]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
ld: change --enable-new-dtags to only generate new dtags
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 unique_segment_for_sections_specified_(false),
412 incremental_inputs_(NULL),
413 record_output_section_data_from_script_(false),
414 script_output_section_data_list_(),
415 segment_states_(NULL),
416 relaxation_debug_check_(NULL),
417 section_order_map_(),
418 section_segment_map_(),
419 input_section_position_(),
420 input_section_glob_(),
421 incremental_base_(NULL),
422 free_list_()
423 {
424 // Make space for more than enough segments for a typical file.
425 // This is just for efficiency--it's OK if we wind up needing more.
426 this->segment_list_.reserve(12);
427
428 // We expect two unattached Output_data objects: the file header and
429 // the segment headers.
430 this->special_output_list_.reserve(2);
431
432 // Initialize structure needed for an incremental build.
433 if (parameters->incremental())
434 this->incremental_inputs_ = new Incremental_inputs;
435
436 // The section name pool is worth optimizing in all cases, because
437 // it is small, but there are often overlaps due to .rel sections.
438 this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446 this->incremental_base_ = base;
447 this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455 return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465 "abbrev",
466 "addr", // Fission extension
467 // "aranges", // not used by gdb as of 7.4
468 "frame",
469 "info",
470 "types",
471 "line",
472 "loc",
473 "macinfo",
474 "macro",
475 // "pubnames", // not used by gdb as of 7.4
476 // "pubtypes", // not used by gdb as of 7.4
477 "ranges",
478 "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485 "abbrev",
486 // "addr", // Fission extension
487 // "aranges", // not used by gdb as of 7.4
488 // "frame",
489 "info",
490 // "types",
491 "line",
492 // "loc",
493 // "macinfo",
494 // "macro",
495 // "pubnames", // not used by gdb as of 7.4
496 // "pubtypes", // not used by gdb as of 7.4
497 // "ranges",
498 "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506 "aranges",
507 "pubnames",
508 "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518 // We can do this faster: binary search or a hashtable. But why bother?
519 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520 if (strcmp(suffix, gdb_sections[i]) == 0)
521 return true;
522 return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530 // We can do this faster: binary search or a hashtable. But why bother?
531 for (size_t i = 0;
532 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533 ++i)
534 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535 return true;
536 return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545 // We can do this faster: binary search or a hashtable. But why bother?
546 for (size_t i = 0;
547 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548 ++i)
549 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550 return true;
551 return false;
552 }
553
554 // Sometimes we compress sections. This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections. This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566 return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files. Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575 return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583 const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585 if (!parameters->options().relocatable()
586 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587 return false;
588
589 switch (shdr.get_sh_type())
590 {
591 case elfcpp::SHT_NULL:
592 case elfcpp::SHT_SYMTAB:
593 case elfcpp::SHT_DYNSYM:
594 case elfcpp::SHT_HASH:
595 case elfcpp::SHT_DYNAMIC:
596 case elfcpp::SHT_SYMTAB_SHNDX:
597 return false;
598
599 case elfcpp::SHT_STRTAB:
600 // Discard the sections which have special meanings in the ELF
601 // ABI. Keep others (e.g., .stabstr). We could also do this by
602 // checking the sh_link fields of the appropriate sections.
603 return (strcmp(name, ".dynstr") != 0
604 && strcmp(name, ".strtab") != 0
605 && strcmp(name, ".shstrtab") != 0);
606
607 case elfcpp::SHT_RELA:
608 case elfcpp::SHT_REL:
609 case elfcpp::SHT_GROUP:
610 // If we are emitting relocations these should be handled
611 // elsewhere.
612 gold_assert(!parameters->options().relocatable());
613 return false;
614
615 case elfcpp::SHT_PROGBITS:
616 if (parameters->options().strip_debug()
617 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618 {
619 if (is_debug_info_section(name))
620 return false;
621 }
622 if (parameters->options().strip_debug_non_line()
623 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624 {
625 // Debugging sections can only be recognized by name.
626 if (is_prefix_of(".debug_", name)
627 && !is_lines_only_debug_section(name + 7))
628 return false;
629 if (is_prefix_of(".zdebug_", name)
630 && !is_lines_only_debug_section(name + 8))
631 return false;
632 }
633 if (parameters->options().strip_debug_gdb()
634 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635 {
636 // Debugging sections can only be recognized by name.
637 if (is_prefix_of(".debug_", name)
638 && !is_gdb_debug_section(name + 7))
639 return false;
640 if (is_prefix_of(".zdebug_", name)
641 && !is_gdb_debug_section(name + 8))
642 return false;
643 }
644 if (parameters->options().gdb_index()
645 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646 {
647 // When building .gdb_index, we can strip .debug_pubnames,
648 // .debug_pubtypes, and .debug_aranges sections.
649 if (is_prefix_of(".debug_", name)
650 && is_gdb_fast_lookup_section(name + 7))
651 return false;
652 if (is_prefix_of(".zdebug_", name)
653 && is_gdb_fast_lookup_section(name + 8))
654 return false;
655 }
656 if (parameters->options().strip_lto_sections()
657 && !parameters->options().relocatable()
658 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659 {
660 // Ignore LTO sections containing intermediate code.
661 if (is_prefix_of(".gnu.lto_", name))
662 return false;
663 }
664 // The GNU linker strips .gnu_debuglink sections, so we do too.
665 // This is a feature used to keep debugging information in
666 // separate files.
667 if (strcmp(name, ".gnu_debuglink") == 0)
668 return false;
669 return true;
670
671 default:
672 return true;
673 }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681 for (Section_list::const_iterator p = this->section_list_.begin();
682 p != this->section_list_.end();
683 ++p)
684 if (strcmp((*p)->name(), name) == 0)
685 return *p;
686 return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear. Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694 elfcpp::Elf_Word clear) const
695 {
696 for (Segment_list::const_iterator p = this->segment_list_.begin();
697 p != this->segment_list_.end();
698 ++p)
699 if (static_cast<elfcpp::PT>((*p)->type()) == type
700 && ((*p)->flags() & set) == set
701 && ((*p)->flags() & clear) == 0)
702 return *p;
703 return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section. This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors. Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run. This set just keeps track of
714 // these sections which need to be reversed. It is only changed by
715 // Layout::layout. It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727 != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS. NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key. ORDER is where this should appear
733 // in the output sections. IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738 Output_section_order order, bool is_relro)
739 {
740 elfcpp::Elf_Word lookup_type = type;
741
742 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
744 // .init_array, .fini_array, and .preinit_array sections by name
745 // whatever their type in the input file. We do this because the
746 // types are not always right in the input files.
747 if (lookup_type == elfcpp::SHT_INIT_ARRAY
748 || lookup_type == elfcpp::SHT_FINI_ARRAY
749 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750 lookup_type = elfcpp::SHT_PROGBITS;
751
752 elfcpp::Elf_Xword lookup_flags = flags;
753
754 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755 // read-write with read-only sections. Some other ELF linkers do
756 // not do this. FIXME: Perhaps there should be an option
757 // controlling this.
758 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761 const std::pair<Key, Output_section*> v(key, NULL);
762 std::pair<Section_name_map::iterator, bool> ins(
763 this->section_name_map_.insert(v));
764
765 if (!ins.second)
766 return ins.first->second;
767 else
768 {
769 // This is the first time we've seen this name/type/flags
770 // combination. For compatibility with the GNU linker, we
771 // combine sections with contents and zero flags with sections
772 // with non-zero flags. This is a workaround for cases where
773 // assembler code forgets to set section flags. FIXME: Perhaps
774 // there should be an option to control this.
775 Output_section* os = NULL;
776
777 if (lookup_type == elfcpp::SHT_PROGBITS)
778 {
779 if (flags == 0)
780 {
781 Output_section* same_name = this->find_output_section(name);
782 if (same_name != NULL
783 && (same_name->type() == elfcpp::SHT_PROGBITS
784 || same_name->type() == elfcpp::SHT_INIT_ARRAY
785 || same_name->type() == elfcpp::SHT_FINI_ARRAY
786 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788 os = same_name;
789 }
790 else if ((flags & elfcpp::SHF_TLS) == 0)
791 {
792 elfcpp::Elf_Xword zero_flags = 0;
793 const Key zero_key(name_key, std::make_pair(lookup_type,
794 zero_flags));
795 Section_name_map::iterator p =
796 this->section_name_map_.find(zero_key);
797 if (p != this->section_name_map_.end())
798 os = p->second;
799 }
800 }
801
802 if (os == NULL)
803 os = this->make_output_section(name, type, flags, order, is_relro);
804
805 ins.first->second = os;
806 return os;
807 }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816 if (! this->script_options_->saw_sections_clause())
817 return false;
818
819 Script_sections* ss = this->script_options_->script_sections();
820 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821 Output_section** output_section_slot;
822 Script_sections::Section_type script_section_type;
823 bool keep;
824
825 name = ss->output_section_name(file_name, name, &output_section_slot,
826 &script_section_type, &keep);
827 return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836 // Some flags in the input section should not be automatically
837 // copied to the output section.
838 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839 | elfcpp::SHF_GROUP
840 | elfcpp::SHF_MERGE
841 | elfcpp::SHF_STRINGS);
842
843 // We only clear the SHF_LINK_ORDER flag in for
844 // a non-relocatable link.
845 if (!parameters->options().relocatable())
846 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848 return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
853 // linker created section. IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file. ORDER is where this section should appear in the output
856 // sections. IS_RELRO is true for a relro section. This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862 bool is_input_section, Output_section_order order,
863 bool is_relro)
864 {
865 // We should not see any input sections after we have attached
866 // sections to segments.
867 gold_assert(!is_input_section || !this->sections_are_attached_);
868
869 flags = this->get_output_section_flags(flags);
870
871 if (this->script_options_->saw_sections_clause())
872 {
873 // We are using a SECTIONS clause, so the output section is
874 // chosen based only on the name.
875
876 Script_sections* ss = this->script_options_->script_sections();
877 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878 Output_section** output_section_slot;
879 Script_sections::Section_type script_section_type;
880 const char* orig_name = name;
881 bool keep;
882 name = ss->output_section_name(file_name, name, &output_section_slot,
883 &script_section_type, &keep);
884
885 if (name == NULL)
886 {
887 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888 "because it is not allowed by the "
889 "SECTIONS clause of the linker script"),
890 orig_name);
891 // The SECTIONS clause says to discard this input section.
892 return NULL;
893 }
894
895 // We can only handle script section types ST_NONE and ST_NOLOAD.
896 switch (script_section_type)
897 {
898 case Script_sections::ST_NONE:
899 break;
900 case Script_sections::ST_NOLOAD:
901 flags &= elfcpp::SHF_ALLOC;
902 break;
903 default:
904 gold_unreachable();
905 }
906
907 // If this is an orphan section--one not mentioned in the linker
908 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909 // default processing below.
910
911 if (output_section_slot != NULL)
912 {
913 if (*output_section_slot != NULL)
914 {
915 (*output_section_slot)->update_flags_for_input_section(flags);
916 return *output_section_slot;
917 }
918
919 // We don't put sections found in the linker script into
920 // SECTION_NAME_MAP_. That keeps us from getting confused
921 // if an orphan section is mapped to a section with the same
922 // name as one in the linker script.
923
924 name = this->namepool_.add(name, false, NULL);
925
926 Output_section* os = this->make_output_section(name, type, flags,
927 order, is_relro);
928
929 os->set_found_in_sections_clause();
930
931 // Special handling for NOLOAD sections.
932 if (script_section_type == Script_sections::ST_NOLOAD)
933 {
934 os->set_is_noload();
935
936 // The constructor of Output_section sets addresses of non-ALLOC
937 // sections to 0 by default. We don't want that for NOLOAD
938 // sections even if they have no SHF_ALLOC flag.
939 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940 && os->is_address_valid())
941 {
942 gold_assert(os->address() == 0
943 && !os->is_offset_valid()
944 && !os->is_data_size_valid());
945 os->reset_address_and_file_offset();
946 }
947 }
948
949 *output_section_slot = os;
950 return os;
951 }
952 }
953
954 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956 size_t len = strlen(name);
957 char* uncompressed_name = NULL;
958
959 // Compressed debug sections should be mapped to the corresponding
960 // uncompressed section.
961 if (is_compressed_debug_section(name))
962 {
963 uncompressed_name = new char[len];
964 uncompressed_name[0] = '.';
965 gold_assert(name[0] == '.' && name[1] == 'z');
966 strncpy(&uncompressed_name[1], &name[2], len - 2);
967 uncompressed_name[len - 1] = '\0';
968 len -= 1;
969 name = uncompressed_name;
970 }
971
972 // Turn NAME from the name of the input section into the name of the
973 // output section.
974 if (is_input_section
975 && !this->script_options_->saw_sections_clause()
976 && !parameters->options().relocatable())
977 {
978 const char *orig_name = name;
979 name = parameters->target().output_section_name(relobj, name, &len);
980 if (name == NULL)
981 name = Layout::output_section_name(relobj, orig_name, &len);
982 }
983
984 Stringpool::Key name_key;
985 name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987 if (uncompressed_name != NULL)
988 delete[] uncompressed_name;
989
990 // Find or make the output section. The output section is selected
991 // based on the section name, type, and flags.
992 return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001 elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003 unsigned int sh_type = shdr.get_sh_type();
1004
1005 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006 // PRE_INIT_ARRAY, and NOTE sections.
1007 // All others will be created from scratch and reallocated.
1008 if (!can_incremental_update(sh_type))
1009 return NULL;
1010
1011 // If we're generating a .gdb_index section, we need to regenerate
1012 // it from scratch.
1013 if (parameters->options().gdb_index()
1014 && sh_type == elfcpp::SHT_PROGBITS
1015 && strcmp(name, ".gdb_index") == 0)
1016 return NULL;
1017
1018 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023 shdr.get_sh_addralign();
1024
1025 // Make the output section.
1026 Stringpool::Key name_key;
1027 name = this->namepool_.add(name, true, &name_key);
1028 Output_section* os = this->get_output_section(name, name_key, sh_type,
1029 sh_flags, ORDER_INVALID, false);
1030 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031 if (sh_type != elfcpp::SHT_NOBITS)
1032 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033 return os;
1034 }
1035
1036 // Return the index by which an input section should be ordered. This
1037 // is used to sort some .text sections, for compatibility with GNU ld.
1038
1039 int
1040 Layout::special_ordering_of_input_section(const char* name)
1041 {
1042 // The GNU linker has some special handling for some sections that
1043 // wind up in the .text section. Sections that start with these
1044 // prefixes must appear first, and must appear in the order listed
1045 // here.
1046 static const char* const text_section_sort[] =
1047 {
1048 ".text.unlikely",
1049 ".text.exit",
1050 ".text.startup",
1051 ".text.hot"
1052 };
1053
1054 for (size_t i = 0;
1055 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1056 i++)
1057 if (is_prefix_of(text_section_sort[i], name))
1058 return i;
1059
1060 return -1;
1061 }
1062
1063 // Return the output section to use for input section SHNDX, with name
1064 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1065 // index of a relocation section which applies to this section, or 0
1066 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1067 // relocation section if there is one. Set *OFF to the offset of this
1068 // input section without the output section. Return NULL if the
1069 // section should be discarded. Set *OFF to -1 if the section
1070 // contents should not be written directly to the output file, but
1071 // will instead receive special handling.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1076 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1077 unsigned int reloc_shndx, unsigned int, off_t* off)
1078 {
1079 *off = 0;
1080
1081 if (!this->include_section(object, name, shdr))
1082 return NULL;
1083
1084 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1085
1086 // In a relocatable link a grouped section must not be combined with
1087 // any other sections.
1088 Output_section* os;
1089 if (parameters->options().relocatable()
1090 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1091 {
1092 name = this->namepool_.add(name, true, NULL);
1093 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1094 ORDER_INVALID, false);
1095 }
1096 else
1097 {
1098 // Plugins can choose to place one or more subsets of sections in
1099 // unique segments and this is done by mapping these section subsets
1100 // to unique output sections. Check if this section needs to be
1101 // remapped to a unique output section.
1102 Section_segment_map::iterator it
1103 = this->section_segment_map_.find(Const_section_id(object, shndx));
1104 if (it == this->section_segment_map_.end())
1105 {
1106 os = this->choose_output_section(object, name, sh_type,
1107 shdr.get_sh_flags(), true,
1108 ORDER_INVALID, false);
1109 }
1110 else
1111 {
1112 // We know the name of the output section, directly call
1113 // get_output_section here by-passing choose_output_section.
1114 elfcpp::Elf_Xword flags
1115 = this->get_output_section_flags(shdr.get_sh_flags());
1116
1117 const char* os_name = it->second->name;
1118 Stringpool::Key name_key;
1119 os_name = this->namepool_.add(os_name, true, &name_key);
1120 os = this->get_output_section(os_name, name_key, sh_type, flags,
1121 ORDER_INVALID, false);
1122 if (!os->is_unique_segment())
1123 {
1124 os->set_is_unique_segment();
1125 os->set_extra_segment_flags(it->second->flags);
1126 os->set_segment_alignment(it->second->align);
1127 }
1128 }
1129 if (os == NULL)
1130 return NULL;
1131 }
1132
1133 // By default the GNU linker sorts input sections whose names match
1134 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1135 // sections are sorted by name. This is used to implement
1136 // constructor priority ordering. We are compatible. When we put
1137 // .ctor sections in .init_array and .dtor sections in .fini_array,
1138 // we must also sort plain .ctor and .dtor sections.
1139 if (!this->script_options_->saw_sections_clause()
1140 && !parameters->options().relocatable()
1141 && (is_prefix_of(".ctors.", name)
1142 || is_prefix_of(".dtors.", name)
1143 || is_prefix_of(".init_array.", name)
1144 || is_prefix_of(".fini_array.", name)
1145 || (parameters->options().ctors_in_init_array()
1146 && (strcmp(name, ".ctors") == 0
1147 || strcmp(name, ".dtors") == 0))))
1148 os->set_must_sort_attached_input_sections();
1149
1150 // By default the GNU linker sorts some special text sections ahead
1151 // of others. We are compatible.
1152 if (!this->script_options_->saw_sections_clause()
1153 && !this->is_section_ordering_specified()
1154 && !parameters->options().relocatable()
1155 && Layout::special_ordering_of_input_section(name) >= 0)
1156 os->set_must_sort_attached_input_sections();
1157
1158 // If this is a .ctors or .ctors.* section being mapped to a
1159 // .init_array section, or a .dtors or .dtors.* section being mapped
1160 // to a .fini_array section, we will need to reverse the words if
1161 // there is more than one. Record this section for later. See
1162 // ctors_sections_in_init_array above.
1163 if (!this->script_options_->saw_sections_clause()
1164 && !parameters->options().relocatable()
1165 && shdr.get_sh_size() > size / 8
1166 && (((strcmp(name, ".ctors") == 0
1167 || is_prefix_of(".ctors.", name))
1168 && strcmp(os->name(), ".init_array") == 0)
1169 || ((strcmp(name, ".dtors") == 0
1170 || is_prefix_of(".dtors.", name))
1171 && strcmp(os->name(), ".fini_array") == 0)))
1172 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1173
1174 // FIXME: Handle SHF_LINK_ORDER somewhere.
1175
1176 elfcpp::Elf_Xword orig_flags = os->flags();
1177
1178 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1179 this->script_options_->saw_sections_clause());
1180
1181 // If the flags changed, we may have to change the order.
1182 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1183 {
1184 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1185 elfcpp::Elf_Xword new_flags =
1186 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1187 if (orig_flags != new_flags)
1188 os->set_order(this->default_section_order(os, false));
1189 }
1190
1191 this->have_added_input_section_ = true;
1192
1193 return os;
1194 }
1195
1196 // Maps section SECN to SEGMENT s.
1197 void
1198 Layout::insert_section_segment_map(Const_section_id secn,
1199 Unique_segment_info *s)
1200 {
1201 gold_assert(this->unique_segment_for_sections_specified_);
1202 this->section_segment_map_[secn] = s;
1203 }
1204
1205 // Handle a relocation section when doing a relocatable link.
1206
1207 template<int size, bool big_endian>
1208 Output_section*
1209 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1210 unsigned int,
1211 const elfcpp::Shdr<size, big_endian>& shdr,
1212 Output_section* data_section,
1213 Relocatable_relocs* rr)
1214 {
1215 gold_assert(parameters->options().relocatable()
1216 || parameters->options().emit_relocs());
1217
1218 int sh_type = shdr.get_sh_type();
1219
1220 std::string name;
1221 if (sh_type == elfcpp::SHT_REL)
1222 name = ".rel";
1223 else if (sh_type == elfcpp::SHT_RELA)
1224 name = ".rela";
1225 else
1226 gold_unreachable();
1227 name += data_section->name();
1228
1229 // In a relocatable link relocs for a grouped section must not be
1230 // combined with other reloc sections.
1231 Output_section* os;
1232 if (!parameters->options().relocatable()
1233 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1234 os = this->choose_output_section(object, name.c_str(), sh_type,
1235 shdr.get_sh_flags(), false,
1236 ORDER_INVALID, false);
1237 else
1238 {
1239 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1240 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1241 ORDER_INVALID, false);
1242 }
1243
1244 os->set_should_link_to_symtab();
1245 os->set_info_section(data_section);
1246
1247 Output_section_data* posd;
1248 if (sh_type == elfcpp::SHT_REL)
1249 {
1250 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1251 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1252 size,
1253 big_endian>(rr);
1254 }
1255 else if (sh_type == elfcpp::SHT_RELA)
1256 {
1257 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1258 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1259 size,
1260 big_endian>(rr);
1261 }
1262 else
1263 gold_unreachable();
1264
1265 os->add_output_section_data(posd);
1266 rr->set_output_data(posd);
1267
1268 return os;
1269 }
1270
1271 // Handle a group section when doing a relocatable link.
1272
1273 template<int size, bool big_endian>
1274 void
1275 Layout::layout_group(Symbol_table* symtab,
1276 Sized_relobj_file<size, big_endian>* object,
1277 unsigned int,
1278 const char* group_section_name,
1279 const char* signature,
1280 const elfcpp::Shdr<size, big_endian>& shdr,
1281 elfcpp::Elf_Word flags,
1282 std::vector<unsigned int>* shndxes)
1283 {
1284 gold_assert(parameters->options().relocatable());
1285 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1286 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1287 Output_section* os = this->make_output_section(group_section_name,
1288 elfcpp::SHT_GROUP,
1289 shdr.get_sh_flags(),
1290 ORDER_INVALID, false);
1291
1292 // We need to find a symbol with the signature in the symbol table.
1293 // If we don't find one now, we need to look again later.
1294 Symbol* sym = symtab->lookup(signature, NULL);
1295 if (sym != NULL)
1296 os->set_info_symndx(sym);
1297 else
1298 {
1299 // Reserve some space to minimize reallocations.
1300 if (this->group_signatures_.empty())
1301 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1302
1303 // We will wind up using a symbol whose name is the signature.
1304 // So just put the signature in the symbol name pool to save it.
1305 signature = symtab->canonicalize_name(signature);
1306 this->group_signatures_.push_back(Group_signature(os, signature));
1307 }
1308
1309 os->set_should_link_to_symtab();
1310 os->set_entsize(4);
1311
1312 section_size_type entry_count =
1313 convert_to_section_size_type(shdr.get_sh_size() / 4);
1314 Output_section_data* posd =
1315 new Output_data_group<size, big_endian>(object, entry_count, flags,
1316 shndxes);
1317 os->add_output_section_data(posd);
1318 }
1319
1320 // Special GNU handling of sections name .eh_frame. They will
1321 // normally hold exception frame data as defined by the C++ ABI
1322 // (http://codesourcery.com/cxx-abi/).
1323
1324 template<int size, bool big_endian>
1325 Output_section*
1326 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1327 const unsigned char* symbols,
1328 off_t symbols_size,
1329 const unsigned char* symbol_names,
1330 off_t symbol_names_size,
1331 unsigned int shndx,
1332 const elfcpp::Shdr<size, big_endian>& shdr,
1333 unsigned int reloc_shndx, unsigned int reloc_type,
1334 off_t* off)
1335 {
1336 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1337 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1338 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1339
1340 Output_section* os = this->make_eh_frame_section(object);
1341 if (os == NULL)
1342 return NULL;
1343
1344 gold_assert(this->eh_frame_section_ == os);
1345
1346 elfcpp::Elf_Xword orig_flags = os->flags();
1347
1348 if (!parameters->incremental()
1349 && this->eh_frame_data_->add_ehframe_input_section(object,
1350 symbols,
1351 symbols_size,
1352 symbol_names,
1353 symbol_names_size,
1354 shndx,
1355 reloc_shndx,
1356 reloc_type))
1357 {
1358 os->update_flags_for_input_section(shdr.get_sh_flags());
1359
1360 // A writable .eh_frame section is a RELRO section.
1361 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1362 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1363 {
1364 os->set_is_relro();
1365 os->set_order(ORDER_RELRO);
1366 }
1367
1368 // We found a .eh_frame section we are going to optimize, so now
1369 // we can add the set of optimized sections to the output
1370 // section. We need to postpone adding this until we've found a
1371 // section we can optimize so that the .eh_frame section in
1372 // crtbegin.o winds up at the start of the output section.
1373 if (!this->added_eh_frame_data_)
1374 {
1375 os->add_output_section_data(this->eh_frame_data_);
1376 this->added_eh_frame_data_ = true;
1377 }
1378 *off = -1;
1379 }
1380 else
1381 {
1382 // We couldn't handle this .eh_frame section for some reason.
1383 // Add it as a normal section.
1384 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1385 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1386 reloc_shndx, saw_sections_clause);
1387 this->have_added_input_section_ = true;
1388
1389 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1390 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1391 os->set_order(this->default_section_order(os, false));
1392 }
1393
1394 return os;
1395 }
1396
1397 // Create and return the magic .eh_frame section. Create
1398 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1399 // input .eh_frame section; it may be NULL.
1400
1401 Output_section*
1402 Layout::make_eh_frame_section(const Relobj* object)
1403 {
1404 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1405 // SHT_PROGBITS.
1406 Output_section* os = this->choose_output_section(object, ".eh_frame",
1407 elfcpp::SHT_PROGBITS,
1408 elfcpp::SHF_ALLOC, false,
1409 ORDER_EHFRAME, false);
1410 if (os == NULL)
1411 return NULL;
1412
1413 if (this->eh_frame_section_ == NULL)
1414 {
1415 this->eh_frame_section_ = os;
1416 this->eh_frame_data_ = new Eh_frame();
1417
1418 // For incremental linking, we do not optimize .eh_frame sections
1419 // or create a .eh_frame_hdr section.
1420 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1421 {
1422 Output_section* hdr_os =
1423 this->choose_output_section(NULL, ".eh_frame_hdr",
1424 elfcpp::SHT_PROGBITS,
1425 elfcpp::SHF_ALLOC, false,
1426 ORDER_EHFRAME, false);
1427
1428 if (hdr_os != NULL)
1429 {
1430 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1431 this->eh_frame_data_);
1432 hdr_os->add_output_section_data(hdr_posd);
1433
1434 hdr_os->set_after_input_sections();
1435
1436 if (!this->script_options_->saw_phdrs_clause())
1437 {
1438 Output_segment* hdr_oseg;
1439 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1440 elfcpp::PF_R);
1441 hdr_oseg->add_output_section_to_nonload(hdr_os,
1442 elfcpp::PF_R);
1443 }
1444
1445 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1446 }
1447 }
1448 }
1449
1450 return os;
1451 }
1452
1453 // Add an exception frame for a PLT. This is called from target code.
1454
1455 void
1456 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1457 size_t cie_length, const unsigned char* fde_data,
1458 size_t fde_length)
1459 {
1460 if (parameters->incremental())
1461 {
1462 // FIXME: Maybe this could work some day....
1463 return;
1464 }
1465 Output_section* os = this->make_eh_frame_section(NULL);
1466 if (os == NULL)
1467 return;
1468 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1469 fde_data, fde_length);
1470 if (!this->added_eh_frame_data_)
1471 {
1472 os->add_output_section_data(this->eh_frame_data_);
1473 this->added_eh_frame_data_ = true;
1474 }
1475 }
1476
1477 // Scan a .debug_info or .debug_types section, and add summary
1478 // information to the .gdb_index section.
1479
1480 template<int size, bool big_endian>
1481 void
1482 Layout::add_to_gdb_index(bool is_type_unit,
1483 Sized_relobj<size, big_endian>* object,
1484 const unsigned char* symbols,
1485 off_t symbols_size,
1486 unsigned int shndx,
1487 unsigned int reloc_shndx,
1488 unsigned int reloc_type)
1489 {
1490 if (this->gdb_index_data_ == NULL)
1491 {
1492 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1493 elfcpp::SHT_PROGBITS, 0,
1494 false, ORDER_INVALID,
1495 false);
1496 if (os == NULL)
1497 return;
1498
1499 this->gdb_index_data_ = new Gdb_index(os);
1500 os->add_output_section_data(this->gdb_index_data_);
1501 os->set_after_input_sections();
1502 }
1503
1504 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1505 symbols_size, shndx, reloc_shndx,
1506 reloc_type);
1507 }
1508
1509 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1510 // the output section.
1511
1512 Output_section*
1513 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1514 elfcpp::Elf_Xword flags,
1515 Output_section_data* posd,
1516 Output_section_order order, bool is_relro)
1517 {
1518 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1519 false, order, is_relro);
1520 if (os != NULL)
1521 os->add_output_section_data(posd);
1522 return os;
1523 }
1524
1525 // Map section flags to segment flags.
1526
1527 elfcpp::Elf_Word
1528 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1529 {
1530 elfcpp::Elf_Word ret = elfcpp::PF_R;
1531 if ((flags & elfcpp::SHF_WRITE) != 0)
1532 ret |= elfcpp::PF_W;
1533 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1534 ret |= elfcpp::PF_X;
1535 return ret;
1536 }
1537
1538 // Make a new Output_section, and attach it to segments as
1539 // appropriate. ORDER is the order in which this section should
1540 // appear in the output segment. IS_RELRO is true if this is a relro
1541 // (read-only after relocations) section.
1542
1543 Output_section*
1544 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1545 elfcpp::Elf_Xword flags,
1546 Output_section_order order, bool is_relro)
1547 {
1548 Output_section* os;
1549 if ((flags & elfcpp::SHF_ALLOC) == 0
1550 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1551 && is_compressible_debug_section(name))
1552 os = new Output_compressed_section(&parameters->options(), name, type,
1553 flags);
1554 else if ((flags & elfcpp::SHF_ALLOC) == 0
1555 && parameters->options().strip_debug_non_line()
1556 && strcmp(".debug_abbrev", name) == 0)
1557 {
1558 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1559 name, type, flags);
1560 if (this->debug_info_)
1561 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1562 }
1563 else if ((flags & elfcpp::SHF_ALLOC) == 0
1564 && parameters->options().strip_debug_non_line()
1565 && strcmp(".debug_info", name) == 0)
1566 {
1567 os = this->debug_info_ = new Output_reduced_debug_info_section(
1568 name, type, flags);
1569 if (this->debug_abbrev_)
1570 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1571 }
1572 else
1573 {
1574 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1575 // not have correct section types. Force them here.
1576 if (type == elfcpp::SHT_PROGBITS)
1577 {
1578 if (is_prefix_of(".init_array", name))
1579 type = elfcpp::SHT_INIT_ARRAY;
1580 else if (is_prefix_of(".preinit_array", name))
1581 type = elfcpp::SHT_PREINIT_ARRAY;
1582 else if (is_prefix_of(".fini_array", name))
1583 type = elfcpp::SHT_FINI_ARRAY;
1584 }
1585
1586 // FIXME: const_cast is ugly.
1587 Target* target = const_cast<Target*>(&parameters->target());
1588 os = target->make_output_section(name, type, flags);
1589 }
1590
1591 // With -z relro, we have to recognize the special sections by name.
1592 // There is no other way.
1593 bool is_relro_local = false;
1594 if (!this->script_options_->saw_sections_clause()
1595 && parameters->options().relro()
1596 && (flags & elfcpp::SHF_ALLOC) != 0
1597 && (flags & elfcpp::SHF_WRITE) != 0)
1598 {
1599 if (type == elfcpp::SHT_PROGBITS)
1600 {
1601 if ((flags & elfcpp::SHF_TLS) != 0)
1602 is_relro = true;
1603 else if (strcmp(name, ".data.rel.ro") == 0)
1604 is_relro = true;
1605 else if (strcmp(name, ".data.rel.ro.local") == 0)
1606 {
1607 is_relro = true;
1608 is_relro_local = true;
1609 }
1610 else if (strcmp(name, ".ctors") == 0
1611 || strcmp(name, ".dtors") == 0
1612 || strcmp(name, ".jcr") == 0)
1613 is_relro = true;
1614 }
1615 else if (type == elfcpp::SHT_INIT_ARRAY
1616 || type == elfcpp::SHT_FINI_ARRAY
1617 || type == elfcpp::SHT_PREINIT_ARRAY)
1618 is_relro = true;
1619 }
1620
1621 if (is_relro)
1622 os->set_is_relro();
1623
1624 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1625 order = this->default_section_order(os, is_relro_local);
1626
1627 os->set_order(order);
1628
1629 parameters->target().new_output_section(os);
1630
1631 this->section_list_.push_back(os);
1632
1633 // The GNU linker by default sorts some sections by priority, so we
1634 // do the same. We need to know that this might happen before we
1635 // attach any input sections.
1636 if (!this->script_options_->saw_sections_clause()
1637 && !parameters->options().relocatable()
1638 && (strcmp(name, ".init_array") == 0
1639 || strcmp(name, ".fini_array") == 0
1640 || (!parameters->options().ctors_in_init_array()
1641 && (strcmp(name, ".ctors") == 0
1642 || strcmp(name, ".dtors") == 0))))
1643 os->set_may_sort_attached_input_sections();
1644
1645 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1646 // sections before other .text sections. We are compatible. We
1647 // need to know that this might happen before we attach any input
1648 // sections.
1649 if (!this->script_options_->saw_sections_clause()
1650 && !this->is_section_ordering_specified()
1651 && !parameters->options().relocatable()
1652 && strcmp(name, ".text") == 0)
1653 os->set_may_sort_attached_input_sections();
1654
1655 // Check for .stab*str sections, as .stab* sections need to link to
1656 // them.
1657 if (type == elfcpp::SHT_STRTAB
1658 && !this->have_stabstr_section_
1659 && strncmp(name, ".stab", 5) == 0
1660 && strcmp(name + strlen(name) - 3, "str") == 0)
1661 this->have_stabstr_section_ = true;
1662
1663 // During a full incremental link, we add patch space to most
1664 // PROGBITS and NOBITS sections. Flag those that may be
1665 // arbitrarily padded.
1666 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1667 && order != ORDER_INTERP
1668 && order != ORDER_INIT
1669 && order != ORDER_PLT
1670 && order != ORDER_FINI
1671 && order != ORDER_RELRO_LAST
1672 && order != ORDER_NON_RELRO_FIRST
1673 && strcmp(name, ".eh_frame") != 0
1674 && strcmp(name, ".ctors") != 0
1675 && strcmp(name, ".dtors") != 0
1676 && strcmp(name, ".jcr") != 0)
1677 {
1678 os->set_is_patch_space_allowed();
1679
1680 // Certain sections require "holes" to be filled with
1681 // specific fill patterns. These fill patterns may have
1682 // a minimum size, so we must prevent allocations from the
1683 // free list that leave a hole smaller than the minimum.
1684 if (strcmp(name, ".debug_info") == 0)
1685 os->set_free_space_fill(new Output_fill_debug_info(false));
1686 else if (strcmp(name, ".debug_types") == 0)
1687 os->set_free_space_fill(new Output_fill_debug_info(true));
1688 else if (strcmp(name, ".debug_line") == 0)
1689 os->set_free_space_fill(new Output_fill_debug_line());
1690 }
1691
1692 // If we have already attached the sections to segments, then we
1693 // need to attach this one now. This happens for sections created
1694 // directly by the linker.
1695 if (this->sections_are_attached_)
1696 this->attach_section_to_segment(&parameters->target(), os);
1697
1698 return os;
1699 }
1700
1701 // Return the default order in which a section should be placed in an
1702 // output segment. This function captures a lot of the ideas in
1703 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1704 // linker created section is normally set when the section is created;
1705 // this function is used for input sections.
1706
1707 Output_section_order
1708 Layout::default_section_order(Output_section* os, bool is_relro_local)
1709 {
1710 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1711 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1712 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1713 bool is_bss = false;
1714
1715 switch (os->type())
1716 {
1717 default:
1718 case elfcpp::SHT_PROGBITS:
1719 break;
1720 case elfcpp::SHT_NOBITS:
1721 is_bss = true;
1722 break;
1723 case elfcpp::SHT_RELA:
1724 case elfcpp::SHT_REL:
1725 if (!is_write)
1726 return ORDER_DYNAMIC_RELOCS;
1727 break;
1728 case elfcpp::SHT_HASH:
1729 case elfcpp::SHT_DYNAMIC:
1730 case elfcpp::SHT_SHLIB:
1731 case elfcpp::SHT_DYNSYM:
1732 case elfcpp::SHT_GNU_HASH:
1733 case elfcpp::SHT_GNU_verdef:
1734 case elfcpp::SHT_GNU_verneed:
1735 case elfcpp::SHT_GNU_versym:
1736 if (!is_write)
1737 return ORDER_DYNAMIC_LINKER;
1738 break;
1739 case elfcpp::SHT_NOTE:
1740 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1741 }
1742
1743 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1744 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1745
1746 if (!is_bss && !is_write)
1747 {
1748 if (is_execinstr)
1749 {
1750 if (strcmp(os->name(), ".init") == 0)
1751 return ORDER_INIT;
1752 else if (strcmp(os->name(), ".fini") == 0)
1753 return ORDER_FINI;
1754 }
1755 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1756 }
1757
1758 if (os->is_relro())
1759 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1760
1761 if (os->is_small_section())
1762 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1763 if (os->is_large_section())
1764 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1765
1766 return is_bss ? ORDER_BSS : ORDER_DATA;
1767 }
1768
1769 // Attach output sections to segments. This is called after we have
1770 // seen all the input sections.
1771
1772 void
1773 Layout::attach_sections_to_segments(const Target* target)
1774 {
1775 for (Section_list::iterator p = this->section_list_.begin();
1776 p != this->section_list_.end();
1777 ++p)
1778 this->attach_section_to_segment(target, *p);
1779
1780 this->sections_are_attached_ = true;
1781 }
1782
1783 // Attach an output section to a segment.
1784
1785 void
1786 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1787 {
1788 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1789 this->unattached_section_list_.push_back(os);
1790 else
1791 this->attach_allocated_section_to_segment(target, os);
1792 }
1793
1794 // Attach an allocated output section to a segment.
1795
1796 void
1797 Layout::attach_allocated_section_to_segment(const Target* target,
1798 Output_section* os)
1799 {
1800 elfcpp::Elf_Xword flags = os->flags();
1801 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1802
1803 if (parameters->options().relocatable())
1804 return;
1805
1806 // If we have a SECTIONS clause, we can't handle the attachment to
1807 // segments until after we've seen all the sections.
1808 if (this->script_options_->saw_sections_clause())
1809 return;
1810
1811 gold_assert(!this->script_options_->saw_phdrs_clause());
1812
1813 // This output section goes into a PT_LOAD segment.
1814
1815 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1816
1817 // If this output section's segment has extra flags that need to be set,
1818 // coming from a linker plugin, do that.
1819 seg_flags |= os->extra_segment_flags();
1820
1821 // Check for --section-start.
1822 uint64_t addr;
1823 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1824
1825 // In general the only thing we really care about for PT_LOAD
1826 // segments is whether or not they are writable or executable,
1827 // so that is how we search for them.
1828 // Large data sections also go into their own PT_LOAD segment.
1829 // People who need segments sorted on some other basis will
1830 // have to use a linker script.
1831
1832 Segment_list::const_iterator p;
1833 if (!os->is_unique_segment())
1834 {
1835 for (p = this->segment_list_.begin();
1836 p != this->segment_list_.end();
1837 ++p)
1838 {
1839 if ((*p)->type() != elfcpp::PT_LOAD)
1840 continue;
1841 if ((*p)->is_unique_segment())
1842 continue;
1843 if (!parameters->options().omagic()
1844 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1845 continue;
1846 if ((target->isolate_execinstr() || parameters->options().rosegment())
1847 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1848 continue;
1849 // If -Tbss was specified, we need to separate the data and BSS
1850 // segments.
1851 if (parameters->options().user_set_Tbss())
1852 {
1853 if ((os->type() == elfcpp::SHT_NOBITS)
1854 == (*p)->has_any_data_sections())
1855 continue;
1856 }
1857 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1858 continue;
1859
1860 if (is_address_set)
1861 {
1862 if ((*p)->are_addresses_set())
1863 continue;
1864
1865 (*p)->add_initial_output_data(os);
1866 (*p)->update_flags_for_output_section(seg_flags);
1867 (*p)->set_addresses(addr, addr);
1868 break;
1869 }
1870
1871 (*p)->add_output_section_to_load(this, os, seg_flags);
1872 break;
1873 }
1874 }
1875
1876 if (p == this->segment_list_.end()
1877 || os->is_unique_segment())
1878 {
1879 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1880 seg_flags);
1881 if (os->is_large_data_section())
1882 oseg->set_is_large_data_segment();
1883 oseg->add_output_section_to_load(this, os, seg_flags);
1884 if (is_address_set)
1885 oseg->set_addresses(addr, addr);
1886 // Check if segment should be marked unique. For segments marked
1887 // unique by linker plugins, set the new alignment if specified.
1888 if (os->is_unique_segment())
1889 {
1890 oseg->set_is_unique_segment();
1891 if (os->segment_alignment() != 0)
1892 oseg->set_minimum_p_align(os->segment_alignment());
1893 }
1894 }
1895
1896 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1897 // segment.
1898 if (os->type() == elfcpp::SHT_NOTE)
1899 {
1900 // See if we already have an equivalent PT_NOTE segment.
1901 for (p = this->segment_list_.begin();
1902 p != segment_list_.end();
1903 ++p)
1904 {
1905 if ((*p)->type() == elfcpp::PT_NOTE
1906 && (((*p)->flags() & elfcpp::PF_W)
1907 == (seg_flags & elfcpp::PF_W)))
1908 {
1909 (*p)->add_output_section_to_nonload(os, seg_flags);
1910 break;
1911 }
1912 }
1913
1914 if (p == this->segment_list_.end())
1915 {
1916 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1917 seg_flags);
1918 oseg->add_output_section_to_nonload(os, seg_flags);
1919 }
1920 }
1921
1922 // If we see a loadable SHF_TLS section, we create a PT_TLS
1923 // segment. There can only be one such segment.
1924 if ((flags & elfcpp::SHF_TLS) != 0)
1925 {
1926 if (this->tls_segment_ == NULL)
1927 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1928 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1929 }
1930
1931 // If -z relro is in effect, and we see a relro section, we create a
1932 // PT_GNU_RELRO segment. There can only be one such segment.
1933 if (os->is_relro() && parameters->options().relro())
1934 {
1935 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1936 if (this->relro_segment_ == NULL)
1937 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1938 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1939 }
1940
1941 // If we see a section named .interp, put it into a PT_INTERP
1942 // segment. This seems broken to me, but this is what GNU ld does,
1943 // and glibc expects it.
1944 if (strcmp(os->name(), ".interp") == 0
1945 && !this->script_options_->saw_phdrs_clause())
1946 {
1947 if (this->interp_segment_ == NULL)
1948 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1949 else
1950 gold_warning(_("multiple '.interp' sections in input files "
1951 "may cause confusing PT_INTERP segment"));
1952 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1953 }
1954 }
1955
1956 // Make an output section for a script.
1957
1958 Output_section*
1959 Layout::make_output_section_for_script(
1960 const char* name,
1961 Script_sections::Section_type section_type)
1962 {
1963 name = this->namepool_.add(name, false, NULL);
1964 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1965 if (section_type == Script_sections::ST_NOLOAD)
1966 sh_flags = 0;
1967 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1968 sh_flags, ORDER_INVALID,
1969 false);
1970 os->set_found_in_sections_clause();
1971 if (section_type == Script_sections::ST_NOLOAD)
1972 os->set_is_noload();
1973 return os;
1974 }
1975
1976 // Return the number of segments we expect to see.
1977
1978 size_t
1979 Layout::expected_segment_count() const
1980 {
1981 size_t ret = this->segment_list_.size();
1982
1983 // If we didn't see a SECTIONS clause in a linker script, we should
1984 // already have the complete list of segments. Otherwise we ask the
1985 // SECTIONS clause how many segments it expects, and add in the ones
1986 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1987
1988 if (!this->script_options_->saw_sections_clause())
1989 return ret;
1990 else
1991 {
1992 const Script_sections* ss = this->script_options_->script_sections();
1993 return ret + ss->expected_segment_count(this);
1994 }
1995 }
1996
1997 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1998 // is whether we saw a .note.GNU-stack section in the object file.
1999 // GNU_STACK_FLAGS is the section flags. The flags give the
2000 // protection required for stack memory. We record this in an
2001 // executable as a PT_GNU_STACK segment. If an object file does not
2002 // have a .note.GNU-stack segment, we must assume that it is an old
2003 // object. On some targets that will force an executable stack.
2004
2005 void
2006 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2007 const Object* obj)
2008 {
2009 if (!seen_gnu_stack)
2010 {
2011 this->input_without_gnu_stack_note_ = true;
2012 if (parameters->options().warn_execstack()
2013 && parameters->target().is_default_stack_executable())
2014 gold_warning(_("%s: missing .note.GNU-stack section"
2015 " implies executable stack"),
2016 obj->name().c_str());
2017 }
2018 else
2019 {
2020 this->input_with_gnu_stack_note_ = true;
2021 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2022 {
2023 this->input_requires_executable_stack_ = true;
2024 if (parameters->options().warn_execstack()
2025 || parameters->options().is_stack_executable())
2026 gold_warning(_("%s: requires executable stack"),
2027 obj->name().c_str());
2028 }
2029 }
2030 }
2031
2032 // Create automatic note sections.
2033
2034 void
2035 Layout::create_notes()
2036 {
2037 this->create_gold_note();
2038 this->create_executable_stack_info();
2039 this->create_build_id();
2040 }
2041
2042 // Create the dynamic sections which are needed before we read the
2043 // relocs.
2044
2045 void
2046 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2047 {
2048 if (parameters->doing_static_link())
2049 return;
2050
2051 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2052 elfcpp::SHT_DYNAMIC,
2053 (elfcpp::SHF_ALLOC
2054 | elfcpp::SHF_WRITE),
2055 false, ORDER_RELRO,
2056 true);
2057
2058 // A linker script may discard .dynamic, so check for NULL.
2059 if (this->dynamic_section_ != NULL)
2060 {
2061 this->dynamic_symbol_ =
2062 symtab->define_in_output_data("_DYNAMIC", NULL,
2063 Symbol_table::PREDEFINED,
2064 this->dynamic_section_, 0, 0,
2065 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2066 elfcpp::STV_HIDDEN, 0, false, false);
2067
2068 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2069
2070 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2071 }
2072 }
2073
2074 // For each output section whose name can be represented as C symbol,
2075 // define __start and __stop symbols for the section. This is a GNU
2076 // extension.
2077
2078 void
2079 Layout::define_section_symbols(Symbol_table* symtab)
2080 {
2081 for (Section_list::const_iterator p = this->section_list_.begin();
2082 p != this->section_list_.end();
2083 ++p)
2084 {
2085 const char* const name = (*p)->name();
2086 if (is_cident(name))
2087 {
2088 const std::string name_string(name);
2089 const std::string start_name(cident_section_start_prefix
2090 + name_string);
2091 const std::string stop_name(cident_section_stop_prefix
2092 + name_string);
2093
2094 symtab->define_in_output_data(start_name.c_str(),
2095 NULL, // version
2096 Symbol_table::PREDEFINED,
2097 *p,
2098 0, // value
2099 0, // symsize
2100 elfcpp::STT_NOTYPE,
2101 elfcpp::STB_GLOBAL,
2102 elfcpp::STV_DEFAULT,
2103 0, // nonvis
2104 false, // offset_is_from_end
2105 true); // only_if_ref
2106
2107 symtab->define_in_output_data(stop_name.c_str(),
2108 NULL, // version
2109 Symbol_table::PREDEFINED,
2110 *p,
2111 0, // value
2112 0, // symsize
2113 elfcpp::STT_NOTYPE,
2114 elfcpp::STB_GLOBAL,
2115 elfcpp::STV_DEFAULT,
2116 0, // nonvis
2117 true, // offset_is_from_end
2118 true); // only_if_ref
2119 }
2120 }
2121 }
2122
2123 // Define symbols for group signatures.
2124
2125 void
2126 Layout::define_group_signatures(Symbol_table* symtab)
2127 {
2128 for (Group_signatures::iterator p = this->group_signatures_.begin();
2129 p != this->group_signatures_.end();
2130 ++p)
2131 {
2132 Symbol* sym = symtab->lookup(p->signature, NULL);
2133 if (sym != NULL)
2134 p->section->set_info_symndx(sym);
2135 else
2136 {
2137 // Force the name of the group section to the group
2138 // signature, and use the group's section symbol as the
2139 // signature symbol.
2140 if (strcmp(p->section->name(), p->signature) != 0)
2141 {
2142 const char* name = this->namepool_.add(p->signature,
2143 true, NULL);
2144 p->section->set_name(name);
2145 }
2146 p->section->set_needs_symtab_index();
2147 p->section->set_info_section_symndx(p->section);
2148 }
2149 }
2150
2151 this->group_signatures_.clear();
2152 }
2153
2154 // Find the first read-only PT_LOAD segment, creating one if
2155 // necessary.
2156
2157 Output_segment*
2158 Layout::find_first_load_seg(const Target* target)
2159 {
2160 Output_segment* best = NULL;
2161 for (Segment_list::const_iterator p = this->segment_list_.begin();
2162 p != this->segment_list_.end();
2163 ++p)
2164 {
2165 if ((*p)->type() == elfcpp::PT_LOAD
2166 && ((*p)->flags() & elfcpp::PF_R) != 0
2167 && (parameters->options().omagic()
2168 || ((*p)->flags() & elfcpp::PF_W) == 0)
2169 && (!target->isolate_execinstr()
2170 || ((*p)->flags() & elfcpp::PF_X) == 0))
2171 {
2172 if (best == NULL || this->segment_precedes(*p, best))
2173 best = *p;
2174 }
2175 }
2176 if (best != NULL)
2177 return best;
2178
2179 gold_assert(!this->script_options_->saw_phdrs_clause());
2180
2181 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2182 elfcpp::PF_R);
2183 return load_seg;
2184 }
2185
2186 // Save states of all current output segments. Store saved states
2187 // in SEGMENT_STATES.
2188
2189 void
2190 Layout::save_segments(Segment_states* segment_states)
2191 {
2192 for (Segment_list::const_iterator p = this->segment_list_.begin();
2193 p != this->segment_list_.end();
2194 ++p)
2195 {
2196 Output_segment* segment = *p;
2197 // Shallow copy.
2198 Output_segment* copy = new Output_segment(*segment);
2199 (*segment_states)[segment] = copy;
2200 }
2201 }
2202
2203 // Restore states of output segments and delete any segment not found in
2204 // SEGMENT_STATES.
2205
2206 void
2207 Layout::restore_segments(const Segment_states* segment_states)
2208 {
2209 // Go through the segment list and remove any segment added in the
2210 // relaxation loop.
2211 this->tls_segment_ = NULL;
2212 this->relro_segment_ = NULL;
2213 Segment_list::iterator list_iter = this->segment_list_.begin();
2214 while (list_iter != this->segment_list_.end())
2215 {
2216 Output_segment* segment = *list_iter;
2217 Segment_states::const_iterator states_iter =
2218 segment_states->find(segment);
2219 if (states_iter != segment_states->end())
2220 {
2221 const Output_segment* copy = states_iter->second;
2222 // Shallow copy to restore states.
2223 *segment = *copy;
2224
2225 // Also fix up TLS and RELRO segment pointers as appropriate.
2226 if (segment->type() == elfcpp::PT_TLS)
2227 this->tls_segment_ = segment;
2228 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2229 this->relro_segment_ = segment;
2230
2231 ++list_iter;
2232 }
2233 else
2234 {
2235 list_iter = this->segment_list_.erase(list_iter);
2236 // This is a segment created during section layout. It should be
2237 // safe to remove it since we should have removed all pointers to it.
2238 delete segment;
2239 }
2240 }
2241 }
2242
2243 // Clean up after relaxation so that sections can be laid out again.
2244
2245 void
2246 Layout::clean_up_after_relaxation()
2247 {
2248 // Restore the segments to point state just prior to the relaxation loop.
2249 Script_sections* script_section = this->script_options_->script_sections();
2250 script_section->release_segments();
2251 this->restore_segments(this->segment_states_);
2252
2253 // Reset section addresses and file offsets
2254 for (Section_list::iterator p = this->section_list_.begin();
2255 p != this->section_list_.end();
2256 ++p)
2257 {
2258 (*p)->restore_states();
2259
2260 // If an input section changes size because of relaxation,
2261 // we need to adjust the section offsets of all input sections.
2262 // after such a section.
2263 if ((*p)->section_offsets_need_adjustment())
2264 (*p)->adjust_section_offsets();
2265
2266 (*p)->reset_address_and_file_offset();
2267 }
2268
2269 // Reset special output object address and file offsets.
2270 for (Data_list::iterator p = this->special_output_list_.begin();
2271 p != this->special_output_list_.end();
2272 ++p)
2273 (*p)->reset_address_and_file_offset();
2274
2275 // A linker script may have created some output section data objects.
2276 // They are useless now.
2277 for (Output_section_data_list::const_iterator p =
2278 this->script_output_section_data_list_.begin();
2279 p != this->script_output_section_data_list_.end();
2280 ++p)
2281 delete *p;
2282 this->script_output_section_data_list_.clear();
2283 }
2284
2285 // Prepare for relaxation.
2286
2287 void
2288 Layout::prepare_for_relaxation()
2289 {
2290 // Create an relaxation debug check if in debugging mode.
2291 if (is_debugging_enabled(DEBUG_RELAXATION))
2292 this->relaxation_debug_check_ = new Relaxation_debug_check();
2293
2294 // Save segment states.
2295 this->segment_states_ = new Segment_states();
2296 this->save_segments(this->segment_states_);
2297
2298 for(Section_list::const_iterator p = this->section_list_.begin();
2299 p != this->section_list_.end();
2300 ++p)
2301 (*p)->save_states();
2302
2303 if (is_debugging_enabled(DEBUG_RELAXATION))
2304 this->relaxation_debug_check_->check_output_data_for_reset_values(
2305 this->section_list_, this->special_output_list_);
2306
2307 // Also enable recording of output section data from scripts.
2308 this->record_output_section_data_from_script_ = true;
2309 }
2310
2311 // Relaxation loop body: If target has no relaxation, this runs only once
2312 // Otherwise, the target relaxation hook is called at the end of
2313 // each iteration. If the hook returns true, it means re-layout of
2314 // section is required.
2315 //
2316 // The number of segments created by a linking script without a PHDRS
2317 // clause may be affected by section sizes and alignments. There is
2318 // a remote chance that relaxation causes different number of PT_LOAD
2319 // segments are created and sections are attached to different segments.
2320 // Therefore, we always throw away all segments created during section
2321 // layout. In order to be able to restart the section layout, we keep
2322 // a copy of the segment list right before the relaxation loop and use
2323 // that to restore the segments.
2324 //
2325 // PASS is the current relaxation pass number.
2326 // SYMTAB is a symbol table.
2327 // PLOAD_SEG is the address of a pointer for the load segment.
2328 // PHDR_SEG is a pointer to the PHDR segment.
2329 // SEGMENT_HEADERS points to the output segment header.
2330 // FILE_HEADER points to the output file header.
2331 // PSHNDX is the address to store the output section index.
2332
2333 off_t inline
2334 Layout::relaxation_loop_body(
2335 int pass,
2336 Target* target,
2337 Symbol_table* symtab,
2338 Output_segment** pload_seg,
2339 Output_segment* phdr_seg,
2340 Output_segment_headers* segment_headers,
2341 Output_file_header* file_header,
2342 unsigned int* pshndx)
2343 {
2344 // If this is not the first iteration, we need to clean up after
2345 // relaxation so that we can lay out the sections again.
2346 if (pass != 0)
2347 this->clean_up_after_relaxation();
2348
2349 // If there is a SECTIONS clause, put all the input sections into
2350 // the required order.
2351 Output_segment* load_seg;
2352 if (this->script_options_->saw_sections_clause())
2353 load_seg = this->set_section_addresses_from_script(symtab);
2354 else if (parameters->options().relocatable())
2355 load_seg = NULL;
2356 else
2357 load_seg = this->find_first_load_seg(target);
2358
2359 if (parameters->options().oformat_enum()
2360 != General_options::OBJECT_FORMAT_ELF)
2361 load_seg = NULL;
2362
2363 // If the user set the address of the text segment, that may not be
2364 // compatible with putting the segment headers and file headers into
2365 // that segment.
2366 if (parameters->options().user_set_Ttext()
2367 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2368 {
2369 load_seg = NULL;
2370 phdr_seg = NULL;
2371 }
2372
2373 gold_assert(phdr_seg == NULL
2374 || load_seg != NULL
2375 || this->script_options_->saw_sections_clause());
2376
2377 // If the address of the load segment we found has been set by
2378 // --section-start rather than by a script, then adjust the VMA and
2379 // LMA downward if possible to include the file and section headers.
2380 uint64_t header_gap = 0;
2381 if (load_seg != NULL
2382 && load_seg->are_addresses_set()
2383 && !this->script_options_->saw_sections_clause()
2384 && !parameters->options().relocatable())
2385 {
2386 file_header->finalize_data_size();
2387 segment_headers->finalize_data_size();
2388 size_t sizeof_headers = (file_header->data_size()
2389 + segment_headers->data_size());
2390 const uint64_t abi_pagesize = target->abi_pagesize();
2391 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2392 hdr_paddr &= ~(abi_pagesize - 1);
2393 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2394 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2395 load_seg = NULL;
2396 else
2397 {
2398 load_seg->set_addresses(load_seg->vaddr() - subtract,
2399 load_seg->paddr() - subtract);
2400 header_gap = subtract - sizeof_headers;
2401 }
2402 }
2403
2404 // Lay out the segment headers.
2405 if (!parameters->options().relocatable())
2406 {
2407 gold_assert(segment_headers != NULL);
2408 if (header_gap != 0 && load_seg != NULL)
2409 {
2410 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2411 load_seg->add_initial_output_data(z);
2412 }
2413 if (load_seg != NULL)
2414 load_seg->add_initial_output_data(segment_headers);
2415 if (phdr_seg != NULL)
2416 phdr_seg->add_initial_output_data(segment_headers);
2417 }
2418
2419 // Lay out the file header.
2420 if (load_seg != NULL)
2421 load_seg->add_initial_output_data(file_header);
2422
2423 if (this->script_options_->saw_phdrs_clause()
2424 && !parameters->options().relocatable())
2425 {
2426 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2427 // clause in a linker script.
2428 Script_sections* ss = this->script_options_->script_sections();
2429 ss->put_headers_in_phdrs(file_header, segment_headers);
2430 }
2431
2432 // We set the output section indexes in set_segment_offsets and
2433 // set_section_indexes.
2434 *pshndx = 1;
2435
2436 // Set the file offsets of all the segments, and all the sections
2437 // they contain.
2438 off_t off;
2439 if (!parameters->options().relocatable())
2440 off = this->set_segment_offsets(target, load_seg, pshndx);
2441 else
2442 off = this->set_relocatable_section_offsets(file_header, pshndx);
2443
2444 // Verify that the dummy relaxation does not change anything.
2445 if (is_debugging_enabled(DEBUG_RELAXATION))
2446 {
2447 if (pass == 0)
2448 this->relaxation_debug_check_->read_sections(this->section_list_);
2449 else
2450 this->relaxation_debug_check_->verify_sections(this->section_list_);
2451 }
2452
2453 *pload_seg = load_seg;
2454 return off;
2455 }
2456
2457 // Search the list of patterns and find the postion of the given section
2458 // name in the output section. If the section name matches a glob
2459 // pattern and a non-glob name, then the non-glob position takes
2460 // precedence. Return 0 if no match is found.
2461
2462 unsigned int
2463 Layout::find_section_order_index(const std::string& section_name)
2464 {
2465 Unordered_map<std::string, unsigned int>::iterator map_it;
2466 map_it = this->input_section_position_.find(section_name);
2467 if (map_it != this->input_section_position_.end())
2468 return map_it->second;
2469
2470 // Absolute match failed. Linear search the glob patterns.
2471 std::vector<std::string>::iterator it;
2472 for (it = this->input_section_glob_.begin();
2473 it != this->input_section_glob_.end();
2474 ++it)
2475 {
2476 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2477 {
2478 map_it = this->input_section_position_.find(*it);
2479 gold_assert(map_it != this->input_section_position_.end());
2480 return map_it->second;
2481 }
2482 }
2483 return 0;
2484 }
2485
2486 // Read the sequence of input sections from the file specified with
2487 // option --section-ordering-file.
2488
2489 void
2490 Layout::read_layout_from_file()
2491 {
2492 const char* filename = parameters->options().section_ordering_file();
2493 std::ifstream in;
2494 std::string line;
2495
2496 in.open(filename);
2497 if (!in)
2498 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2499 filename, strerror(errno));
2500
2501 std::getline(in, line); // this chops off the trailing \n, if any
2502 unsigned int position = 1;
2503 this->set_section_ordering_specified();
2504
2505 while (in)
2506 {
2507 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2508 line.resize(line.length() - 1);
2509 // Ignore comments, beginning with '#'
2510 if (line[0] == '#')
2511 {
2512 std::getline(in, line);
2513 continue;
2514 }
2515 this->input_section_position_[line] = position;
2516 // Store all glob patterns in a vector.
2517 if (is_wildcard_string(line.c_str()))
2518 this->input_section_glob_.push_back(line);
2519 position++;
2520 std::getline(in, line);
2521 }
2522 }
2523
2524 // Finalize the layout. When this is called, we have created all the
2525 // output sections and all the output segments which are based on
2526 // input sections. We have several things to do, and we have to do
2527 // them in the right order, so that we get the right results correctly
2528 // and efficiently.
2529
2530 // 1) Finalize the list of output segments and create the segment
2531 // table header.
2532
2533 // 2) Finalize the dynamic symbol table and associated sections.
2534
2535 // 3) Determine the final file offset of all the output segments.
2536
2537 // 4) Determine the final file offset of all the SHF_ALLOC output
2538 // sections.
2539
2540 // 5) Create the symbol table sections and the section name table
2541 // section.
2542
2543 // 6) Finalize the symbol table: set symbol values to their final
2544 // value and make a final determination of which symbols are going
2545 // into the output symbol table.
2546
2547 // 7) Create the section table header.
2548
2549 // 8) Determine the final file offset of all the output sections which
2550 // are not SHF_ALLOC, including the section table header.
2551
2552 // 9) Finalize the ELF file header.
2553
2554 // This function returns the size of the output file.
2555
2556 off_t
2557 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2558 Target* target, const Task* task)
2559 {
2560 target->finalize_sections(this, input_objects, symtab);
2561
2562 this->count_local_symbols(task, input_objects);
2563
2564 this->link_stabs_sections();
2565
2566 Output_segment* phdr_seg = NULL;
2567 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2568 {
2569 // There was a dynamic object in the link. We need to create
2570 // some information for the dynamic linker.
2571
2572 // Create the PT_PHDR segment which will hold the program
2573 // headers.
2574 if (!this->script_options_->saw_phdrs_clause())
2575 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2576
2577 // Create the dynamic symbol table, including the hash table.
2578 Output_section* dynstr;
2579 std::vector<Symbol*> dynamic_symbols;
2580 unsigned int local_dynamic_count;
2581 Versions versions(*this->script_options()->version_script_info(),
2582 &this->dynpool_);
2583 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2584 &local_dynamic_count, &dynamic_symbols,
2585 &versions);
2586
2587 // Create the .interp section to hold the name of the
2588 // interpreter, and put it in a PT_INTERP segment. Don't do it
2589 // if we saw a .interp section in an input file.
2590 if ((!parameters->options().shared()
2591 || parameters->options().dynamic_linker() != NULL)
2592 && this->interp_segment_ == NULL)
2593 this->create_interp(target);
2594
2595 // Finish the .dynamic section to hold the dynamic data, and put
2596 // it in a PT_DYNAMIC segment.
2597 this->finish_dynamic_section(input_objects, symtab);
2598
2599 // We should have added everything we need to the dynamic string
2600 // table.
2601 this->dynpool_.set_string_offsets();
2602
2603 // Create the version sections. We can't do this until the
2604 // dynamic string table is complete.
2605 this->create_version_sections(&versions, symtab, local_dynamic_count,
2606 dynamic_symbols, dynstr);
2607
2608 // Set the size of the _DYNAMIC symbol. We can't do this until
2609 // after we call create_version_sections.
2610 this->set_dynamic_symbol_size(symtab);
2611 }
2612
2613 // Create segment headers.
2614 Output_segment_headers* segment_headers =
2615 (parameters->options().relocatable()
2616 ? NULL
2617 : new Output_segment_headers(this->segment_list_));
2618
2619 // Lay out the file header.
2620 Output_file_header* file_header = new Output_file_header(target, symtab,
2621 segment_headers);
2622
2623 this->special_output_list_.push_back(file_header);
2624 if (segment_headers != NULL)
2625 this->special_output_list_.push_back(segment_headers);
2626
2627 // Find approriate places for orphan output sections if we are using
2628 // a linker script.
2629 if (this->script_options_->saw_sections_clause())
2630 this->place_orphan_sections_in_script();
2631
2632 Output_segment* load_seg;
2633 off_t off;
2634 unsigned int shndx;
2635 int pass = 0;
2636
2637 // Take a snapshot of the section layout as needed.
2638 if (target->may_relax())
2639 this->prepare_for_relaxation();
2640
2641 // Run the relaxation loop to lay out sections.
2642 do
2643 {
2644 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2645 phdr_seg, segment_headers, file_header,
2646 &shndx);
2647 pass++;
2648 }
2649 while (target->may_relax()
2650 && target->relax(pass, input_objects, symtab, this, task));
2651
2652 // If there is a load segment that contains the file and program headers,
2653 // provide a symbol __ehdr_start pointing there.
2654 // A program can use this to examine itself robustly.
2655 if (load_seg != NULL)
2656 symtab->define_in_output_segment("__ehdr_start", NULL,
2657 Symbol_table::PREDEFINED, load_seg, 0, 0,
2658 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2659 elfcpp::STV_DEFAULT, 0,
2660 Symbol::SEGMENT_START, true);
2661
2662 // Set the file offsets of all the non-data sections we've seen so
2663 // far which don't have to wait for the input sections. We need
2664 // this in order to finalize local symbols in non-allocated
2665 // sections.
2666 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2667
2668 // Set the section indexes of all unallocated sections seen so far,
2669 // in case any of them are somehow referenced by a symbol.
2670 shndx = this->set_section_indexes(shndx);
2671
2672 // Create the symbol table sections.
2673 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2674 if (!parameters->doing_static_link())
2675 this->assign_local_dynsym_offsets(input_objects);
2676
2677 // Process any symbol assignments from a linker script. This must
2678 // be called after the symbol table has been finalized.
2679 this->script_options_->finalize_symbols(symtab, this);
2680
2681 // Create the incremental inputs sections.
2682 if (this->incremental_inputs_)
2683 {
2684 this->incremental_inputs_->finalize();
2685 this->create_incremental_info_sections(symtab);
2686 }
2687
2688 // Create the .shstrtab section.
2689 Output_section* shstrtab_section = this->create_shstrtab();
2690
2691 // Set the file offsets of the rest of the non-data sections which
2692 // don't have to wait for the input sections.
2693 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2694
2695 // Now that all sections have been created, set the section indexes
2696 // for any sections which haven't been done yet.
2697 shndx = this->set_section_indexes(shndx);
2698
2699 // Create the section table header.
2700 this->create_shdrs(shstrtab_section, &off);
2701
2702 // If there are no sections which require postprocessing, we can
2703 // handle the section names now, and avoid a resize later.
2704 if (!this->any_postprocessing_sections_)
2705 {
2706 off = this->set_section_offsets(off,
2707 POSTPROCESSING_SECTIONS_PASS);
2708 off =
2709 this->set_section_offsets(off,
2710 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2711 }
2712
2713 file_header->set_section_info(this->section_headers_, shstrtab_section);
2714
2715 // Now we know exactly where everything goes in the output file
2716 // (except for non-allocated sections which require postprocessing).
2717 Output_data::layout_complete();
2718
2719 this->output_file_size_ = off;
2720
2721 return off;
2722 }
2723
2724 // Create a note header following the format defined in the ELF ABI.
2725 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2726 // of the section to create, DESCSZ is the size of the descriptor.
2727 // ALLOCATE is true if the section should be allocated in memory.
2728 // This returns the new note section. It sets *TRAILING_PADDING to
2729 // the number of trailing zero bytes required.
2730
2731 Output_section*
2732 Layout::create_note(const char* name, int note_type,
2733 const char* section_name, size_t descsz,
2734 bool allocate, size_t* trailing_padding)
2735 {
2736 // Authorities all agree that the values in a .note field should
2737 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2738 // they differ on what the alignment is for 64-bit binaries.
2739 // The GABI says unambiguously they take 8-byte alignment:
2740 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2741 // Other documentation says alignment should always be 4 bytes:
2742 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2743 // GNU ld and GNU readelf both support the latter (at least as of
2744 // version 2.16.91), and glibc always generates the latter for
2745 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2746 // here.
2747 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2748 const int size = parameters->target().get_size();
2749 #else
2750 const int size = 32;
2751 #endif
2752
2753 // The contents of the .note section.
2754 size_t namesz = strlen(name) + 1;
2755 size_t aligned_namesz = align_address(namesz, size / 8);
2756 size_t aligned_descsz = align_address(descsz, size / 8);
2757
2758 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2759
2760 unsigned char* buffer = new unsigned char[notehdrsz];
2761 memset(buffer, 0, notehdrsz);
2762
2763 bool is_big_endian = parameters->target().is_big_endian();
2764
2765 if (size == 32)
2766 {
2767 if (!is_big_endian)
2768 {
2769 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2770 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2771 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2772 }
2773 else
2774 {
2775 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2776 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2777 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2778 }
2779 }
2780 else if (size == 64)
2781 {
2782 if (!is_big_endian)
2783 {
2784 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2785 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2786 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2787 }
2788 else
2789 {
2790 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2791 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2792 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2793 }
2794 }
2795 else
2796 gold_unreachable();
2797
2798 memcpy(buffer + 3 * (size / 8), name, namesz);
2799
2800 elfcpp::Elf_Xword flags = 0;
2801 Output_section_order order = ORDER_INVALID;
2802 if (allocate)
2803 {
2804 flags = elfcpp::SHF_ALLOC;
2805 order = ORDER_RO_NOTE;
2806 }
2807 Output_section* os = this->choose_output_section(NULL, section_name,
2808 elfcpp::SHT_NOTE,
2809 flags, false, order, false);
2810 if (os == NULL)
2811 return NULL;
2812
2813 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2814 size / 8,
2815 "** note header");
2816 os->add_output_section_data(posd);
2817
2818 *trailing_padding = aligned_descsz - descsz;
2819
2820 return os;
2821 }
2822
2823 // For an executable or shared library, create a note to record the
2824 // version of gold used to create the binary.
2825
2826 void
2827 Layout::create_gold_note()
2828 {
2829 if (parameters->options().relocatable()
2830 || parameters->incremental_update())
2831 return;
2832
2833 std::string desc = std::string("gold ") + gold::get_version_string();
2834
2835 size_t trailing_padding;
2836 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2837 ".note.gnu.gold-version", desc.size(),
2838 false, &trailing_padding);
2839 if (os == NULL)
2840 return;
2841
2842 Output_section_data* posd = new Output_data_const(desc, 4);
2843 os->add_output_section_data(posd);
2844
2845 if (trailing_padding > 0)
2846 {
2847 posd = new Output_data_zero_fill(trailing_padding, 0);
2848 os->add_output_section_data(posd);
2849 }
2850 }
2851
2852 // Record whether the stack should be executable. This can be set
2853 // from the command line using the -z execstack or -z noexecstack
2854 // options. Otherwise, if any input file has a .note.GNU-stack
2855 // section with the SHF_EXECINSTR flag set, the stack should be
2856 // executable. Otherwise, if at least one input file a
2857 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2858 // section, we use the target default for whether the stack should be
2859 // executable. Otherwise, we don't generate a stack note. When
2860 // generating a object file, we create a .note.GNU-stack section with
2861 // the appropriate marking. When generating an executable or shared
2862 // library, we create a PT_GNU_STACK segment.
2863
2864 void
2865 Layout::create_executable_stack_info()
2866 {
2867 bool is_stack_executable;
2868 if (parameters->options().is_execstack_set())
2869 is_stack_executable = parameters->options().is_stack_executable();
2870 else if (!this->input_with_gnu_stack_note_)
2871 return;
2872 else
2873 {
2874 if (this->input_requires_executable_stack_)
2875 is_stack_executable = true;
2876 else if (this->input_without_gnu_stack_note_)
2877 is_stack_executable =
2878 parameters->target().is_default_stack_executable();
2879 else
2880 is_stack_executable = false;
2881 }
2882
2883 if (parameters->options().relocatable())
2884 {
2885 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2886 elfcpp::Elf_Xword flags = 0;
2887 if (is_stack_executable)
2888 flags |= elfcpp::SHF_EXECINSTR;
2889 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2890 ORDER_INVALID, false);
2891 }
2892 else
2893 {
2894 if (this->script_options_->saw_phdrs_clause())
2895 return;
2896 int flags = elfcpp::PF_R | elfcpp::PF_W;
2897 if (is_stack_executable)
2898 flags |= elfcpp::PF_X;
2899 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2900 }
2901 }
2902
2903 // If --build-id was used, set up the build ID note.
2904
2905 void
2906 Layout::create_build_id()
2907 {
2908 if (!parameters->options().user_set_build_id())
2909 return;
2910
2911 const char* style = parameters->options().build_id();
2912 if (strcmp(style, "none") == 0)
2913 return;
2914
2915 // Set DESCSZ to the size of the note descriptor. When possible,
2916 // set DESC to the note descriptor contents.
2917 size_t descsz;
2918 std::string desc;
2919 if (strcmp(style, "md5") == 0)
2920 descsz = 128 / 8;
2921 else if (strcmp(style, "sha1") == 0)
2922 descsz = 160 / 8;
2923 else if (strcmp(style, "uuid") == 0)
2924 {
2925 const size_t uuidsz = 128 / 8;
2926
2927 char buffer[uuidsz];
2928 memset(buffer, 0, uuidsz);
2929
2930 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2931 if (descriptor < 0)
2932 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2933 strerror(errno));
2934 else
2935 {
2936 ssize_t got = ::read(descriptor, buffer, uuidsz);
2937 release_descriptor(descriptor, true);
2938 if (got < 0)
2939 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2940 else if (static_cast<size_t>(got) != uuidsz)
2941 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2942 uuidsz, got);
2943 }
2944
2945 desc.assign(buffer, uuidsz);
2946 descsz = uuidsz;
2947 }
2948 else if (strncmp(style, "0x", 2) == 0)
2949 {
2950 hex_init();
2951 const char* p = style + 2;
2952 while (*p != '\0')
2953 {
2954 if (hex_p(p[0]) && hex_p(p[1]))
2955 {
2956 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2957 desc += c;
2958 p += 2;
2959 }
2960 else if (*p == '-' || *p == ':')
2961 ++p;
2962 else
2963 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2964 style);
2965 }
2966 descsz = desc.size();
2967 }
2968 else
2969 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2970
2971 // Create the note.
2972 size_t trailing_padding;
2973 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2974 ".note.gnu.build-id", descsz, true,
2975 &trailing_padding);
2976 if (os == NULL)
2977 return;
2978
2979 if (!desc.empty())
2980 {
2981 // We know the value already, so we fill it in now.
2982 gold_assert(desc.size() == descsz);
2983
2984 Output_section_data* posd = new Output_data_const(desc, 4);
2985 os->add_output_section_data(posd);
2986
2987 if (trailing_padding != 0)
2988 {
2989 posd = new Output_data_zero_fill(trailing_padding, 0);
2990 os->add_output_section_data(posd);
2991 }
2992 }
2993 else
2994 {
2995 // We need to compute a checksum after we have completed the
2996 // link.
2997 gold_assert(trailing_padding == 0);
2998 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2999 os->add_output_section_data(this->build_id_note_);
3000 }
3001 }
3002
3003 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3004 // field of the former should point to the latter. I'm not sure who
3005 // started this, but the GNU linker does it, and some tools depend
3006 // upon it.
3007
3008 void
3009 Layout::link_stabs_sections()
3010 {
3011 if (!this->have_stabstr_section_)
3012 return;
3013
3014 for (Section_list::iterator p = this->section_list_.begin();
3015 p != this->section_list_.end();
3016 ++p)
3017 {
3018 if ((*p)->type() != elfcpp::SHT_STRTAB)
3019 continue;
3020
3021 const char* name = (*p)->name();
3022 if (strncmp(name, ".stab", 5) != 0)
3023 continue;
3024
3025 size_t len = strlen(name);
3026 if (strcmp(name + len - 3, "str") != 0)
3027 continue;
3028
3029 std::string stab_name(name, len - 3);
3030 Output_section* stab_sec;
3031 stab_sec = this->find_output_section(stab_name.c_str());
3032 if (stab_sec != NULL)
3033 stab_sec->set_link_section(*p);
3034 }
3035 }
3036
3037 // Create .gnu_incremental_inputs and related sections needed
3038 // for the next run of incremental linking to check what has changed.
3039
3040 void
3041 Layout::create_incremental_info_sections(Symbol_table* symtab)
3042 {
3043 Incremental_inputs* incr = this->incremental_inputs_;
3044
3045 gold_assert(incr != NULL);
3046
3047 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3048 incr->create_data_sections(symtab);
3049
3050 // Add the .gnu_incremental_inputs section.
3051 const char* incremental_inputs_name =
3052 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3053 Output_section* incremental_inputs_os =
3054 this->make_output_section(incremental_inputs_name,
3055 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3056 ORDER_INVALID, false);
3057 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3058
3059 // Add the .gnu_incremental_symtab section.
3060 const char* incremental_symtab_name =
3061 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3062 Output_section* incremental_symtab_os =
3063 this->make_output_section(incremental_symtab_name,
3064 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3065 ORDER_INVALID, false);
3066 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3067 incremental_symtab_os->set_entsize(4);
3068
3069 // Add the .gnu_incremental_relocs section.
3070 const char* incremental_relocs_name =
3071 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3072 Output_section* incremental_relocs_os =
3073 this->make_output_section(incremental_relocs_name,
3074 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3075 ORDER_INVALID, false);
3076 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3077 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3078
3079 // Add the .gnu_incremental_got_plt section.
3080 const char* incremental_got_plt_name =
3081 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3082 Output_section* incremental_got_plt_os =
3083 this->make_output_section(incremental_got_plt_name,
3084 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3085 ORDER_INVALID, false);
3086 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3087
3088 // Add the .gnu_incremental_strtab section.
3089 const char* incremental_strtab_name =
3090 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3091 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3092 elfcpp::SHT_STRTAB, 0,
3093 ORDER_INVALID, false);
3094 Output_data_strtab* strtab_data =
3095 new Output_data_strtab(incr->get_stringpool());
3096 incremental_strtab_os->add_output_section_data(strtab_data);
3097
3098 incremental_inputs_os->set_after_input_sections();
3099 incremental_symtab_os->set_after_input_sections();
3100 incremental_relocs_os->set_after_input_sections();
3101 incremental_got_plt_os->set_after_input_sections();
3102
3103 incremental_inputs_os->set_link_section(incremental_strtab_os);
3104 incremental_symtab_os->set_link_section(incremental_inputs_os);
3105 incremental_relocs_os->set_link_section(incremental_inputs_os);
3106 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3107 }
3108
3109 // Return whether SEG1 should be before SEG2 in the output file. This
3110 // is based entirely on the segment type and flags. When this is
3111 // called the segment addresses have normally not yet been set.
3112
3113 bool
3114 Layout::segment_precedes(const Output_segment* seg1,
3115 const Output_segment* seg2)
3116 {
3117 elfcpp::Elf_Word type1 = seg1->type();
3118 elfcpp::Elf_Word type2 = seg2->type();
3119
3120 // The single PT_PHDR segment is required to precede any loadable
3121 // segment. We simply make it always first.
3122 if (type1 == elfcpp::PT_PHDR)
3123 {
3124 gold_assert(type2 != elfcpp::PT_PHDR);
3125 return true;
3126 }
3127 if (type2 == elfcpp::PT_PHDR)
3128 return false;
3129
3130 // The single PT_INTERP segment is required to precede any loadable
3131 // segment. We simply make it always second.
3132 if (type1 == elfcpp::PT_INTERP)
3133 {
3134 gold_assert(type2 != elfcpp::PT_INTERP);
3135 return true;
3136 }
3137 if (type2 == elfcpp::PT_INTERP)
3138 return false;
3139
3140 // We then put PT_LOAD segments before any other segments.
3141 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3142 return true;
3143 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3144 return false;
3145
3146 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3147 // segment, because that is where the dynamic linker expects to find
3148 // it (this is just for efficiency; other positions would also work
3149 // correctly).
3150 if (type1 == elfcpp::PT_TLS
3151 && type2 != elfcpp::PT_TLS
3152 && type2 != elfcpp::PT_GNU_RELRO)
3153 return false;
3154 if (type2 == elfcpp::PT_TLS
3155 && type1 != elfcpp::PT_TLS
3156 && type1 != elfcpp::PT_GNU_RELRO)
3157 return true;
3158
3159 // We put the PT_GNU_RELRO segment last, because that is where the
3160 // dynamic linker expects to find it (as with PT_TLS, this is just
3161 // for efficiency).
3162 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3163 return false;
3164 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3165 return true;
3166
3167 const elfcpp::Elf_Word flags1 = seg1->flags();
3168 const elfcpp::Elf_Word flags2 = seg2->flags();
3169
3170 // The order of non-PT_LOAD segments is unimportant. We simply sort
3171 // by the numeric segment type and flags values. There should not
3172 // be more than one segment with the same type and flags.
3173 if (type1 != elfcpp::PT_LOAD)
3174 {
3175 if (type1 != type2)
3176 return type1 < type2;
3177 gold_assert(flags1 != flags2);
3178 return flags1 < flags2;
3179 }
3180
3181 // If the addresses are set already, sort by load address.
3182 if (seg1->are_addresses_set())
3183 {
3184 if (!seg2->are_addresses_set())
3185 return true;
3186
3187 unsigned int section_count1 = seg1->output_section_count();
3188 unsigned int section_count2 = seg2->output_section_count();
3189 if (section_count1 == 0 && section_count2 > 0)
3190 return true;
3191 if (section_count1 > 0 && section_count2 == 0)
3192 return false;
3193
3194 uint64_t paddr1 = (seg1->are_addresses_set()
3195 ? seg1->paddr()
3196 : seg1->first_section_load_address());
3197 uint64_t paddr2 = (seg2->are_addresses_set()
3198 ? seg2->paddr()
3199 : seg2->first_section_load_address());
3200
3201 if (paddr1 != paddr2)
3202 return paddr1 < paddr2;
3203 }
3204 else if (seg2->are_addresses_set())
3205 return false;
3206
3207 // A segment which holds large data comes after a segment which does
3208 // not hold large data.
3209 if (seg1->is_large_data_segment())
3210 {
3211 if (!seg2->is_large_data_segment())
3212 return false;
3213 }
3214 else if (seg2->is_large_data_segment())
3215 return true;
3216
3217 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3218 // segments come before writable segments. Then writable segments
3219 // with data come before writable segments without data. Then
3220 // executable segments come before non-executable segments. Then
3221 // the unlikely case of a non-readable segment comes before the
3222 // normal case of a readable segment. If there are multiple
3223 // segments with the same type and flags, we require that the
3224 // address be set, and we sort by virtual address and then physical
3225 // address.
3226 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3227 return (flags1 & elfcpp::PF_W) == 0;
3228 if ((flags1 & elfcpp::PF_W) != 0
3229 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3230 return seg1->has_any_data_sections();
3231 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3232 return (flags1 & elfcpp::PF_X) != 0;
3233 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3234 return (flags1 & elfcpp::PF_R) == 0;
3235
3236 // We shouldn't get here--we shouldn't create segments which we
3237 // can't distinguish. Unless of course we are using a weird linker
3238 // script or overlapping --section-start options. We could also get
3239 // here if plugins want unique segments for subsets of sections.
3240 gold_assert(this->script_options_->saw_phdrs_clause()
3241 || parameters->options().any_section_start()
3242 || this->is_unique_segment_for_sections_specified());
3243 return false;
3244 }
3245
3246 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3247
3248 static off_t
3249 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3250 {
3251 uint64_t unsigned_off = off;
3252 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3253 | (addr & (abi_pagesize - 1)));
3254 if (aligned_off < unsigned_off)
3255 aligned_off += abi_pagesize;
3256 return aligned_off;
3257 }
3258
3259 // Set the file offsets of all the segments, and all the sections they
3260 // contain. They have all been created. LOAD_SEG must be be laid out
3261 // first. Return the offset of the data to follow.
3262
3263 off_t
3264 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3265 unsigned int* pshndx)
3266 {
3267 // Sort them into the final order. We use a stable sort so that we
3268 // don't randomize the order of indistinguishable segments created
3269 // by linker scripts.
3270 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3271 Layout::Compare_segments(this));
3272
3273 // Find the PT_LOAD segments, and set their addresses and offsets
3274 // and their section's addresses and offsets.
3275 uint64_t start_addr;
3276 if (parameters->options().user_set_Ttext())
3277 start_addr = parameters->options().Ttext();
3278 else if (parameters->options().output_is_position_independent())
3279 start_addr = 0;
3280 else
3281 start_addr = target->default_text_segment_address();
3282
3283 uint64_t addr = start_addr;
3284 off_t off = 0;
3285
3286 // If LOAD_SEG is NULL, then the file header and segment headers
3287 // will not be loadable. But they still need to be at offset 0 in
3288 // the file. Set their offsets now.
3289 if (load_seg == NULL)
3290 {
3291 for (Data_list::iterator p = this->special_output_list_.begin();
3292 p != this->special_output_list_.end();
3293 ++p)
3294 {
3295 off = align_address(off, (*p)->addralign());
3296 (*p)->set_address_and_file_offset(0, off);
3297 off += (*p)->data_size();
3298 }
3299 }
3300
3301 unsigned int increase_relro = this->increase_relro_;
3302 if (this->script_options_->saw_sections_clause())
3303 increase_relro = 0;
3304
3305 const bool check_sections = parameters->options().check_sections();
3306 Output_segment* last_load_segment = NULL;
3307
3308 unsigned int shndx_begin = *pshndx;
3309 unsigned int shndx_load_seg = *pshndx;
3310
3311 for (Segment_list::iterator p = this->segment_list_.begin();
3312 p != this->segment_list_.end();
3313 ++p)
3314 {
3315 if ((*p)->type() == elfcpp::PT_LOAD)
3316 {
3317 if (target->isolate_execinstr())
3318 {
3319 // When we hit the segment that should contain the
3320 // file headers, reset the file offset so we place
3321 // it and subsequent segments appropriately.
3322 // We'll fix up the preceding segments below.
3323 if (load_seg == *p)
3324 {
3325 if (off == 0)
3326 load_seg = NULL;
3327 else
3328 {
3329 off = 0;
3330 shndx_load_seg = *pshndx;
3331 }
3332 }
3333 }
3334 else
3335 {
3336 // Verify that the file headers fall into the first segment.
3337 if (load_seg != NULL && load_seg != *p)
3338 gold_unreachable();
3339 load_seg = NULL;
3340 }
3341
3342 bool are_addresses_set = (*p)->are_addresses_set();
3343 if (are_addresses_set)
3344 {
3345 // When it comes to setting file offsets, we care about
3346 // the physical address.
3347 addr = (*p)->paddr();
3348 }
3349 else if (parameters->options().user_set_Ttext()
3350 && ((*p)->flags() & elfcpp::PF_W) == 0)
3351 {
3352 are_addresses_set = true;
3353 }
3354 else if (parameters->options().user_set_Tdata()
3355 && ((*p)->flags() & elfcpp::PF_W) != 0
3356 && (!parameters->options().user_set_Tbss()
3357 || (*p)->has_any_data_sections()))
3358 {
3359 addr = parameters->options().Tdata();
3360 are_addresses_set = true;
3361 }
3362 else if (parameters->options().user_set_Tbss()
3363 && ((*p)->flags() & elfcpp::PF_W) != 0
3364 && !(*p)->has_any_data_sections())
3365 {
3366 addr = parameters->options().Tbss();
3367 are_addresses_set = true;
3368 }
3369
3370 uint64_t orig_addr = addr;
3371 uint64_t orig_off = off;
3372
3373 uint64_t aligned_addr = 0;
3374 uint64_t abi_pagesize = target->abi_pagesize();
3375 uint64_t common_pagesize = target->common_pagesize();
3376
3377 if (!parameters->options().nmagic()
3378 && !parameters->options().omagic())
3379 (*p)->set_minimum_p_align(abi_pagesize);
3380
3381 if (!are_addresses_set)
3382 {
3383 // Skip the address forward one page, maintaining the same
3384 // position within the page. This lets us store both segments
3385 // overlapping on a single page in the file, but the loader will
3386 // put them on different pages in memory. We will revisit this
3387 // decision once we know the size of the segment.
3388
3389 addr = align_address(addr, (*p)->maximum_alignment());
3390 aligned_addr = addr;
3391
3392 if (load_seg == *p)
3393 {
3394 // This is the segment that will contain the file
3395 // headers, so its offset will have to be exactly zero.
3396 gold_assert(orig_off == 0);
3397
3398 // If the target wants a fixed minimum distance from the
3399 // text segment to the read-only segment, move up now.
3400 uint64_t min_addr = start_addr + target->rosegment_gap();
3401 if (addr < min_addr)
3402 addr = min_addr;
3403
3404 // But this is not the first segment! To make its
3405 // address congruent with its offset, that address better
3406 // be aligned to the ABI-mandated page size.
3407 addr = align_address(addr, abi_pagesize);
3408 aligned_addr = addr;
3409 }
3410 else
3411 {
3412 if ((addr & (abi_pagesize - 1)) != 0)
3413 addr = addr + abi_pagesize;
3414
3415 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3416 }
3417 }
3418
3419 if (!parameters->options().nmagic()
3420 && !parameters->options().omagic())
3421 off = align_file_offset(off, addr, abi_pagesize);
3422 else
3423 {
3424 // This is -N or -n with a section script which prevents
3425 // us from using a load segment. We need to ensure that
3426 // the file offset is aligned to the alignment of the
3427 // segment. This is because the linker script
3428 // implicitly assumed a zero offset. If we don't align
3429 // here, then the alignment of the sections in the
3430 // linker script may not match the alignment of the
3431 // sections in the set_section_addresses call below,
3432 // causing an error about dot moving backward.
3433 off = align_address(off, (*p)->maximum_alignment());
3434 }
3435
3436 unsigned int shndx_hold = *pshndx;
3437 bool has_relro = false;
3438 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3439 &increase_relro,
3440 &has_relro,
3441 &off, pshndx);
3442
3443 // Now that we know the size of this segment, we may be able
3444 // to save a page in memory, at the cost of wasting some
3445 // file space, by instead aligning to the start of a new
3446 // page. Here we use the real machine page size rather than
3447 // the ABI mandated page size. If the segment has been
3448 // aligned so that the relro data ends at a page boundary,
3449 // we do not try to realign it.
3450
3451 if (!are_addresses_set
3452 && !has_relro
3453 && aligned_addr != addr
3454 && !parameters->incremental())
3455 {
3456 uint64_t first_off = (common_pagesize
3457 - (aligned_addr
3458 & (common_pagesize - 1)));
3459 uint64_t last_off = new_addr & (common_pagesize - 1);
3460 if (first_off > 0
3461 && last_off > 0
3462 && ((aligned_addr & ~ (common_pagesize - 1))
3463 != (new_addr & ~ (common_pagesize - 1)))
3464 && first_off + last_off <= common_pagesize)
3465 {
3466 *pshndx = shndx_hold;
3467 addr = align_address(aligned_addr, common_pagesize);
3468 addr = align_address(addr, (*p)->maximum_alignment());
3469 if ((addr & (abi_pagesize - 1)) != 0)
3470 addr = addr + abi_pagesize;
3471 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3472 off = align_file_offset(off, addr, abi_pagesize);
3473
3474 increase_relro = this->increase_relro_;
3475 if (this->script_options_->saw_sections_clause())
3476 increase_relro = 0;
3477 has_relro = false;
3478
3479 new_addr = (*p)->set_section_addresses(this, true, addr,
3480 &increase_relro,
3481 &has_relro,
3482 &off, pshndx);
3483 }
3484 }
3485
3486 addr = new_addr;
3487
3488 // Implement --check-sections. We know that the segments
3489 // are sorted by LMA.
3490 if (check_sections && last_load_segment != NULL)
3491 {
3492 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3493 if (last_load_segment->paddr() + last_load_segment->memsz()
3494 > (*p)->paddr())
3495 {
3496 unsigned long long lb1 = last_load_segment->paddr();
3497 unsigned long long le1 = lb1 + last_load_segment->memsz();
3498 unsigned long long lb2 = (*p)->paddr();
3499 unsigned long long le2 = lb2 + (*p)->memsz();
3500 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3501 "[0x%llx -> 0x%llx]"),
3502 lb1, le1, lb2, le2);
3503 }
3504 }
3505 last_load_segment = *p;
3506 }
3507 }
3508
3509 if (load_seg != NULL && target->isolate_execinstr())
3510 {
3511 // Process the early segments again, setting their file offsets
3512 // so they land after the segments starting at LOAD_SEG.
3513 off = align_file_offset(off, 0, target->abi_pagesize());
3514
3515 for (Segment_list::iterator p = this->segment_list_.begin();
3516 *p != load_seg;
3517 ++p)
3518 {
3519 if ((*p)->type() == elfcpp::PT_LOAD)
3520 {
3521 // We repeat the whole job of assigning addresses and
3522 // offsets, but we really only want to change the offsets and
3523 // must ensure that the addresses all come out the same as
3524 // they did the first time through.
3525 bool has_relro = false;
3526 const uint64_t old_addr = (*p)->vaddr();
3527 const uint64_t old_end = old_addr + (*p)->memsz();
3528 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3529 old_addr,
3530 &increase_relro,
3531 &has_relro,
3532 &off,
3533 &shndx_begin);
3534 gold_assert(new_addr == old_end);
3535 }
3536 }
3537
3538 gold_assert(shndx_begin == shndx_load_seg);
3539 }
3540
3541 // Handle the non-PT_LOAD segments, setting their offsets from their
3542 // section's offsets.
3543 for (Segment_list::iterator p = this->segment_list_.begin();
3544 p != this->segment_list_.end();
3545 ++p)
3546 {
3547 if ((*p)->type() != elfcpp::PT_LOAD)
3548 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3549 ? increase_relro
3550 : 0);
3551 }
3552
3553 // Set the TLS offsets for each section in the PT_TLS segment.
3554 if (this->tls_segment_ != NULL)
3555 this->tls_segment_->set_tls_offsets();
3556
3557 return off;
3558 }
3559
3560 // Set the offsets of all the allocated sections when doing a
3561 // relocatable link. This does the same jobs as set_segment_offsets,
3562 // only for a relocatable link.
3563
3564 off_t
3565 Layout::set_relocatable_section_offsets(Output_data* file_header,
3566 unsigned int* pshndx)
3567 {
3568 off_t off = 0;
3569
3570 file_header->set_address_and_file_offset(0, 0);
3571 off += file_header->data_size();
3572
3573 for (Section_list::iterator p = this->section_list_.begin();
3574 p != this->section_list_.end();
3575 ++p)
3576 {
3577 // We skip unallocated sections here, except that group sections
3578 // have to come first.
3579 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3580 && (*p)->type() != elfcpp::SHT_GROUP)
3581 continue;
3582
3583 off = align_address(off, (*p)->addralign());
3584
3585 // The linker script might have set the address.
3586 if (!(*p)->is_address_valid())
3587 (*p)->set_address(0);
3588 (*p)->set_file_offset(off);
3589 (*p)->finalize_data_size();
3590 off += (*p)->data_size();
3591
3592 (*p)->set_out_shndx(*pshndx);
3593 ++*pshndx;
3594 }
3595
3596 return off;
3597 }
3598
3599 // Set the file offset of all the sections not associated with a
3600 // segment.
3601
3602 off_t
3603 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3604 {
3605 off_t startoff = off;
3606 off_t maxoff = off;
3607
3608 for (Section_list::iterator p = this->unattached_section_list_.begin();
3609 p != this->unattached_section_list_.end();
3610 ++p)
3611 {
3612 // The symtab section is handled in create_symtab_sections.
3613 if (*p == this->symtab_section_)
3614 continue;
3615
3616 // If we've already set the data size, don't set it again.
3617 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3618 continue;
3619
3620 if (pass == BEFORE_INPUT_SECTIONS_PASS
3621 && (*p)->requires_postprocessing())
3622 {
3623 (*p)->create_postprocessing_buffer();
3624 this->any_postprocessing_sections_ = true;
3625 }
3626
3627 if (pass == BEFORE_INPUT_SECTIONS_PASS
3628 && (*p)->after_input_sections())
3629 continue;
3630 else if (pass == POSTPROCESSING_SECTIONS_PASS
3631 && (!(*p)->after_input_sections()
3632 || (*p)->type() == elfcpp::SHT_STRTAB))
3633 continue;
3634 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3635 && (!(*p)->after_input_sections()
3636 || (*p)->type() != elfcpp::SHT_STRTAB))
3637 continue;
3638
3639 if (!parameters->incremental_update())
3640 {
3641 off = align_address(off, (*p)->addralign());
3642 (*p)->set_file_offset(off);
3643 (*p)->finalize_data_size();
3644 }
3645 else
3646 {
3647 // Incremental update: allocate file space from free list.
3648 (*p)->pre_finalize_data_size();
3649 off_t current_size = (*p)->current_data_size();
3650 off = this->allocate(current_size, (*p)->addralign(), startoff);
3651 if (off == -1)
3652 {
3653 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3654 this->free_list_.dump();
3655 gold_assert((*p)->output_section() != NULL);
3656 gold_fallback(_("out of patch space for section %s; "
3657 "relink with --incremental-full"),
3658 (*p)->output_section()->name());
3659 }
3660 (*p)->set_file_offset(off);
3661 (*p)->finalize_data_size();
3662 if ((*p)->data_size() > current_size)
3663 {
3664 gold_assert((*p)->output_section() != NULL);
3665 gold_fallback(_("%s: section changed size; "
3666 "relink with --incremental-full"),
3667 (*p)->output_section()->name());
3668 }
3669 gold_debug(DEBUG_INCREMENTAL,
3670 "set_section_offsets: %08lx %08lx %s",
3671 static_cast<long>(off),
3672 static_cast<long>((*p)->data_size()),
3673 ((*p)->output_section() != NULL
3674 ? (*p)->output_section()->name() : "(special)"));
3675 }
3676
3677 off += (*p)->data_size();
3678 if (off > maxoff)
3679 maxoff = off;
3680
3681 // At this point the name must be set.
3682 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3683 this->namepool_.add((*p)->name(), false, NULL);
3684 }
3685 return maxoff;
3686 }
3687
3688 // Set the section indexes of all the sections not associated with a
3689 // segment.
3690
3691 unsigned int
3692 Layout::set_section_indexes(unsigned int shndx)
3693 {
3694 for (Section_list::iterator p = this->unattached_section_list_.begin();
3695 p != this->unattached_section_list_.end();
3696 ++p)
3697 {
3698 if (!(*p)->has_out_shndx())
3699 {
3700 (*p)->set_out_shndx(shndx);
3701 ++shndx;
3702 }
3703 }
3704 return shndx;
3705 }
3706
3707 // Set the section addresses according to the linker script. This is
3708 // only called when we see a SECTIONS clause. This returns the
3709 // program segment which should hold the file header and segment
3710 // headers, if any. It will return NULL if they should not be in a
3711 // segment.
3712
3713 Output_segment*
3714 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3715 {
3716 Script_sections* ss = this->script_options_->script_sections();
3717 gold_assert(ss->saw_sections_clause());
3718 return this->script_options_->set_section_addresses(symtab, this);
3719 }
3720
3721 // Place the orphan sections in the linker script.
3722
3723 void
3724 Layout::place_orphan_sections_in_script()
3725 {
3726 Script_sections* ss = this->script_options_->script_sections();
3727 gold_assert(ss->saw_sections_clause());
3728
3729 // Place each orphaned output section in the script.
3730 for (Section_list::iterator p = this->section_list_.begin();
3731 p != this->section_list_.end();
3732 ++p)
3733 {
3734 if (!(*p)->found_in_sections_clause())
3735 ss->place_orphan(*p);
3736 }
3737 }
3738
3739 // Count the local symbols in the regular symbol table and the dynamic
3740 // symbol table, and build the respective string pools.
3741
3742 void
3743 Layout::count_local_symbols(const Task* task,
3744 const Input_objects* input_objects)
3745 {
3746 // First, figure out an upper bound on the number of symbols we'll
3747 // be inserting into each pool. This helps us create the pools with
3748 // the right size, to avoid unnecessary hashtable resizing.
3749 unsigned int symbol_count = 0;
3750 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3751 p != input_objects->relobj_end();
3752 ++p)
3753 symbol_count += (*p)->local_symbol_count();
3754
3755 // Go from "upper bound" to "estimate." We overcount for two
3756 // reasons: we double-count symbols that occur in more than one
3757 // object file, and we count symbols that are dropped from the
3758 // output. Add it all together and assume we overcount by 100%.
3759 symbol_count /= 2;
3760
3761 // We assume all symbols will go into both the sympool and dynpool.
3762 this->sympool_.reserve(symbol_count);
3763 this->dynpool_.reserve(symbol_count);
3764
3765 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3766 p != input_objects->relobj_end();
3767 ++p)
3768 {
3769 Task_lock_obj<Object> tlo(task, *p);
3770 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3771 }
3772 }
3773
3774 // Create the symbol table sections. Here we also set the final
3775 // values of the symbols. At this point all the loadable sections are
3776 // fully laid out. SHNUM is the number of sections so far.
3777
3778 void
3779 Layout::create_symtab_sections(const Input_objects* input_objects,
3780 Symbol_table* symtab,
3781 unsigned int shnum,
3782 off_t* poff)
3783 {
3784 int symsize;
3785 unsigned int align;
3786 if (parameters->target().get_size() == 32)
3787 {
3788 symsize = elfcpp::Elf_sizes<32>::sym_size;
3789 align = 4;
3790 }
3791 else if (parameters->target().get_size() == 64)
3792 {
3793 symsize = elfcpp::Elf_sizes<64>::sym_size;
3794 align = 8;
3795 }
3796 else
3797 gold_unreachable();
3798
3799 // Compute file offsets relative to the start of the symtab section.
3800 off_t off = 0;
3801
3802 // Save space for the dummy symbol at the start of the section. We
3803 // never bother to write this out--it will just be left as zero.
3804 off += symsize;
3805 unsigned int local_symbol_index = 1;
3806
3807 // Add STT_SECTION symbols for each Output section which needs one.
3808 for (Section_list::iterator p = this->section_list_.begin();
3809 p != this->section_list_.end();
3810 ++p)
3811 {
3812 if (!(*p)->needs_symtab_index())
3813 (*p)->set_symtab_index(-1U);
3814 else
3815 {
3816 (*p)->set_symtab_index(local_symbol_index);
3817 ++local_symbol_index;
3818 off += symsize;
3819 }
3820 }
3821
3822 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3823 p != input_objects->relobj_end();
3824 ++p)
3825 {
3826 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3827 off, symtab);
3828 off += (index - local_symbol_index) * symsize;
3829 local_symbol_index = index;
3830 }
3831
3832 unsigned int local_symcount = local_symbol_index;
3833 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3834
3835 off_t dynoff;
3836 size_t dyn_global_index;
3837 size_t dyncount;
3838 if (this->dynsym_section_ == NULL)
3839 {
3840 dynoff = 0;
3841 dyn_global_index = 0;
3842 dyncount = 0;
3843 }
3844 else
3845 {
3846 dyn_global_index = this->dynsym_section_->info();
3847 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3848 dynoff = this->dynsym_section_->offset() + locsize;
3849 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3850 gold_assert(static_cast<off_t>(dyncount * symsize)
3851 == this->dynsym_section_->data_size() - locsize);
3852 }
3853
3854 off_t global_off = off;
3855 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3856 &this->sympool_, &local_symcount);
3857
3858 if (!parameters->options().strip_all())
3859 {
3860 this->sympool_.set_string_offsets();
3861
3862 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3863 Output_section* osymtab = this->make_output_section(symtab_name,
3864 elfcpp::SHT_SYMTAB,
3865 0, ORDER_INVALID,
3866 false);
3867 this->symtab_section_ = osymtab;
3868
3869 Output_section_data* pos = new Output_data_fixed_space(off, align,
3870 "** symtab");
3871 osymtab->add_output_section_data(pos);
3872
3873 // We generate a .symtab_shndx section if we have more than
3874 // SHN_LORESERVE sections. Technically it is possible that we
3875 // don't need one, because it is possible that there are no
3876 // symbols in any of sections with indexes larger than
3877 // SHN_LORESERVE. That is probably unusual, though, and it is
3878 // easier to always create one than to compute section indexes
3879 // twice (once here, once when writing out the symbols).
3880 if (shnum >= elfcpp::SHN_LORESERVE)
3881 {
3882 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3883 false, NULL);
3884 Output_section* osymtab_xindex =
3885 this->make_output_section(symtab_xindex_name,
3886 elfcpp::SHT_SYMTAB_SHNDX, 0,
3887 ORDER_INVALID, false);
3888
3889 size_t symcount = off / symsize;
3890 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3891
3892 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3893
3894 osymtab_xindex->set_link_section(osymtab);
3895 osymtab_xindex->set_addralign(4);
3896 osymtab_xindex->set_entsize(4);
3897
3898 osymtab_xindex->set_after_input_sections();
3899
3900 // This tells the driver code to wait until the symbol table
3901 // has written out before writing out the postprocessing
3902 // sections, including the .symtab_shndx section.
3903 this->any_postprocessing_sections_ = true;
3904 }
3905
3906 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3907 Output_section* ostrtab = this->make_output_section(strtab_name,
3908 elfcpp::SHT_STRTAB,
3909 0, ORDER_INVALID,
3910 false);
3911
3912 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3913 ostrtab->add_output_section_data(pstr);
3914
3915 off_t symtab_off;
3916 if (!parameters->incremental_update())
3917 symtab_off = align_address(*poff, align);
3918 else
3919 {
3920 symtab_off = this->allocate(off, align, *poff);
3921 if (off == -1)
3922 gold_fallback(_("out of patch space for symbol table; "
3923 "relink with --incremental-full"));
3924 gold_debug(DEBUG_INCREMENTAL,
3925 "create_symtab_sections: %08lx %08lx .symtab",
3926 static_cast<long>(symtab_off),
3927 static_cast<long>(off));
3928 }
3929
3930 symtab->set_file_offset(symtab_off + global_off);
3931 osymtab->set_file_offset(symtab_off);
3932 osymtab->finalize_data_size();
3933 osymtab->set_link_section(ostrtab);
3934 osymtab->set_info(local_symcount);
3935 osymtab->set_entsize(symsize);
3936
3937 if (symtab_off + off > *poff)
3938 *poff = symtab_off + off;
3939 }
3940 }
3941
3942 // Create the .shstrtab section, which holds the names of the
3943 // sections. At the time this is called, we have created all the
3944 // output sections except .shstrtab itself.
3945
3946 Output_section*
3947 Layout::create_shstrtab()
3948 {
3949 // FIXME: We don't need to create a .shstrtab section if we are
3950 // stripping everything.
3951
3952 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3953
3954 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3955 ORDER_INVALID, false);
3956
3957 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3958 {
3959 // We can't write out this section until we've set all the
3960 // section names, and we don't set the names of compressed
3961 // output sections until relocations are complete. FIXME: With
3962 // the current names we use, this is unnecessary.
3963 os->set_after_input_sections();
3964 }
3965
3966 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3967 os->add_output_section_data(posd);
3968
3969 return os;
3970 }
3971
3972 // Create the section headers. SIZE is 32 or 64. OFF is the file
3973 // offset.
3974
3975 void
3976 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3977 {
3978 Output_section_headers* oshdrs;
3979 oshdrs = new Output_section_headers(this,
3980 &this->segment_list_,
3981 &this->section_list_,
3982 &this->unattached_section_list_,
3983 &this->namepool_,
3984 shstrtab_section);
3985 off_t off;
3986 if (!parameters->incremental_update())
3987 off = align_address(*poff, oshdrs->addralign());
3988 else
3989 {
3990 oshdrs->pre_finalize_data_size();
3991 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3992 if (off == -1)
3993 gold_fallback(_("out of patch space for section header table; "
3994 "relink with --incremental-full"));
3995 gold_debug(DEBUG_INCREMENTAL,
3996 "create_shdrs: %08lx %08lx (section header table)",
3997 static_cast<long>(off),
3998 static_cast<long>(off + oshdrs->data_size()));
3999 }
4000 oshdrs->set_address_and_file_offset(0, off);
4001 off += oshdrs->data_size();
4002 if (off > *poff)
4003 *poff = off;
4004 this->section_headers_ = oshdrs;
4005 }
4006
4007 // Count the allocated sections.
4008
4009 size_t
4010 Layout::allocated_output_section_count() const
4011 {
4012 size_t section_count = 0;
4013 for (Segment_list::const_iterator p = this->segment_list_.begin();
4014 p != this->segment_list_.end();
4015 ++p)
4016 section_count += (*p)->output_section_count();
4017 return section_count;
4018 }
4019
4020 // Create the dynamic symbol table.
4021
4022 void
4023 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4024 Symbol_table* symtab,
4025 Output_section** pdynstr,
4026 unsigned int* plocal_dynamic_count,
4027 std::vector<Symbol*>* pdynamic_symbols,
4028 Versions* pversions)
4029 {
4030 // Count all the symbols in the dynamic symbol table, and set the
4031 // dynamic symbol indexes.
4032
4033 // Skip symbol 0, which is always all zeroes.
4034 unsigned int index = 1;
4035
4036 // Add STT_SECTION symbols for each Output section which needs one.
4037 for (Section_list::iterator p = this->section_list_.begin();
4038 p != this->section_list_.end();
4039 ++p)
4040 {
4041 if (!(*p)->needs_dynsym_index())
4042 (*p)->set_dynsym_index(-1U);
4043 else
4044 {
4045 (*p)->set_dynsym_index(index);
4046 ++index;
4047 }
4048 }
4049
4050 // Count the local symbols that need to go in the dynamic symbol table,
4051 // and set the dynamic symbol indexes.
4052 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4053 p != input_objects->relobj_end();
4054 ++p)
4055 {
4056 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4057 index = new_index;
4058 }
4059
4060 unsigned int local_symcount = index;
4061 *plocal_dynamic_count = local_symcount;
4062
4063 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4064 &this->dynpool_, pversions);
4065
4066 int symsize;
4067 unsigned int align;
4068 const int size = parameters->target().get_size();
4069 if (size == 32)
4070 {
4071 symsize = elfcpp::Elf_sizes<32>::sym_size;
4072 align = 4;
4073 }
4074 else if (size == 64)
4075 {
4076 symsize = elfcpp::Elf_sizes<64>::sym_size;
4077 align = 8;
4078 }
4079 else
4080 gold_unreachable();
4081
4082 // Create the dynamic symbol table section.
4083
4084 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4085 elfcpp::SHT_DYNSYM,
4086 elfcpp::SHF_ALLOC,
4087 false,
4088 ORDER_DYNAMIC_LINKER,
4089 false);
4090
4091 // Check for NULL as a linker script may discard .dynsym.
4092 if (dynsym != NULL)
4093 {
4094 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4095 align,
4096 "** dynsym");
4097 dynsym->add_output_section_data(odata);
4098
4099 dynsym->set_info(local_symcount);
4100 dynsym->set_entsize(symsize);
4101 dynsym->set_addralign(align);
4102
4103 this->dynsym_section_ = dynsym;
4104 }
4105
4106 Output_data_dynamic* const odyn = this->dynamic_data_;
4107 if (odyn != NULL)
4108 {
4109 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4110 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4111 }
4112
4113 // If there are more than SHN_LORESERVE allocated sections, we
4114 // create a .dynsym_shndx section. It is possible that we don't
4115 // need one, because it is possible that there are no dynamic
4116 // symbols in any of the sections with indexes larger than
4117 // SHN_LORESERVE. This is probably unusual, though, and at this
4118 // time we don't know the actual section indexes so it is
4119 // inconvenient to check.
4120 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4121 {
4122 Output_section* dynsym_xindex =
4123 this->choose_output_section(NULL, ".dynsym_shndx",
4124 elfcpp::SHT_SYMTAB_SHNDX,
4125 elfcpp::SHF_ALLOC,
4126 false, ORDER_DYNAMIC_LINKER, false);
4127
4128 if (dynsym_xindex != NULL)
4129 {
4130 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4131
4132 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4133
4134 dynsym_xindex->set_link_section(dynsym);
4135 dynsym_xindex->set_addralign(4);
4136 dynsym_xindex->set_entsize(4);
4137
4138 dynsym_xindex->set_after_input_sections();
4139
4140 // This tells the driver code to wait until the symbol table
4141 // has written out before writing out the postprocessing
4142 // sections, including the .dynsym_shndx section.
4143 this->any_postprocessing_sections_ = true;
4144 }
4145 }
4146
4147 // Create the dynamic string table section.
4148
4149 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4150 elfcpp::SHT_STRTAB,
4151 elfcpp::SHF_ALLOC,
4152 false,
4153 ORDER_DYNAMIC_LINKER,
4154 false);
4155
4156 if (dynstr != NULL)
4157 {
4158 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4159 dynstr->add_output_section_data(strdata);
4160
4161 if (dynsym != NULL)
4162 dynsym->set_link_section(dynstr);
4163 if (this->dynamic_section_ != NULL)
4164 this->dynamic_section_->set_link_section(dynstr);
4165
4166 if (odyn != NULL)
4167 {
4168 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4169 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4170 }
4171
4172 *pdynstr = dynstr;
4173 }
4174
4175 // Create the hash tables.
4176
4177 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4178 || strcmp(parameters->options().hash_style(), "both") == 0)
4179 {
4180 unsigned char* phash;
4181 unsigned int hashlen;
4182 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4183 &phash, &hashlen);
4184
4185 Output_section* hashsec =
4186 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4187 elfcpp::SHF_ALLOC, false,
4188 ORDER_DYNAMIC_LINKER, false);
4189
4190 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4191 hashlen,
4192 align,
4193 "** hash");
4194 if (hashsec != NULL && hashdata != NULL)
4195 hashsec->add_output_section_data(hashdata);
4196
4197 if (hashsec != NULL)
4198 {
4199 if (dynsym != NULL)
4200 hashsec->set_link_section(dynsym);
4201 hashsec->set_entsize(4);
4202 }
4203
4204 if (odyn != NULL)
4205 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4206 }
4207
4208 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4209 || strcmp(parameters->options().hash_style(), "both") == 0)
4210 {
4211 unsigned char* phash;
4212 unsigned int hashlen;
4213 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4214 &phash, &hashlen);
4215
4216 Output_section* hashsec =
4217 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4218 elfcpp::SHF_ALLOC, false,
4219 ORDER_DYNAMIC_LINKER, false);
4220
4221 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4222 hashlen,
4223 align,
4224 "** hash");
4225 if (hashsec != NULL && hashdata != NULL)
4226 hashsec->add_output_section_data(hashdata);
4227
4228 if (hashsec != NULL)
4229 {
4230 if (dynsym != NULL)
4231 hashsec->set_link_section(dynsym);
4232
4233 // For a 64-bit target, the entries in .gnu.hash do not have
4234 // a uniform size, so we only set the entry size for a
4235 // 32-bit target.
4236 if (parameters->target().get_size() == 32)
4237 hashsec->set_entsize(4);
4238
4239 if (odyn != NULL)
4240 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4241 }
4242 }
4243 }
4244
4245 // Assign offsets to each local portion of the dynamic symbol table.
4246
4247 void
4248 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4249 {
4250 Output_section* dynsym = this->dynsym_section_;
4251 if (dynsym == NULL)
4252 return;
4253
4254 off_t off = dynsym->offset();
4255
4256 // Skip the dummy symbol at the start of the section.
4257 off += dynsym->entsize();
4258
4259 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4260 p != input_objects->relobj_end();
4261 ++p)
4262 {
4263 unsigned int count = (*p)->set_local_dynsym_offset(off);
4264 off += count * dynsym->entsize();
4265 }
4266 }
4267
4268 // Create the version sections.
4269
4270 void
4271 Layout::create_version_sections(const Versions* versions,
4272 const Symbol_table* symtab,
4273 unsigned int local_symcount,
4274 const std::vector<Symbol*>& dynamic_symbols,
4275 const Output_section* dynstr)
4276 {
4277 if (!versions->any_defs() && !versions->any_needs())
4278 return;
4279
4280 switch (parameters->size_and_endianness())
4281 {
4282 #ifdef HAVE_TARGET_32_LITTLE
4283 case Parameters::TARGET_32_LITTLE:
4284 this->sized_create_version_sections<32, false>(versions, symtab,
4285 local_symcount,
4286 dynamic_symbols, dynstr);
4287 break;
4288 #endif
4289 #ifdef HAVE_TARGET_32_BIG
4290 case Parameters::TARGET_32_BIG:
4291 this->sized_create_version_sections<32, true>(versions, symtab,
4292 local_symcount,
4293 dynamic_symbols, dynstr);
4294 break;
4295 #endif
4296 #ifdef HAVE_TARGET_64_LITTLE
4297 case Parameters::TARGET_64_LITTLE:
4298 this->sized_create_version_sections<64, false>(versions, symtab,
4299 local_symcount,
4300 dynamic_symbols, dynstr);
4301 break;
4302 #endif
4303 #ifdef HAVE_TARGET_64_BIG
4304 case Parameters::TARGET_64_BIG:
4305 this->sized_create_version_sections<64, true>(versions, symtab,
4306 local_symcount,
4307 dynamic_symbols, dynstr);
4308 break;
4309 #endif
4310 default:
4311 gold_unreachable();
4312 }
4313 }
4314
4315 // Create the version sections, sized version.
4316
4317 template<int size, bool big_endian>
4318 void
4319 Layout::sized_create_version_sections(
4320 const Versions* versions,
4321 const Symbol_table* symtab,
4322 unsigned int local_symcount,
4323 const std::vector<Symbol*>& dynamic_symbols,
4324 const Output_section* dynstr)
4325 {
4326 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4327 elfcpp::SHT_GNU_versym,
4328 elfcpp::SHF_ALLOC,
4329 false,
4330 ORDER_DYNAMIC_LINKER,
4331 false);
4332
4333 // Check for NULL since a linker script may discard this section.
4334 if (vsec != NULL)
4335 {
4336 unsigned char* vbuf;
4337 unsigned int vsize;
4338 versions->symbol_section_contents<size, big_endian>(symtab,
4339 &this->dynpool_,
4340 local_symcount,
4341 dynamic_symbols,
4342 &vbuf, &vsize);
4343
4344 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4345 "** versions");
4346
4347 vsec->add_output_section_data(vdata);
4348 vsec->set_entsize(2);
4349 vsec->set_link_section(this->dynsym_section_);
4350 }
4351
4352 Output_data_dynamic* const odyn = this->dynamic_data_;
4353 if (odyn != NULL && vsec != NULL)
4354 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4355
4356 if (versions->any_defs())
4357 {
4358 Output_section* vdsec;
4359 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4360 elfcpp::SHT_GNU_verdef,
4361 elfcpp::SHF_ALLOC,
4362 false, ORDER_DYNAMIC_LINKER, false);
4363
4364 if (vdsec != NULL)
4365 {
4366 unsigned char* vdbuf;
4367 unsigned int vdsize;
4368 unsigned int vdentries;
4369 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4370 &vdbuf, &vdsize,
4371 &vdentries);
4372
4373 Output_section_data* vddata =
4374 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4375
4376 vdsec->add_output_section_data(vddata);
4377 vdsec->set_link_section(dynstr);
4378 vdsec->set_info(vdentries);
4379
4380 if (odyn != NULL)
4381 {
4382 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4383 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4384 }
4385 }
4386 }
4387
4388 if (versions->any_needs())
4389 {
4390 Output_section* vnsec;
4391 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4392 elfcpp::SHT_GNU_verneed,
4393 elfcpp::SHF_ALLOC,
4394 false, ORDER_DYNAMIC_LINKER, false);
4395
4396 if (vnsec != NULL)
4397 {
4398 unsigned char* vnbuf;
4399 unsigned int vnsize;
4400 unsigned int vnentries;
4401 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4402 &vnbuf, &vnsize,
4403 &vnentries);
4404
4405 Output_section_data* vndata =
4406 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4407
4408 vnsec->add_output_section_data(vndata);
4409 vnsec->set_link_section(dynstr);
4410 vnsec->set_info(vnentries);
4411
4412 if (odyn != NULL)
4413 {
4414 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4415 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4416 }
4417 }
4418 }
4419 }
4420
4421 // Create the .interp section and PT_INTERP segment.
4422
4423 void
4424 Layout::create_interp(const Target* target)
4425 {
4426 gold_assert(this->interp_segment_ == NULL);
4427
4428 const char* interp = parameters->options().dynamic_linker();
4429 if (interp == NULL)
4430 {
4431 interp = target->dynamic_linker();
4432 gold_assert(interp != NULL);
4433 }
4434
4435 size_t len = strlen(interp) + 1;
4436
4437 Output_section_data* odata = new Output_data_const(interp, len, 1);
4438
4439 Output_section* osec = this->choose_output_section(NULL, ".interp",
4440 elfcpp::SHT_PROGBITS,
4441 elfcpp::SHF_ALLOC,
4442 false, ORDER_INTERP,
4443 false);
4444 if (osec != NULL)
4445 osec->add_output_section_data(odata);
4446 }
4447
4448 // Add dynamic tags for the PLT and the dynamic relocs. This is
4449 // called by the target-specific code. This does nothing if not doing
4450 // a dynamic link.
4451
4452 // USE_REL is true for REL relocs rather than RELA relocs.
4453
4454 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4455
4456 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4457 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4458 // some targets have multiple reloc sections in PLT_REL.
4459
4460 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4461 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4462 // section.
4463
4464 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4465 // executable.
4466
4467 void
4468 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4469 const Output_data* plt_rel,
4470 const Output_data_reloc_generic* dyn_rel,
4471 bool add_debug, bool dynrel_includes_plt)
4472 {
4473 Output_data_dynamic* odyn = this->dynamic_data_;
4474 if (odyn == NULL)
4475 return;
4476
4477 if (plt_got != NULL && plt_got->output_section() != NULL)
4478 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4479
4480 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4481 {
4482 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4483 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4484 odyn->add_constant(elfcpp::DT_PLTREL,
4485 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4486 }
4487
4488 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4489 || (dynrel_includes_plt
4490 && plt_rel != NULL
4491 && plt_rel->output_section() != NULL))
4492 {
4493 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4494 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4495 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4496 (have_dyn_rel
4497 ? dyn_rel->output_section()
4498 : plt_rel->output_section()));
4499 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4500 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4501 odyn->add_section_size(size_tag,
4502 dyn_rel->output_section(),
4503 plt_rel->output_section());
4504 else if (have_dyn_rel)
4505 odyn->add_section_size(size_tag, dyn_rel->output_section());
4506 else
4507 odyn->add_section_size(size_tag, plt_rel->output_section());
4508 const int size = parameters->target().get_size();
4509 elfcpp::DT rel_tag;
4510 int rel_size;
4511 if (use_rel)
4512 {
4513 rel_tag = elfcpp::DT_RELENT;
4514 if (size == 32)
4515 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4516 else if (size == 64)
4517 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4518 else
4519 gold_unreachable();
4520 }
4521 else
4522 {
4523 rel_tag = elfcpp::DT_RELAENT;
4524 if (size == 32)
4525 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4526 else if (size == 64)
4527 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4528 else
4529 gold_unreachable();
4530 }
4531 odyn->add_constant(rel_tag, rel_size);
4532
4533 if (parameters->options().combreloc() && have_dyn_rel)
4534 {
4535 size_t c = dyn_rel->relative_reloc_count();
4536 if (c > 0)
4537 odyn->add_constant((use_rel
4538 ? elfcpp::DT_RELCOUNT
4539 : elfcpp::DT_RELACOUNT),
4540 c);
4541 }
4542 }
4543
4544 if (add_debug && !parameters->options().shared())
4545 {
4546 // The value of the DT_DEBUG tag is filled in by the dynamic
4547 // linker at run time, and used by the debugger.
4548 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4549 }
4550 }
4551
4552 // Finish the .dynamic section and PT_DYNAMIC segment.
4553
4554 void
4555 Layout::finish_dynamic_section(const Input_objects* input_objects,
4556 const Symbol_table* symtab)
4557 {
4558 if (!this->script_options_->saw_phdrs_clause()
4559 && this->dynamic_section_ != NULL)
4560 {
4561 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4562 (elfcpp::PF_R
4563 | elfcpp::PF_W));
4564 oseg->add_output_section_to_nonload(this->dynamic_section_,
4565 elfcpp::PF_R | elfcpp::PF_W);
4566 }
4567
4568 Output_data_dynamic* const odyn = this->dynamic_data_;
4569 if (odyn == NULL)
4570 return;
4571
4572 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4573 p != input_objects->dynobj_end();
4574 ++p)
4575 {
4576 if (!(*p)->is_needed() && (*p)->as_needed())
4577 {
4578 // This dynamic object was linked with --as-needed, but it
4579 // is not needed.
4580 continue;
4581 }
4582
4583 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4584 }
4585
4586 if (parameters->options().shared())
4587 {
4588 const char* soname = parameters->options().soname();
4589 if (soname != NULL)
4590 odyn->add_string(elfcpp::DT_SONAME, soname);
4591 }
4592
4593 Symbol* sym = symtab->lookup(parameters->options().init());
4594 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4595 odyn->add_symbol(elfcpp::DT_INIT, sym);
4596
4597 sym = symtab->lookup(parameters->options().fini());
4598 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4599 odyn->add_symbol(elfcpp::DT_FINI, sym);
4600
4601 // Look for .init_array, .preinit_array and .fini_array by checking
4602 // section types.
4603 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4604 p != this->section_list_.end();
4605 ++p)
4606 switch((*p)->type())
4607 {
4608 case elfcpp::SHT_FINI_ARRAY:
4609 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4610 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4611 break;
4612 case elfcpp::SHT_INIT_ARRAY:
4613 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4614 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4615 break;
4616 case elfcpp::SHT_PREINIT_ARRAY:
4617 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4618 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4619 break;
4620 default:
4621 break;
4622 }
4623
4624 // Add a DT_RPATH entry if needed.
4625 const General_options::Dir_list& rpath(parameters->options().rpath());
4626 if (!rpath.empty())
4627 {
4628 std::string rpath_val;
4629 for (General_options::Dir_list::const_iterator p = rpath.begin();
4630 p != rpath.end();
4631 ++p)
4632 {
4633 if (rpath_val.empty())
4634 rpath_val = p->name();
4635 else
4636 {
4637 // Eliminate duplicates.
4638 General_options::Dir_list::const_iterator q;
4639 for (q = rpath.begin(); q != p; ++q)
4640 if (q->name() == p->name())
4641 break;
4642 if (q == p)
4643 {
4644 rpath_val += ':';
4645 rpath_val += p->name();
4646 }
4647 }
4648 }
4649
4650 if (!parameters->options().enable_new_dtags())
4651 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4652 else
4653 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4654 }
4655
4656 // Look for text segments that have dynamic relocations.
4657 bool have_textrel = false;
4658 if (!this->script_options_->saw_sections_clause())
4659 {
4660 for (Segment_list::const_iterator p = this->segment_list_.begin();
4661 p != this->segment_list_.end();
4662 ++p)
4663 {
4664 if ((*p)->type() == elfcpp::PT_LOAD
4665 && ((*p)->flags() & elfcpp::PF_W) == 0
4666 && (*p)->has_dynamic_reloc())
4667 {
4668 have_textrel = true;
4669 break;
4670 }
4671 }
4672 }
4673 else
4674 {
4675 // We don't know the section -> segment mapping, so we are
4676 // conservative and just look for readonly sections with
4677 // relocations. If those sections wind up in writable segments,
4678 // then we have created an unnecessary DT_TEXTREL entry.
4679 for (Section_list::const_iterator p = this->section_list_.begin();
4680 p != this->section_list_.end();
4681 ++p)
4682 {
4683 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4684 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4685 && (*p)->has_dynamic_reloc())
4686 {
4687 have_textrel = true;
4688 break;
4689 }
4690 }
4691 }
4692
4693 if (parameters->options().filter() != NULL)
4694 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4695 if (parameters->options().any_auxiliary())
4696 {
4697 for (options::String_set::const_iterator p =
4698 parameters->options().auxiliary_begin();
4699 p != parameters->options().auxiliary_end();
4700 ++p)
4701 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4702 }
4703
4704 // Add a DT_FLAGS entry if necessary.
4705 unsigned int flags = 0;
4706 if (have_textrel)
4707 {
4708 // Add a DT_TEXTREL for compatibility with older loaders.
4709 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4710 flags |= elfcpp::DF_TEXTREL;
4711
4712 if (parameters->options().text())
4713 gold_error(_("read-only segment has dynamic relocations"));
4714 else if (parameters->options().warn_shared_textrel()
4715 && parameters->options().shared())
4716 gold_warning(_("shared library text segment is not shareable"));
4717 }
4718 if (parameters->options().shared() && this->has_static_tls())
4719 flags |= elfcpp::DF_STATIC_TLS;
4720 if (parameters->options().origin())
4721 flags |= elfcpp::DF_ORIGIN;
4722 if (parameters->options().Bsymbolic())
4723 {
4724 flags |= elfcpp::DF_SYMBOLIC;
4725 // Add DT_SYMBOLIC for compatibility with older loaders.
4726 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4727 }
4728 if (parameters->options().now())
4729 flags |= elfcpp::DF_BIND_NOW;
4730 if (flags != 0)
4731 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4732
4733 flags = 0;
4734 if (parameters->options().initfirst())
4735 flags |= elfcpp::DF_1_INITFIRST;
4736 if (parameters->options().interpose())
4737 flags |= elfcpp::DF_1_INTERPOSE;
4738 if (parameters->options().loadfltr())
4739 flags |= elfcpp::DF_1_LOADFLTR;
4740 if (parameters->options().nodefaultlib())
4741 flags |= elfcpp::DF_1_NODEFLIB;
4742 if (parameters->options().nodelete())
4743 flags |= elfcpp::DF_1_NODELETE;
4744 if (parameters->options().nodlopen())
4745 flags |= elfcpp::DF_1_NOOPEN;
4746 if (parameters->options().nodump())
4747 flags |= elfcpp::DF_1_NODUMP;
4748 if (!parameters->options().shared())
4749 flags &= ~(elfcpp::DF_1_INITFIRST
4750 | elfcpp::DF_1_NODELETE
4751 | elfcpp::DF_1_NOOPEN);
4752 if (parameters->options().origin())
4753 flags |= elfcpp::DF_1_ORIGIN;
4754 if (parameters->options().now())
4755 flags |= elfcpp::DF_1_NOW;
4756 if (parameters->options().Bgroup())
4757 flags |= elfcpp::DF_1_GROUP;
4758 if (flags != 0)
4759 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4760 }
4761
4762 // Set the size of the _DYNAMIC symbol table to be the size of the
4763 // dynamic data.
4764
4765 void
4766 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4767 {
4768 Output_data_dynamic* const odyn = this->dynamic_data_;
4769 if (odyn == NULL)
4770 return;
4771 odyn->finalize_data_size();
4772 if (this->dynamic_symbol_ == NULL)
4773 return;
4774 off_t data_size = odyn->data_size();
4775 const int size = parameters->target().get_size();
4776 if (size == 32)
4777 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4778 else if (size == 64)
4779 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4780 else
4781 gold_unreachable();
4782 }
4783
4784 // The mapping of input section name prefixes to output section names.
4785 // In some cases one prefix is itself a prefix of another prefix; in
4786 // such a case the longer prefix must come first. These prefixes are
4787 // based on the GNU linker default ELF linker script.
4788
4789 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4790 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4791 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4792 {
4793 MAPPING_INIT(".text.", ".text"),
4794 MAPPING_INIT(".rodata.", ".rodata"),
4795 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4796 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4797 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4798 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4799 MAPPING_INIT(".data.", ".data"),
4800 MAPPING_INIT(".bss.", ".bss"),
4801 MAPPING_INIT(".tdata.", ".tdata"),
4802 MAPPING_INIT(".tbss.", ".tbss"),
4803 MAPPING_INIT(".init_array.", ".init_array"),
4804 MAPPING_INIT(".fini_array.", ".fini_array"),
4805 MAPPING_INIT(".sdata.", ".sdata"),
4806 MAPPING_INIT(".sbss.", ".sbss"),
4807 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4808 // differently depending on whether it is creating a shared library.
4809 MAPPING_INIT(".sdata2.", ".sdata"),
4810 MAPPING_INIT(".sbss2.", ".sbss"),
4811 MAPPING_INIT(".lrodata.", ".lrodata"),
4812 MAPPING_INIT(".ldata.", ".ldata"),
4813 MAPPING_INIT(".lbss.", ".lbss"),
4814 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4815 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4816 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4817 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4818 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4819 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4820 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4821 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4822 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4823 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4824 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4825 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4826 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4827 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4828 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4829 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4830 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4831 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4832 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4833 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4834 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4835 };
4836 #undef MAPPING_INIT
4837 #undef MAPPING_INIT_EXACT
4838
4839 const int Layout::section_name_mapping_count =
4840 (sizeof(Layout::section_name_mapping)
4841 / sizeof(Layout::section_name_mapping[0]));
4842
4843 // Choose the output section name to use given an input section name.
4844 // Set *PLEN to the length of the name. *PLEN is initialized to the
4845 // length of NAME.
4846
4847 const char*
4848 Layout::output_section_name(const Relobj* relobj, const char* name,
4849 size_t* plen)
4850 {
4851 // gcc 4.3 generates the following sorts of section names when it
4852 // needs a section name specific to a function:
4853 // .text.FN
4854 // .rodata.FN
4855 // .sdata2.FN
4856 // .data.FN
4857 // .data.rel.FN
4858 // .data.rel.local.FN
4859 // .data.rel.ro.FN
4860 // .data.rel.ro.local.FN
4861 // .sdata.FN
4862 // .bss.FN
4863 // .sbss.FN
4864 // .tdata.FN
4865 // .tbss.FN
4866
4867 // The GNU linker maps all of those to the part before the .FN,
4868 // except that .data.rel.local.FN is mapped to .data, and
4869 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4870 // beginning with .data.rel.ro.local are grouped together.
4871
4872 // For an anonymous namespace, the string FN can contain a '.'.
4873
4874 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4875 // GNU linker maps to .rodata.
4876
4877 // The .data.rel.ro sections are used with -z relro. The sections
4878 // are recognized by name. We use the same names that the GNU
4879 // linker does for these sections.
4880
4881 // It is hard to handle this in a principled way, so we don't even
4882 // try. We use a table of mappings. If the input section name is
4883 // not found in the table, we simply use it as the output section
4884 // name.
4885
4886 const Section_name_mapping* psnm = section_name_mapping;
4887 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4888 {
4889 if (psnm->fromlen > 0)
4890 {
4891 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4892 {
4893 *plen = psnm->tolen;
4894 return psnm->to;
4895 }
4896 }
4897 else
4898 {
4899 if (strcmp(name, psnm->from) == 0)
4900 {
4901 *plen = psnm->tolen;
4902 return psnm->to;
4903 }
4904 }
4905 }
4906
4907 // As an additional complication, .ctors sections are output in
4908 // either .ctors or .init_array sections, and .dtors sections are
4909 // output in either .dtors or .fini_array sections.
4910 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4911 {
4912 if (parameters->options().ctors_in_init_array())
4913 {
4914 *plen = 11;
4915 return name[1] == 'c' ? ".init_array" : ".fini_array";
4916 }
4917 else
4918 {
4919 *plen = 6;
4920 return name[1] == 'c' ? ".ctors" : ".dtors";
4921 }
4922 }
4923 if (parameters->options().ctors_in_init_array()
4924 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4925 {
4926 // To make .init_array/.fini_array work with gcc we must exclude
4927 // .ctors and .dtors sections from the crtbegin and crtend
4928 // files.
4929 if (relobj == NULL
4930 || (!Layout::match_file_name(relobj, "crtbegin")
4931 && !Layout::match_file_name(relobj, "crtend")))
4932 {
4933 *plen = 11;
4934 return name[1] == 'c' ? ".init_array" : ".fini_array";
4935 }
4936 }
4937
4938 return name;
4939 }
4940
4941 // Return true if RELOBJ is an input file whose base name matches
4942 // FILE_NAME. The base name must have an extension of ".o", and must
4943 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4944 // to match crtbegin.o as well as crtbeginS.o without getting confused
4945 // by other possibilities. Overall matching the file name this way is
4946 // a dreadful hack, but the GNU linker does it in order to better
4947 // support gcc, and we need to be compatible.
4948
4949 bool
4950 Layout::match_file_name(const Relobj* relobj, const char* match)
4951 {
4952 const std::string& file_name(relobj->name());
4953 const char* base_name = lbasename(file_name.c_str());
4954 size_t match_len = strlen(match);
4955 if (strncmp(base_name, match, match_len) != 0)
4956 return false;
4957 size_t base_len = strlen(base_name);
4958 if (base_len != match_len + 2 && base_len != match_len + 3)
4959 return false;
4960 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4961 }
4962
4963 // Check if a comdat group or .gnu.linkonce section with the given
4964 // NAME is selected for the link. If there is already a section,
4965 // *KEPT_SECTION is set to point to the existing section and the
4966 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4967 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4968 // *KEPT_SECTION is set to the internal copy and the function returns
4969 // true.
4970
4971 bool
4972 Layout::find_or_add_kept_section(const std::string& name,
4973 Relobj* object,
4974 unsigned int shndx,
4975 bool is_comdat,
4976 bool is_group_name,
4977 Kept_section** kept_section)
4978 {
4979 // It's normal to see a couple of entries here, for the x86 thunk
4980 // sections. If we see more than a few, we're linking a C++
4981 // program, and we resize to get more space to minimize rehashing.
4982 if (this->signatures_.size() > 4
4983 && !this->resized_signatures_)
4984 {
4985 reserve_unordered_map(&this->signatures_,
4986 this->number_of_input_files_ * 64);
4987 this->resized_signatures_ = true;
4988 }
4989
4990 Kept_section candidate;
4991 std::pair<Signatures::iterator, bool> ins =
4992 this->signatures_.insert(std::make_pair(name, candidate));
4993
4994 if (kept_section != NULL)
4995 *kept_section = &ins.first->second;
4996 if (ins.second)
4997 {
4998 // This is the first time we've seen this signature.
4999 ins.first->second.set_object(object);
5000 ins.first->second.set_shndx(shndx);
5001 if (is_comdat)
5002 ins.first->second.set_is_comdat();
5003 if (is_group_name)
5004 ins.first->second.set_is_group_name();
5005 return true;
5006 }
5007
5008 // We have already seen this signature.
5009
5010 if (ins.first->second.is_group_name())
5011 {
5012 // We've already seen a real section group with this signature.
5013 // If the kept group is from a plugin object, and we're in the
5014 // replacement phase, accept the new one as a replacement.
5015 if (ins.first->second.object() == NULL
5016 && parameters->options().plugins()->in_replacement_phase())
5017 {
5018 ins.first->second.set_object(object);
5019 ins.first->second.set_shndx(shndx);
5020 return true;
5021 }
5022 return false;
5023 }
5024 else if (is_group_name)
5025 {
5026 // This is a real section group, and we've already seen a
5027 // linkonce section with this signature. Record that we've seen
5028 // a section group, and don't include this section group.
5029 ins.first->second.set_is_group_name();
5030 return false;
5031 }
5032 else
5033 {
5034 // We've already seen a linkonce section and this is a linkonce
5035 // section. These don't block each other--this may be the same
5036 // symbol name with different section types.
5037 return true;
5038 }
5039 }
5040
5041 // Store the allocated sections into the section list.
5042
5043 void
5044 Layout::get_allocated_sections(Section_list* section_list) const
5045 {
5046 for (Section_list::const_iterator p = this->section_list_.begin();
5047 p != this->section_list_.end();
5048 ++p)
5049 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5050 section_list->push_back(*p);
5051 }
5052
5053 // Store the executable sections into the section list.
5054
5055 void
5056 Layout::get_executable_sections(Section_list* section_list) const
5057 {
5058 for (Section_list::const_iterator p = this->section_list_.begin();
5059 p != this->section_list_.end();
5060 ++p)
5061 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5062 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5063 section_list->push_back(*p);
5064 }
5065
5066 // Create an output segment.
5067
5068 Output_segment*
5069 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5070 {
5071 gold_assert(!parameters->options().relocatable());
5072 Output_segment* oseg = new Output_segment(type, flags);
5073 this->segment_list_.push_back(oseg);
5074
5075 if (type == elfcpp::PT_TLS)
5076 this->tls_segment_ = oseg;
5077 else if (type == elfcpp::PT_GNU_RELRO)
5078 this->relro_segment_ = oseg;
5079 else if (type == elfcpp::PT_INTERP)
5080 this->interp_segment_ = oseg;
5081
5082 return oseg;
5083 }
5084
5085 // Return the file offset of the normal symbol table.
5086
5087 off_t
5088 Layout::symtab_section_offset() const
5089 {
5090 if (this->symtab_section_ != NULL)
5091 return this->symtab_section_->offset();
5092 return 0;
5093 }
5094
5095 // Return the section index of the normal symbol table. It may have
5096 // been stripped by the -s/--strip-all option.
5097
5098 unsigned int
5099 Layout::symtab_section_shndx() const
5100 {
5101 if (this->symtab_section_ != NULL)
5102 return this->symtab_section_->out_shndx();
5103 return 0;
5104 }
5105
5106 // Write out the Output_sections. Most won't have anything to write,
5107 // since most of the data will come from input sections which are
5108 // handled elsewhere. But some Output_sections do have Output_data.
5109
5110 void
5111 Layout::write_output_sections(Output_file* of) const
5112 {
5113 for (Section_list::const_iterator p = this->section_list_.begin();
5114 p != this->section_list_.end();
5115 ++p)
5116 {
5117 if (!(*p)->after_input_sections())
5118 (*p)->write(of);
5119 }
5120 }
5121
5122 // Write out data not associated with a section or the symbol table.
5123
5124 void
5125 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5126 {
5127 if (!parameters->options().strip_all())
5128 {
5129 const Output_section* symtab_section = this->symtab_section_;
5130 for (Section_list::const_iterator p = this->section_list_.begin();
5131 p != this->section_list_.end();
5132 ++p)
5133 {
5134 if ((*p)->needs_symtab_index())
5135 {
5136 gold_assert(symtab_section != NULL);
5137 unsigned int index = (*p)->symtab_index();
5138 gold_assert(index > 0 && index != -1U);
5139 off_t off = (symtab_section->offset()
5140 + index * symtab_section->entsize());
5141 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5142 }
5143 }
5144 }
5145
5146 const Output_section* dynsym_section = this->dynsym_section_;
5147 for (Section_list::const_iterator p = this->section_list_.begin();
5148 p != this->section_list_.end();
5149 ++p)
5150 {
5151 if ((*p)->needs_dynsym_index())
5152 {
5153 gold_assert(dynsym_section != NULL);
5154 unsigned int index = (*p)->dynsym_index();
5155 gold_assert(index > 0 && index != -1U);
5156 off_t off = (dynsym_section->offset()
5157 + index * dynsym_section->entsize());
5158 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5159 }
5160 }
5161
5162 // Write out the Output_data which are not in an Output_section.
5163 for (Data_list::const_iterator p = this->special_output_list_.begin();
5164 p != this->special_output_list_.end();
5165 ++p)
5166 (*p)->write(of);
5167 }
5168
5169 // Write out the Output_sections which can only be written after the
5170 // input sections are complete.
5171
5172 void
5173 Layout::write_sections_after_input_sections(Output_file* of)
5174 {
5175 // Determine the final section offsets, and thus the final output
5176 // file size. Note we finalize the .shstrab last, to allow the
5177 // after_input_section sections to modify their section-names before
5178 // writing.
5179 if (this->any_postprocessing_sections_)
5180 {
5181 off_t off = this->output_file_size_;
5182 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5183
5184 // Now that we've finalized the names, we can finalize the shstrab.
5185 off =
5186 this->set_section_offsets(off,
5187 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5188
5189 if (off > this->output_file_size_)
5190 {
5191 of->resize(off);
5192 this->output_file_size_ = off;
5193 }
5194 }
5195
5196 for (Section_list::const_iterator p = this->section_list_.begin();
5197 p != this->section_list_.end();
5198 ++p)
5199 {
5200 if ((*p)->after_input_sections())
5201 (*p)->write(of);
5202 }
5203
5204 this->section_headers_->write(of);
5205 }
5206
5207 // If the build ID requires computing a checksum, do so here, and
5208 // write it out. We compute a checksum over the entire file because
5209 // that is simplest.
5210
5211 void
5212 Layout::write_build_id(Output_file* of) const
5213 {
5214 if (this->build_id_note_ == NULL)
5215 return;
5216
5217 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5218
5219 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5220 this->build_id_note_->data_size());
5221
5222 const char* style = parameters->options().build_id();
5223 if (strcmp(style, "sha1") == 0)
5224 {
5225 sha1_ctx ctx;
5226 sha1_init_ctx(&ctx);
5227 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5228 sha1_finish_ctx(&ctx, ov);
5229 }
5230 else if (strcmp(style, "md5") == 0)
5231 {
5232 md5_ctx ctx;
5233 md5_init_ctx(&ctx);
5234 md5_process_bytes(iv, this->output_file_size_, &ctx);
5235 md5_finish_ctx(&ctx, ov);
5236 }
5237 else
5238 gold_unreachable();
5239
5240 of->write_output_view(this->build_id_note_->offset(),
5241 this->build_id_note_->data_size(),
5242 ov);
5243
5244 of->free_input_view(0, this->output_file_size_, iv);
5245 }
5246
5247 // Write out a binary file. This is called after the link is
5248 // complete. IN is the temporary output file we used to generate the
5249 // ELF code. We simply walk through the segments, read them from
5250 // their file offset in IN, and write them to their load address in
5251 // the output file. FIXME: with a bit more work, we could support
5252 // S-records and/or Intel hex format here.
5253
5254 void
5255 Layout::write_binary(Output_file* in) const
5256 {
5257 gold_assert(parameters->options().oformat_enum()
5258 == General_options::OBJECT_FORMAT_BINARY);
5259
5260 // Get the size of the binary file.
5261 uint64_t max_load_address = 0;
5262 for (Segment_list::const_iterator p = this->segment_list_.begin();
5263 p != this->segment_list_.end();
5264 ++p)
5265 {
5266 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5267 {
5268 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5269 if (max_paddr > max_load_address)
5270 max_load_address = max_paddr;
5271 }
5272 }
5273
5274 Output_file out(parameters->options().output_file_name());
5275 out.open(max_load_address);
5276
5277 for (Segment_list::const_iterator p = this->segment_list_.begin();
5278 p != this->segment_list_.end();
5279 ++p)
5280 {
5281 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5282 {
5283 const unsigned char* vin = in->get_input_view((*p)->offset(),
5284 (*p)->filesz());
5285 unsigned char* vout = out.get_output_view((*p)->paddr(),
5286 (*p)->filesz());
5287 memcpy(vout, vin, (*p)->filesz());
5288 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5289 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5290 }
5291 }
5292
5293 out.close();
5294 }
5295
5296 // Print the output sections to the map file.
5297
5298 void
5299 Layout::print_to_mapfile(Mapfile* mapfile) const
5300 {
5301 for (Segment_list::const_iterator p = this->segment_list_.begin();
5302 p != this->segment_list_.end();
5303 ++p)
5304 (*p)->print_sections_to_mapfile(mapfile);
5305 }
5306
5307 // Print statistical information to stderr. This is used for --stats.
5308
5309 void
5310 Layout::print_stats() const
5311 {
5312 this->namepool_.print_stats("section name pool");
5313 this->sympool_.print_stats("output symbol name pool");
5314 this->dynpool_.print_stats("dynamic name pool");
5315
5316 for (Section_list::const_iterator p = this->section_list_.begin();
5317 p != this->section_list_.end();
5318 ++p)
5319 (*p)->print_merge_stats();
5320 }
5321
5322 // Write_sections_task methods.
5323
5324 // We can always run this task.
5325
5326 Task_token*
5327 Write_sections_task::is_runnable()
5328 {
5329 return NULL;
5330 }
5331
5332 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5333 // when finished.
5334
5335 void
5336 Write_sections_task::locks(Task_locker* tl)
5337 {
5338 tl->add(this, this->output_sections_blocker_);
5339 tl->add(this, this->final_blocker_);
5340 }
5341
5342 // Run the task--write out the data.
5343
5344 void
5345 Write_sections_task::run(Workqueue*)
5346 {
5347 this->layout_->write_output_sections(this->of_);
5348 }
5349
5350 // Write_data_task methods.
5351
5352 // We can always run this task.
5353
5354 Task_token*
5355 Write_data_task::is_runnable()
5356 {
5357 return NULL;
5358 }
5359
5360 // We need to unlock FINAL_BLOCKER when finished.
5361
5362 void
5363 Write_data_task::locks(Task_locker* tl)
5364 {
5365 tl->add(this, this->final_blocker_);
5366 }
5367
5368 // Run the task--write out the data.
5369
5370 void
5371 Write_data_task::run(Workqueue*)
5372 {
5373 this->layout_->write_data(this->symtab_, this->of_);
5374 }
5375
5376 // Write_symbols_task methods.
5377
5378 // We can always run this task.
5379
5380 Task_token*
5381 Write_symbols_task::is_runnable()
5382 {
5383 return NULL;
5384 }
5385
5386 // We need to unlock FINAL_BLOCKER when finished.
5387
5388 void
5389 Write_symbols_task::locks(Task_locker* tl)
5390 {
5391 tl->add(this, this->final_blocker_);
5392 }
5393
5394 // Run the task--write out the symbols.
5395
5396 void
5397 Write_symbols_task::run(Workqueue*)
5398 {
5399 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5400 this->layout_->symtab_xindex(),
5401 this->layout_->dynsym_xindex(), this->of_);
5402 }
5403
5404 // Write_after_input_sections_task methods.
5405
5406 // We can only run this task after the input sections have completed.
5407
5408 Task_token*
5409 Write_after_input_sections_task::is_runnable()
5410 {
5411 if (this->input_sections_blocker_->is_blocked())
5412 return this->input_sections_blocker_;
5413 return NULL;
5414 }
5415
5416 // We need to unlock FINAL_BLOCKER when finished.
5417
5418 void
5419 Write_after_input_sections_task::locks(Task_locker* tl)
5420 {
5421 tl->add(this, this->final_blocker_);
5422 }
5423
5424 // Run the task.
5425
5426 void
5427 Write_after_input_sections_task::run(Workqueue*)
5428 {
5429 this->layout_->write_sections_after_input_sections(this->of_);
5430 }
5431
5432 // Close_task_runner methods.
5433
5434 // Run the task--close the file.
5435
5436 void
5437 Close_task_runner::run(Workqueue*, const Task*)
5438 {
5439 // If we need to compute a checksum for the BUILD if, we do so here.
5440 this->layout_->write_build_id(this->of_);
5441
5442 // If we've been asked to create a binary file, we do so here.
5443 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5444 this->layout_->write_binary(this->of_);
5445
5446 this->of_->close();
5447 }
5448
5449 // Instantiate the templates we need. We could use the configure
5450 // script to restrict this to only the ones for implemented targets.
5451
5452 #ifdef HAVE_TARGET_32_LITTLE
5453 template
5454 Output_section*
5455 Layout::init_fixed_output_section<32, false>(
5456 const char* name,
5457 elfcpp::Shdr<32, false>& shdr);
5458 #endif
5459
5460 #ifdef HAVE_TARGET_32_BIG
5461 template
5462 Output_section*
5463 Layout::init_fixed_output_section<32, true>(
5464 const char* name,
5465 elfcpp::Shdr<32, true>& shdr);
5466 #endif
5467
5468 #ifdef HAVE_TARGET_64_LITTLE
5469 template
5470 Output_section*
5471 Layout::init_fixed_output_section<64, false>(
5472 const char* name,
5473 elfcpp::Shdr<64, false>& shdr);
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_BIG
5477 template
5478 Output_section*
5479 Layout::init_fixed_output_section<64, true>(
5480 const char* name,
5481 elfcpp::Shdr<64, true>& shdr);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_32_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5488 unsigned int shndx,
5489 const char* name,
5490 const elfcpp::Shdr<32, false>& shdr,
5491 unsigned int, unsigned int, off_t*);
5492 #endif
5493
5494 #ifdef HAVE_TARGET_32_BIG
5495 template
5496 Output_section*
5497 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5498 unsigned int shndx,
5499 const char* name,
5500 const elfcpp::Shdr<32, true>& shdr,
5501 unsigned int, unsigned int, off_t*);
5502 #endif
5503
5504 #ifdef HAVE_TARGET_64_LITTLE
5505 template
5506 Output_section*
5507 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5508 unsigned int shndx,
5509 const char* name,
5510 const elfcpp::Shdr<64, false>& shdr,
5511 unsigned int, unsigned int, off_t*);
5512 #endif
5513
5514 #ifdef HAVE_TARGET_64_BIG
5515 template
5516 Output_section*
5517 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5518 unsigned int shndx,
5519 const char* name,
5520 const elfcpp::Shdr<64, true>& shdr,
5521 unsigned int, unsigned int, off_t*);
5522 #endif
5523
5524 #ifdef HAVE_TARGET_32_LITTLE
5525 template
5526 Output_section*
5527 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5528 unsigned int reloc_shndx,
5529 const elfcpp::Shdr<32, false>& shdr,
5530 Output_section* data_section,
5531 Relocatable_relocs* rr);
5532 #endif
5533
5534 #ifdef HAVE_TARGET_32_BIG
5535 template
5536 Output_section*
5537 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5538 unsigned int reloc_shndx,
5539 const elfcpp::Shdr<32, true>& shdr,
5540 Output_section* data_section,
5541 Relocatable_relocs* rr);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_64_LITTLE
5545 template
5546 Output_section*
5547 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5548 unsigned int reloc_shndx,
5549 const elfcpp::Shdr<64, false>& shdr,
5550 Output_section* data_section,
5551 Relocatable_relocs* rr);
5552 #endif
5553
5554 #ifdef HAVE_TARGET_64_BIG
5555 template
5556 Output_section*
5557 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5558 unsigned int reloc_shndx,
5559 const elfcpp::Shdr<64, true>& shdr,
5560 Output_section* data_section,
5561 Relocatable_relocs* rr);
5562 #endif
5563
5564 #ifdef HAVE_TARGET_32_LITTLE
5565 template
5566 void
5567 Layout::layout_group<32, false>(Symbol_table* symtab,
5568 Sized_relobj_file<32, false>* object,
5569 unsigned int,
5570 const char* group_section_name,
5571 const char* signature,
5572 const elfcpp::Shdr<32, false>& shdr,
5573 elfcpp::Elf_Word flags,
5574 std::vector<unsigned int>* shndxes);
5575 #endif
5576
5577 #ifdef HAVE_TARGET_32_BIG
5578 template
5579 void
5580 Layout::layout_group<32, true>(Symbol_table* symtab,
5581 Sized_relobj_file<32, true>* object,
5582 unsigned int,
5583 const char* group_section_name,
5584 const char* signature,
5585 const elfcpp::Shdr<32, true>& shdr,
5586 elfcpp::Elf_Word flags,
5587 std::vector<unsigned int>* shndxes);
5588 #endif
5589
5590 #ifdef HAVE_TARGET_64_LITTLE
5591 template
5592 void
5593 Layout::layout_group<64, false>(Symbol_table* symtab,
5594 Sized_relobj_file<64, false>* object,
5595 unsigned int,
5596 const char* group_section_name,
5597 const char* signature,
5598 const elfcpp::Shdr<64, false>& shdr,
5599 elfcpp::Elf_Word flags,
5600 std::vector<unsigned int>* shndxes);
5601 #endif
5602
5603 #ifdef HAVE_TARGET_64_BIG
5604 template
5605 void
5606 Layout::layout_group<64, true>(Symbol_table* symtab,
5607 Sized_relobj_file<64, true>* object,
5608 unsigned int,
5609 const char* group_section_name,
5610 const char* signature,
5611 const elfcpp::Shdr<64, true>& shdr,
5612 elfcpp::Elf_Word flags,
5613 std::vector<unsigned int>* shndxes);
5614 #endif
5615
5616 #ifdef HAVE_TARGET_32_LITTLE
5617 template
5618 Output_section*
5619 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5620 const unsigned char* symbols,
5621 off_t symbols_size,
5622 const unsigned char* symbol_names,
5623 off_t symbol_names_size,
5624 unsigned int shndx,
5625 const elfcpp::Shdr<32, false>& shdr,
5626 unsigned int reloc_shndx,
5627 unsigned int reloc_type,
5628 off_t* off);
5629 #endif
5630
5631 #ifdef HAVE_TARGET_32_BIG
5632 template
5633 Output_section*
5634 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5635 const unsigned char* symbols,
5636 off_t symbols_size,
5637 const unsigned char* symbol_names,
5638 off_t symbol_names_size,
5639 unsigned int shndx,
5640 const elfcpp::Shdr<32, true>& shdr,
5641 unsigned int reloc_shndx,
5642 unsigned int reloc_type,
5643 off_t* off);
5644 #endif
5645
5646 #ifdef HAVE_TARGET_64_LITTLE
5647 template
5648 Output_section*
5649 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5650 const unsigned char* symbols,
5651 off_t symbols_size,
5652 const unsigned char* symbol_names,
5653 off_t symbol_names_size,
5654 unsigned int shndx,
5655 const elfcpp::Shdr<64, false>& shdr,
5656 unsigned int reloc_shndx,
5657 unsigned int reloc_type,
5658 off_t* off);
5659 #endif
5660
5661 #ifdef HAVE_TARGET_64_BIG
5662 template
5663 Output_section*
5664 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5665 const unsigned char* symbols,
5666 off_t symbols_size,
5667 const unsigned char* symbol_names,
5668 off_t symbol_names_size,
5669 unsigned int shndx,
5670 const elfcpp::Shdr<64, true>& shdr,
5671 unsigned int reloc_shndx,
5672 unsigned int reloc_type,
5673 off_t* off);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_LITTLE
5677 template
5678 void
5679 Layout::add_to_gdb_index(bool is_type_unit,
5680 Sized_relobj<32, false>* object,
5681 const unsigned char* symbols,
5682 off_t symbols_size,
5683 unsigned int shndx,
5684 unsigned int reloc_shndx,
5685 unsigned int reloc_type);
5686 #endif
5687
5688 #ifdef HAVE_TARGET_32_BIG
5689 template
5690 void
5691 Layout::add_to_gdb_index(bool is_type_unit,
5692 Sized_relobj<32, true>* object,
5693 const unsigned char* symbols,
5694 off_t symbols_size,
5695 unsigned int shndx,
5696 unsigned int reloc_shndx,
5697 unsigned int reloc_type);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_64_LITTLE
5701 template
5702 void
5703 Layout::add_to_gdb_index(bool is_type_unit,
5704 Sized_relobj<64, false>* object,
5705 const unsigned char* symbols,
5706 off_t symbols_size,
5707 unsigned int shndx,
5708 unsigned int reloc_shndx,
5709 unsigned int reloc_type);
5710 #endif
5711
5712 #ifdef HAVE_TARGET_64_BIG
5713 template
5714 void
5715 Layout::add_to_gdb_index(bool is_type_unit,
5716 Sized_relobj<64, true>* object,
5717 const unsigned char* symbols,
5718 off_t symbols_size,
5719 unsigned int shndx,
5720 unsigned int reloc_shndx,
5721 unsigned int reloc_type);
5722 #endif
5723
5724 } // End namespace gold.