]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/output.cc
* layout.cc (Layout::layout): If we see an input section with a
[thirdparty/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "output.h"
41
42 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 #ifndef MAP_ANONYMOUS
44 # define MAP_ANONYMOUS MAP_ANON
45 #endif
46
47 namespace gold
48 {
49
50 // Output_data variables.
51
52 bool Output_data::allocated_sizes_are_fixed;
53
54 // Output_data methods.
55
56 Output_data::~Output_data()
57 {
58 }
59
60 // Return the default alignment for the target size.
61
62 uint64_t
63 Output_data::default_alignment()
64 {
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
67 }
68
69 // Return the default alignment for a size--32 or 64.
70
71 uint64_t
72 Output_data::default_alignment_for_size(int size)
73 {
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
79 gold_unreachable();
80 }
81
82 // Output_section_header methods. This currently assumes that the
83 // segment and section lists are complete at construction time.
84
85 Output_section_headers::Output_section_headers(
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
88 const Layout::Section_list* section_list,
89 const Layout::Section_list* unattached_section_list,
90 const Stringpool* secnamepool)
91 : layout_(layout),
92 segment_list_(segment_list),
93 section_list_(section_list),
94 unattached_section_list_(unattached_section_list),
95 secnamepool_(secnamepool)
96 {
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
99 if (!parameters->options().relocatable())
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
115 count += unattached_section_list->size();
116
117 const int size = parameters->target().get_size();
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
124 gold_unreachable();
125
126 this->set_data_size(count * shdr_size);
127 }
128
129 // Write out the section headers.
130
131 void
132 Output_section_headers::do_write(Output_file* of)
133 {
134 switch (parameters->size_and_endianness())
135 {
136 #ifdef HAVE_TARGET_32_LITTLE
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
140 #endif
141 #ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
145 #endif
146 #ifdef HAVE_TARGET_64_LITTLE
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
150 #endif
151 #ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155 #endif
156 default:
157 gold_unreachable();
158 }
159 }
160
161 template<int size, bool big_endian>
162 void
163 Output_section_headers::do_sized_write(Output_file* of)
164 {
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
187 unsigned int shndx = 1;
188 if (!parameters->options().relocatable())
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
219 for (Layout::Section_list::const_iterator p =
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
222 ++p)
223 {
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
227 && parameters->options().relocatable())
228 continue;
229 gold_assert(shndx == (*p)->out_shndx());
230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
232 v += shdr_size;
233 ++shndx;
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
237 }
238
239 // Output_segment_header methods.
240
241 Output_segment_headers::Output_segment_headers(
242 const Layout::Segment_list& segment_list)
243 : segment_list_(segment_list)
244 {
245 const int size = parameters->target().get_size();
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
252 gold_unreachable();
253
254 this->set_data_size(segment_list.size() * phdr_size);
255 }
256
257 void
258 Output_segment_headers::do_write(Output_file* of)
259 {
260 switch (parameters->size_and_endianness())
261 {
262 #ifdef HAVE_TARGET_32_LITTLE
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
266 #endif
267 #ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
271 #endif
272 #ifdef HAVE_TARGET_64_LITTLE
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
276 #endif
277 #ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281 #endif
282 default:
283 gold_unreachable();
284 }
285 }
286
287 template<int size, bool big_endian>
288 void
289 Output_segment_headers::do_sized_write(Output_file* of)
290 {
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
293 gold_assert(all_phdrs_size == this->data_size());
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
306 gold_assert(v - view == all_phdrs_size);
307
308 of->write_output_view(this->offset(), all_phdrs_size, view);
309 }
310
311 // Output_file_header methods.
312
313 Output_file_header::Output_file_header(const Target* target,
314 const Symbol_table* symtab,
315 const Output_segment_headers* osh,
316 const char* entry)
317 : target_(target),
318 symtab_(symtab),
319 segment_header_(osh),
320 section_header_(NULL),
321 shstrtab_(NULL),
322 entry_(entry)
323 {
324 const int size = parameters->target().get_size();
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
331 gold_unreachable();
332
333 this->set_data_size(ehdr_size);
334 }
335
336 // Set the section table information for a file header.
337
338 void
339 Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341 {
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344 }
345
346 // Write out the file header.
347
348 void
349 Output_file_header::do_write(Output_file* of)
350 {
351 gold_assert(this->offset() == 0);
352
353 switch (parameters->size_and_endianness())
354 {
355 #ifdef HAVE_TARGET_32_LITTLE
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
359 #endif
360 #ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
364 #endif
365 #ifdef HAVE_TARGET_64_LITTLE
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
369 #endif
370 #ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374 #endif
375 default:
376 gold_unreachable();
377 }
378 }
379
380 // Write out the file header with appropriate size and endianess.
381
382 template<int size, bool big_endian>
383 void
384 Output_file_header::do_sized_write(Output_file* of)
385 {
386 gold_assert(this->offset() == 0);
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
403 gold_unreachable();
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
412 if (parameters->options().relocatable())
413 e_type = elfcpp::ET_REL;
414 else if (parameters->options().shared())
415 e_type = elfcpp::ET_DYN;
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
423 oehdr.put_e_entry(this->entry<size>());
424
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
453
454 of->write_output_view(0, ehdr_size, view);
455 }
456
457 // Return the value to use for the entry address. THIS->ENTRY_ is the
458 // symbol specified on the command line, if any.
459
460 template<int size>
461 typename elfcpp::Elf_types<size>::Elf_Addr
462 Output_file_header::entry()
463 {
464 const bool should_issue_warning = (this->entry_ != NULL
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499 }
500
501 // Output_data_const methods.
502
503 void
504 Output_data_const::do_write(Output_file* of)
505 {
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507 }
508
509 // Output_data_const_buffer methods.
510
511 void
512 Output_data_const_buffer::do_write(Output_file* of)
513 {
514 of->write(this->offset(), this->p_, this->data_size());
515 }
516
517 // Output_section_data methods.
518
519 // Record the output section, and set the entry size and such.
520
521 void
522 Output_section_data::set_output_section(Output_section* os)
523 {
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527 }
528
529 // Return the section index of the output section.
530
531 unsigned int
532 Output_section_data::do_out_shndx() const
533 {
534 gold_assert(this->output_section_ != NULL);
535 return this->output_section_->out_shndx();
536 }
537
538 // Output_data_strtab methods.
539
540 // Set the final data size.
541
542 void
543 Output_data_strtab::set_final_data_size()
544 {
545 this->strtab_->set_string_offsets();
546 this->set_data_size(this->strtab_->get_strtab_size());
547 }
548
549 // Write out a string table.
550
551 void
552 Output_data_strtab::do_write(Output_file* of)
553 {
554 this->strtab_->write(of, this->offset());
555 }
556
557 // Output_reloc methods.
558
559 // A reloc against a global symbol.
560
561 template<bool dynamic, int size, bool big_endian>
562 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
563 Symbol* gsym,
564 unsigned int type,
565 Output_data* od,
566 Address address,
567 bool is_relative)
568 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
569 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
570 {
571 // this->type_ is a bitfield; make sure TYPE fits.
572 gold_assert(this->type_ == type);
573 this->u1_.gsym = gsym;
574 this->u2_.od = od;
575 if (dynamic)
576 this->set_needs_dynsym_index();
577 }
578
579 template<bool dynamic, int size, bool big_endian>
580 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
581 Symbol* gsym,
582 unsigned int type,
583 Relobj* relobj,
584 unsigned int shndx,
585 Address address,
586 bool is_relative)
587 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
588 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
589 {
590 gold_assert(shndx != INVALID_CODE);
591 // this->type_ is a bitfield; make sure TYPE fits.
592 gold_assert(this->type_ == type);
593 this->u1_.gsym = gsym;
594 this->u2_.relobj = relobj;
595 if (dynamic)
596 this->set_needs_dynsym_index();
597 }
598
599 // A reloc against a local symbol.
600
601 template<bool dynamic, int size, bool big_endian>
602 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
603 Sized_relobj<size, big_endian>* relobj,
604 unsigned int local_sym_index,
605 unsigned int type,
606 Output_data* od,
607 Address address,
608 bool is_relative,
609 bool is_section_symbol)
610 : address_(address), local_sym_index_(local_sym_index), type_(type),
611 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
612 shndx_(INVALID_CODE)
613 {
614 gold_assert(local_sym_index != GSYM_CODE
615 && local_sym_index != INVALID_CODE);
616 // this->type_ is a bitfield; make sure TYPE fits.
617 gold_assert(this->type_ == type);
618 this->u1_.relobj = relobj;
619 this->u2_.od = od;
620 if (dynamic)
621 this->set_needs_dynsym_index();
622 }
623
624 template<bool dynamic, int size, bool big_endian>
625 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
626 Sized_relobj<size, big_endian>* relobj,
627 unsigned int local_sym_index,
628 unsigned int type,
629 unsigned int shndx,
630 Address address,
631 bool is_relative,
632 bool is_section_symbol)
633 : address_(address), local_sym_index_(local_sym_index), type_(type),
634 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
635 shndx_(shndx)
636 {
637 gold_assert(local_sym_index != GSYM_CODE
638 && local_sym_index != INVALID_CODE);
639 gold_assert(shndx != INVALID_CODE);
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
642 this->u1_.relobj = relobj;
643 this->u2_.relobj = relobj;
644 if (dynamic)
645 this->set_needs_dynsym_index();
646 }
647
648 // A reloc against the STT_SECTION symbol of an output section.
649
650 template<bool dynamic, int size, bool big_endian>
651 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
652 Output_section* os,
653 unsigned int type,
654 Output_data* od,
655 Address address)
656 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
657 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
658 {
659 // this->type_ is a bitfield; make sure TYPE fits.
660 gold_assert(this->type_ == type);
661 this->u1_.os = os;
662 this->u2_.od = od;
663 if (dynamic)
664 this->set_needs_dynsym_index();
665 else
666 os->set_needs_symtab_index();
667 }
668
669 template<bool dynamic, int size, bool big_endian>
670 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
671 Output_section* os,
672 unsigned int type,
673 Relobj* relobj,
674 unsigned int shndx,
675 Address address)
676 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
677 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
678 {
679 gold_assert(shndx != INVALID_CODE);
680 // this->type_ is a bitfield; make sure TYPE fits.
681 gold_assert(this->type_ == type);
682 this->u1_.os = os;
683 this->u2_.relobj = relobj;
684 if (dynamic)
685 this->set_needs_dynsym_index();
686 else
687 os->set_needs_symtab_index();
688 }
689
690 // Record that we need a dynamic symbol index for this relocation.
691
692 template<bool dynamic, int size, bool big_endian>
693 void
694 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
695 set_needs_dynsym_index()
696 {
697 if (this->is_relative_)
698 return;
699 switch (this->local_sym_index_)
700 {
701 case INVALID_CODE:
702 gold_unreachable();
703
704 case GSYM_CODE:
705 this->u1_.gsym->set_needs_dynsym_entry();
706 break;
707
708 case SECTION_CODE:
709 this->u1_.os->set_needs_dynsym_index();
710 break;
711
712 case 0:
713 break;
714
715 default:
716 {
717 const unsigned int lsi = this->local_sym_index_;
718 if (!this->is_section_symbol_)
719 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
720 else
721 {
722 section_offset_type dummy;
723 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
724 gold_assert(os != NULL);
725 os->set_needs_dynsym_index();
726 }
727 }
728 break;
729 }
730 }
731
732 // Get the symbol index of a relocation.
733
734 template<bool dynamic, int size, bool big_endian>
735 unsigned int
736 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
737 const
738 {
739 unsigned int index;
740 switch (this->local_sym_index_)
741 {
742 case INVALID_CODE:
743 gold_unreachable();
744
745 case GSYM_CODE:
746 if (this->u1_.gsym == NULL)
747 index = 0;
748 else if (dynamic)
749 index = this->u1_.gsym->dynsym_index();
750 else
751 index = this->u1_.gsym->symtab_index();
752 break;
753
754 case SECTION_CODE:
755 if (dynamic)
756 index = this->u1_.os->dynsym_index();
757 else
758 index = this->u1_.os->symtab_index();
759 break;
760
761 case 0:
762 // Relocations without symbols use a symbol index of 0.
763 index = 0;
764 break;
765
766 default:
767 {
768 const unsigned int lsi = this->local_sym_index_;
769 if (!this->is_section_symbol_)
770 {
771 if (dynamic)
772 index = this->u1_.relobj->dynsym_index(lsi);
773 else
774 index = this->u1_.relobj->symtab_index(lsi);
775 }
776 else
777 {
778 section_offset_type dummy;
779 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
780 gold_assert(os != NULL);
781 if (dynamic)
782 index = os->dynsym_index();
783 else
784 index = os->symtab_index();
785 }
786 }
787 break;
788 }
789 gold_assert(index != -1U);
790 return index;
791 }
792
793 // For a local section symbol, get the section offset of the input
794 // section within the output section.
795
796 template<bool dynamic, int size, bool big_endian>
797 section_offset_type
798 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
799 local_section_offset() const
800 {
801 const unsigned int lsi = this->local_sym_index_;
802 section_offset_type offset;
803 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
804 gold_assert(os != NULL && offset != -1);
805 return offset;
806 }
807
808 // Write out the offset and info fields of a Rel or Rela relocation
809 // entry.
810
811 template<bool dynamic, int size, bool big_endian>
812 template<typename Write_rel>
813 void
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
815 Write_rel* wr) const
816 {
817 Address address = this->address_;
818 if (this->shndx_ != INVALID_CODE)
819 {
820 section_offset_type off;
821 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
822 &off);
823 gold_assert(os != NULL);
824 if (off != -1)
825 address += os->address() + off;
826 else
827 {
828 address = os->output_address(this->u2_.relobj, this->shndx_,
829 address);
830 gold_assert(address != -1U);
831 }
832 }
833 else if (this->u2_.od != NULL)
834 address += this->u2_.od->address();
835 wr->put_r_offset(address);
836 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
837 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
838 }
839
840 // Write out a Rel relocation.
841
842 template<bool dynamic, int size, bool big_endian>
843 void
844 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
845 unsigned char* pov) const
846 {
847 elfcpp::Rel_write<size, big_endian> orel(pov);
848 this->write_rel(&orel);
849 }
850
851 // Get the value of the symbol referred to by a Rel relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 typename elfcpp::Elf_types<size>::Elf_Addr
855 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
856 Address addend) const
857 {
858 if (this->local_sym_index_ == GSYM_CODE)
859 {
860 const Sized_symbol<size>* sym;
861 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
862 return sym->value() + addend;
863 }
864 gold_assert(this->local_sym_index_ != SECTION_CODE
865 && this->local_sym_index_ != INVALID_CODE
866 && !this->is_section_symbol_);
867 const unsigned int lsi = this->local_sym_index_;
868 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
869 return symval->value(this->u1_.relobj, addend);
870 }
871
872 // Write out a Rela relocation.
873
874 template<bool dynamic, int size, bool big_endian>
875 void
876 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
877 unsigned char* pov) const
878 {
879 elfcpp::Rela_write<size, big_endian> orel(pov);
880 this->rel_.write_rel(&orel);
881 Addend addend = this->addend_;
882 if (this->rel_.is_relative())
883 addend = this->rel_.symbol_value(addend);
884 else if (this->rel_.is_local_section_symbol())
885 addend += this->rel_.local_section_offset();
886 orel.put_r_addend(addend);
887 }
888
889 // Output_data_reloc_base methods.
890
891 // Adjust the output section.
892
893 template<int sh_type, bool dynamic, int size, bool big_endian>
894 void
895 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
896 ::do_adjust_output_section(Output_section* os)
897 {
898 if (sh_type == elfcpp::SHT_REL)
899 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
900 else if (sh_type == elfcpp::SHT_RELA)
901 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
902 else
903 gold_unreachable();
904 if (dynamic)
905 os->set_should_link_to_dynsym();
906 else
907 os->set_should_link_to_symtab();
908 }
909
910 // Write out relocation data.
911
912 template<int sh_type, bool dynamic, int size, bool big_endian>
913 void
914 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
915 Output_file* of)
916 {
917 const off_t off = this->offset();
918 const off_t oview_size = this->data_size();
919 unsigned char* const oview = of->get_output_view(off, oview_size);
920
921 unsigned char* pov = oview;
922 for (typename Relocs::const_iterator p = this->relocs_.begin();
923 p != this->relocs_.end();
924 ++p)
925 {
926 p->write(pov);
927 pov += reloc_size;
928 }
929
930 gold_assert(pov - oview == oview_size);
931
932 of->write_output_view(off, oview_size, oview);
933
934 // We no longer need the relocation entries.
935 this->relocs_.clear();
936 }
937
938 // Class Output_relocatable_relocs.
939
940 template<int sh_type, int size, bool big_endian>
941 void
942 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
943 {
944 this->set_data_size(this->rr_->output_reloc_count()
945 * Reloc_types<sh_type, size, big_endian>::reloc_size);
946 }
947
948 // class Output_data_group.
949
950 template<int size, bool big_endian>
951 Output_data_group<size, big_endian>::Output_data_group(
952 Sized_relobj<size, big_endian>* relobj,
953 section_size_type entry_count,
954 const elfcpp::Elf_Word* contents)
955 : Output_section_data(entry_count * 4, 4),
956 relobj_(relobj)
957 {
958 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
959 for (section_size_type i = 1; i < entry_count; ++i)
960 {
961 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
962 this->input_sections_.push_back(shndx);
963 }
964 }
965
966 // Write out the section group, which means translating the section
967 // indexes to apply to the output file.
968
969 template<int size, bool big_endian>
970 void
971 Output_data_group<size, big_endian>::do_write(Output_file* of)
972 {
973 const off_t off = this->offset();
974 const section_size_type oview_size =
975 convert_to_section_size_type(this->data_size());
976 unsigned char* const oview = of->get_output_view(off, oview_size);
977
978 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
979 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
980 ++contents;
981
982 for (std::vector<unsigned int>::const_iterator p =
983 this->input_sections_.begin();
984 p != this->input_sections_.end();
985 ++p, ++contents)
986 {
987 section_offset_type dummy;
988 Output_section* os = this->relobj_->output_section(*p, &dummy);
989
990 unsigned int output_shndx;
991 if (os != NULL)
992 output_shndx = os->out_shndx();
993 else
994 {
995 this->relobj_->error(_("section group retained but "
996 "group element discarded"));
997 output_shndx = 0;
998 }
999
1000 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1001 }
1002
1003 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1004 gold_assert(wrote == oview_size);
1005
1006 of->write_output_view(off, oview_size, oview);
1007
1008 // We no longer need this information.
1009 this->input_sections_.clear();
1010 }
1011
1012 // Output_data_got::Got_entry methods.
1013
1014 // Write out the entry.
1015
1016 template<int size, bool big_endian>
1017 void
1018 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1019 {
1020 Valtype val = 0;
1021
1022 switch (this->local_sym_index_)
1023 {
1024 case GSYM_CODE:
1025 {
1026 // If the symbol is resolved locally, we need to write out the
1027 // link-time value, which will be relocated dynamically by a
1028 // RELATIVE relocation.
1029 Symbol* gsym = this->u_.gsym;
1030 Sized_symbol<size>* sgsym;
1031 // This cast is a bit ugly. We don't want to put a
1032 // virtual method in Symbol, because we want Symbol to be
1033 // as small as possible.
1034 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1035 val = sgsym->value();
1036 }
1037 break;
1038
1039 case CONSTANT_CODE:
1040 val = this->u_.constant;
1041 break;
1042
1043 default:
1044 {
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1047 val = symval->value(this->u_.object, 0);
1048 }
1049 break;
1050 }
1051
1052 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1053 }
1054
1055 // Output_data_got methods.
1056
1057 // Add an entry for a global symbol to the GOT. This returns true if
1058 // this is a new GOT entry, false if the symbol already had a GOT
1059 // entry.
1060
1061 template<int size, bool big_endian>
1062 bool
1063 Output_data_got<size, big_endian>::add_global(
1064 Symbol* gsym,
1065 unsigned int got_type)
1066 {
1067 if (gsym->has_got_offset(got_type))
1068 return false;
1069
1070 this->entries_.push_back(Got_entry(gsym));
1071 this->set_got_size();
1072 gsym->set_got_offset(got_type, this->last_got_offset());
1073 return true;
1074 }
1075
1076 // Add an entry for a global symbol to the GOT, and add a dynamic
1077 // relocation of type R_TYPE for the GOT entry.
1078 template<int size, bool big_endian>
1079 void
1080 Output_data_got<size, big_endian>::add_global_with_rel(
1081 Symbol* gsym,
1082 unsigned int got_type,
1083 Rel_dyn* rel_dyn,
1084 unsigned int r_type)
1085 {
1086 if (gsym->has_got_offset(got_type))
1087 return;
1088
1089 this->entries_.push_back(Got_entry());
1090 this->set_got_size();
1091 unsigned int got_offset = this->last_got_offset();
1092 gsym->set_got_offset(got_type, got_offset);
1093 rel_dyn->add_global(gsym, r_type, this, got_offset);
1094 }
1095
1096 template<int size, bool big_endian>
1097 void
1098 Output_data_got<size, big_endian>::add_global_with_rela(
1099 Symbol* gsym,
1100 unsigned int got_type,
1101 Rela_dyn* rela_dyn,
1102 unsigned int r_type)
1103 {
1104 if (gsym->has_got_offset(got_type))
1105 return;
1106
1107 this->entries_.push_back(Got_entry());
1108 this->set_got_size();
1109 unsigned int got_offset = this->last_got_offset();
1110 gsym->set_got_offset(got_type, got_offset);
1111 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1112 }
1113
1114 // Add a pair of entries for a global symbol to the GOT, and add
1115 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1116 // If R_TYPE_2 == 0, add the second entry with no relocation.
1117 template<int size, bool big_endian>
1118 void
1119 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1120 Symbol* gsym,
1121 unsigned int got_type,
1122 Rel_dyn* rel_dyn,
1123 unsigned int r_type_1,
1124 unsigned int r_type_2)
1125 {
1126 if (gsym->has_got_offset(got_type))
1127 return;
1128
1129 this->entries_.push_back(Got_entry());
1130 unsigned int got_offset = this->last_got_offset();
1131 gsym->set_got_offset(got_type, got_offset);
1132 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1133
1134 this->entries_.push_back(Got_entry());
1135 if (r_type_2 != 0)
1136 {
1137 got_offset = this->last_got_offset();
1138 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1139 }
1140
1141 this->set_got_size();
1142 }
1143
1144 template<int size, bool big_endian>
1145 void
1146 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1147 Symbol* gsym,
1148 unsigned int got_type,
1149 Rela_dyn* rela_dyn,
1150 unsigned int r_type_1,
1151 unsigned int r_type_2)
1152 {
1153 if (gsym->has_got_offset(got_type))
1154 return;
1155
1156 this->entries_.push_back(Got_entry());
1157 unsigned int got_offset = this->last_got_offset();
1158 gsym->set_got_offset(got_type, got_offset);
1159 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1160
1161 this->entries_.push_back(Got_entry());
1162 if (r_type_2 != 0)
1163 {
1164 got_offset = this->last_got_offset();
1165 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1166 }
1167
1168 this->set_got_size();
1169 }
1170
1171 // Add an entry for a local symbol to the GOT. This returns true if
1172 // this is a new GOT entry, false if the symbol already has a GOT
1173 // entry.
1174
1175 template<int size, bool big_endian>
1176 bool
1177 Output_data_got<size, big_endian>::add_local(
1178 Sized_relobj<size, big_endian>* object,
1179 unsigned int symndx,
1180 unsigned int got_type)
1181 {
1182 if (object->local_has_got_offset(symndx, got_type))
1183 return false;
1184
1185 this->entries_.push_back(Got_entry(object, symndx));
1186 this->set_got_size();
1187 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1188 return true;
1189 }
1190
1191 // Add an entry for a local symbol to the GOT, and add a dynamic
1192 // relocation of type R_TYPE for the GOT entry.
1193 template<int size, bool big_endian>
1194 void
1195 Output_data_got<size, big_endian>::add_local_with_rel(
1196 Sized_relobj<size, big_endian>* object,
1197 unsigned int symndx,
1198 unsigned int got_type,
1199 Rel_dyn* rel_dyn,
1200 unsigned int r_type)
1201 {
1202 if (object->local_has_got_offset(symndx, got_type))
1203 return;
1204
1205 this->entries_.push_back(Got_entry());
1206 this->set_got_size();
1207 unsigned int got_offset = this->last_got_offset();
1208 object->set_local_got_offset(symndx, got_type, got_offset);
1209 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1210 }
1211
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_got<size, big_endian>::add_local_with_rela(
1215 Sized_relobj<size, big_endian>* object,
1216 unsigned int symndx,
1217 unsigned int got_type,
1218 Rela_dyn* rela_dyn,
1219 unsigned int r_type)
1220 {
1221 if (object->local_has_got_offset(symndx, got_type))
1222 return;
1223
1224 this->entries_.push_back(Got_entry());
1225 this->set_got_size();
1226 unsigned int got_offset = this->last_got_offset();
1227 object->set_local_got_offset(symndx, got_type, got_offset);
1228 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1229 }
1230
1231 // Add a pair of entries for a local symbol to the GOT, and add
1232 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1233 // If R_TYPE_2 == 0, add the second entry with no relocation.
1234 template<int size, bool big_endian>
1235 void
1236 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1237 Sized_relobj<size, big_endian>* object,
1238 unsigned int symndx,
1239 unsigned int shndx,
1240 unsigned int got_type,
1241 Rel_dyn* rel_dyn,
1242 unsigned int r_type_1,
1243 unsigned int r_type_2)
1244 {
1245 if (object->local_has_got_offset(symndx, got_type))
1246 return;
1247
1248 this->entries_.push_back(Got_entry());
1249 unsigned int got_offset = this->last_got_offset();
1250 object->set_local_got_offset(symndx, got_type, got_offset);
1251 section_offset_type off;
1252 Output_section* os = object->output_section(shndx, &off);
1253 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1254
1255 this->entries_.push_back(Got_entry(object, symndx));
1256 if (r_type_2 != 0)
1257 {
1258 got_offset = this->last_got_offset();
1259 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1260 }
1261
1262 this->set_got_size();
1263 }
1264
1265 template<int size, bool big_endian>
1266 void
1267 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1268 Sized_relobj<size, big_endian>* object,
1269 unsigned int symndx,
1270 unsigned int shndx,
1271 unsigned int got_type,
1272 Rela_dyn* rela_dyn,
1273 unsigned int r_type_1,
1274 unsigned int r_type_2)
1275 {
1276 if (object->local_has_got_offset(symndx, got_type))
1277 return;
1278
1279 this->entries_.push_back(Got_entry());
1280 unsigned int got_offset = this->last_got_offset();
1281 object->set_local_got_offset(symndx, got_type, got_offset);
1282 section_offset_type off;
1283 Output_section* os = object->output_section(shndx, &off);
1284 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1285
1286 this->entries_.push_back(Got_entry(object, symndx));
1287 if (r_type_2 != 0)
1288 {
1289 got_offset = this->last_got_offset();
1290 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1291 }
1292
1293 this->set_got_size();
1294 }
1295
1296 // Write out the GOT.
1297
1298 template<int size, bool big_endian>
1299 void
1300 Output_data_got<size, big_endian>::do_write(Output_file* of)
1301 {
1302 const int add = size / 8;
1303
1304 const off_t off = this->offset();
1305 const off_t oview_size = this->data_size();
1306 unsigned char* const oview = of->get_output_view(off, oview_size);
1307
1308 unsigned char* pov = oview;
1309 for (typename Got_entries::const_iterator p = this->entries_.begin();
1310 p != this->entries_.end();
1311 ++p)
1312 {
1313 p->write(pov);
1314 pov += add;
1315 }
1316
1317 gold_assert(pov - oview == oview_size);
1318
1319 of->write_output_view(off, oview_size, oview);
1320
1321 // We no longer need the GOT entries.
1322 this->entries_.clear();
1323 }
1324
1325 // Output_data_dynamic::Dynamic_entry methods.
1326
1327 // Write out the entry.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Output_data_dynamic::Dynamic_entry::write(
1332 unsigned char* pov,
1333 const Stringpool* pool) const
1334 {
1335 typename elfcpp::Elf_types<size>::Elf_WXword val;
1336 switch (this->classification_)
1337 {
1338 case DYNAMIC_NUMBER:
1339 val = this->u_.val;
1340 break;
1341
1342 case DYNAMIC_SECTION_ADDRESS:
1343 val = this->u_.od->address();
1344 break;
1345
1346 case DYNAMIC_SECTION_SIZE:
1347 val = this->u_.od->data_size();
1348 break;
1349
1350 case DYNAMIC_SYMBOL:
1351 {
1352 const Sized_symbol<size>* s =
1353 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1354 val = s->value();
1355 }
1356 break;
1357
1358 case DYNAMIC_STRING:
1359 val = pool->get_offset(this->u_.str);
1360 break;
1361
1362 default:
1363 gold_unreachable();
1364 }
1365
1366 elfcpp::Dyn_write<size, big_endian> dw(pov);
1367 dw.put_d_tag(this->tag_);
1368 dw.put_d_val(val);
1369 }
1370
1371 // Output_data_dynamic methods.
1372
1373 // Adjust the output section to set the entry size.
1374
1375 void
1376 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1377 {
1378 if (parameters->target().get_size() == 32)
1379 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1380 else if (parameters->target().get_size() == 64)
1381 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1382 else
1383 gold_unreachable();
1384 }
1385
1386 // Set the final data size.
1387
1388 void
1389 Output_data_dynamic::set_final_data_size()
1390 {
1391 // Add the terminating entry.
1392 this->add_constant(elfcpp::DT_NULL, 0);
1393
1394 int dyn_size;
1395 if (parameters->target().get_size() == 32)
1396 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1397 else if (parameters->target().get_size() == 64)
1398 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1399 else
1400 gold_unreachable();
1401 this->set_data_size(this->entries_.size() * dyn_size);
1402 }
1403
1404 // Write out the dynamic entries.
1405
1406 void
1407 Output_data_dynamic::do_write(Output_file* of)
1408 {
1409 switch (parameters->size_and_endianness())
1410 {
1411 #ifdef HAVE_TARGET_32_LITTLE
1412 case Parameters::TARGET_32_LITTLE:
1413 this->sized_write<32, false>(of);
1414 break;
1415 #endif
1416 #ifdef HAVE_TARGET_32_BIG
1417 case Parameters::TARGET_32_BIG:
1418 this->sized_write<32, true>(of);
1419 break;
1420 #endif
1421 #ifdef HAVE_TARGET_64_LITTLE
1422 case Parameters::TARGET_64_LITTLE:
1423 this->sized_write<64, false>(of);
1424 break;
1425 #endif
1426 #ifdef HAVE_TARGET_64_BIG
1427 case Parameters::TARGET_64_BIG:
1428 this->sized_write<64, true>(of);
1429 break;
1430 #endif
1431 default:
1432 gold_unreachable();
1433 }
1434 }
1435
1436 template<int size, bool big_endian>
1437 void
1438 Output_data_dynamic::sized_write(Output_file* of)
1439 {
1440 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1441
1442 const off_t offset = this->offset();
1443 const off_t oview_size = this->data_size();
1444 unsigned char* const oview = of->get_output_view(offset, oview_size);
1445
1446 unsigned char* pov = oview;
1447 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1448 p != this->entries_.end();
1449 ++p)
1450 {
1451 p->write<size, big_endian>(pov, this->pool_);
1452 pov += dyn_size;
1453 }
1454
1455 gold_assert(pov - oview == oview_size);
1456
1457 of->write_output_view(offset, oview_size, oview);
1458
1459 // We no longer need the dynamic entries.
1460 this->entries_.clear();
1461 }
1462
1463 // Output_section::Input_section methods.
1464
1465 // Return the data size. For an input section we store the size here.
1466 // For an Output_section_data, we have to ask it for the size.
1467
1468 off_t
1469 Output_section::Input_section::data_size() const
1470 {
1471 if (this->is_input_section())
1472 return this->u1_.data_size;
1473 else
1474 return this->u2_.posd->data_size();
1475 }
1476
1477 // Set the address and file offset.
1478
1479 void
1480 Output_section::Input_section::set_address_and_file_offset(
1481 uint64_t address,
1482 off_t file_offset,
1483 off_t section_file_offset)
1484 {
1485 if (this->is_input_section())
1486 this->u2_.object->set_section_offset(this->shndx_,
1487 file_offset - section_file_offset);
1488 else
1489 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1490 }
1491
1492 // Reset the address and file offset.
1493
1494 void
1495 Output_section::Input_section::reset_address_and_file_offset()
1496 {
1497 if (!this->is_input_section())
1498 this->u2_.posd->reset_address_and_file_offset();
1499 }
1500
1501 // Finalize the data size.
1502
1503 void
1504 Output_section::Input_section::finalize_data_size()
1505 {
1506 if (!this->is_input_section())
1507 this->u2_.posd->finalize_data_size();
1508 }
1509
1510 // Try to turn an input offset into an output offset. We want to
1511 // return the output offset relative to the start of this
1512 // Input_section in the output section.
1513
1514 inline bool
1515 Output_section::Input_section::output_offset(
1516 const Relobj* object,
1517 unsigned int shndx,
1518 section_offset_type offset,
1519 section_offset_type *poutput) const
1520 {
1521 if (!this->is_input_section())
1522 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1523 else
1524 {
1525 if (this->shndx_ != shndx || this->u2_.object != object)
1526 return false;
1527 *poutput = offset;
1528 return true;
1529 }
1530 }
1531
1532 // Return whether this is the merge section for the input section
1533 // SHNDX in OBJECT.
1534
1535 inline bool
1536 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1537 unsigned int shndx) const
1538 {
1539 if (this->is_input_section())
1540 return false;
1541 return this->u2_.posd->is_merge_section_for(object, shndx);
1542 }
1543
1544 // Write out the data. We don't have to do anything for an input
1545 // section--they are handled via Object::relocate--but this is where
1546 // we write out the data for an Output_section_data.
1547
1548 void
1549 Output_section::Input_section::write(Output_file* of)
1550 {
1551 if (!this->is_input_section())
1552 this->u2_.posd->write(of);
1553 }
1554
1555 // Write the data to a buffer. As for write(), we don't have to do
1556 // anything for an input section.
1557
1558 void
1559 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1560 {
1561 if (!this->is_input_section())
1562 this->u2_.posd->write_to_buffer(buffer);
1563 }
1564
1565 // Output_section methods.
1566
1567 // Construct an Output_section. NAME will point into a Stringpool.
1568
1569 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1570 elfcpp::Elf_Xword flags)
1571 : name_(name),
1572 addralign_(0),
1573 entsize_(0),
1574 load_address_(0),
1575 link_section_(NULL),
1576 link_(0),
1577 info_section_(NULL),
1578 info_symndx_(NULL),
1579 info_(0),
1580 type_(type),
1581 flags_(flags),
1582 out_shndx_(-1U),
1583 symtab_index_(0),
1584 dynsym_index_(0),
1585 input_sections_(),
1586 first_input_offset_(0),
1587 fills_(),
1588 postprocessing_buffer_(NULL),
1589 needs_symtab_index_(false),
1590 needs_dynsym_index_(false),
1591 should_link_to_symtab_(false),
1592 should_link_to_dynsym_(false),
1593 after_input_sections_(false),
1594 requires_postprocessing_(false),
1595 found_in_sections_clause_(false),
1596 has_load_address_(false),
1597 info_uses_section_index_(false),
1598 may_sort_attached_input_sections_(false),
1599 must_sort_attached_input_sections_(false),
1600 attached_input_sections_are_sorted_(false),
1601 tls_offset_(0)
1602 {
1603 // An unallocated section has no address. Forcing this means that
1604 // we don't need special treatment for symbols defined in debug
1605 // sections.
1606 if ((flags & elfcpp::SHF_ALLOC) == 0)
1607 this->set_address(0);
1608 }
1609
1610 Output_section::~Output_section()
1611 {
1612 }
1613
1614 // Set the entry size.
1615
1616 void
1617 Output_section::set_entsize(uint64_t v)
1618 {
1619 if (this->entsize_ == 0)
1620 this->entsize_ = v;
1621 else
1622 gold_assert(this->entsize_ == v);
1623 }
1624
1625 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1626 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1627 // relocation section which applies to this section, or 0 if none, or
1628 // -1U if more than one. Return the offset of the input section
1629 // within the output section. Return -1 if the input section will
1630 // receive special handling. In the normal case we don't always keep
1631 // track of input sections for an Output_section. Instead, each
1632 // Object keeps track of the Output_section for each of its input
1633 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1634 // track of input sections here; this is used when SECTIONS appears in
1635 // a linker script.
1636
1637 template<int size, bool big_endian>
1638 off_t
1639 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1640 unsigned int shndx,
1641 const char* secname,
1642 const elfcpp::Shdr<size, big_endian>& shdr,
1643 unsigned int reloc_shndx,
1644 bool have_sections_script)
1645 {
1646 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1647 if ((addralign & (addralign - 1)) != 0)
1648 {
1649 object->error(_("invalid alignment %lu for section \"%s\""),
1650 static_cast<unsigned long>(addralign), secname);
1651 addralign = 1;
1652 }
1653
1654 if (addralign > this->addralign_)
1655 this->addralign_ = addralign;
1656
1657 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1658 this->flags_ |= (sh_flags
1659 & (elfcpp::SHF_WRITE
1660 | elfcpp::SHF_ALLOC
1661 | elfcpp::SHF_EXECINSTR));
1662
1663 uint64_t entsize = shdr.get_sh_entsize();
1664
1665 // .debug_str is a mergeable string section, but is not always so
1666 // marked by compilers. Mark manually here so we can optimize.
1667 if (strcmp(secname, ".debug_str") == 0)
1668 {
1669 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1670 entsize = 1;
1671 }
1672
1673 // If this is a SHF_MERGE section, we pass all the input sections to
1674 // a Output_data_merge. We don't try to handle relocations for such
1675 // a section.
1676 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1677 && reloc_shndx == 0)
1678 {
1679 if (this->add_merge_input_section(object, shndx, sh_flags,
1680 entsize, addralign))
1681 {
1682 // Tell the relocation routines that they need to call the
1683 // output_offset method to determine the final address.
1684 return -1;
1685 }
1686 }
1687
1688 off_t offset_in_section = this->current_data_size_for_child();
1689 off_t aligned_offset_in_section = align_address(offset_in_section,
1690 addralign);
1691
1692 if (aligned_offset_in_section > offset_in_section
1693 && !have_sections_script
1694 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1695 && object->target()->has_code_fill())
1696 {
1697 // We need to add some fill data. Using fill_list_ when
1698 // possible is an optimization, since we will often have fill
1699 // sections without input sections.
1700 off_t fill_len = aligned_offset_in_section - offset_in_section;
1701 if (this->input_sections_.empty())
1702 this->fills_.push_back(Fill(offset_in_section, fill_len));
1703 else
1704 {
1705 // FIXME: When relaxing, the size needs to adjust to
1706 // maintain a constant alignment.
1707 std::string fill_data(object->target()->code_fill(fill_len));
1708 Output_data_const* odc = new Output_data_const(fill_data, 1);
1709 this->input_sections_.push_back(Input_section(odc));
1710 }
1711 }
1712
1713 this->set_current_data_size_for_child(aligned_offset_in_section
1714 + shdr.get_sh_size());
1715
1716 // We need to keep track of this section if we are already keeping
1717 // track of sections, or if we are relaxing. Also, if this is a
1718 // section which requires sorting, or which may require sorting in
1719 // the future, we keep track of the sections. FIXME: Add test for
1720 // relaxing.
1721 if (have_sections_script
1722 || !this->input_sections_.empty()
1723 || this->may_sort_attached_input_sections()
1724 || this->must_sort_attached_input_sections())
1725 this->input_sections_.push_back(Input_section(object, shndx,
1726 shdr.get_sh_size(),
1727 addralign));
1728
1729 return aligned_offset_in_section;
1730 }
1731
1732 // Add arbitrary data to an output section.
1733
1734 void
1735 Output_section::add_output_section_data(Output_section_data* posd)
1736 {
1737 Input_section inp(posd);
1738 this->add_output_section_data(&inp);
1739
1740 if (posd->is_data_size_valid())
1741 {
1742 off_t offset_in_section = this->current_data_size_for_child();
1743 off_t aligned_offset_in_section = align_address(offset_in_section,
1744 posd->addralign());
1745 this->set_current_data_size_for_child(aligned_offset_in_section
1746 + posd->data_size());
1747 }
1748 }
1749
1750 // Add arbitrary data to an output section by Input_section.
1751
1752 void
1753 Output_section::add_output_section_data(Input_section* inp)
1754 {
1755 if (this->input_sections_.empty())
1756 this->first_input_offset_ = this->current_data_size_for_child();
1757
1758 this->input_sections_.push_back(*inp);
1759
1760 uint64_t addralign = inp->addralign();
1761 if (addralign > this->addralign_)
1762 this->addralign_ = addralign;
1763
1764 inp->set_output_section(this);
1765 }
1766
1767 // Add a merge section to an output section.
1768
1769 void
1770 Output_section::add_output_merge_section(Output_section_data* posd,
1771 bool is_string, uint64_t entsize)
1772 {
1773 Input_section inp(posd, is_string, entsize);
1774 this->add_output_section_data(&inp);
1775 }
1776
1777 // Add an input section to a SHF_MERGE section.
1778
1779 bool
1780 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1781 uint64_t flags, uint64_t entsize,
1782 uint64_t addralign)
1783 {
1784 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1785
1786 // We only merge strings if the alignment is not more than the
1787 // character size. This could be handled, but it's unusual.
1788 if (is_string && addralign > entsize)
1789 return false;
1790
1791 Input_section_list::iterator p;
1792 for (p = this->input_sections_.begin();
1793 p != this->input_sections_.end();
1794 ++p)
1795 if (p->is_merge_section(is_string, entsize, addralign))
1796 {
1797 p->add_input_section(object, shndx);
1798 return true;
1799 }
1800
1801 // We handle the actual constant merging in Output_merge_data or
1802 // Output_merge_string_data.
1803 Output_section_data* posd;
1804 if (!is_string)
1805 posd = new Output_merge_data(entsize, addralign);
1806 else
1807 {
1808 switch (entsize)
1809 {
1810 case 1:
1811 posd = new Output_merge_string<char>(addralign);
1812 break;
1813 case 2:
1814 posd = new Output_merge_string<uint16_t>(addralign);
1815 break;
1816 case 4:
1817 posd = new Output_merge_string<uint32_t>(addralign);
1818 break;
1819 default:
1820 return false;
1821 }
1822 }
1823
1824 this->add_output_merge_section(posd, is_string, entsize);
1825 posd->add_input_section(object, shndx);
1826
1827 return true;
1828 }
1829
1830 // Given an address OFFSET relative to the start of input section
1831 // SHNDX in OBJECT, return whether this address is being included in
1832 // the final link. This should only be called if SHNDX in OBJECT has
1833 // a special mapping.
1834
1835 bool
1836 Output_section::is_input_address_mapped(const Relobj* object,
1837 unsigned int shndx,
1838 off_t offset) const
1839 {
1840 gold_assert(object->is_section_specially_mapped(shndx));
1841
1842 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1843 p != this->input_sections_.end();
1844 ++p)
1845 {
1846 section_offset_type output_offset;
1847 if (p->output_offset(object, shndx, offset, &output_offset))
1848 return output_offset != -1;
1849 }
1850
1851 // By default we assume that the address is mapped. This should
1852 // only be called after we have passed all sections to Layout. At
1853 // that point we should know what we are discarding.
1854 return true;
1855 }
1856
1857 // Given an address OFFSET relative to the start of input section
1858 // SHNDX in object OBJECT, return the output offset relative to the
1859 // start of the input section in the output section. This should only
1860 // be called if SHNDX in OBJECT has a special mapping.
1861
1862 section_offset_type
1863 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1864 section_offset_type offset) const
1865 {
1866 gold_assert(object->is_section_specially_mapped(shndx));
1867 // This can only be called meaningfully when layout is complete.
1868 gold_assert(Output_data::is_layout_complete());
1869
1870 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1871 p != this->input_sections_.end();
1872 ++p)
1873 {
1874 section_offset_type output_offset;
1875 if (p->output_offset(object, shndx, offset, &output_offset))
1876 return output_offset;
1877 }
1878 gold_unreachable();
1879 }
1880
1881 // Return the output virtual address of OFFSET relative to the start
1882 // of input section SHNDX in object OBJECT.
1883
1884 uint64_t
1885 Output_section::output_address(const Relobj* object, unsigned int shndx,
1886 off_t offset) const
1887 {
1888 gold_assert(object->is_section_specially_mapped(shndx));
1889
1890 uint64_t addr = this->address() + this->first_input_offset_;
1891 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1892 p != this->input_sections_.end();
1893 ++p)
1894 {
1895 addr = align_address(addr, p->addralign());
1896 section_offset_type output_offset;
1897 if (p->output_offset(object, shndx, offset, &output_offset))
1898 {
1899 if (output_offset == -1)
1900 return -1U;
1901 return addr + output_offset;
1902 }
1903 addr += p->data_size();
1904 }
1905
1906 // If we get here, it means that we don't know the mapping for this
1907 // input section. This might happen in principle if
1908 // add_input_section were called before add_output_section_data.
1909 // But it should never actually happen.
1910
1911 gold_unreachable();
1912 }
1913
1914 // Return the output address of the start of the merged section for
1915 // input section SHNDX in object OBJECT.
1916
1917 uint64_t
1918 Output_section::starting_output_address(const Relobj* object,
1919 unsigned int shndx) const
1920 {
1921 gold_assert(object->is_section_specially_mapped(shndx));
1922
1923 uint64_t addr = this->address() + this->first_input_offset_;
1924 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1925 p != this->input_sections_.end();
1926 ++p)
1927 {
1928 addr = align_address(addr, p->addralign());
1929
1930 // It would be nice if we could use the existing output_offset
1931 // method to get the output offset of input offset 0.
1932 // Unfortunately we don't know for sure that input offset 0 is
1933 // mapped at all.
1934 if (p->is_merge_section_for(object, shndx))
1935 return addr;
1936
1937 addr += p->data_size();
1938 }
1939 gold_unreachable();
1940 }
1941
1942 // Set the data size of an Output_section. This is where we handle
1943 // setting the addresses of any Output_section_data objects.
1944
1945 void
1946 Output_section::set_final_data_size()
1947 {
1948 if (this->input_sections_.empty())
1949 {
1950 this->set_data_size(this->current_data_size_for_child());
1951 return;
1952 }
1953
1954 if (this->must_sort_attached_input_sections())
1955 this->sort_attached_input_sections();
1956
1957 uint64_t address = this->address();
1958 off_t startoff = this->offset();
1959 off_t off = startoff + this->first_input_offset_;
1960 for (Input_section_list::iterator p = this->input_sections_.begin();
1961 p != this->input_sections_.end();
1962 ++p)
1963 {
1964 off = align_address(off, p->addralign());
1965 p->set_address_and_file_offset(address + (off - startoff), off,
1966 startoff);
1967 off += p->data_size();
1968 }
1969
1970 this->set_data_size(off - startoff);
1971 }
1972
1973 // Reset the address and file offset.
1974
1975 void
1976 Output_section::do_reset_address_and_file_offset()
1977 {
1978 for (Input_section_list::iterator p = this->input_sections_.begin();
1979 p != this->input_sections_.end();
1980 ++p)
1981 p->reset_address_and_file_offset();
1982 }
1983
1984 // Set the TLS offset. Called only for SHT_TLS sections.
1985
1986 void
1987 Output_section::do_set_tls_offset(uint64_t tls_base)
1988 {
1989 this->tls_offset_ = this->address() - tls_base;
1990 }
1991
1992 // In a few cases we need to sort the input sections attached to an
1993 // output section. This is used to implement the type of constructor
1994 // priority ordering implemented by the GNU linker, in which the
1995 // priority becomes part of the section name and the sections are
1996 // sorted by name. We only do this for an output section if we see an
1997 // attached input section matching ".ctor.*", ".dtor.*",
1998 // ".init_array.*" or ".fini_array.*".
1999
2000 class Output_section::Input_section_sort_entry
2001 {
2002 public:
2003 Input_section_sort_entry()
2004 : input_section_(), index_(-1U), section_has_name_(false),
2005 section_name_()
2006 { }
2007
2008 Input_section_sort_entry(const Input_section& input_section,
2009 unsigned int index)
2010 : input_section_(input_section), index_(index),
2011 section_has_name_(input_section.is_input_section())
2012 {
2013 if (this->section_has_name_)
2014 {
2015 // This is only called single-threaded from Layout::finalize,
2016 // so it is OK to lock. Unfortunately we have no way to pass
2017 // in a Task token.
2018 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2019 Object* obj = input_section.relobj();
2020 Task_lock_obj<Object> tl(dummy_task, obj);
2021
2022 // This is a slow operation, which should be cached in
2023 // Layout::layout if this becomes a speed problem.
2024 this->section_name_ = obj->section_name(input_section.shndx());
2025 }
2026 }
2027
2028 // Return the Input_section.
2029 const Input_section&
2030 input_section() const
2031 {
2032 gold_assert(this->index_ != -1U);
2033 return this->input_section_;
2034 }
2035
2036 // The index of this entry in the original list. This is used to
2037 // make the sort stable.
2038 unsigned int
2039 index() const
2040 {
2041 gold_assert(this->index_ != -1U);
2042 return this->index_;
2043 }
2044
2045 // Whether there is a section name.
2046 bool
2047 section_has_name() const
2048 { return this->section_has_name_; }
2049
2050 // The section name.
2051 const std::string&
2052 section_name() const
2053 {
2054 gold_assert(this->section_has_name_);
2055 return this->section_name_;
2056 }
2057
2058 // Return true if the section name is either SECTION_NAME1 or
2059 // SECTION_NAME2.
2060 bool
2061 match_section_name(const char* section_name1, const char* section_name2) const
2062 {
2063 gold_assert(this->section_has_name_);
2064 return (this->section_name_ == section_name1
2065 || this->section_name_ == section_name2);
2066 }
2067
2068 // Return true if PREFIX1 or PREFIX2 is a prefix of the section
2069 // name.
2070 bool
2071 match_section_name_prefix(const char* prefix1, const char* prefix2) const
2072 {
2073 gold_assert(this->section_has_name_);
2074 return (this->section_name_.compare(0, strlen(prefix1), prefix1) == 0
2075 || this->section_name_.compare(0, strlen(prefix2), prefix2) == 0);
2076 }
2077
2078 // Return true if this is for a section named SECTION_NAME1 or
2079 // SECTION_NAME2 in an input file whose base name matches FILE_NAME.
2080 // The base name must have an extension of ".o", and must be exactly
2081 // FILE_NAME.o or FILE_NAME, one character, ".o". This is to match
2082 // crtbegin.o as well as crtbeginS.o without getting confused by
2083 // other possibilities. Overall matching the file name this way is
2084 // a dreadful hack, but the GNU linker does it in order to better
2085 // support gcc, and we need to be compatible.
2086 bool
2087 match_section_file(const char* section_name1, const char* section_name2,
2088 const char* match_file_name) const
2089 {
2090 gold_assert(this->section_has_name_);
2091 if (this->section_name_ != section_name1
2092 && this->section_name_ != section_name2)
2093 return false;
2094 const std::string& file_name(this->input_section_.relobj()->name());
2095 const char* base_name = lbasename(file_name.c_str());
2096 size_t match_len = strlen(match_file_name);
2097 if (strncmp(base_name, match_file_name, match_len) != 0)
2098 return false;
2099 size_t base_len = strlen(base_name);
2100 if (base_len != match_len + 2 && base_len != match_len + 3)
2101 return false;
2102 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2103 }
2104
2105 private:
2106 // The Input_section we are sorting.
2107 Input_section input_section_;
2108 // The index of this Input_section in the original list.
2109 unsigned int index_;
2110 // Whether this Input_section has a section name--it won't if this
2111 // is some random Output_section_data.
2112 bool section_has_name_;
2113 // The section name if there is one.
2114 std::string section_name_;
2115 };
2116
2117 // Return true if S1 should come before S2 in the output section.
2118
2119 bool
2120 Output_section::Input_section_sort_compare::operator()(
2121 const Output_section::Input_section_sort_entry& s1,
2122 const Output_section::Input_section_sort_entry& s2) const
2123 {
2124 // We sort all the sections with no names to the end.
2125 if (!s1.section_has_name() || !s2.section_has_name())
2126 {
2127 if (s1.section_has_name())
2128 return true;
2129 if (s2.section_has_name())
2130 return false;
2131 return s1.index() < s2.index();
2132 }
2133
2134 // A .ctors or .dtors section from crtbegin.o must come before any
2135 // other .ctors* or .dtors* section.
2136 bool s1_begin = s1.match_section_file(".ctors", ".dtors", "crtbegin");
2137 bool s2_begin = s2.match_section_file(".ctors", ".dtors", "crtbegin");
2138 if (s1_begin || s2_begin)
2139 {
2140 if (!s1_begin)
2141 return false;
2142 if (!s2_begin)
2143 return true;
2144 return s1.index() < s2.index();
2145 }
2146
2147 // A .ctors or .dtors section from crtend.o must come after any
2148 // other .ctors* or .dtors* section.
2149 bool s1_end = s1.match_section_file(".ctors", ".dtors", "crtend");
2150 bool s2_end = s2.match_section_file(".ctors", ".dtors", "crtend");
2151 if (s1_end || s2_end)
2152 {
2153 if (!s1_end)
2154 return true;
2155 if (!s2_end)
2156 return false;
2157 return s1.index() < s2.index();
2158 }
2159
2160 // A .ctors or .init_array section with a priority precedes a .ctors
2161 // or .init_array section without a priority.
2162 if (s1.match_section_name_prefix(".ctors.", ".init_array.")
2163 && s2.match_section_name(".ctors", ".init_array"))
2164 return true;
2165 if (s2.match_section_name_prefix(".ctors.", ".init_array.")
2166 && s1.match_section_name(".ctors", ".init_array"))
2167 return false;
2168
2169 // A .dtors or .fini_array section with a priority follows a .dtors
2170 // or .fini_array section without a priority.
2171 if (s1.match_section_name_prefix(".dtors.", ".fini_array.")
2172 && s2.match_section_name(".dtors", ".fini_array"))
2173 return false;
2174 if (s2.match_section_name_prefix(".dtors.", ".fini_array.")
2175 && s1.match_section_name(".dtors", ".fini_array"))
2176 return true;
2177
2178 // Otherwise we sort by name.
2179 int compare = s1.section_name().compare(s2.section_name());
2180 if (compare != 0)
2181 return compare < 0;
2182
2183 // Otherwise we keep the input order.
2184 return s1.index() < s2.index();
2185 }
2186
2187 // Sort the input sections attached to an output section.
2188
2189 void
2190 Output_section::sort_attached_input_sections()
2191 {
2192 if (this->attached_input_sections_are_sorted_)
2193 return;
2194
2195 // The only thing we know about an input section is the object and
2196 // the section index. We need the section name. Recomputing this
2197 // is slow but this is an unusual case. If this becomes a speed
2198 // problem we can cache the names as required in Layout::layout.
2199
2200 // We start by building a larger vector holding a copy of each
2201 // Input_section, plus its current index in the list and its name.
2202 std::vector<Input_section_sort_entry> sort_list;
2203
2204 unsigned int i = 0;
2205 for (Input_section_list::iterator p = this->input_sections_.begin();
2206 p != this->input_sections_.end();
2207 ++p, ++i)
2208 sort_list.push_back(Input_section_sort_entry(*p, i));
2209
2210 // Sort the input sections.
2211 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2212
2213 // Copy the sorted input sections back to our list.
2214 this->input_sections_.clear();
2215 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2216 p != sort_list.end();
2217 ++p)
2218 this->input_sections_.push_back(p->input_section());
2219
2220 // Remember that we sorted the input sections, since we might get
2221 // called again.
2222 this->attached_input_sections_are_sorted_ = true;
2223 }
2224
2225 // Write the section header to *OSHDR.
2226
2227 template<int size, bool big_endian>
2228 void
2229 Output_section::write_header(const Layout* layout,
2230 const Stringpool* secnamepool,
2231 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2232 {
2233 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2234 oshdr->put_sh_type(this->type_);
2235
2236 elfcpp::Elf_Xword flags = this->flags_;
2237 if (this->info_section_ != NULL && this->info_uses_section_index_)
2238 flags |= elfcpp::SHF_INFO_LINK;
2239 oshdr->put_sh_flags(flags);
2240
2241 oshdr->put_sh_addr(this->address());
2242 oshdr->put_sh_offset(this->offset());
2243 oshdr->put_sh_size(this->data_size());
2244 if (this->link_section_ != NULL)
2245 oshdr->put_sh_link(this->link_section_->out_shndx());
2246 else if (this->should_link_to_symtab_)
2247 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2248 else if (this->should_link_to_dynsym_)
2249 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2250 else
2251 oshdr->put_sh_link(this->link_);
2252
2253 elfcpp::Elf_Word info;
2254 if (this->info_section_ != NULL)
2255 {
2256 if (this->info_uses_section_index_)
2257 info = this->info_section_->out_shndx();
2258 else
2259 info = this->info_section_->symtab_index();
2260 }
2261 else if (this->info_symndx_ != NULL)
2262 info = this->info_symndx_->symtab_index();
2263 else
2264 info = this->info_;
2265 oshdr->put_sh_info(info);
2266
2267 oshdr->put_sh_addralign(this->addralign_);
2268 oshdr->put_sh_entsize(this->entsize_);
2269 }
2270
2271 // Write out the data. For input sections the data is written out by
2272 // Object::relocate, but we have to handle Output_section_data objects
2273 // here.
2274
2275 void
2276 Output_section::do_write(Output_file* of)
2277 {
2278 gold_assert(!this->requires_postprocessing());
2279
2280 off_t output_section_file_offset = this->offset();
2281 for (Fill_list::iterator p = this->fills_.begin();
2282 p != this->fills_.end();
2283 ++p)
2284 {
2285 std::string fill_data(parameters->target().code_fill(p->length()));
2286 of->write(output_section_file_offset + p->section_offset(),
2287 fill_data.data(), fill_data.size());
2288 }
2289
2290 for (Input_section_list::iterator p = this->input_sections_.begin();
2291 p != this->input_sections_.end();
2292 ++p)
2293 p->write(of);
2294 }
2295
2296 // If a section requires postprocessing, create the buffer to use.
2297
2298 void
2299 Output_section::create_postprocessing_buffer()
2300 {
2301 gold_assert(this->requires_postprocessing());
2302
2303 if (this->postprocessing_buffer_ != NULL)
2304 return;
2305
2306 if (!this->input_sections_.empty())
2307 {
2308 off_t off = this->first_input_offset_;
2309 for (Input_section_list::iterator p = this->input_sections_.begin();
2310 p != this->input_sections_.end();
2311 ++p)
2312 {
2313 off = align_address(off, p->addralign());
2314 p->finalize_data_size();
2315 off += p->data_size();
2316 }
2317 this->set_current_data_size_for_child(off);
2318 }
2319
2320 off_t buffer_size = this->current_data_size_for_child();
2321 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2322 }
2323
2324 // Write all the data of an Output_section into the postprocessing
2325 // buffer. This is used for sections which require postprocessing,
2326 // such as compression. Input sections are handled by
2327 // Object::Relocate.
2328
2329 void
2330 Output_section::write_to_postprocessing_buffer()
2331 {
2332 gold_assert(this->requires_postprocessing());
2333
2334 unsigned char* buffer = this->postprocessing_buffer();
2335 for (Fill_list::iterator p = this->fills_.begin();
2336 p != this->fills_.end();
2337 ++p)
2338 {
2339 std::string fill_data(parameters->target().code_fill(p->length()));
2340 memcpy(buffer + p->section_offset(), fill_data.data(),
2341 fill_data.size());
2342 }
2343
2344 off_t off = this->first_input_offset_;
2345 for (Input_section_list::iterator p = this->input_sections_.begin();
2346 p != this->input_sections_.end();
2347 ++p)
2348 {
2349 off = align_address(off, p->addralign());
2350 p->write_to_buffer(buffer + off);
2351 off += p->data_size();
2352 }
2353 }
2354
2355 // Get the input sections for linker script processing. We leave
2356 // behind the Output_section_data entries. Note that this may be
2357 // slightly incorrect for merge sections. We will leave them behind,
2358 // but it is possible that the script says that they should follow
2359 // some other input sections, as in:
2360 // .rodata { *(.rodata) *(.rodata.cst*) }
2361 // For that matter, we don't handle this correctly:
2362 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2363 // With luck this will never matter.
2364
2365 uint64_t
2366 Output_section::get_input_sections(
2367 uint64_t address,
2368 const std::string& fill,
2369 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2370 {
2371 uint64_t orig_address = address;
2372
2373 address = align_address(address, this->addralign());
2374
2375 Input_section_list remaining;
2376 for (Input_section_list::iterator p = this->input_sections_.begin();
2377 p != this->input_sections_.end();
2378 ++p)
2379 {
2380 if (p->is_input_section())
2381 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2382 else
2383 {
2384 uint64_t aligned_address = align_address(address, p->addralign());
2385 if (aligned_address != address && !fill.empty())
2386 {
2387 section_size_type length =
2388 convert_to_section_size_type(aligned_address - address);
2389 std::string this_fill;
2390 this_fill.reserve(length);
2391 while (this_fill.length() + fill.length() <= length)
2392 this_fill += fill;
2393 if (this_fill.length() < length)
2394 this_fill.append(fill, 0, length - this_fill.length());
2395
2396 Output_section_data* posd = new Output_data_const(this_fill, 0);
2397 remaining.push_back(Input_section(posd));
2398 }
2399 address = aligned_address;
2400
2401 remaining.push_back(*p);
2402
2403 p->finalize_data_size();
2404 address += p->data_size();
2405 }
2406 }
2407
2408 this->input_sections_.swap(remaining);
2409 this->first_input_offset_ = 0;
2410
2411 uint64_t data_size = address - orig_address;
2412 this->set_current_data_size_for_child(data_size);
2413 return data_size;
2414 }
2415
2416 // Add an input section from a script.
2417
2418 void
2419 Output_section::add_input_section_for_script(Relobj* object,
2420 unsigned int shndx,
2421 off_t data_size,
2422 uint64_t addralign)
2423 {
2424 if (addralign > this->addralign_)
2425 this->addralign_ = addralign;
2426
2427 off_t offset_in_section = this->current_data_size_for_child();
2428 off_t aligned_offset_in_section = align_address(offset_in_section,
2429 addralign);
2430
2431 this->set_current_data_size_for_child(aligned_offset_in_section
2432 + data_size);
2433
2434 this->input_sections_.push_back(Input_section(object, shndx,
2435 data_size, addralign));
2436 }
2437
2438 // Print stats for merge sections to stderr.
2439
2440 void
2441 Output_section::print_merge_stats()
2442 {
2443 Input_section_list::iterator p;
2444 for (p = this->input_sections_.begin();
2445 p != this->input_sections_.end();
2446 ++p)
2447 p->print_merge_stats(this->name_);
2448 }
2449
2450 // Output segment methods.
2451
2452 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2453 : output_data_(),
2454 output_bss_(),
2455 vaddr_(0),
2456 paddr_(0),
2457 memsz_(0),
2458 max_align_(0),
2459 min_p_align_(0),
2460 offset_(0),
2461 filesz_(0),
2462 type_(type),
2463 flags_(flags),
2464 is_max_align_known_(false),
2465 are_addresses_set_(false)
2466 {
2467 }
2468
2469 // Add an Output_section to an Output_segment.
2470
2471 void
2472 Output_segment::add_output_section(Output_section* os,
2473 elfcpp::Elf_Word seg_flags,
2474 bool front)
2475 {
2476 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2477 gold_assert(!this->is_max_align_known_);
2478
2479 // Update the segment flags.
2480 this->flags_ |= seg_flags;
2481
2482 Output_segment::Output_data_list* pdl;
2483 if (os->type() == elfcpp::SHT_NOBITS)
2484 pdl = &this->output_bss_;
2485 else
2486 pdl = &this->output_data_;
2487
2488 // So that PT_NOTE segments will work correctly, we need to ensure
2489 // that all SHT_NOTE sections are adjacent. This will normally
2490 // happen automatically, because all the SHT_NOTE input sections
2491 // will wind up in the same output section. However, it is possible
2492 // for multiple SHT_NOTE input sections to have different section
2493 // flags, and thus be in different output sections, but for the
2494 // different section flags to map into the same segment flags and
2495 // thus the same output segment.
2496
2497 // Note that while there may be many input sections in an output
2498 // section, there are normally only a few output sections in an
2499 // output segment. This loop is expected to be fast.
2500
2501 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2502 {
2503 Output_segment::Output_data_list::iterator p = pdl->end();
2504 do
2505 {
2506 --p;
2507 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2508 {
2509 // We don't worry about the FRONT parameter.
2510 ++p;
2511 pdl->insert(p, os);
2512 return;
2513 }
2514 }
2515 while (p != pdl->begin());
2516 }
2517
2518 // Similarly, so that PT_TLS segments will work, we need to group
2519 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2520 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2521 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2522 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2523 // and the PT_TLS segment -- we do this grouping only for the
2524 // PT_LOAD segment.
2525 if (this->type_ != elfcpp::PT_TLS
2526 && (os->flags() & elfcpp::SHF_TLS) != 0
2527 && !this->output_data_.empty())
2528 {
2529 pdl = &this->output_data_;
2530 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2531 bool sawtls = false;
2532 Output_segment::Output_data_list::iterator p = pdl->end();
2533 do
2534 {
2535 --p;
2536 bool insert;
2537 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2538 {
2539 sawtls = true;
2540 // Put a NOBITS section after the first TLS section.
2541 // But a PROGBITS section after the first TLS/PROGBITS
2542 // section.
2543 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2544 }
2545 else
2546 {
2547 // If we've gone past the TLS sections, but we've seen a
2548 // TLS section, then we need to insert this section now.
2549 insert = sawtls;
2550 }
2551
2552 if (insert)
2553 {
2554 // We don't worry about the FRONT parameter.
2555 ++p;
2556 pdl->insert(p, os);
2557 return;
2558 }
2559 }
2560 while (p != pdl->begin());
2561
2562 // There are no TLS sections yet; put this one at the requested
2563 // location in the section list.
2564 }
2565
2566 if (front)
2567 pdl->push_front(os);
2568 else
2569 pdl->push_back(os);
2570 }
2571
2572 // Remove an Output_section from this segment. It is an error if it
2573 // is not present.
2574
2575 void
2576 Output_segment::remove_output_section(Output_section* os)
2577 {
2578 // We only need this for SHT_PROGBITS.
2579 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2580 for (Output_data_list::iterator p = this->output_data_.begin();
2581 p != this->output_data_.end();
2582 ++p)
2583 {
2584 if (*p == os)
2585 {
2586 this->output_data_.erase(p);
2587 return;
2588 }
2589 }
2590 gold_unreachable();
2591 }
2592
2593 // Add an Output_data (which is not an Output_section) to the start of
2594 // a segment.
2595
2596 void
2597 Output_segment::add_initial_output_data(Output_data* od)
2598 {
2599 gold_assert(!this->is_max_align_known_);
2600 this->output_data_.push_front(od);
2601 }
2602
2603 // Return the maximum alignment of the Output_data in Output_segment.
2604
2605 uint64_t
2606 Output_segment::maximum_alignment()
2607 {
2608 if (!this->is_max_align_known_)
2609 {
2610 uint64_t addralign;
2611
2612 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2613 if (addralign > this->max_align_)
2614 this->max_align_ = addralign;
2615
2616 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2617 if (addralign > this->max_align_)
2618 this->max_align_ = addralign;
2619
2620 this->is_max_align_known_ = true;
2621 }
2622
2623 return this->max_align_;
2624 }
2625
2626 // Return the maximum alignment of a list of Output_data.
2627
2628 uint64_t
2629 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2630 {
2631 uint64_t ret = 0;
2632 for (Output_data_list::const_iterator p = pdl->begin();
2633 p != pdl->end();
2634 ++p)
2635 {
2636 uint64_t addralign = (*p)->addralign();
2637 if (addralign > ret)
2638 ret = addralign;
2639 }
2640 return ret;
2641 }
2642
2643 // Return the number of dynamic relocs applied to this segment.
2644
2645 unsigned int
2646 Output_segment::dynamic_reloc_count() const
2647 {
2648 return (this->dynamic_reloc_count_list(&this->output_data_)
2649 + this->dynamic_reloc_count_list(&this->output_bss_));
2650 }
2651
2652 // Return the number of dynamic relocs applied to an Output_data_list.
2653
2654 unsigned int
2655 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2656 {
2657 unsigned int count = 0;
2658 for (Output_data_list::const_iterator p = pdl->begin();
2659 p != pdl->end();
2660 ++p)
2661 count += (*p)->dynamic_reloc_count();
2662 return count;
2663 }
2664
2665 // Set the section addresses for an Output_segment. If RESET is true,
2666 // reset the addresses first. ADDR is the address and *POFF is the
2667 // file offset. Set the section indexes starting with *PSHNDX.
2668 // Return the address of the immediately following segment. Update
2669 // *POFF and *PSHNDX.
2670
2671 uint64_t
2672 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2673 uint64_t addr, off_t* poff,
2674 unsigned int* pshndx)
2675 {
2676 gold_assert(this->type_ == elfcpp::PT_LOAD);
2677
2678 if (!reset && this->are_addresses_set_)
2679 {
2680 gold_assert(this->paddr_ == addr);
2681 addr = this->vaddr_;
2682 }
2683 else
2684 {
2685 this->vaddr_ = addr;
2686 this->paddr_ = addr;
2687 this->are_addresses_set_ = true;
2688 }
2689
2690 bool in_tls = false;
2691
2692 off_t orig_off = *poff;
2693 this->offset_ = orig_off;
2694
2695 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2696 addr, poff, pshndx, &in_tls);
2697 this->filesz_ = *poff - orig_off;
2698
2699 off_t off = *poff;
2700
2701 uint64_t ret = this->set_section_list_addresses(layout, reset,
2702 &this->output_bss_,
2703 addr, poff, pshndx,
2704 &in_tls);
2705
2706 // If the last section was a TLS section, align upward to the
2707 // alignment of the TLS segment, so that the overall size of the TLS
2708 // segment is aligned.
2709 if (in_tls)
2710 {
2711 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2712 *poff = align_address(*poff, segment_align);
2713 }
2714
2715 this->memsz_ = *poff - orig_off;
2716
2717 // Ignore the file offset adjustments made by the BSS Output_data
2718 // objects.
2719 *poff = off;
2720
2721 return ret;
2722 }
2723
2724 // Set the addresses and file offsets in a list of Output_data
2725 // structures.
2726
2727 uint64_t
2728 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2729 Output_data_list* pdl,
2730 uint64_t addr, off_t* poff,
2731 unsigned int* pshndx,
2732 bool* in_tls)
2733 {
2734 off_t startoff = *poff;
2735
2736 off_t off = startoff;
2737 for (Output_data_list::iterator p = pdl->begin();
2738 p != pdl->end();
2739 ++p)
2740 {
2741 if (reset)
2742 (*p)->reset_address_and_file_offset();
2743
2744 // When using a linker script the section will most likely
2745 // already have an address.
2746 if (!(*p)->is_address_valid())
2747 {
2748 uint64_t align = (*p)->addralign();
2749
2750 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2751 {
2752 // Give the first TLS section the alignment of the
2753 // entire TLS segment. Otherwise the TLS segment as a
2754 // whole may be misaligned.
2755 if (!*in_tls)
2756 {
2757 Output_segment* tls_segment = layout->tls_segment();
2758 gold_assert(tls_segment != NULL);
2759 uint64_t segment_align = tls_segment->maximum_alignment();
2760 gold_assert(segment_align >= align);
2761 align = segment_align;
2762
2763 *in_tls = true;
2764 }
2765 }
2766 else
2767 {
2768 // If this is the first section after the TLS segment,
2769 // align it to at least the alignment of the TLS
2770 // segment, so that the size of the overall TLS segment
2771 // is aligned.
2772 if (*in_tls)
2773 {
2774 uint64_t segment_align =
2775 layout->tls_segment()->maximum_alignment();
2776 if (segment_align > align)
2777 align = segment_align;
2778
2779 *in_tls = false;
2780 }
2781 }
2782
2783 off = align_address(off, align);
2784 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2785 }
2786 else
2787 {
2788 // The script may have inserted a skip forward, but it
2789 // better not have moved backward.
2790 gold_assert((*p)->address() >= addr + (off - startoff));
2791 off += (*p)->address() - (addr + (off - startoff));
2792 (*p)->set_file_offset(off);
2793 (*p)->finalize_data_size();
2794 }
2795
2796 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2797 // section. Such a section does not affect the size of a
2798 // PT_LOAD segment.
2799 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2800 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2801 off += (*p)->data_size();
2802
2803 if ((*p)->is_section())
2804 {
2805 (*p)->set_out_shndx(*pshndx);
2806 ++*pshndx;
2807 }
2808 }
2809
2810 *poff = off;
2811 return addr + (off - startoff);
2812 }
2813
2814 // For a non-PT_LOAD segment, set the offset from the sections, if
2815 // any.
2816
2817 void
2818 Output_segment::set_offset()
2819 {
2820 gold_assert(this->type_ != elfcpp::PT_LOAD);
2821
2822 gold_assert(!this->are_addresses_set_);
2823
2824 if (this->output_data_.empty() && this->output_bss_.empty())
2825 {
2826 this->vaddr_ = 0;
2827 this->paddr_ = 0;
2828 this->are_addresses_set_ = true;
2829 this->memsz_ = 0;
2830 this->min_p_align_ = 0;
2831 this->offset_ = 0;
2832 this->filesz_ = 0;
2833 return;
2834 }
2835
2836 const Output_data* first;
2837 if (this->output_data_.empty())
2838 first = this->output_bss_.front();
2839 else
2840 first = this->output_data_.front();
2841 this->vaddr_ = first->address();
2842 this->paddr_ = (first->has_load_address()
2843 ? first->load_address()
2844 : this->vaddr_);
2845 this->are_addresses_set_ = true;
2846 this->offset_ = first->offset();
2847
2848 if (this->output_data_.empty())
2849 this->filesz_ = 0;
2850 else
2851 {
2852 const Output_data* last_data = this->output_data_.back();
2853 this->filesz_ = (last_data->address()
2854 + last_data->data_size()
2855 - this->vaddr_);
2856 }
2857
2858 const Output_data* last;
2859 if (this->output_bss_.empty())
2860 last = this->output_data_.back();
2861 else
2862 last = this->output_bss_.back();
2863 this->memsz_ = (last->address()
2864 + last->data_size()
2865 - this->vaddr_);
2866
2867 // If this is a TLS segment, align the memory size. The code in
2868 // set_section_list ensures that the section after the TLS segment
2869 // is aligned to give us room.
2870 if (this->type_ == elfcpp::PT_TLS)
2871 {
2872 uint64_t segment_align = this->maximum_alignment();
2873 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2874 this->memsz_ = align_address(this->memsz_, segment_align);
2875 }
2876 }
2877
2878 // Set the TLS offsets of the sections in the PT_TLS segment.
2879
2880 void
2881 Output_segment::set_tls_offsets()
2882 {
2883 gold_assert(this->type_ == elfcpp::PT_TLS);
2884
2885 for (Output_data_list::iterator p = this->output_data_.begin();
2886 p != this->output_data_.end();
2887 ++p)
2888 (*p)->set_tls_offset(this->vaddr_);
2889
2890 for (Output_data_list::iterator p = this->output_bss_.begin();
2891 p != this->output_bss_.end();
2892 ++p)
2893 (*p)->set_tls_offset(this->vaddr_);
2894 }
2895
2896 // Return the address of the first section.
2897
2898 uint64_t
2899 Output_segment::first_section_load_address() const
2900 {
2901 for (Output_data_list::const_iterator p = this->output_data_.begin();
2902 p != this->output_data_.end();
2903 ++p)
2904 if ((*p)->is_section())
2905 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2906
2907 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2908 p != this->output_bss_.end();
2909 ++p)
2910 if ((*p)->is_section())
2911 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2912
2913 gold_unreachable();
2914 }
2915
2916 // Return the number of Output_sections in an Output_segment.
2917
2918 unsigned int
2919 Output_segment::output_section_count() const
2920 {
2921 return (this->output_section_count_list(&this->output_data_)
2922 + this->output_section_count_list(&this->output_bss_));
2923 }
2924
2925 // Return the number of Output_sections in an Output_data_list.
2926
2927 unsigned int
2928 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2929 {
2930 unsigned int count = 0;
2931 for (Output_data_list::const_iterator p = pdl->begin();
2932 p != pdl->end();
2933 ++p)
2934 {
2935 if ((*p)->is_section())
2936 ++count;
2937 }
2938 return count;
2939 }
2940
2941 // Return the section attached to the list segment with the lowest
2942 // load address. This is used when handling a PHDRS clause in a
2943 // linker script.
2944
2945 Output_section*
2946 Output_segment::section_with_lowest_load_address() const
2947 {
2948 Output_section* found = NULL;
2949 uint64_t found_lma = 0;
2950 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2951
2952 Output_section* found_data = found;
2953 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2954 if (found != found_data && found_data != NULL)
2955 {
2956 gold_error(_("nobits section %s may not precede progbits section %s "
2957 "in same segment"),
2958 found->name(), found_data->name());
2959 return NULL;
2960 }
2961
2962 return found;
2963 }
2964
2965 // Look through a list for a section with a lower load address.
2966
2967 void
2968 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2969 Output_section** found,
2970 uint64_t* found_lma) const
2971 {
2972 for (Output_data_list::const_iterator p = pdl->begin();
2973 p != pdl->end();
2974 ++p)
2975 {
2976 if (!(*p)->is_section())
2977 continue;
2978 Output_section* os = static_cast<Output_section*>(*p);
2979 uint64_t lma = (os->has_load_address()
2980 ? os->load_address()
2981 : os->address());
2982 if (*found == NULL || lma < *found_lma)
2983 {
2984 *found = os;
2985 *found_lma = lma;
2986 }
2987 }
2988 }
2989
2990 // Write the segment data into *OPHDR.
2991
2992 template<int size, bool big_endian>
2993 void
2994 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2995 {
2996 ophdr->put_p_type(this->type_);
2997 ophdr->put_p_offset(this->offset_);
2998 ophdr->put_p_vaddr(this->vaddr_);
2999 ophdr->put_p_paddr(this->paddr_);
3000 ophdr->put_p_filesz(this->filesz_);
3001 ophdr->put_p_memsz(this->memsz_);
3002 ophdr->put_p_flags(this->flags_);
3003 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3004 }
3005
3006 // Write the section headers into V.
3007
3008 template<int size, bool big_endian>
3009 unsigned char*
3010 Output_segment::write_section_headers(const Layout* layout,
3011 const Stringpool* secnamepool,
3012 unsigned char* v,
3013 unsigned int *pshndx) const
3014 {
3015 // Every section that is attached to a segment must be attached to a
3016 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3017 // segments.
3018 if (this->type_ != elfcpp::PT_LOAD)
3019 return v;
3020
3021 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3022 &this->output_data_,
3023 v, pshndx);
3024 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3025 &this->output_bss_,
3026 v, pshndx);
3027 return v;
3028 }
3029
3030 template<int size, bool big_endian>
3031 unsigned char*
3032 Output_segment::write_section_headers_list(const Layout* layout,
3033 const Stringpool* secnamepool,
3034 const Output_data_list* pdl,
3035 unsigned char* v,
3036 unsigned int* pshndx) const
3037 {
3038 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3039 for (Output_data_list::const_iterator p = pdl->begin();
3040 p != pdl->end();
3041 ++p)
3042 {
3043 if ((*p)->is_section())
3044 {
3045 const Output_section* ps = static_cast<const Output_section*>(*p);
3046 gold_assert(*pshndx == ps->out_shndx());
3047 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3048 ps->write_header(layout, secnamepool, &oshdr);
3049 v += shdr_size;
3050 ++*pshndx;
3051 }
3052 }
3053 return v;
3054 }
3055
3056 // Output_file methods.
3057
3058 Output_file::Output_file(const char* name)
3059 : name_(name),
3060 o_(-1),
3061 file_size_(0),
3062 base_(NULL),
3063 map_is_anonymous_(false),
3064 is_temporary_(false)
3065 {
3066 }
3067
3068 // Open the output file.
3069
3070 void
3071 Output_file::open(off_t file_size)
3072 {
3073 this->file_size_ = file_size;
3074
3075 // Unlink the file first; otherwise the open() may fail if the file
3076 // is busy (e.g. it's an executable that's currently being executed).
3077 //
3078 // However, the linker may be part of a system where a zero-length
3079 // file is created for it to write to, with tight permissions (gcc
3080 // 2.95 did something like this). Unlinking the file would work
3081 // around those permission controls, so we only unlink if the file
3082 // has a non-zero size. We also unlink only regular files to avoid
3083 // trouble with directories/etc.
3084 //
3085 // If we fail, continue; this command is merely a best-effort attempt
3086 // to improve the odds for open().
3087
3088 // We let the name "-" mean "stdout"
3089 if (!this->is_temporary_)
3090 {
3091 if (strcmp(this->name_, "-") == 0)
3092 this->o_ = STDOUT_FILENO;
3093 else
3094 {
3095 struct stat s;
3096 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3097 unlink_if_ordinary(this->name_);
3098
3099 int mode = parameters->options().relocatable() ? 0666 : 0777;
3100 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3101 if (o < 0)
3102 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3103 this->o_ = o;
3104 }
3105 }
3106
3107 this->map();
3108 }
3109
3110 // Resize the output file.
3111
3112 void
3113 Output_file::resize(off_t file_size)
3114 {
3115 // If the mmap is mapping an anonymous memory buffer, this is easy:
3116 // just mremap to the new size. If it's mapping to a file, we want
3117 // to unmap to flush to the file, then remap after growing the file.
3118 if (this->map_is_anonymous_)
3119 {
3120 void* base = ::mremap(this->base_, this->file_size_, file_size,
3121 MREMAP_MAYMOVE);
3122 if (base == MAP_FAILED)
3123 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3124 this->base_ = static_cast<unsigned char*>(base);
3125 this->file_size_ = file_size;
3126 }
3127 else
3128 {
3129 this->unmap();
3130 this->file_size_ = file_size;
3131 this->map();
3132 }
3133 }
3134
3135 // Map the file into memory.
3136
3137 void
3138 Output_file::map()
3139 {
3140 const int o = this->o_;
3141
3142 // If the output file is not a regular file, don't try to mmap it;
3143 // instead, we'll mmap a block of memory (an anonymous buffer), and
3144 // then later write the buffer to the file.
3145 void* base;
3146 struct stat statbuf;
3147 if (o == STDOUT_FILENO || o == STDERR_FILENO
3148 || ::fstat(o, &statbuf) != 0
3149 || !S_ISREG(statbuf.st_mode)
3150 || this->is_temporary_)
3151 {
3152 this->map_is_anonymous_ = true;
3153 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3154 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3155 }
3156 else
3157 {
3158 // Write out one byte to make the file the right size.
3159 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3160 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3161 char b = 0;
3162 if (::write(o, &b, 1) != 1)
3163 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3164
3165 // Map the file into memory.
3166 this->map_is_anonymous_ = false;
3167 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3168 MAP_SHARED, o, 0);
3169 }
3170 if (base == MAP_FAILED)
3171 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3172 this->base_ = static_cast<unsigned char*>(base);
3173 }
3174
3175 // Unmap the file from memory.
3176
3177 void
3178 Output_file::unmap()
3179 {
3180 if (::munmap(this->base_, this->file_size_) < 0)
3181 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3182 this->base_ = NULL;
3183 }
3184
3185 // Close the output file.
3186
3187 void
3188 Output_file::close()
3189 {
3190 // If the map isn't file-backed, we need to write it now.
3191 if (this->map_is_anonymous_ && !this->is_temporary_)
3192 {
3193 size_t bytes_to_write = this->file_size_;
3194 while (bytes_to_write > 0)
3195 {
3196 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3197 if (bytes_written == 0)
3198 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3199 else if (bytes_written < 0)
3200 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3201 else
3202 bytes_to_write -= bytes_written;
3203 }
3204 }
3205 this->unmap();
3206
3207 // We don't close stdout or stderr
3208 if (this->o_ != STDOUT_FILENO
3209 && this->o_ != STDERR_FILENO
3210 && !this->is_temporary_)
3211 if (::close(this->o_) < 0)
3212 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3213 this->o_ = -1;
3214 }
3215
3216 // Instantiate the templates we need. We could use the configure
3217 // script to restrict this to only the ones for implemented targets.
3218
3219 #ifdef HAVE_TARGET_32_LITTLE
3220 template
3221 off_t
3222 Output_section::add_input_section<32, false>(
3223 Sized_relobj<32, false>* object,
3224 unsigned int shndx,
3225 const char* secname,
3226 const elfcpp::Shdr<32, false>& shdr,
3227 unsigned int reloc_shndx,
3228 bool have_sections_script);
3229 #endif
3230
3231 #ifdef HAVE_TARGET_32_BIG
3232 template
3233 off_t
3234 Output_section::add_input_section<32, true>(
3235 Sized_relobj<32, true>* object,
3236 unsigned int shndx,
3237 const char* secname,
3238 const elfcpp::Shdr<32, true>& shdr,
3239 unsigned int reloc_shndx,
3240 bool have_sections_script);
3241 #endif
3242
3243 #ifdef HAVE_TARGET_64_LITTLE
3244 template
3245 off_t
3246 Output_section::add_input_section<64, false>(
3247 Sized_relobj<64, false>* object,
3248 unsigned int shndx,
3249 const char* secname,
3250 const elfcpp::Shdr<64, false>& shdr,
3251 unsigned int reloc_shndx,
3252 bool have_sections_script);
3253 #endif
3254
3255 #ifdef HAVE_TARGET_64_BIG
3256 template
3257 off_t
3258 Output_section::add_input_section<64, true>(
3259 Sized_relobj<64, true>* object,
3260 unsigned int shndx,
3261 const char* secname,
3262 const elfcpp::Shdr<64, true>& shdr,
3263 unsigned int reloc_shndx,
3264 bool have_sections_script);
3265 #endif
3266
3267 #ifdef HAVE_TARGET_32_LITTLE
3268 template
3269 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3270 #endif
3271
3272 #ifdef HAVE_TARGET_32_BIG
3273 template
3274 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3275 #endif
3276
3277 #ifdef HAVE_TARGET_64_LITTLE
3278 template
3279 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3280 #endif
3281
3282 #ifdef HAVE_TARGET_64_BIG
3283 template
3284 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3285 #endif
3286
3287 #ifdef HAVE_TARGET_32_LITTLE
3288 template
3289 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3290 #endif
3291
3292 #ifdef HAVE_TARGET_32_BIG
3293 template
3294 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3295 #endif
3296
3297 #ifdef HAVE_TARGET_64_LITTLE
3298 template
3299 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3300 #endif
3301
3302 #ifdef HAVE_TARGET_64_BIG
3303 template
3304 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3305 #endif
3306
3307 #ifdef HAVE_TARGET_32_LITTLE
3308 template
3309 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3310 #endif
3311
3312 #ifdef HAVE_TARGET_32_BIG
3313 template
3314 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3315 #endif
3316
3317 #ifdef HAVE_TARGET_64_LITTLE
3318 template
3319 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3320 #endif
3321
3322 #ifdef HAVE_TARGET_64_BIG
3323 template
3324 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3325 #endif
3326
3327 #ifdef HAVE_TARGET_32_LITTLE
3328 template
3329 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3330 #endif
3331
3332 #ifdef HAVE_TARGET_32_BIG
3333 template
3334 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3335 #endif
3336
3337 #ifdef HAVE_TARGET_64_LITTLE
3338 template
3339 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3340 #endif
3341
3342 #ifdef HAVE_TARGET_64_BIG
3343 template
3344 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3345 #endif
3346
3347 #ifdef HAVE_TARGET_32_LITTLE
3348 template
3349 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3350 #endif
3351
3352 #ifdef HAVE_TARGET_32_BIG
3353 template
3354 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3355 #endif
3356
3357 #ifdef HAVE_TARGET_64_LITTLE
3358 template
3359 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3360 #endif
3361
3362 #ifdef HAVE_TARGET_64_BIG
3363 template
3364 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3365 #endif
3366
3367 #ifdef HAVE_TARGET_32_LITTLE
3368 template
3369 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3370 #endif
3371
3372 #ifdef HAVE_TARGET_32_BIG
3373 template
3374 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3375 #endif
3376
3377 #ifdef HAVE_TARGET_64_LITTLE
3378 template
3379 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3380 #endif
3381
3382 #ifdef HAVE_TARGET_64_BIG
3383 template
3384 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3385 #endif
3386
3387 #ifdef HAVE_TARGET_32_LITTLE
3388 template
3389 class Output_data_group<32, false>;
3390 #endif
3391
3392 #ifdef HAVE_TARGET_32_BIG
3393 template
3394 class Output_data_group<32, true>;
3395 #endif
3396
3397 #ifdef HAVE_TARGET_64_LITTLE
3398 template
3399 class Output_data_group<64, false>;
3400 #endif
3401
3402 #ifdef HAVE_TARGET_64_BIG
3403 template
3404 class Output_data_group<64, true>;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_32_LITTLE
3408 template
3409 class Output_data_got<32, false>;
3410 #endif
3411
3412 #ifdef HAVE_TARGET_32_BIG
3413 template
3414 class Output_data_got<32, true>;
3415 #endif
3416
3417 #ifdef HAVE_TARGET_64_LITTLE
3418 template
3419 class Output_data_got<64, false>;
3420 #endif
3421
3422 #ifdef HAVE_TARGET_64_BIG
3423 template
3424 class Output_data_got<64, true>;
3425 #endif
3426
3427 } // End namespace gold.