));
2928
2929 File_read::record_file_read(filename);
2930
2931 std::getline(in, line); // this chops off the trailing \n, if any
2932 unsigned int position = 1;
2933 this->set_section_ordering_specified();
2934
2935 while (in)
2936 {
2937 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2938 line.resize(line.length() - 1);
2939 // Ignore comments, beginning with '#'
2940 if (line[0] == '#')
2941 {
2942 std::getline(in, line);
2943 continue;
2944 }
2945 this->input_section_position_[line] = position;
2946 // Store all glob patterns in a vector.
2947 if (is_wildcard_string(line.c_str()))
2948 this->input_section_glob_.push_back(line);
2949 position++;
2950 std::getline(in, line);
2951 }
2952 }
2953
2954 // Finalize the layout. When this is called, we have created all the
2955 // output sections and all the output segments which are based on
2956 // input sections. We have several things to do, and we have to do
2957 // them in the right order, so that we get the right results correctly
2958 // and efficiently.
2959
2960 // 1) Finalize the list of output segments and create the segment
2961 // table header.
2962
2963 // 2) Finalize the dynamic symbol table and associated sections.
2964
2965 // 3) Determine the final file offset of all the output segments.
2966
2967 // 4) Determine the final file offset of all the SHF_ALLOC output
2968 // sections.
2969
2970 // 5) Create the symbol table sections and the section name table
2971 // section.
2972
2973 // 6) Finalize the symbol table: set symbol values to their final
2974 // value and make a final determination of which symbols are going
2975 // into the output symbol table.
2976
2977 // 7) Create the section table header.
2978
2979 // 8) Determine the final file offset of all the output sections which
2980 // are not SHF_ALLOC, including the section table header.
2981
2982 // 9) Finalize the ELF file header.
2983
2984 // This function returns the size of the output file.
2985
2986 off_t
2987 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2988 Target* target, const Task* task)
2989 {
2990 unsigned int local_dynamic_count = 0;
2991 unsigned int forced_local_dynamic_count = 0;
2992
2993 target->finalize_sections(this, input_objects, symtab);
2994
2995 this->count_local_symbols(task, input_objects);
2996
2997 this->link_stabs_sections();
2998
2999 Output_segment* phdr_seg = NULL;
3000 if (!parameters->options().relocatable() && !parameters->doing_static_link())
3001 {
3002 // There was a dynamic object in the link. We need to create
3003 // some information for the dynamic linker.
3004
3005 // Create the PT_PHDR segment which will hold the program
3006 // headers.
3007 if (!this->script_options_->saw_phdrs_clause())
3008 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3009
3010 // Create the dynamic symbol table, including the hash table.
3011 Output_section* dynstr;
3012 std::vector<Symbol*> dynamic_symbols;
3013 Versions versions(*this->script_options()->version_script_info(),
3014 &this->dynpool_);
3015 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3016 &local_dynamic_count,
3017 &forced_local_dynamic_count,
3018 &dynamic_symbols,
3019 &versions);
3020
3021 // Create the .interp section to hold the name of the
3022 // interpreter, and put it in a PT_INTERP segment. Don't do it
3023 // if we saw a .interp section in an input file.
3024 if ((!parameters->options().shared()
3025 || parameters->options().dynamic_linker() != NULL)
3026 && this->interp_segment_ == NULL)
3027 this->create_interp(target);
3028
3029 // Finish the .dynamic section to hold the dynamic data, and put
3030 // it in a PT_DYNAMIC segment.
3031 this->finish_dynamic_section(input_objects, symtab);
3032
3033 // We should have added everything we need to the dynamic string
3034 // table.
3035 this->dynpool_.set_string_offsets();
3036
3037 // Create the version sections. We can't do this until the
3038 // dynamic string table is complete.
3039 this->create_version_sections(&versions, symtab,
3040 (local_dynamic_count
3041 + forced_local_dynamic_count),
3042 dynamic_symbols, dynstr);
3043
3044 // Set the size of the _DYNAMIC symbol. We can't do this until
3045 // after we call create_version_sections.
3046 this->set_dynamic_symbol_size(symtab);
3047 }
3048
3049 // Create segment headers.
3050 Output_segment_headers* segment_headers =
3051 (parameters->options().relocatable()
3052 ? NULL
3053 : new Output_segment_headers(this->segment_list_));
3054
3055 // Lay out the file header.
3056 Output_file_header* file_header = new Output_file_header(target, symtab,
3057 segment_headers);
3058
3059 this->special_output_list_.push_back(file_header);
3060 if (segment_headers != NULL)
3061 this->special_output_list_.push_back(segment_headers);
3062
3063 // Find approriate places for orphan output sections if we are using
3064 // a linker script.
3065 if (this->script_options_->saw_sections_clause())
3066 this->place_orphan_sections_in_script();
3067
3068 Output_segment* load_seg;
3069 off_t off;
3070 unsigned int shndx;
3071 int pass = 0;
3072
3073 // Take a snapshot of the section layout as needed.
3074 if (target->may_relax())
3075 this->prepare_for_relaxation();
3076
3077 // Run the relaxation loop to lay out sections.
3078 do
3079 {
3080 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3081 phdr_seg, segment_headers, file_header,
3082 &shndx);
3083 pass++;
3084 }
3085 while (target->may_relax()
3086 && target->relax(pass, input_objects, symtab, this, task));
3087
3088 // If there is a load segment that contains the file and program headers,
3089 // provide a symbol __ehdr_start pointing there.
3090 // A program can use this to examine itself robustly.
3091 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3092 if (ehdr_start != NULL && ehdr_start->is_predefined())
3093 {
3094 if (load_seg != NULL)
3095 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3096 else
3097 ehdr_start->set_undefined();
3098 }
3099
3100 // Set the file offsets of all the non-data sections we've seen so
3101 // far which don't have to wait for the input sections. We need
3102 // this in order to finalize local symbols in non-allocated
3103 // sections.
3104 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3105
3106 // Set the section indexes of all unallocated sections seen so far,
3107 // in case any of them are somehow referenced by a symbol.
3108 shndx = this->set_section_indexes(shndx);
3109
3110 // Create the symbol table sections.
3111 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3112 local_dynamic_count);
3113 if (!parameters->doing_static_link())
3114 this->assign_local_dynsym_offsets(input_objects);
3115
3116 // Process any symbol assignments from a linker script. This must
3117 // be called after the symbol table has been finalized.
3118 this->script_options_->finalize_symbols(symtab, this);
3119
3120 // Create the incremental inputs sections.
3121 if (this->incremental_inputs_)
3122 {
3123 this->incremental_inputs_->finalize();
3124 this->create_incremental_info_sections(symtab);
3125 }
3126
3127 // Create the .shstrtab section.
3128 Output_section* shstrtab_section = this->create_shstrtab();
3129
3130 // Set the file offsets of the rest of the non-data sections which
3131 // don't have to wait for the input sections.
3132 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3133
3134 // Now that all sections have been created, set the section indexes
3135 // for any sections which haven't been done yet.
3136 shndx = this->set_section_indexes(shndx);
3137
3138 // Create the section table header.
3139 this->create_shdrs(shstrtab_section, &off);
3140
3141 // If there are no sections which require postprocessing, we can
3142 // handle the section names now, and avoid a resize later.
3143 if (!this->any_postprocessing_sections_)
3144 {
3145 off = this->set_section_offsets(off,
3146 POSTPROCESSING_SECTIONS_PASS);
3147 off =
3148 this->set_section_offsets(off,
3149 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3150 }
3151
3152 file_header->set_section_info(this->section_headers_, shstrtab_section);
3153
3154 // Now we know exactly where everything goes in the output file
3155 // (except for non-allocated sections which require postprocessing).
3156 Output_data::layout_complete();
3157
3158 this->output_file_size_ = off;
3159
3160 return off;
3161 }
3162
3163 // Create a note header following the format defined in the ELF ABI.
3164 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3165 // of the section to create, DESCSZ is the size of the descriptor.
3166 // ALLOCATE is true if the section should be allocated in memory.
3167 // This returns the new note section. It sets *TRAILING_PADDING to
3168 // the number of trailing zero bytes required.
3169
3170 Output_section*
3171 Layout::create_note(const char* name, int note_type,
3172 const char* section_name, size_t descsz,
3173 bool allocate, size_t* trailing_padding)
3174 {
3175 // Authorities all agree that the values in a .note field should
3176 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3177 // they differ on what the alignment is for 64-bit binaries.
3178 // The GABI says unambiguously they take 8-byte alignment:
3179 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3180 // Other documentation says alignment should always be 4 bytes:
3181 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3182 // GNU ld and GNU readelf both support the latter (at least as of
3183 // version 2.16.91), and glibc always generates the latter for
3184 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3185 // here.
3186 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3187 const int size = parameters->target().get_size();
3188 #else
3189 const int size = 32;
3190 #endif
3191 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3192 const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3193 ? parameters->target().get_size()
3194 : size) / 8);
3195
3196 // The contents of the .note section.
3197 size_t namesz = strlen(name) + 1;
3198 size_t aligned_namesz = align_address(namesz, size / 8);
3199 size_t aligned_descsz = align_address(descsz, size / 8);
3200
3201 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3202
3203 unsigned char* buffer = new unsigned char[notehdrsz];
3204 memset(buffer, 0, notehdrsz);
3205
3206 bool is_big_endian = parameters->target().is_big_endian();
3207
3208 if (size == 32)
3209 {
3210 if (!is_big_endian)
3211 {
3212 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3213 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3214 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3215 }
3216 else
3217 {
3218 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3219 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3220 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3221 }
3222 }
3223 else if (size == 64)
3224 {
3225 if (!is_big_endian)
3226 {
3227 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3228 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3229 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3230 }
3231 else
3232 {
3233 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3234 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3235 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3236 }
3237 }
3238 else
3239 gold_unreachable();
3240
3241 memcpy(buffer + 3 * (size / 8), name, namesz);
3242
3243 elfcpp::Elf_Xword flags = 0;
3244 Output_section_order order = ORDER_INVALID;
3245 if (allocate)
3246 {
3247 flags = elfcpp::SHF_ALLOC;
3248 order = ORDER_RO_NOTE;
3249 }
3250 Output_section* os = this->choose_output_section(NULL, section_name,
3251 elfcpp::SHT_NOTE,
3252 flags, false, order, false,
3253 false, true);
3254 if (os == NULL)
3255 return NULL;
3256
3257 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3258 addralign,
3259 "** note header");
3260 os->add_output_section_data(posd);
3261
3262 *trailing_padding = aligned_descsz - descsz;
3263
3264 return os;
3265 }
3266
3267 // Create a .note.gnu.property section to record program properties
3268 // accumulated from the input files.
3269
3270 void
3271 Layout::create_gnu_properties_note()
3272 {
3273 parameters->target().finalize_gnu_properties(this);
3274
3275 if (this->gnu_properties_.empty())
3276 return;
3277
3278 const unsigned int size = parameters->target().get_size();
3279 const bool is_big_endian = parameters->target().is_big_endian();
3280
3281 // Compute the total size of the properties array.
3282 size_t descsz = 0;
3283 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3284 prop != this->gnu_properties_.end();
3285 ++prop)
3286 {
3287 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3288 }
3289
3290 // Create the note section.
3291 size_t trailing_padding;
3292 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3293 ".note.gnu.property", descsz,
3294 true, &trailing_padding);
3295 if (os == NULL)
3296 return;
3297 gold_assert(trailing_padding == 0);
3298
3299 // Allocate and fill the properties array.
3300 unsigned char* desc = new unsigned char[descsz];
3301 unsigned char* p = desc;
3302 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3303 prop != this->gnu_properties_.end();
3304 ++prop)
3305 {
3306 size_t datasz = prop->second.pr_datasz;
3307 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3308 write_sized_value(prop->first, 4, p, is_big_endian);
3309 write_sized_value(datasz, 4, p + 4, is_big_endian);
3310 memcpy(p + 8, prop->second.pr_data, datasz);
3311 if (aligned_datasz > datasz)
3312 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3313 p += 8 + aligned_datasz;
3314 }
3315 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3316 os->add_output_section_data(posd);
3317 }
3318
3319 // For an executable or shared library, create a note to record the
3320 // version of gold used to create the binary.
3321
3322 void
3323 Layout::create_gold_note()
3324 {
3325 if (parameters->options().relocatable()
3326 || parameters->incremental_update())
3327 return;
3328
3329 std::string desc = std::string("gold ") + gold::get_version_string();
3330
3331 size_t trailing_padding;
3332 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3333 ".note.gnu.gold-version", desc.size(),
3334 false, &trailing_padding);
3335 if (os == NULL)
3336 return;
3337
3338 Output_section_data* posd = new Output_data_const(desc, 4);
3339 os->add_output_section_data(posd);
3340
3341 if (trailing_padding > 0)
3342 {
3343 posd = new Output_data_zero_fill(trailing_padding, 0);
3344 os->add_output_section_data(posd);
3345 }
3346 }
3347
3348 // Record whether the stack should be executable. This can be set
3349 // from the command line using the -z execstack or -z noexecstack
3350 // options. Otherwise, if any input file has a .note.GNU-stack
3351 // section with the SHF_EXECINSTR flag set, the stack should be
3352 // executable. Otherwise, if at least one input file a
3353 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3354 // section, we use the target default for whether the stack should be
3355 // executable. If -z stack-size was used to set a p_memsz value for
3356 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3357 // don't generate a stack note. When generating a object file, we
3358 // create a .note.GNU-stack section with the appropriate marking.
3359 // When generating an executable or shared library, we create a
3360 // PT_GNU_STACK segment.
3361
3362 void
3363 Layout::create_stack_segment()
3364 {
3365 bool is_stack_executable;
3366 if (parameters->options().is_execstack_set())
3367 {
3368 is_stack_executable = parameters->options().is_stack_executable();
3369 if (!is_stack_executable
3370 && this->input_requires_executable_stack_
3371 && parameters->options().warn_execstack())
3372 gold_warning(_("one or more inputs require executable stack, "
3373 "but -z noexecstack was given"));
3374 }
3375 else if (!this->input_with_gnu_stack_note_
3376 && (!parameters->options().user_set_stack_size()
3377 || parameters->options().relocatable()))
3378 return;
3379 else
3380 {
3381 if (this->input_requires_executable_stack_)
3382 is_stack_executable = true;
3383 else if (this->input_without_gnu_stack_note_)
3384 is_stack_executable =
3385 parameters->target().is_default_stack_executable();
3386 else
3387 is_stack_executable = false;
3388 }
3389
3390 if (parameters->options().relocatable())
3391 {
3392 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3393 elfcpp::Elf_Xword flags = 0;
3394 if (is_stack_executable)
3395 flags |= elfcpp::SHF_EXECINSTR;
3396 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3397 ORDER_INVALID, false);
3398 }
3399 else
3400 {
3401 if (this->script_options_->saw_phdrs_clause())
3402 return;
3403 int flags = elfcpp::PF_R | elfcpp::PF_W;
3404 if (is_stack_executable)
3405 flags |= elfcpp::PF_X;
3406 Output_segment* seg =
3407 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3408 seg->set_size(parameters->options().stack_size());
3409 // BFD lets targets override this default alignment, but the only
3410 // targets that do so are ones that Gold does not support so far.
3411 seg->set_minimum_p_align(16);
3412 }
3413 }
3414
3415 // If --build-id was used, set up the build ID note.
3416
3417 void
3418 Layout::create_build_id()
3419 {
3420 if (!parameters->options().user_set_build_id())
3421 return;
3422
3423 const char* style = parameters->options().build_id();
3424 if (strcmp(style, "none") == 0)
3425 return;
3426
3427 // Set DESCSZ to the size of the note descriptor. When possible,
3428 // set DESC to the note descriptor contents.
3429 size_t descsz;
3430 std::string desc;
3431 if (strcmp(style, "md5") == 0)
3432 descsz = 128 / 8;
3433 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3434 descsz = 160 / 8;
3435 else if (strcmp(style, "uuid") == 0)
3436 {
3437 #ifndef __MINGW32__
3438 const size_t uuidsz = 128 / 8;
3439
3440 char buffer[uuidsz];
3441 memset(buffer, 0, uuidsz);
3442
3443 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3444 if (descriptor < 0)
3445 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3446 strerror(errno));
3447 else
3448 {
3449 ssize_t got = ::read(descriptor, buffer, uuidsz);
3450 release_descriptor(descriptor, true);
3451 if (got < 0)
3452 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3453 else if (static_cast<size_t>(got) != uuidsz)
3454 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3455 uuidsz, got);
3456 }
3457
3458 desc.assign(buffer, uuidsz);
3459 descsz = uuidsz;
3460 #else // __MINGW32__
3461 UUID uuid;
3462 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3463
3464 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3465 if (!rpc_library)
3466 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3467 else
3468 {
3469 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3470 GetProcAddress(rpc_library, "UuidCreate"));
3471 if (!uuid_create)
3472 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3473 else if (uuid_create(&uuid) != RPC_S_OK)
3474 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3475 FreeLibrary(rpc_library);
3476 }
3477 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3478 descsz = sizeof(UUID);
3479 #endif // __MINGW32__
3480 }
3481 else if (strncmp(style, "0x", 2) == 0)
3482 {
3483 hex_init();
3484 const char* p = style + 2;
3485 while (*p != '\0')
3486 {
3487 if (hex_p(p[0]) && hex_p(p[1]))
3488 {
3489 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3490 desc += c;
3491 p += 2;
3492 }
3493 else if (*p == '-' || *p == ':')
3494 ++p;
3495 else
3496 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3497 style);
3498 }
3499 descsz = desc.size();
3500 }
3501 else
3502 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3503
3504 // Create the note.
3505 size_t trailing_padding;
3506 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3507 ".note.gnu.build-id", descsz, true,
3508 &trailing_padding);
3509 if (os == NULL)
3510 return;
3511
3512 if (!desc.empty())
3513 {
3514 // We know the value already, so we fill it in now.
3515 gold_assert(desc.size() == descsz);
3516
3517 Output_section_data* posd = new Output_data_const(desc, 4);
3518 os->add_output_section_data(posd);
3519
3520 if (trailing_padding != 0)
3521 {
3522 posd = new Output_data_zero_fill(trailing_padding, 0);
3523 os->add_output_section_data(posd);
3524 }
3525 }
3526 else
3527 {
3528 // We need to compute a checksum after we have completed the
3529 // link.
3530 gold_assert(trailing_padding == 0);
3531 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3532 os->add_output_section_data(this->build_id_note_);
3533 }
3534 }
3535
3536 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3537 // field of the former should point to the latter. I'm not sure who
3538 // started this, but the GNU linker does it, and some tools depend
3539 // upon it.
3540
3541 void
3542 Layout::link_stabs_sections()
3543 {
3544 if (!this->have_stabstr_section_)
3545 return;
3546
3547 for (Section_list::iterator p = this->section_list_.begin();
3548 p != this->section_list_.end();
3549 ++p)
3550 {
3551 if ((*p)->type() != elfcpp::SHT_STRTAB)
3552 continue;
3553
3554 const char* name = (*p)->name();
3555 if (strncmp(name, ".stab", 5) != 0)
3556 continue;
3557
3558 size_t len = strlen(name);
3559 if (strcmp(name + len - 3, "str") != 0)
3560 continue;
3561
3562 std::string stab_name(name, len - 3);
3563 Output_section* stab_sec;
3564 stab_sec = this->find_output_section(stab_name.c_str());
3565 if (stab_sec != NULL)
3566 stab_sec->set_link_section(*p);
3567 }
3568 }
3569
3570 // Create .gnu_incremental_inputs and related sections needed
3571 // for the next run of incremental linking to check what has changed.
3572
3573 void
3574 Layout::create_incremental_info_sections(Symbol_table* symtab)
3575 {
3576 Incremental_inputs* incr = this->incremental_inputs_;
3577
3578 gold_assert(incr != NULL);
3579
3580 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3581 incr->create_data_sections(symtab);
3582
3583 // Add the .gnu_incremental_inputs section.
3584 const char* incremental_inputs_name =
3585 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3586 Output_section* incremental_inputs_os =
3587 this->make_output_section(incremental_inputs_name,
3588 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3589 ORDER_INVALID, false);
3590 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3591
3592 // Add the .gnu_incremental_symtab section.
3593 const char* incremental_symtab_name =
3594 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3595 Output_section* incremental_symtab_os =
3596 this->make_output_section(incremental_symtab_name,
3597 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3598 ORDER_INVALID, false);
3599 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3600 incremental_symtab_os->set_entsize(4);
3601
3602 // Add the .gnu_incremental_relocs section.
3603 const char* incremental_relocs_name =
3604 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3605 Output_section* incremental_relocs_os =
3606 this->make_output_section(incremental_relocs_name,
3607 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3608 ORDER_INVALID, false);
3609 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3610 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3611
3612 // Add the .gnu_incremental_got_plt section.
3613 const char* incremental_got_plt_name =
3614 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3615 Output_section* incremental_got_plt_os =
3616 this->make_output_section(incremental_got_plt_name,
3617 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3618 ORDER_INVALID, false);
3619 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3620
3621 // Add the .gnu_incremental_strtab section.
3622 const char* incremental_strtab_name =
3623 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3624 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3625 elfcpp::SHT_STRTAB, 0,
3626 ORDER_INVALID, false);
3627 Output_data_strtab* strtab_data =
3628 new Output_data_strtab(incr->get_stringpool());
3629 incremental_strtab_os->add_output_section_data(strtab_data);
3630
3631 incremental_inputs_os->set_after_input_sections();
3632 incremental_symtab_os->set_after_input_sections();
3633 incremental_relocs_os->set_after_input_sections();
3634 incremental_got_plt_os->set_after_input_sections();
3635
3636 incremental_inputs_os->set_link_section(incremental_strtab_os);
3637 incremental_symtab_os->set_link_section(incremental_inputs_os);
3638 incremental_relocs_os->set_link_section(incremental_inputs_os);
3639 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3640 }
3641
3642 // Return whether SEG1 should be before SEG2 in the output file. This
3643 // is based entirely on the segment type and flags. When this is
3644 // called the segment addresses have normally not yet been set.
3645
3646 bool
3647 Layout::segment_precedes(const Output_segment* seg1,
3648 const Output_segment* seg2)
3649 {
3650 // In order to produce a stable ordering if we're called with the same pointer
3651 // return false.
3652 if (seg1 == seg2)
3653 return false;
3654
3655 elfcpp::Elf_Word type1 = seg1->type();
3656 elfcpp::Elf_Word type2 = seg2->type();
3657
3658 // The single PT_PHDR segment is required to precede any loadable
3659 // segment. We simply make it always first.
3660 if (type1 == elfcpp::PT_PHDR)
3661 {
3662 gold_assert(type2 != elfcpp::PT_PHDR);
3663 return true;
3664 }
3665 if (type2 == elfcpp::PT_PHDR)
3666 return false;
3667
3668 // The single PT_INTERP segment is required to precede any loadable
3669 // segment. We simply make it always second.
3670 if (type1 == elfcpp::PT_INTERP)
3671 {
3672 gold_assert(type2 != elfcpp::PT_INTERP);
3673 return true;
3674 }
3675 if (type2 == elfcpp::PT_INTERP)
3676 return false;
3677
3678 // We then put PT_LOAD segments before any other segments.
3679 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3680 return true;
3681 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3682 return false;
3683
3684 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3685 // segment, because that is where the dynamic linker expects to find
3686 // it (this is just for efficiency; other positions would also work
3687 // correctly).
3688 if (type1 == elfcpp::PT_TLS
3689 && type2 != elfcpp::PT_TLS
3690 && type2 != elfcpp::PT_GNU_RELRO)
3691 return false;
3692 if (type2 == elfcpp::PT_TLS
3693 && type1 != elfcpp::PT_TLS
3694 && type1 != elfcpp::PT_GNU_RELRO)
3695 return true;
3696
3697 // We put the PT_GNU_RELRO segment last, because that is where the
3698 // dynamic linker expects to find it (as with PT_TLS, this is just
3699 // for efficiency).
3700 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3701 return false;
3702 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3703 return true;
3704
3705 const elfcpp::Elf_Word flags1 = seg1->flags();
3706 const elfcpp::Elf_Word flags2 = seg2->flags();
3707
3708 // The order of non-PT_LOAD segments is unimportant. We simply sort
3709 // by the numeric segment type and flags values. There should not
3710 // be more than one segment with the same type and flags, except
3711 // when a linker script specifies such.
3712 if (type1 != elfcpp::PT_LOAD)
3713 {
3714 if (type1 != type2)
3715 return type1 < type2;
3716 uint64_t align1 = seg1->align();
3717 uint64_t align2 = seg2->align();
3718 // Place segments with larger alignments first.
3719 if (align1 != align2)
3720 return align1 > align2;
3721 gold_assert(flags1 != flags2
3722 || this->script_options_->saw_phdrs_clause());
3723 return flags1 < flags2;
3724 }
3725
3726 // If the addresses are set already, sort by load address.
3727 if (seg1->are_addresses_set())
3728 {
3729 if (!seg2->are_addresses_set())
3730 return true;
3731
3732 unsigned int section_count1 = seg1->output_section_count();
3733 unsigned int section_count2 = seg2->output_section_count();
3734 if (section_count1 == 0 && section_count2 > 0)
3735 return true;
3736 if (section_count1 > 0 && section_count2 == 0)
3737 return false;
3738
3739 uint64_t paddr1 = (seg1->are_addresses_set()
3740 ? seg1->paddr()
3741 : seg1->first_section_load_address());
3742 uint64_t paddr2 = (seg2->are_addresses_set()
3743 ? seg2->paddr()
3744 : seg2->first_section_load_address());
3745
3746 if (paddr1 != paddr2)
3747 return paddr1 < paddr2;
3748 }
3749 else if (seg2->are_addresses_set())
3750 return false;
3751
3752 // A segment which holds large data comes after a segment which does
3753 // not hold large data.
3754 if (seg1->is_large_data_segment())
3755 {
3756 if (!seg2->is_large_data_segment())
3757 return false;
3758 }
3759 else if (seg2->is_large_data_segment())
3760 return true;
3761
3762 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3763 // segments come before writable segments. Then writable segments
3764 // with data come before writable segments without data. Then
3765 // executable segments come before non-executable segments. Then
3766 // the unlikely case of a non-readable segment comes before the
3767 // normal case of a readable segment. If there are multiple
3768 // segments with the same type and flags, we require that the
3769 // address be set, and we sort by virtual address and then physical
3770 // address.
3771 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3772 return (flags1 & elfcpp::PF_W) == 0;
3773 if ((flags1 & elfcpp::PF_W) != 0
3774 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3775 return seg1->has_any_data_sections();
3776 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3777 return (flags1 & elfcpp::PF_X) != 0;
3778 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3779 return (flags1 & elfcpp::PF_R) == 0;
3780
3781 // We shouldn't get here--we shouldn't create segments which we
3782 // can't distinguish. Unless of course we are using a weird linker
3783 // script or overlapping --section-start options. We could also get
3784 // here if plugins want unique segments for subsets of sections.
3785 gold_assert(this->script_options_->saw_phdrs_clause()
3786 || parameters->options().any_section_start()
3787 || this->is_unique_segment_for_sections_specified()
3788 || parameters->options().text_unlikely_segment());
3789 return false;
3790 }
3791
3792 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3793
3794 static off_t
3795 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3796 {
3797 uint64_t unsigned_off = off;
3798 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3799 | (addr & (abi_pagesize - 1)));
3800 if (aligned_off < unsigned_off)
3801 aligned_off += abi_pagesize;
3802 return aligned_off;
3803 }
3804
3805 // On targets where the text segment contains only executable code,
3806 // a non-executable segment is never the text segment.
3807
3808 static inline bool
3809 is_text_segment(const Target* target, const Output_segment* seg)
3810 {
3811 elfcpp::Elf_Xword flags = seg->flags();
3812 if ((flags & elfcpp::PF_W) != 0)
3813 return false;
3814 if ((flags & elfcpp::PF_X) == 0)
3815 return !target->isolate_execinstr();
3816 return true;
3817 }
3818
3819 // Set the file offsets of all the segments, and all the sections they
3820 // contain. They have all been created. LOAD_SEG must be laid out
3821 // first. Return the offset of the data to follow.
3822
3823 off_t
3824 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3825 unsigned int* pshndx)
3826 {
3827 // Sort them into the final order. We use a stable sort so that we
3828 // don't randomize the order of indistinguishable segments created
3829 // by linker scripts.
3830 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3831 Layout::Compare_segments(this));
3832
3833 // Find the PT_LOAD segments, and set their addresses and offsets
3834 // and their section's addresses and offsets.
3835 uint64_t start_addr;
3836 if (parameters->options().user_set_Ttext())
3837 start_addr = parameters->options().Ttext();
3838 else if (parameters->options().output_is_position_independent())
3839 start_addr = 0;
3840 else
3841 start_addr = target->default_text_segment_address();
3842
3843 uint64_t addr = start_addr;
3844 off_t off = 0;
3845
3846 // If LOAD_SEG is NULL, then the file header and segment headers
3847 // will not be loadable. But they still need to be at offset 0 in
3848 // the file. Set their offsets now.
3849 if (load_seg == NULL)
3850 {
3851 for (Data_list::iterator p = this->special_output_list_.begin();
3852 p != this->special_output_list_.end();
3853 ++p)
3854 {
3855 off = align_address(off, (*p)->addralign());
3856 (*p)->set_address_and_file_offset(0, off);
3857 off += (*p)->data_size();
3858 }
3859 }
3860
3861 unsigned int increase_relro = this->increase_relro_;
3862 if (this->script_options_->saw_sections_clause())
3863 increase_relro = 0;
3864
3865 const bool check_sections = parameters->options().check_sections();
3866 Output_segment* last_load_segment = NULL;
3867
3868 unsigned int shndx_begin = *pshndx;
3869 unsigned int shndx_load_seg = *pshndx;
3870
3871 for (Segment_list::iterator p = this->segment_list_.begin();
3872 p != this->segment_list_.end();
3873 ++p)
3874 {
3875 if ((*p)->type() == elfcpp::PT_LOAD)
3876 {
3877 if (target->isolate_execinstr())
3878 {
3879 // When we hit the segment that should contain the
3880 // file headers, reset the file offset so we place
3881 // it and subsequent segments appropriately.
3882 // We'll fix up the preceding segments below.
3883 if (load_seg == *p)
3884 {
3885 if (off == 0)
3886 load_seg = NULL;
3887 else
3888 {
3889 off = 0;
3890 shndx_load_seg = *pshndx;
3891 }
3892 }
3893 }
3894 else
3895 {
3896 // Verify that the file headers fall into the first segment.
3897 if (load_seg != NULL && load_seg != *p)
3898 gold_unreachable();
3899 load_seg = NULL;
3900 }
3901
3902 bool are_addresses_set = (*p)->are_addresses_set();
3903 if (are_addresses_set)
3904 {
3905 // When it comes to setting file offsets, we care about
3906 // the physical address.
3907 addr = (*p)->paddr();
3908 }
3909 else if (parameters->options().user_set_Ttext()
3910 && (parameters->options().omagic()
3911 || is_text_segment(target, *p)))
3912 {
3913 are_addresses_set = true;
3914 }
3915 else if (parameters->options().user_set_Trodata_segment()
3916 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3917 {
3918 addr = parameters->options().Trodata_segment();
3919 are_addresses_set = true;
3920 }
3921 else if (parameters->options().user_set_Tdata()
3922 && ((*p)->flags() & elfcpp::PF_W) != 0
3923 && (!parameters->options().user_set_Tbss()
3924 || (*p)->has_any_data_sections()))
3925 {
3926 addr = parameters->options().Tdata();
3927 are_addresses_set = true;
3928 }
3929 else if (parameters->options().user_set_Tbss()
3930 && ((*p)->flags() & elfcpp::PF_W) != 0
3931 && !(*p)->has_any_data_sections())
3932 {
3933 addr = parameters->options().Tbss();
3934 are_addresses_set = true;
3935 }
3936
3937 uint64_t orig_addr = addr;
3938 uint64_t orig_off = off;
3939
3940 uint64_t aligned_addr = 0;
3941 uint64_t abi_pagesize = target->abi_pagesize();
3942 uint64_t common_pagesize = target->common_pagesize();
3943
3944 if (!parameters->options().nmagic()
3945 && !parameters->options().omagic())
3946 (*p)->set_minimum_p_align(abi_pagesize);
3947
3948 if (!are_addresses_set)
3949 {
3950 // Skip the address forward one page, maintaining the same
3951 // position within the page. This lets us store both segments
3952 // overlapping on a single page in the file, but the loader will
3953 // put them on different pages in memory. We will revisit this
3954 // decision once we know the size of the segment.
3955
3956 uint64_t max_align = (*p)->maximum_alignment();
3957 if (max_align > abi_pagesize)
3958 addr = align_address(addr, max_align);
3959 aligned_addr = addr;
3960
3961 if (load_seg == *p)
3962 {
3963 // This is the segment that will contain the file
3964 // headers, so its offset will have to be exactly zero.
3965 gold_assert(orig_off == 0);
3966
3967 // If the target wants a fixed minimum distance from the
3968 // text segment to the read-only segment, move up now.
3969 uint64_t min_addr =
3970 start_addr + (parameters->options().user_set_rosegment_gap()
3971 ? parameters->options().rosegment_gap()
3972 : target->rosegment_gap());
3973 if (addr < min_addr)
3974 addr = min_addr;
3975
3976 // But this is not the first segment! To make its
3977 // address congruent with its offset, that address better
3978 // be aligned to the ABI-mandated page size.
3979 addr = align_address(addr, abi_pagesize);
3980 aligned_addr = addr;
3981 }
3982 else
3983 {
3984 if ((addr & (abi_pagesize - 1)) != 0)
3985 addr = addr + abi_pagesize;
3986
3987 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3988 }
3989 }
3990
3991 if (!parameters->options().nmagic()
3992 && !parameters->options().omagic())
3993 {
3994 // Here we are also taking care of the case when
3995 // the maximum segment alignment is larger than the page size.
3996 off = align_file_offset(off, addr,
3997 std::max(abi_pagesize,
3998 (*p)->maximum_alignment()));
3999 }
4000 else
4001 {
4002 // This is -N or -n with a section script which prevents
4003 // us from using a load segment. We need to ensure that
4004 // the file offset is aligned to the alignment of the
4005 // segment. This is because the linker script
4006 // implicitly assumed a zero offset. If we don't align
4007 // here, then the alignment of the sections in the
4008 // linker script may not match the alignment of the
4009 // sections in the set_section_addresses call below,
4010 // causing an error about dot moving backward.
4011 off = align_address(off, (*p)->maximum_alignment());
4012 }
4013
4014 unsigned int shndx_hold = *pshndx;
4015 bool has_relro = false;
4016 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4017 false, addr,
4018 &increase_relro,
4019 &has_relro,
4020 &off, pshndx);
4021
4022 // Now that we know the size of this segment, we may be able
4023 // to save a page in memory, at the cost of wasting some
4024 // file space, by instead aligning to the start of a new
4025 // page. Here we use the real machine page size rather than
4026 // the ABI mandated page size. If the segment has been
4027 // aligned so that the relro data ends at a page boundary,
4028 // we do not try to realign it.
4029
4030 if (!are_addresses_set
4031 && !has_relro
4032 && aligned_addr != addr
4033 && !parameters->incremental())
4034 {
4035 uint64_t first_off = (common_pagesize
4036 - (aligned_addr
4037 & (common_pagesize - 1)));
4038 uint64_t last_off = new_addr & (common_pagesize - 1);
4039 if (first_off > 0
4040 && last_off > 0
4041 && ((aligned_addr & ~ (common_pagesize - 1))
4042 != (new_addr & ~ (common_pagesize - 1)))
4043 && first_off + last_off <= common_pagesize)
4044 {
4045 *pshndx = shndx_hold;
4046 addr = align_address(aligned_addr, common_pagesize);
4047 addr = align_address(addr, (*p)->maximum_alignment());
4048 if ((addr & (abi_pagesize - 1)) != 0)
4049 addr = addr + abi_pagesize;
4050 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4051 off = align_file_offset(off, addr, abi_pagesize);
4052
4053 increase_relro = this->increase_relro_;
4054 if (this->script_options_->saw_sections_clause())
4055 increase_relro = 0;
4056 has_relro = false;
4057
4058 new_addr = (*p)->set_section_addresses(target, this,
4059 true, addr,
4060 &increase_relro,
4061 &has_relro,
4062 &off, pshndx);
4063 }
4064 }
4065
4066 addr = new_addr;
4067
4068 // Implement --check-sections. We know that the segments
4069 // are sorted by LMA.
4070 if (check_sections && last_load_segment != NULL)
4071 {
4072 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4073 if (last_load_segment->paddr() + last_load_segment->memsz()
4074 > (*p)->paddr())
4075 {
4076 unsigned long long lb1 = last_load_segment->paddr();
4077 unsigned long long le1 = lb1 + last_load_segment->memsz();
4078 unsigned long long lb2 = (*p)->paddr();
4079 unsigned long long le2 = lb2 + (*p)->memsz();
4080 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4081 "[0x%llx -> 0x%llx]"),
4082 lb1, le1, lb2, le2);
4083 }
4084 }
4085 last_load_segment = *p;
4086 }
4087 }
4088
4089 if (load_seg != NULL && target->isolate_execinstr())
4090 {
4091 // Process the early segments again, setting their file offsets
4092 // so they land after the segments starting at LOAD_SEG.
4093 off = align_file_offset(off, 0, target->abi_pagesize());
4094
4095 this->reset_relax_output();
4096
4097 for (Segment_list::iterator p = this->segment_list_.begin();
4098 *p != load_seg;
4099 ++p)
4100 {
4101 if ((*p)->type() == elfcpp::PT_LOAD)
4102 {
4103 // We repeat the whole job of assigning addresses and
4104 // offsets, but we really only want to change the offsets and
4105 // must ensure that the addresses all come out the same as
4106 // they did the first time through.
4107 bool has_relro = false;
4108 const uint64_t old_addr = (*p)->vaddr();
4109 const uint64_t old_end = old_addr + (*p)->memsz();
4110 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4111 true, old_addr,
4112 &increase_relro,
4113 &has_relro,
4114 &off,
4115 &shndx_begin);
4116 gold_assert(new_addr == old_end);
4117 }
4118 }
4119
4120 gold_assert(shndx_begin == shndx_load_seg);
4121 }
4122
4123 // Handle the non-PT_LOAD segments, setting their offsets from their
4124 // section's offsets.
4125 for (Segment_list::iterator p = this->segment_list_.begin();
4126 p != this->segment_list_.end();
4127 ++p)
4128 {
4129 // PT_GNU_STACK was set up correctly when it was created.
4130 if ((*p)->type() != elfcpp::PT_LOAD
4131 && (*p)->type() != elfcpp::PT_GNU_STACK)
4132 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4133 ? increase_relro
4134 : 0);
4135 }
4136
4137 // Set the TLS offsets for each section in the PT_TLS segment.
4138 if (this->tls_segment_ != NULL)
4139 this->tls_segment_->set_tls_offsets();
4140
4141 return off;
4142 }
4143
4144 // Set the offsets of all the allocated sections when doing a
4145 // relocatable link. This does the same jobs as set_segment_offsets,
4146 // only for a relocatable link.
4147
4148 off_t
4149 Layout::set_relocatable_section_offsets(Output_data* file_header,
4150 unsigned int* pshndx)
4151 {
4152 off_t off = 0;
4153
4154 file_header->set_address_and_file_offset(0, 0);
4155 off += file_header->data_size();
4156
4157 for (Section_list::iterator p = this->section_list_.begin();
4158 p != this->section_list_.end();
4159 ++p)
4160 {
4161 // We skip unallocated sections here, except that group sections
4162 // have to come first.
4163 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4164 && (*p)->type() != elfcpp::SHT_GROUP)
4165 continue;
4166
4167 off = align_address(off, (*p)->addralign());
4168
4169 // The linker script might have set the address.
4170 if (!(*p)->is_address_valid())
4171 (*p)->set_address(0);
4172 (*p)->set_file_offset(off);
4173 (*p)->finalize_data_size();
4174 if ((*p)->type() != elfcpp::SHT_NOBITS)
4175 off += (*p)->data_size();
4176
4177 (*p)->set_out_shndx(*pshndx);
4178 ++*pshndx;
4179 }
4180
4181 return off;
4182 }
4183
4184 // Set the file offset of all the sections not associated with a
4185 // segment.
4186
4187 off_t
4188 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4189 {
4190 off_t startoff = off;
4191 off_t maxoff = off;
4192
4193 for (Section_list::iterator p = this->unattached_section_list_.begin();
4194 p != this->unattached_section_list_.end();
4195 ++p)
4196 {
4197 // The symtab section is handled in create_symtab_sections.
4198 if (*p == this->symtab_section_)
4199 continue;
4200
4201 // If we've already set the data size, don't set it again.
4202 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4203 continue;
4204
4205 if (pass == BEFORE_INPUT_SECTIONS_PASS
4206 && (*p)->requires_postprocessing())
4207 {
4208 (*p)->create_postprocessing_buffer();
4209 this->any_postprocessing_sections_ = true;
4210 }
4211
4212 if (pass == BEFORE_INPUT_SECTIONS_PASS
4213 && (*p)->after_input_sections())
4214 continue;
4215 else if (pass == POSTPROCESSING_SECTIONS_PASS
4216 && (!(*p)->after_input_sections()
4217 || (*p)->type() == elfcpp::SHT_STRTAB))
4218 continue;
4219 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4220 && (!(*p)->after_input_sections()
4221 || (*p)->type() != elfcpp::SHT_STRTAB))
4222 continue;
4223
4224 if (!parameters->incremental_update())
4225 {
4226 off = align_address(off, (*p)->addralign());
4227 (*p)->set_file_offset(off);
4228 (*p)->finalize_data_size();
4229 }
4230 else
4231 {
4232 // Incremental update: allocate file space from free list.
4233 (*p)->pre_finalize_data_size();
4234 off_t current_size = (*p)->current_data_size();
4235 off = this->allocate(current_size, (*p)->addralign(), startoff);
4236 if (off == -1)
4237 {
4238 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4239 this->free_list_.dump();
4240 gold_assert((*p)->output_section() != NULL);
4241 gold_fallback(_("out of patch space for section %s; "
4242 "relink with --incremental-full"),
4243 (*p)->output_section()->name());
4244 }
4245 (*p)->set_file_offset(off);
4246 (*p)->finalize_data_size();
4247 if ((*p)->data_size() > current_size)
4248 {
4249 gold_assert((*p)->output_section() != NULL);
4250 gold_fallback(_("%s: section changed size; "
4251 "relink with --incremental-full"),
4252 (*p)->output_section()->name());
4253 }
4254 gold_debug(DEBUG_INCREMENTAL,
4255 "set_section_offsets: %08lx %08lx %s",
4256 static_cast<long>(off),
4257 static_cast<long>((*p)->data_size()),
4258 ((*p)->output_section() != NULL
4259 ? (*p)->output_section()->name() : "(special)"));
4260 }
4261
4262 off += (*p)->data_size();
4263 if (off > maxoff)
4264 maxoff = off;
4265
4266 // At this point the name must be set.
4267 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4268 this->namepool_.add((*p)->name(), false, NULL);
4269 }
4270 return maxoff;
4271 }
4272
4273 // Set the section indexes of all the sections not associated with a
4274 // segment.
4275
4276 unsigned int
4277 Layout::set_section_indexes(unsigned int shndx)
4278 {
4279 for (Section_list::iterator p = this->unattached_section_list_.begin();
4280 p != this->unattached_section_list_.end();
4281 ++p)
4282 {
4283 if (!(*p)->has_out_shndx())
4284 {
4285 (*p)->set_out_shndx(shndx);
4286 ++shndx;
4287 }
4288 }
4289 return shndx;
4290 }
4291
4292 // Set the section addresses according to the linker script. This is
4293 // only called when we see a SECTIONS clause. This returns the
4294 // program segment which should hold the file header and segment
4295 // headers, if any. It will return NULL if they should not be in a
4296 // segment.
4297
4298 Output_segment*
4299 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4300 {
4301 Script_sections* ss = this->script_options_->script_sections();
4302 gold_assert(ss->saw_sections_clause());
4303 return this->script_options_->set_section_addresses(symtab, this);
4304 }
4305
4306 // Place the orphan sections in the linker script.
4307
4308 void
4309 Layout::place_orphan_sections_in_script()
4310 {
4311 Script_sections* ss = this->script_options_->script_sections();
4312 gold_assert(ss->saw_sections_clause());
4313
4314 // Place each orphaned output section in the script.
4315 for (Section_list::iterator p = this->section_list_.begin();
4316 p != this->section_list_.end();
4317 ++p)
4318 {
4319 if (!(*p)->found_in_sections_clause())
4320 ss->place_orphan(*p);
4321 }
4322 }
4323
4324 // Count the local symbols in the regular symbol table and the dynamic
4325 // symbol table, and build the respective string pools.
4326
4327 void
4328 Layout::count_local_symbols(const Task* task,
4329 const Input_objects* input_objects)
4330 {
4331 // First, figure out an upper bound on the number of symbols we'll
4332 // be inserting into each pool. This helps us create the pools with
4333 // the right size, to avoid unnecessary hashtable resizing.
4334 unsigned int symbol_count = 0;
4335 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4336 p != input_objects->relobj_end();
4337 ++p)
4338 symbol_count += (*p)->local_symbol_count();
4339
4340 // Go from "upper bound" to "estimate." We overcount for two
4341 // reasons: we double-count symbols that occur in more than one
4342 // object file, and we count symbols that are dropped from the
4343 // output. Add it all together and assume we overcount by 100%.
4344 symbol_count /= 2;
4345
4346 // We assume all symbols will go into both the sympool and dynpool.
4347 this->sympool_.reserve(symbol_count);
4348 this->dynpool_.reserve(symbol_count);
4349
4350 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4351 p != input_objects->relobj_end();
4352 ++p)
4353 {
4354 Task_lock_obj<Object> tlo(task, *p);
4355 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4356 }
4357 }
4358
4359 // Create the symbol table sections. Here we also set the final
4360 // values of the symbols. At this point all the loadable sections are
4361 // fully laid out. SHNUM is the number of sections so far.
4362
4363 void
4364 Layout::create_symtab_sections(const Input_objects* input_objects,
4365 Symbol_table* symtab,
4366 unsigned int shnum,
4367 off_t* poff,
4368 unsigned int local_dynamic_count)
4369 {
4370 int symsize;
4371 unsigned int align;
4372 if (parameters->target().get_size() == 32)
4373 {
4374 symsize = elfcpp::Elf_sizes<32>::sym_size;
4375 align = 4;
4376 }
4377 else if (parameters->target().get_size() == 64)
4378 {
4379 symsize = elfcpp::Elf_sizes<64>::sym_size;
4380 align = 8;
4381 }
4382 else
4383 gold_unreachable();
4384
4385 // Compute file offsets relative to the start of the symtab section.
4386 off_t off = 0;
4387
4388 // Save space for the dummy symbol at the start of the section. We
4389 // never bother to write this out--it will just be left as zero.
4390 off += symsize;
4391 unsigned int local_symbol_index = 1;
4392
4393 // Add STT_SECTION symbols for each Output section which needs one.
4394 for (Section_list::iterator p = this->section_list_.begin();
4395 p != this->section_list_.end();
4396 ++p)
4397 {
4398 if (!(*p)->needs_symtab_index())
4399 (*p)->set_symtab_index(-1U);
4400 else
4401 {
4402 (*p)->set_symtab_index(local_symbol_index);
4403 ++local_symbol_index;
4404 off += symsize;
4405 }
4406 }
4407
4408 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4409 p != input_objects->relobj_end();
4410 ++p)
4411 {
4412 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4413 off, symtab);
4414 off += (index - local_symbol_index) * symsize;
4415 local_symbol_index = index;
4416 }
4417
4418 unsigned int local_symcount = local_symbol_index;
4419 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4420
4421 off_t dynoff;
4422 size_t dyncount;
4423 if (this->dynsym_section_ == NULL)
4424 {
4425 dynoff = 0;
4426 dyncount = 0;
4427 }
4428 else
4429 {
4430 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4431 dynoff = this->dynsym_section_->offset() + locsize;
4432 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4433 gold_assert(static_cast<off_t>(dyncount * symsize)
4434 == this->dynsym_section_->data_size() - locsize);
4435 }
4436
4437 off_t global_off = off;
4438 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4439 &this->sympool_, &local_symcount);
4440
4441 if (!parameters->options().strip_all())
4442 {
4443 this->sympool_.set_string_offsets();
4444
4445 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4446 Output_section* osymtab = this->make_output_section(symtab_name,
4447 elfcpp::SHT_SYMTAB,
4448 0, ORDER_INVALID,
4449 false);
4450 this->symtab_section_ = osymtab;
4451
4452 Output_section_data* pos = new Output_data_fixed_space(off, align,
4453 "** symtab");
4454 osymtab->add_output_section_data(pos);
4455
4456 // We generate a .symtab_shndx section if we have more than
4457 // SHN_LORESERVE sections. Technically it is possible that we
4458 // don't need one, because it is possible that there are no
4459 // symbols in any of sections with indexes larger than
4460 // SHN_LORESERVE. That is probably unusual, though, and it is
4461 // easier to always create one than to compute section indexes
4462 // twice (once here, once when writing out the symbols).
4463 if (shnum >= elfcpp::SHN_LORESERVE)
4464 {
4465 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4466 false, NULL);
4467 Output_section* osymtab_xindex =
4468 this->make_output_section(symtab_xindex_name,
4469 elfcpp::SHT_SYMTAB_SHNDX, 0,
4470 ORDER_INVALID, false);
4471
4472 size_t symcount = off / symsize;
4473 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4474
4475 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4476
4477 osymtab_xindex->set_link_section(osymtab);
4478 osymtab_xindex->set_addralign(4);
4479 osymtab_xindex->set_entsize(4);
4480
4481 osymtab_xindex->set_after_input_sections();
4482
4483 // This tells the driver code to wait until the symbol table
4484 // has written out before writing out the postprocessing
4485 // sections, including the .symtab_shndx section.
4486 this->any_postprocessing_sections_ = true;
4487 }
4488
4489 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4490 Output_section* ostrtab = this->make_output_section(strtab_name,
4491 elfcpp::SHT_STRTAB,
4492 0, ORDER_INVALID,
4493 false);
4494
4495 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4496 ostrtab->add_output_section_data(pstr);
4497
4498 off_t symtab_off;
4499 if (!parameters->incremental_update())
4500 symtab_off = align_address(*poff, align);
4501 else
4502 {
4503 symtab_off = this->allocate(off, align, *poff);
4504 if (off == -1)
4505 gold_fallback(_("out of patch space for symbol table; "
4506 "relink with --incremental-full"));
4507 gold_debug(DEBUG_INCREMENTAL,
4508 "create_symtab_sections: %08lx %08lx .symtab",
4509 static_cast<long>(symtab_off),
4510 static_cast<long>(off));
4511 }
4512
4513 symtab->set_file_offset(symtab_off + global_off);
4514 osymtab->set_file_offset(symtab_off);
4515 osymtab->finalize_data_size();
4516 osymtab->set_link_section(ostrtab);
4517 osymtab->set_info(local_symcount);
4518 osymtab->set_entsize(symsize);
4519
4520 if (symtab_off + off > *poff)
4521 *poff = symtab_off + off;
4522 }
4523 }
4524
4525 // Create the .shstrtab section, which holds the names of the
4526 // sections. At the time this is called, we have created all the
4527 // output sections except .shstrtab itself.
4528
4529 Output_section*
4530 Layout::create_shstrtab()
4531 {
4532 // FIXME: We don't need to create a .shstrtab section if we are
4533 // stripping everything.
4534
4535 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4536
4537 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4538 ORDER_INVALID, false);
4539
4540 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4541 {
4542 // We can't write out this section until we've set all the
4543 // section names, and we don't set the names of compressed
4544 // output sections until relocations are complete. FIXME: With
4545 // the current names we use, this is unnecessary.
4546 os->set_after_input_sections();
4547 }
4548
4549 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4550 os->add_output_section_data(posd);
4551
4552 return os;
4553 }
4554
4555 // Create the section headers. SIZE is 32 or 64. OFF is the file
4556 // offset.
4557
4558 void
4559 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4560 {
4561 Output_section_headers* oshdrs;
4562 oshdrs = new Output_section_headers(this,
4563 &this->segment_list_,
4564 &this->section_list_,
4565 &this->unattached_section_list_,
4566 &this->namepool_,
4567 shstrtab_section);
4568 off_t off;
4569 if (!parameters->incremental_update())
4570 off = align_address(*poff, oshdrs->addralign());
4571 else
4572 {
4573 oshdrs->pre_finalize_data_size();
4574 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4575 if (off == -1)
4576 gold_fallback(_("out of patch space for section header table; "
4577 "relink with --incremental-full"));
4578 gold_debug(DEBUG_INCREMENTAL,
4579 "create_shdrs: %08lx %08lx (section header table)",
4580 static_cast<long>(off),
4581 static_cast<long>(off + oshdrs->data_size()));
4582 }
4583 oshdrs->set_address_and_file_offset(0, off);
4584 off += oshdrs->data_size();
4585 if (off > *poff)
4586 *poff = off;
4587 this->section_headers_ = oshdrs;
4588 }
4589
4590 // Count the allocated sections.
4591
4592 size_t
4593 Layout::allocated_output_section_count() const
4594 {
4595 size_t section_count = 0;
4596 for (Segment_list::const_iterator p = this->segment_list_.begin();
4597 p != this->segment_list_.end();
4598 ++p)
4599 section_count += (*p)->output_section_count();
4600 return section_count;
4601 }
4602
4603 // Create the dynamic symbol table.
4604 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4605 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4606 // to the number of global symbols that have been forced local.
4607 // We need to remember the former because the forced-local symbols are
4608 // written along with the global symbols in Symtab::write_globals().
4609
4610 void
4611 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4612 Symbol_table* symtab,
4613 Output_section** pdynstr,
4614 unsigned int* plocal_dynamic_count,
4615 unsigned int* pforced_local_dynamic_count,
4616 std::vector<Symbol*>* pdynamic_symbols,
4617 Versions* pversions)
4618 {
4619 // Count all the symbols in the dynamic symbol table, and set the
4620 // dynamic symbol indexes.
4621
4622 // Skip symbol 0, which is always all zeroes.
4623 unsigned int index = 1;
4624
4625 // Add STT_SECTION symbols for each Output section which needs one.
4626 for (Section_list::iterator p = this->section_list_.begin();
4627 p != this->section_list_.end();
4628 ++p)
4629 {
4630 if (!(*p)->needs_dynsym_index())
4631 (*p)->set_dynsym_index(-1U);
4632 else
4633 {
4634 (*p)->set_dynsym_index(index);
4635 ++index;
4636 }
4637 }
4638
4639 // Count the local symbols that need to go in the dynamic symbol table,
4640 // and set the dynamic symbol indexes.
4641 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4642 p != input_objects->relobj_end();
4643 ++p)
4644 {
4645 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4646 index = new_index;
4647 }
4648
4649 unsigned int local_symcount = index;
4650 unsigned int forced_local_count = 0;
4651
4652 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4653 pdynamic_symbols, &this->dynpool_,
4654 pversions);
4655
4656 *plocal_dynamic_count = local_symcount;
4657 *pforced_local_dynamic_count = forced_local_count;
4658
4659 int symsize;
4660 unsigned int align;
4661 const int size = parameters->target().get_size();
4662 if (size == 32)
4663 {
4664 symsize = elfcpp::Elf_sizes<32>::sym_size;
4665 align = 4;
4666 }
4667 else if (size == 64)
4668 {
4669 symsize = elfcpp::Elf_sizes<64>::sym_size;
4670 align = 8;
4671 }
4672 else
4673 gold_unreachable();
4674
4675 // Create the dynamic symbol table section.
4676
4677 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4678 elfcpp::SHT_DYNSYM,
4679 elfcpp::SHF_ALLOC,
4680 false,
4681 ORDER_DYNAMIC_LINKER,
4682 false, false, false);
4683
4684 // Check for NULL as a linker script may discard .dynsym.
4685 if (dynsym != NULL)
4686 {
4687 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4688 align,
4689 "** dynsym");
4690 dynsym->add_output_section_data(odata);
4691
4692 dynsym->set_info(local_symcount + forced_local_count);
4693 dynsym->set_entsize(symsize);
4694 dynsym->set_addralign(align);
4695
4696 this->dynsym_section_ = dynsym;
4697 }
4698
4699 Output_data_dynamic* const odyn = this->dynamic_data_;
4700 if (odyn != NULL)
4701 {
4702 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4703 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4704 }
4705
4706 // If there are more than SHN_LORESERVE allocated sections, we
4707 // create a .dynsym_shndx section. It is possible that we don't
4708 // need one, because it is possible that there are no dynamic
4709 // symbols in any of the sections with indexes larger than
4710 // SHN_LORESERVE. This is probably unusual, though, and at this
4711 // time we don't know the actual section indexes so it is
4712 // inconvenient to check.
4713 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4714 {
4715 Output_section* dynsym_xindex =
4716 this->choose_output_section(NULL, ".dynsym_shndx",
4717 elfcpp::SHT_SYMTAB_SHNDX,
4718 elfcpp::SHF_ALLOC,
4719 false, ORDER_DYNAMIC_LINKER, false, false,
4720 false);
4721
4722 if (dynsym_xindex != NULL)
4723 {
4724 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4725
4726 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4727
4728 dynsym_xindex->set_link_section(dynsym);
4729 dynsym_xindex->set_addralign(4);
4730 dynsym_xindex->set_entsize(4);
4731
4732 dynsym_xindex->set_after_input_sections();
4733
4734 // This tells the driver code to wait until the symbol table
4735 // has written out before writing out the postprocessing
4736 // sections, including the .dynsym_shndx section.
4737 this->any_postprocessing_sections_ = true;
4738 }
4739 }
4740
4741 // Create the dynamic string table section.
4742
4743 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4744 elfcpp::SHT_STRTAB,
4745 elfcpp::SHF_ALLOC,
4746 false,
4747 ORDER_DYNAMIC_LINKER,
4748 false, false, false);
4749 *pdynstr = dynstr;
4750 if (dynstr != NULL)
4751 {
4752 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4753 dynstr->add_output_section_data(strdata);
4754
4755 if (dynsym != NULL)
4756 dynsym->set_link_section(dynstr);
4757 if (this->dynamic_section_ != NULL)
4758 this->dynamic_section_->set_link_section(dynstr);
4759
4760 if (odyn != NULL)
4761 {
4762 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4763 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4764 }
4765 }
4766
4767 // Create the hash tables. The Gnu-style hash table must be
4768 // built first, because it changes the order of the symbols
4769 // in the dynamic symbol table.
4770
4771 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4772 || strcmp(parameters->options().hash_style(), "both") == 0)
4773 {
4774 unsigned char* phash;
4775 unsigned int hashlen;
4776 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4777 local_symcount + forced_local_count,
4778 &phash, &hashlen);
4779
4780 Output_section* hashsec =
4781 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4782 elfcpp::SHF_ALLOC, false,
4783 ORDER_DYNAMIC_LINKER, false, false,
4784 false);
4785
4786 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4787 hashlen,
4788 align,
4789 "** hash");
4790 if (hashsec != NULL && hashdata != NULL)
4791 hashsec->add_output_section_data(hashdata);
4792
4793 if (hashsec != NULL)
4794 {
4795 if (dynsym != NULL)
4796 hashsec->set_link_section(dynsym);
4797
4798 // For a 64-bit target, the entries in .gnu.hash do not have
4799 // a uniform size, so we only set the entry size for a
4800 // 32-bit target.
4801 if (parameters->target().get_size() == 32)
4802 hashsec->set_entsize(4);
4803
4804 if (odyn != NULL)
4805 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4806 }
4807 }
4808
4809 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4810 || strcmp(parameters->options().hash_style(), "both") == 0)
4811 {
4812 unsigned char* phash;
4813 unsigned int hashlen;
4814 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4815 local_symcount + forced_local_count,
4816 &phash, &hashlen);
4817
4818 Output_section* hashsec =
4819 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4820 elfcpp::SHF_ALLOC, false,
4821 ORDER_DYNAMIC_LINKER, false, false,
4822 false);
4823
4824 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4825 hashlen,
4826 align,
4827 "** hash");
4828 if (hashsec != NULL && hashdata != NULL)
4829 hashsec->add_output_section_data(hashdata);
4830
4831 if (hashsec != NULL)
4832 {
4833 if (dynsym != NULL)
4834 hashsec->set_link_section(dynsym);
4835 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4836 }
4837
4838 if (odyn != NULL)
4839 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4840 }
4841 }
4842
4843 // Assign offsets to each local portion of the dynamic symbol table.
4844
4845 void
4846 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4847 {
4848 Output_section* dynsym = this->dynsym_section_;
4849 if (dynsym == NULL)
4850 return;
4851
4852 off_t off = dynsym->offset();
4853
4854 // Skip the dummy symbol at the start of the section.
4855 off += dynsym->entsize();
4856
4857 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4858 p != input_objects->relobj_end();
4859 ++p)
4860 {
4861 unsigned int count = (*p)->set_local_dynsym_offset(off);
4862 off += count * dynsym->entsize();
4863 }
4864 }
4865
4866 // Create the version sections.
4867
4868 void
4869 Layout::create_version_sections(const Versions* versions,
4870 const Symbol_table* symtab,
4871 unsigned int local_symcount,
4872 const std::vector<Symbol*>& dynamic_symbols,
4873 const Output_section* dynstr)
4874 {
4875 if (!versions->any_defs() && !versions->any_needs())
4876 return;
4877
4878 switch (parameters->size_and_endianness())
4879 {
4880 #ifdef HAVE_TARGET_32_LITTLE
4881 case Parameters::TARGET_32_LITTLE:
4882 this->sized_create_version_sections<32, false>(versions, symtab,
4883 local_symcount,
4884 dynamic_symbols, dynstr);
4885 break;
4886 #endif
4887 #ifdef HAVE_TARGET_32_BIG
4888 case Parameters::TARGET_32_BIG:
4889 this->sized_create_version_sections<32, true>(versions, symtab,
4890 local_symcount,
4891 dynamic_symbols, dynstr);
4892 break;
4893 #endif
4894 #ifdef HAVE_TARGET_64_LITTLE
4895 case Parameters::TARGET_64_LITTLE:
4896 this->sized_create_version_sections<64, false>(versions, symtab,
4897 local_symcount,
4898 dynamic_symbols, dynstr);
4899 break;
4900 #endif
4901 #ifdef HAVE_TARGET_64_BIG
4902 case Parameters::TARGET_64_BIG:
4903 this->sized_create_version_sections<64, true>(versions, symtab,
4904 local_symcount,
4905 dynamic_symbols, dynstr);
4906 break;
4907 #endif
4908 default:
4909 gold_unreachable();
4910 }
4911 }
4912
4913 // Create the version sections, sized version.
4914
4915 template<int size, bool big_endian>
4916 void
4917 Layout::sized_create_version_sections(
4918 const Versions* versions,
4919 const Symbol_table* symtab,
4920 unsigned int local_symcount,
4921 const std::vector<Symbol*>& dynamic_symbols,
4922 const Output_section* dynstr)
4923 {
4924 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4925 elfcpp::SHT_GNU_versym,
4926 elfcpp::SHF_ALLOC,
4927 false,
4928 ORDER_DYNAMIC_LINKER,
4929 false, false, false);
4930
4931 // Check for NULL since a linker script may discard this section.
4932 if (vsec != NULL)
4933 {
4934 unsigned char* vbuf;
4935 unsigned int vsize;
4936 versions->symbol_section_contents<size, big_endian>(symtab,
4937 &this->dynpool_,
4938 local_symcount,
4939 dynamic_symbols,
4940 &vbuf, &vsize);
4941
4942 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4943 "** versions");
4944
4945 vsec->add_output_section_data(vdata);
4946 vsec->set_entsize(2);
4947 vsec->set_link_section(this->dynsym_section_);
4948 }
4949
4950 Output_data_dynamic* const odyn = this->dynamic_data_;
4951 if (odyn != NULL && vsec != NULL)
4952 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4953
4954 if (versions->any_defs())
4955 {
4956 Output_section* vdsec;
4957 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4958 elfcpp::SHT_GNU_verdef,
4959 elfcpp::SHF_ALLOC,
4960 false, ORDER_DYNAMIC_LINKER, false,
4961 false, false);
4962
4963 if (vdsec != NULL)
4964 {
4965 unsigned char* vdbuf;
4966 unsigned int vdsize;
4967 unsigned int vdentries;
4968 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4969 &vdbuf, &vdsize,
4970 &vdentries);
4971
4972 Output_section_data* vddata =
4973 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4974
4975 vdsec->add_output_section_data(vddata);
4976 vdsec->set_link_section(dynstr);
4977 vdsec->set_info(vdentries);
4978
4979 if (odyn != NULL)
4980 {
4981 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4982 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4983 }
4984 }
4985 }
4986
4987 if (versions->any_needs())
4988 {
4989 Output_section* vnsec;
4990 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4991 elfcpp::SHT_GNU_verneed,
4992 elfcpp::SHF_ALLOC,
4993 false, ORDER_DYNAMIC_LINKER, false,
4994 false, false);
4995
4996 if (vnsec != NULL)
4997 {
4998 unsigned char* vnbuf;
4999 unsigned int vnsize;
5000 unsigned int vnentries;
5001 versions->need_section_contents<size, big_endian>(&this->dynpool_,
5002 &vnbuf, &vnsize,
5003 &vnentries);
5004
5005 Output_section_data* vndata =
5006 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5007
5008 vnsec->add_output_section_data(vndata);
5009 vnsec->set_link_section(dynstr);
5010 vnsec->set_info(vnentries);
5011
5012 if (odyn != NULL)
5013 {
5014 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5015 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5016 }
5017 }
5018 }
5019 }
5020
5021 // Create the .interp section and PT_INTERP segment.
5022
5023 void
5024 Layout::create_interp(const Target* target)
5025 {
5026 gold_assert(this->interp_segment_ == NULL);
5027
5028 const char* interp = parameters->options().dynamic_linker();
5029 if (interp == NULL)
5030 {
5031 interp = target->dynamic_linker();
5032 gold_assert(interp != NULL);
5033 }
5034
5035 size_t len = strlen(interp) + 1;
5036
5037 Output_section_data* odata = new Output_data_const(interp, len, 1);
5038
5039 Output_section* osec = this->choose_output_section(NULL, ".interp",
5040 elfcpp::SHT_PROGBITS,
5041 elfcpp::SHF_ALLOC,
5042 false, ORDER_INTERP,
5043 false, false, false);
5044 if (osec != NULL)
5045 osec->add_output_section_data(odata);
5046 }
5047
5048 // Add dynamic tags for the PLT and the dynamic relocs. This is
5049 // called by the target-specific code. This does nothing if not doing
5050 // a dynamic link.
5051
5052 // USE_REL is true for REL relocs rather than RELA relocs.
5053
5054 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5055
5056 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5057 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5058 // some targets have multiple reloc sections in PLT_REL.
5059
5060 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5061 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5062 // section.
5063
5064 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5065 // executable.
5066
5067 void
5068 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5069 const Output_data* plt_rel,
5070 const Output_data_reloc_generic* dyn_rel,
5071 bool add_debug, bool dynrel_includes_plt)
5072 {
5073 Output_data_dynamic* odyn = this->dynamic_data_;
5074 if (odyn == NULL)
5075 return;
5076
5077 if (plt_got != NULL && plt_got->output_section() != NULL)
5078 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5079
5080 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5081 {
5082 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5083 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5084 odyn->add_constant(elfcpp::DT_PLTREL,
5085 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5086 }
5087
5088 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5089 || (dynrel_includes_plt
5090 && plt_rel != NULL
5091 && plt_rel->output_section() != NULL))
5092 {
5093 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5094 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5095 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5096 (have_dyn_rel
5097 ? dyn_rel->output_section()
5098 : plt_rel->output_section()));
5099 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5100 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5101 odyn->add_section_size(size_tag,
5102 dyn_rel->output_section(),
5103 plt_rel->output_section());
5104 else if (have_dyn_rel)
5105 odyn->add_section_size(size_tag, dyn_rel->output_section());
5106 else
5107 odyn->add_section_size(size_tag, plt_rel->output_section());
5108 const int size = parameters->target().get_size();
5109 elfcpp::DT rel_tag;
5110 int rel_size;
5111 if (use_rel)
5112 {
5113 rel_tag = elfcpp::DT_RELENT;
5114 if (size == 32)
5115 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5116 else if (size == 64)
5117 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5118 else
5119 gold_unreachable();
5120 }
5121 else
5122 {
5123 rel_tag = elfcpp::DT_RELAENT;
5124 if (size == 32)
5125 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5126 else if (size == 64)
5127 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5128 else
5129 gold_unreachable();
5130 }
5131 odyn->add_constant(rel_tag, rel_size);
5132
5133 if (parameters->options().combreloc() && have_dyn_rel)
5134 {
5135 size_t c = dyn_rel->relative_reloc_count();
5136 if (c > 0)
5137 odyn->add_constant((use_rel
5138 ? elfcpp::DT_RELCOUNT
5139 : elfcpp::DT_RELACOUNT),
5140 c);
5141 }
5142 }
5143
5144 if (add_debug && !parameters->options().shared())
5145 {
5146 // The value of the DT_DEBUG tag is filled in by the dynamic
5147 // linker at run time, and used by the debugger.
5148 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5149 }
5150 }
5151
5152 void
5153 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5154 {
5155 Output_data_dynamic* odyn = this->dynamic_data_;
5156 if (odyn == NULL)
5157 return;
5158 odyn->add_constant(tag, val);
5159 }
5160
5161 // Finish the .dynamic section and PT_DYNAMIC segment.
5162
5163 void
5164 Layout::finish_dynamic_section(const Input_objects* input_objects,
5165 const Symbol_table* symtab)
5166 {
5167 if (!this->script_options_->saw_phdrs_clause()
5168 && this->dynamic_section_ != NULL)
5169 {
5170 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5171 (elfcpp::PF_R
5172 | elfcpp::PF_W));
5173 oseg->add_output_section_to_nonload(this->dynamic_section_,
5174 elfcpp::PF_R | elfcpp::PF_W);
5175 }
5176
5177 Output_data_dynamic* const odyn = this->dynamic_data_;
5178 if (odyn == NULL)
5179 return;
5180
5181 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5182 p != input_objects->dynobj_end();
5183 ++p)
5184 {
5185 if (!(*p)->is_needed() && (*p)->as_needed())
5186 {
5187 // This dynamic object was linked with --as-needed, but it
5188 // is not needed.
5189 continue;
5190 }
5191
5192 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5193 }
5194
5195 if (parameters->options().shared())
5196 {
5197 const char* soname = parameters->options().soname();
5198 if (soname != NULL)
5199 odyn->add_string(elfcpp::DT_SONAME, soname);
5200 }
5201
5202 Symbol* sym = symtab->lookup(parameters->options().init());
5203 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5204 odyn->add_symbol(elfcpp::DT_INIT, sym);
5205
5206 sym = symtab->lookup(parameters->options().fini());
5207 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5208 odyn->add_symbol(elfcpp::DT_FINI, sym);
5209
5210 // Look for .init_array, .preinit_array and .fini_array by checking
5211 // section types.
5212 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5213 p != this->section_list_.end();
5214 ++p)
5215 switch((*p)->type())
5216 {
5217 case elfcpp::SHT_FINI_ARRAY:
5218 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5219 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5220 break;
5221 case elfcpp::SHT_INIT_ARRAY:
5222 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5223 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5224 break;
5225 case elfcpp::SHT_PREINIT_ARRAY:
5226 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5227 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5228 break;
5229 default:
5230 break;
5231 }
5232
5233 // Add a DT_RPATH entry if needed.
5234 const General_options::Dir_list& rpath(parameters->options().rpath());
5235 if (!rpath.empty())
5236 {
5237 std::string rpath_val;
5238 for (General_options::Dir_list::const_iterator p = rpath.begin();
5239 p != rpath.end();
5240 ++p)
5241 {
5242 if (rpath_val.empty())
5243 rpath_val = p->name();
5244 else
5245 {
5246 // Eliminate duplicates.
5247 General_options::Dir_list::const_iterator q;
5248 for (q = rpath.begin(); q != p; ++q)
5249 if (q->name() == p->name())
5250 break;
5251 if (q == p)
5252 {
5253 rpath_val += ':';
5254 rpath_val += p->name();
5255 }
5256 }
5257 }
5258
5259 if (!parameters->options().enable_new_dtags())
5260 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5261 else
5262 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5263 }
5264
5265 // Look for text segments that have dynamic relocations.
5266 bool have_textrel = false;
5267 if (!this->script_options_->saw_sections_clause())
5268 {
5269 for (Segment_list::const_iterator p = this->segment_list_.begin();
5270 p != this->segment_list_.end();
5271 ++p)
5272 {
5273 if ((*p)->type() == elfcpp::PT_LOAD
5274 && ((*p)->flags() & elfcpp::PF_W) == 0
5275 && (*p)->has_dynamic_reloc())
5276 {
5277 have_textrel = true;
5278 break;
5279 }
5280 }
5281 }
5282 else
5283 {
5284 // We don't know the section -> segment mapping, so we are
5285 // conservative and just look for readonly sections with
5286 // relocations. If those sections wind up in writable segments,
5287 // then we have created an unnecessary DT_TEXTREL entry.
5288 for (Section_list::const_iterator p = this->section_list_.begin();
5289 p != this->section_list_.end();
5290 ++p)
5291 {
5292 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5293 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5294 && (*p)->has_dynamic_reloc())
5295 {
5296 have_textrel = true;
5297 break;
5298 }
5299 }
5300 }
5301
5302 if (parameters->options().filter() != NULL)
5303 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5304 if (parameters->options().any_auxiliary())
5305 {
5306 for (options::String_set::const_iterator p =
5307 parameters->options().auxiliary_begin();
5308 p != parameters->options().auxiliary_end();
5309 ++p)
5310 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5311 }
5312
5313 // Add a DT_FLAGS entry if necessary.
5314 unsigned int flags = 0;
5315 if (have_textrel)
5316 {
5317 // Add a DT_TEXTREL for compatibility with older loaders.
5318 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5319 flags |= elfcpp::DF_TEXTREL;
5320
5321 if (parameters->options().text())
5322 gold_error(_("read-only segment has dynamic relocations"));
5323 else if (parameters->options().warn_shared_textrel()
5324 && parameters->options().shared())
5325 gold_warning(_("shared library text segment is not shareable"));
5326 }
5327 if (parameters->options().shared() && this->has_static_tls())
5328 flags |= elfcpp::DF_STATIC_TLS;
5329 if (parameters->options().origin())
5330 flags |= elfcpp::DF_ORIGIN;
5331 if (parameters->options().Bsymbolic()
5332 && !parameters->options().have_dynamic_list())
5333 {
5334 flags |= elfcpp::DF_SYMBOLIC;
5335 // Add DT_SYMBOLIC for compatibility with older loaders.
5336 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5337 }
5338 if (parameters->options().now())
5339 flags |= elfcpp::DF_BIND_NOW;
5340 if (flags != 0)
5341 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5342
5343 flags = 0;
5344 if (parameters->options().global())
5345 flags |= elfcpp::DF_1_GLOBAL;
5346 if (parameters->options().initfirst())
5347 flags |= elfcpp::DF_1_INITFIRST;
5348 if (parameters->options().interpose())
5349 flags |= elfcpp::DF_1_INTERPOSE;
5350 if (parameters->options().loadfltr())
5351 flags |= elfcpp::DF_1_LOADFLTR;
5352 if (parameters->options().nodefaultlib())
5353 flags |= elfcpp::DF_1_NODEFLIB;
5354 if (parameters->options().nodelete())
5355 flags |= elfcpp::DF_1_NODELETE;
5356 if (parameters->options().nodlopen())
5357 flags |= elfcpp::DF_1_NOOPEN;
5358 if (parameters->options().nodump())
5359 flags |= elfcpp::DF_1_NODUMP;
5360 if (!parameters->options().shared())
5361 flags &= ~(elfcpp::DF_1_INITFIRST
5362 | elfcpp::DF_1_NODELETE
5363 | elfcpp::DF_1_NOOPEN);
5364 if (parameters->options().origin())
5365 flags |= elfcpp::DF_1_ORIGIN;
5366 if (parameters->options().now())
5367 flags |= elfcpp::DF_1_NOW;
5368 if (parameters->options().Bgroup())
5369 flags |= elfcpp::DF_1_GROUP;
5370 if (parameters->options().pie())
5371 flags |= elfcpp::DF_1_PIE;
5372 if (flags != 0)
5373 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5374 }
5375
5376 // Set the size of the _DYNAMIC symbol table to be the size of the
5377 // dynamic data.
5378
5379 void
5380 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5381 {
5382 Output_data_dynamic* const odyn = this->dynamic_data_;
5383 if (odyn == NULL)
5384 return;
5385 odyn->finalize_data_size();
5386 if (this->dynamic_symbol_ == NULL)
5387 return;
5388 off_t data_size = odyn->data_size();
5389 const int size = parameters->target().get_size();
5390 if (size == 32)
5391 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5392 else if (size == 64)
5393 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5394 else
5395 gold_unreachable();
5396 }
5397
5398 // The mapping of input section name prefixes to output section names.
5399 // In some cases one prefix is itself a prefix of another prefix; in
5400 // such a case the longer prefix must come first. These prefixes are
5401 // based on the GNU linker default ELF linker script.
5402
5403 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5404 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5405 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5406 {
5407 MAPPING_INIT(".text.", ".text"),
5408 MAPPING_INIT(".rodata.", ".rodata"),
5409 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5410 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5411 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5412 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5413 MAPPING_INIT(".data.", ".data"),
5414 MAPPING_INIT(".bss.", ".bss"),
5415 MAPPING_INIT(".tdata.", ".tdata"),
5416 MAPPING_INIT(".tbss.", ".tbss"),
5417 MAPPING_INIT(".init_array.", ".init_array"),
5418 MAPPING_INIT(".fini_array.", ".fini_array"),
5419 MAPPING_INIT(".sdata.", ".sdata"),
5420 MAPPING_INIT(".sbss.", ".sbss"),
5421 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5422 // differently depending on whether it is creating a shared library.
5423 MAPPING_INIT(".sdata2.", ".sdata"),
5424 MAPPING_INIT(".sbss2.", ".sbss"),
5425 MAPPING_INIT(".lrodata.", ".lrodata"),
5426 MAPPING_INIT(".ldata.", ".ldata"),
5427 MAPPING_INIT(".lbss.", ".lbss"),
5428 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5429 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5430 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5431 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5432 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5433 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5434 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5435 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5436 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5437 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5438 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5439 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5440 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5441 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5442 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5443 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5444 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5445 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5446 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5447 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5448 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5449 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5450 };
5451
5452 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5453 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5454 {
5455 MAPPING_INIT(".text.hot.", ".text.hot"),
5456 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5457 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5458 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5459 MAPPING_INIT(".text.startup.", ".text.startup"),
5460 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5461 MAPPING_INIT(".text.exit.", ".text.exit"),
5462 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5463 MAPPING_INIT(".text.", ".text"),
5464 };
5465 #undef MAPPING_INIT
5466 #undef MAPPING_INIT_EXACT
5467
5468 const int Layout::section_name_mapping_count =
5469 (sizeof(Layout::section_name_mapping)
5470 / sizeof(Layout::section_name_mapping[0]));
5471
5472 const int Layout::text_section_name_mapping_count =
5473 (sizeof(Layout::text_section_name_mapping)
5474 / sizeof(Layout::text_section_name_mapping[0]));
5475
5476 // Find section name NAME in PSNM and return the mapped name if found
5477 // with the length set in PLEN.
5478 const char *
5479 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5480 const int count,
5481 const char* name, size_t* plen)
5482 {
5483 for (int i = 0; i < count; ++i, ++psnm)
5484 {
5485 if (psnm->fromlen > 0)
5486 {
5487 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5488 {
5489 *plen = psnm->tolen;
5490 return psnm->to;
5491 }
5492 }
5493 else
5494 {
5495 if (strcmp(name, psnm->from) == 0)
5496 {
5497 *plen = psnm->tolen;
5498 return psnm->to;
5499 }
5500 }
5501 }
5502 return NULL;
5503 }
5504
5505 // Choose the output section name to use given an input section name.
5506 // Set *PLEN to the length of the name. *PLEN is initialized to the
5507 // length of NAME.
5508
5509 const char*
5510 Layout::output_section_name(const Relobj* relobj, const char* name,
5511 size_t* plen)
5512 {
5513 // gcc 4.3 generates the following sorts of section names when it
5514 // needs a section name specific to a function:
5515 // .text.FN
5516 // .rodata.FN
5517 // .sdata2.FN
5518 // .data.FN
5519 // .data.rel.FN
5520 // .data.rel.local.FN
5521 // .data.rel.ro.FN
5522 // .data.rel.ro.local.FN
5523 // .sdata.FN
5524 // .bss.FN
5525 // .sbss.FN
5526 // .tdata.FN
5527 // .tbss.FN
5528
5529 // The GNU linker maps all of those to the part before the .FN,
5530 // except that .data.rel.local.FN is mapped to .data, and
5531 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5532 // beginning with .data.rel.ro.local are grouped together.
5533
5534 // For an anonymous namespace, the string FN can contain a '.'.
5535
5536 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5537 // GNU linker maps to .rodata.
5538
5539 // The .data.rel.ro sections are used with -z relro. The sections
5540 // are recognized by name. We use the same names that the GNU
5541 // linker does for these sections.
5542
5543 // It is hard to handle this in a principled way, so we don't even
5544 // try. We use a table of mappings. If the input section name is
5545 // not found in the table, we simply use it as the output section
5546 // name.
5547
5548 if (parameters->options().keep_text_section_prefix()
5549 && is_prefix_of(".text", name))
5550 {
5551 const char* match = match_section_name(text_section_name_mapping,
5552 text_section_name_mapping_count,
5553 name, plen);
5554 if (match != NULL)
5555 return match;
5556 }
5557
5558 const char* match = match_section_name(section_name_mapping,
5559 section_name_mapping_count, name, plen);
5560 if (match != NULL)
5561 return match;
5562
5563 // As an additional complication, .ctors sections are output in
5564 // either .ctors or .init_array sections, and .dtors sections are
5565 // output in either .dtors or .fini_array sections.
5566 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5567 {
5568 if (parameters->options().ctors_in_init_array())
5569 {
5570 *plen = 11;
5571 return name[1] == 'c' ? ".init_array" : ".fini_array";
5572 }
5573 else
5574 {
5575 *plen = 6;
5576 return name[1] == 'c' ? ".ctors" : ".dtors";
5577 }
5578 }
5579 if (parameters->options().ctors_in_init_array()
5580 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5581 {
5582 // To make .init_array/.fini_array work with gcc we must exclude
5583 // .ctors and .dtors sections from the crtbegin and crtend
5584 // files.
5585 if (relobj == NULL
5586 || (!Layout::match_file_name(relobj, "crtbegin")
5587 && !Layout::match_file_name(relobj, "crtend")))
5588 {
5589 *plen = 11;
5590 return name[1] == 'c' ? ".init_array" : ".fini_array";
5591 }
5592 }
5593
5594 return name;
5595 }
5596
5597 // Return true if RELOBJ is an input file whose base name matches
5598 // FILE_NAME. The base name must have an extension of ".o", and must
5599 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5600 // to match crtbegin.o as well as crtbeginS.o without getting confused
5601 // by other possibilities. Overall matching the file name this way is
5602 // a dreadful hack, but the GNU linker does it in order to better
5603 // support gcc, and we need to be compatible.
5604
5605 bool
5606 Layout::match_file_name(const Relobj* relobj, const char* match)
5607 {
5608 const std::string& file_name(relobj->name());
5609 const char* base_name = lbasename(file_name.c_str());
5610 size_t match_len = strlen(match);
5611 if (strncmp(base_name, match, match_len) != 0)
5612 return false;
5613 size_t base_len = strlen(base_name);
5614 if (base_len != match_len + 2 && base_len != match_len + 3)
5615 return false;
5616 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5617 }
5618
5619 // Check if a comdat group or .gnu.linkonce section with the given
5620 // NAME is selected for the link. If there is already a section,
5621 // *KEPT_SECTION is set to point to the existing section and the
5622 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5623 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5624 // *KEPT_SECTION is set to the internal copy and the function returns
5625 // true.
5626
5627 bool
5628 Layout::find_or_add_kept_section(const std::string& name,
5629 Relobj* object,
5630 unsigned int shndx,
5631 bool is_comdat,
5632 bool is_group_name,
5633 Kept_section** kept_section)
5634 {
5635 // It's normal to see a couple of entries here, for the x86 thunk
5636 // sections. If we see more than a few, we're linking a C++
5637 // program, and we resize to get more space to minimize rehashing.
5638 if (this->signatures_.size() > 4
5639 && !this->resized_signatures_)
5640 {
5641 reserve_unordered_map(&this->signatures_,
5642 this->number_of_input_files_ * 64);
5643 this->resized_signatures_ = true;
5644 }
5645
5646 Kept_section candidate;
5647 std::pair<Signatures::iterator, bool> ins =
5648 this->signatures_.insert(std::make_pair(name, candidate));
5649
5650 if (kept_section != NULL)
5651 *kept_section = &ins.first->second;
5652 if (ins.second)
5653 {
5654 // This is the first time we've seen this signature.
5655 ins.first->second.set_object(object);
5656 ins.first->second.set_shndx(shndx);
5657 if (is_comdat)
5658 ins.first->second.set_is_comdat();
5659 if (is_group_name)
5660 ins.first->second.set_is_group_name();
5661 return true;
5662 }
5663
5664 // We have already seen this signature.
5665
5666 if (ins.first->second.is_group_name())
5667 {
5668 // We've already seen a real section group with this signature.
5669 // If the kept group is from a plugin object, and we're in the
5670 // replacement phase, accept the new one as a replacement.
5671 if (ins.first->second.object() == NULL
5672 && parameters->options().plugins()->in_replacement_phase())
5673 {
5674 ins.first->second.set_object(object);
5675 ins.first->second.set_shndx(shndx);
5676 return true;
5677 }
5678 return false;
5679 }
5680 else if (is_group_name)
5681 {
5682 // This is a real section group, and we've already seen a
5683 // linkonce section with this signature. Record that we've seen
5684 // a section group, and don't include this section group.
5685 ins.first->second.set_is_group_name();
5686 return false;
5687 }
5688 else
5689 {
5690 // We've already seen a linkonce section and this is a linkonce
5691 // section. These don't block each other--this may be the same
5692 // symbol name with different section types.
5693 return true;
5694 }
5695 }
5696
5697 // Store the allocated sections into the section list.
5698
5699 void
5700 Layout::get_allocated_sections(Section_list* section_list) const
5701 {
5702 for (Section_list::const_iterator p = this->section_list_.begin();
5703 p != this->section_list_.end();
5704 ++p)
5705 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5706 section_list->push_back(*p);
5707 }
5708
5709 // Store the executable sections into the section list.
5710
5711 void
5712 Layout::get_executable_sections(Section_list* section_list) const
5713 {
5714 for (Section_list::const_iterator p = this->section_list_.begin();
5715 p != this->section_list_.end();
5716 ++p)
5717 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5718 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5719 section_list->push_back(*p);
5720 }
5721
5722 // Create an output segment.
5723
5724 Output_segment*
5725 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5726 {
5727 gold_assert(!parameters->options().relocatable());
5728 Output_segment* oseg = new Output_segment(type, flags);
5729 this->segment_list_.push_back(oseg);
5730
5731 if (type == elfcpp::PT_TLS)
5732 this->tls_segment_ = oseg;
5733 else if (type == elfcpp::PT_GNU_RELRO)
5734 this->relro_segment_ = oseg;
5735 else if (type == elfcpp::PT_INTERP)
5736 this->interp_segment_ = oseg;
5737
5738 return oseg;
5739 }
5740
5741 // Return the file offset of the normal symbol table.
5742
5743 off_t
5744 Layout::symtab_section_offset() const
5745 {
5746 if (this->symtab_section_ != NULL)
5747 return this->symtab_section_->offset();
5748 return 0;
5749 }
5750
5751 // Return the section index of the normal symbol table. It may have
5752 // been stripped by the -s/--strip-all option.
5753
5754 unsigned int
5755 Layout::symtab_section_shndx() const
5756 {
5757 if (this->symtab_section_ != NULL)
5758 return this->symtab_section_->out_shndx();
5759 return 0;
5760 }
5761
5762 // Write out the Output_sections. Most won't have anything to write,
5763 // since most of the data will come from input sections which are
5764 // handled elsewhere. But some Output_sections do have Output_data.
5765
5766 void
5767 Layout::write_output_sections(Output_file* of) const
5768 {
5769 for (Section_list::const_iterator p = this->section_list_.begin();
5770 p != this->section_list_.end();
5771 ++p)
5772 {
5773 if (!(*p)->after_input_sections())
5774 (*p)->write(of);
5775 }
5776 }
5777
5778 // Write out data not associated with a section or the symbol table.
5779
5780 void
5781 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5782 {
5783 if (!parameters->options().strip_all())
5784 {
5785 const Output_section* symtab_section = this->symtab_section_;
5786 for (Section_list::const_iterator p = this->section_list_.begin();
5787 p != this->section_list_.end();
5788 ++p)
5789 {
5790 if ((*p)->needs_symtab_index())
5791 {
5792 gold_assert(symtab_section != NULL);
5793 unsigned int index = (*p)->symtab_index();
5794 gold_assert(index > 0 && index != -1U);
5795 off_t off = (symtab_section->offset()
5796 + index * symtab_section->entsize());
5797 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5798 }
5799 }
5800 }
5801
5802 const Output_section* dynsym_section = this->dynsym_section_;
5803 for (Section_list::const_iterator p = this->section_list_.begin();
5804 p != this->section_list_.end();
5805 ++p)
5806 {
5807 if ((*p)->needs_dynsym_index())
5808 {
5809 gold_assert(dynsym_section != NULL);
5810 unsigned int index = (*p)->dynsym_index();
5811 gold_assert(index > 0 && index != -1U);
5812 off_t off = (dynsym_section->offset()
5813 + index * dynsym_section->entsize());
5814 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5815 }
5816 }
5817
5818 // Write out the Output_data which are not in an Output_section.
5819 for (Data_list::const_iterator p = this->special_output_list_.begin();
5820 p != this->special_output_list_.end();
5821 ++p)
5822 (*p)->write(of);
5823
5824 // Write out the Output_data which are not in an Output_section
5825 // and are regenerated in each iteration of relaxation.
5826 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5827 p != this->relax_output_list_.end();
5828 ++p)
5829 (*p)->write(of);
5830 }
5831
5832 // Write out the Output_sections which can only be written after the
5833 // input sections are complete.
5834
5835 void
5836 Layout::write_sections_after_input_sections(Output_file* of)
5837 {
5838 // Determine the final section offsets, and thus the final output
5839 // file size. Note we finalize the .shstrab last, to allow the
5840 // after_input_section sections to modify their section-names before
5841 // writing.
5842 if (this->any_postprocessing_sections_)
5843 {
5844 off_t off = this->output_file_size_;
5845 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5846
5847 // Now that we've finalized the names, we can finalize the shstrab.
5848 off =
5849 this->set_section_offsets(off,
5850 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5851
5852 if (off > this->output_file_size_)
5853 {
5854 of->resize(off);
5855 this->output_file_size_ = off;
5856 }
5857 }
5858
5859 for (Section_list::const_iterator p = this->section_list_.begin();
5860 p != this->section_list_.end();
5861 ++p)
5862 {
5863 if ((*p)->after_input_sections())
5864 (*p)->write(of);
5865 }
5866
5867 this->section_headers_->write(of);
5868 }
5869
5870 // If a tree-style build ID was requested, the parallel part of that computation
5871 // is already done, and the final hash-of-hashes is computed here. For other
5872 // types of build IDs, all the work is done here.
5873
5874 void
5875 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5876 size_t size_of_hashes) const
5877 {
5878 if (this->build_id_note_ == NULL)
5879 return;
5880
5881 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5882 this->build_id_note_->data_size());
5883
5884 if (array_of_hashes == NULL)
5885 {
5886 const size_t output_file_size = this->output_file_size();
5887 const unsigned char* iv = of->get_input_view(0, output_file_size);
5888 const char* style = parameters->options().build_id();
5889
5890 // If we get here with style == "tree" then the output must be
5891 // too small for chunking, and we use SHA-1 in that case.
5892 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5893 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5894 else if (strcmp(style, "md5") == 0)
5895 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5896 else
5897 gold_unreachable();
5898
5899 of->free_input_view(0, output_file_size, iv);
5900 }
5901 else
5902 {
5903 // Non-overlapping substrings of the output file have been hashed.
5904 // Compute SHA-1 hash of the hashes.
5905 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5906 size_of_hashes, ov);
5907 delete[] array_of_hashes;
5908 }
5909
5910 of->write_output_view(this->build_id_note_->offset(),
5911 this->build_id_note_->data_size(),
5912 ov);
5913 }
5914
5915 // Write out a binary file. This is called after the link is
5916 // complete. IN is the temporary output file we used to generate the
5917 // ELF code. We simply walk through the segments, read them from
5918 // their file offset in IN, and write them to their load address in
5919 // the output file. FIXME: with a bit more work, we could support
5920 // S-records and/or Intel hex format here.
5921
5922 void
5923 Layout::write_binary(Output_file* in) const
5924 {
5925 gold_assert(parameters->options().oformat_enum()
5926 == General_options::OBJECT_FORMAT_BINARY);
5927
5928 // Get the size of the binary file.
5929 uint64_t max_load_address = 0;
5930 for (Segment_list::const_iterator p = this->segment_list_.begin();
5931 p != this->segment_list_.end();
5932 ++p)
5933 {
5934 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5935 {
5936 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5937 if (max_paddr > max_load_address)
5938 max_load_address = max_paddr;
5939 }
5940 }
5941
5942 Output_file out(parameters->options().output_file_name());
5943 out.open(max_load_address);
5944
5945 for (Segment_list::const_iterator p = this->segment_list_.begin();
5946 p != this->segment_list_.end();
5947 ++p)
5948 {
5949 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5950 {
5951 const unsigned char* vin = in->get_input_view((*p)->offset(),
5952 (*p)->filesz());
5953 unsigned char* vout = out.get_output_view((*p)->paddr(),
5954 (*p)->filesz());
5955 memcpy(vout, vin, (*p)->filesz());
5956 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5957 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5958 }
5959 }
5960
5961 out.close();
5962 }
5963
5964 // Print the output sections to the map file.
5965
5966 void
5967 Layout::print_to_mapfile(Mapfile* mapfile) const
5968 {
5969 for (Segment_list::const_iterator p = this->segment_list_.begin();
5970 p != this->segment_list_.end();
5971 ++p)
5972 (*p)->print_sections_to_mapfile(mapfile);
5973 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5974 p != this->unattached_section_list_.end();
5975 ++p)
5976 (*p)->print_to_mapfile(mapfile);
5977 }
5978
5979 // Print statistical information to stderr. This is used for --stats.
5980
5981 void
5982 Layout::print_stats() const
5983 {
5984 this->namepool_.print_stats("section name pool");
5985 this->sympool_.print_stats("output symbol name pool");
5986 this->dynpool_.print_stats("dynamic name pool");
5987
5988 for (Section_list::const_iterator p = this->section_list_.begin();
5989 p != this->section_list_.end();
5990 ++p)
5991 (*p)->print_merge_stats();
5992 }
5993
5994 // Write_sections_task methods.
5995
5996 // We can always run this task.
5997
5998 Task_token*
5999 Write_sections_task::is_runnable()
6000 {
6001 return NULL;
6002 }
6003
6004 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6005 // when finished.
6006
6007 void
6008 Write_sections_task::locks(Task_locker* tl)
6009 {
6010 tl->add(this, this->output_sections_blocker_);
6011 if (this->input_sections_blocker_ != NULL)
6012 tl->add(this, this->input_sections_blocker_);
6013 tl->add(this, this->final_blocker_);
6014 }
6015
6016 // Run the task--write out the data.
6017
6018 void
6019 Write_sections_task::run(Workqueue*)
6020 {
6021 this->layout_->write_output_sections(this->of_);
6022 }
6023
6024 // Write_data_task methods.
6025
6026 // We can always run this task.
6027
6028 Task_token*
6029 Write_data_task::is_runnable()
6030 {
6031 return NULL;
6032 }
6033
6034 // We need to unlock FINAL_BLOCKER when finished.
6035
6036 void
6037 Write_data_task::locks(Task_locker* tl)
6038 {
6039 tl->add(this, this->final_blocker_);
6040 }
6041
6042 // Run the task--write out the data.
6043
6044 void
6045 Write_data_task::run(Workqueue*)
6046 {
6047 this->layout_->write_data(this->symtab_, this->of_);
6048 }
6049
6050 // Write_symbols_task methods.
6051
6052 // We can always run this task.
6053
6054 Task_token*
6055 Write_symbols_task::is_runnable()
6056 {
6057 return NULL;
6058 }
6059
6060 // We need to unlock FINAL_BLOCKER when finished.
6061
6062 void
6063 Write_symbols_task::locks(Task_locker* tl)
6064 {
6065 tl->add(this, this->final_blocker_);
6066 }
6067
6068 // Run the task--write out the symbols.
6069
6070 void
6071 Write_symbols_task::run(Workqueue*)
6072 {
6073 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6074 this->layout_->symtab_xindex(),
6075 this->layout_->dynsym_xindex(), this->of_);
6076 }
6077
6078 // Write_after_input_sections_task methods.
6079
6080 // We can only run this task after the input sections have completed.
6081
6082 Task_token*
6083 Write_after_input_sections_task::is_runnable()
6084 {
6085 if (this->input_sections_blocker_->is_blocked())
6086 return this->input_sections_blocker_;
6087 return NULL;
6088 }
6089
6090 // We need to unlock FINAL_BLOCKER when finished.
6091
6092 void
6093 Write_after_input_sections_task::locks(Task_locker* tl)
6094 {
6095 tl->add(this, this->final_blocker_);
6096 }
6097
6098 // Run the task.
6099
6100 void
6101 Write_after_input_sections_task::run(Workqueue*)
6102 {
6103 this->layout_->write_sections_after_input_sections(this->of_);
6104 }
6105
6106 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6107 // or as a "tree" where each chunk of the string is hashed and then those
6108 // hashes are put into a (much smaller) string which is hashed with sha1.
6109 // We compute a checksum over the entire file because that is simplest.
6110
6111 void
6112 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6113 {
6114 Task_token* post_hash_tasks_blocker = new Task_token(true);
6115 const Layout* layout = this->layout_;
6116 Output_file* of = this->of_;
6117 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6118 : static_cast<size_t>(layout->output_file_size()));
6119 unsigned char* array_of_hashes = NULL;
6120 size_t size_of_hashes = 0;
6121
6122 if (strcmp(this->options_->build_id(), "tree") == 0
6123 && this->options_->build_id_chunk_size_for_treehash() > 0
6124 && filesize > 0
6125 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6126 {
6127 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6128 const size_t chunk_size =
6129 this->options_->build_id_chunk_size_for_treehash();
6130 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6131 post_hash_tasks_blocker->add_blockers(num_hashes);
6132 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6133 array_of_hashes = new unsigned char[size_of_hashes];
6134 unsigned char *dst = array_of_hashes;
6135 for (size_t i = 0, src_offset = 0; i < num_hashes;
6136 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6137 {
6138 size_t size = std::min(chunk_size, filesize - src_offset);
6139 workqueue->queue(new Hash_task(of,
6140 src_offset,
6141 size,
6142 dst,
6143 post_hash_tasks_blocker));
6144 }
6145 }
6146
6147 // Queue the final task to write the build id and close the output file.
6148 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6149 layout,
6150 of,
6151 array_of_hashes,
6152 size_of_hashes),
6153 post_hash_tasks_blocker,
6154 "Task_function Close_task_runner"));
6155 }
6156
6157 // Close_task_runner methods.
6158
6159 // Finish up the build ID computation, if necessary, and write a binary file,
6160 // if necessary. Then close the output file.
6161
6162 void
6163 Close_task_runner::run(Workqueue*, const Task*)
6164 {
6165 // At this point the multi-threaded part of the build ID computation,
6166 // if any, is done. See Build_id_task_runner.
6167 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6168 this->size_of_hashes_);
6169
6170 // If we've been asked to create a binary file, we do so here.
6171 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6172 this->layout_->write_binary(this->of_);
6173
6174 if (this->options_->dependency_file())
6175 File_read::write_dependency_file(this->options_->dependency_file(),
6176 this->options_->output_file_name());
6177
6178 this->of_->close();
6179 }
6180
6181 // Instantiate the templates we need. We could use the configure
6182 // script to restrict this to only the ones for implemented targets.
6183
6184 #ifdef HAVE_TARGET_32_LITTLE
6185 template
6186 Output_section*
6187 Layout::init_fixed_output_section<32, false>(
6188 const char* name,
6189 elfcpp::Shdr<32, false>& shdr);
6190 #endif
6191
6192 #ifdef HAVE_TARGET_32_BIG
6193 template
6194 Output_section*
6195 Layout::init_fixed_output_section<32, true>(
6196 const char* name,
6197 elfcpp::Shdr<32, true>& shdr);
6198 #endif
6199
6200 #ifdef HAVE_TARGET_64_LITTLE
6201 template
6202 Output_section*
6203 Layout::init_fixed_output_section<64, false>(
6204 const char* name,
6205 elfcpp::Shdr<64, false>& shdr);
6206 #endif
6207
6208 #ifdef HAVE_TARGET_64_BIG
6209 template
6210 Output_section*
6211 Layout::init_fixed_output_section<64, true>(
6212 const char* name,
6213 elfcpp::Shdr<64, true>& shdr);
6214 #endif
6215
6216 #ifdef HAVE_TARGET_32_LITTLE
6217 template
6218 Output_section*
6219 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6220 unsigned int shndx,
6221 const char* name,
6222 const elfcpp::Shdr<32, false>& shdr,
6223 unsigned int, unsigned int, unsigned int, off_t*);
6224 #endif
6225
6226 #ifdef HAVE_TARGET_32_BIG
6227 template
6228 Output_section*
6229 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6230 unsigned int shndx,
6231 const char* name,
6232 const elfcpp::Shdr<32, true>& shdr,
6233 unsigned int, unsigned int, unsigned int, off_t*);
6234 #endif
6235
6236 #ifdef HAVE_TARGET_64_LITTLE
6237 template
6238 Output_section*
6239 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6240 unsigned int shndx,
6241 const char* name,
6242 const elfcpp::Shdr<64, false>& shdr,
6243 unsigned int, unsigned int, unsigned int, off_t*);
6244 #endif
6245
6246 #ifdef HAVE_TARGET_64_BIG
6247 template
6248 Output_section*
6249 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6250 unsigned int shndx,
6251 const char* name,
6252 const elfcpp::Shdr<64, true>& shdr,
6253 unsigned int, unsigned int, unsigned int, off_t*);
6254 #endif
6255
6256 #ifdef HAVE_TARGET_32_LITTLE
6257 template
6258 Output_section*
6259 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6260 unsigned int reloc_shndx,
6261 const elfcpp::Shdr<32, false>& shdr,
6262 Output_section* data_section,
6263 Relocatable_relocs* rr);
6264 #endif
6265
6266 #ifdef HAVE_TARGET_32_BIG
6267 template
6268 Output_section*
6269 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6270 unsigned int reloc_shndx,
6271 const elfcpp::Shdr<32, true>& shdr,
6272 Output_section* data_section,
6273 Relocatable_relocs* rr);
6274 #endif
6275
6276 #ifdef HAVE_TARGET_64_LITTLE
6277 template
6278 Output_section*
6279 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6280 unsigned int reloc_shndx,
6281 const elfcpp::Shdr<64, false>& shdr,
6282 Output_section* data_section,
6283 Relocatable_relocs* rr);
6284 #endif
6285
6286 #ifdef HAVE_TARGET_64_BIG
6287 template
6288 Output_section*
6289 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6290 unsigned int reloc_shndx,
6291 const elfcpp::Shdr<64, true>& shdr,
6292 Output_section* data_section,
6293 Relocatable_relocs* rr);
6294 #endif
6295
6296 #ifdef HAVE_TARGET_32_LITTLE
6297 template
6298 void
6299 Layout::layout_group<32, false>(Symbol_table* symtab,
6300 Sized_relobj_file<32, false>* object,
6301 unsigned int,
6302 const char* group_section_name,
6303 const char* signature,
6304 const elfcpp::Shdr<32, false>& shdr,
6305 elfcpp::Elf_Word flags,
6306 std::vector<unsigned int>* shndxes);
6307 #endif
6308
6309 #ifdef HAVE_TARGET_32_BIG
6310 template
6311 void
6312 Layout::layout_group<32, true>(Symbol_table* symtab,
6313 Sized_relobj_file<32, true>* object,
6314 unsigned int,
6315 const char* group_section_name,
6316 const char* signature,
6317 const elfcpp::Shdr<32, true>& shdr,
6318 elfcpp::Elf_Word flags,
6319 std::vector<unsigned int>* shndxes);
6320 #endif
6321
6322 #ifdef HAVE_TARGET_64_LITTLE
6323 template
6324 void
6325 Layout::layout_group<64, false>(Symbol_table* symtab,
6326 Sized_relobj_file<64, false>* object,
6327 unsigned int,
6328 const char* group_section_name,
6329 const char* signature,
6330 const elfcpp::Shdr<64, false>& shdr,
6331 elfcpp::Elf_Word flags,
6332 std::vector<unsigned int>* shndxes);
6333 #endif
6334
6335 #ifdef HAVE_TARGET_64_BIG
6336 template
6337 void
6338 Layout::layout_group<64, true>(Symbol_table* symtab,
6339 Sized_relobj_file<64, true>* object,
6340 unsigned int,
6341 const char* group_section_name,
6342 const char* signature,
6343 const elfcpp::Shdr<64, true>& shdr,
6344 elfcpp::Elf_Word flags,
6345 std::vector<unsigned int>* shndxes);
6346 #endif
6347
6348 #ifdef HAVE_TARGET_32_LITTLE
6349 template
6350 Output_section*
6351 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6352 const unsigned char* symbols,
6353 off_t symbols_size,
6354 const unsigned char* symbol_names,
6355 off_t symbol_names_size,
6356 unsigned int shndx,
6357 const elfcpp::Shdr<32, false>& shdr,
6358 unsigned int reloc_shndx,
6359 unsigned int reloc_type,
6360 off_t* off);
6361 #endif
6362
6363 #ifdef HAVE_TARGET_32_BIG
6364 template
6365 Output_section*
6366 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6367 const unsigned char* symbols,
6368 off_t symbols_size,
6369 const unsigned char* symbol_names,
6370 off_t symbol_names_size,
6371 unsigned int shndx,
6372 const elfcpp::Shdr<32, true>& shdr,
6373 unsigned int reloc_shndx,
6374 unsigned int reloc_type,
6375 off_t* off);
6376 #endif
6377
6378 #ifdef HAVE_TARGET_64_LITTLE
6379 template
6380 Output_section*
6381 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6382 const unsigned char* symbols,
6383 off_t symbols_size,
6384 const unsigned char* symbol_names,
6385 off_t symbol_names_size,
6386 unsigned int shndx,
6387 const elfcpp::Shdr<64, false>& shdr,
6388 unsigned int reloc_shndx,
6389 unsigned int reloc_type,
6390 off_t* off);
6391 #endif
6392
6393 #ifdef HAVE_TARGET_64_BIG
6394 template
6395 Output_section*
6396 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6397 const unsigned char* symbols,
6398 off_t symbols_size,
6399 const unsigned char* symbol_names,
6400 off_t symbol_names_size,
6401 unsigned int shndx,
6402 const elfcpp::Shdr<64, true>& shdr,
6403 unsigned int reloc_shndx,
6404 unsigned int reloc_type,
6405 off_t* off);
6406 #endif
6407
6408 #ifdef HAVE_TARGET_32_LITTLE
6409 template
6410 void
6411 Layout::add_to_gdb_index(bool is_type_unit,
6412 Sized_relobj<32, false>* object,
6413 const unsigned char* symbols,
6414 off_t symbols_size,
6415 unsigned int shndx,
6416 unsigned int reloc_shndx,
6417 unsigned int reloc_type);
6418 #endif
6419
6420 #ifdef HAVE_TARGET_32_BIG
6421 template
6422 void
6423 Layout::add_to_gdb_index(bool is_type_unit,
6424 Sized_relobj<32, true>* object,
6425 const unsigned char* symbols,
6426 off_t symbols_size,
6427 unsigned int shndx,
6428 unsigned int reloc_shndx,
6429 unsigned int reloc_type);
6430 #endif
6431
6432 #ifdef HAVE_TARGET_64_LITTLE
6433 template
6434 void
6435 Layout::add_to_gdb_index(bool is_type_unit,
6436 Sized_relobj<64, false>* object,
6437 const unsigned char* symbols,
6438 off_t symbols_size,
6439 unsigned int shndx,
6440 unsigned int reloc_shndx,
6441 unsigned int reloc_type);
6442 #endif
6443
6444 #ifdef HAVE_TARGET_64_BIG
6445 template
6446 void
6447 Layout::add_to_gdb_index(bool is_type_unit,
6448 Sized_relobj<64, true>* object,
6449 const unsigned char* symbols,
6450 off_t symbols_size,
6451 unsigned int shndx,
6452 unsigned int reloc_shndx,
6453 unsigned int reloc_type);
6454 #endif
6455
6456 } // End namespace gold.