]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/object.cc
* object.h (class Object): Remove target_ field, and target,
[thirdparty/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42
43 namespace gold
44 {
45
46 // Class Xindex.
47
48 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
49 // section and read it in. SYMTAB_SHNDX is the index of the symbol
50 // table we care about.
51
52 template<int size, bool big_endian>
53 void
54 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
55 {
56 if (!this->symtab_xindex_.empty())
57 return;
58
59 gold_assert(symtab_shndx != 0);
60
61 // Look through the sections in reverse order, on the theory that it
62 // is more likely to be near the end than the beginning.
63 unsigned int i = object->shnum();
64 while (i > 0)
65 {
66 --i;
67 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
68 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
69 {
70 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
71 return;
72 }
73 }
74
75 object->error(_("missing SHT_SYMTAB_SHNDX section"));
76 }
77
78 // Read in the symtab_xindex_ array, given the section index of the
79 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
80 // section headers.
81
82 template<int size, bool big_endian>
83 void
84 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
85 const unsigned char* pshdrs)
86 {
87 section_size_type bytecount;
88 const unsigned char* contents;
89 if (pshdrs == NULL)
90 contents = object->section_contents(xindex_shndx, &bytecount, false);
91 else
92 {
93 const unsigned char* p = (pshdrs
94 + (xindex_shndx
95 * elfcpp::Elf_sizes<size>::shdr_size));
96 typename elfcpp::Shdr<size, big_endian> shdr(p);
97 bytecount = convert_to_section_size_type(shdr.get_sh_size());
98 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
99 }
100
101 gold_assert(this->symtab_xindex_.empty());
102 this->symtab_xindex_.reserve(bytecount / 4);
103 for (section_size_type i = 0; i < bytecount; i += 4)
104 {
105 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
106 // We preadjust the section indexes we save.
107 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
108 }
109 }
110
111 // Symbol symndx has a section of SHN_XINDEX; return the real section
112 // index.
113
114 unsigned int
115 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
116 {
117 if (symndx >= this->symtab_xindex_.size())
118 {
119 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
120 symndx);
121 return elfcpp::SHN_UNDEF;
122 }
123 unsigned int shndx = this->symtab_xindex_[symndx];
124 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
125 {
126 object->error(_("extended index for symbol %u out of range: %u"),
127 symndx, shndx);
128 return elfcpp::SHN_UNDEF;
129 }
130 return shndx;
131 }
132
133 // Class Object.
134
135 // Report an error for this object file. This is used by the
136 // elfcpp::Elf_file interface, and also called by the Object code
137 // itself.
138
139 void
140 Object::error(const char* format, ...) const
141 {
142 va_list args;
143 va_start(args, format);
144 char* buf = NULL;
145 if (vasprintf(&buf, format, args) < 0)
146 gold_nomem();
147 va_end(args);
148 gold_error(_("%s: %s"), this->name().c_str(), buf);
149 free(buf);
150 }
151
152 // Return a view of the contents of a section.
153
154 const unsigned char*
155 Object::section_contents(unsigned int shndx, section_size_type* plen,
156 bool cache)
157 {
158 Location loc(this->do_section_contents(shndx));
159 *plen = convert_to_section_size_type(loc.data_size);
160 if (*plen == 0)
161 {
162 static const unsigned char empty[1] = { '\0' };
163 return empty;
164 }
165 return this->get_view(loc.file_offset, *plen, true, cache);
166 }
167
168 // Read the section data into SD. This is code common to Sized_relobj
169 // and Sized_dynobj, so we put it into Object.
170
171 template<int size, bool big_endian>
172 void
173 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
174 Read_symbols_data* sd)
175 {
176 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
177
178 // Read the section headers.
179 const off_t shoff = elf_file->shoff();
180 const unsigned int shnum = this->shnum();
181 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
182 true, true);
183
184 // Read the section names.
185 const unsigned char* pshdrs = sd->section_headers->data();
186 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
187 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
188
189 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
190 this->error(_("section name section has wrong type: %u"),
191 static_cast<unsigned int>(shdrnames.get_sh_type()));
192
193 sd->section_names_size =
194 convert_to_section_size_type(shdrnames.get_sh_size());
195 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
196 sd->section_names_size, false,
197 false);
198 }
199
200 // If NAME is the name of a special .gnu.warning section, arrange for
201 // the warning to be issued. SHNDX is the section index. Return
202 // whether it is a warning section.
203
204 bool
205 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
206 Symbol_table* symtab)
207 {
208 const char warn_prefix[] = ".gnu.warning.";
209 const int warn_prefix_len = sizeof warn_prefix - 1;
210 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
211 {
212 // Read the section contents to get the warning text. It would
213 // be nicer if we only did this if we have to actually issue a
214 // warning. Unfortunately, warnings are issued as we relocate
215 // sections. That means that we can not lock the object then,
216 // as we might try to issue the same warning multiple times
217 // simultaneously.
218 section_size_type len;
219 const unsigned char* contents = this->section_contents(shndx, &len,
220 false);
221 if (len == 0)
222 {
223 const char* warning = name + warn_prefix_len;
224 contents = reinterpret_cast<const unsigned char*>(warning);
225 len = strlen(warning);
226 }
227 std::string warning(reinterpret_cast<const char*>(contents), len);
228 symtab->add_warning(name + warn_prefix_len, this, warning);
229 return true;
230 }
231 return false;
232 }
233
234 // Class Relobj
235
236 // To copy the symbols data read from the file to a local data structure.
237 // This function is called from do_layout only while doing garbage
238 // collection.
239
240 void
241 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
242 unsigned int section_header_size)
243 {
244 gc_sd->section_headers_data =
245 new unsigned char[(section_header_size)];
246 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
247 section_header_size);
248 gc_sd->section_names_data =
249 new unsigned char[sd->section_names_size];
250 memcpy(gc_sd->section_names_data, sd->section_names->data(),
251 sd->section_names_size);
252 gc_sd->section_names_size = sd->section_names_size;
253 if (sd->symbols != NULL)
254 {
255 gc_sd->symbols_data =
256 new unsigned char[sd->symbols_size];
257 memcpy(gc_sd->symbols_data, sd->symbols->data(),
258 sd->symbols_size);
259 }
260 else
261 {
262 gc_sd->symbols_data = NULL;
263 }
264 gc_sd->symbols_size = sd->symbols_size;
265 gc_sd->external_symbols_offset = sd->external_symbols_offset;
266 if (sd->symbol_names != NULL)
267 {
268 gc_sd->symbol_names_data =
269 new unsigned char[sd->symbol_names_size];
270 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
271 sd->symbol_names_size);
272 }
273 else
274 {
275 gc_sd->symbol_names_data = NULL;
276 }
277 gc_sd->symbol_names_size = sd->symbol_names_size;
278 }
279
280 // This function determines if a particular section name must be included
281 // in the link. This is used during garbage collection to determine the
282 // roots of the worklist.
283
284 bool
285 Relobj::is_section_name_included(const char* name)
286 {
287 if (is_prefix_of(".ctors", name)
288 || is_prefix_of(".dtors", name)
289 || is_prefix_of(".note", name)
290 || is_prefix_of(".init", name)
291 || is_prefix_of(".fini", name)
292 || is_prefix_of(".gcc_except_table", name)
293 || is_prefix_of(".jcr", name)
294 || is_prefix_of(".preinit_array", name)
295 || (is_prefix_of(".text", name)
296 && strstr(name, "personality"))
297 || (is_prefix_of(".data", name)
298 && strstr(name, "personality"))
299 || (is_prefix_of(".gnu.linkonce.d", name) &&
300 strstr(name, "personality")))
301 {
302 return true;
303 }
304 return false;
305 }
306
307 // Class Sized_relobj.
308
309 template<int size, bool big_endian>
310 Sized_relobj<size, big_endian>::Sized_relobj(
311 const std::string& name,
312 Input_file* input_file,
313 off_t offset,
314 const elfcpp::Ehdr<size, big_endian>& ehdr)
315 : Relobj(name, input_file, offset),
316 elf_file_(this, ehdr),
317 symtab_shndx_(-1U),
318 local_symbol_count_(0),
319 output_local_symbol_count_(0),
320 output_local_dynsym_count_(0),
321 symbols_(),
322 defined_count_(0),
323 local_symbol_offset_(0),
324 local_dynsym_offset_(0),
325 local_values_(),
326 local_got_offsets_(),
327 kept_comdat_sections_(),
328 has_eh_frame_(false),
329 discarded_eh_frame_shndx_(-1U)
330 {
331 }
332
333 template<int size, bool big_endian>
334 Sized_relobj<size, big_endian>::~Sized_relobj()
335 {
336 }
337
338 // Set up an object file based on the file header. This sets up the
339 // section information.
340
341 template<int size, bool big_endian>
342 void
343 Sized_relobj<size, big_endian>::setup()
344 {
345 const unsigned int shnum = this->elf_file_.shnum();
346 this->set_shnum(shnum);
347 }
348
349 // Find the SHT_SYMTAB section, given the section headers. The ELF
350 // standard says that maybe in the future there can be more than one
351 // SHT_SYMTAB section. Until somebody figures out how that could
352 // work, we assume there is only one.
353
354 template<int size, bool big_endian>
355 void
356 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
357 {
358 const unsigned int shnum = this->shnum();
359 this->symtab_shndx_ = 0;
360 if (shnum > 0)
361 {
362 // Look through the sections in reverse order, since gas tends
363 // to put the symbol table at the end.
364 const unsigned char* p = pshdrs + shnum * This::shdr_size;
365 unsigned int i = shnum;
366 unsigned int xindex_shndx = 0;
367 unsigned int xindex_link = 0;
368 while (i > 0)
369 {
370 --i;
371 p -= This::shdr_size;
372 typename This::Shdr shdr(p);
373 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
374 {
375 this->symtab_shndx_ = i;
376 if (xindex_shndx > 0 && xindex_link == i)
377 {
378 Xindex* xindex =
379 new Xindex(this->elf_file_.large_shndx_offset());
380 xindex->read_symtab_xindex<size, big_endian>(this,
381 xindex_shndx,
382 pshdrs);
383 this->set_xindex(xindex);
384 }
385 break;
386 }
387
388 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
389 // one. This will work if it follows the SHT_SYMTAB
390 // section.
391 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
392 {
393 xindex_shndx = i;
394 xindex_link = this->adjust_shndx(shdr.get_sh_link());
395 }
396 }
397 }
398 }
399
400 // Return the Xindex structure to use for object with lots of
401 // sections.
402
403 template<int size, bool big_endian>
404 Xindex*
405 Sized_relobj<size, big_endian>::do_initialize_xindex()
406 {
407 gold_assert(this->symtab_shndx_ != -1U);
408 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
409 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
410 return xindex;
411 }
412
413 // Return whether SHDR has the right type and flags to be a GNU
414 // .eh_frame section.
415
416 template<int size, bool big_endian>
417 bool
418 Sized_relobj<size, big_endian>::check_eh_frame_flags(
419 const elfcpp::Shdr<size, big_endian>* shdr) const
420 {
421 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
422 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
423 }
424
425 // Return whether there is a GNU .eh_frame section, given the section
426 // headers and the section names.
427
428 template<int size, bool big_endian>
429 bool
430 Sized_relobj<size, big_endian>::find_eh_frame(
431 const unsigned char* pshdrs,
432 const char* names,
433 section_size_type names_size) const
434 {
435 const unsigned int shnum = this->shnum();
436 const unsigned char* p = pshdrs + This::shdr_size;
437 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
438 {
439 typename This::Shdr shdr(p);
440 if (this->check_eh_frame_flags(&shdr))
441 {
442 if (shdr.get_sh_name() >= names_size)
443 {
444 this->error(_("bad section name offset for section %u: %lu"),
445 i, static_cast<unsigned long>(shdr.get_sh_name()));
446 continue;
447 }
448
449 const char* name = names + shdr.get_sh_name();
450 if (strcmp(name, ".eh_frame") == 0)
451 return true;
452 }
453 }
454 return false;
455 }
456
457 // Read the sections and symbols from an object file.
458
459 template<int size, bool big_endian>
460 void
461 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
462 {
463 this->read_section_data(&this->elf_file_, sd);
464
465 const unsigned char* const pshdrs = sd->section_headers->data();
466
467 this->find_symtab(pshdrs);
468
469 const unsigned char* namesu = sd->section_names->data();
470 const char* names = reinterpret_cast<const char*>(namesu);
471 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
472 {
473 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
474 this->has_eh_frame_ = true;
475 }
476
477 sd->symbols = NULL;
478 sd->symbols_size = 0;
479 sd->external_symbols_offset = 0;
480 sd->symbol_names = NULL;
481 sd->symbol_names_size = 0;
482
483 if (this->symtab_shndx_ == 0)
484 {
485 // No symbol table. Weird but legal.
486 return;
487 }
488
489 // Get the symbol table section header.
490 typename This::Shdr symtabshdr(pshdrs
491 + this->symtab_shndx_ * This::shdr_size);
492 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
493
494 // If this object has a .eh_frame section, we need all the symbols.
495 // Otherwise we only need the external symbols. While it would be
496 // simpler to just always read all the symbols, I've seen object
497 // files with well over 2000 local symbols, which for a 64-bit
498 // object file format is over 5 pages that we don't need to read
499 // now.
500
501 const int sym_size = This::sym_size;
502 const unsigned int loccount = symtabshdr.get_sh_info();
503 this->local_symbol_count_ = loccount;
504 this->local_values_.resize(loccount);
505 section_offset_type locsize = loccount * sym_size;
506 off_t dataoff = symtabshdr.get_sh_offset();
507 section_size_type datasize =
508 convert_to_section_size_type(symtabshdr.get_sh_size());
509 off_t extoff = dataoff + locsize;
510 section_size_type extsize = datasize - locsize;
511
512 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
513 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
514
515 if (readsize == 0)
516 {
517 // No external symbols. Also weird but also legal.
518 return;
519 }
520
521 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
522
523 // Read the section header for the symbol names.
524 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
525 if (strtab_shndx >= this->shnum())
526 {
527 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
528 return;
529 }
530 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
531 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
532 {
533 this->error(_("symbol table name section has wrong type: %u"),
534 static_cast<unsigned int>(strtabshdr.get_sh_type()));
535 return;
536 }
537
538 // Read the symbol names.
539 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
540 strtabshdr.get_sh_size(),
541 false, true);
542
543 sd->symbols = fvsymtab;
544 sd->symbols_size = readsize;
545 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
546 sd->symbol_names = fvstrtab;
547 sd->symbol_names_size =
548 convert_to_section_size_type(strtabshdr.get_sh_size());
549 }
550
551 // Return the section index of symbol SYM. Set *VALUE to its value in
552 // the object file. Set *IS_ORDINARY if this is an ordinary section
553 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
554 // Note that for a symbol which is not defined in this object file,
555 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
556 // the final value of the symbol in the link.
557
558 template<int size, bool big_endian>
559 unsigned int
560 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
561 Address* value,
562 bool* is_ordinary)
563 {
564 section_size_type symbols_size;
565 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
566 &symbols_size,
567 false);
568
569 const size_t count = symbols_size / This::sym_size;
570 gold_assert(sym < count);
571
572 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
573 *value = elfsym.get_st_value();
574
575 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
576 }
577
578 // Return whether to include a section group in the link. LAYOUT is
579 // used to keep track of which section groups we have already seen.
580 // INDEX is the index of the section group and SHDR is the section
581 // header. If we do not want to include this group, we set bits in
582 // OMIT for each section which should be discarded.
583
584 template<int size, bool big_endian>
585 bool
586 Sized_relobj<size, big_endian>::include_section_group(
587 Symbol_table* symtab,
588 Layout* layout,
589 unsigned int index,
590 const char* name,
591 const unsigned char* shdrs,
592 const char* section_names,
593 section_size_type section_names_size,
594 std::vector<bool>* omit)
595 {
596 // Read the section contents.
597 typename This::Shdr shdr(shdrs + index * This::shdr_size);
598 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
599 shdr.get_sh_size(), true, false);
600 const elfcpp::Elf_Word* pword =
601 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
602
603 // The first word contains flags. We only care about COMDAT section
604 // groups. Other section groups are always included in the link
605 // just like ordinary sections.
606 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
607
608 // Look up the group signature, which is the name of a symbol. This
609 // is a lot of effort to go to to read a string. Why didn't they
610 // just have the group signature point into the string table, rather
611 // than indirect through a symbol?
612
613 // Get the appropriate symbol table header (this will normally be
614 // the single SHT_SYMTAB section, but in principle it need not be).
615 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
616 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
617
618 // Read the symbol table entry.
619 unsigned int symndx = shdr.get_sh_info();
620 if (symndx >= symshdr.get_sh_size() / This::sym_size)
621 {
622 this->error(_("section group %u info %u out of range"),
623 index, symndx);
624 return false;
625 }
626 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
627 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
628 false);
629 elfcpp::Sym<size, big_endian> sym(psym);
630
631 // Read the symbol table names.
632 section_size_type symnamelen;
633 const unsigned char* psymnamesu;
634 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
635 &symnamelen, true);
636 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
637
638 // Get the section group signature.
639 if (sym.get_st_name() >= symnamelen)
640 {
641 this->error(_("symbol %u name offset %u out of range"),
642 symndx, sym.get_st_name());
643 return false;
644 }
645
646 std::string signature(psymnames + sym.get_st_name());
647
648 // It seems that some versions of gas will create a section group
649 // associated with a section symbol, and then fail to give a name to
650 // the section symbol. In such a case, use the name of the section.
651 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
652 {
653 bool is_ordinary;
654 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
655 sym.get_st_shndx(),
656 &is_ordinary);
657 if (!is_ordinary || sym_shndx >= this->shnum())
658 {
659 this->error(_("symbol %u invalid section index %u"),
660 symndx, sym_shndx);
661 return false;
662 }
663 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
664 if (member_shdr.get_sh_name() < section_names_size)
665 signature = section_names + member_shdr.get_sh_name();
666 }
667
668 // Record this section group in the layout, and see whether we've already
669 // seen one with the same signature.
670 bool include_group;
671 bool is_comdat;
672 Kept_section* kept_section = NULL;
673
674 if ((flags & elfcpp::GRP_COMDAT) == 0)
675 {
676 include_group = true;
677 is_comdat = false;
678 }
679 else
680 {
681 include_group = layout->find_or_add_kept_section(signature,
682 this, index, true,
683 true, &kept_section);
684 is_comdat = true;
685 }
686
687 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
688
689 std::vector<unsigned int> shndxes;
690 bool relocate_group = include_group && parameters->options().relocatable();
691 if (relocate_group)
692 shndxes.reserve(count - 1);
693
694 for (size_t i = 1; i < count; ++i)
695 {
696 elfcpp::Elf_Word shndx =
697 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
698
699 if (relocate_group)
700 shndxes.push_back(shndx);
701
702 if (shndx >= this->shnum())
703 {
704 this->error(_("section %u in section group %u out of range"),
705 shndx, index);
706 continue;
707 }
708
709 // Check for an earlier section number, since we're going to get
710 // it wrong--we may have already decided to include the section.
711 if (shndx < index)
712 this->error(_("invalid section group %u refers to earlier section %u"),
713 index, shndx);
714
715 // Get the name of the member section.
716 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
717 if (member_shdr.get_sh_name() >= section_names_size)
718 {
719 // This is an error, but it will be diagnosed eventually
720 // in do_layout, so we don't need to do anything here but
721 // ignore it.
722 continue;
723 }
724 std::string mname(section_names + member_shdr.get_sh_name());
725
726 if (include_group)
727 {
728 if (is_comdat)
729 kept_section->add_comdat_section(mname, shndx,
730 member_shdr.get_sh_size());
731 }
732 else
733 {
734 (*omit)[shndx] = true;
735
736 if (is_comdat)
737 {
738 Relobj* kept_object = kept_section->object();
739 if (kept_section->is_comdat())
740 {
741 // Find the corresponding kept section, and store
742 // that info in the discarded section table.
743 unsigned int kept_shndx;
744 uint64_t kept_size;
745 if (kept_section->find_comdat_section(mname, &kept_shndx,
746 &kept_size))
747 {
748 // We don't keep a mapping for this section if
749 // it has a different size. The mapping is only
750 // used for relocation processing, and we don't
751 // want to treat the sections as similar if the
752 // sizes are different. Checking the section
753 // size is the approach used by the GNU linker.
754 if (kept_size == member_shdr.get_sh_size())
755 this->set_kept_comdat_section(shndx, kept_object,
756 kept_shndx);
757 }
758 }
759 else
760 {
761 // The existing section is a linkonce section. Add
762 // a mapping if there is exactly one section in the
763 // group (which is true when COUNT == 2) and if it
764 // is the same size.
765 if (count == 2
766 && (kept_section->linkonce_size()
767 == member_shdr.get_sh_size()))
768 this->set_kept_comdat_section(shndx, kept_object,
769 kept_section->shndx());
770 }
771 }
772 }
773 }
774
775 if (relocate_group)
776 layout->layout_group(symtab, this, index, name, signature.c_str(),
777 shdr, flags, &shndxes);
778
779 return include_group;
780 }
781
782 // Whether to include a linkonce section in the link. NAME is the
783 // name of the section and SHDR is the section header.
784
785 // Linkonce sections are a GNU extension implemented in the original
786 // GNU linker before section groups were defined. The semantics are
787 // that we only include one linkonce section with a given name. The
788 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
789 // where T is the type of section and SYMNAME is the name of a symbol.
790 // In an attempt to make linkonce sections interact well with section
791 // groups, we try to identify SYMNAME and use it like a section group
792 // signature. We want to block section groups with that signature,
793 // but not other linkonce sections with that signature. We also use
794 // the full name of the linkonce section as a normal section group
795 // signature.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj<size, big_endian>::include_linkonce_section(
800 Layout* layout,
801 unsigned int index,
802 const char* name,
803 const elfcpp::Shdr<size, big_endian>& shdr)
804 {
805 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
806 // In general the symbol name we want will be the string following
807 // the last '.'. However, we have to handle the case of
808 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
809 // some versions of gcc. So we use a heuristic: if the name starts
810 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
811 // we look for the last '.'. We can't always simply skip
812 // ".gnu.linkonce.X", because we have to deal with cases like
813 // ".gnu.linkonce.d.rel.ro.local".
814 const char* const linkonce_t = ".gnu.linkonce.t.";
815 const char* symname;
816 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
817 symname = name + strlen(linkonce_t);
818 else
819 symname = strrchr(name, '.') + 1;
820 std::string sig1(symname);
821 std::string sig2(name);
822 Kept_section* kept1;
823 Kept_section* kept2;
824 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
825 false, &kept1);
826 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
827 true, &kept2);
828
829 if (!include2)
830 {
831 // We are not including this section because we already saw the
832 // name of the section as a signature. This normally implies
833 // that the kept section is another linkonce section. If it is
834 // the same size, record it as the section which corresponds to
835 // this one.
836 if (kept2->object() != NULL
837 && !kept2->is_comdat()
838 && kept2->linkonce_size() == sh_size)
839 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
840 }
841 else if (!include1)
842 {
843 // The section is being discarded on the basis of its symbol
844 // name. This means that the corresponding kept section was
845 // part of a comdat group, and it will be difficult to identify
846 // the specific section within that group that corresponds to
847 // this linkonce section. We'll handle the simple case where
848 // the group has only one member section. Otherwise, it's not
849 // worth the effort.
850 unsigned int kept_shndx;
851 uint64_t kept_size;
852 if (kept1->object() != NULL
853 && kept1->is_comdat()
854 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
855 && kept_size == sh_size)
856 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
857 }
858 else
859 {
860 kept1->set_linkonce_size(sh_size);
861 kept2->set_linkonce_size(sh_size);
862 }
863
864 return include1 && include2;
865 }
866
867 // Layout an input section.
868
869 template<int size, bool big_endian>
870 inline void
871 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
872 unsigned int shndx,
873 const char* name,
874 typename This::Shdr& shdr,
875 unsigned int reloc_shndx,
876 unsigned int reloc_type)
877 {
878 off_t offset;
879 Output_section* os = layout->layout(this, shndx, name, shdr,
880 reloc_shndx, reloc_type, &offset);
881
882 this->output_sections()[shndx] = os;
883 if (offset == -1)
884 this->section_offsets_[shndx] = invalid_address;
885 else
886 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
887
888 // If this section requires special handling, and if there are
889 // relocs that apply to it, then we must do the special handling
890 // before we apply the relocs.
891 if (offset == -1 && reloc_shndx != 0)
892 this->set_relocs_must_follow_section_writes();
893 }
894
895 // Lay out the input sections. We walk through the sections and check
896 // whether they should be included in the link. If they should, we
897 // pass them to the Layout object, which will return an output section
898 // and an offset.
899 // During garbage collection (--gc-sections) and identical code folding
900 // (--icf), this function is called twice. When it is called the first
901 // time, it is for setting up some sections as roots to a work-list for
902 // --gc-sections and to do comdat processing. Actual layout happens the
903 // second time around after all the relevant sections have been determined.
904 // The first time, is_worklist_ready or is_icf_ready is false. It is then
905 // set to true after the garbage collection worklist or identical code
906 // folding is processed and the relevant sections to be kept are
907 // determined. Then, this function is called again to layout the sections.
908
909 template<int size, bool big_endian>
910 void
911 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
912 Layout* layout,
913 Read_symbols_data* sd)
914 {
915 const unsigned int shnum = this->shnum();
916 bool is_gc_pass_one = ((parameters->options().gc_sections()
917 && !symtab->gc()->is_worklist_ready())
918 || (parameters->options().icf()
919 && !symtab->icf()->is_icf_ready()));
920
921 bool is_gc_pass_two = ((parameters->options().gc_sections()
922 && symtab->gc()->is_worklist_ready())
923 || (parameters->options().icf()
924 && symtab->icf()->is_icf_ready()));
925
926 bool is_gc_or_icf = (parameters->options().gc_sections()
927 || parameters->options().icf());
928
929 // Both is_gc_pass_one and is_gc_pass_two should not be true.
930 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
931
932 if (shnum == 0)
933 return;
934 Symbols_data* gc_sd = NULL;
935 if (is_gc_pass_one)
936 {
937 // During garbage collection save the symbols data to use it when
938 // re-entering this function.
939 gc_sd = new Symbols_data;
940 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
941 this->set_symbols_data(gc_sd);
942 }
943 else if (is_gc_pass_two)
944 {
945 gc_sd = this->get_symbols_data();
946 }
947
948 const unsigned char* section_headers_data = NULL;
949 section_size_type section_names_size;
950 const unsigned char* symbols_data = NULL;
951 section_size_type symbols_size;
952 section_offset_type external_symbols_offset;
953 const unsigned char* symbol_names_data = NULL;
954 section_size_type symbol_names_size;
955
956 if (is_gc_or_icf)
957 {
958 section_headers_data = gc_sd->section_headers_data;
959 section_names_size = gc_sd->section_names_size;
960 symbols_data = gc_sd->symbols_data;
961 symbols_size = gc_sd->symbols_size;
962 external_symbols_offset = gc_sd->external_symbols_offset;
963 symbol_names_data = gc_sd->symbol_names_data;
964 symbol_names_size = gc_sd->symbol_names_size;
965 }
966 else
967 {
968 section_headers_data = sd->section_headers->data();
969 section_names_size = sd->section_names_size;
970 if (sd->symbols != NULL)
971 symbols_data = sd->symbols->data();
972 symbols_size = sd->symbols_size;
973 external_symbols_offset = sd->external_symbols_offset;
974 if (sd->symbol_names != NULL)
975 symbol_names_data = sd->symbol_names->data();
976 symbol_names_size = sd->symbol_names_size;
977 }
978
979 // Get the section headers.
980 const unsigned char* shdrs = section_headers_data;
981 const unsigned char* pshdrs;
982
983 // Get the section names.
984 const unsigned char* pnamesu = (is_gc_or_icf)
985 ? gc_sd->section_names_data
986 : sd->section_names->data();
987
988 const char* pnames = reinterpret_cast<const char*>(pnamesu);
989
990 // If any input files have been claimed by plugins, we need to defer
991 // actual layout until the replacement files have arrived.
992 const bool should_defer_layout =
993 (parameters->options().has_plugins()
994 && parameters->options().plugins()->should_defer_layout());
995 unsigned int num_sections_to_defer = 0;
996
997 // For each section, record the index of the reloc section if any.
998 // Use 0 to mean that there is no reloc section, -1U to mean that
999 // there is more than one.
1000 std::vector<unsigned int> reloc_shndx(shnum, 0);
1001 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1002 // Skip the first, dummy, section.
1003 pshdrs = shdrs + This::shdr_size;
1004 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1005 {
1006 typename This::Shdr shdr(pshdrs);
1007
1008 // Count the number of sections whose layout will be deferred.
1009 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1010 ++num_sections_to_defer;
1011
1012 unsigned int sh_type = shdr.get_sh_type();
1013 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1014 {
1015 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1016 if (target_shndx == 0 || target_shndx >= shnum)
1017 {
1018 this->error(_("relocation section %u has bad info %u"),
1019 i, target_shndx);
1020 continue;
1021 }
1022
1023 if (reloc_shndx[target_shndx] != 0)
1024 reloc_shndx[target_shndx] = -1U;
1025 else
1026 {
1027 reloc_shndx[target_shndx] = i;
1028 reloc_type[target_shndx] = sh_type;
1029 }
1030 }
1031 }
1032
1033 Output_sections& out_sections(this->output_sections());
1034 std::vector<Address>& out_section_offsets(this->section_offsets_);
1035
1036 if (!is_gc_pass_two)
1037 {
1038 out_sections.resize(shnum);
1039 out_section_offsets.resize(shnum);
1040 }
1041
1042 // If we are only linking for symbols, then there is nothing else to
1043 // do here.
1044 if (this->input_file()->just_symbols())
1045 {
1046 if (!is_gc_pass_two)
1047 {
1048 delete sd->section_headers;
1049 sd->section_headers = NULL;
1050 delete sd->section_names;
1051 sd->section_names = NULL;
1052 }
1053 return;
1054 }
1055
1056 if (num_sections_to_defer > 0)
1057 {
1058 parameters->options().plugins()->add_deferred_layout_object(this);
1059 this->deferred_layout_.reserve(num_sections_to_defer);
1060 }
1061
1062 // Whether we've seen a .note.GNU-stack section.
1063 bool seen_gnu_stack = false;
1064 // The flags of a .note.GNU-stack section.
1065 uint64_t gnu_stack_flags = 0;
1066
1067 // Keep track of which sections to omit.
1068 std::vector<bool> omit(shnum, false);
1069
1070 // Keep track of reloc sections when emitting relocations.
1071 const bool relocatable = parameters->options().relocatable();
1072 const bool emit_relocs = (relocatable
1073 || parameters->options().emit_relocs());
1074 std::vector<unsigned int> reloc_sections;
1075
1076 // Keep track of .eh_frame sections.
1077 std::vector<unsigned int> eh_frame_sections;
1078
1079 // Skip the first, dummy, section.
1080 pshdrs = shdrs + This::shdr_size;
1081 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1082 {
1083 typename This::Shdr shdr(pshdrs);
1084
1085 if (shdr.get_sh_name() >= section_names_size)
1086 {
1087 this->error(_("bad section name offset for section %u: %lu"),
1088 i, static_cast<unsigned long>(shdr.get_sh_name()));
1089 return;
1090 }
1091
1092 const char* name = pnames + shdr.get_sh_name();
1093
1094 if (!is_gc_pass_two)
1095 {
1096 if (this->handle_gnu_warning_section(name, i, symtab))
1097 {
1098 if (!relocatable)
1099 omit[i] = true;
1100 }
1101
1102 // The .note.GNU-stack section is special. It gives the
1103 // protection flags that this object file requires for the stack
1104 // in memory.
1105 if (strcmp(name, ".note.GNU-stack") == 0)
1106 {
1107 seen_gnu_stack = true;
1108 gnu_stack_flags |= shdr.get_sh_flags();
1109 omit[i] = true;
1110 }
1111
1112 bool discard = omit[i];
1113 if (!discard)
1114 {
1115 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1116 {
1117 if (!this->include_section_group(symtab, layout, i, name,
1118 shdrs, pnames,
1119 section_names_size,
1120 &omit))
1121 discard = true;
1122 }
1123 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1124 && Layout::is_linkonce(name))
1125 {
1126 if (!this->include_linkonce_section(layout, i, name, shdr))
1127 discard = true;
1128 }
1129 }
1130
1131 if (discard)
1132 {
1133 // Do not include this section in the link.
1134 out_sections[i] = NULL;
1135 out_section_offsets[i] = invalid_address;
1136 continue;
1137 }
1138 }
1139
1140 if (is_gc_pass_one && parameters->options().gc_sections())
1141 {
1142 if (is_section_name_included(name)
1143 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1144 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1145 {
1146 symtab->gc()->worklist().push(Section_id(this, i));
1147 }
1148 }
1149
1150 // When doing a relocatable link we are going to copy input
1151 // reloc sections into the output. We only want to copy the
1152 // ones associated with sections which are not being discarded.
1153 // However, we don't know that yet for all sections. So save
1154 // reloc sections and process them later. Garbage collection is
1155 // not triggered when relocatable code is desired.
1156 if (emit_relocs
1157 && (shdr.get_sh_type() == elfcpp::SHT_REL
1158 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1159 {
1160 reloc_sections.push_back(i);
1161 continue;
1162 }
1163
1164 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1165 continue;
1166
1167 // The .eh_frame section is special. It holds exception frame
1168 // information that we need to read in order to generate the
1169 // exception frame header. We process these after all the other
1170 // sections so that the exception frame reader can reliably
1171 // determine which sections are being discarded, and discard the
1172 // corresponding information.
1173 if (!relocatable
1174 && strcmp(name, ".eh_frame") == 0
1175 && this->check_eh_frame_flags(&shdr))
1176 {
1177 if (is_gc_pass_one)
1178 {
1179 out_sections[i] = reinterpret_cast<Output_section*>(1);
1180 out_section_offsets[i] = invalid_address;
1181 }
1182 else
1183 eh_frame_sections.push_back(i);
1184 continue;
1185 }
1186
1187 if (is_gc_pass_two && parameters->options().gc_sections())
1188 {
1189 // This is executed during the second pass of garbage
1190 // collection. do_layout has been called before and some
1191 // sections have been already discarded. Simply ignore
1192 // such sections this time around.
1193 if (out_sections[i] == NULL)
1194 {
1195 gold_assert(out_section_offsets[i] == invalid_address);
1196 continue;
1197 }
1198 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1199 && symtab->gc()->is_section_garbage(this, i))
1200 {
1201 if (parameters->options().print_gc_sections())
1202 gold_info(_("%s: removing unused section from '%s'"
1203 " in file '%s'"),
1204 program_name, this->section_name(i).c_str(),
1205 this->name().c_str());
1206 out_sections[i] = NULL;
1207 out_section_offsets[i] = invalid_address;
1208 continue;
1209 }
1210 }
1211
1212 if (is_gc_pass_two && parameters->options().icf())
1213 {
1214 if (out_sections[i] == NULL)
1215 {
1216 gold_assert(out_section_offsets[i] == invalid_address);
1217 continue;
1218 }
1219 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1220 && symtab->icf()->is_section_folded(this, i))
1221 {
1222 if (parameters->options().print_icf_sections())
1223 {
1224 Section_id folded =
1225 symtab->icf()->get_folded_section(this, i);
1226 Relobj* folded_obj =
1227 reinterpret_cast<Relobj*>(folded.first);
1228 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1229 "into '%s' in file '%s'"),
1230 program_name, this->section_name(i).c_str(),
1231 this->name().c_str(),
1232 folded_obj->section_name(folded.second).c_str(),
1233 folded_obj->name().c_str());
1234 }
1235 out_sections[i] = NULL;
1236 out_section_offsets[i] = invalid_address;
1237 continue;
1238 }
1239 }
1240
1241 // Defer layout here if input files are claimed by plugins. When gc
1242 // is turned on this function is called twice. For the second call
1243 // should_defer_layout should be false.
1244 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1245 {
1246 gold_assert(!is_gc_pass_two);
1247 this->deferred_layout_.push_back(Deferred_layout(i, name,
1248 pshdrs,
1249 reloc_shndx[i],
1250 reloc_type[i]));
1251 // Put dummy values here; real values will be supplied by
1252 // do_layout_deferred_sections.
1253 out_sections[i] = reinterpret_cast<Output_section*>(2);
1254 out_section_offsets[i] = invalid_address;
1255 continue;
1256 }
1257
1258 // During gc_pass_two if a section that was previously deferred is
1259 // found, do not layout the section as layout_deferred_sections will
1260 // do it later from gold.cc.
1261 if (is_gc_pass_two
1262 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1263 continue;
1264
1265 if (is_gc_pass_one)
1266 {
1267 // This is during garbage collection. The out_sections are
1268 // assigned in the second call to this function.
1269 out_sections[i] = reinterpret_cast<Output_section*>(1);
1270 out_section_offsets[i] = invalid_address;
1271 }
1272 else
1273 {
1274 // When garbage collection is switched on the actual layout
1275 // only happens in the second call.
1276 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1277 reloc_type[i]);
1278 }
1279 }
1280
1281 if (!is_gc_pass_one)
1282 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1283
1284 // When doing a relocatable link handle the reloc sections at the
1285 // end. Garbage collection and Identical Code Folding is not
1286 // turned on for relocatable code.
1287 if (emit_relocs)
1288 this->size_relocatable_relocs();
1289
1290 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1291
1292 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1293 p != reloc_sections.end();
1294 ++p)
1295 {
1296 unsigned int i = *p;
1297 const unsigned char* pshdr;
1298 pshdr = section_headers_data + i * This::shdr_size;
1299 typename This::Shdr shdr(pshdr);
1300
1301 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1302 if (data_shndx >= shnum)
1303 {
1304 // We already warned about this above.
1305 continue;
1306 }
1307
1308 Output_section* data_section = out_sections[data_shndx];
1309 if (data_section == NULL)
1310 {
1311 out_sections[i] = NULL;
1312 out_section_offsets[i] = invalid_address;
1313 continue;
1314 }
1315
1316 Relocatable_relocs* rr = new Relocatable_relocs();
1317 this->set_relocatable_relocs(i, rr);
1318
1319 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1320 rr);
1321 out_sections[i] = os;
1322 out_section_offsets[i] = invalid_address;
1323 }
1324
1325 // Handle the .eh_frame sections at the end.
1326 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1327 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1328 p != eh_frame_sections.end();
1329 ++p)
1330 {
1331 gold_assert(this->has_eh_frame_);
1332 gold_assert(external_symbols_offset != 0);
1333
1334 unsigned int i = *p;
1335 const unsigned char *pshdr;
1336 pshdr = section_headers_data + i * This::shdr_size;
1337 typename This::Shdr shdr(pshdr);
1338
1339 off_t offset;
1340 Output_section* os = layout->layout_eh_frame(this,
1341 symbols_data,
1342 symbols_size,
1343 symbol_names_data,
1344 symbol_names_size,
1345 i, shdr,
1346 reloc_shndx[i],
1347 reloc_type[i],
1348 &offset);
1349 out_sections[i] = os;
1350 if (offset == -1)
1351 {
1352 // An object can contain at most one section holding exception
1353 // frame information.
1354 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1355 this->discarded_eh_frame_shndx_ = i;
1356 out_section_offsets[i] = invalid_address;
1357 }
1358 else
1359 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1360
1361 // If this section requires special handling, and if there are
1362 // relocs that apply to it, then we must do the special handling
1363 // before we apply the relocs.
1364 if (offset == -1 && reloc_shndx[i] != 0)
1365 this->set_relocs_must_follow_section_writes();
1366 }
1367
1368 if (is_gc_pass_two)
1369 {
1370 delete[] gc_sd->section_headers_data;
1371 delete[] gc_sd->section_names_data;
1372 delete[] gc_sd->symbols_data;
1373 delete[] gc_sd->symbol_names_data;
1374 this->set_symbols_data(NULL);
1375 }
1376 else
1377 {
1378 delete sd->section_headers;
1379 sd->section_headers = NULL;
1380 delete sd->section_names;
1381 sd->section_names = NULL;
1382 }
1383 }
1384
1385 // Layout sections whose layout was deferred while waiting for
1386 // input files from a plugin.
1387
1388 template<int size, bool big_endian>
1389 void
1390 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1391 {
1392 typename std::vector<Deferred_layout>::iterator deferred;
1393
1394 for (deferred = this->deferred_layout_.begin();
1395 deferred != this->deferred_layout_.end();
1396 ++deferred)
1397 {
1398 typename This::Shdr shdr(deferred->shdr_data_);
1399 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1400 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1401 }
1402
1403 this->deferred_layout_.clear();
1404 }
1405
1406 // Add the symbols to the symbol table.
1407
1408 template<int size, bool big_endian>
1409 void
1410 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1411 Read_symbols_data* sd,
1412 Layout*)
1413 {
1414 if (sd->symbols == NULL)
1415 {
1416 gold_assert(sd->symbol_names == NULL);
1417 return;
1418 }
1419
1420 const int sym_size = This::sym_size;
1421 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1422 / sym_size);
1423 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1424 {
1425 this->error(_("size of symbols is not multiple of symbol size"));
1426 return;
1427 }
1428
1429 this->symbols_.resize(symcount);
1430
1431 const char* sym_names =
1432 reinterpret_cast<const char*>(sd->symbol_names->data());
1433 symtab->add_from_relobj(this,
1434 sd->symbols->data() + sd->external_symbols_offset,
1435 symcount, this->local_symbol_count_,
1436 sym_names, sd->symbol_names_size,
1437 &this->symbols_,
1438 &this->defined_count_);
1439
1440 delete sd->symbols;
1441 sd->symbols = NULL;
1442 delete sd->symbol_names;
1443 sd->symbol_names = NULL;
1444 }
1445
1446 // First pass over the local symbols. Here we add their names to
1447 // *POOL and *DYNPOOL, and we store the symbol value in
1448 // THIS->LOCAL_VALUES_. This function is always called from a
1449 // singleton thread. This is followed by a call to
1450 // finalize_local_symbols.
1451
1452 template<int size, bool big_endian>
1453 void
1454 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1455 Stringpool* dynpool)
1456 {
1457 gold_assert(this->symtab_shndx_ != -1U);
1458 if (this->symtab_shndx_ == 0)
1459 {
1460 // This object has no symbols. Weird but legal.
1461 return;
1462 }
1463
1464 // Read the symbol table section header.
1465 const unsigned int symtab_shndx = this->symtab_shndx_;
1466 typename This::Shdr symtabshdr(this,
1467 this->elf_file_.section_header(symtab_shndx));
1468 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1469
1470 // Read the local symbols.
1471 const int sym_size = This::sym_size;
1472 const unsigned int loccount = this->local_symbol_count_;
1473 gold_assert(loccount == symtabshdr.get_sh_info());
1474 off_t locsize = loccount * sym_size;
1475 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1476 locsize, true, true);
1477
1478 // Read the symbol names.
1479 const unsigned int strtab_shndx =
1480 this->adjust_shndx(symtabshdr.get_sh_link());
1481 section_size_type strtab_size;
1482 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1483 &strtab_size,
1484 true);
1485 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1486
1487 // Loop over the local symbols.
1488
1489 const Output_sections& out_sections(this->output_sections());
1490 unsigned int shnum = this->shnum();
1491 unsigned int count = 0;
1492 unsigned int dyncount = 0;
1493 // Skip the first, dummy, symbol.
1494 psyms += sym_size;
1495 bool discard_locals = parameters->options().discard_locals();
1496 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1497 {
1498 elfcpp::Sym<size, big_endian> sym(psyms);
1499
1500 Symbol_value<size>& lv(this->local_values_[i]);
1501
1502 bool is_ordinary;
1503 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1504 &is_ordinary);
1505 lv.set_input_shndx(shndx, is_ordinary);
1506
1507 if (sym.get_st_type() == elfcpp::STT_SECTION)
1508 lv.set_is_section_symbol();
1509 else if (sym.get_st_type() == elfcpp::STT_TLS)
1510 lv.set_is_tls_symbol();
1511
1512 // Save the input symbol value for use in do_finalize_local_symbols().
1513 lv.set_input_value(sym.get_st_value());
1514
1515 // Decide whether this symbol should go into the output file.
1516
1517 if ((shndx < shnum && out_sections[shndx] == NULL)
1518 || (shndx == this->discarded_eh_frame_shndx_))
1519 {
1520 lv.set_no_output_symtab_entry();
1521 gold_assert(!lv.needs_output_dynsym_entry());
1522 continue;
1523 }
1524
1525 if (sym.get_st_type() == elfcpp::STT_SECTION)
1526 {
1527 lv.set_no_output_symtab_entry();
1528 gold_assert(!lv.needs_output_dynsym_entry());
1529 continue;
1530 }
1531
1532 if (sym.get_st_name() >= strtab_size)
1533 {
1534 this->error(_("local symbol %u section name out of range: %u >= %u"),
1535 i, sym.get_st_name(),
1536 static_cast<unsigned int>(strtab_size));
1537 lv.set_no_output_symtab_entry();
1538 continue;
1539 }
1540
1541 // If --discard-locals option is used, discard all temporary local
1542 // symbols. These symbols start with system-specific local label
1543 // prefixes, typically .L for ELF system. We want to be compatible
1544 // with GNU ld so here we essentially use the same check in
1545 // bfd_is_local_label(). The code is different because we already
1546 // know that:
1547 //
1548 // - the symbol is local and thus cannot have global or weak binding.
1549 // - the symbol is not a section symbol.
1550 // - the symbol has a name.
1551 //
1552 // We do not discard a symbol if it needs a dynamic symbol entry.
1553 const char* name = pnames + sym.get_st_name();
1554 if (discard_locals
1555 && sym.get_st_type() != elfcpp::STT_FILE
1556 && !lv.needs_output_dynsym_entry()
1557 && parameters->target().is_local_label_name(name))
1558 {
1559 lv.set_no_output_symtab_entry();
1560 continue;
1561 }
1562
1563 // Discard the local symbol if -retain_symbols_file is specified
1564 // and the local symbol is not in that file.
1565 if (!parameters->options().should_retain_symbol(name))
1566 {
1567 lv.set_no_output_symtab_entry();
1568 continue;
1569 }
1570
1571 // Add the symbol to the symbol table string pool.
1572 pool->add(name, true, NULL);
1573 ++count;
1574
1575 // If needed, add the symbol to the dynamic symbol table string pool.
1576 if (lv.needs_output_dynsym_entry())
1577 {
1578 dynpool->add(name, true, NULL);
1579 ++dyncount;
1580 }
1581 }
1582
1583 this->output_local_symbol_count_ = count;
1584 this->output_local_dynsym_count_ = dyncount;
1585 }
1586
1587 // Finalize the local symbols. Here we set the final value in
1588 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1589 // This function is always called from a singleton thread. The actual
1590 // output of the local symbols will occur in a separate task.
1591
1592 template<int size, bool big_endian>
1593 unsigned int
1594 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1595 off_t off,
1596 Symbol_table* symtab)
1597 {
1598 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1599
1600 const unsigned int loccount = this->local_symbol_count_;
1601 this->local_symbol_offset_ = off;
1602
1603 const bool relocatable = parameters->options().relocatable();
1604 const Output_sections& out_sections(this->output_sections());
1605 const std::vector<Address>& out_offsets(this->section_offsets_);
1606 unsigned int shnum = this->shnum();
1607
1608 for (unsigned int i = 1; i < loccount; ++i)
1609 {
1610 Symbol_value<size>& lv(this->local_values_[i]);
1611
1612 bool is_ordinary;
1613 unsigned int shndx = lv.input_shndx(&is_ordinary);
1614
1615 // Set the output symbol value.
1616
1617 if (!is_ordinary)
1618 {
1619 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1620 lv.set_output_value(lv.input_value());
1621 else
1622 {
1623 this->error(_("unknown section index %u for local symbol %u"),
1624 shndx, i);
1625 lv.set_output_value(0);
1626 }
1627 }
1628 else
1629 {
1630 if (shndx >= shnum)
1631 {
1632 this->error(_("local symbol %u section index %u out of range"),
1633 i, shndx);
1634 shndx = 0;
1635 }
1636
1637 Output_section* os = out_sections[shndx];
1638 Address secoffset = out_offsets[shndx];
1639 if (symtab->is_section_folded(this, shndx))
1640 {
1641 gold_assert (os == NULL && secoffset == invalid_address);
1642 // Get the os of the section it is folded onto.
1643 Section_id folded = symtab->icf()->get_folded_section(this,
1644 shndx);
1645 gold_assert(folded.first != NULL);
1646 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1647 <Sized_relobj<size, big_endian>*>(folded.first);
1648 os = folded_obj->output_section(folded.second);
1649 gold_assert(os != NULL);
1650 secoffset = folded_obj->get_output_section_offset(folded.second);
1651 gold_assert(secoffset != invalid_address);
1652 }
1653
1654 if (os == NULL)
1655 {
1656 // This local symbol belongs to a section we are discarding.
1657 // In some cases when applying relocations later, we will
1658 // attempt to match it to the corresponding kept section,
1659 // so we leave the input value unchanged here.
1660 continue;
1661 }
1662 else if (secoffset == invalid_address)
1663 {
1664 uint64_t start;
1665
1666 // This is a SHF_MERGE section or one which otherwise
1667 // requires special handling.
1668 if (shndx == this->discarded_eh_frame_shndx_)
1669 {
1670 // This local symbol belongs to a discarded .eh_frame
1671 // section. Just treat it like the case in which
1672 // os == NULL above.
1673 gold_assert(this->has_eh_frame_);
1674 continue;
1675 }
1676 else if (!lv.is_section_symbol())
1677 {
1678 // This is not a section symbol. We can determine
1679 // the final value now.
1680 lv.set_output_value(os->output_address(this, shndx,
1681 lv.input_value()));
1682 }
1683 else if (!os->find_starting_output_address(this, shndx, &start))
1684 {
1685 // This is a section symbol, but apparently not one
1686 // in a merged section. Just use the start of the
1687 // output section. This happens with relocatable
1688 // links when the input object has section symbols
1689 // for arbitrary non-merge sections.
1690 lv.set_output_value(os->address());
1691 }
1692 else
1693 {
1694 // We have to consider the addend to determine the
1695 // value to use in a relocation. START is the start
1696 // of this input section.
1697 Merged_symbol_value<size>* msv =
1698 new Merged_symbol_value<size>(lv.input_value(), start);
1699 lv.set_merged_symbol_value(msv);
1700 }
1701 }
1702 else if (lv.is_tls_symbol())
1703 lv.set_output_value(os->tls_offset()
1704 + secoffset
1705 + lv.input_value());
1706 else
1707 lv.set_output_value((relocatable ? 0 : os->address())
1708 + secoffset
1709 + lv.input_value());
1710 }
1711
1712 if (lv.needs_output_symtab_entry())
1713 {
1714 lv.set_output_symtab_index(index);
1715 ++index;
1716 }
1717 }
1718 return index;
1719 }
1720
1721 // Set the output dynamic symbol table indexes for the local variables.
1722
1723 template<int size, bool big_endian>
1724 unsigned int
1725 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1726 {
1727 const unsigned int loccount = this->local_symbol_count_;
1728 for (unsigned int i = 1; i < loccount; ++i)
1729 {
1730 Symbol_value<size>& lv(this->local_values_[i]);
1731 if (lv.needs_output_dynsym_entry())
1732 {
1733 lv.set_output_dynsym_index(index);
1734 ++index;
1735 }
1736 }
1737 return index;
1738 }
1739
1740 // Set the offset where local dynamic symbol information will be stored.
1741 // Returns the count of local symbols contributed to the symbol table by
1742 // this object.
1743
1744 template<int size, bool big_endian>
1745 unsigned int
1746 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1747 {
1748 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1749 this->local_dynsym_offset_ = off;
1750 return this->output_local_dynsym_count_;
1751 }
1752
1753 // If Symbols_data is not NULL get the section flags from here otherwise
1754 // get it from the file.
1755
1756 template<int size, bool big_endian>
1757 uint64_t
1758 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
1759 {
1760 Symbols_data* sd = this->get_symbols_data();
1761 if (sd != NULL)
1762 {
1763 const unsigned char* pshdrs = sd->section_headers_data
1764 + This::shdr_size * shndx;
1765 typename This::Shdr shdr(pshdrs);
1766 return shdr.get_sh_flags();
1767 }
1768 // If sd is NULL, read the section header from the file.
1769 return this->elf_file_.section_flags(shndx);
1770 }
1771
1772 // Get the section's ent size from Symbols_data. Called by get_section_contents
1773 // in icf.cc
1774
1775 template<int size, bool big_endian>
1776 uint64_t
1777 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
1778 {
1779 Symbols_data* sd = this->get_symbols_data();
1780 gold_assert (sd != NULL);
1781
1782 const unsigned char* pshdrs = sd->section_headers_data
1783 + This::shdr_size * shndx;
1784 typename This::Shdr shdr(pshdrs);
1785 return shdr.get_sh_entsize();
1786 }
1787
1788
1789 // Write out the local symbols.
1790
1791 template<int size, bool big_endian>
1792 void
1793 Sized_relobj<size, big_endian>::write_local_symbols(
1794 Output_file* of,
1795 const Stringpool* sympool,
1796 const Stringpool* dynpool,
1797 Output_symtab_xindex* symtab_xindex,
1798 Output_symtab_xindex* dynsym_xindex)
1799 {
1800 const bool strip_all = parameters->options().strip_all();
1801 if (strip_all)
1802 {
1803 if (this->output_local_dynsym_count_ == 0)
1804 return;
1805 this->output_local_symbol_count_ = 0;
1806 }
1807
1808 gold_assert(this->symtab_shndx_ != -1U);
1809 if (this->symtab_shndx_ == 0)
1810 {
1811 // This object has no symbols. Weird but legal.
1812 return;
1813 }
1814
1815 // Read the symbol table section header.
1816 const unsigned int symtab_shndx = this->symtab_shndx_;
1817 typename This::Shdr symtabshdr(this,
1818 this->elf_file_.section_header(symtab_shndx));
1819 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1820 const unsigned int loccount = this->local_symbol_count_;
1821 gold_assert(loccount == symtabshdr.get_sh_info());
1822
1823 // Read the local symbols.
1824 const int sym_size = This::sym_size;
1825 off_t locsize = loccount * sym_size;
1826 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1827 locsize, true, false);
1828
1829 // Read the symbol names.
1830 const unsigned int strtab_shndx =
1831 this->adjust_shndx(symtabshdr.get_sh_link());
1832 section_size_type strtab_size;
1833 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1834 &strtab_size,
1835 false);
1836 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1837
1838 // Get views into the output file for the portions of the symbol table
1839 // and the dynamic symbol table that we will be writing.
1840 off_t output_size = this->output_local_symbol_count_ * sym_size;
1841 unsigned char* oview = NULL;
1842 if (output_size > 0)
1843 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1844
1845 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1846 unsigned char* dyn_oview = NULL;
1847 if (dyn_output_size > 0)
1848 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1849 dyn_output_size);
1850
1851 const Output_sections out_sections(this->output_sections());
1852
1853 gold_assert(this->local_values_.size() == loccount);
1854
1855 unsigned char* ov = oview;
1856 unsigned char* dyn_ov = dyn_oview;
1857 psyms += sym_size;
1858 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1859 {
1860 elfcpp::Sym<size, big_endian> isym(psyms);
1861
1862 Symbol_value<size>& lv(this->local_values_[i]);
1863
1864 bool is_ordinary;
1865 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1866 &is_ordinary);
1867 if (is_ordinary)
1868 {
1869 gold_assert(st_shndx < out_sections.size());
1870 if (out_sections[st_shndx] == NULL)
1871 continue;
1872 st_shndx = out_sections[st_shndx]->out_shndx();
1873 if (st_shndx >= elfcpp::SHN_LORESERVE)
1874 {
1875 if (lv.needs_output_symtab_entry() && !strip_all)
1876 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1877 if (lv.needs_output_dynsym_entry())
1878 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1879 st_shndx = elfcpp::SHN_XINDEX;
1880 }
1881 }
1882
1883 // Write the symbol to the output symbol table.
1884 if (!strip_all && lv.needs_output_symtab_entry())
1885 {
1886 elfcpp::Sym_write<size, big_endian> osym(ov);
1887
1888 gold_assert(isym.get_st_name() < strtab_size);
1889 const char* name = pnames + isym.get_st_name();
1890 osym.put_st_name(sympool->get_offset(name));
1891 osym.put_st_value(this->local_values_[i].value(this, 0));
1892 osym.put_st_size(isym.get_st_size());
1893 osym.put_st_info(isym.get_st_info());
1894 osym.put_st_other(isym.get_st_other());
1895 osym.put_st_shndx(st_shndx);
1896
1897 ov += sym_size;
1898 }
1899
1900 // Write the symbol to the output dynamic symbol table.
1901 if (lv.needs_output_dynsym_entry())
1902 {
1903 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1904 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1905
1906 gold_assert(isym.get_st_name() < strtab_size);
1907 const char* name = pnames + isym.get_st_name();
1908 osym.put_st_name(dynpool->get_offset(name));
1909 osym.put_st_value(this->local_values_[i].value(this, 0));
1910 osym.put_st_size(isym.get_st_size());
1911 osym.put_st_info(isym.get_st_info());
1912 osym.put_st_other(isym.get_st_other());
1913 osym.put_st_shndx(st_shndx);
1914
1915 dyn_ov += sym_size;
1916 }
1917 }
1918
1919
1920 if (output_size > 0)
1921 {
1922 gold_assert(ov - oview == output_size);
1923 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1924 }
1925
1926 if (dyn_output_size > 0)
1927 {
1928 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1929 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1930 dyn_oview);
1931 }
1932 }
1933
1934 // Set *INFO to symbolic information about the offset OFFSET in the
1935 // section SHNDX. Return true if we found something, false if we
1936 // found nothing.
1937
1938 template<int size, bool big_endian>
1939 bool
1940 Sized_relobj<size, big_endian>::get_symbol_location_info(
1941 unsigned int shndx,
1942 off_t offset,
1943 Symbol_location_info* info)
1944 {
1945 if (this->symtab_shndx_ == 0)
1946 return false;
1947
1948 section_size_type symbols_size;
1949 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1950 &symbols_size,
1951 false);
1952
1953 unsigned int symbol_names_shndx =
1954 this->adjust_shndx(this->section_link(this->symtab_shndx_));
1955 section_size_type names_size;
1956 const unsigned char* symbol_names_u =
1957 this->section_contents(symbol_names_shndx, &names_size, false);
1958 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1959
1960 const int sym_size = This::sym_size;
1961 const size_t count = symbols_size / sym_size;
1962
1963 const unsigned char* p = symbols;
1964 for (size_t i = 0; i < count; ++i, p += sym_size)
1965 {
1966 elfcpp::Sym<size, big_endian> sym(p);
1967
1968 if (sym.get_st_type() == elfcpp::STT_FILE)
1969 {
1970 if (sym.get_st_name() >= names_size)
1971 info->source_file = "(invalid)";
1972 else
1973 info->source_file = symbol_names + sym.get_st_name();
1974 continue;
1975 }
1976
1977 bool is_ordinary;
1978 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1979 &is_ordinary);
1980 if (is_ordinary
1981 && st_shndx == shndx
1982 && static_cast<off_t>(sym.get_st_value()) <= offset
1983 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1984 > offset))
1985 {
1986 if (sym.get_st_name() > names_size)
1987 info->enclosing_symbol_name = "(invalid)";
1988 else
1989 {
1990 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1991 if (parameters->options().do_demangle())
1992 {
1993 char* demangled_name = cplus_demangle(
1994 info->enclosing_symbol_name.c_str(),
1995 DMGL_ANSI | DMGL_PARAMS);
1996 if (demangled_name != NULL)
1997 {
1998 info->enclosing_symbol_name.assign(demangled_name);
1999 free(demangled_name);
2000 }
2001 }
2002 }
2003 return true;
2004 }
2005 }
2006
2007 return false;
2008 }
2009
2010 // Look for a kept section corresponding to the given discarded section,
2011 // and return its output address. This is used only for relocations in
2012 // debugging sections. If we can't find the kept section, return 0.
2013
2014 template<int size, bool big_endian>
2015 typename Sized_relobj<size, big_endian>::Address
2016 Sized_relobj<size, big_endian>::map_to_kept_section(
2017 unsigned int shndx,
2018 bool* found) const
2019 {
2020 Relobj* kept_object;
2021 unsigned int kept_shndx;
2022 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2023 {
2024 Sized_relobj<size, big_endian>* kept_relobj =
2025 static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2026 Output_section* os = kept_relobj->output_section(kept_shndx);
2027 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2028 if (os != NULL && offset != invalid_address)
2029 {
2030 *found = true;
2031 return os->address() + offset;
2032 }
2033 }
2034 *found = false;
2035 return 0;
2036 }
2037
2038 // Get symbol counts.
2039
2040 template<int size, bool big_endian>
2041 void
2042 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2043 const Symbol_table*,
2044 size_t* defined,
2045 size_t* used) const
2046 {
2047 *defined = this->defined_count_;
2048 size_t count = 0;
2049 for (Symbols::const_iterator p = this->symbols_.begin();
2050 p != this->symbols_.end();
2051 ++p)
2052 if (*p != NULL
2053 && (*p)->source() == Symbol::FROM_OBJECT
2054 && (*p)->object() == this
2055 && (*p)->is_defined())
2056 ++count;
2057 *used = count;
2058 }
2059
2060 // Input_objects methods.
2061
2062 // Add a regular relocatable object to the list. Return false if this
2063 // object should be ignored.
2064
2065 bool
2066 Input_objects::add_object(Object* obj)
2067 {
2068 // Print the filename if the -t/--trace option is selected.
2069 if (parameters->options().trace())
2070 gold_info("%s", obj->name().c_str());
2071
2072 if (!obj->is_dynamic())
2073 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2074 else
2075 {
2076 // See if this is a duplicate SONAME.
2077 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2078 const char* soname = dynobj->soname();
2079
2080 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2081 this->sonames_.insert(soname);
2082 if (!ins.second)
2083 {
2084 // We have already seen a dynamic object with this soname.
2085 return false;
2086 }
2087
2088 this->dynobj_list_.push_back(dynobj);
2089 }
2090
2091 // Add this object to the cross-referencer if requested.
2092 if (parameters->options().user_set_print_symbol_counts())
2093 {
2094 if (this->cref_ == NULL)
2095 this->cref_ = new Cref();
2096 this->cref_->add_object(obj);
2097 }
2098
2099 return true;
2100 }
2101
2102 // For each dynamic object, record whether we've seen all of its
2103 // explicit dependencies.
2104
2105 void
2106 Input_objects::check_dynamic_dependencies() const
2107 {
2108 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2109 p != this->dynobj_list_.end();
2110 ++p)
2111 {
2112 const Dynobj::Needed& needed((*p)->needed());
2113 bool found_all = true;
2114 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
2115 pneeded != needed.end();
2116 ++pneeded)
2117 {
2118 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2119 {
2120 found_all = false;
2121 break;
2122 }
2123 }
2124 (*p)->set_has_unknown_needed_entries(!found_all);
2125 }
2126 }
2127
2128 // Start processing an archive.
2129
2130 void
2131 Input_objects::archive_start(Archive* archive)
2132 {
2133 if (parameters->options().user_set_print_symbol_counts())
2134 {
2135 if (this->cref_ == NULL)
2136 this->cref_ = new Cref();
2137 this->cref_->add_archive_start(archive);
2138 }
2139 }
2140
2141 // Stop processing an archive.
2142
2143 void
2144 Input_objects::archive_stop(Archive* archive)
2145 {
2146 if (parameters->options().user_set_print_symbol_counts())
2147 this->cref_->add_archive_stop(archive);
2148 }
2149
2150 // Print symbol counts
2151
2152 void
2153 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2154 {
2155 if (parameters->options().user_set_print_symbol_counts()
2156 && this->cref_ != NULL)
2157 this->cref_->print_symbol_counts(symtab);
2158 }
2159
2160 // Relocate_info methods.
2161
2162 // Return a string describing the location of a relocation. This is
2163 // only used in error messages.
2164
2165 template<int size, bool big_endian>
2166 std::string
2167 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2168 {
2169 // See if we can get line-number information from debugging sections.
2170 std::string filename;
2171 std::string file_and_lineno; // Better than filename-only, if available.
2172
2173 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2174 // This will be "" if we failed to parse the debug info for any reason.
2175 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2176
2177 std::string ret(this->object->name());
2178 ret += ':';
2179 Symbol_location_info info;
2180 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2181 {
2182 ret += " in function ";
2183 ret += info.enclosing_symbol_name;
2184 ret += ":";
2185 filename = info.source_file;
2186 }
2187
2188 if (!file_and_lineno.empty())
2189 ret += file_and_lineno;
2190 else
2191 {
2192 if (!filename.empty())
2193 ret += filename;
2194 ret += "(";
2195 ret += this->object->section_name(this->data_shndx);
2196 char buf[100];
2197 // Offsets into sections have to be positive.
2198 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2199 ret += buf;
2200 ret += ")";
2201 }
2202 return ret;
2203 }
2204
2205 } // End namespace gold.
2206
2207 namespace
2208 {
2209
2210 using namespace gold;
2211
2212 // Read an ELF file with the header and return the appropriate
2213 // instance of Object.
2214
2215 template<int size, bool big_endian>
2216 Object*
2217 make_elf_sized_object(const std::string& name, Input_file* input_file,
2218 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2219 bool* punconfigured)
2220 {
2221 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2222 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2223 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2224 if (target == NULL)
2225 gold_fatal(_("%s: unsupported ELF machine number %d"),
2226 name.c_str(), ehdr.get_e_machine());
2227
2228 if (!parameters->target_valid())
2229 set_parameters_target(target);
2230 else if (target != &parameters->target())
2231 {
2232 if (punconfigured != NULL)
2233 *punconfigured = true;
2234 else
2235 gold_error(_("%s: incompatible target"), name.c_str());
2236 return NULL;
2237 }
2238
2239 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2240 ehdr);
2241 }
2242
2243 } // End anonymous namespace.
2244
2245 namespace gold
2246 {
2247
2248 // Return whether INPUT_FILE is an ELF object.
2249
2250 bool
2251 is_elf_object(Input_file* input_file, off_t offset,
2252 const unsigned char** start, int *read_size)
2253 {
2254 off_t filesize = input_file->file().filesize();
2255 int want = elfcpp::Elf_sizes<64>::ehdr_size;
2256 if (filesize - offset < want)
2257 want = filesize - offset;
2258
2259 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2260 true, false);
2261 *start = p;
2262 *read_size = want;
2263
2264 if (want < 4)
2265 return false;
2266
2267 static unsigned char elfmagic[4] =
2268 {
2269 elfcpp::ELFMAG0, elfcpp::ELFMAG1,
2270 elfcpp::ELFMAG2, elfcpp::ELFMAG3
2271 };
2272 return memcmp(p, elfmagic, 4) == 0;
2273 }
2274
2275 // Read an ELF file and return the appropriate instance of Object.
2276
2277 Object*
2278 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2279 const unsigned char* p, section_offset_type bytes,
2280 bool* punconfigured)
2281 {
2282 if (punconfigured != NULL)
2283 *punconfigured = false;
2284
2285 if (bytes < elfcpp::EI_NIDENT)
2286 {
2287 gold_error(_("%s: ELF file too short"), name.c_str());
2288 return NULL;
2289 }
2290
2291 int v = p[elfcpp::EI_VERSION];
2292 if (v != elfcpp::EV_CURRENT)
2293 {
2294 if (v == elfcpp::EV_NONE)
2295 gold_error(_("%s: invalid ELF version 0"), name.c_str());
2296 else
2297 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
2298 return NULL;
2299 }
2300
2301 int c = p[elfcpp::EI_CLASS];
2302 if (c == elfcpp::ELFCLASSNONE)
2303 {
2304 gold_error(_("%s: invalid ELF class 0"), name.c_str());
2305 return NULL;
2306 }
2307 else if (c != elfcpp::ELFCLASS32
2308 && c != elfcpp::ELFCLASS64)
2309 {
2310 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
2311 return NULL;
2312 }
2313
2314 int d = p[elfcpp::EI_DATA];
2315 if (d == elfcpp::ELFDATANONE)
2316 {
2317 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
2318 return NULL;
2319 }
2320 else if (d != elfcpp::ELFDATA2LSB
2321 && d != elfcpp::ELFDATA2MSB)
2322 {
2323 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
2324 return NULL;
2325 }
2326
2327 bool big_endian = d == elfcpp::ELFDATA2MSB;
2328
2329 if (c == elfcpp::ELFCLASS32)
2330 {
2331 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
2332 {
2333 gold_error(_("%s: ELF file too short"), name.c_str());
2334 return NULL;
2335 }
2336 if (big_endian)
2337 {
2338 #ifdef HAVE_TARGET_32_BIG
2339 elfcpp::Ehdr<32, true> ehdr(p);
2340 return make_elf_sized_object<32, true>(name, input_file,
2341 offset, ehdr, punconfigured);
2342 #else
2343 if (punconfigured != NULL)
2344 *punconfigured = true;
2345 else
2346 gold_error(_("%s: not configured to support "
2347 "32-bit big-endian object"),
2348 name.c_str());
2349 return NULL;
2350 #endif
2351 }
2352 else
2353 {
2354 #ifdef HAVE_TARGET_32_LITTLE
2355 elfcpp::Ehdr<32, false> ehdr(p);
2356 return make_elf_sized_object<32, false>(name, input_file,
2357 offset, ehdr, punconfigured);
2358 #else
2359 if (punconfigured != NULL)
2360 *punconfigured = true;
2361 else
2362 gold_error(_("%s: not configured to support "
2363 "32-bit little-endian object"),
2364 name.c_str());
2365 return NULL;
2366 #endif
2367 }
2368 }
2369 else
2370 {
2371 if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
2372 {
2373 gold_error(_("%s: ELF file too short"), name.c_str());
2374 return NULL;
2375 }
2376 if (big_endian)
2377 {
2378 #ifdef HAVE_TARGET_64_BIG
2379 elfcpp::Ehdr<64, true> ehdr(p);
2380 return make_elf_sized_object<64, true>(name, input_file,
2381 offset, ehdr, punconfigured);
2382 #else
2383 if (punconfigured != NULL)
2384 *punconfigured = true;
2385 else
2386 gold_error(_("%s: not configured to support "
2387 "64-bit big-endian object"),
2388 name.c_str());
2389 return NULL;
2390 #endif
2391 }
2392 else
2393 {
2394 #ifdef HAVE_TARGET_64_LITTLE
2395 elfcpp::Ehdr<64, false> ehdr(p);
2396 return make_elf_sized_object<64, false>(name, input_file,
2397 offset, ehdr, punconfigured);
2398 #else
2399 if (punconfigured != NULL)
2400 *punconfigured = true;
2401 else
2402 gold_error(_("%s: not configured to support "
2403 "64-bit little-endian object"),
2404 name.c_str());
2405 return NULL;
2406 #endif
2407 }
2408 }
2409 }
2410
2411 // Instantiate the templates we need.
2412
2413 #ifdef HAVE_TARGET_32_LITTLE
2414 template
2415 void
2416 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2417 Read_symbols_data*);
2418 #endif
2419
2420 #ifdef HAVE_TARGET_32_BIG
2421 template
2422 void
2423 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2424 Read_symbols_data*);
2425 #endif
2426
2427 #ifdef HAVE_TARGET_64_LITTLE
2428 template
2429 void
2430 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2431 Read_symbols_data*);
2432 #endif
2433
2434 #ifdef HAVE_TARGET_64_BIG
2435 template
2436 void
2437 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2438 Read_symbols_data*);
2439 #endif
2440
2441 #ifdef HAVE_TARGET_32_LITTLE
2442 template
2443 class Sized_relobj<32, false>;
2444 #endif
2445
2446 #ifdef HAVE_TARGET_32_BIG
2447 template
2448 class Sized_relobj<32, true>;
2449 #endif
2450
2451 #ifdef HAVE_TARGET_64_LITTLE
2452 template
2453 class Sized_relobj<64, false>;
2454 #endif
2455
2456 #ifdef HAVE_TARGET_64_BIG
2457 template
2458 class Sized_relobj<64, true>;
2459 #endif
2460
2461 #ifdef HAVE_TARGET_32_LITTLE
2462 template
2463 struct Relocate_info<32, false>;
2464 #endif
2465
2466 #ifdef HAVE_TARGET_32_BIG
2467 template
2468 struct Relocate_info<32, true>;
2469 #endif
2470
2471 #ifdef HAVE_TARGET_64_LITTLE
2472 template
2473 struct Relocate_info<64, false>;
2474 #endif
2475
2476 #ifdef HAVE_TARGET_64_BIG
2477 template
2478 struct Relocate_info<64, true>;
2479 #endif
2480
2481 } // End namespace gold.