]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/powerpc.cc
Further improve warnings for relocations referring to discarded sections.
[thirdparty/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2018 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93 typedef Unordered_map<Address, Section_refs> Access_from;
94
95 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99 has_small_toc_reloc_(false), opd_valid_(false),
100 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101 access_from_map_(), has14_(), stub_table_index_(), st_other_()
102 {
103 this->set_abiversion(0);
104 }
105
106 ~Powerpc_relobj()
107 { }
108
109 // Read the symbols then set up st_other vector.
110 void
111 do_read_symbols(Read_symbols_data*);
112
113 // Arrange to always relocate .toc first.
114 virtual void
115 do_relocate_sections(
116 const Symbol_table* symtab, const Layout* layout,
117 const unsigned char* pshdrs, Output_file* of,
118 typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120 // The .toc section index.
121 unsigned int
122 toc_shndx() const
123 {
124 return this->toc_;
125 }
126
127 // Mark .toc entry at OFF as not optimizable.
128 void
129 set_no_toc_opt(Address off)
130 {
131 if (this->no_toc_opt_.empty())
132 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133 / (size / 8));
134 off /= size / 8;
135 if (off < this->no_toc_opt_.size())
136 this->no_toc_opt_[off] = true;
137 }
138
139 // Mark the entire .toc as not optimizable.
140 void
141 set_no_toc_opt()
142 {
143 this->no_toc_opt_.resize(1);
144 this->no_toc_opt_[0] = true;
145 }
146
147 // Return true if code using the .toc entry at OFF should not be edited.
148 bool
149 no_toc_opt(Address off) const
150 {
151 if (this->no_toc_opt_.empty())
152 return false;
153 off /= size / 8;
154 if (off >= this->no_toc_opt_.size())
155 return true;
156 return this->no_toc_opt_[off];
157 }
158
159 // The .got2 section shndx.
160 unsigned int
161 got2_shndx() const
162 {
163 if (size == 32)
164 return this->special_;
165 else
166 return 0;
167 }
168
169 // The .opd section shndx.
170 unsigned int
171 opd_shndx() const
172 {
173 if (size == 32)
174 return 0;
175 else
176 return this->special_;
177 }
178
179 // Init OPD entry arrays.
180 void
181 init_opd(size_t opd_size)
182 {
183 size_t count = this->opd_ent_ndx(opd_size);
184 this->opd_ent_.resize(count);
185 }
186
187 // Return section and offset of function entry for .opd + R_OFF.
188 unsigned int
189 get_opd_ent(Address r_off, Address* value = NULL) const
190 {
191 size_t ndx = this->opd_ent_ndx(r_off);
192 gold_assert(ndx < this->opd_ent_.size());
193 gold_assert(this->opd_ent_[ndx].shndx != 0);
194 if (value != NULL)
195 *value = this->opd_ent_[ndx].off;
196 return this->opd_ent_[ndx].shndx;
197 }
198
199 // Set section and offset of function entry for .opd + R_OFF.
200 void
201 set_opd_ent(Address r_off, unsigned int shndx, Address value)
202 {
203 size_t ndx = this->opd_ent_ndx(r_off);
204 gold_assert(ndx < this->opd_ent_.size());
205 this->opd_ent_[ndx].shndx = shndx;
206 this->opd_ent_[ndx].off = value;
207 }
208
209 // Return discard flag for .opd + R_OFF.
210 bool
211 get_opd_discard(Address r_off) const
212 {
213 size_t ndx = this->opd_ent_ndx(r_off);
214 gold_assert(ndx < this->opd_ent_.size());
215 return this->opd_ent_[ndx].discard;
216 }
217
218 // Set discard flag for .opd + R_OFF.
219 void
220 set_opd_discard(Address r_off)
221 {
222 size_t ndx = this->opd_ent_ndx(r_off);
223 gold_assert(ndx < this->opd_ent_.size());
224 this->opd_ent_[ndx].discard = true;
225 }
226
227 bool
228 opd_valid() const
229 { return this->opd_valid_; }
230
231 void
232 set_opd_valid()
233 { this->opd_valid_ = true; }
234
235 // Examine .rela.opd to build info about function entry points.
236 void
237 scan_opd_relocs(size_t reloc_count,
238 const unsigned char* prelocs,
239 const unsigned char* plocal_syms);
240
241 // Returns true if a code sequence loading a TOC entry can be
242 // converted into code calculating a TOC pointer relative offset.
243 bool
244 make_toc_relative(Target_powerpc<size, big_endian>* target,
245 Address* value);
246
247 // Perform the Sized_relobj_file method, then set up opd info from
248 // .opd relocs.
249 void
250 do_read_relocs(Read_relocs_data*);
251
252 bool
253 do_find_special_sections(Read_symbols_data* sd);
254
255 // Adjust this local symbol value. Return false if the symbol
256 // should be discarded from the output file.
257 bool
258 do_adjust_local_symbol(Symbol_value<size>* lv) const
259 {
260 if (size == 64 && this->opd_shndx() != 0)
261 {
262 bool is_ordinary;
263 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264 return true;
265 if (this->get_opd_discard(lv->input_value()))
266 return false;
267 }
268 return true;
269 }
270
271 Access_from*
272 access_from_map()
273 { return &this->access_from_map_; }
274
275 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276 // section at DST_OFF.
277 void
278 add_reference(Relobj* src_obj,
279 unsigned int src_indx,
280 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281 {
282 Section_id src_id(src_obj, src_indx);
283 this->access_from_map_[dst_off].insert(src_id);
284 }
285
286 // Add a reference to the code section specified by the .opd entry
287 // at DST_OFF
288 void
289 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290 {
291 size_t ndx = this->opd_ent_ndx(dst_off);
292 if (ndx >= this->opd_ent_.size())
293 this->opd_ent_.resize(ndx + 1);
294 this->opd_ent_[ndx].gc_mark = true;
295 }
296
297 void
298 process_gc_mark(Symbol_table* symtab)
299 {
300 for (size_t i = 0; i < this->opd_ent_.size(); i++)
301 if (this->opd_ent_[i].gc_mark)
302 {
303 unsigned int shndx = this->opd_ent_[i].shndx;
304 symtab->gc()->worklist().push_back(Section_id(this, shndx));
305 }
306 }
307
308 // Return offset in output GOT section that this object will use
309 // as a TOC pointer. Won't be just a constant with multi-toc support.
310 Address
311 toc_base_offset() const
312 { return 0x8000; }
313
314 void
315 set_has_small_toc_reloc()
316 { has_small_toc_reloc_ = true; }
317
318 bool
319 has_small_toc_reloc() const
320 { return has_small_toc_reloc_; }
321
322 void
323 set_has_14bit_branch(unsigned int shndx)
324 {
325 if (shndx >= this->has14_.size())
326 this->has14_.resize(shndx + 1);
327 this->has14_[shndx] = true;
328 }
329
330 bool
331 has_14bit_branch(unsigned int shndx) const
332 { return shndx < this->has14_.size() && this->has14_[shndx]; }
333
334 void
335 set_stub_table(unsigned int shndx, unsigned int stub_index)
336 {
337 if (shndx >= this->stub_table_index_.size())
338 this->stub_table_index_.resize(shndx + 1, -1);
339 this->stub_table_index_[shndx] = stub_index;
340 }
341
342 Stub_table<size, big_endian>*
343 stub_table(unsigned int shndx)
344 {
345 if (shndx < this->stub_table_index_.size())
346 {
347 Target_powerpc<size, big_endian>* target
348 = static_cast<Target_powerpc<size, big_endian>*>(
349 parameters->sized_target<size, big_endian>());
350 unsigned int indx = this->stub_table_index_[shndx];
351 if (indx < target->stub_tables().size())
352 return target->stub_tables()[indx];
353 }
354 return NULL;
355 }
356
357 void
358 clear_stub_table()
359 {
360 this->stub_table_index_.clear();
361 }
362
363 uint32_t
364 uniq() const
365 { return this->uniq_; }
366
367 int
368 abiversion() const
369 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371 // Set ABI version for input and output
372 void
373 set_abiversion(int ver);
374
375 unsigned int
376 st_other (unsigned int symndx) const
377 {
378 return this->st_other_[symndx];
379 }
380
381 unsigned int
382 ppc64_local_entry_offset(const Symbol* sym) const
383 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385 unsigned int
386 ppc64_local_entry_offset(unsigned int symndx) const
387 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390 struct Opd_ent
391 {
392 unsigned int shndx;
393 bool discard : 1;
394 bool gc_mark : 1;
395 Address off;
396 };
397
398 // Return index into opd_ent_ array for .opd entry at OFF.
399 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400 // apart when the language doesn't use the last 8-byte word, the
401 // environment pointer. Thus dividing the entry section offset by
402 // 16 will give an index into opd_ent_ that works for either layout
403 // of .opd. (It leaves some elements of the vector unused when .opd
404 // entries are spaced 24 bytes apart, but we don't know the spacing
405 // until relocations are processed, and in any case it is possible
406 // for an object to have some entries spaced 16 bytes apart and
407 // others 24 bytes apart.)
408 size_t
409 opd_ent_ndx(size_t off) const
410 { return off >> 4;}
411
412 // Per object unique identifier
413 uint32_t uniq_;
414
415 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416 unsigned int special_;
417
418 // For 64-bit the .rela.toc and .toc section shdnx.
419 unsigned int relatoc_;
420 unsigned int toc_;
421
422 // For 64-bit, whether this object uses small model relocs to access
423 // the toc.
424 bool has_small_toc_reloc_;
425
426 // Set at the start of gc_process_relocs, when we know opd_ent_
427 // vector is valid. The flag could be made atomic and set in
428 // do_read_relocs with memory_order_release and then tested with
429 // memory_order_acquire, potentially resulting in fewer entries in
430 // access_from_map_.
431 bool opd_valid_;
432
433 // Header e_flags
434 elfcpp::Elf_Word e_flags_;
435
436 // For 64-bit, an array with one entry per 64-bit word in the .toc
437 // section, set if accesses using that word cannot be optimised.
438 std::vector<bool> no_toc_opt_;
439
440 // The first 8-byte word of an OPD entry gives the address of the
441 // entry point of the function. Relocatable object files have a
442 // relocation on this word. The following vector records the
443 // section and offset specified by these relocations.
444 std::vector<Opd_ent> opd_ent_;
445
446 // References made to this object's .opd section when running
447 // gc_process_relocs for another object, before the opd_ent_ vector
448 // is valid for this object.
449 Access_from access_from_map_;
450
451 // Whether input section has a 14-bit branch reloc.
452 std::vector<bool> has14_;
453
454 // The stub table to use for a given input section.
455 std::vector<unsigned int> stub_table_index_;
456
457 // ELF st_other field for local symbols.
458 std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471 {
472 this->set_abiversion(0);
473 }
474
475 ~Powerpc_dynobj()
476 { }
477
478 // Call Sized_dynobj::do_read_symbols to read the symbols then
479 // read .opd from a dynamic object, filling in opd_ent_ vector,
480 void
481 do_read_symbols(Read_symbols_data*);
482
483 // The .opd section shndx.
484 unsigned int
485 opd_shndx() const
486 {
487 return this->opd_shndx_;
488 }
489
490 // The .opd section address.
491 Address
492 opd_address() const
493 {
494 return this->opd_address_;
495 }
496
497 // Init OPD entry arrays.
498 void
499 init_opd(size_t opd_size)
500 {
501 size_t count = this->opd_ent_ndx(opd_size);
502 this->opd_ent_.resize(count);
503 }
504
505 // Return section and offset of function entry for .opd + R_OFF.
506 unsigned int
507 get_opd_ent(Address r_off, Address* value = NULL) const
508 {
509 size_t ndx = this->opd_ent_ndx(r_off);
510 gold_assert(ndx < this->opd_ent_.size());
511 gold_assert(this->opd_ent_[ndx].shndx != 0);
512 if (value != NULL)
513 *value = this->opd_ent_[ndx].off;
514 return this->opd_ent_[ndx].shndx;
515 }
516
517 // Set section and offset of function entry for .opd + R_OFF.
518 void
519 set_opd_ent(Address r_off, unsigned int shndx, Address value)
520 {
521 size_t ndx = this->opd_ent_ndx(r_off);
522 gold_assert(ndx < this->opd_ent_.size());
523 this->opd_ent_[ndx].shndx = shndx;
524 this->opd_ent_[ndx].off = value;
525 }
526
527 int
528 abiversion() const
529 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531 // Set ABI version for input and output.
532 void
533 set_abiversion(int ver);
534
535 private:
536 // Used to specify extent of executable sections.
537 struct Sec_info
538 {
539 Sec_info(Address start_, Address len_, unsigned int shndx_)
540 : start(start_), len(len_), shndx(shndx_)
541 { }
542
543 bool
544 operator<(const Sec_info& that) const
545 { return this->start < that.start; }
546
547 Address start;
548 Address len;
549 unsigned int shndx;
550 };
551
552 struct Opd_ent
553 {
554 unsigned int shndx;
555 Address off;
556 };
557
558 // Return index into opd_ent_ array for .opd entry at OFF.
559 size_t
560 opd_ent_ndx(size_t off) const
561 { return off >> 4;}
562
563 // For 64-bit the .opd section shndx and address.
564 unsigned int opd_shndx_;
565 Address opd_address_;
566
567 // Header e_flags
568 elfcpp::Elf_Word e_flags_;
569
570 // The first 8-byte word of an OPD entry gives the address of the
571 // entry point of the function. Records the section and offset
572 // corresponding to the address. Note that in dynamic objects,
573 // offset is *not* relative to the section.
574 std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583 public:
584 Powerpc_copy_relocs()
585 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586 { }
587
588 // Emit any saved relocations which turn out to be needed. This is
589 // called after all the relocs have been scanned.
590 void
591 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597 public:
598 typedef
599 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603 static const Address invalid_address = static_cast<Address>(0) - 1;
604 // Offset of tp and dtp pointers from start of TLS block.
605 static const Address tp_offset = 0x7000;
606 static const Address dtp_offset = 0x8000;
607
608 Target_powerpc()
609 : Sized_target<size, big_endian>(&powerpc_info),
610 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
611 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612 tlsld_got_offset_(-1U),
613 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614 plt_thread_safe_(false), plt_localentry0_(false),
615 plt_localentry0_init_(false), has_localentry0_(false),
616 has_tls_get_addr_opt_(false),
617 relax_failed_(false), relax_fail_count_(0),
618 stub_group_size_(0), savres_section_(0),
619 tls_get_addr_(NULL), tls_get_addr_opt_(NULL)
620 {
621 }
622
623 // Process the relocations to determine unreferenced sections for
624 // garbage collection.
625 void
626 gc_process_relocs(Symbol_table* symtab,
627 Layout* layout,
628 Sized_relobj_file<size, big_endian>* object,
629 unsigned int data_shndx,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
632 size_t reloc_count,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
635 size_t local_symbol_count,
636 const unsigned char* plocal_symbols);
637
638 // Scan the relocations to look for symbol adjustments.
639 void
640 scan_relocs(Symbol_table* symtab,
641 Layout* layout,
642 Sized_relobj_file<size, big_endian>* object,
643 unsigned int data_shndx,
644 unsigned int sh_type,
645 const unsigned char* prelocs,
646 size_t reloc_count,
647 Output_section* output_section,
648 bool needs_special_offset_handling,
649 size_t local_symbol_count,
650 const unsigned char* plocal_symbols);
651
652 // Map input .toc section to output .got section.
653 const char*
654 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
655 {
656 if (size == 64 && strcmp(name, ".toc") == 0)
657 {
658 *plen = 4;
659 return ".got";
660 }
661 return NULL;
662 }
663
664 // Provide linker defined save/restore functions.
665 void
666 define_save_restore_funcs(Layout*, Symbol_table*);
667
668 // No stubs unless a final link.
669 bool
670 do_may_relax() const
671 { return !parameters->options().relocatable(); }
672
673 bool
674 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
675
676 void
677 do_plt_fde_location(const Output_data*, unsigned char*,
678 uint64_t*, off_t*) const;
679
680 // Stash info about branches, for stub generation.
681 void
682 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
683 unsigned int data_shndx, Address r_offset,
684 unsigned int r_type, unsigned int r_sym, Address addend)
685 {
686 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
687 this->branch_info_.push_back(info);
688 if (r_type == elfcpp::R_POWERPC_REL14
689 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
690 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
691 ppc_object->set_has_14bit_branch(data_shndx);
692 }
693
694 // Return whether the last branch is a plt call, and if so, mark the
695 // branch as having an R_PPC64_TOCSAVE.
696 bool
697 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
698 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
699 {
700 return (size == 64
701 && !this->branch_info_.empty()
702 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
703 r_offset, this, symtab));
704 }
705
706 // Say the given location, that of a nop in a function prologue with
707 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
708 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
709 void
710 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
711 unsigned int shndx, Address offset)
712 {
713 Symbol_location loc;
714 loc.object = ppc_object;
715 loc.shndx = shndx;
716 loc.offset = offset;
717 this->tocsave_loc_.insert(loc);
718 }
719
720 // Accessor
721 const Tocsave_loc
722 tocsave_loc() const
723 {
724 return this->tocsave_loc_;
725 }
726
727 void
728 do_define_standard_symbols(Symbol_table*, Layout*);
729
730 // Finalize the sections.
731 void
732 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
733
734 // Return the value to use for a dynamic which requires special
735 // treatment.
736 uint64_t
737 do_dynsym_value(const Symbol*) const;
738
739 // Return the PLT address to use for a local symbol.
740 uint64_t
741 do_plt_address_for_local(const Relobj*, unsigned int) const;
742
743 // Return the PLT address to use for a global symbol.
744 uint64_t
745 do_plt_address_for_global(const Symbol*) const;
746
747 // Return the offset to use for the GOT_INDX'th got entry which is
748 // for a local tls symbol specified by OBJECT, SYMNDX.
749 int64_t
750 do_tls_offset_for_local(const Relobj* object,
751 unsigned int symndx,
752 unsigned int got_indx) const;
753
754 // Return the offset to use for the GOT_INDX'th got entry which is
755 // for global tls symbol GSYM.
756 int64_t
757 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
758
759 void
760 do_function_location(Symbol_location*) const;
761
762 bool
763 do_can_check_for_function_pointers() const
764 { return true; }
765
766 // Adjust -fsplit-stack code which calls non-split-stack code.
767 void
768 do_calls_non_split(Relobj* object, unsigned int shndx,
769 section_offset_type fnoffset, section_size_type fnsize,
770 const unsigned char* prelocs, size_t reloc_count,
771 unsigned char* view, section_size_type view_size,
772 std::string* from, std::string* to) const;
773
774 // Relocate a section.
775 void
776 relocate_section(const Relocate_info<size, big_endian>*,
777 unsigned int sh_type,
778 const unsigned char* prelocs,
779 size_t reloc_count,
780 Output_section* output_section,
781 bool needs_special_offset_handling,
782 unsigned char* view,
783 Address view_address,
784 section_size_type view_size,
785 const Reloc_symbol_changes*);
786
787 // Scan the relocs during a relocatable link.
788 void
789 scan_relocatable_relocs(Symbol_table* symtab,
790 Layout* layout,
791 Sized_relobj_file<size, big_endian>* object,
792 unsigned int data_shndx,
793 unsigned int sh_type,
794 const unsigned char* prelocs,
795 size_t reloc_count,
796 Output_section* output_section,
797 bool needs_special_offset_handling,
798 size_t local_symbol_count,
799 const unsigned char* plocal_symbols,
800 Relocatable_relocs*);
801
802 // Scan the relocs for --emit-relocs.
803 void
804 emit_relocs_scan(Symbol_table* symtab,
805 Layout* layout,
806 Sized_relobj_file<size, big_endian>* object,
807 unsigned int data_shndx,
808 unsigned int sh_type,
809 const unsigned char* prelocs,
810 size_t reloc_count,
811 Output_section* output_section,
812 bool needs_special_offset_handling,
813 size_t local_symbol_count,
814 const unsigned char* plocal_syms,
815 Relocatable_relocs* rr);
816
817 // Emit relocations for a section.
818 void
819 relocate_relocs(const Relocate_info<size, big_endian>*,
820 unsigned int sh_type,
821 const unsigned char* prelocs,
822 size_t reloc_count,
823 Output_section* output_section,
824 typename elfcpp::Elf_types<size>::Elf_Off
825 offset_in_output_section,
826 unsigned char*,
827 Address view_address,
828 section_size_type,
829 unsigned char* reloc_view,
830 section_size_type reloc_view_size);
831
832 // Return whether SYM is defined by the ABI.
833 bool
834 do_is_defined_by_abi(const Symbol* sym) const
835 {
836 return strcmp(sym->name(), "__tls_get_addr") == 0;
837 }
838
839 // Return the size of the GOT section.
840 section_size_type
841 got_size() const
842 {
843 gold_assert(this->got_ != NULL);
844 return this->got_->data_size();
845 }
846
847 // Get the PLT section.
848 const Output_data_plt_powerpc<size, big_endian>*
849 plt_section() const
850 {
851 gold_assert(this->plt_ != NULL);
852 return this->plt_;
853 }
854
855 // Get the IPLT section.
856 const Output_data_plt_powerpc<size, big_endian>*
857 iplt_section() const
858 {
859 gold_assert(this->iplt_ != NULL);
860 return this->iplt_;
861 }
862
863 // Get the .glink section.
864 const Output_data_glink<size, big_endian>*
865 glink_section() const
866 {
867 gold_assert(this->glink_ != NULL);
868 return this->glink_;
869 }
870
871 Output_data_glink<size, big_endian>*
872 glink_section()
873 {
874 gold_assert(this->glink_ != NULL);
875 return this->glink_;
876 }
877
878 bool has_glink() const
879 { return this->glink_ != NULL; }
880
881 // Get the GOT section.
882 const Output_data_got_powerpc<size, big_endian>*
883 got_section() const
884 {
885 gold_assert(this->got_ != NULL);
886 return this->got_;
887 }
888
889 // Get the GOT section, creating it if necessary.
890 Output_data_got_powerpc<size, big_endian>*
891 got_section(Symbol_table*, Layout*);
892
893 Object*
894 do_make_elf_object(const std::string&, Input_file*, off_t,
895 const elfcpp::Ehdr<size, big_endian>&);
896
897 // Return the number of entries in the GOT.
898 unsigned int
899 got_entry_count() const
900 {
901 if (this->got_ == NULL)
902 return 0;
903 return this->got_size() / (size / 8);
904 }
905
906 // Return the number of entries in the PLT.
907 unsigned int
908 plt_entry_count() const;
909
910 // Return the offset of the first non-reserved PLT entry.
911 unsigned int
912 first_plt_entry_offset() const
913 {
914 if (size == 32)
915 return 0;
916 if (this->abiversion() >= 2)
917 return 16;
918 return 24;
919 }
920
921 // Return the size of each PLT entry.
922 unsigned int
923 plt_entry_size() const
924 {
925 if (size == 32)
926 return 4;
927 if (this->abiversion() >= 2)
928 return 8;
929 return 24;
930 }
931
932 Output_data_save_res<size, big_endian>*
933 savres_section() const
934 {
935 return this->savres_section_;
936 }
937
938 // Add any special sections for this symbol to the gc work list.
939 // For powerpc64, this adds the code section of a function
940 // descriptor.
941 void
942 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
943
944 // Handle target specific gc actions when adding a gc reference from
945 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
946 // and DST_OFF. For powerpc64, this adds a referenc to the code
947 // section of a function descriptor.
948 void
949 do_gc_add_reference(Symbol_table* symtab,
950 Relobj* src_obj,
951 unsigned int src_shndx,
952 Relobj* dst_obj,
953 unsigned int dst_shndx,
954 Address dst_off) const;
955
956 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
957 const Stub_tables&
958 stub_tables() const
959 { return this->stub_tables_; }
960
961 const Output_data_brlt_powerpc<size, big_endian>*
962 brlt_section() const
963 { return this->brlt_section_; }
964
965 void
966 add_branch_lookup_table(Address to)
967 {
968 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
969 this->branch_lookup_table_.insert(std::make_pair(to, off));
970 }
971
972 Address
973 find_branch_lookup_table(Address to)
974 {
975 typename Branch_lookup_table::const_iterator p
976 = this->branch_lookup_table_.find(to);
977 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
978 }
979
980 void
981 write_branch_lookup_table(unsigned char *oview)
982 {
983 for (typename Branch_lookup_table::const_iterator p
984 = this->branch_lookup_table_.begin();
985 p != this->branch_lookup_table_.end();
986 ++p)
987 {
988 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
989 }
990 }
991
992 // Wrapper used after relax to define a local symbol in output data,
993 // from the end if value < 0.
994 void
995 define_local(Symbol_table* symtab, const char* name,
996 Output_data* od, Address value, unsigned int symsize)
997 {
998 Symbol* sym
999 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1000 od, value, symsize, elfcpp::STT_NOTYPE,
1001 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1002 static_cast<Signed_address>(value) < 0,
1003 false);
1004 // We are creating this symbol late, so need to fix up things
1005 // done early in Layout::finalize.
1006 sym->set_dynsym_index(-1U);
1007 }
1008
1009 bool
1010 plt_thread_safe() const
1011 { return this->plt_thread_safe_; }
1012
1013 bool
1014 plt_localentry0() const
1015 { return this->plt_localentry0_; }
1016
1017 void
1018 set_has_localentry0()
1019 {
1020 this->has_localentry0_ = true;
1021 }
1022
1023 bool
1024 is_elfv2_localentry0(const Symbol* gsym) const
1025 {
1026 return (size == 64
1027 && this->abiversion() >= 2
1028 && this->plt_localentry0()
1029 && gsym->type() == elfcpp::STT_FUNC
1030 && gsym->is_defined()
1031 && gsym->nonvis() >> 3 == 0
1032 && !gsym->non_zero_localentry());
1033 }
1034
1035 bool
1036 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1037 unsigned int r_sym) const
1038 {
1039 const Powerpc_relobj<size, big_endian>* ppc_object
1040 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1041
1042 if (size == 64
1043 && this->abiversion() >= 2
1044 && this->plt_localentry0()
1045 && ppc_object->st_other(r_sym) >> 5 == 0)
1046 {
1047 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1048 bool is_ordinary;
1049 if (!psymval->is_ifunc_symbol()
1050 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1051 && is_ordinary)
1052 return true;
1053 }
1054 return false;
1055 }
1056
1057 // Remember any symbols seen with non-zero localentry, even those
1058 // not providing a definition
1059 bool
1060 resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1061 const char*)
1062 {
1063 if (size == 64)
1064 {
1065 unsigned char st_other = sym.get_st_other();
1066 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1067 to->set_non_zero_localentry();
1068 }
1069 // We haven't resolved anything, continue normal processing.
1070 return false;
1071 }
1072
1073 int
1074 abiversion() const
1075 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1076
1077 void
1078 set_abiversion(int ver)
1079 {
1080 elfcpp::Elf_Word flags = this->processor_specific_flags();
1081 flags &= ~elfcpp::EF_PPC64_ABI;
1082 flags |= ver & elfcpp::EF_PPC64_ABI;
1083 this->set_processor_specific_flags(flags);
1084 }
1085
1086 Symbol*
1087 tls_get_addr_opt() const
1088 { return this->tls_get_addr_opt_; }
1089
1090 Symbol*
1091 tls_get_addr() const
1092 { return this->tls_get_addr_; }
1093
1094 // If optimizing __tls_get_addr calls, whether this is the
1095 // "__tls_get_addr" symbol.
1096 bool
1097 is_tls_get_addr_opt(const Symbol* gsym) const
1098 {
1099 return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1100 || gsym == this->tls_get_addr_opt_);
1101 }
1102
1103 bool
1104 replace_tls_get_addr(const Symbol* gsym) const
1105 { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1106
1107 void
1108 set_has_tls_get_addr_opt()
1109 { this->has_tls_get_addr_opt_ = true; }
1110
1111 // Offset to toc save stack slot
1112 int
1113 stk_toc() const
1114 { return this->abiversion() < 2 ? 40 : 24; }
1115
1116 // Offset to linker save stack slot. ELFv2 doesn't have a linker word,
1117 // so use the CR save slot. Used only by __tls_get_addr call stub,
1118 // relying on __tls_get_addr not saving CR itself.
1119 int
1120 stk_linker() const
1121 { return this->abiversion() < 2 ? 32 : 8; }
1122
1123 private:
1124
1125 class Track_tls
1126 {
1127 public:
1128 enum Tls_get_addr
1129 {
1130 NOT_EXPECTED = 0,
1131 EXPECTED = 1,
1132 SKIP = 2,
1133 NORMAL = 3
1134 };
1135
1136 Track_tls()
1137 : tls_get_addr_state_(NOT_EXPECTED),
1138 relinfo_(NULL), relnum_(0), r_offset_(0)
1139 { }
1140
1141 ~Track_tls()
1142 {
1143 if (this->tls_get_addr_state_ != NOT_EXPECTED)
1144 this->missing();
1145 }
1146
1147 void
1148 missing(void)
1149 {
1150 if (this->relinfo_ != NULL)
1151 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1152 _("missing expected __tls_get_addr call"));
1153 }
1154
1155 void
1156 expect_tls_get_addr_call(
1157 const Relocate_info<size, big_endian>* relinfo,
1158 size_t relnum,
1159 Address r_offset)
1160 {
1161 this->tls_get_addr_state_ = EXPECTED;
1162 this->relinfo_ = relinfo;
1163 this->relnum_ = relnum;
1164 this->r_offset_ = r_offset;
1165 }
1166
1167 void
1168 expect_tls_get_addr_call()
1169 { this->tls_get_addr_state_ = EXPECTED; }
1170
1171 void
1172 skip_next_tls_get_addr_call()
1173 {this->tls_get_addr_state_ = SKIP; }
1174
1175 Tls_get_addr
1176 maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1177 unsigned int r_type, const Symbol* gsym)
1178 {
1179 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1180 || r_type == elfcpp::R_PPC_PLTREL24)
1181 && gsym != NULL
1182 && (gsym == target->tls_get_addr()
1183 || gsym == target->tls_get_addr_opt()));
1184 Tls_get_addr last_tls = this->tls_get_addr_state_;
1185 this->tls_get_addr_state_ = NOT_EXPECTED;
1186 if (is_tls_call && last_tls != EXPECTED)
1187 return last_tls;
1188 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1189 {
1190 this->missing();
1191 return EXPECTED;
1192 }
1193 return NORMAL;
1194 }
1195
1196 private:
1197 // What we're up to regarding calls to __tls_get_addr.
1198 // On powerpc, the branch and link insn making a call to
1199 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1200 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1201 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1202 // The marker relocation always comes first, and has the same
1203 // symbol as the reloc on the insn setting up the __tls_get_addr
1204 // argument. This ties the arg setup insn with the call insn,
1205 // allowing ld to safely optimize away the call. We check that
1206 // every call to __tls_get_addr has a marker relocation, and that
1207 // every marker relocation is on a call to __tls_get_addr.
1208 Tls_get_addr tls_get_addr_state_;
1209 // Info about the last reloc for error message.
1210 const Relocate_info<size, big_endian>* relinfo_;
1211 size_t relnum_;
1212 Address r_offset_;
1213 };
1214
1215 // The class which scans relocations.
1216 class Scan : protected Track_tls
1217 {
1218 public:
1219 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1220
1221 Scan()
1222 : Track_tls(), issued_non_pic_error_(false)
1223 { }
1224
1225 static inline int
1226 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1227
1228 inline void
1229 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1230 Sized_relobj_file<size, big_endian>* object,
1231 unsigned int data_shndx,
1232 Output_section* output_section,
1233 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1234 const elfcpp::Sym<size, big_endian>& lsym,
1235 bool is_discarded);
1236
1237 inline void
1238 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1239 Sized_relobj_file<size, big_endian>* object,
1240 unsigned int data_shndx,
1241 Output_section* output_section,
1242 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1243 Symbol* gsym);
1244
1245 inline bool
1246 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1247 Target_powerpc* ,
1248 Sized_relobj_file<size, big_endian>* relobj,
1249 unsigned int ,
1250 Output_section* ,
1251 const elfcpp::Rela<size, big_endian>& ,
1252 unsigned int r_type,
1253 const elfcpp::Sym<size, big_endian>&)
1254 {
1255 // PowerPC64 .opd is not folded, so any identical function text
1256 // may be folded and we'll still keep function addresses distinct.
1257 // That means no reloc is of concern here.
1258 if (size == 64)
1259 {
1260 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1261 <Powerpc_relobj<size, big_endian>*>(relobj);
1262 if (ppcobj->abiversion() == 1)
1263 return false;
1264 }
1265 // For 32-bit and ELFv2, conservatively assume anything but calls to
1266 // function code might be taking the address of the function.
1267 return !is_branch_reloc(r_type);
1268 }
1269
1270 inline bool
1271 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1272 Target_powerpc* ,
1273 Sized_relobj_file<size, big_endian>* relobj,
1274 unsigned int ,
1275 Output_section* ,
1276 const elfcpp::Rela<size, big_endian>& ,
1277 unsigned int r_type,
1278 Symbol*)
1279 {
1280 // As above.
1281 if (size == 64)
1282 {
1283 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1284 <Powerpc_relobj<size, big_endian>*>(relobj);
1285 if (ppcobj->abiversion() == 1)
1286 return false;
1287 }
1288 return !is_branch_reloc(r_type);
1289 }
1290
1291 static bool
1292 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1293 Sized_relobj_file<size, big_endian>* object,
1294 unsigned int r_type, bool report_err);
1295
1296 private:
1297 static void
1298 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1299 unsigned int r_type);
1300
1301 static void
1302 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1303 unsigned int r_type, Symbol*);
1304
1305 static void
1306 generate_tls_call(Symbol_table* symtab, Layout* layout,
1307 Target_powerpc* target);
1308
1309 void
1310 check_non_pic(Relobj*, unsigned int r_type);
1311
1312 // Whether we have issued an error about a non-PIC compilation.
1313 bool issued_non_pic_error_;
1314 };
1315
1316 bool
1317 symval_for_branch(const Symbol_table* symtab,
1318 const Sized_symbol<size>* gsym,
1319 Powerpc_relobj<size, big_endian>* object,
1320 Address *value, unsigned int *dest_shndx);
1321
1322 // The class which implements relocation.
1323 class Relocate : protected Track_tls
1324 {
1325 public:
1326 // Use 'at' branch hints when true, 'y' when false.
1327 // FIXME maybe: set this with an option.
1328 static const bool is_isa_v2 = true;
1329
1330 Relocate()
1331 : Track_tls()
1332 { }
1333
1334 // Do a relocation. Return false if the caller should not issue
1335 // any warnings about this relocation.
1336 inline bool
1337 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1338 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1339 const Sized_symbol<size>*, const Symbol_value<size>*,
1340 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1341 section_size_type);
1342 };
1343
1344 class Relocate_comdat_behavior
1345 {
1346 public:
1347 // Decide what the linker should do for relocations that refer to
1348 // discarded comdat sections.
1349 inline Comdat_behavior
1350 get(const char* name)
1351 {
1352 gold::Default_comdat_behavior default_behavior;
1353 Comdat_behavior ret = default_behavior.get(name);
1354 if (ret == CB_ERROR)
1355 {
1356 if (size == 32
1357 && (strcmp(name, ".fixup") == 0
1358 || strcmp(name, ".got2") == 0))
1359 ret = CB_IGNORE;
1360 if (size == 64
1361 && (strcmp(name, ".opd") == 0
1362 || strcmp(name, ".toc") == 0
1363 || strcmp(name, ".toc1") == 0))
1364 ret = CB_IGNORE;
1365 }
1366 return ret;
1367 }
1368 };
1369
1370 // Optimize the TLS relocation type based on what we know about the
1371 // symbol. IS_FINAL is true if the final address of this symbol is
1372 // known at link time.
1373
1374 tls::Tls_optimization
1375 optimize_tls_gd(bool is_final)
1376 {
1377 // If we are generating a shared library, then we can't do anything
1378 // in the linker.
1379 if (parameters->options().shared()
1380 || !parameters->options().tls_optimize())
1381 return tls::TLSOPT_NONE;
1382
1383 if (!is_final)
1384 return tls::TLSOPT_TO_IE;
1385 return tls::TLSOPT_TO_LE;
1386 }
1387
1388 tls::Tls_optimization
1389 optimize_tls_ld()
1390 {
1391 if (parameters->options().shared()
1392 || !parameters->options().tls_optimize())
1393 return tls::TLSOPT_NONE;
1394
1395 return tls::TLSOPT_TO_LE;
1396 }
1397
1398 tls::Tls_optimization
1399 optimize_tls_ie(bool is_final)
1400 {
1401 if (!is_final
1402 || parameters->options().shared()
1403 || !parameters->options().tls_optimize())
1404 return tls::TLSOPT_NONE;
1405
1406 return tls::TLSOPT_TO_LE;
1407 }
1408
1409 // Create glink.
1410 void
1411 make_glink_section(Layout*);
1412
1413 // Create the PLT section.
1414 void
1415 make_plt_section(Symbol_table*, Layout*);
1416
1417 void
1418 make_iplt_section(Symbol_table*, Layout*);
1419
1420 void
1421 make_brlt_section(Layout*);
1422
1423 // Create a PLT entry for a global symbol.
1424 void
1425 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1426
1427 // Create a PLT entry for a local IFUNC symbol.
1428 void
1429 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1430 Sized_relobj_file<size, big_endian>*,
1431 unsigned int);
1432
1433
1434 // Create a GOT entry for local dynamic __tls_get_addr.
1435 unsigned int
1436 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1437 Sized_relobj_file<size, big_endian>* object);
1438
1439 unsigned int
1440 tlsld_got_offset() const
1441 {
1442 return this->tlsld_got_offset_;
1443 }
1444
1445 // Get the dynamic reloc section, creating it if necessary.
1446 Reloc_section*
1447 rela_dyn_section(Layout*);
1448
1449 // Similarly, but for ifunc symbols get the one for ifunc.
1450 Reloc_section*
1451 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1452
1453 // Copy a relocation against a global symbol.
1454 void
1455 copy_reloc(Symbol_table* symtab, Layout* layout,
1456 Sized_relobj_file<size, big_endian>* object,
1457 unsigned int shndx, Output_section* output_section,
1458 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1459 {
1460 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1461 this->copy_relocs_.copy_reloc(symtab, layout,
1462 symtab->get_sized_symbol<size>(sym),
1463 object, shndx, output_section,
1464 r_type, reloc.get_r_offset(),
1465 reloc.get_r_addend(),
1466 this->rela_dyn_section(layout));
1467 }
1468
1469 // Look over all the input sections, deciding where to place stubs.
1470 void
1471 group_sections(Layout*, const Task*, bool);
1472
1473 // Sort output sections by address.
1474 struct Sort_sections
1475 {
1476 bool
1477 operator()(const Output_section* sec1, const Output_section* sec2)
1478 { return sec1->address() < sec2->address(); }
1479 };
1480
1481 class Branch_info
1482 {
1483 public:
1484 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1485 unsigned int data_shndx,
1486 Address r_offset,
1487 unsigned int r_type,
1488 unsigned int r_sym,
1489 Address addend)
1490 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1491 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1492 { }
1493
1494 ~Branch_info()
1495 { }
1496
1497 // Return whether this branch is going via a plt call stub, and if
1498 // so, mark it as having an R_PPC64_TOCSAVE.
1499 bool
1500 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1501 unsigned int shndx, Address offset,
1502 Target_powerpc* target, Symbol_table* symtab);
1503
1504 // If this branch needs a plt call stub, or a long branch stub, make one.
1505 bool
1506 make_stub(Stub_table<size, big_endian>*,
1507 Stub_table<size, big_endian>*,
1508 Symbol_table*) const;
1509
1510 private:
1511 // The branch location..
1512 Powerpc_relobj<size, big_endian>* object_;
1513 unsigned int shndx_;
1514 Address offset_;
1515 // ..and the branch type and destination.
1516 unsigned int r_type_ : 31;
1517 unsigned int tocsave_ : 1;
1518 unsigned int r_sym_;
1519 Address addend_;
1520 };
1521
1522 // Information about this specific target which we pass to the
1523 // general Target structure.
1524 static Target::Target_info powerpc_info;
1525
1526 // The types of GOT entries needed for this platform.
1527 // These values are exposed to the ABI in an incremental link.
1528 // Do not renumber existing values without changing the version
1529 // number of the .gnu_incremental_inputs section.
1530 enum Got_type
1531 {
1532 GOT_TYPE_STANDARD,
1533 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1534 GOT_TYPE_DTPREL, // entry for @got@dtprel
1535 GOT_TYPE_TPREL // entry for @got@tprel
1536 };
1537
1538 // The GOT section.
1539 Output_data_got_powerpc<size, big_endian>* got_;
1540 // The PLT section. This is a container for a table of addresses,
1541 // and their relocations. Each address in the PLT has a dynamic
1542 // relocation (R_*_JMP_SLOT) and each address will have a
1543 // corresponding entry in .glink for lazy resolution of the PLT.
1544 // ppc32 initialises the PLT to point at the .glink entry, while
1545 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1546 // linker adds a stub that loads the PLT entry into ctr then
1547 // branches to ctr. There may be more than one stub for each PLT
1548 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1549 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1550 Output_data_plt_powerpc<size, big_endian>* plt_;
1551 // The IPLT section. Like plt_, this is a container for a table of
1552 // addresses and their relocations, specifically for STT_GNU_IFUNC
1553 // functions that resolve locally (STT_GNU_IFUNC functions that
1554 // don't resolve locally go in PLT). Unlike plt_, these have no
1555 // entry in .glink for lazy resolution, and the relocation section
1556 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1557 // the relocation section may contain relocations against
1558 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1559 // relocation section will appear at the end of other dynamic
1560 // relocations, so that ld.so applies these relocations after other
1561 // dynamic relocations. In a static executable, the relocation
1562 // section is emitted and marked with __rela_iplt_start and
1563 // __rela_iplt_end symbols.
1564 Output_data_plt_powerpc<size, big_endian>* iplt_;
1565 // Section holding long branch destinations.
1566 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1567 // The .glink section.
1568 Output_data_glink<size, big_endian>* glink_;
1569 // The dynamic reloc section.
1570 Reloc_section* rela_dyn_;
1571 // Relocs saved to avoid a COPY reloc.
1572 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1573 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1574 unsigned int tlsld_got_offset_;
1575
1576 Stub_tables stub_tables_;
1577 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1578 Branch_lookup_table branch_lookup_table_;
1579
1580 typedef std::vector<Branch_info> Branches;
1581 Branches branch_info_;
1582 Tocsave_loc tocsave_loc_;
1583
1584 bool plt_thread_safe_;
1585 bool plt_localentry0_;
1586 bool plt_localentry0_init_;
1587 bool has_localentry0_;
1588 bool has_tls_get_addr_opt_;
1589
1590 bool relax_failed_;
1591 int relax_fail_count_;
1592 int32_t stub_group_size_;
1593
1594 Output_data_save_res<size, big_endian> *savres_section_;
1595
1596 // The "__tls_get_addr" symbol, if present
1597 Symbol* tls_get_addr_;
1598 // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1599 Symbol* tls_get_addr_opt_;
1600 };
1601
1602 template<>
1603 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1604 {
1605 32, // size
1606 true, // is_big_endian
1607 elfcpp::EM_PPC, // machine_code
1608 false, // has_make_symbol
1609 false, // has_resolve
1610 false, // has_code_fill
1611 true, // is_default_stack_executable
1612 false, // can_icf_inline_merge_sections
1613 '\0', // wrap_char
1614 "/usr/lib/ld.so.1", // dynamic_linker
1615 0x10000000, // default_text_segment_address
1616 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1617 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1618 false, // isolate_execinstr
1619 0, // rosegment_gap
1620 elfcpp::SHN_UNDEF, // small_common_shndx
1621 elfcpp::SHN_UNDEF, // large_common_shndx
1622 0, // small_common_section_flags
1623 0, // large_common_section_flags
1624 NULL, // attributes_section
1625 NULL, // attributes_vendor
1626 "_start", // entry_symbol_name
1627 32, // hash_entry_size
1628 elfcpp::SHT_PROGBITS, // unwind_section_type
1629 };
1630
1631 template<>
1632 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1633 {
1634 32, // size
1635 false, // is_big_endian
1636 elfcpp::EM_PPC, // machine_code
1637 false, // has_make_symbol
1638 false, // has_resolve
1639 false, // has_code_fill
1640 true, // is_default_stack_executable
1641 false, // can_icf_inline_merge_sections
1642 '\0', // wrap_char
1643 "/usr/lib/ld.so.1", // dynamic_linker
1644 0x10000000, // default_text_segment_address
1645 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1646 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1647 false, // isolate_execinstr
1648 0, // rosegment_gap
1649 elfcpp::SHN_UNDEF, // small_common_shndx
1650 elfcpp::SHN_UNDEF, // large_common_shndx
1651 0, // small_common_section_flags
1652 0, // large_common_section_flags
1653 NULL, // attributes_section
1654 NULL, // attributes_vendor
1655 "_start", // entry_symbol_name
1656 32, // hash_entry_size
1657 elfcpp::SHT_PROGBITS, // unwind_section_type
1658 };
1659
1660 template<>
1661 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1662 {
1663 64, // size
1664 true, // is_big_endian
1665 elfcpp::EM_PPC64, // machine_code
1666 false, // has_make_symbol
1667 true, // has_resolve
1668 false, // has_code_fill
1669 false, // is_default_stack_executable
1670 false, // can_icf_inline_merge_sections
1671 '\0', // wrap_char
1672 "/usr/lib/ld.so.1", // dynamic_linker
1673 0x10000000, // default_text_segment_address
1674 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1675 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1676 false, // isolate_execinstr
1677 0, // rosegment_gap
1678 elfcpp::SHN_UNDEF, // small_common_shndx
1679 elfcpp::SHN_UNDEF, // large_common_shndx
1680 0, // small_common_section_flags
1681 0, // large_common_section_flags
1682 NULL, // attributes_section
1683 NULL, // attributes_vendor
1684 "_start", // entry_symbol_name
1685 32, // hash_entry_size
1686 elfcpp::SHT_PROGBITS, // unwind_section_type
1687 };
1688
1689 template<>
1690 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1691 {
1692 64, // size
1693 false, // is_big_endian
1694 elfcpp::EM_PPC64, // machine_code
1695 false, // has_make_symbol
1696 true, // has_resolve
1697 false, // has_code_fill
1698 false, // is_default_stack_executable
1699 false, // can_icf_inline_merge_sections
1700 '\0', // wrap_char
1701 "/usr/lib/ld.so.1", // dynamic_linker
1702 0x10000000, // default_text_segment_address
1703 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1704 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1705 false, // isolate_execinstr
1706 0, // rosegment_gap
1707 elfcpp::SHN_UNDEF, // small_common_shndx
1708 elfcpp::SHN_UNDEF, // large_common_shndx
1709 0, // small_common_section_flags
1710 0, // large_common_section_flags
1711 NULL, // attributes_section
1712 NULL, // attributes_vendor
1713 "_start", // entry_symbol_name
1714 32, // hash_entry_size
1715 elfcpp::SHT_PROGBITS, // unwind_section_type
1716 };
1717
1718 inline bool
1719 is_branch_reloc(unsigned int r_type)
1720 {
1721 return (r_type == elfcpp::R_POWERPC_REL24
1722 || r_type == elfcpp::R_PPC_PLTREL24
1723 || r_type == elfcpp::R_PPC_LOCAL24PC
1724 || r_type == elfcpp::R_POWERPC_REL14
1725 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1726 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1727 || r_type == elfcpp::R_POWERPC_ADDR24
1728 || r_type == elfcpp::R_POWERPC_ADDR14
1729 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1730 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1731 }
1732
1733 // If INSN is an opcode that may be used with an @tls operand, return
1734 // the transformed insn for TLS optimisation, otherwise return 0. If
1735 // REG is non-zero only match an insn with RB or RA equal to REG.
1736 uint32_t
1737 at_tls_transform(uint32_t insn, unsigned int reg)
1738 {
1739 if ((insn & (0x3f << 26)) != 31 << 26)
1740 return 0;
1741
1742 unsigned int rtra;
1743 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1744 rtra = insn & ((1 << 26) - (1 << 16));
1745 else if (((insn >> 16) & 0x1f) == reg)
1746 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1747 else
1748 return 0;
1749
1750 if ((insn & (0x3ff << 1)) == 266 << 1)
1751 // add -> addi
1752 insn = 14 << 26;
1753 else if ((insn & (0x1f << 1)) == 23 << 1
1754 && ((insn & (0x1f << 6)) < 14 << 6
1755 || ((insn & (0x1f << 6)) >= 16 << 6
1756 && (insn & (0x1f << 6)) < 24 << 6)))
1757 // load and store indexed -> dform
1758 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1759 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1760 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1761 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1762 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1763 // lwax -> lwa
1764 insn = (58 << 26) | 2;
1765 else
1766 return 0;
1767 insn |= rtra;
1768 return insn;
1769 }
1770
1771
1772 template<int size, bool big_endian>
1773 class Powerpc_relocate_functions
1774 {
1775 public:
1776 enum Overflow_check
1777 {
1778 CHECK_NONE,
1779 CHECK_SIGNED,
1780 CHECK_UNSIGNED,
1781 CHECK_BITFIELD,
1782 CHECK_LOW_INSN,
1783 CHECK_HIGH_INSN
1784 };
1785
1786 enum Status
1787 {
1788 STATUS_OK,
1789 STATUS_OVERFLOW
1790 };
1791
1792 private:
1793 typedef Powerpc_relocate_functions<size, big_endian> This;
1794 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1795 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1796
1797 template<int valsize>
1798 static inline bool
1799 has_overflow_signed(Address value)
1800 {
1801 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1802 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1803 limit <<= ((valsize - 1) >> 1);
1804 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1805 return value + limit > (limit << 1) - 1;
1806 }
1807
1808 template<int valsize>
1809 static inline bool
1810 has_overflow_unsigned(Address value)
1811 {
1812 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1813 limit <<= ((valsize - 1) >> 1);
1814 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1815 return value > (limit << 1) - 1;
1816 }
1817
1818 template<int valsize>
1819 static inline bool
1820 has_overflow_bitfield(Address value)
1821 {
1822 return (has_overflow_unsigned<valsize>(value)
1823 && has_overflow_signed<valsize>(value));
1824 }
1825
1826 template<int valsize>
1827 static inline Status
1828 overflowed(Address value, Overflow_check overflow)
1829 {
1830 if (overflow == CHECK_SIGNED)
1831 {
1832 if (has_overflow_signed<valsize>(value))
1833 return STATUS_OVERFLOW;
1834 }
1835 else if (overflow == CHECK_UNSIGNED)
1836 {
1837 if (has_overflow_unsigned<valsize>(value))
1838 return STATUS_OVERFLOW;
1839 }
1840 else if (overflow == CHECK_BITFIELD)
1841 {
1842 if (has_overflow_bitfield<valsize>(value))
1843 return STATUS_OVERFLOW;
1844 }
1845 return STATUS_OK;
1846 }
1847
1848 // Do a simple RELA relocation
1849 template<int fieldsize, int valsize>
1850 static inline Status
1851 rela(unsigned char* view, Address value, Overflow_check overflow)
1852 {
1853 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1854 Valtype* wv = reinterpret_cast<Valtype*>(view);
1855 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1856 return overflowed<valsize>(value, overflow);
1857 }
1858
1859 template<int fieldsize, int valsize>
1860 static inline Status
1861 rela(unsigned char* view,
1862 unsigned int right_shift,
1863 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1864 Address value,
1865 Overflow_check overflow)
1866 {
1867 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1868 Valtype* wv = reinterpret_cast<Valtype*>(view);
1869 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1870 Valtype reloc = value >> right_shift;
1871 val &= ~dst_mask;
1872 reloc &= dst_mask;
1873 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1874 return overflowed<valsize>(value >> right_shift, overflow);
1875 }
1876
1877 // Do a simple RELA relocation, unaligned.
1878 template<int fieldsize, int valsize>
1879 static inline Status
1880 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1881 {
1882 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1883 return overflowed<valsize>(value, overflow);
1884 }
1885
1886 template<int fieldsize, int valsize>
1887 static inline Status
1888 rela_ua(unsigned char* view,
1889 unsigned int right_shift,
1890 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1891 Address value,
1892 Overflow_check overflow)
1893 {
1894 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1895 Valtype;
1896 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1897 Valtype reloc = value >> right_shift;
1898 val &= ~dst_mask;
1899 reloc &= dst_mask;
1900 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1901 return overflowed<valsize>(value >> right_shift, overflow);
1902 }
1903
1904 public:
1905 // R_PPC64_ADDR64: (Symbol + Addend)
1906 static inline void
1907 addr64(unsigned char* view, Address value)
1908 { This::template rela<64,64>(view, value, CHECK_NONE); }
1909
1910 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1911 static inline void
1912 addr64_u(unsigned char* view, Address value)
1913 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1914
1915 // R_POWERPC_ADDR32: (Symbol + Addend)
1916 static inline Status
1917 addr32(unsigned char* view, Address value, Overflow_check overflow)
1918 { return This::template rela<32,32>(view, value, overflow); }
1919
1920 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1921 static inline Status
1922 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1923 { return This::template rela_ua<32,32>(view, value, overflow); }
1924
1925 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1926 static inline Status
1927 addr24(unsigned char* view, Address value, Overflow_check overflow)
1928 {
1929 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1930 value, overflow);
1931 if (overflow != CHECK_NONE && (value & 3) != 0)
1932 stat = STATUS_OVERFLOW;
1933 return stat;
1934 }
1935
1936 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1937 static inline Status
1938 addr16(unsigned char* view, Address value, Overflow_check overflow)
1939 { return This::template rela<16,16>(view, value, overflow); }
1940
1941 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1942 static inline Status
1943 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1944 { return This::template rela_ua<16,16>(view, value, overflow); }
1945
1946 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1947 static inline Status
1948 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1949 {
1950 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1951 if ((value & 3) != 0)
1952 stat = STATUS_OVERFLOW;
1953 return stat;
1954 }
1955
1956 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1957 static inline Status
1958 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1959 {
1960 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1961 if ((value & 15) != 0)
1962 stat = STATUS_OVERFLOW;
1963 return stat;
1964 }
1965
1966 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1967 static inline void
1968 addr16_hi(unsigned char* view, Address value)
1969 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1970
1971 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1972 static inline void
1973 addr16_ha(unsigned char* view, Address value)
1974 { This::addr16_hi(view, value + 0x8000); }
1975
1976 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1977 static inline void
1978 addr16_hi2(unsigned char* view, Address value)
1979 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1980
1981 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1982 static inline void
1983 addr16_ha2(unsigned char* view, Address value)
1984 { This::addr16_hi2(view, value + 0x8000); }
1985
1986 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1987 static inline void
1988 addr16_hi3(unsigned char* view, Address value)
1989 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1990
1991 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1992 static inline void
1993 addr16_ha3(unsigned char* view, Address value)
1994 { This::addr16_hi3(view, value + 0x8000); }
1995
1996 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1997 static inline Status
1998 addr14(unsigned char* view, Address value, Overflow_check overflow)
1999 {
2000 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2001 if (overflow != CHECK_NONE && (value & 3) != 0)
2002 stat = STATUS_OVERFLOW;
2003 return stat;
2004 }
2005
2006 // R_POWERPC_REL16DX_HA
2007 static inline Status
2008 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2009 {
2010 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2011 Valtype* wv = reinterpret_cast<Valtype*>(view);
2012 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2013 value += 0x8000;
2014 value = static_cast<SignedAddress>(value) >> 16;
2015 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2016 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2017 return overflowed<16>(value, overflow);
2018 }
2019 };
2020
2021 // Set ABI version for input and output.
2022
2023 template<int size, bool big_endian>
2024 void
2025 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2026 {
2027 this->e_flags_ |= ver;
2028 if (this->abiversion() != 0)
2029 {
2030 Target_powerpc<size, big_endian>* target =
2031 static_cast<Target_powerpc<size, big_endian>*>(
2032 parameters->sized_target<size, big_endian>());
2033 if (target->abiversion() == 0)
2034 target->set_abiversion(this->abiversion());
2035 else if (target->abiversion() != this->abiversion())
2036 gold_error(_("%s: ABI version %d is not compatible "
2037 "with ABI version %d output"),
2038 this->name().c_str(),
2039 this->abiversion(), target->abiversion());
2040
2041 }
2042 }
2043
2044 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2045 // relocatable object, if such sections exists.
2046
2047 template<int size, bool big_endian>
2048 bool
2049 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2050 Read_symbols_data* sd)
2051 {
2052 const unsigned char* const pshdrs = sd->section_headers->data();
2053 const unsigned char* namesu = sd->section_names->data();
2054 const char* names = reinterpret_cast<const char*>(namesu);
2055 section_size_type names_size = sd->section_names_size;
2056 const unsigned char* s;
2057
2058 s = this->template find_shdr<size, big_endian>(pshdrs,
2059 size == 32 ? ".got2" : ".opd",
2060 names, names_size, NULL);
2061 if (s != NULL)
2062 {
2063 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2064 this->special_ = ndx;
2065 if (size == 64)
2066 {
2067 if (this->abiversion() == 0)
2068 this->set_abiversion(1);
2069 else if (this->abiversion() > 1)
2070 gold_error(_("%s: .opd invalid in abiv%d"),
2071 this->name().c_str(), this->abiversion());
2072 }
2073 }
2074 if (size == 64)
2075 {
2076 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2077 names, names_size, NULL);
2078 if (s != NULL)
2079 {
2080 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2081 this->relatoc_ = ndx;
2082 typename elfcpp::Shdr<size, big_endian> shdr(s);
2083 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2084 }
2085 }
2086 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2087 }
2088
2089 // Examine .rela.opd to build info about function entry points.
2090
2091 template<int size, bool big_endian>
2092 void
2093 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2094 size_t reloc_count,
2095 const unsigned char* prelocs,
2096 const unsigned char* plocal_syms)
2097 {
2098 if (size == 64)
2099 {
2100 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2101 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2102 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2103 Address expected_off = 0;
2104 bool regular = true;
2105 unsigned int opd_ent_size = 0;
2106
2107 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2108 {
2109 Reltype reloc(prelocs);
2110 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2111 = reloc.get_r_info();
2112 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2113 if (r_type == elfcpp::R_PPC64_ADDR64)
2114 {
2115 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2116 typename elfcpp::Elf_types<size>::Elf_Addr value;
2117 bool is_ordinary;
2118 unsigned int shndx;
2119 if (r_sym < this->local_symbol_count())
2120 {
2121 typename elfcpp::Sym<size, big_endian>
2122 lsym(plocal_syms + r_sym * sym_size);
2123 shndx = lsym.get_st_shndx();
2124 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2125 value = lsym.get_st_value();
2126 }
2127 else
2128 shndx = this->symbol_section_and_value(r_sym, &value,
2129 &is_ordinary);
2130 this->set_opd_ent(reloc.get_r_offset(), shndx,
2131 value + reloc.get_r_addend());
2132 if (i == 2)
2133 {
2134 expected_off = reloc.get_r_offset();
2135 opd_ent_size = expected_off;
2136 }
2137 else if (expected_off != reloc.get_r_offset())
2138 regular = false;
2139 expected_off += opd_ent_size;
2140 }
2141 else if (r_type == elfcpp::R_PPC64_TOC)
2142 {
2143 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2144 regular = false;
2145 }
2146 else
2147 {
2148 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2149 this->name().c_str(), r_type);
2150 regular = false;
2151 }
2152 }
2153 if (reloc_count <= 2)
2154 opd_ent_size = this->section_size(this->opd_shndx());
2155 if (opd_ent_size != 24 && opd_ent_size != 16)
2156 regular = false;
2157 if (!regular)
2158 {
2159 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2160 this->name().c_str());
2161 opd_ent_size = 0;
2162 }
2163 }
2164 }
2165
2166 // Returns true if a code sequence loading the TOC entry at VALUE
2167 // relative to the TOC pointer can be converted into code calculating
2168 // a TOC pointer relative offset.
2169 // If so, the TOC pointer relative offset is stored to VALUE.
2170
2171 template<int size, bool big_endian>
2172 bool
2173 Powerpc_relobj<size, big_endian>::make_toc_relative(
2174 Target_powerpc<size, big_endian>* target,
2175 Address* value)
2176 {
2177 if (size != 64)
2178 return false;
2179
2180 // With -mcmodel=medium code it is quite possible to have
2181 // toc-relative relocs referring to objects outside the TOC.
2182 // Don't try to look at a non-existent TOC.
2183 if (this->toc_shndx() == 0)
2184 return false;
2185
2186 // Convert VALUE back to an address by adding got_base (see below),
2187 // then to an offset in the TOC by subtracting the TOC output
2188 // section address and the TOC output offset. Since this TOC output
2189 // section and the got output section are one and the same, we can
2190 // omit adding and subtracting the output section address.
2191 Address off = (*value + this->toc_base_offset()
2192 - this->output_section_offset(this->toc_shndx()));
2193 // Is this offset in the TOC? -mcmodel=medium code may be using
2194 // TOC relative access to variables outside the TOC. Those of
2195 // course can't be optimized. We also don't try to optimize code
2196 // that is using a different object's TOC.
2197 if (off >= this->section_size(this->toc_shndx()))
2198 return false;
2199
2200 if (this->no_toc_opt(off))
2201 return false;
2202
2203 section_size_type vlen;
2204 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2205 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2206 // The TOC pointer
2207 Address got_base = (target->got_section()->output_section()->address()
2208 + this->toc_base_offset());
2209 addr -= got_base;
2210 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2211 return false;
2212
2213 *value = addr;
2214 return true;
2215 }
2216
2217 // Perform the Sized_relobj_file method, then set up opd info from
2218 // .opd relocs.
2219
2220 template<int size, bool big_endian>
2221 void
2222 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2223 {
2224 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2225 if (size == 64)
2226 {
2227 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2228 p != rd->relocs.end();
2229 ++p)
2230 {
2231 if (p->data_shndx == this->opd_shndx())
2232 {
2233 uint64_t opd_size = this->section_size(this->opd_shndx());
2234 gold_assert(opd_size == static_cast<size_t>(opd_size));
2235 if (opd_size != 0)
2236 {
2237 this->init_opd(opd_size);
2238 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2239 rd->local_symbols->data());
2240 }
2241 break;
2242 }
2243 }
2244 }
2245 }
2246
2247 // Read the symbols then set up st_other vector.
2248
2249 template<int size, bool big_endian>
2250 void
2251 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2252 {
2253 this->base_read_symbols(sd);
2254 if (size == 64)
2255 {
2256 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2257 const unsigned char* const pshdrs = sd->section_headers->data();
2258 const unsigned int loccount = this->do_local_symbol_count();
2259 if (loccount != 0)
2260 {
2261 this->st_other_.resize(loccount);
2262 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2263 off_t locsize = loccount * sym_size;
2264 const unsigned int symtab_shndx = this->symtab_shndx();
2265 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2266 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2267 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2268 locsize, true, false);
2269 psyms += sym_size;
2270 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2271 {
2272 elfcpp::Sym<size, big_endian> sym(psyms);
2273 unsigned char st_other = sym.get_st_other();
2274 this->st_other_[i] = st_other;
2275 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2276 {
2277 if (this->abiversion() == 0)
2278 this->set_abiversion(2);
2279 else if (this->abiversion() < 2)
2280 gold_error(_("%s: local symbol %d has invalid st_other"
2281 " for ABI version 1"),
2282 this->name().c_str(), i);
2283 }
2284 }
2285 }
2286 }
2287 }
2288
2289 template<int size, bool big_endian>
2290 void
2291 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2292 {
2293 this->e_flags_ |= ver;
2294 if (this->abiversion() != 0)
2295 {
2296 Target_powerpc<size, big_endian>* target =
2297 static_cast<Target_powerpc<size, big_endian>*>(
2298 parameters->sized_target<size, big_endian>());
2299 if (target->abiversion() == 0)
2300 target->set_abiversion(this->abiversion());
2301 else if (target->abiversion() != this->abiversion())
2302 gold_error(_("%s: ABI version %d is not compatible "
2303 "with ABI version %d output"),
2304 this->name().c_str(),
2305 this->abiversion(), target->abiversion());
2306
2307 }
2308 }
2309
2310 // Call Sized_dynobj::base_read_symbols to read the symbols then
2311 // read .opd from a dynamic object, filling in opd_ent_ vector,
2312
2313 template<int size, bool big_endian>
2314 void
2315 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2316 {
2317 this->base_read_symbols(sd);
2318 if (size == 64)
2319 {
2320 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2321 const unsigned char* const pshdrs = sd->section_headers->data();
2322 const unsigned char* namesu = sd->section_names->data();
2323 const char* names = reinterpret_cast<const char*>(namesu);
2324 const unsigned char* s = NULL;
2325 const unsigned char* opd;
2326 section_size_type opd_size;
2327
2328 // Find and read .opd section.
2329 while (1)
2330 {
2331 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2332 sd->section_names_size,
2333 s);
2334 if (s == NULL)
2335 return;
2336
2337 typename elfcpp::Shdr<size, big_endian> shdr(s);
2338 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2339 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2340 {
2341 if (this->abiversion() == 0)
2342 this->set_abiversion(1);
2343 else if (this->abiversion() > 1)
2344 gold_error(_("%s: .opd invalid in abiv%d"),
2345 this->name().c_str(), this->abiversion());
2346
2347 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2348 this->opd_address_ = shdr.get_sh_addr();
2349 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2350 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2351 true, false);
2352 break;
2353 }
2354 }
2355
2356 // Build set of executable sections.
2357 // Using a set is probably overkill. There is likely to be only
2358 // a few executable sections, typically .init, .text and .fini,
2359 // and they are generally grouped together.
2360 typedef std::set<Sec_info> Exec_sections;
2361 Exec_sections exec_sections;
2362 s = pshdrs;
2363 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2364 {
2365 typename elfcpp::Shdr<size, big_endian> shdr(s);
2366 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2367 && ((shdr.get_sh_flags()
2368 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2369 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2370 && shdr.get_sh_size() != 0)
2371 {
2372 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2373 shdr.get_sh_size(), i));
2374 }
2375 }
2376 if (exec_sections.empty())
2377 return;
2378
2379 // Look over the OPD entries. This is complicated by the fact
2380 // that some binaries will use two-word entries while others
2381 // will use the standard three-word entries. In most cases
2382 // the third word (the environment pointer for languages like
2383 // Pascal) is unused and will be zero. If the third word is
2384 // used it should not be pointing into executable sections,
2385 // I think.
2386 this->init_opd(opd_size);
2387 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2388 {
2389 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2390 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2391 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2392 if (val == 0)
2393 // Chances are that this is the third word of an OPD entry.
2394 continue;
2395 typename Exec_sections::const_iterator e
2396 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2397 if (e != exec_sections.begin())
2398 {
2399 --e;
2400 if (e->start <= val && val < e->start + e->len)
2401 {
2402 // We have an address in an executable section.
2403 // VAL ought to be the function entry, set it up.
2404 this->set_opd_ent(p - opd, e->shndx, val);
2405 // Skip second word of OPD entry, the TOC pointer.
2406 p += 8;
2407 }
2408 }
2409 // If we didn't match any executable sections, we likely
2410 // have a non-zero third word in the OPD entry.
2411 }
2412 }
2413 }
2414
2415 // Relocate sections.
2416
2417 template<int size, bool big_endian>
2418 void
2419 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2420 const Symbol_table* symtab, const Layout* layout,
2421 const unsigned char* pshdrs, Output_file* of,
2422 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2423 {
2424 unsigned int start = 1;
2425 if (size == 64
2426 && this->relatoc_ != 0
2427 && !parameters->options().relocatable())
2428 {
2429 // Relocate .toc first.
2430 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2431 this->relatoc_, this->relatoc_);
2432 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2433 1, this->relatoc_ - 1);
2434 start = this->relatoc_ + 1;
2435 }
2436 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2437 start, this->shnum() - 1);
2438 }
2439
2440 // Set up some symbols.
2441
2442 template<int size, bool big_endian>
2443 void
2444 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2445 Symbol_table* symtab,
2446 Layout* layout)
2447 {
2448 if (size == 32)
2449 {
2450 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2451 // undefined when scanning relocs (and thus requires
2452 // non-relative dynamic relocs). The proper value will be
2453 // updated later.
2454 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2455 if (gotsym != NULL && gotsym->is_undefined())
2456 {
2457 Target_powerpc<size, big_endian>* target =
2458 static_cast<Target_powerpc<size, big_endian>*>(
2459 parameters->sized_target<size, big_endian>());
2460 Output_data_got_powerpc<size, big_endian>* got
2461 = target->got_section(symtab, layout);
2462 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2463 Symbol_table::PREDEFINED,
2464 got, 0, 0,
2465 elfcpp::STT_OBJECT,
2466 elfcpp::STB_LOCAL,
2467 elfcpp::STV_HIDDEN, 0,
2468 false, false);
2469 }
2470
2471 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2472 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2473 if (sdasym != NULL && sdasym->is_undefined())
2474 {
2475 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2476 Output_section* os
2477 = layout->add_output_section_data(".sdata", 0,
2478 elfcpp::SHF_ALLOC
2479 | elfcpp::SHF_WRITE,
2480 sdata, ORDER_SMALL_DATA, false);
2481 symtab->define_in_output_data("_SDA_BASE_", NULL,
2482 Symbol_table::PREDEFINED,
2483 os, 32768, 0, elfcpp::STT_OBJECT,
2484 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2485 0, false, false);
2486 }
2487 }
2488 else
2489 {
2490 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2491 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2492 if (gotsym != NULL && gotsym->is_undefined())
2493 {
2494 Target_powerpc<size, big_endian>* target =
2495 static_cast<Target_powerpc<size, big_endian>*>(
2496 parameters->sized_target<size, big_endian>());
2497 Output_data_got_powerpc<size, big_endian>* got
2498 = target->got_section(symtab, layout);
2499 symtab->define_in_output_data(".TOC.", NULL,
2500 Symbol_table::PREDEFINED,
2501 got, 0x8000, 0,
2502 elfcpp::STT_OBJECT,
2503 elfcpp::STB_LOCAL,
2504 elfcpp::STV_HIDDEN, 0,
2505 false, false);
2506 }
2507 }
2508
2509 this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2510 if (parameters->options().tls_get_addr_optimize()
2511 && this->tls_get_addr_ != NULL
2512 && this->tls_get_addr_->in_reg())
2513 this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2514 if (this->tls_get_addr_opt_ != NULL)
2515 {
2516 if (this->tls_get_addr_->is_undefined()
2517 || this->tls_get_addr_->is_from_dynobj())
2518 {
2519 // Make it seem as if references to __tls_get_addr are
2520 // really to __tls_get_addr_opt, so the latter symbol is
2521 // made dynamic, not the former.
2522 this->tls_get_addr_->clear_in_reg();
2523 this->tls_get_addr_opt_->set_in_reg();
2524 }
2525 // We have a non-dynamic definition for __tls_get_addr.
2526 // Make __tls_get_addr_opt the same, if it does not already have
2527 // a non-dynamic definition.
2528 else if (this->tls_get_addr_opt_->is_undefined()
2529 || this->tls_get_addr_opt_->is_from_dynobj())
2530 {
2531 Sized_symbol<size>* from
2532 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2533 Sized_symbol<size>* to
2534 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2535 symtab->clone<size>(to, from);
2536 }
2537 }
2538 }
2539
2540 // Set up PowerPC target specific relobj.
2541
2542 template<int size, bool big_endian>
2543 Object*
2544 Target_powerpc<size, big_endian>::do_make_elf_object(
2545 const std::string& name,
2546 Input_file* input_file,
2547 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2548 {
2549 int et = ehdr.get_e_type();
2550 // ET_EXEC files are valid input for --just-symbols/-R,
2551 // and we treat them as relocatable objects.
2552 if (et == elfcpp::ET_REL
2553 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2554 {
2555 Powerpc_relobj<size, big_endian>* obj =
2556 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2557 obj->setup();
2558 return obj;
2559 }
2560 else if (et == elfcpp::ET_DYN)
2561 {
2562 Powerpc_dynobj<size, big_endian>* obj =
2563 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2564 obj->setup();
2565 return obj;
2566 }
2567 else
2568 {
2569 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2570 return NULL;
2571 }
2572 }
2573
2574 template<int size, bool big_endian>
2575 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2576 {
2577 public:
2578 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2579 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2580
2581 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2582 : Output_data_got<size, big_endian>(),
2583 symtab_(symtab), layout_(layout),
2584 header_ent_cnt_(size == 32 ? 3 : 1),
2585 header_index_(size == 32 ? 0x2000 : 0)
2586 {
2587 if (size == 64)
2588 this->set_addralign(256);
2589 }
2590
2591 // Override all the Output_data_got methods we use so as to first call
2592 // reserve_ent().
2593 bool
2594 add_global(Symbol* gsym, unsigned int got_type)
2595 {
2596 this->reserve_ent();
2597 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2598 }
2599
2600 bool
2601 add_global_plt(Symbol* gsym, unsigned int got_type)
2602 {
2603 this->reserve_ent();
2604 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2605 }
2606
2607 bool
2608 add_global_tls(Symbol* gsym, unsigned int got_type)
2609 { return this->add_global_plt(gsym, got_type); }
2610
2611 void
2612 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2613 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2614 {
2615 this->reserve_ent();
2616 Output_data_got<size, big_endian>::
2617 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2618 }
2619
2620 void
2621 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2622 Output_data_reloc_generic* rel_dyn,
2623 unsigned int r_type_1, unsigned int r_type_2)
2624 {
2625 if (gsym->has_got_offset(got_type))
2626 return;
2627
2628 this->reserve_ent(2);
2629 Output_data_got<size, big_endian>::
2630 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2631 }
2632
2633 bool
2634 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2635 {
2636 this->reserve_ent();
2637 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2638 got_type);
2639 }
2640
2641 bool
2642 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2643 {
2644 this->reserve_ent();
2645 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2646 got_type);
2647 }
2648
2649 bool
2650 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2651 { return this->add_local_plt(object, sym_index, got_type); }
2652
2653 void
2654 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2655 unsigned int got_type,
2656 Output_data_reloc_generic* rel_dyn,
2657 unsigned int r_type)
2658 {
2659 if (object->local_has_got_offset(sym_index, got_type))
2660 return;
2661
2662 this->reserve_ent(2);
2663 Output_data_got<size, big_endian>::
2664 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2665 }
2666
2667 unsigned int
2668 add_constant(Valtype constant)
2669 {
2670 this->reserve_ent();
2671 return Output_data_got<size, big_endian>::add_constant(constant);
2672 }
2673
2674 unsigned int
2675 add_constant_pair(Valtype c1, Valtype c2)
2676 {
2677 this->reserve_ent(2);
2678 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2679 }
2680
2681 // Offset of _GLOBAL_OFFSET_TABLE_.
2682 unsigned int
2683 g_o_t() const
2684 {
2685 return this->got_offset(this->header_index_);
2686 }
2687
2688 // Offset of base used to access the GOT/TOC.
2689 // The got/toc pointer reg will be set to this value.
2690 Valtype
2691 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2692 {
2693 if (size == 32)
2694 return this->g_o_t();
2695 else
2696 return (this->output_section()->address()
2697 + object->toc_base_offset()
2698 - this->address());
2699 }
2700
2701 // Ensure our GOT has a header.
2702 void
2703 set_final_data_size()
2704 {
2705 if (this->header_ent_cnt_ != 0)
2706 this->make_header();
2707 Output_data_got<size, big_endian>::set_final_data_size();
2708 }
2709
2710 // First word of GOT header needs some values that are not
2711 // handled by Output_data_got so poke them in here.
2712 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2713 void
2714 do_write(Output_file* of)
2715 {
2716 Valtype val = 0;
2717 if (size == 32 && this->layout_->dynamic_data() != NULL)
2718 val = this->layout_->dynamic_section()->address();
2719 if (size == 64)
2720 val = this->output_section()->address() + 0x8000;
2721 this->replace_constant(this->header_index_, val);
2722 Output_data_got<size, big_endian>::do_write(of);
2723 }
2724
2725 private:
2726 void
2727 reserve_ent(unsigned int cnt = 1)
2728 {
2729 if (this->header_ent_cnt_ == 0)
2730 return;
2731 if (this->num_entries() + cnt > this->header_index_)
2732 this->make_header();
2733 }
2734
2735 void
2736 make_header()
2737 {
2738 this->header_ent_cnt_ = 0;
2739 this->header_index_ = this->num_entries();
2740 if (size == 32)
2741 {
2742 Output_data_got<size, big_endian>::add_constant(0);
2743 Output_data_got<size, big_endian>::add_constant(0);
2744 Output_data_got<size, big_endian>::add_constant(0);
2745
2746 // Define _GLOBAL_OFFSET_TABLE_ at the header
2747 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2748 if (gotsym != NULL)
2749 {
2750 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2751 sym->set_value(this->g_o_t());
2752 }
2753 else
2754 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2755 Symbol_table::PREDEFINED,
2756 this, this->g_o_t(), 0,
2757 elfcpp::STT_OBJECT,
2758 elfcpp::STB_LOCAL,
2759 elfcpp::STV_HIDDEN, 0,
2760 false, false);
2761 }
2762 else
2763 Output_data_got<size, big_endian>::add_constant(0);
2764 }
2765
2766 // Stashed pointers.
2767 Symbol_table* symtab_;
2768 Layout* layout_;
2769
2770 // GOT header size.
2771 unsigned int header_ent_cnt_;
2772 // GOT header index.
2773 unsigned int header_index_;
2774 };
2775
2776 // Get the GOT section, creating it if necessary.
2777
2778 template<int size, bool big_endian>
2779 Output_data_got_powerpc<size, big_endian>*
2780 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2781 Layout* layout)
2782 {
2783 if (this->got_ == NULL)
2784 {
2785 gold_assert(symtab != NULL && layout != NULL);
2786
2787 this->got_
2788 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2789
2790 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2791 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2792 this->got_, ORDER_DATA, false);
2793 }
2794
2795 return this->got_;
2796 }
2797
2798 // Get the dynamic reloc section, creating it if necessary.
2799
2800 template<int size, bool big_endian>
2801 typename Target_powerpc<size, big_endian>::Reloc_section*
2802 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2803 {
2804 if (this->rela_dyn_ == NULL)
2805 {
2806 gold_assert(layout != NULL);
2807 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2808 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2809 elfcpp::SHF_ALLOC, this->rela_dyn_,
2810 ORDER_DYNAMIC_RELOCS, false);
2811 }
2812 return this->rela_dyn_;
2813 }
2814
2815 // Similarly, but for ifunc symbols get the one for ifunc.
2816
2817 template<int size, bool big_endian>
2818 typename Target_powerpc<size, big_endian>::Reloc_section*
2819 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2820 Layout* layout,
2821 bool for_ifunc)
2822 {
2823 if (!for_ifunc)
2824 return this->rela_dyn_section(layout);
2825
2826 if (this->iplt_ == NULL)
2827 this->make_iplt_section(symtab, layout);
2828 return this->iplt_->rel_plt();
2829 }
2830
2831 class Stub_control
2832 {
2833 public:
2834 // Determine the stub group size. The group size is the absolute
2835 // value of the parameter --stub-group-size. If --stub-group-size
2836 // is passed a negative value, we restrict stubs to be always after
2837 // the stubbed branches.
2838 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2839 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2840 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2841 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2842 owner_(NULL), output_section_(NULL)
2843 {
2844 }
2845
2846 // Return true iff input section can be handled by current stub
2847 // group.
2848 bool
2849 can_add_to_stub_group(Output_section* o,
2850 const Output_section::Input_section* i,
2851 bool has14);
2852
2853 const Output_section::Input_section*
2854 owner()
2855 { return owner_; }
2856
2857 Output_section*
2858 output_section()
2859 { return output_section_; }
2860
2861 void
2862 set_output_and_owner(Output_section* o,
2863 const Output_section::Input_section* i)
2864 {
2865 this->output_section_ = o;
2866 this->owner_ = i;
2867 }
2868
2869 private:
2870 typedef enum
2871 {
2872 // Initial state.
2873 NO_GROUP,
2874 // Adding group sections before the stubs.
2875 FINDING_STUB_SECTION,
2876 // Adding group sections after the stubs.
2877 HAS_STUB_SECTION
2878 } State;
2879
2880 uint32_t stub_group_size_;
2881 bool stubs_always_after_branch_;
2882 bool suppress_size_errors_;
2883 // True if a stub group can serve multiple output sections.
2884 bool multi_os_;
2885 State state_;
2886 // Current max size of group. Starts at stub_group_size_ but is
2887 // reduced to stub_group_size_/1024 on seeing a section with
2888 // external conditional branches.
2889 uint32_t group_size_;
2890 uint64_t group_start_addr_;
2891 // owner_ and output_section_ specify the section to which stubs are
2892 // attached. The stubs are placed at the end of this section.
2893 const Output_section::Input_section* owner_;
2894 Output_section* output_section_;
2895 };
2896
2897 // Return true iff input section can be handled by current stub
2898 // group. Sections are presented to this function in order,
2899 // so the first section is the head of the group.
2900
2901 bool
2902 Stub_control::can_add_to_stub_group(Output_section* o,
2903 const Output_section::Input_section* i,
2904 bool has14)
2905 {
2906 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2907 uint64_t this_size;
2908 uint64_t start_addr = o->address();
2909
2910 if (whole_sec)
2911 // .init and .fini sections are pasted together to form a single
2912 // function. We can't be adding stubs in the middle of the function.
2913 this_size = o->data_size();
2914 else
2915 {
2916 start_addr += i->relobj()->output_section_offset(i->shndx());
2917 this_size = i->data_size();
2918 }
2919
2920 uint64_t end_addr = start_addr + this_size;
2921 uint32_t group_size = this->stub_group_size_;
2922 if (has14)
2923 this->group_size_ = group_size = group_size >> 10;
2924
2925 if (this_size > group_size && !this->suppress_size_errors_)
2926 gold_warning(_("%s:%s exceeds group size"),
2927 i->relobj()->name().c_str(),
2928 i->relobj()->section_name(i->shndx()).c_str());
2929
2930 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2931 has14 ? " 14bit" : "",
2932 i->relobj()->name().c_str(),
2933 i->relobj()->section_name(i->shndx()).c_str(),
2934 (long long) this_size,
2935 (this->state_ == NO_GROUP
2936 ? this_size
2937 : (long long) end_addr - this->group_start_addr_));
2938
2939 if (this->state_ == NO_GROUP)
2940 {
2941 // Only here on very first use of Stub_control
2942 this->owner_ = i;
2943 this->output_section_ = o;
2944 this->state_ = FINDING_STUB_SECTION;
2945 this->group_size_ = group_size;
2946 this->group_start_addr_ = start_addr;
2947 return true;
2948 }
2949 else if (!this->multi_os_ && this->output_section_ != o)
2950 ;
2951 else if (this->state_ == HAS_STUB_SECTION)
2952 {
2953 // Can we add this section, which is after the stubs, to the
2954 // group?
2955 if (end_addr - this->group_start_addr_ <= this->group_size_)
2956 return true;
2957 }
2958 else if (this->state_ == FINDING_STUB_SECTION)
2959 {
2960 if ((whole_sec && this->output_section_ == o)
2961 || end_addr - this->group_start_addr_ <= this->group_size_)
2962 {
2963 // Stubs are added at the end of "owner_".
2964 this->owner_ = i;
2965 this->output_section_ = o;
2966 return true;
2967 }
2968 // The group before the stubs has reached maximum size.
2969 // Now see about adding sections after the stubs to the
2970 // group. If the current section has a 14-bit branch and
2971 // the group before the stubs exceeds group_size_ (because
2972 // they didn't have 14-bit branches), don't add sections
2973 // after the stubs: The size of stubs for such a large
2974 // group may exceed the reach of a 14-bit branch.
2975 if (!this->stubs_always_after_branch_
2976 && this_size <= this->group_size_
2977 && start_addr - this->group_start_addr_ <= this->group_size_)
2978 {
2979 gold_debug(DEBUG_TARGET, "adding after stubs");
2980 this->state_ = HAS_STUB_SECTION;
2981 this->group_start_addr_ = start_addr;
2982 return true;
2983 }
2984 }
2985 else
2986 gold_unreachable();
2987
2988 gold_debug(DEBUG_TARGET,
2989 !this->multi_os_ && this->output_section_ != o
2990 ? "nope, new output section\n"
2991 : "nope, didn't fit\n");
2992
2993 // The section fails to fit in the current group. Set up a few
2994 // things for the next group. owner_ and output_section_ will be
2995 // set later after we've retrieved those values for the current
2996 // group.
2997 this->state_ = FINDING_STUB_SECTION;
2998 this->group_size_ = group_size;
2999 this->group_start_addr_ = start_addr;
3000 return false;
3001 }
3002
3003 // Look over all the input sections, deciding where to place stubs.
3004
3005 template<int size, bool big_endian>
3006 void
3007 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3008 const Task*,
3009 bool no_size_errors)
3010 {
3011 Stub_control stub_control(this->stub_group_size_, no_size_errors,
3012 parameters->options().stub_group_multi());
3013
3014 // Group input sections and insert stub table
3015 Stub_table_owner* table_owner = NULL;
3016 std::vector<Stub_table_owner*> tables;
3017 Layout::Section_list section_list;
3018 layout->get_executable_sections(&section_list);
3019 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3020 for (Layout::Section_list::iterator o = section_list.begin();
3021 o != section_list.end();
3022 ++o)
3023 {
3024 typedef Output_section::Input_section_list Input_section_list;
3025 for (Input_section_list::const_iterator i
3026 = (*o)->input_sections().begin();
3027 i != (*o)->input_sections().end();
3028 ++i)
3029 {
3030 if (i->is_input_section()
3031 || i->is_relaxed_input_section())
3032 {
3033 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3034 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3035 bool has14 = ppcobj->has_14bit_branch(i->shndx());
3036 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3037 {
3038 table_owner->output_section = stub_control.output_section();
3039 table_owner->owner = stub_control.owner();
3040 stub_control.set_output_and_owner(*o, &*i);
3041 table_owner = NULL;
3042 }
3043 if (table_owner == NULL)
3044 {
3045 table_owner = new Stub_table_owner;
3046 tables.push_back(table_owner);
3047 }
3048 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3049 }
3050 }
3051 }
3052 if (table_owner != NULL)
3053 {
3054 table_owner->output_section = stub_control.output_section();
3055 table_owner->owner = stub_control.owner();;
3056 }
3057 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3058 t != tables.end();
3059 ++t)
3060 {
3061 Stub_table<size, big_endian>* stub_table;
3062
3063 if ((*t)->owner->is_input_section())
3064 stub_table = new Stub_table<size, big_endian>(this,
3065 (*t)->output_section,
3066 (*t)->owner,
3067 this->stub_tables_.size());
3068 else if ((*t)->owner->is_relaxed_input_section())
3069 stub_table = static_cast<Stub_table<size, big_endian>*>(
3070 (*t)->owner->relaxed_input_section());
3071 else
3072 gold_unreachable();
3073 this->stub_tables_.push_back(stub_table);
3074 delete *t;
3075 }
3076 }
3077
3078 static unsigned long
3079 max_branch_delta (unsigned int r_type)
3080 {
3081 if (r_type == elfcpp::R_POWERPC_REL14
3082 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3083 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3084 return 1L << 15;
3085 if (r_type == elfcpp::R_POWERPC_REL24
3086 || r_type == elfcpp::R_PPC_PLTREL24
3087 || r_type == elfcpp::R_PPC_LOCAL24PC)
3088 return 1L << 25;
3089 return 0;
3090 }
3091
3092 // Return whether this branch is going via a plt call stub.
3093
3094 template<int size, bool big_endian>
3095 bool
3096 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3097 Powerpc_relobj<size, big_endian>* ppc_object,
3098 unsigned int shndx,
3099 Address offset,
3100 Target_powerpc* target,
3101 Symbol_table* symtab)
3102 {
3103 if (this->object_ != ppc_object
3104 || this->shndx_ != shndx
3105 || this->offset_ != offset)
3106 return false;
3107
3108 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3109 if (sym != NULL && sym->is_forwarder())
3110 sym = symtab->resolve_forwards(sym);
3111 if (target->replace_tls_get_addr(sym))
3112 sym = target->tls_get_addr_opt();
3113 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3114 if (gsym != NULL
3115 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3116 && !target->is_elfv2_localentry0(gsym))
3117 : (this->object_->local_has_plt_offset(this->r_sym_)
3118 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3119 {
3120 this->tocsave_ = 1;
3121 return true;
3122 }
3123 return false;
3124 }
3125
3126 // If this branch needs a plt call stub, or a long branch stub, make one.
3127
3128 template<int size, bool big_endian>
3129 bool
3130 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3131 Stub_table<size, big_endian>* stub_table,
3132 Stub_table<size, big_endian>* ifunc_stub_table,
3133 Symbol_table* symtab) const
3134 {
3135 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3136 Target_powerpc<size, big_endian>* target =
3137 static_cast<Target_powerpc<size, big_endian>*>(
3138 parameters->sized_target<size, big_endian>());
3139 if (sym != NULL && sym->is_forwarder())
3140 sym = symtab->resolve_forwards(sym);
3141 if (target->replace_tls_get_addr(sym))
3142 sym = target->tls_get_addr_opt();
3143 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3144 bool ok = true;
3145
3146 if (gsym != NULL
3147 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3148 : this->object_->local_has_plt_offset(this->r_sym_))
3149 {
3150 if (size == 64
3151 && gsym != NULL
3152 && target->abiversion() >= 2
3153 && !parameters->options().output_is_position_independent()
3154 && !is_branch_reloc(this->r_type_))
3155 target->glink_section()->add_global_entry(gsym);
3156 else
3157 {
3158 if (stub_table == NULL
3159 && !(size == 32
3160 && gsym != NULL
3161 && !parameters->options().output_is_position_independent()
3162 && !is_branch_reloc(this->r_type_)))
3163 stub_table = this->object_->stub_table(this->shndx_);
3164 if (stub_table == NULL)
3165 {
3166 // This is a ref from a data section to an ifunc symbol,
3167 // or a non-branch reloc for which we always want to use
3168 // one set of stubs for resolving function addresses.
3169 stub_table = ifunc_stub_table;
3170 }
3171 gold_assert(stub_table != NULL);
3172 Address from = this->object_->get_output_section_offset(this->shndx_);
3173 if (from != invalid_address)
3174 from += (this->object_->output_section(this->shndx_)->address()
3175 + this->offset_);
3176 if (gsym != NULL)
3177 ok = stub_table->add_plt_call_entry(from,
3178 this->object_, gsym,
3179 this->r_type_, this->addend_,
3180 this->tocsave_);
3181 else
3182 ok = stub_table->add_plt_call_entry(from,
3183 this->object_, this->r_sym_,
3184 this->r_type_, this->addend_,
3185 this->tocsave_);
3186 }
3187 }
3188 else
3189 {
3190 Address max_branch_offset = max_branch_delta(this->r_type_);
3191 if (max_branch_offset == 0)
3192 return true;
3193 Address from = this->object_->get_output_section_offset(this->shndx_);
3194 gold_assert(from != invalid_address);
3195 from += (this->object_->output_section(this->shndx_)->address()
3196 + this->offset_);
3197 Address to;
3198 if (gsym != NULL)
3199 {
3200 switch (gsym->source())
3201 {
3202 case Symbol::FROM_OBJECT:
3203 {
3204 Object* symobj = gsym->object();
3205 if (symobj->is_dynamic()
3206 || symobj->pluginobj() != NULL)
3207 return true;
3208 bool is_ordinary;
3209 unsigned int shndx = gsym->shndx(&is_ordinary);
3210 if (shndx == elfcpp::SHN_UNDEF)
3211 return true;
3212 }
3213 break;
3214
3215 case Symbol::IS_UNDEFINED:
3216 return true;
3217
3218 default:
3219 break;
3220 }
3221 Symbol_table::Compute_final_value_status status;
3222 to = symtab->compute_final_value<size>(gsym, &status);
3223 if (status != Symbol_table::CFVS_OK)
3224 return true;
3225 if (size == 64)
3226 to += this->object_->ppc64_local_entry_offset(gsym);
3227 }
3228 else
3229 {
3230 const Symbol_value<size>* psymval
3231 = this->object_->local_symbol(this->r_sym_);
3232 Symbol_value<size> symval;
3233 if (psymval->is_section_symbol())
3234 symval.set_is_section_symbol();
3235 typedef Sized_relobj_file<size, big_endian> ObjType;
3236 typename ObjType::Compute_final_local_value_status status
3237 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3238 &symval, symtab);
3239 if (status != ObjType::CFLV_OK
3240 || !symval.has_output_value())
3241 return true;
3242 to = symval.value(this->object_, 0);
3243 if (size == 64)
3244 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3245 }
3246 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3247 to += this->addend_;
3248 if (stub_table == NULL)
3249 stub_table = this->object_->stub_table(this->shndx_);
3250 if (size == 64 && target->abiversion() < 2)
3251 {
3252 unsigned int dest_shndx;
3253 if (!target->symval_for_branch(symtab, gsym, this->object_,
3254 &to, &dest_shndx))
3255 return true;
3256 }
3257 Address delta = to - from;
3258 if (delta + max_branch_offset >= 2 * max_branch_offset)
3259 {
3260 if (stub_table == NULL)
3261 {
3262 gold_warning(_("%s:%s: branch in non-executable section,"
3263 " no long branch stub for you"),
3264 this->object_->name().c_str(),
3265 this->object_->section_name(this->shndx_).c_str());
3266 return true;
3267 }
3268 bool save_res = (size == 64
3269 && gsym != NULL
3270 && gsym->source() == Symbol::IN_OUTPUT_DATA
3271 && gsym->output_data() == target->savres_section());
3272 ok = stub_table->add_long_branch_entry(this->object_,
3273 this->r_type_,
3274 from, to, save_res);
3275 }
3276 }
3277 if (!ok)
3278 gold_debug(DEBUG_TARGET,
3279 "branch at %s:%s+%#lx\n"
3280 "can't reach stub attached to %s:%s",
3281 this->object_->name().c_str(),
3282 this->object_->section_name(this->shndx_).c_str(),
3283 (unsigned long) this->offset_,
3284 stub_table->relobj()->name().c_str(),
3285 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3286
3287 return ok;
3288 }
3289
3290 // Relaxation hook. This is where we do stub generation.
3291
3292 template<int size, bool big_endian>
3293 bool
3294 Target_powerpc<size, big_endian>::do_relax(int pass,
3295 const Input_objects*,
3296 Symbol_table* symtab,
3297 Layout* layout,
3298 const Task* task)
3299 {
3300 unsigned int prev_brlt_size = 0;
3301 if (pass == 1)
3302 {
3303 bool thread_safe
3304 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3305 if (size == 64
3306 && this->abiversion() < 2
3307 && !thread_safe
3308 && !parameters->options().user_set_plt_thread_safe())
3309 {
3310 static const char* const thread_starter[] =
3311 {
3312 "pthread_create",
3313 /* libstdc++ */
3314 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3315 /* librt */
3316 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3317 "mq_notify", "create_timer",
3318 /* libanl */
3319 "getaddrinfo_a",
3320 /* libgomp */
3321 "GOMP_parallel",
3322 "GOMP_parallel_start",
3323 "GOMP_parallel_loop_static",
3324 "GOMP_parallel_loop_static_start",
3325 "GOMP_parallel_loop_dynamic",
3326 "GOMP_parallel_loop_dynamic_start",
3327 "GOMP_parallel_loop_guided",
3328 "GOMP_parallel_loop_guided_start",
3329 "GOMP_parallel_loop_runtime",
3330 "GOMP_parallel_loop_runtime_start",
3331 "GOMP_parallel_sections",
3332 "GOMP_parallel_sections_start",
3333 /* libgo */
3334 "__go_go",
3335 };
3336
3337 if (parameters->options().shared())
3338 thread_safe = true;
3339 else
3340 {
3341 for (unsigned int i = 0;
3342 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3343 i++)
3344 {
3345 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3346 thread_safe = (sym != NULL
3347 && sym->in_reg()
3348 && sym->in_real_elf());
3349 if (thread_safe)
3350 break;
3351 }
3352 }
3353 }
3354 this->plt_thread_safe_ = thread_safe;
3355 }
3356
3357 if (pass == 1)
3358 {
3359 this->stub_group_size_ = parameters->options().stub_group_size();
3360 bool no_size_errors = true;
3361 if (this->stub_group_size_ == 1)
3362 this->stub_group_size_ = 0x1c00000;
3363 else if (this->stub_group_size_ == -1)
3364 this->stub_group_size_ = -0x1e00000;
3365 else
3366 no_size_errors = false;
3367 this->group_sections(layout, task, no_size_errors);
3368 }
3369 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3370 {
3371 this->branch_lookup_table_.clear();
3372 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3373 p != this->stub_tables_.end();
3374 ++p)
3375 {
3376 (*p)->clear_stubs(true);
3377 }
3378 this->stub_tables_.clear();
3379 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3380 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3381 program_name, this->stub_group_size_);
3382 this->group_sections(layout, task, true);
3383 }
3384
3385 // We need address of stub tables valid for make_stub.
3386 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3387 p != this->stub_tables_.end();
3388 ++p)
3389 {
3390 const Powerpc_relobj<size, big_endian>* object
3391 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3392 Address off = object->get_output_section_offset((*p)->shndx());
3393 gold_assert(off != invalid_address);
3394 Output_section* os = (*p)->output_section();
3395 (*p)->set_address_and_size(os, off);
3396 }
3397
3398 if (pass != 1)
3399 {
3400 // Clear plt call stubs, long branch stubs and branch lookup table.
3401 prev_brlt_size = this->branch_lookup_table_.size();
3402 this->branch_lookup_table_.clear();
3403 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3404 p != this->stub_tables_.end();
3405 ++p)
3406 {
3407 (*p)->clear_stubs(false);
3408 }
3409 }
3410
3411 // Build all the stubs.
3412 this->relax_failed_ = false;
3413 Stub_table<size, big_endian>* ifunc_stub_table
3414 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3415 Stub_table<size, big_endian>* one_stub_table
3416 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3417 for (typename Branches::const_iterator b = this->branch_info_.begin();
3418 b != this->branch_info_.end();
3419 b++)
3420 {
3421 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3422 && !this->relax_failed_)
3423 {
3424 this->relax_failed_ = true;
3425 this->relax_fail_count_++;
3426 if (this->relax_fail_count_ < 3)
3427 return true;
3428 }
3429 }
3430
3431 // Did anything change size?
3432 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3433 bool again = num_huge_branches != prev_brlt_size;
3434 if (size == 64 && num_huge_branches != 0)
3435 this->make_brlt_section(layout);
3436 if (size == 64 && again)
3437 this->brlt_section_->set_current_size(num_huge_branches);
3438
3439 for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3440 p != this->stub_tables_.rend();
3441 ++p)
3442 (*p)->remove_eh_frame(layout);
3443
3444 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3445 p != this->stub_tables_.end();
3446 ++p)
3447 (*p)->add_eh_frame(layout);
3448
3449 typedef Unordered_set<Output_section*> Output_sections;
3450 Output_sections os_need_update;
3451 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3452 p != this->stub_tables_.end();
3453 ++p)
3454 {
3455 if ((*p)->size_update())
3456 {
3457 again = true;
3458 os_need_update.insert((*p)->output_section());
3459 }
3460 }
3461
3462 // Set output section offsets for all input sections in an output
3463 // section that just changed size. Anything past the stubs will
3464 // need updating.
3465 for (typename Output_sections::iterator p = os_need_update.begin();
3466 p != os_need_update.end();
3467 p++)
3468 {
3469 Output_section* os = *p;
3470 Address off = 0;
3471 typedef Output_section::Input_section_list Input_section_list;
3472 for (Input_section_list::const_iterator i = os->input_sections().begin();
3473 i != os->input_sections().end();
3474 ++i)
3475 {
3476 off = align_address(off, i->addralign());
3477 if (i->is_input_section() || i->is_relaxed_input_section())
3478 i->relobj()->set_section_offset(i->shndx(), off);
3479 if (i->is_relaxed_input_section())
3480 {
3481 Stub_table<size, big_endian>* stub_table
3482 = static_cast<Stub_table<size, big_endian>*>(
3483 i->relaxed_input_section());
3484 Address stub_table_size = stub_table->set_address_and_size(os, off);
3485 off += stub_table_size;
3486 // After a few iterations, set current stub table size
3487 // as min size threshold, so later stub tables can only
3488 // grow in size.
3489 if (pass >= 4)
3490 stub_table->set_min_size_threshold(stub_table_size);
3491 }
3492 else
3493 off += i->data_size();
3494 }
3495 // If .branch_lt is part of this output section, then we have
3496 // just done the offset adjustment.
3497 os->clear_section_offsets_need_adjustment();
3498 }
3499
3500 if (size == 64
3501 && !again
3502 && num_huge_branches != 0
3503 && parameters->options().output_is_position_independent())
3504 {
3505 // Fill in the BRLT relocs.
3506 this->brlt_section_->reset_brlt_sizes();
3507 for (typename Branch_lookup_table::const_iterator p
3508 = this->branch_lookup_table_.begin();
3509 p != this->branch_lookup_table_.end();
3510 ++p)
3511 {
3512 this->brlt_section_->add_reloc(p->first, p->second);
3513 }
3514 this->brlt_section_->finalize_brlt_sizes();
3515 }
3516
3517 if (!again
3518 && (parameters->options().user_set_emit_stub_syms()
3519 ? parameters->options().emit_stub_syms()
3520 : (size == 64
3521 || parameters->options().output_is_position_independent()
3522 || parameters->options().emit_relocs())))
3523 {
3524 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3525 p != this->stub_tables_.end();
3526 ++p)
3527 (*p)->define_stub_syms(symtab);
3528
3529 if (this->glink_ != NULL)
3530 {
3531 int stub_size = this->glink_->pltresolve_size();
3532 Address value = -stub_size;
3533 if (size == 64)
3534 {
3535 value = 8;
3536 stub_size -= 8;
3537 }
3538 this->define_local(symtab, "__glink_PLTresolve",
3539 this->glink_, value, stub_size);
3540
3541 if (size != 64)
3542 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3543 }
3544 }
3545
3546 return again;
3547 }
3548
3549 template<int size, bool big_endian>
3550 void
3551 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3552 unsigned char* oview,
3553 uint64_t* paddress,
3554 off_t* plen) const
3555 {
3556 uint64_t address = plt->address();
3557 off_t len = plt->data_size();
3558
3559 if (plt == this->glink_)
3560 {
3561 // See Output_data_glink::do_write() for glink contents.
3562 if (len == 0)
3563 {
3564 gold_assert(parameters->doing_static_link());
3565 // Static linking may need stubs, to support ifunc and long
3566 // branches. We need to create an output section for
3567 // .eh_frame early in the link process, to have a place to
3568 // attach stub .eh_frame info. We also need to have
3569 // registered a CIE that matches the stub CIE. Both of
3570 // these requirements are satisfied by creating an FDE and
3571 // CIE for .glink, even though static linking will leave
3572 // .glink zero length.
3573 // ??? Hopefully generating an FDE with a zero address range
3574 // won't confuse anything that consumes .eh_frame info.
3575 }
3576 else if (size == 64)
3577 {
3578 // There is one word before __glink_PLTresolve
3579 address += 8;
3580 len -= 8;
3581 }
3582 else if (parameters->options().output_is_position_independent())
3583 {
3584 // There are two FDEs for a position independent glink.
3585 // The first covers the branch table, the second
3586 // __glink_PLTresolve at the end of glink.
3587 off_t resolve_size = this->glink_->pltresolve_size();
3588 if (oview[9] == elfcpp::DW_CFA_nop)
3589 len -= resolve_size;
3590 else
3591 {
3592 address += len - resolve_size;
3593 len = resolve_size;
3594 }
3595 }
3596 }
3597 else
3598 {
3599 // Must be a stub table.
3600 const Stub_table<size, big_endian>* stub_table
3601 = static_cast<const Stub_table<size, big_endian>*>(plt);
3602 uint64_t stub_address = stub_table->stub_address();
3603 len -= stub_address - address;
3604 address = stub_address;
3605 }
3606
3607 *paddress = address;
3608 *plen = len;
3609 }
3610
3611 // A class to handle the PLT data.
3612
3613 template<int size, bool big_endian>
3614 class Output_data_plt_powerpc : public Output_section_data_build
3615 {
3616 public:
3617 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3618 size, big_endian> Reloc_section;
3619
3620 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3621 Reloc_section* plt_rel,
3622 const char* name)
3623 : Output_section_data_build(size == 32 ? 4 : 8),
3624 rel_(plt_rel),
3625 targ_(targ),
3626 name_(name)
3627 { }
3628
3629 // Add an entry to the PLT.
3630 void
3631 add_entry(Symbol*);
3632
3633 void
3634 add_ifunc_entry(Symbol*);
3635
3636 void
3637 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3638
3639 // Return the .rela.plt section data.
3640 Reloc_section*
3641 rel_plt() const
3642 {
3643 return this->rel_;
3644 }
3645
3646 // Return the number of PLT entries.
3647 unsigned int
3648 entry_count() const
3649 {
3650 if (this->current_data_size() == 0)
3651 return 0;
3652 return ((this->current_data_size() - this->first_plt_entry_offset())
3653 / this->plt_entry_size());
3654 }
3655
3656 protected:
3657 void
3658 do_adjust_output_section(Output_section* os)
3659 {
3660 os->set_entsize(0);
3661 }
3662
3663 // Write to a map file.
3664 void
3665 do_print_to_mapfile(Mapfile* mapfile) const
3666 { mapfile->print_output_data(this, this->name_); }
3667
3668 private:
3669 // Return the offset of the first non-reserved PLT entry.
3670 unsigned int
3671 first_plt_entry_offset() const
3672 {
3673 // IPLT has no reserved entry.
3674 if (this->name_[3] == 'I')
3675 return 0;
3676 return this->targ_->first_plt_entry_offset();
3677 }
3678
3679 // Return the size of each PLT entry.
3680 unsigned int
3681 plt_entry_size() const
3682 {
3683 return this->targ_->plt_entry_size();
3684 }
3685
3686 // Write out the PLT data.
3687 void
3688 do_write(Output_file*);
3689
3690 // The reloc section.
3691 Reloc_section* rel_;
3692 // Allows access to .glink for do_write.
3693 Target_powerpc<size, big_endian>* targ_;
3694 // What to report in map file.
3695 const char *name_;
3696 };
3697
3698 // Add an entry to the PLT.
3699
3700 template<int size, bool big_endian>
3701 void
3702 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3703 {
3704 if (!gsym->has_plt_offset())
3705 {
3706 section_size_type off = this->current_data_size();
3707 if (off == 0)
3708 off += this->first_plt_entry_offset();
3709 gsym->set_plt_offset(off);
3710 gsym->set_needs_dynsym_entry();
3711 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3712 this->rel_->add_global(gsym, dynrel, this, off, 0);
3713 off += this->plt_entry_size();
3714 this->set_current_data_size(off);
3715 }
3716 }
3717
3718 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3719
3720 template<int size, bool big_endian>
3721 void
3722 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3723 {
3724 if (!gsym->has_plt_offset())
3725 {
3726 section_size_type off = this->current_data_size();
3727 gsym->set_plt_offset(off);
3728 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3729 if (size == 64 && this->targ_->abiversion() < 2)
3730 dynrel = elfcpp::R_PPC64_JMP_IREL;
3731 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3732 off += this->plt_entry_size();
3733 this->set_current_data_size(off);
3734 }
3735 }
3736
3737 // Add an entry for a local ifunc symbol to the IPLT.
3738
3739 template<int size, bool big_endian>
3740 void
3741 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3742 Sized_relobj_file<size, big_endian>* relobj,
3743 unsigned int local_sym_index)
3744 {
3745 if (!relobj->local_has_plt_offset(local_sym_index))
3746 {
3747 section_size_type off = this->current_data_size();
3748 relobj->set_local_plt_offset(local_sym_index, off);
3749 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3750 if (size == 64 && this->targ_->abiversion() < 2)
3751 dynrel = elfcpp::R_PPC64_JMP_IREL;
3752 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3753 this, off, 0);
3754 off += this->plt_entry_size();
3755 this->set_current_data_size(off);
3756 }
3757 }
3758
3759 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3760 static const uint32_t add_2_2_11 = 0x7c425a14;
3761 static const uint32_t add_2_2_12 = 0x7c426214;
3762 static const uint32_t add_3_3_2 = 0x7c631214;
3763 static const uint32_t add_3_3_13 = 0x7c636a14;
3764 static const uint32_t add_3_12_2 = 0x7c6c1214;
3765 static const uint32_t add_3_12_13 = 0x7c6c6a14;
3766 static const uint32_t add_11_0_11 = 0x7d605a14;
3767 static const uint32_t add_11_2_11 = 0x7d625a14;
3768 static const uint32_t add_11_11_2 = 0x7d6b1214;
3769 static const uint32_t addi_0_12 = 0x380c0000;
3770 static const uint32_t addi_2_2 = 0x38420000;
3771 static const uint32_t addi_3_3 = 0x38630000;
3772 static const uint32_t addi_11_11 = 0x396b0000;
3773 static const uint32_t addi_12_1 = 0x39810000;
3774 static const uint32_t addi_12_12 = 0x398c0000;
3775 static const uint32_t addis_0_2 = 0x3c020000;
3776 static const uint32_t addis_0_13 = 0x3c0d0000;
3777 static const uint32_t addis_2_12 = 0x3c4c0000;
3778 static const uint32_t addis_11_2 = 0x3d620000;
3779 static const uint32_t addis_11_11 = 0x3d6b0000;
3780 static const uint32_t addis_11_30 = 0x3d7e0000;
3781 static const uint32_t addis_12_1 = 0x3d810000;
3782 static const uint32_t addis_12_2 = 0x3d820000;
3783 static const uint32_t addis_12_12 = 0x3d8c0000;
3784 static const uint32_t b = 0x48000000;
3785 static const uint32_t bcl_20_31 = 0x429f0005;
3786 static const uint32_t bctr = 0x4e800420;
3787 static const uint32_t bctrl = 0x4e800421;
3788 static const uint32_t beqlr = 0x4d820020;
3789 static const uint32_t blr = 0x4e800020;
3790 static const uint32_t bnectr_p4 = 0x4ce20420;
3791 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3792 static const uint32_t cmpldi_2_0 = 0x28220000;
3793 static const uint32_t cmpdi_11_0 = 0x2c2b0000;
3794 static const uint32_t cmpwi_11_0 = 0x2c0b0000;
3795 static const uint32_t cror_15_15_15 = 0x4def7b82;
3796 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3797 static const uint32_t ld_0_1 = 0xe8010000;
3798 static const uint32_t ld_0_12 = 0xe80c0000;
3799 static const uint32_t ld_2_1 = 0xe8410000;
3800 static const uint32_t ld_2_2 = 0xe8420000;
3801 static const uint32_t ld_2_11 = 0xe84b0000;
3802 static const uint32_t ld_2_12 = 0xe84c0000;
3803 static const uint32_t ld_11_1 = 0xe9610000;
3804 static const uint32_t ld_11_2 = 0xe9620000;
3805 static const uint32_t ld_11_3 = 0xe9630000;
3806 static const uint32_t ld_11_11 = 0xe96b0000;
3807 static const uint32_t ld_12_2 = 0xe9820000;
3808 static const uint32_t ld_12_3 = 0xe9830000;
3809 static const uint32_t ld_12_11 = 0xe98b0000;
3810 static const uint32_t ld_12_12 = 0xe98c0000;
3811 static const uint32_t lfd_0_1 = 0xc8010000;
3812 static const uint32_t li_0_0 = 0x38000000;
3813 static const uint32_t li_12_0 = 0x39800000;
3814 static const uint32_t lis_0 = 0x3c000000;
3815 static const uint32_t lis_2 = 0x3c400000;
3816 static const uint32_t lis_11 = 0x3d600000;
3817 static const uint32_t lis_12 = 0x3d800000;
3818 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3819 static const uint32_t lwz_0_12 = 0x800c0000;
3820 static const uint32_t lwz_11_3 = 0x81630000;
3821 static const uint32_t lwz_11_11 = 0x816b0000;
3822 static const uint32_t lwz_11_30 = 0x817e0000;
3823 static const uint32_t lwz_12_3 = 0x81830000;
3824 static const uint32_t lwz_12_12 = 0x818c0000;
3825 static const uint32_t lwzu_0_12 = 0x840c0000;
3826 static const uint32_t mflr_0 = 0x7c0802a6;
3827 static const uint32_t mflr_11 = 0x7d6802a6;
3828 static const uint32_t mflr_12 = 0x7d8802a6;
3829 static const uint32_t mr_0_3 = 0x7c601b78;
3830 static const uint32_t mr_3_0 = 0x7c030378;
3831 static const uint32_t mtctr_0 = 0x7c0903a6;
3832 static const uint32_t mtctr_11 = 0x7d6903a6;
3833 static const uint32_t mtctr_12 = 0x7d8903a6;
3834 static const uint32_t mtlr_0 = 0x7c0803a6;
3835 static const uint32_t mtlr_11 = 0x7d6803a6;
3836 static const uint32_t mtlr_12 = 0x7d8803a6;
3837 static const uint32_t nop = 0x60000000;
3838 static const uint32_t ori_0_0_0 = 0x60000000;
3839 static const uint32_t srdi_0_0_2 = 0x7800f082;
3840 static const uint32_t std_0_1 = 0xf8010000;
3841 static const uint32_t std_0_12 = 0xf80c0000;
3842 static const uint32_t std_2_1 = 0xf8410000;
3843 static const uint32_t std_11_1 = 0xf9610000;
3844 static const uint32_t stfd_0_1 = 0xd8010000;
3845 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3846 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3847 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3848 static const uint32_t xor_2_12_12 = 0x7d826278;
3849 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3850
3851 // Write out the PLT.
3852
3853 template<int size, bool big_endian>
3854 void
3855 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3856 {
3857 if (size == 32 && this->name_[3] != 'I')
3858 {
3859 const section_size_type offset = this->offset();
3860 const section_size_type oview_size
3861 = convert_to_section_size_type(this->data_size());
3862 unsigned char* const oview = of->get_output_view(offset, oview_size);
3863 unsigned char* pov = oview;
3864 unsigned char* endpov = oview + oview_size;
3865
3866 // The address of the .glink branch table
3867 const Output_data_glink<size, big_endian>* glink
3868 = this->targ_->glink_section();
3869 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3870
3871 while (pov < endpov)
3872 {
3873 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3874 pov += 4;
3875 branch_tab += 4;
3876 }
3877
3878 of->write_output_view(offset, oview_size, oview);
3879 }
3880 }
3881
3882 // Create the PLT section.
3883
3884 template<int size, bool big_endian>
3885 void
3886 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3887 Layout* layout)
3888 {
3889 if (this->plt_ == NULL)
3890 {
3891 if (this->got_ == NULL)
3892 this->got_section(symtab, layout);
3893
3894 if (this->glink_ == NULL)
3895 make_glink_section(layout);
3896
3897 // Ensure that .rela.dyn always appears before .rela.plt This is
3898 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3899 // needs to include .rela.plt in its range.
3900 this->rela_dyn_section(layout);
3901
3902 Reloc_section* plt_rel = new Reloc_section(false);
3903 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3904 elfcpp::SHF_ALLOC, plt_rel,
3905 ORDER_DYNAMIC_PLT_RELOCS, false);
3906 this->plt_
3907 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3908 "** PLT");
3909 layout->add_output_section_data(".plt",
3910 (size == 32
3911 ? elfcpp::SHT_PROGBITS
3912 : elfcpp::SHT_NOBITS),
3913 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3914 this->plt_,
3915 (size == 32
3916 ? ORDER_SMALL_DATA
3917 : ORDER_SMALL_BSS),
3918 false);
3919
3920 Output_section* rela_plt_os = plt_rel->output_section();
3921 rela_plt_os->set_info_section(this->plt_->output_section());
3922 }
3923 }
3924
3925 // Create the IPLT section.
3926
3927 template<int size, bool big_endian>
3928 void
3929 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3930 Layout* layout)
3931 {
3932 if (this->iplt_ == NULL)
3933 {
3934 this->make_plt_section(symtab, layout);
3935
3936 Reloc_section* iplt_rel = new Reloc_section(false);
3937 if (this->rela_dyn_->output_section())
3938 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3939 this->iplt_
3940 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3941 "** IPLT");
3942 if (this->plt_->output_section())
3943 this->plt_->output_section()->add_output_section_data(this->iplt_);
3944 }
3945 }
3946
3947 // A section for huge long branch addresses, similar to plt section.
3948
3949 template<int size, bool big_endian>
3950 class Output_data_brlt_powerpc : public Output_section_data_build
3951 {
3952 public:
3953 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3954 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3955 size, big_endian> Reloc_section;
3956
3957 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3958 Reloc_section* brlt_rel)
3959 : Output_section_data_build(size == 32 ? 4 : 8),
3960 rel_(brlt_rel),
3961 targ_(targ)
3962 { }
3963
3964 void
3965 reset_brlt_sizes()
3966 {
3967 this->reset_data_size();
3968 this->rel_->reset_data_size();
3969 }
3970
3971 void
3972 finalize_brlt_sizes()
3973 {
3974 this->finalize_data_size();
3975 this->rel_->finalize_data_size();
3976 }
3977
3978 // Add a reloc for an entry in the BRLT.
3979 void
3980 add_reloc(Address to, unsigned int off)
3981 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3982
3983 // Update section and reloc section size.
3984 void
3985 set_current_size(unsigned int num_branches)
3986 {
3987 this->reset_address_and_file_offset();
3988 this->set_current_data_size(num_branches * 16);
3989 this->finalize_data_size();
3990 Output_section* os = this->output_section();
3991 os->set_section_offsets_need_adjustment();
3992 if (this->rel_ != NULL)
3993 {
3994 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3995 this->rel_->reset_address_and_file_offset();
3996 this->rel_->set_current_data_size(num_branches * reloc_size);
3997 this->rel_->finalize_data_size();
3998 Output_section* os = this->rel_->output_section();
3999 os->set_section_offsets_need_adjustment();
4000 }
4001 }
4002
4003 protected:
4004 void
4005 do_adjust_output_section(Output_section* os)
4006 {
4007 os->set_entsize(0);
4008 }
4009
4010 // Write to a map file.
4011 void
4012 do_print_to_mapfile(Mapfile* mapfile) const
4013 { mapfile->print_output_data(this, "** BRLT"); }
4014
4015 private:
4016 // Write out the BRLT data.
4017 void
4018 do_write(Output_file*);
4019
4020 // The reloc section.
4021 Reloc_section* rel_;
4022 Target_powerpc<size, big_endian>* targ_;
4023 };
4024
4025 // Make the branch lookup table section.
4026
4027 template<int size, bool big_endian>
4028 void
4029 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4030 {
4031 if (size == 64 && this->brlt_section_ == NULL)
4032 {
4033 Reloc_section* brlt_rel = NULL;
4034 bool is_pic = parameters->options().output_is_position_independent();
4035 if (is_pic)
4036 {
4037 // When PIC we can't fill in .branch_lt but must initialise at
4038 // runtime via dynamic relocations.
4039 this->rela_dyn_section(layout);
4040 brlt_rel = new Reloc_section(false);
4041 if (this->rela_dyn_->output_section())
4042 this->rela_dyn_->output_section()
4043 ->add_output_section_data(brlt_rel);
4044 }
4045 this->brlt_section_
4046 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4047 if (this->plt_ && is_pic && this->plt_->output_section())
4048 this->plt_->output_section()
4049 ->add_output_section_data(this->brlt_section_);
4050 else
4051 layout->add_output_section_data(".branch_lt",
4052 elfcpp::SHT_PROGBITS,
4053 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4054 this->brlt_section_,
4055 ORDER_RELRO,
4056 true);
4057 }
4058 }
4059
4060 // Write out .branch_lt when non-PIC.
4061
4062 template<int size, bool big_endian>
4063 void
4064 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4065 {
4066 if (size == 64 && !parameters->options().output_is_position_independent())
4067 {
4068 const section_size_type offset = this->offset();
4069 const section_size_type oview_size
4070 = convert_to_section_size_type(this->data_size());
4071 unsigned char* const oview = of->get_output_view(offset, oview_size);
4072
4073 this->targ_->write_branch_lookup_table(oview);
4074 of->write_output_view(offset, oview_size, oview);
4075 }
4076 }
4077
4078 static inline uint32_t
4079 l(uint32_t a)
4080 {
4081 return a & 0xffff;
4082 }
4083
4084 static inline uint32_t
4085 hi(uint32_t a)
4086 {
4087 return l(a >> 16);
4088 }
4089
4090 static inline uint32_t
4091 ha(uint32_t a)
4092 {
4093 return hi(a + 0x8000);
4094 }
4095
4096 template<int size>
4097 struct Eh_cie
4098 {
4099 static const unsigned char eh_frame_cie[12];
4100 };
4101
4102 template<int size>
4103 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4104 {
4105 1, // CIE version.
4106 'z', 'R', 0, // Augmentation string.
4107 4, // Code alignment.
4108 0x80 - size / 8 , // Data alignment.
4109 65, // RA reg.
4110 1, // Augmentation size.
4111 (elfcpp::DW_EH_PE_pcrel
4112 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
4113 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
4114 };
4115
4116 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4117 static const unsigned char glink_eh_frame_fde_64v1[] =
4118 {
4119 0, 0, 0, 0, // Replaced with offset to .glink.
4120 0, 0, 0, 0, // Replaced with size of .glink.
4121 0, // Augmentation size.
4122 elfcpp::DW_CFA_advance_loc + 1,
4123 elfcpp::DW_CFA_register, 65, 12,
4124 elfcpp::DW_CFA_advance_loc + 5,
4125 elfcpp::DW_CFA_restore_extended, 65
4126 };
4127
4128 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4129 static const unsigned char glink_eh_frame_fde_64v2[] =
4130 {
4131 0, 0, 0, 0, // Replaced with offset to .glink.
4132 0, 0, 0, 0, // Replaced with size of .glink.
4133 0, // Augmentation size.
4134 elfcpp::DW_CFA_advance_loc + 1,
4135 elfcpp::DW_CFA_register, 65, 0,
4136 elfcpp::DW_CFA_advance_loc + 7,
4137 elfcpp::DW_CFA_restore_extended, 65
4138 };
4139
4140 // Describe __glink_PLTresolve use of LR, 32-bit version.
4141 static const unsigned char glink_eh_frame_fde_32[] =
4142 {
4143 0, 0, 0, 0, // Replaced with offset to .glink.
4144 0, 0, 0, 0, // Replaced with size of .glink.
4145 0, // Augmentation size.
4146 elfcpp::DW_CFA_advance_loc + 2,
4147 elfcpp::DW_CFA_register, 65, 0,
4148 elfcpp::DW_CFA_advance_loc + 4,
4149 elfcpp::DW_CFA_restore_extended, 65
4150 };
4151
4152 static const unsigned char default_fde[] =
4153 {
4154 0, 0, 0, 0, // Replaced with offset to stubs.
4155 0, 0, 0, 0, // Replaced with size of stubs.
4156 0, // Augmentation size.
4157 elfcpp::DW_CFA_nop, // Pad.
4158 elfcpp::DW_CFA_nop,
4159 elfcpp::DW_CFA_nop
4160 };
4161
4162 template<bool big_endian>
4163 static inline void
4164 write_insn(unsigned char* p, uint32_t v)
4165 {
4166 elfcpp::Swap<32, big_endian>::writeval(p, v);
4167 }
4168
4169 template<int size>
4170 static inline unsigned int
4171 param_plt_align()
4172 {
4173 if (!parameters->options().user_set_plt_align())
4174 return size == 64 ? 32 : 8;
4175 return 1 << parameters->options().plt_align();
4176 }
4177
4178 // Stub_table holds information about plt and long branch stubs.
4179 // Stubs are built in an area following some input section determined
4180 // by group_sections(). This input section is converted to a relaxed
4181 // input section allowing it to be resized to accommodate the stubs
4182
4183 template<int size, bool big_endian>
4184 class Stub_table : public Output_relaxed_input_section
4185 {
4186 public:
4187 struct Plt_stub_ent
4188 {
4189 Plt_stub_ent(unsigned int off, unsigned int indx)
4190 : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4191 { }
4192
4193 unsigned int off_;
4194 unsigned int indx_ : 30;
4195 unsigned int r2save_ : 1;
4196 unsigned int localentry0_ : 1;
4197 };
4198 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4199 static const Address invalid_address = static_cast<Address>(0) - 1;
4200
4201 Stub_table(Target_powerpc<size, big_endian>* targ,
4202 Output_section* output_section,
4203 const Output_section::Input_section* owner,
4204 uint32_t id)
4205 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4206 owner->relobj()
4207 ->section_addralign(owner->shndx())),
4208 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4209 orig_data_size_(owner->current_data_size()),
4210 plt_size_(0), last_plt_size_(0),
4211 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4212 need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4213 plt_fde_len_(0)
4214 {
4215 this->set_output_section(output_section);
4216
4217 std::vector<Output_relaxed_input_section*> new_relaxed;
4218 new_relaxed.push_back(this);
4219 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4220 }
4221
4222 // Add a plt call stub.
4223 bool
4224 add_plt_call_entry(Address,
4225 const Sized_relobj_file<size, big_endian>*,
4226 const Symbol*,
4227 unsigned int,
4228 Address,
4229 bool);
4230
4231 bool
4232 add_plt_call_entry(Address,
4233 const Sized_relobj_file<size, big_endian>*,
4234 unsigned int,
4235 unsigned int,
4236 Address,
4237 bool);
4238
4239 // Find a given plt call stub.
4240 const Plt_stub_ent*
4241 find_plt_call_entry(const Symbol*) const;
4242
4243 const Plt_stub_ent*
4244 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4245 unsigned int) const;
4246
4247 const Plt_stub_ent*
4248 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4249 const Symbol*,
4250 unsigned int,
4251 Address) const;
4252
4253 const Plt_stub_ent*
4254 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4255 unsigned int,
4256 unsigned int,
4257 Address) const;
4258
4259 // Add a long branch stub.
4260 bool
4261 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4262 unsigned int, Address, Address, bool);
4263
4264 Address
4265 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4266 Address) const;
4267
4268 bool
4269 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4270 {
4271 Address max_branch_offset = max_branch_delta(r_type);
4272 if (max_branch_offset == 0)
4273 return true;
4274 gold_assert(from != invalid_address);
4275 Address loc = off + this->stub_address();
4276 return loc - from + max_branch_offset < 2 * max_branch_offset;
4277 }
4278
4279 void
4280 clear_stubs(bool all)
4281 {
4282 this->plt_call_stubs_.clear();
4283 this->plt_size_ = 0;
4284 this->long_branch_stubs_.clear();
4285 this->branch_size_ = 0;
4286 this->need_save_res_ = false;
4287 if (all)
4288 {
4289 this->last_plt_size_ = 0;
4290 this->last_branch_size_ = 0;
4291 }
4292 }
4293
4294 Address
4295 set_address_and_size(const Output_section* os, Address off)
4296 {
4297 Address start_off = off;
4298 off += this->orig_data_size_;
4299 Address my_size = this->plt_size_ + this->branch_size_;
4300 if (this->need_save_res_)
4301 my_size += this->targ_->savres_section()->data_size();
4302 if (my_size != 0)
4303 off = align_address(off, this->stub_align());
4304 // Include original section size and alignment padding in size
4305 my_size += off - start_off;
4306 // Ensure new size is always larger than min size
4307 // threshold. Alignment requirement is included in "my_size", so
4308 // increase "my_size" does not invalidate alignment.
4309 if (my_size < this->min_size_threshold_)
4310 my_size = this->min_size_threshold_;
4311 this->reset_address_and_file_offset();
4312 this->set_current_data_size(my_size);
4313 this->set_address_and_file_offset(os->address() + start_off,
4314 os->offset() + start_off);
4315 return my_size;
4316 }
4317
4318 Address
4319 stub_address() const
4320 {
4321 return align_address(this->address() + this->orig_data_size_,
4322 this->stub_align());
4323 }
4324
4325 Address
4326 stub_offset() const
4327 {
4328 return align_address(this->offset() + this->orig_data_size_,
4329 this->stub_align());
4330 }
4331
4332 section_size_type
4333 plt_size() const
4334 { return this->plt_size_; }
4335
4336 void
4337 set_min_size_threshold(Address min_size)
4338 { this->min_size_threshold_ = min_size; }
4339
4340 void
4341 define_stub_syms(Symbol_table*);
4342
4343 bool
4344 size_update()
4345 {
4346 Output_section* os = this->output_section();
4347 if (os->addralign() < this->stub_align())
4348 {
4349 os->set_addralign(this->stub_align());
4350 // FIXME: get rid of the insane checkpointing.
4351 // We can't increase alignment of the input section to which
4352 // stubs are attached; The input section may be .init which
4353 // is pasted together with other .init sections to form a
4354 // function. Aligning might insert zero padding resulting in
4355 // sigill. However we do need to increase alignment of the
4356 // output section so that the align_address() on offset in
4357 // set_address_and_size() adds the same padding as the
4358 // align_address() on address in stub_address().
4359 // What's more, we need this alignment for the layout done in
4360 // relaxation_loop_body() so that the output section starts at
4361 // a suitably aligned address.
4362 os->checkpoint_set_addralign(this->stub_align());
4363 }
4364 if (this->last_plt_size_ != this->plt_size_
4365 || this->last_branch_size_ != this->branch_size_)
4366 {
4367 this->last_plt_size_ = this->plt_size_;
4368 this->last_branch_size_ = this->branch_size_;
4369 return true;
4370 }
4371 return false;
4372 }
4373
4374 // Generate a suitable FDE to describe code in this stub group.
4375 void
4376 init_plt_fde();
4377
4378 // Add .eh_frame info for this stub section.
4379 void
4380 add_eh_frame(Layout* layout);
4381
4382 // Remove .eh_frame info for this stub section.
4383 void
4384 remove_eh_frame(Layout* layout);
4385
4386 Target_powerpc<size, big_endian>*
4387 targ() const
4388 { return targ_; }
4389
4390 private:
4391 class Plt_stub_key;
4392 class Plt_stub_key_hash;
4393 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4394 Plt_stub_key_hash> Plt_stub_entries;
4395 class Branch_stub_ent;
4396 class Branch_stub_ent_hash;
4397 typedef Unordered_map<Branch_stub_ent, unsigned int,
4398 Branch_stub_ent_hash> Branch_stub_entries;
4399
4400 // Alignment of stub section.
4401 unsigned int
4402 stub_align() const
4403 {
4404 unsigned int min_align = size == 64 ? 32 : 16;
4405 unsigned int user_align = 1 << parameters->options().plt_align();
4406 return std::max(user_align, min_align);
4407 }
4408
4409 // Return the plt offset for the given call stub.
4410 Address
4411 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4412 {
4413 const Symbol* gsym = p->first.sym_;
4414 if (gsym != NULL)
4415 {
4416 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4417 && gsym->can_use_relative_reloc(false));
4418 return gsym->plt_offset();
4419 }
4420 else
4421 {
4422 *is_iplt = true;
4423 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4424 unsigned int local_sym_index = p->first.locsym_;
4425 return relobj->local_plt_offset(local_sym_index);
4426 }
4427 }
4428
4429 // Size of a given plt call stub.
4430 unsigned int
4431 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4432 {
4433 if (size == 32)
4434 {
4435 const Symbol* gsym = p->first.sym_;
4436 return (4 * 4
4437 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4438 }
4439
4440 bool is_iplt;
4441 Address plt_addr = this->plt_off(p, &is_iplt);
4442 if (is_iplt)
4443 plt_addr += this->targ_->iplt_section()->address();
4444 else
4445 plt_addr += this->targ_->plt_section()->address();
4446 Address got_addr = this->targ_->got_section()->output_section()->address();
4447 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4448 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4449 got_addr += ppcobj->toc_base_offset();
4450 Address off = plt_addr - got_addr;
4451 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4452 const Symbol* gsym = p->first.sym_;
4453 if (this->targ_->is_tls_get_addr_opt(gsym))
4454 bytes += 13 * 4;
4455 if (this->targ_->abiversion() < 2)
4456 {
4457 bool static_chain = parameters->options().plt_static_chain();
4458 bool thread_safe = this->targ_->plt_thread_safe();
4459 bytes += (4
4460 + 4 * static_chain
4461 + 8 * thread_safe
4462 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4463 }
4464 return bytes;
4465 }
4466
4467 unsigned int
4468 plt_call_align(unsigned int bytes) const
4469 {
4470 unsigned int align = param_plt_align<size>();
4471 return (bytes + align - 1) & -align;
4472 }
4473
4474 // Return long branch stub size.
4475 unsigned int
4476 branch_stub_size(typename Branch_stub_entries::const_iterator p)
4477 {
4478 Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4479 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4480 return 4;
4481 unsigned int bytes = 16;
4482 if (size == 32 && parameters->options().output_is_position_independent())
4483 bytes += 16;
4484 return bytes;
4485 }
4486
4487 // Write out stubs.
4488 void
4489 do_write(Output_file*);
4490
4491 // Plt call stub keys.
4492 class Plt_stub_key
4493 {
4494 public:
4495 Plt_stub_key(const Symbol* sym)
4496 : sym_(sym), object_(0), addend_(0), locsym_(0)
4497 { }
4498
4499 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4500 unsigned int locsym_index)
4501 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4502 { }
4503
4504 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4505 const Symbol* sym,
4506 unsigned int r_type,
4507 Address addend)
4508 : sym_(sym), object_(0), addend_(0), locsym_(0)
4509 {
4510 if (size != 32)
4511 this->addend_ = addend;
4512 else if (parameters->options().output_is_position_independent()
4513 && r_type == elfcpp::R_PPC_PLTREL24)
4514 {
4515 this->addend_ = addend;
4516 if (this->addend_ >= 32768)
4517 this->object_ = object;
4518 }
4519 }
4520
4521 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4522 unsigned int locsym_index,
4523 unsigned int r_type,
4524 Address addend)
4525 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4526 {
4527 if (size != 32)
4528 this->addend_ = addend;
4529 else if (parameters->options().output_is_position_independent()
4530 && r_type == elfcpp::R_PPC_PLTREL24)
4531 this->addend_ = addend;
4532 }
4533
4534 bool operator==(const Plt_stub_key& that) const
4535 {
4536 return (this->sym_ == that.sym_
4537 && this->object_ == that.object_
4538 && this->addend_ == that.addend_
4539 && this->locsym_ == that.locsym_);
4540 }
4541
4542 const Symbol* sym_;
4543 const Sized_relobj_file<size, big_endian>* object_;
4544 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4545 unsigned int locsym_;
4546 };
4547
4548 class Plt_stub_key_hash
4549 {
4550 public:
4551 size_t operator()(const Plt_stub_key& ent) const
4552 {
4553 return (reinterpret_cast<uintptr_t>(ent.sym_)
4554 ^ reinterpret_cast<uintptr_t>(ent.object_)
4555 ^ ent.addend_
4556 ^ ent.locsym_);
4557 }
4558 };
4559
4560 // Long branch stub keys.
4561 class Branch_stub_ent
4562 {
4563 public:
4564 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4565 Address to, bool save_res)
4566 : dest_(to), toc_base_off_(0), save_res_(save_res)
4567 {
4568 if (size == 64)
4569 toc_base_off_ = obj->toc_base_offset();
4570 }
4571
4572 bool operator==(const Branch_stub_ent& that) const
4573 {
4574 return (this->dest_ == that.dest_
4575 && (size == 32
4576 || this->toc_base_off_ == that.toc_base_off_));
4577 }
4578
4579 Address dest_;
4580 unsigned int toc_base_off_;
4581 bool save_res_;
4582 };
4583
4584 class Branch_stub_ent_hash
4585 {
4586 public:
4587 size_t operator()(const Branch_stub_ent& ent) const
4588 { return ent.dest_ ^ ent.toc_base_off_; }
4589 };
4590
4591 // In a sane world this would be a global.
4592 Target_powerpc<size, big_endian>* targ_;
4593 // Map sym/object/addend to stub offset.
4594 Plt_stub_entries plt_call_stubs_;
4595 // Map destination address to stub offset.
4596 Branch_stub_entries long_branch_stubs_;
4597 // size of input section
4598 section_size_type orig_data_size_;
4599 // size of stubs
4600 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4601 // Some rare cases cause (PR/20529) fluctuation in stub table
4602 // size, which leads to an endless relax loop. This is to be fixed
4603 // by, after the first few iterations, allowing only increase of
4604 // stub table size. This variable sets the minimal possible size of
4605 // a stub table, it is zero for the first few iterations, then
4606 // increases monotonically.
4607 Address min_size_threshold_;
4608 // Set if this stub group needs a copy of out-of-line register
4609 // save/restore functions.
4610 bool need_save_res_;
4611 // Per stub table unique identifier.
4612 uint32_t uniq_;
4613 // The bctrl in the __tls_get_addr_opt stub, if present.
4614 unsigned int tls_get_addr_opt_bctrl_;
4615 // FDE unwind info for this stub group.
4616 unsigned int plt_fde_len_;
4617 unsigned char plt_fde_[20];
4618 };
4619
4620 // Add a plt call stub, if we do not already have one for this
4621 // sym/object/addend combo.
4622
4623 template<int size, bool big_endian>
4624 bool
4625 Stub_table<size, big_endian>::add_plt_call_entry(
4626 Address from,
4627 const Sized_relobj_file<size, big_endian>* object,
4628 const Symbol* gsym,
4629 unsigned int r_type,
4630 Address addend,
4631 bool tocsave)
4632 {
4633 Plt_stub_key key(object, gsym, r_type, addend);
4634 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4635 std::pair<typename Plt_stub_entries::iterator, bool> p
4636 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4637 if (p.second)
4638 {
4639 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4640 if (size == 64
4641 && this->targ_->is_elfv2_localentry0(gsym))
4642 {
4643 p.first->second.localentry0_ = 1;
4644 this->targ_->set_has_localentry0();
4645 }
4646 if (this->targ_->is_tls_get_addr_opt(gsym))
4647 {
4648 this->targ_->set_has_tls_get_addr_opt();
4649 this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4650 }
4651 this->plt_size_ = this->plt_call_align(this->plt_size_);
4652 }
4653 if (size == 64
4654 && !tocsave
4655 && !p.first->second.localentry0_)
4656 p.first->second.r2save_ = 1;
4657 return this->can_reach_stub(from, ent.off_, r_type);
4658 }
4659
4660 template<int size, bool big_endian>
4661 bool
4662 Stub_table<size, big_endian>::add_plt_call_entry(
4663 Address from,
4664 const Sized_relobj_file<size, big_endian>* object,
4665 unsigned int locsym_index,
4666 unsigned int r_type,
4667 Address addend,
4668 bool tocsave)
4669 {
4670 Plt_stub_key key(object, locsym_index, r_type, addend);
4671 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4672 std::pair<typename Plt_stub_entries::iterator, bool> p
4673 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4674 if (p.second)
4675 {
4676 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4677 this->plt_size_ = this->plt_call_align(this->plt_size_);
4678 if (size == 64
4679 && this->targ_->is_elfv2_localentry0(object, locsym_index))
4680 {
4681 p.first->second.localentry0_ = 1;
4682 this->targ_->set_has_localentry0();
4683 }
4684 }
4685 if (size == 64
4686 && !tocsave
4687 && !p.first->second.localentry0_)
4688 p.first->second.r2save_ = 1;
4689 return this->can_reach_stub(from, ent.off_, r_type);
4690 }
4691
4692 // Find a plt call stub.
4693
4694 template<int size, bool big_endian>
4695 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4696 Stub_table<size, big_endian>::find_plt_call_entry(
4697 const Sized_relobj_file<size, big_endian>* object,
4698 const Symbol* gsym,
4699 unsigned int r_type,
4700 Address addend) const
4701 {
4702 Plt_stub_key key(object, gsym, r_type, addend);
4703 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4704 if (p == this->plt_call_stubs_.end())
4705 return NULL;
4706 return &p->second;
4707 }
4708
4709 template<int size, bool big_endian>
4710 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4711 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4712 {
4713 Plt_stub_key key(gsym);
4714 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4715 if (p == this->plt_call_stubs_.end())
4716 return NULL;
4717 return &p->second;
4718 }
4719
4720 template<int size, bool big_endian>
4721 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4722 Stub_table<size, big_endian>::find_plt_call_entry(
4723 const Sized_relobj_file<size, big_endian>* object,
4724 unsigned int locsym_index,
4725 unsigned int r_type,
4726 Address addend) const
4727 {
4728 Plt_stub_key key(object, locsym_index, r_type, addend);
4729 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4730 if (p == this->plt_call_stubs_.end())
4731 return NULL;
4732 return &p->second;
4733 }
4734
4735 template<int size, bool big_endian>
4736 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4737 Stub_table<size, big_endian>::find_plt_call_entry(
4738 const Sized_relobj_file<size, big_endian>* object,
4739 unsigned int locsym_index) const
4740 {
4741 Plt_stub_key key(object, locsym_index);
4742 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4743 if (p == this->plt_call_stubs_.end())
4744 return NULL;
4745 return &p->second;
4746 }
4747
4748 // Add a long branch stub if we don't already have one to given
4749 // destination.
4750
4751 template<int size, bool big_endian>
4752 bool
4753 Stub_table<size, big_endian>::add_long_branch_entry(
4754 const Powerpc_relobj<size, big_endian>* object,
4755 unsigned int r_type,
4756 Address from,
4757 Address to,
4758 bool save_res)
4759 {
4760 Branch_stub_ent ent(object, to, save_res);
4761 Address off = this->branch_size_;
4762 std::pair<typename Branch_stub_entries::iterator, bool> p
4763 = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4764 if (p.second)
4765 {
4766 if (save_res)
4767 this->need_save_res_ = true;
4768 else
4769 {
4770 unsigned int stub_size = this->branch_stub_size(p.first);
4771 this->branch_size_ = off + stub_size;
4772 if (size == 64 && stub_size != 4)
4773 this->targ_->add_branch_lookup_table(to);
4774 }
4775 }
4776 return this->can_reach_stub(from, off, r_type);
4777 }
4778
4779 // Find long branch stub offset.
4780
4781 template<int size, bool big_endian>
4782 typename Stub_table<size, big_endian>::Address
4783 Stub_table<size, big_endian>::find_long_branch_entry(
4784 const Powerpc_relobj<size, big_endian>* object,
4785 Address to) const
4786 {
4787 Branch_stub_ent ent(object, to, false);
4788 typename Branch_stub_entries::const_iterator p
4789 = this->long_branch_stubs_.find(ent);
4790 if (p == this->long_branch_stubs_.end())
4791 return invalid_address;
4792 if (p->first.save_res_)
4793 return to - this->targ_->savres_section()->address() + this->branch_size_;
4794 return p->second;
4795 }
4796
4797 // Generate a suitable FDE to describe code in this stub group.
4798 // The __tls_get_addr_opt call stub needs to describe where it saves
4799 // LR, to support exceptions that might be thrown from __tls_get_addr.
4800
4801 template<int size, bool big_endian>
4802 void
4803 Stub_table<size, big_endian>::init_plt_fde()
4804 {
4805 unsigned char* p = this->plt_fde_;
4806 // offset pcrel sdata4, size udata4, and augmentation size byte.
4807 memset (p, 0, 9);
4808 p += 9;
4809 if (this->tls_get_addr_opt_bctrl_ != -1u)
4810 {
4811 unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
4812 if (to_bctrl < 64)
4813 *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
4814 else if (to_bctrl < 256)
4815 {
4816 *p++ = elfcpp::DW_CFA_advance_loc1;
4817 *p++ = to_bctrl;
4818 }
4819 else if (to_bctrl < 65536)
4820 {
4821 *p++ = elfcpp::DW_CFA_advance_loc2;
4822 elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
4823 p += 2;
4824 }
4825 else
4826 {
4827 *p++ = elfcpp::DW_CFA_advance_loc4;
4828 elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
4829 p += 4;
4830 }
4831 *p++ = elfcpp::DW_CFA_offset_extended_sf;
4832 *p++ = 65;
4833 *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
4834 *p++ = elfcpp::DW_CFA_advance_loc + 4;
4835 *p++ = elfcpp::DW_CFA_restore_extended;
4836 *p++ = 65;
4837 }
4838 this->plt_fde_len_ = p - this->plt_fde_;
4839 }
4840
4841 // Add .eh_frame info for this stub section. Unlike other linker
4842 // generated .eh_frame this is added late in the link, because we
4843 // only want the .eh_frame info if this particular stub section is
4844 // non-empty.
4845
4846 template<int size, bool big_endian>
4847 void
4848 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
4849 {
4850 if (!parameters->options().ld_generated_unwind_info())
4851 return;
4852
4853 // Since we add stub .eh_frame info late, it must be placed
4854 // after all other linker generated .eh_frame info so that
4855 // merge mapping need not be updated for input sections.
4856 // There is no provision to use a different CIE to that used
4857 // by .glink.
4858 if (!this->targ_->has_glink())
4859 return;
4860
4861 if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
4862 return;
4863
4864 this->init_plt_fde();
4865 layout->add_eh_frame_for_plt(this,
4866 Eh_cie<size>::eh_frame_cie,
4867 sizeof (Eh_cie<size>::eh_frame_cie),
4868 this->plt_fde_, this->plt_fde_len_);
4869 }
4870
4871 template<int size, bool big_endian>
4872 void
4873 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
4874 {
4875 if (this->plt_fde_len_ != 0)
4876 {
4877 layout->remove_eh_frame_for_plt(this,
4878 Eh_cie<size>::eh_frame_cie,
4879 sizeof (Eh_cie<size>::eh_frame_cie),
4880 this->plt_fde_, this->plt_fde_len_);
4881 this->plt_fde_len_ = 0;
4882 }
4883 }
4884
4885 // A class to handle .glink.
4886
4887 template<int size, bool big_endian>
4888 class Output_data_glink : public Output_section_data
4889 {
4890 public:
4891 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4892 static const Address invalid_address = static_cast<Address>(0) - 1;
4893
4894 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4895 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4896 end_branch_table_(), ge_size_(0)
4897 { }
4898
4899 void
4900 add_eh_frame(Layout* layout);
4901
4902 void
4903 add_global_entry(const Symbol*);
4904
4905 Address
4906 find_global_entry(const Symbol*) const;
4907
4908 unsigned int
4909 global_entry_align(unsigned int off) const
4910 {
4911 unsigned int align = param_plt_align<size>();
4912 return (off + align - 1) & -align;
4913 }
4914
4915 unsigned int
4916 global_entry_off() const
4917 {
4918 return this->global_entry_align(this->end_branch_table_);
4919 }
4920
4921 Address
4922 global_entry_address() const
4923 {
4924 gold_assert(this->is_data_size_valid());
4925 return this->address() + this->global_entry_off();
4926 }
4927
4928 int
4929 pltresolve_size() const
4930 {
4931 if (size == 64)
4932 return (8
4933 + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
4934 return 16 * 4;
4935 }
4936
4937 protected:
4938 // Write to a map file.
4939 void
4940 do_print_to_mapfile(Mapfile* mapfile) const
4941 { mapfile->print_output_data(this, _("** glink")); }
4942
4943 private:
4944 void
4945 set_final_data_size();
4946
4947 // Write out .glink
4948 void
4949 do_write(Output_file*);
4950
4951 // Allows access to .got and .plt for do_write.
4952 Target_powerpc<size, big_endian>* targ_;
4953
4954 // Map sym to stub offset.
4955 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4956 Global_entry_stub_entries global_entry_stubs_;
4957
4958 unsigned int end_branch_table_, ge_size_;
4959 };
4960
4961 template<int size, bool big_endian>
4962 void
4963 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4964 {
4965 if (!parameters->options().ld_generated_unwind_info())
4966 return;
4967
4968 if (size == 64)
4969 {
4970 if (this->targ_->abiversion() < 2)
4971 layout->add_eh_frame_for_plt(this,
4972 Eh_cie<64>::eh_frame_cie,
4973 sizeof (Eh_cie<64>::eh_frame_cie),
4974 glink_eh_frame_fde_64v1,
4975 sizeof (glink_eh_frame_fde_64v1));
4976 else
4977 layout->add_eh_frame_for_plt(this,
4978 Eh_cie<64>::eh_frame_cie,
4979 sizeof (Eh_cie<64>::eh_frame_cie),
4980 glink_eh_frame_fde_64v2,
4981 sizeof (glink_eh_frame_fde_64v2));
4982 }
4983 else
4984 {
4985 // 32-bit .glink can use the default since the CIE return
4986 // address reg, LR, is valid.
4987 layout->add_eh_frame_for_plt(this,
4988 Eh_cie<32>::eh_frame_cie,
4989 sizeof (Eh_cie<32>::eh_frame_cie),
4990 default_fde,
4991 sizeof (default_fde));
4992 // Except where LR is used in a PIC __glink_PLTresolve.
4993 if (parameters->options().output_is_position_independent())
4994 layout->add_eh_frame_for_plt(this,
4995 Eh_cie<32>::eh_frame_cie,
4996 sizeof (Eh_cie<32>::eh_frame_cie),
4997 glink_eh_frame_fde_32,
4998 sizeof (glink_eh_frame_fde_32));
4999 }
5000 }
5001
5002 template<int size, bool big_endian>
5003 void
5004 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5005 {
5006 unsigned int off = this->global_entry_align(this->ge_size_);
5007 std::pair<typename Global_entry_stub_entries::iterator, bool> p
5008 = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5009 if (p.second)
5010 this->ge_size_ = off + 16;
5011 }
5012
5013 template<int size, bool big_endian>
5014 typename Output_data_glink<size, big_endian>::Address
5015 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5016 {
5017 typename Global_entry_stub_entries::const_iterator p
5018 = this->global_entry_stubs_.find(gsym);
5019 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5020 }
5021
5022 template<int size, bool big_endian>
5023 void
5024 Output_data_glink<size, big_endian>::set_final_data_size()
5025 {
5026 unsigned int count = this->targ_->plt_entry_count();
5027 section_size_type total = 0;
5028
5029 if (count != 0)
5030 {
5031 if (size == 32)
5032 {
5033 // space for branch table
5034 total += 4 * (count - 1);
5035
5036 total += -total & 15;
5037 total += this->pltresolve_size();
5038 }
5039 else
5040 {
5041 total += this->pltresolve_size();
5042
5043 // space for branch table
5044 total += 4 * count;
5045 if (this->targ_->abiversion() < 2)
5046 {
5047 total += 4 * count;
5048 if (count > 0x8000)
5049 total += 4 * (count - 0x8000);
5050 }
5051 }
5052 }
5053 this->end_branch_table_ = total;
5054 total = this->global_entry_align(total);
5055 total += this->ge_size_;
5056
5057 this->set_data_size(total);
5058 }
5059
5060 // Define symbols on stubs, identifying the stub.
5061
5062 template<int size, bool big_endian>
5063 void
5064 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5065 {
5066 if (!this->plt_call_stubs_.empty())
5067 {
5068 // The key for the plt call stub hash table includes addresses,
5069 // therefore traversal order depends on those addresses, which
5070 // can change between runs if gold is a PIE. Unfortunately the
5071 // output .symtab ordering depends on the order in which symbols
5072 // are added to the linker symtab. We want reproducible output
5073 // so must sort the call stub symbols.
5074 typedef typename Plt_stub_entries::const_iterator plt_iter;
5075 std::vector<plt_iter> sorted;
5076 sorted.resize(this->plt_call_stubs_.size());
5077
5078 for (plt_iter cs = this->plt_call_stubs_.begin();
5079 cs != this->plt_call_stubs_.end();
5080 ++cs)
5081 sorted[cs->second.indx_] = cs;
5082
5083 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5084 {
5085 plt_iter cs = sorted[i];
5086 char add[10];
5087 add[0] = 0;
5088 if (cs->first.addend_ != 0)
5089 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5090 char obj[10];
5091 obj[0] = 0;
5092 if (cs->first.object_)
5093 {
5094 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5095 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5096 sprintf(obj, "%x:", ppcobj->uniq());
5097 }
5098 char localname[9];
5099 const char *symname;
5100 if (cs->first.sym_ == NULL)
5101 {
5102 sprintf(localname, "%x", cs->first.locsym_);
5103 symname = localname;
5104 }
5105 else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5106 symname = this->targ_->tls_get_addr_opt()->name();
5107 else
5108 symname = cs->first.sym_->name();
5109 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5110 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5111 Address value
5112 = this->stub_address() - this->address() + cs->second.off_;
5113 unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5114 this->targ_->define_local(symtab, name, this, value, stub_size);
5115 }
5116 }
5117
5118 typedef typename Branch_stub_entries::const_iterator branch_iter;
5119 for (branch_iter bs = this->long_branch_stubs_.begin();
5120 bs != this->long_branch_stubs_.end();
5121 ++bs)
5122 {
5123 if (bs->first.save_res_)
5124 continue;
5125
5126 char* name = new char[8 + 13 + 16 + 1];
5127 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5128 static_cast<unsigned long long>(bs->first.dest_));
5129 Address value = (this->stub_address() - this->address()
5130 + this->plt_size_ + bs->second);
5131 unsigned int stub_size = this->branch_stub_size(bs);
5132 this->targ_->define_local(symtab, name, this, value, stub_size);
5133 }
5134 }
5135
5136 // Write out plt and long branch stub code.
5137
5138 template<int size, bool big_endian>
5139 void
5140 Stub_table<size, big_endian>::do_write(Output_file* of)
5141 {
5142 if (this->plt_call_stubs_.empty()
5143 && this->long_branch_stubs_.empty())
5144 return;
5145
5146 const section_size_type start_off = this->offset();
5147 const section_size_type off = this->stub_offset();
5148 const section_size_type oview_size =
5149 convert_to_section_size_type(this->data_size() - (off - start_off));
5150 unsigned char* const oview = of->get_output_view(off, oview_size);
5151 unsigned char* p;
5152
5153 if (size == 64)
5154 {
5155 const Output_data_got_powerpc<size, big_endian>* got
5156 = this->targ_->got_section();
5157 Address got_os_addr = got->output_section()->address();
5158
5159 if (!this->plt_call_stubs_.empty())
5160 {
5161 // The base address of the .plt section.
5162 Address plt_base = this->targ_->plt_section()->address();
5163 Address iplt_base = invalid_address;
5164
5165 // Write out plt call stubs.
5166 typename Plt_stub_entries::const_iterator cs;
5167 for (cs = this->plt_call_stubs_.begin();
5168 cs != this->plt_call_stubs_.end();
5169 ++cs)
5170 {
5171 bool is_iplt;
5172 Address pltoff = this->plt_off(cs, &is_iplt);
5173 Address plt_addr = pltoff;
5174 if (is_iplt)
5175 {
5176 if (iplt_base == invalid_address)
5177 iplt_base = this->targ_->iplt_section()->address();
5178 plt_addr += iplt_base;
5179 }
5180 else
5181 plt_addr += plt_base;
5182 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5183 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5184 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5185 Address off = plt_addr - got_addr;
5186
5187 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5188 gold_error(_("%s: linkage table error against `%s'"),
5189 cs->first.object_->name().c_str(),
5190 cs->first.sym_->demangled_name().c_str());
5191
5192 bool plt_load_toc = this->targ_->abiversion() < 2;
5193 bool static_chain
5194 = plt_load_toc && parameters->options().plt_static_chain();
5195 bool thread_safe
5196 = plt_load_toc && this->targ_->plt_thread_safe();
5197 bool use_fake_dep = false;
5198 Address cmp_branch_off = 0;
5199 if (thread_safe)
5200 {
5201 unsigned int pltindex
5202 = ((pltoff - this->targ_->first_plt_entry_offset())
5203 / this->targ_->plt_entry_size());
5204 Address glinkoff
5205 = (this->targ_->glink_section()->pltresolve_size()
5206 + pltindex * 8);
5207 if (pltindex > 32768)
5208 glinkoff += (pltindex - 32768) * 4;
5209 Address to
5210 = this->targ_->glink_section()->address() + glinkoff;
5211 Address from
5212 = (this->stub_address() + cs->second.off_ + 20
5213 + 4 * cs->second.r2save_
5214 + 4 * (ha(off) != 0)
5215 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5216 + 4 * static_chain);
5217 cmp_branch_off = to - from;
5218 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5219 }
5220
5221 p = oview + cs->second.off_;
5222 const Symbol* gsym = cs->first.sym_;
5223 if (this->targ_->is_tls_get_addr_opt(gsym))
5224 {
5225 write_insn<big_endian>(p, ld_11_3 + 0);
5226 p += 4;
5227 write_insn<big_endian>(p, ld_12_3 + 8);
5228 p += 4;
5229 write_insn<big_endian>(p, mr_0_3);
5230 p += 4;
5231 write_insn<big_endian>(p, cmpdi_11_0);
5232 p += 4;
5233 write_insn<big_endian>(p, add_3_12_13);
5234 p += 4;
5235 write_insn<big_endian>(p, beqlr);
5236 p += 4;
5237 write_insn<big_endian>(p, mr_3_0);
5238 p += 4;
5239 if (!cs->second.localentry0_)
5240 {
5241 write_insn<big_endian>(p, mflr_11);
5242 p += 4;
5243 write_insn<big_endian>(p, (std_11_1
5244 + this->targ_->stk_linker()));
5245 p += 4;
5246 }
5247 use_fake_dep = thread_safe;
5248 }
5249 if (ha(off) != 0)
5250 {
5251 if (cs->second.r2save_)
5252 {
5253 write_insn<big_endian>(p,
5254 std_2_1 + this->targ_->stk_toc());
5255 p += 4;
5256 }
5257 if (plt_load_toc)
5258 {
5259 write_insn<big_endian>(p, addis_11_2 + ha(off));
5260 p += 4;
5261 write_insn<big_endian>(p, ld_12_11 + l(off));
5262 p += 4;
5263 }
5264 else
5265 {
5266 write_insn<big_endian>(p, addis_12_2 + ha(off));
5267 p += 4;
5268 write_insn<big_endian>(p, ld_12_12 + l(off));
5269 p += 4;
5270 }
5271 if (plt_load_toc
5272 && ha(off + 8 + 8 * static_chain) != ha(off))
5273 {
5274 write_insn<big_endian>(p, addi_11_11 + l(off));
5275 p += 4;
5276 off = 0;
5277 }
5278 write_insn<big_endian>(p, mtctr_12);
5279 p += 4;
5280 if (plt_load_toc)
5281 {
5282 if (use_fake_dep)
5283 {
5284 write_insn<big_endian>(p, xor_2_12_12);
5285 p += 4;
5286 write_insn<big_endian>(p, add_11_11_2);
5287 p += 4;
5288 }
5289 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5290 p += 4;
5291 if (static_chain)
5292 {
5293 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5294 p += 4;
5295 }
5296 }
5297 }
5298 else
5299 {
5300 if (cs->second.r2save_)
5301 {
5302 write_insn<big_endian>(p,
5303 std_2_1 + this->targ_->stk_toc());
5304 p += 4;
5305 }
5306 write_insn<big_endian>(p, ld_12_2 + l(off));
5307 p += 4;
5308 if (plt_load_toc
5309 && ha(off + 8 + 8 * static_chain) != ha(off))
5310 {
5311 write_insn<big_endian>(p, addi_2_2 + l(off));
5312 p += 4;
5313 off = 0;
5314 }
5315 write_insn<big_endian>(p, mtctr_12);
5316 p += 4;
5317 if (plt_load_toc)
5318 {
5319 if (use_fake_dep)
5320 {
5321 write_insn<big_endian>(p, xor_11_12_12);
5322 p += 4;
5323 write_insn<big_endian>(p, add_2_2_11);
5324 p += 4;
5325 }
5326 if (static_chain)
5327 {
5328 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5329 p += 4;
5330 }
5331 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5332 p += 4;
5333 }
5334 }
5335 if (!cs->second.localentry0_
5336 && this->targ_->is_tls_get_addr_opt(gsym))
5337 {
5338 write_insn<big_endian>(p, bctrl);
5339 p += 4;
5340 write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5341 p += 4;
5342 write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5343 p += 4;
5344 write_insn<big_endian>(p, mtlr_11);
5345 p += 4;
5346 write_insn<big_endian>(p, blr);
5347 }
5348 else if (thread_safe && !use_fake_dep)
5349 {
5350 write_insn<big_endian>(p, cmpldi_2_0);
5351 p += 4;
5352 write_insn<big_endian>(p, bnectr_p4);
5353 p += 4;
5354 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5355 }
5356 else
5357 write_insn<big_endian>(p, bctr);
5358 }
5359 }
5360
5361 // Write out long branch stubs.
5362 typename Branch_stub_entries::const_iterator bs;
5363 for (bs = this->long_branch_stubs_.begin();
5364 bs != this->long_branch_stubs_.end();
5365 ++bs)
5366 {
5367 if (bs->first.save_res_)
5368 continue;
5369 p = oview + this->plt_size_ + bs->second;
5370 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5371 Address delta = bs->first.dest_ - loc;
5372 if (delta + (1 << 25) < 2 << 25)
5373 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5374 else
5375 {
5376 Address brlt_addr
5377 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5378 gold_assert(brlt_addr != invalid_address);
5379 brlt_addr += this->targ_->brlt_section()->address();
5380 Address got_addr = got_os_addr + bs->first.toc_base_off_;
5381 Address brltoff = brlt_addr - got_addr;
5382 if (ha(brltoff) == 0)
5383 {
5384 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
5385 }
5386 else
5387 {
5388 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
5389 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
5390 }
5391 write_insn<big_endian>(p, mtctr_12), p += 4;
5392 write_insn<big_endian>(p, bctr);
5393 }
5394 }
5395 }
5396 else
5397 {
5398 if (!this->plt_call_stubs_.empty())
5399 {
5400 // The base address of the .plt section.
5401 Address plt_base = this->targ_->plt_section()->address();
5402 Address iplt_base = invalid_address;
5403 // The address of _GLOBAL_OFFSET_TABLE_.
5404 Address g_o_t = invalid_address;
5405
5406 // Write out plt call stubs.
5407 typename Plt_stub_entries::const_iterator cs;
5408 for (cs = this->plt_call_stubs_.begin();
5409 cs != this->plt_call_stubs_.end();
5410 ++cs)
5411 {
5412 bool is_iplt;
5413 Address plt_addr = this->plt_off(cs, &is_iplt);
5414 if (is_iplt)
5415 {
5416 if (iplt_base == invalid_address)
5417 iplt_base = this->targ_->iplt_section()->address();
5418 plt_addr += iplt_base;
5419 }
5420 else
5421 plt_addr += plt_base;
5422
5423 p = oview + cs->second.off_;
5424 const Symbol* gsym = cs->first.sym_;
5425 if (this->targ_->is_tls_get_addr_opt(gsym))
5426 {
5427 write_insn<big_endian>(p, lwz_11_3 + 0);
5428 p += 4;
5429 write_insn<big_endian>(p, lwz_12_3 + 4);
5430 p += 4;
5431 write_insn<big_endian>(p, mr_0_3);
5432 p += 4;
5433 write_insn<big_endian>(p, cmpwi_11_0);
5434 p += 4;
5435 write_insn<big_endian>(p, add_3_12_2);
5436 p += 4;
5437 write_insn<big_endian>(p, beqlr);
5438 p += 4;
5439 write_insn<big_endian>(p, mr_3_0);
5440 p += 4;
5441 write_insn<big_endian>(p, nop);
5442 p += 4;
5443 }
5444 if (parameters->options().output_is_position_independent())
5445 {
5446 Address got_addr;
5447 const Powerpc_relobj<size, big_endian>* ppcobj
5448 = (static_cast<const Powerpc_relobj<size, big_endian>*>
5449 (cs->first.object_));
5450 if (ppcobj != NULL && cs->first.addend_ >= 32768)
5451 {
5452 unsigned int got2 = ppcobj->got2_shndx();
5453 got_addr = ppcobj->get_output_section_offset(got2);
5454 gold_assert(got_addr != invalid_address);
5455 got_addr += (ppcobj->output_section(got2)->address()
5456 + cs->first.addend_);
5457 }
5458 else
5459 {
5460 if (g_o_t == invalid_address)
5461 {
5462 const Output_data_got_powerpc<size, big_endian>* got
5463 = this->targ_->got_section();
5464 g_o_t = got->address() + got->g_o_t();
5465 }
5466 got_addr = g_o_t;
5467 }
5468
5469 Address off = plt_addr - got_addr;
5470 if (ha(off) == 0)
5471 write_insn<big_endian>(p, lwz_11_30 + l(off));
5472 else
5473 {
5474 write_insn<big_endian>(p, addis_11_30 + ha(off));
5475 p += 4;
5476 write_insn<big_endian>(p, lwz_11_11 + l(off));
5477 }
5478 }
5479 else
5480 {
5481 write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5482 p += 4;
5483 write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5484 }
5485 p += 4;
5486 write_insn<big_endian>(p, mtctr_11);
5487 p += 4;
5488 write_insn<big_endian>(p, bctr);
5489 }
5490 }
5491
5492 // Write out long branch stubs.
5493 typename Branch_stub_entries::const_iterator bs;
5494 for (bs = this->long_branch_stubs_.begin();
5495 bs != this->long_branch_stubs_.end();
5496 ++bs)
5497 {
5498 if (bs->first.save_res_)
5499 continue;
5500 p = oview + this->plt_size_ + bs->second;
5501 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5502 Address delta = bs->first.dest_ - loc;
5503 if (delta + (1 << 25) < 2 << 25)
5504 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5505 else if (!parameters->options().output_is_position_independent())
5506 {
5507 write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5508 p += 4;
5509 write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5510 }
5511 else
5512 {
5513 delta -= 8;
5514 write_insn<big_endian>(p, mflr_0);
5515 p += 4;
5516 write_insn<big_endian>(p, bcl_20_31);
5517 p += 4;
5518 write_insn<big_endian>(p, mflr_12);
5519 p += 4;
5520 write_insn<big_endian>(p, addis_12_12 + ha(delta));
5521 p += 4;
5522 write_insn<big_endian>(p, addi_12_12 + l(delta));
5523 p += 4;
5524 write_insn<big_endian>(p, mtlr_0);
5525 }
5526 p += 4;
5527 write_insn<big_endian>(p, mtctr_12);
5528 p += 4;
5529 write_insn<big_endian>(p, bctr);
5530 }
5531 }
5532 if (this->need_save_res_)
5533 {
5534 p = oview + this->plt_size_ + this->branch_size_;
5535 memcpy (p, this->targ_->savres_section()->contents(),
5536 this->targ_->savres_section()->data_size());
5537 }
5538 }
5539
5540 // Write out .glink.
5541
5542 template<int size, bool big_endian>
5543 void
5544 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5545 {
5546 const section_size_type off = this->offset();
5547 const section_size_type oview_size =
5548 convert_to_section_size_type(this->data_size());
5549 unsigned char* const oview = of->get_output_view(off, oview_size);
5550 unsigned char* p;
5551
5552 // The base address of the .plt section.
5553 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5554 Address plt_base = this->targ_->plt_section()->address();
5555
5556 if (size == 64)
5557 {
5558 if (this->end_branch_table_ != 0)
5559 {
5560 // Write pltresolve stub.
5561 p = oview;
5562 Address after_bcl = this->address() + 16;
5563 Address pltoff = plt_base - after_bcl;
5564
5565 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
5566
5567 if (this->targ_->abiversion() < 2)
5568 {
5569 write_insn<big_endian>(p, mflr_12), p += 4;
5570 write_insn<big_endian>(p, bcl_20_31), p += 4;
5571 write_insn<big_endian>(p, mflr_11), p += 4;
5572 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5573 write_insn<big_endian>(p, mtlr_12), p += 4;
5574 write_insn<big_endian>(p, add_11_2_11), p += 4;
5575 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5576 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
5577 write_insn<big_endian>(p, mtctr_12), p += 4;
5578 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
5579 }
5580 else
5581 {
5582 write_insn<big_endian>(p, mflr_0), p += 4;
5583 write_insn<big_endian>(p, bcl_20_31), p += 4;
5584 write_insn<big_endian>(p, mflr_11), p += 4;
5585 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
5586 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5587 write_insn<big_endian>(p, mtlr_0), p += 4;
5588 write_insn<big_endian>(p, sub_12_12_11), p += 4;
5589 write_insn<big_endian>(p, add_11_2_11), p += 4;
5590 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
5591 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5592 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
5593 write_insn<big_endian>(p, mtctr_12), p += 4;
5594 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
5595 }
5596 write_insn<big_endian>(p, bctr), p += 4;
5597 gold_assert(p == oview + this->pltresolve_size());
5598
5599 // Write lazy link call stubs.
5600 uint32_t indx = 0;
5601 while (p < oview + this->end_branch_table_)
5602 {
5603 if (this->targ_->abiversion() < 2)
5604 {
5605 if (indx < 0x8000)
5606 {
5607 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
5608 }
5609 else
5610 {
5611 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
5612 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
5613 }
5614 }
5615 uint32_t branch_off = 8 - (p - oview);
5616 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
5617 indx++;
5618 }
5619 }
5620
5621 Address plt_base = this->targ_->plt_section()->address();
5622 Address iplt_base = invalid_address;
5623 unsigned int global_entry_off = this->global_entry_off();
5624 Address global_entry_base = this->address() + global_entry_off;
5625 typename Global_entry_stub_entries::const_iterator ge;
5626 for (ge = this->global_entry_stubs_.begin();
5627 ge != this->global_entry_stubs_.end();
5628 ++ge)
5629 {
5630 p = oview + global_entry_off + ge->second;
5631 Address plt_addr = ge->first->plt_offset();
5632 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5633 && ge->first->can_use_relative_reloc(false))
5634 {
5635 if (iplt_base == invalid_address)
5636 iplt_base = this->targ_->iplt_section()->address();
5637 plt_addr += iplt_base;
5638 }
5639 else
5640 plt_addr += plt_base;
5641 Address my_addr = global_entry_base + ge->second;
5642 Address off = plt_addr - my_addr;
5643
5644 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5645 gold_error(_("%s: linkage table error against `%s'"),
5646 ge->first->object()->name().c_str(),
5647 ge->first->demangled_name().c_str());
5648
5649 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
5650 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5651 write_insn<big_endian>(p, mtctr_12), p += 4;
5652 write_insn<big_endian>(p, bctr);
5653 }
5654 }
5655 else
5656 {
5657 const Output_data_got_powerpc<size, big_endian>* got
5658 = this->targ_->got_section();
5659 // The address of _GLOBAL_OFFSET_TABLE_.
5660 Address g_o_t = got->address() + got->g_o_t();
5661
5662 // Write out pltresolve branch table.
5663 p = oview;
5664 unsigned int the_end = oview_size - this->pltresolve_size();
5665 unsigned char* end_p = oview + the_end;
5666 while (p < end_p - 8 * 4)
5667 write_insn<big_endian>(p, b + end_p - p), p += 4;
5668 while (p < end_p)
5669 write_insn<big_endian>(p, nop), p += 4;
5670
5671 // Write out pltresolve call stub.
5672 end_p = oview + oview_size;
5673 if (parameters->options().output_is_position_independent())
5674 {
5675 Address res0_off = 0;
5676 Address after_bcl_off = the_end + 12;
5677 Address bcl_res0 = after_bcl_off - res0_off;
5678
5679 write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5680 p += 4;
5681 write_insn<big_endian>(p, mflr_0);
5682 p += 4;
5683 write_insn<big_endian>(p, bcl_20_31);
5684 p += 4;
5685 write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5686 p += 4;
5687 write_insn<big_endian>(p, mflr_12);
5688 p += 4;
5689 write_insn<big_endian>(p, mtlr_0);
5690 p += 4;
5691 write_insn<big_endian>(p, sub_11_11_12);
5692 p += 4;
5693
5694 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5695
5696 write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5697 p += 4;
5698 if (ha(got_bcl) == ha(got_bcl + 4))
5699 {
5700 write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5701 p += 4;
5702 write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5703 }
5704 else
5705 {
5706 write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5707 p += 4;
5708 write_insn<big_endian>(p, lwz_12_12 + 4);
5709 }
5710 p += 4;
5711 write_insn<big_endian>(p, mtctr_0);
5712 p += 4;
5713 write_insn<big_endian>(p, add_0_11_11);
5714 p += 4;
5715 write_insn<big_endian>(p, add_11_0_11);
5716 }
5717 else
5718 {
5719 Address res0 = this->address();
5720
5721 write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5722 p += 4;
5723 write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5724 p += 4;
5725 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5726 write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5727 else
5728 write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5729 p += 4;
5730 write_insn<big_endian>(p, addi_11_11 + l(-res0));
5731 p += 4;
5732 write_insn<big_endian>(p, mtctr_0);
5733 p += 4;
5734 write_insn<big_endian>(p, add_0_11_11);
5735 p += 4;
5736 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5737 write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5738 else
5739 write_insn<big_endian>(p, lwz_12_12 + 4);
5740 p += 4;
5741 write_insn<big_endian>(p, add_11_0_11);
5742 }
5743 p += 4;
5744 write_insn<big_endian>(p, bctr);
5745 p += 4;
5746 while (p < end_p)
5747 {
5748 write_insn<big_endian>(p, nop);
5749 p += 4;
5750 }
5751 }
5752
5753 of->write_output_view(off, oview_size, oview);
5754 }
5755
5756
5757 // A class to handle linker generated save/restore functions.
5758
5759 template<int size, bool big_endian>
5760 class Output_data_save_res : public Output_section_data_build
5761 {
5762 public:
5763 Output_data_save_res(Symbol_table* symtab);
5764
5765 const unsigned char*
5766 contents() const
5767 {
5768 return contents_;
5769 }
5770
5771 protected:
5772 // Write to a map file.
5773 void
5774 do_print_to_mapfile(Mapfile* mapfile) const
5775 { mapfile->print_output_data(this, _("** save/restore")); }
5776
5777 void
5778 do_write(Output_file*);
5779
5780 private:
5781 // The maximum size of save/restore contents.
5782 static const unsigned int savres_max = 218*4;
5783
5784 void
5785 savres_define(Symbol_table* symtab,
5786 const char *name,
5787 unsigned int lo, unsigned int hi,
5788 unsigned char* write_ent(unsigned char*, int),
5789 unsigned char* write_tail(unsigned char*, int));
5790
5791 unsigned char *contents_;
5792 };
5793
5794 template<bool big_endian>
5795 static unsigned char*
5796 savegpr0(unsigned char* p, int r)
5797 {
5798 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5799 write_insn<big_endian>(p, insn);
5800 return p + 4;
5801 }
5802
5803 template<bool big_endian>
5804 static unsigned char*
5805 savegpr0_tail(unsigned char* p, int r)
5806 {
5807 p = savegpr0<big_endian>(p, r);
5808 uint32_t insn = std_0_1 + 16;
5809 write_insn<big_endian>(p, insn);
5810 p = p + 4;
5811 write_insn<big_endian>(p, blr);
5812 return p + 4;
5813 }
5814
5815 template<bool big_endian>
5816 static unsigned char*
5817 restgpr0(unsigned char* p, int r)
5818 {
5819 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5820 write_insn<big_endian>(p, insn);
5821 return p + 4;
5822 }
5823
5824 template<bool big_endian>
5825 static unsigned char*
5826 restgpr0_tail(unsigned char* p, int r)
5827 {
5828 uint32_t insn = ld_0_1 + 16;
5829 write_insn<big_endian>(p, insn);
5830 p = p + 4;
5831 p = restgpr0<big_endian>(p, r);
5832 write_insn<big_endian>(p, mtlr_0);
5833 p = p + 4;
5834 if (r == 29)
5835 {
5836 p = restgpr0<big_endian>(p, 30);
5837 p = restgpr0<big_endian>(p, 31);
5838 }
5839 write_insn<big_endian>(p, blr);
5840 return p + 4;
5841 }
5842
5843 template<bool big_endian>
5844 static unsigned char*
5845 savegpr1(unsigned char* p, int r)
5846 {
5847 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5848 write_insn<big_endian>(p, insn);
5849 return p + 4;
5850 }
5851
5852 template<bool big_endian>
5853 static unsigned char*
5854 savegpr1_tail(unsigned char* p, int r)
5855 {
5856 p = savegpr1<big_endian>(p, r);
5857 write_insn<big_endian>(p, blr);
5858 return p + 4;
5859 }
5860
5861 template<bool big_endian>
5862 static unsigned char*
5863 restgpr1(unsigned char* p, int r)
5864 {
5865 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5866 write_insn<big_endian>(p, insn);
5867 return p + 4;
5868 }
5869
5870 template<bool big_endian>
5871 static unsigned char*
5872 restgpr1_tail(unsigned char* p, int r)
5873 {
5874 p = restgpr1<big_endian>(p, r);
5875 write_insn<big_endian>(p, blr);
5876 return p + 4;
5877 }
5878
5879 template<bool big_endian>
5880 static unsigned char*
5881 savefpr(unsigned char* p, int r)
5882 {
5883 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5884 write_insn<big_endian>(p, insn);
5885 return p + 4;
5886 }
5887
5888 template<bool big_endian>
5889 static unsigned char*
5890 savefpr0_tail(unsigned char* p, int r)
5891 {
5892 p = savefpr<big_endian>(p, r);
5893 write_insn<big_endian>(p, std_0_1 + 16);
5894 p = p + 4;
5895 write_insn<big_endian>(p, blr);
5896 return p + 4;
5897 }
5898
5899 template<bool big_endian>
5900 static unsigned char*
5901 restfpr(unsigned char* p, int r)
5902 {
5903 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5904 write_insn<big_endian>(p, insn);
5905 return p + 4;
5906 }
5907
5908 template<bool big_endian>
5909 static unsigned char*
5910 restfpr0_tail(unsigned char* p, int r)
5911 {
5912 write_insn<big_endian>(p, ld_0_1 + 16);
5913 p = p + 4;
5914 p = restfpr<big_endian>(p, r);
5915 write_insn<big_endian>(p, mtlr_0);
5916 p = p + 4;
5917 if (r == 29)
5918 {
5919 p = restfpr<big_endian>(p, 30);
5920 p = restfpr<big_endian>(p, 31);
5921 }
5922 write_insn<big_endian>(p, blr);
5923 return p + 4;
5924 }
5925
5926 template<bool big_endian>
5927 static unsigned char*
5928 savefpr1_tail(unsigned char* p, int r)
5929 {
5930 p = savefpr<big_endian>(p, r);
5931 write_insn<big_endian>(p, blr);
5932 return p + 4;
5933 }
5934
5935 template<bool big_endian>
5936 static unsigned char*
5937 restfpr1_tail(unsigned char* p, int r)
5938 {
5939 p = restfpr<big_endian>(p, r);
5940 write_insn<big_endian>(p, blr);
5941 return p + 4;
5942 }
5943
5944 template<bool big_endian>
5945 static unsigned char*
5946 savevr(unsigned char* p, int r)
5947 {
5948 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5949 write_insn<big_endian>(p, insn);
5950 p = p + 4;
5951 insn = stvx_0_12_0 + (r << 21);
5952 write_insn<big_endian>(p, insn);
5953 return p + 4;
5954 }
5955
5956 template<bool big_endian>
5957 static unsigned char*
5958 savevr_tail(unsigned char* p, int r)
5959 {
5960 p = savevr<big_endian>(p, r);
5961 write_insn<big_endian>(p, blr);
5962 return p + 4;
5963 }
5964
5965 template<bool big_endian>
5966 static unsigned char*
5967 restvr(unsigned char* p, int r)
5968 {
5969 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5970 write_insn<big_endian>(p, insn);
5971 p = p + 4;
5972 insn = lvx_0_12_0 + (r << 21);
5973 write_insn<big_endian>(p, insn);
5974 return p + 4;
5975 }
5976
5977 template<bool big_endian>
5978 static unsigned char*
5979 restvr_tail(unsigned char* p, int r)
5980 {
5981 p = restvr<big_endian>(p, r);
5982 write_insn<big_endian>(p, blr);
5983 return p + 4;
5984 }
5985
5986
5987 template<int size, bool big_endian>
5988 Output_data_save_res<size, big_endian>::Output_data_save_res(
5989 Symbol_table* symtab)
5990 : Output_section_data_build(4),
5991 contents_(NULL)
5992 {
5993 this->savres_define(symtab,
5994 "_savegpr0_", 14, 31,
5995 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5996 this->savres_define(symtab,
5997 "_restgpr0_", 14, 29,
5998 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5999 this->savres_define(symtab,
6000 "_restgpr0_", 30, 31,
6001 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6002 this->savres_define(symtab,
6003 "_savegpr1_", 14, 31,
6004 savegpr1<big_endian>, savegpr1_tail<big_endian>);
6005 this->savres_define(symtab,
6006 "_restgpr1_", 14, 31,
6007 restgpr1<big_endian>, restgpr1_tail<big_endian>);
6008 this->savres_define(symtab,
6009 "_savefpr_", 14, 31,
6010 savefpr<big_endian>, savefpr0_tail<big_endian>);
6011 this->savres_define(symtab,
6012 "_restfpr_", 14, 29,
6013 restfpr<big_endian>, restfpr0_tail<big_endian>);
6014 this->savres_define(symtab,
6015 "_restfpr_", 30, 31,
6016 restfpr<big_endian>, restfpr0_tail<big_endian>);
6017 this->savres_define(symtab,
6018 "._savef", 14, 31,
6019 savefpr<big_endian>, savefpr1_tail<big_endian>);
6020 this->savres_define(symtab,
6021 "._restf", 14, 31,
6022 restfpr<big_endian>, restfpr1_tail<big_endian>);
6023 this->savres_define(symtab,
6024 "_savevr_", 20, 31,
6025 savevr<big_endian>, savevr_tail<big_endian>);
6026 this->savres_define(symtab,
6027 "_restvr_", 20, 31,
6028 restvr<big_endian>, restvr_tail<big_endian>);
6029 }
6030
6031 template<int size, bool big_endian>
6032 void
6033 Output_data_save_res<size, big_endian>::savres_define(
6034 Symbol_table* symtab,
6035 const char *name,
6036 unsigned int lo, unsigned int hi,
6037 unsigned char* write_ent(unsigned char*, int),
6038 unsigned char* write_tail(unsigned char*, int))
6039 {
6040 size_t len = strlen(name);
6041 bool writing = false;
6042 char sym[16];
6043
6044 memcpy(sym, name, len);
6045 sym[len + 2] = 0;
6046
6047 for (unsigned int i = lo; i <= hi; i++)
6048 {
6049 sym[len + 0] = i / 10 + '0';
6050 sym[len + 1] = i % 10 + '0';
6051 Symbol* gsym = symtab->lookup(sym);
6052 bool refd = gsym != NULL && gsym->is_undefined();
6053 writing = writing || refd;
6054 if (writing)
6055 {
6056 if (this->contents_ == NULL)
6057 this->contents_ = new unsigned char[this->savres_max];
6058
6059 section_size_type value = this->current_data_size();
6060 unsigned char* p = this->contents_ + value;
6061 if (i != hi)
6062 p = write_ent(p, i);
6063 else
6064 p = write_tail(p, i);
6065 section_size_type cur_size = p - this->contents_;
6066 this->set_current_data_size(cur_size);
6067 if (refd)
6068 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6069 this, value, cur_size - value,
6070 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6071 elfcpp::STV_HIDDEN, 0, false, false);
6072 }
6073 }
6074 }
6075
6076 // Write out save/restore.
6077
6078 template<int size, bool big_endian>
6079 void
6080 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6081 {
6082 const section_size_type off = this->offset();
6083 const section_size_type oview_size =
6084 convert_to_section_size_type(this->data_size());
6085 unsigned char* const oview = of->get_output_view(off, oview_size);
6086 memcpy(oview, this->contents_, oview_size);
6087 of->write_output_view(off, oview_size, oview);
6088 }
6089
6090
6091 // Create the glink section.
6092
6093 template<int size, bool big_endian>
6094 void
6095 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6096 {
6097 if (this->glink_ == NULL)
6098 {
6099 this->glink_ = new Output_data_glink<size, big_endian>(this);
6100 this->glink_->add_eh_frame(layout);
6101 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6102 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6103 this->glink_, ORDER_TEXT, false);
6104 }
6105 }
6106
6107 // Create a PLT entry for a global symbol.
6108
6109 template<int size, bool big_endian>
6110 void
6111 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6112 Layout* layout,
6113 Symbol* gsym)
6114 {
6115 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6116 && gsym->can_use_relative_reloc(false))
6117 {
6118 if (this->iplt_ == NULL)
6119 this->make_iplt_section(symtab, layout);
6120 this->iplt_->add_ifunc_entry(gsym);
6121 }
6122 else
6123 {
6124 if (this->plt_ == NULL)
6125 this->make_plt_section(symtab, layout);
6126 this->plt_->add_entry(gsym);
6127 }
6128 }
6129
6130 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6131
6132 template<int size, bool big_endian>
6133 void
6134 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6135 Symbol_table* symtab,
6136 Layout* layout,
6137 Sized_relobj_file<size, big_endian>* relobj,
6138 unsigned int r_sym)
6139 {
6140 if (this->iplt_ == NULL)
6141 this->make_iplt_section(symtab, layout);
6142 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6143 }
6144
6145 // Return the number of entries in the PLT.
6146
6147 template<int size, bool big_endian>
6148 unsigned int
6149 Target_powerpc<size, big_endian>::plt_entry_count() const
6150 {
6151 if (this->plt_ == NULL)
6152 return 0;
6153 return this->plt_->entry_count();
6154 }
6155
6156 // Create a GOT entry for local dynamic __tls_get_addr calls.
6157
6158 template<int size, bool big_endian>
6159 unsigned int
6160 Target_powerpc<size, big_endian>::tlsld_got_offset(
6161 Symbol_table* symtab,
6162 Layout* layout,
6163 Sized_relobj_file<size, big_endian>* object)
6164 {
6165 if (this->tlsld_got_offset_ == -1U)
6166 {
6167 gold_assert(symtab != NULL && layout != NULL && object != NULL);
6168 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6169 Output_data_got_powerpc<size, big_endian>* got
6170 = this->got_section(symtab, layout);
6171 unsigned int got_offset = got->add_constant_pair(0, 0);
6172 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6173 got_offset, 0);
6174 this->tlsld_got_offset_ = got_offset;
6175 }
6176 return this->tlsld_got_offset_;
6177 }
6178
6179 // Get the Reference_flags for a particular relocation.
6180
6181 template<int size, bool big_endian>
6182 int
6183 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6184 unsigned int r_type,
6185 const Target_powerpc* target)
6186 {
6187 int ref = 0;
6188
6189 switch (r_type)
6190 {
6191 case elfcpp::R_POWERPC_NONE:
6192 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6193 case elfcpp::R_POWERPC_GNU_VTENTRY:
6194 case elfcpp::R_PPC64_TOC:
6195 // No symbol reference.
6196 break;
6197
6198 case elfcpp::R_PPC64_ADDR64:
6199 case elfcpp::R_PPC64_UADDR64:
6200 case elfcpp::R_POWERPC_ADDR32:
6201 case elfcpp::R_POWERPC_UADDR32:
6202 case elfcpp::R_POWERPC_ADDR16:
6203 case elfcpp::R_POWERPC_UADDR16:
6204 case elfcpp::R_POWERPC_ADDR16_LO:
6205 case elfcpp::R_POWERPC_ADDR16_HI:
6206 case elfcpp::R_POWERPC_ADDR16_HA:
6207 ref = Symbol::ABSOLUTE_REF;
6208 break;
6209
6210 case elfcpp::R_POWERPC_ADDR24:
6211 case elfcpp::R_POWERPC_ADDR14:
6212 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6213 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6214 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6215 break;
6216
6217 case elfcpp::R_PPC64_REL64:
6218 case elfcpp::R_POWERPC_REL32:
6219 case elfcpp::R_PPC_LOCAL24PC:
6220 case elfcpp::R_POWERPC_REL16:
6221 case elfcpp::R_POWERPC_REL16_LO:
6222 case elfcpp::R_POWERPC_REL16_HI:
6223 case elfcpp::R_POWERPC_REL16_HA:
6224 ref = Symbol::RELATIVE_REF;
6225 break;
6226
6227 case elfcpp::R_POWERPC_REL24:
6228 case elfcpp::R_PPC_PLTREL24:
6229 case elfcpp::R_POWERPC_REL14:
6230 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6231 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6232 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6233 break;
6234
6235 case elfcpp::R_POWERPC_GOT16:
6236 case elfcpp::R_POWERPC_GOT16_LO:
6237 case elfcpp::R_POWERPC_GOT16_HI:
6238 case elfcpp::R_POWERPC_GOT16_HA:
6239 case elfcpp::R_PPC64_GOT16_DS:
6240 case elfcpp::R_PPC64_GOT16_LO_DS:
6241 case elfcpp::R_PPC64_TOC16:
6242 case elfcpp::R_PPC64_TOC16_LO:
6243 case elfcpp::R_PPC64_TOC16_HI:
6244 case elfcpp::R_PPC64_TOC16_HA:
6245 case elfcpp::R_PPC64_TOC16_DS:
6246 case elfcpp::R_PPC64_TOC16_LO_DS:
6247 ref = Symbol::RELATIVE_REF;
6248 break;
6249
6250 case elfcpp::R_POWERPC_GOT_TPREL16:
6251 case elfcpp::R_POWERPC_TLS:
6252 ref = Symbol::TLS_REF;
6253 break;
6254
6255 case elfcpp::R_POWERPC_COPY:
6256 case elfcpp::R_POWERPC_GLOB_DAT:
6257 case elfcpp::R_POWERPC_JMP_SLOT:
6258 case elfcpp::R_POWERPC_RELATIVE:
6259 case elfcpp::R_POWERPC_DTPMOD:
6260 default:
6261 // Not expected. We will give an error later.
6262 break;
6263 }
6264
6265 if (size == 64 && target->abiversion() < 2)
6266 ref |= Symbol::FUNC_DESC_ABI;
6267 return ref;
6268 }
6269
6270 // Report an unsupported relocation against a local symbol.
6271
6272 template<int size, bool big_endian>
6273 void
6274 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6275 Sized_relobj_file<size, big_endian>* object,
6276 unsigned int r_type)
6277 {
6278 gold_error(_("%s: unsupported reloc %u against local symbol"),
6279 object->name().c_str(), r_type);
6280 }
6281
6282 // We are about to emit a dynamic relocation of type R_TYPE. If the
6283 // dynamic linker does not support it, issue an error.
6284
6285 template<int size, bool big_endian>
6286 void
6287 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6288 unsigned int r_type)
6289 {
6290 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6291
6292 // These are the relocation types supported by glibc for both 32-bit
6293 // and 64-bit powerpc.
6294 switch (r_type)
6295 {
6296 case elfcpp::R_POWERPC_NONE:
6297 case elfcpp::R_POWERPC_RELATIVE:
6298 case elfcpp::R_POWERPC_GLOB_DAT:
6299 case elfcpp::R_POWERPC_DTPMOD:
6300 case elfcpp::R_POWERPC_DTPREL:
6301 case elfcpp::R_POWERPC_TPREL:
6302 case elfcpp::R_POWERPC_JMP_SLOT:
6303 case elfcpp::R_POWERPC_COPY:
6304 case elfcpp::R_POWERPC_IRELATIVE:
6305 case elfcpp::R_POWERPC_ADDR32:
6306 case elfcpp::R_POWERPC_UADDR32:
6307 case elfcpp::R_POWERPC_ADDR24:
6308 case elfcpp::R_POWERPC_ADDR16:
6309 case elfcpp::R_POWERPC_UADDR16:
6310 case elfcpp::R_POWERPC_ADDR16_LO:
6311 case elfcpp::R_POWERPC_ADDR16_HI:
6312 case elfcpp::R_POWERPC_ADDR16_HA:
6313 case elfcpp::R_POWERPC_ADDR14:
6314 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6315 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6316 case elfcpp::R_POWERPC_REL32:
6317 case elfcpp::R_POWERPC_REL24:
6318 case elfcpp::R_POWERPC_TPREL16:
6319 case elfcpp::R_POWERPC_TPREL16_LO:
6320 case elfcpp::R_POWERPC_TPREL16_HI:
6321 case elfcpp::R_POWERPC_TPREL16_HA:
6322 return;
6323
6324 default:
6325 break;
6326 }
6327
6328 if (size == 64)
6329 {
6330 switch (r_type)
6331 {
6332 // These are the relocation types supported only on 64-bit.
6333 case elfcpp::R_PPC64_ADDR64:
6334 case elfcpp::R_PPC64_UADDR64:
6335 case elfcpp::R_PPC64_JMP_IREL:
6336 case elfcpp::R_PPC64_ADDR16_DS:
6337 case elfcpp::R_PPC64_ADDR16_LO_DS:
6338 case elfcpp::R_PPC64_ADDR16_HIGH:
6339 case elfcpp::R_PPC64_ADDR16_HIGHA:
6340 case elfcpp::R_PPC64_ADDR16_HIGHER:
6341 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6342 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6343 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6344 case elfcpp::R_PPC64_REL64:
6345 case elfcpp::R_POWERPC_ADDR30:
6346 case elfcpp::R_PPC64_TPREL16_DS:
6347 case elfcpp::R_PPC64_TPREL16_LO_DS:
6348 case elfcpp::R_PPC64_TPREL16_HIGH:
6349 case elfcpp::R_PPC64_TPREL16_HIGHA:
6350 case elfcpp::R_PPC64_TPREL16_HIGHER:
6351 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6352 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6353 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6354 return;
6355
6356 default:
6357 break;
6358 }
6359 }
6360 else
6361 {
6362 switch (r_type)
6363 {
6364 // These are the relocation types supported only on 32-bit.
6365 // ??? glibc ld.so doesn't need to support these.
6366 case elfcpp::R_POWERPC_DTPREL16:
6367 case elfcpp::R_POWERPC_DTPREL16_LO:
6368 case elfcpp::R_POWERPC_DTPREL16_HI:
6369 case elfcpp::R_POWERPC_DTPREL16_HA:
6370 return;
6371
6372 default:
6373 break;
6374 }
6375 }
6376
6377 // This prevents us from issuing more than one error per reloc
6378 // section. But we can still wind up issuing more than one
6379 // error per object file.
6380 if (this->issued_non_pic_error_)
6381 return;
6382 gold_assert(parameters->options().output_is_position_independent());
6383 object->error(_("requires unsupported dynamic reloc; "
6384 "recompile with -fPIC"));
6385 this->issued_non_pic_error_ = true;
6386 return;
6387 }
6388
6389 // Return whether we need to make a PLT entry for a relocation of the
6390 // given type against a STT_GNU_IFUNC symbol.
6391
6392 template<int size, bool big_endian>
6393 bool
6394 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6395 Target_powerpc<size, big_endian>* target,
6396 Sized_relobj_file<size, big_endian>* object,
6397 unsigned int r_type,
6398 bool report_err)
6399 {
6400 // In non-pic code any reference will resolve to the plt call stub
6401 // for the ifunc symbol.
6402 if ((size == 32 || target->abiversion() >= 2)
6403 && !parameters->options().output_is_position_independent())
6404 return true;
6405
6406 switch (r_type)
6407 {
6408 // Word size refs from data sections are OK, but don't need a PLT entry.
6409 case elfcpp::R_POWERPC_ADDR32:
6410 case elfcpp::R_POWERPC_UADDR32:
6411 if (size == 32)
6412 return false;
6413 break;
6414
6415 case elfcpp::R_PPC64_ADDR64:
6416 case elfcpp::R_PPC64_UADDR64:
6417 if (size == 64)
6418 return false;
6419 break;
6420
6421 // GOT refs are good, but also don't need a PLT entry.
6422 case elfcpp::R_POWERPC_GOT16:
6423 case elfcpp::R_POWERPC_GOT16_LO:
6424 case elfcpp::R_POWERPC_GOT16_HI:
6425 case elfcpp::R_POWERPC_GOT16_HA:
6426 case elfcpp::R_PPC64_GOT16_DS:
6427 case elfcpp::R_PPC64_GOT16_LO_DS:
6428 return false;
6429
6430 // Function calls are good, and these do need a PLT entry.
6431 case elfcpp::R_POWERPC_ADDR24:
6432 case elfcpp::R_POWERPC_ADDR14:
6433 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6434 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6435 case elfcpp::R_POWERPC_REL24:
6436 case elfcpp::R_PPC_PLTREL24:
6437 case elfcpp::R_POWERPC_REL14:
6438 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6439 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6440 return true;
6441
6442 default:
6443 break;
6444 }
6445
6446 // Anything else is a problem.
6447 // If we are building a static executable, the libc startup function
6448 // responsible for applying indirect function relocations is going
6449 // to complain about the reloc type.
6450 // If we are building a dynamic executable, we will have a text
6451 // relocation. The dynamic loader will set the text segment
6452 // writable and non-executable to apply text relocations. So we'll
6453 // segfault when trying to run the indirection function to resolve
6454 // the reloc.
6455 if (report_err)
6456 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6457 object->name().c_str(), r_type);
6458 return false;
6459 }
6460
6461 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6462 // reloc.
6463
6464 static bool
6465 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6466 {
6467 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6468 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6469 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6470 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6471 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6472 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6473 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6474 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6475 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6476 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6477 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6478 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6479 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6480 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6481 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6482 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6483 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6484 /* Exclude lfqu by testing reloc. If relocs are ever
6485 defined for the reduced D field in psq_lu then those
6486 will need testing too. */
6487 && r_type != elfcpp::R_PPC64_TOC16_LO
6488 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6489 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6490 && (insn & 1) == 0)
6491 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6492 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6493 /* Exclude stfqu. psq_stu as above for psq_lu. */
6494 && r_type != elfcpp::R_PPC64_TOC16_LO
6495 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6496 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6497 && (insn & 1) == 0));
6498 }
6499
6500 // Scan a relocation for a local symbol.
6501
6502 template<int size, bool big_endian>
6503 inline void
6504 Target_powerpc<size, big_endian>::Scan::local(
6505 Symbol_table* symtab,
6506 Layout* layout,
6507 Target_powerpc<size, big_endian>* target,
6508 Sized_relobj_file<size, big_endian>* object,
6509 unsigned int data_shndx,
6510 Output_section* output_section,
6511 const elfcpp::Rela<size, big_endian>& reloc,
6512 unsigned int r_type,
6513 const elfcpp::Sym<size, big_endian>& lsym,
6514 bool is_discarded)
6515 {
6516 this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6517
6518 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6519 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6520 {
6521 this->expect_tls_get_addr_call();
6522 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6523 if (tls_type != tls::TLSOPT_NONE)
6524 this->skip_next_tls_get_addr_call();
6525 }
6526 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6527 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6528 {
6529 this->expect_tls_get_addr_call();
6530 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6531 if (tls_type != tls::TLSOPT_NONE)
6532 this->skip_next_tls_get_addr_call();
6533 }
6534
6535 Powerpc_relobj<size, big_endian>* ppc_object
6536 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6537
6538 if (is_discarded)
6539 {
6540 if (size == 64
6541 && data_shndx == ppc_object->opd_shndx()
6542 && r_type == elfcpp::R_PPC64_ADDR64)
6543 ppc_object->set_opd_discard(reloc.get_r_offset());
6544 return;
6545 }
6546
6547 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6548 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6549 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6550 {
6551 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6552 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6553 r_type, r_sym, reloc.get_r_addend());
6554 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6555 }
6556
6557 switch (r_type)
6558 {
6559 case elfcpp::R_POWERPC_NONE:
6560 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6561 case elfcpp::R_POWERPC_GNU_VTENTRY:
6562 case elfcpp::R_POWERPC_TLS:
6563 case elfcpp::R_PPC64_ENTRY:
6564 break;
6565
6566 case elfcpp::R_PPC64_TOC:
6567 {
6568 Output_data_got_powerpc<size, big_endian>* got
6569 = target->got_section(symtab, layout);
6570 if (parameters->options().output_is_position_independent())
6571 {
6572 Address off = reloc.get_r_offset();
6573 if (size == 64
6574 && target->abiversion() < 2
6575 && data_shndx == ppc_object->opd_shndx()
6576 && ppc_object->get_opd_discard(off - 8))
6577 break;
6578
6579 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6580 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6581 rela_dyn->add_output_section_relative(got->output_section(),
6582 elfcpp::R_POWERPC_RELATIVE,
6583 output_section,
6584 object, data_shndx, off,
6585 symobj->toc_base_offset());
6586 }
6587 }
6588 break;
6589
6590 case elfcpp::R_PPC64_ADDR64:
6591 case elfcpp::R_PPC64_UADDR64:
6592 case elfcpp::R_POWERPC_ADDR32:
6593 case elfcpp::R_POWERPC_UADDR32:
6594 case elfcpp::R_POWERPC_ADDR24:
6595 case elfcpp::R_POWERPC_ADDR16:
6596 case elfcpp::R_POWERPC_ADDR16_LO:
6597 case elfcpp::R_POWERPC_ADDR16_HI:
6598 case elfcpp::R_POWERPC_ADDR16_HA:
6599 case elfcpp::R_POWERPC_UADDR16:
6600 case elfcpp::R_PPC64_ADDR16_HIGH:
6601 case elfcpp::R_PPC64_ADDR16_HIGHA:
6602 case elfcpp::R_PPC64_ADDR16_HIGHER:
6603 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6604 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6605 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6606 case elfcpp::R_PPC64_ADDR16_DS:
6607 case elfcpp::R_PPC64_ADDR16_LO_DS:
6608 case elfcpp::R_POWERPC_ADDR14:
6609 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6610 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6611 // If building a shared library (or a position-independent
6612 // executable), we need to create a dynamic relocation for
6613 // this location.
6614 if (parameters->options().output_is_position_independent()
6615 || (size == 64 && is_ifunc && target->abiversion() < 2))
6616 {
6617 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6618 is_ifunc);
6619 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6620 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6621 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6622 {
6623 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6624 : elfcpp::R_POWERPC_RELATIVE);
6625 rela_dyn->add_local_relative(object, r_sym, dynrel,
6626 output_section, data_shndx,
6627 reloc.get_r_offset(),
6628 reloc.get_r_addend(), false);
6629 }
6630 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6631 {
6632 check_non_pic(object, r_type);
6633 rela_dyn->add_local(object, r_sym, r_type, output_section,
6634 data_shndx, reloc.get_r_offset(),
6635 reloc.get_r_addend());
6636 }
6637 else
6638 {
6639 gold_assert(lsym.get_st_value() == 0);
6640 unsigned int shndx = lsym.get_st_shndx();
6641 bool is_ordinary;
6642 shndx = object->adjust_sym_shndx(r_sym, shndx,
6643 &is_ordinary);
6644 if (!is_ordinary)
6645 object->error(_("section symbol %u has bad shndx %u"),
6646 r_sym, shndx);
6647 else
6648 rela_dyn->add_local_section(object, shndx, r_type,
6649 output_section, data_shndx,
6650 reloc.get_r_offset());
6651 }
6652 }
6653 break;
6654
6655 case elfcpp::R_POWERPC_REL24:
6656 case elfcpp::R_PPC_PLTREL24:
6657 case elfcpp::R_PPC_LOCAL24PC:
6658 case elfcpp::R_POWERPC_REL14:
6659 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6660 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6661 if (!is_ifunc)
6662 {
6663 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6664 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6665 r_type, r_sym, reloc.get_r_addend());
6666 }
6667 break;
6668
6669 case elfcpp::R_PPC64_TOCSAVE:
6670 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6671 // caller has already saved r2 and thus a plt call stub need not
6672 // save r2.
6673 if (size == 64
6674 && target->mark_pltcall(ppc_object, data_shndx,
6675 reloc.get_r_offset() - 4, symtab))
6676 {
6677 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6678 unsigned int shndx = lsym.get_st_shndx();
6679 bool is_ordinary;
6680 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6681 if (!is_ordinary)
6682 object->error(_("tocsave symbol %u has bad shndx %u"),
6683 r_sym, shndx);
6684 else
6685 target->add_tocsave(ppc_object, shndx,
6686 lsym.get_st_value() + reloc.get_r_addend());
6687 }
6688 break;
6689
6690 case elfcpp::R_PPC64_REL64:
6691 case elfcpp::R_POWERPC_REL32:
6692 case elfcpp::R_POWERPC_REL16:
6693 case elfcpp::R_POWERPC_REL16_LO:
6694 case elfcpp::R_POWERPC_REL16_HI:
6695 case elfcpp::R_POWERPC_REL16_HA:
6696 case elfcpp::R_POWERPC_REL16DX_HA:
6697 case elfcpp::R_POWERPC_SECTOFF:
6698 case elfcpp::R_POWERPC_SECTOFF_LO:
6699 case elfcpp::R_POWERPC_SECTOFF_HI:
6700 case elfcpp::R_POWERPC_SECTOFF_HA:
6701 case elfcpp::R_PPC64_SECTOFF_DS:
6702 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6703 case elfcpp::R_POWERPC_TPREL16:
6704 case elfcpp::R_POWERPC_TPREL16_LO:
6705 case elfcpp::R_POWERPC_TPREL16_HI:
6706 case elfcpp::R_POWERPC_TPREL16_HA:
6707 case elfcpp::R_PPC64_TPREL16_DS:
6708 case elfcpp::R_PPC64_TPREL16_LO_DS:
6709 case elfcpp::R_PPC64_TPREL16_HIGH:
6710 case elfcpp::R_PPC64_TPREL16_HIGHA:
6711 case elfcpp::R_PPC64_TPREL16_HIGHER:
6712 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6713 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6714 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6715 case elfcpp::R_POWERPC_DTPREL16:
6716 case elfcpp::R_POWERPC_DTPREL16_LO:
6717 case elfcpp::R_POWERPC_DTPREL16_HI:
6718 case elfcpp::R_POWERPC_DTPREL16_HA:
6719 case elfcpp::R_PPC64_DTPREL16_DS:
6720 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6721 case elfcpp::R_PPC64_DTPREL16_HIGH:
6722 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6723 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6724 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6725 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6726 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6727 case elfcpp::R_PPC64_TLSGD:
6728 case elfcpp::R_PPC64_TLSLD:
6729 case elfcpp::R_PPC64_ADDR64_LOCAL:
6730 break;
6731
6732 case elfcpp::R_POWERPC_GOT16:
6733 case elfcpp::R_POWERPC_GOT16_LO:
6734 case elfcpp::R_POWERPC_GOT16_HI:
6735 case elfcpp::R_POWERPC_GOT16_HA:
6736 case elfcpp::R_PPC64_GOT16_DS:
6737 case elfcpp::R_PPC64_GOT16_LO_DS:
6738 {
6739 // The symbol requires a GOT entry.
6740 Output_data_got_powerpc<size, big_endian>* got
6741 = target->got_section(symtab, layout);
6742 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6743
6744 if (!parameters->options().output_is_position_independent())
6745 {
6746 if (is_ifunc
6747 && (size == 32 || target->abiversion() >= 2))
6748 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6749 else
6750 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6751 }
6752 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6753 {
6754 // If we are generating a shared object or a pie, this
6755 // symbol's GOT entry will be set by a dynamic relocation.
6756 unsigned int off;
6757 off = got->add_constant(0);
6758 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6759
6760 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6761 is_ifunc);
6762 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6763 : elfcpp::R_POWERPC_RELATIVE);
6764 rela_dyn->add_local_relative(object, r_sym, dynrel,
6765 got, off, 0, false);
6766 }
6767 }
6768 break;
6769
6770 case elfcpp::R_PPC64_TOC16:
6771 case elfcpp::R_PPC64_TOC16_LO:
6772 case elfcpp::R_PPC64_TOC16_HI:
6773 case elfcpp::R_PPC64_TOC16_HA:
6774 case elfcpp::R_PPC64_TOC16_DS:
6775 case elfcpp::R_PPC64_TOC16_LO_DS:
6776 // We need a GOT section.
6777 target->got_section(symtab, layout);
6778 break;
6779
6780 case elfcpp::R_POWERPC_GOT_TLSGD16:
6781 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6782 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6783 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6784 {
6785 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6786 if (tls_type == tls::TLSOPT_NONE)
6787 {
6788 Output_data_got_powerpc<size, big_endian>* got
6789 = target->got_section(symtab, layout);
6790 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6791 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6792 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6793 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6794 }
6795 else if (tls_type == tls::TLSOPT_TO_LE)
6796 {
6797 // no GOT relocs needed for Local Exec.
6798 }
6799 else
6800 gold_unreachable();
6801 }
6802 break;
6803
6804 case elfcpp::R_POWERPC_GOT_TLSLD16:
6805 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6806 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6807 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6808 {
6809 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6810 if (tls_type == tls::TLSOPT_NONE)
6811 target->tlsld_got_offset(symtab, layout, object);
6812 else if (tls_type == tls::TLSOPT_TO_LE)
6813 {
6814 // no GOT relocs needed for Local Exec.
6815 if (parameters->options().emit_relocs())
6816 {
6817 Output_section* os = layout->tls_segment()->first_section();
6818 gold_assert(os != NULL);
6819 os->set_needs_symtab_index();
6820 }
6821 }
6822 else
6823 gold_unreachable();
6824 }
6825 break;
6826
6827 case elfcpp::R_POWERPC_GOT_DTPREL16:
6828 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6829 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6830 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6831 {
6832 Output_data_got_powerpc<size, big_endian>* got
6833 = target->got_section(symtab, layout);
6834 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6835 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6836 }
6837 break;
6838
6839 case elfcpp::R_POWERPC_GOT_TPREL16:
6840 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6841 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6842 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6843 {
6844 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6845 if (tls_type == tls::TLSOPT_NONE)
6846 {
6847 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6848 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6849 {
6850 Output_data_got_powerpc<size, big_endian>* got
6851 = target->got_section(symtab, layout);
6852 unsigned int off = got->add_constant(0);
6853 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6854
6855 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6856 rela_dyn->add_symbolless_local_addend(object, r_sym,
6857 elfcpp::R_POWERPC_TPREL,
6858 got, off, 0);
6859 }
6860 }
6861 else if (tls_type == tls::TLSOPT_TO_LE)
6862 {
6863 // no GOT relocs needed for Local Exec.
6864 }
6865 else
6866 gold_unreachable();
6867 }
6868 break;
6869
6870 default:
6871 unsupported_reloc_local(object, r_type);
6872 break;
6873 }
6874
6875 if (size == 64
6876 && parameters->options().toc_optimize())
6877 {
6878 if (data_shndx == ppc_object->toc_shndx())
6879 {
6880 bool ok = true;
6881 if (r_type != elfcpp::R_PPC64_ADDR64
6882 || (is_ifunc && target->abiversion() < 2))
6883 ok = false;
6884 else if (parameters->options().output_is_position_independent())
6885 {
6886 if (is_ifunc)
6887 ok = false;
6888 else
6889 {
6890 unsigned int shndx = lsym.get_st_shndx();
6891 if (shndx >= elfcpp::SHN_LORESERVE
6892 && shndx != elfcpp::SHN_XINDEX)
6893 ok = false;
6894 }
6895 }
6896 if (!ok)
6897 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6898 }
6899
6900 enum {no_check, check_lo, check_ha} insn_check;
6901 switch (r_type)
6902 {
6903 default:
6904 insn_check = no_check;
6905 break;
6906
6907 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6908 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6909 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6910 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6911 case elfcpp::R_POWERPC_GOT16_HA:
6912 case elfcpp::R_PPC64_TOC16_HA:
6913 insn_check = check_ha;
6914 break;
6915
6916 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6917 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6918 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6919 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6920 case elfcpp::R_POWERPC_GOT16_LO:
6921 case elfcpp::R_PPC64_GOT16_LO_DS:
6922 case elfcpp::R_PPC64_TOC16_LO:
6923 case elfcpp::R_PPC64_TOC16_LO_DS:
6924 insn_check = check_lo;
6925 break;
6926 }
6927
6928 section_size_type slen;
6929 const unsigned char* view = NULL;
6930 if (insn_check != no_check)
6931 {
6932 view = ppc_object->section_contents(data_shndx, &slen, false);
6933 section_size_type off =
6934 convert_to_section_size_type(reloc.get_r_offset()) & -4;
6935 if (off < slen)
6936 {
6937 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6938 if (insn_check == check_lo
6939 ? !ok_lo_toc_insn(insn, r_type)
6940 : ((insn & ((0x3f << 26) | 0x1f << 16))
6941 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6942 {
6943 ppc_object->set_no_toc_opt();
6944 gold_warning(_("%s: toc optimization is not supported "
6945 "for %#08x instruction"),
6946 ppc_object->name().c_str(), insn);
6947 }
6948 }
6949 }
6950
6951 switch (r_type)
6952 {
6953 default:
6954 break;
6955 case elfcpp::R_PPC64_TOC16:
6956 case elfcpp::R_PPC64_TOC16_LO:
6957 case elfcpp::R_PPC64_TOC16_HI:
6958 case elfcpp::R_PPC64_TOC16_HA:
6959 case elfcpp::R_PPC64_TOC16_DS:
6960 case elfcpp::R_PPC64_TOC16_LO_DS:
6961 unsigned int shndx = lsym.get_st_shndx();
6962 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6963 bool is_ordinary;
6964 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6965 if (is_ordinary && shndx == ppc_object->toc_shndx())
6966 {
6967 Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
6968 if (dst_off < ppc_object->section_size(shndx))
6969 {
6970 bool ok = false;
6971 if (r_type == elfcpp::R_PPC64_TOC16_HA)
6972 ok = true;
6973 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6974 {
6975 // Need to check that the insn is a ld
6976 if (!view)
6977 view = ppc_object->section_contents(data_shndx,
6978 &slen,
6979 false);
6980 section_size_type off =
6981 (convert_to_section_size_type(reloc.get_r_offset())
6982 + (big_endian ? -2 : 3));
6983 if (off < slen
6984 && (view[off] & (0x3f << 2)) == 58u << 2)
6985 ok = true;
6986 }
6987 if (!ok)
6988 ppc_object->set_no_toc_opt(dst_off);
6989 }
6990 }
6991 break;
6992 }
6993 }
6994
6995 if (size == 32)
6996 {
6997 switch (r_type)
6998 {
6999 case elfcpp::R_POWERPC_REL32:
7000 if (ppc_object->got2_shndx() != 0
7001 && parameters->options().output_is_position_independent())
7002 {
7003 unsigned int shndx = lsym.get_st_shndx();
7004 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7005 bool is_ordinary;
7006 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7007 if (is_ordinary && shndx == ppc_object->got2_shndx()
7008 && (ppc_object->section_flags(data_shndx)
7009 & elfcpp::SHF_EXECINSTR) != 0)
7010 gold_error(_("%s: unsupported -mbss-plt code"),
7011 ppc_object->name().c_str());
7012 }
7013 break;
7014 default:
7015 break;
7016 }
7017 }
7018
7019 switch (r_type)
7020 {
7021 case elfcpp::R_POWERPC_GOT_TLSLD16:
7022 case elfcpp::R_POWERPC_GOT_TLSGD16:
7023 case elfcpp::R_POWERPC_GOT_TPREL16:
7024 case elfcpp::R_POWERPC_GOT_DTPREL16:
7025 case elfcpp::R_POWERPC_GOT16:
7026 case elfcpp::R_PPC64_GOT16_DS:
7027 case elfcpp::R_PPC64_TOC16:
7028 case elfcpp::R_PPC64_TOC16_DS:
7029 ppc_object->set_has_small_toc_reloc();
7030 default:
7031 break;
7032 }
7033 }
7034
7035 // Report an unsupported relocation against a global symbol.
7036
7037 template<int size, bool big_endian>
7038 void
7039 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7040 Sized_relobj_file<size, big_endian>* object,
7041 unsigned int r_type,
7042 Symbol* gsym)
7043 {
7044 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7045 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7046 }
7047
7048 // Scan a relocation for a global symbol.
7049
7050 template<int size, bool big_endian>
7051 inline void
7052 Target_powerpc<size, big_endian>::Scan::global(
7053 Symbol_table* symtab,
7054 Layout* layout,
7055 Target_powerpc<size, big_endian>* target,
7056 Sized_relobj_file<size, big_endian>* object,
7057 unsigned int data_shndx,
7058 Output_section* output_section,
7059 const elfcpp::Rela<size, big_endian>& reloc,
7060 unsigned int r_type,
7061 Symbol* gsym)
7062 {
7063 if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7064 == Track_tls::SKIP)
7065 return;
7066
7067 if (target->replace_tls_get_addr(gsym))
7068 // Change a __tls_get_addr reference to __tls_get_addr_opt
7069 // so dynamic relocs are emitted against the latter symbol.
7070 gsym = target->tls_get_addr_opt();
7071
7072 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7073 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7074 {
7075 this->expect_tls_get_addr_call();
7076 const bool final = gsym->final_value_is_known();
7077 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7078 if (tls_type != tls::TLSOPT_NONE)
7079 this->skip_next_tls_get_addr_call();
7080 }
7081 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7082 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7083 {
7084 this->expect_tls_get_addr_call();
7085 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7086 if (tls_type != tls::TLSOPT_NONE)
7087 this->skip_next_tls_get_addr_call();
7088 }
7089
7090 Powerpc_relobj<size, big_endian>* ppc_object
7091 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7092
7093 // A STT_GNU_IFUNC symbol may require a PLT entry.
7094 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7095 bool pushed_ifunc = false;
7096 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7097 {
7098 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7099 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7100 r_type, r_sym, reloc.get_r_addend());
7101 target->make_plt_entry(symtab, layout, gsym);
7102 pushed_ifunc = true;
7103 }
7104
7105 switch (r_type)
7106 {
7107 case elfcpp::R_POWERPC_NONE:
7108 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7109 case elfcpp::R_POWERPC_GNU_VTENTRY:
7110 case elfcpp::R_PPC_LOCAL24PC:
7111 case elfcpp::R_POWERPC_TLS:
7112 case elfcpp::R_PPC64_ENTRY:
7113 break;
7114
7115 case elfcpp::R_PPC64_TOC:
7116 {
7117 Output_data_got_powerpc<size, big_endian>* got
7118 = target->got_section(symtab, layout);
7119 if (parameters->options().output_is_position_independent())
7120 {
7121 Address off = reloc.get_r_offset();
7122 if (size == 64
7123 && data_shndx == ppc_object->opd_shndx()
7124 && ppc_object->get_opd_discard(off - 8))
7125 break;
7126
7127 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7128 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7129 if (data_shndx != ppc_object->opd_shndx())
7130 symobj = static_cast
7131 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7132 rela_dyn->add_output_section_relative(got->output_section(),
7133 elfcpp::R_POWERPC_RELATIVE,
7134 output_section,
7135 object, data_shndx, off,
7136 symobj->toc_base_offset());
7137 }
7138 }
7139 break;
7140
7141 case elfcpp::R_PPC64_ADDR64:
7142 if (size == 64
7143 && target->abiversion() < 2
7144 && data_shndx == ppc_object->opd_shndx()
7145 && (gsym->is_defined_in_discarded_section()
7146 || gsym->object() != object))
7147 {
7148 ppc_object->set_opd_discard(reloc.get_r_offset());
7149 break;
7150 }
7151 // Fall through.
7152 case elfcpp::R_PPC64_UADDR64:
7153 case elfcpp::R_POWERPC_ADDR32:
7154 case elfcpp::R_POWERPC_UADDR32:
7155 case elfcpp::R_POWERPC_ADDR24:
7156 case elfcpp::R_POWERPC_ADDR16:
7157 case elfcpp::R_POWERPC_ADDR16_LO:
7158 case elfcpp::R_POWERPC_ADDR16_HI:
7159 case elfcpp::R_POWERPC_ADDR16_HA:
7160 case elfcpp::R_POWERPC_UADDR16:
7161 case elfcpp::R_PPC64_ADDR16_HIGH:
7162 case elfcpp::R_PPC64_ADDR16_HIGHA:
7163 case elfcpp::R_PPC64_ADDR16_HIGHER:
7164 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7165 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7166 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7167 case elfcpp::R_PPC64_ADDR16_DS:
7168 case elfcpp::R_PPC64_ADDR16_LO_DS:
7169 case elfcpp::R_POWERPC_ADDR14:
7170 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7171 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7172 {
7173 // Make a PLT entry if necessary.
7174 if (gsym->needs_plt_entry())
7175 {
7176 // Since this is not a PC-relative relocation, we may be
7177 // taking the address of a function. In that case we need to
7178 // set the entry in the dynamic symbol table to the address of
7179 // the PLT call stub.
7180 bool need_ifunc_plt = false;
7181 if ((size == 32 || target->abiversion() >= 2)
7182 && gsym->is_from_dynobj()
7183 && !parameters->options().output_is_position_independent())
7184 {
7185 gsym->set_needs_dynsym_value();
7186 need_ifunc_plt = true;
7187 }
7188 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7189 {
7190 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7191 target->push_branch(ppc_object, data_shndx,
7192 reloc.get_r_offset(), r_type, r_sym,
7193 reloc.get_r_addend());
7194 target->make_plt_entry(symtab, layout, gsym);
7195 }
7196 }
7197 // Make a dynamic relocation if necessary.
7198 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7199 || (size == 64 && is_ifunc && target->abiversion() < 2))
7200 {
7201 if (!parameters->options().output_is_position_independent()
7202 && gsym->may_need_copy_reloc())
7203 {
7204 target->copy_reloc(symtab, layout, object,
7205 data_shndx, output_section, gsym, reloc);
7206 }
7207 else if ((((size == 32
7208 && r_type == elfcpp::R_POWERPC_ADDR32)
7209 || (size == 64
7210 && r_type == elfcpp::R_PPC64_ADDR64
7211 && target->abiversion() >= 2))
7212 && gsym->can_use_relative_reloc(false)
7213 && !(gsym->visibility() == elfcpp::STV_PROTECTED
7214 && parameters->options().shared()))
7215 || (size == 64
7216 && r_type == elfcpp::R_PPC64_ADDR64
7217 && target->abiversion() < 2
7218 && (gsym->can_use_relative_reloc(false)
7219 || data_shndx == ppc_object->opd_shndx())))
7220 {
7221 Reloc_section* rela_dyn
7222 = target->rela_dyn_section(symtab, layout, is_ifunc);
7223 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7224 : elfcpp::R_POWERPC_RELATIVE);
7225 rela_dyn->add_symbolless_global_addend(
7226 gsym, dynrel, output_section, object, data_shndx,
7227 reloc.get_r_offset(), reloc.get_r_addend());
7228 }
7229 else
7230 {
7231 Reloc_section* rela_dyn
7232 = target->rela_dyn_section(symtab, layout, is_ifunc);
7233 check_non_pic(object, r_type);
7234 rela_dyn->add_global(gsym, r_type, output_section,
7235 object, data_shndx,
7236 reloc.get_r_offset(),
7237 reloc.get_r_addend());
7238
7239 if (size == 64
7240 && parameters->options().toc_optimize()
7241 && data_shndx == ppc_object->toc_shndx())
7242 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7243 }
7244 }
7245 }
7246 break;
7247
7248 case elfcpp::R_PPC_PLTREL24:
7249 case elfcpp::R_POWERPC_REL24:
7250 if (!is_ifunc)
7251 {
7252 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7253 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7254 r_type, r_sym, reloc.get_r_addend());
7255 if (gsym->needs_plt_entry()
7256 || (!gsym->final_value_is_known()
7257 && (gsym->is_undefined()
7258 || gsym->is_from_dynobj()
7259 || gsym->is_preemptible())))
7260 target->make_plt_entry(symtab, layout, gsym);
7261 }
7262 // Fall through.
7263
7264 case elfcpp::R_PPC64_REL64:
7265 case elfcpp::R_POWERPC_REL32:
7266 // Make a dynamic relocation if necessary.
7267 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7268 {
7269 if (!parameters->options().output_is_position_independent()
7270 && gsym->may_need_copy_reloc())
7271 {
7272 target->copy_reloc(symtab, layout, object,
7273 data_shndx, output_section, gsym,
7274 reloc);
7275 }
7276 else
7277 {
7278 Reloc_section* rela_dyn
7279 = target->rela_dyn_section(symtab, layout, is_ifunc);
7280 check_non_pic(object, r_type);
7281 rela_dyn->add_global(gsym, r_type, output_section, object,
7282 data_shndx, reloc.get_r_offset(),
7283 reloc.get_r_addend());
7284 }
7285 }
7286 break;
7287
7288 case elfcpp::R_POWERPC_REL14:
7289 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7290 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7291 if (!is_ifunc)
7292 {
7293 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7294 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7295 r_type, r_sym, reloc.get_r_addend());
7296 }
7297 break;
7298
7299 case elfcpp::R_PPC64_TOCSAVE:
7300 // R_PPC64_TOCSAVE follows a call instruction to indicate the
7301 // caller has already saved r2 and thus a plt call stub need not
7302 // save r2.
7303 if (size == 64
7304 && target->mark_pltcall(ppc_object, data_shndx,
7305 reloc.get_r_offset() - 4, symtab))
7306 {
7307 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7308 bool is_ordinary;
7309 unsigned int shndx = gsym->shndx(&is_ordinary);
7310 if (!is_ordinary)
7311 object->error(_("tocsave symbol %u has bad shndx %u"),
7312 r_sym, shndx);
7313 else
7314 {
7315 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7316 target->add_tocsave(ppc_object, shndx,
7317 sym->value() + reloc.get_r_addend());
7318 }
7319 }
7320 break;
7321
7322 case elfcpp::R_POWERPC_REL16:
7323 case elfcpp::R_POWERPC_REL16_LO:
7324 case elfcpp::R_POWERPC_REL16_HI:
7325 case elfcpp::R_POWERPC_REL16_HA:
7326 case elfcpp::R_POWERPC_REL16DX_HA:
7327 case elfcpp::R_POWERPC_SECTOFF:
7328 case elfcpp::R_POWERPC_SECTOFF_LO:
7329 case elfcpp::R_POWERPC_SECTOFF_HI:
7330 case elfcpp::R_POWERPC_SECTOFF_HA:
7331 case elfcpp::R_PPC64_SECTOFF_DS:
7332 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7333 case elfcpp::R_POWERPC_TPREL16:
7334 case elfcpp::R_POWERPC_TPREL16_LO:
7335 case elfcpp::R_POWERPC_TPREL16_HI:
7336 case elfcpp::R_POWERPC_TPREL16_HA:
7337 case elfcpp::R_PPC64_TPREL16_DS:
7338 case elfcpp::R_PPC64_TPREL16_LO_DS:
7339 case elfcpp::R_PPC64_TPREL16_HIGH:
7340 case elfcpp::R_PPC64_TPREL16_HIGHA:
7341 case elfcpp::R_PPC64_TPREL16_HIGHER:
7342 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7343 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7344 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7345 case elfcpp::R_POWERPC_DTPREL16:
7346 case elfcpp::R_POWERPC_DTPREL16_LO:
7347 case elfcpp::R_POWERPC_DTPREL16_HI:
7348 case elfcpp::R_POWERPC_DTPREL16_HA:
7349 case elfcpp::R_PPC64_DTPREL16_DS:
7350 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7351 case elfcpp::R_PPC64_DTPREL16_HIGH:
7352 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7353 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7354 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7355 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7356 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7357 case elfcpp::R_PPC64_TLSGD:
7358 case elfcpp::R_PPC64_TLSLD:
7359 case elfcpp::R_PPC64_ADDR64_LOCAL:
7360 break;
7361
7362 case elfcpp::R_POWERPC_GOT16:
7363 case elfcpp::R_POWERPC_GOT16_LO:
7364 case elfcpp::R_POWERPC_GOT16_HI:
7365 case elfcpp::R_POWERPC_GOT16_HA:
7366 case elfcpp::R_PPC64_GOT16_DS:
7367 case elfcpp::R_PPC64_GOT16_LO_DS:
7368 {
7369 // The symbol requires a GOT entry.
7370 Output_data_got_powerpc<size, big_endian>* got;
7371
7372 got = target->got_section(symtab, layout);
7373 if (gsym->final_value_is_known())
7374 {
7375 if (is_ifunc
7376 && (size == 32 || target->abiversion() >= 2))
7377 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7378 else
7379 got->add_global(gsym, GOT_TYPE_STANDARD);
7380 }
7381 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7382 {
7383 // If we are generating a shared object or a pie, this
7384 // symbol's GOT entry will be set by a dynamic relocation.
7385 unsigned int off = got->add_constant(0);
7386 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7387
7388 Reloc_section* rela_dyn
7389 = target->rela_dyn_section(symtab, layout, is_ifunc);
7390
7391 if (gsym->can_use_relative_reloc(false)
7392 && !((size == 32
7393 || target->abiversion() >= 2)
7394 && gsym->visibility() == elfcpp::STV_PROTECTED
7395 && parameters->options().shared()))
7396 {
7397 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7398 : elfcpp::R_POWERPC_RELATIVE);
7399 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7400 }
7401 else
7402 {
7403 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7404 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7405 }
7406 }
7407 }
7408 break;
7409
7410 case elfcpp::R_PPC64_TOC16:
7411 case elfcpp::R_PPC64_TOC16_LO:
7412 case elfcpp::R_PPC64_TOC16_HI:
7413 case elfcpp::R_PPC64_TOC16_HA:
7414 case elfcpp::R_PPC64_TOC16_DS:
7415 case elfcpp::R_PPC64_TOC16_LO_DS:
7416 // We need a GOT section.
7417 target->got_section(symtab, layout);
7418 break;
7419
7420 case elfcpp::R_POWERPC_GOT_TLSGD16:
7421 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7422 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7423 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7424 {
7425 const bool final = gsym->final_value_is_known();
7426 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7427 if (tls_type == tls::TLSOPT_NONE)
7428 {
7429 Output_data_got_powerpc<size, big_endian>* got
7430 = target->got_section(symtab, layout);
7431 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7432 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7433 elfcpp::R_POWERPC_DTPMOD,
7434 elfcpp::R_POWERPC_DTPREL);
7435 }
7436 else if (tls_type == tls::TLSOPT_TO_IE)
7437 {
7438 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7439 {
7440 Output_data_got_powerpc<size, big_endian>* got
7441 = target->got_section(symtab, layout);
7442 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7443 if (gsym->is_undefined()
7444 || gsym->is_from_dynobj())
7445 {
7446 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7447 elfcpp::R_POWERPC_TPREL);
7448 }
7449 else
7450 {
7451 unsigned int off = got->add_constant(0);
7452 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7453 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7454 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7455 got, off, 0);
7456 }
7457 }
7458 }
7459 else if (tls_type == tls::TLSOPT_TO_LE)
7460 {
7461 // no GOT relocs needed for Local Exec.
7462 }
7463 else
7464 gold_unreachable();
7465 }
7466 break;
7467
7468 case elfcpp::R_POWERPC_GOT_TLSLD16:
7469 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7470 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7471 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7472 {
7473 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7474 if (tls_type == tls::TLSOPT_NONE)
7475 target->tlsld_got_offset(symtab, layout, object);
7476 else if (tls_type == tls::TLSOPT_TO_LE)
7477 {
7478 // no GOT relocs needed for Local Exec.
7479 if (parameters->options().emit_relocs())
7480 {
7481 Output_section* os = layout->tls_segment()->first_section();
7482 gold_assert(os != NULL);
7483 os->set_needs_symtab_index();
7484 }
7485 }
7486 else
7487 gold_unreachable();
7488 }
7489 break;
7490
7491 case elfcpp::R_POWERPC_GOT_DTPREL16:
7492 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7493 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7494 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7495 {
7496 Output_data_got_powerpc<size, big_endian>* got
7497 = target->got_section(symtab, layout);
7498 if (!gsym->final_value_is_known()
7499 && (gsym->is_from_dynobj()
7500 || gsym->is_undefined()
7501 || gsym->is_preemptible()))
7502 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7503 target->rela_dyn_section(layout),
7504 elfcpp::R_POWERPC_DTPREL);
7505 else
7506 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7507 }
7508 break;
7509
7510 case elfcpp::R_POWERPC_GOT_TPREL16:
7511 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7512 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7513 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7514 {
7515 const bool final = gsym->final_value_is_known();
7516 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7517 if (tls_type == tls::TLSOPT_NONE)
7518 {
7519 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7520 {
7521 Output_data_got_powerpc<size, big_endian>* got
7522 = target->got_section(symtab, layout);
7523 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7524 if (gsym->is_undefined()
7525 || gsym->is_from_dynobj())
7526 {
7527 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7528 elfcpp::R_POWERPC_TPREL);
7529 }
7530 else
7531 {
7532 unsigned int off = got->add_constant(0);
7533 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7534 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7535 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7536 got, off, 0);
7537 }
7538 }
7539 }
7540 else if (tls_type == tls::TLSOPT_TO_LE)
7541 {
7542 // no GOT relocs needed for Local Exec.
7543 }
7544 else
7545 gold_unreachable();
7546 }
7547 break;
7548
7549 default:
7550 unsupported_reloc_global(object, r_type, gsym);
7551 break;
7552 }
7553
7554 if (size == 64
7555 && parameters->options().toc_optimize())
7556 {
7557 if (data_shndx == ppc_object->toc_shndx())
7558 {
7559 bool ok = true;
7560 if (r_type != elfcpp::R_PPC64_ADDR64
7561 || (is_ifunc && target->abiversion() < 2))
7562 ok = false;
7563 else if (parameters->options().output_is_position_independent()
7564 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7565 ok = false;
7566 if (!ok)
7567 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7568 }
7569
7570 enum {no_check, check_lo, check_ha} insn_check;
7571 switch (r_type)
7572 {
7573 default:
7574 insn_check = no_check;
7575 break;
7576
7577 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7578 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7579 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7580 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7581 case elfcpp::R_POWERPC_GOT16_HA:
7582 case elfcpp::R_PPC64_TOC16_HA:
7583 insn_check = check_ha;
7584 break;
7585
7586 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7587 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7588 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7589 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7590 case elfcpp::R_POWERPC_GOT16_LO:
7591 case elfcpp::R_PPC64_GOT16_LO_DS:
7592 case elfcpp::R_PPC64_TOC16_LO:
7593 case elfcpp::R_PPC64_TOC16_LO_DS:
7594 insn_check = check_lo;
7595 break;
7596 }
7597
7598 section_size_type slen;
7599 const unsigned char* view = NULL;
7600 if (insn_check != no_check)
7601 {
7602 view = ppc_object->section_contents(data_shndx, &slen, false);
7603 section_size_type off =
7604 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7605 if (off < slen)
7606 {
7607 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7608 if (insn_check == check_lo
7609 ? !ok_lo_toc_insn(insn, r_type)
7610 : ((insn & ((0x3f << 26) | 0x1f << 16))
7611 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7612 {
7613 ppc_object->set_no_toc_opt();
7614 gold_warning(_("%s: toc optimization is not supported "
7615 "for %#08x instruction"),
7616 ppc_object->name().c_str(), insn);
7617 }
7618 }
7619 }
7620
7621 switch (r_type)
7622 {
7623 default:
7624 break;
7625 case elfcpp::R_PPC64_TOC16:
7626 case elfcpp::R_PPC64_TOC16_LO:
7627 case elfcpp::R_PPC64_TOC16_HI:
7628 case elfcpp::R_PPC64_TOC16_HA:
7629 case elfcpp::R_PPC64_TOC16_DS:
7630 case elfcpp::R_PPC64_TOC16_LO_DS:
7631 if (gsym->source() == Symbol::FROM_OBJECT
7632 && !gsym->object()->is_dynamic())
7633 {
7634 Powerpc_relobj<size, big_endian>* sym_object
7635 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7636 bool is_ordinary;
7637 unsigned int shndx = gsym->shndx(&is_ordinary);
7638 if (shndx == sym_object->toc_shndx())
7639 {
7640 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7641 Address dst_off = sym->value() + reloc.get_r_addend();
7642 if (dst_off < sym_object->section_size(shndx))
7643 {
7644 bool ok = false;
7645 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7646 ok = true;
7647 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7648 {
7649 // Need to check that the insn is a ld
7650 if (!view)
7651 view = ppc_object->section_contents(data_shndx,
7652 &slen,
7653 false);
7654 section_size_type off =
7655 (convert_to_section_size_type(reloc.get_r_offset())
7656 + (big_endian ? -2 : 3));
7657 if (off < slen
7658 && (view[off] & (0x3f << 2)) == (58u << 2))
7659 ok = true;
7660 }
7661 if (!ok)
7662 sym_object->set_no_toc_opt(dst_off);
7663 }
7664 }
7665 }
7666 break;
7667 }
7668 }
7669
7670 if (size == 32)
7671 {
7672 switch (r_type)
7673 {
7674 case elfcpp::R_PPC_LOCAL24PC:
7675 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7676 gold_error(_("%s: unsupported -mbss-plt code"),
7677 ppc_object->name().c_str());
7678 break;
7679 default:
7680 break;
7681 }
7682 }
7683
7684 switch (r_type)
7685 {
7686 case elfcpp::R_POWERPC_GOT_TLSLD16:
7687 case elfcpp::R_POWERPC_GOT_TLSGD16:
7688 case elfcpp::R_POWERPC_GOT_TPREL16:
7689 case elfcpp::R_POWERPC_GOT_DTPREL16:
7690 case elfcpp::R_POWERPC_GOT16:
7691 case elfcpp::R_PPC64_GOT16_DS:
7692 case elfcpp::R_PPC64_TOC16:
7693 case elfcpp::R_PPC64_TOC16_DS:
7694 ppc_object->set_has_small_toc_reloc();
7695 default:
7696 break;
7697 }
7698 }
7699
7700 // Process relocations for gc.
7701
7702 template<int size, bool big_endian>
7703 void
7704 Target_powerpc<size, big_endian>::gc_process_relocs(
7705 Symbol_table* symtab,
7706 Layout* layout,
7707 Sized_relobj_file<size, big_endian>* object,
7708 unsigned int data_shndx,
7709 unsigned int,
7710 const unsigned char* prelocs,
7711 size_t reloc_count,
7712 Output_section* output_section,
7713 bool needs_special_offset_handling,
7714 size_t local_symbol_count,
7715 const unsigned char* plocal_symbols)
7716 {
7717 typedef Target_powerpc<size, big_endian> Powerpc;
7718 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7719 Classify_reloc;
7720
7721 Powerpc_relobj<size, big_endian>* ppc_object
7722 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7723 if (size == 64)
7724 ppc_object->set_opd_valid();
7725 if (size == 64 && data_shndx == ppc_object->opd_shndx())
7726 {
7727 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7728 for (p = ppc_object->access_from_map()->begin();
7729 p != ppc_object->access_from_map()->end();
7730 ++p)
7731 {
7732 Address dst_off = p->first;
7733 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7734 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7735 for (s = p->second.begin(); s != p->second.end(); ++s)
7736 {
7737 Relobj* src_obj = s->first;
7738 unsigned int src_indx = s->second;
7739 symtab->gc()->add_reference(src_obj, src_indx,
7740 ppc_object, dst_indx);
7741 }
7742 p->second.clear();
7743 }
7744 ppc_object->access_from_map()->clear();
7745 ppc_object->process_gc_mark(symtab);
7746 // Don't look at .opd relocs as .opd will reference everything.
7747 return;
7748 }
7749
7750 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7751 symtab,
7752 layout,
7753 this,
7754 object,
7755 data_shndx,
7756 prelocs,
7757 reloc_count,
7758 output_section,
7759 needs_special_offset_handling,
7760 local_symbol_count,
7761 plocal_symbols);
7762 }
7763
7764 // Handle target specific gc actions when adding a gc reference from
7765 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7766 // and DST_OFF. For powerpc64, this adds a referenc to the code
7767 // section of a function descriptor.
7768
7769 template<int size, bool big_endian>
7770 void
7771 Target_powerpc<size, big_endian>::do_gc_add_reference(
7772 Symbol_table* symtab,
7773 Relobj* src_obj,
7774 unsigned int src_shndx,
7775 Relobj* dst_obj,
7776 unsigned int dst_shndx,
7777 Address dst_off) const
7778 {
7779 if (size != 64 || dst_obj->is_dynamic())
7780 return;
7781
7782 Powerpc_relobj<size, big_endian>* ppc_object
7783 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7784 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7785 {
7786 if (ppc_object->opd_valid())
7787 {
7788 dst_shndx = ppc_object->get_opd_ent(dst_off);
7789 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7790 }
7791 else
7792 {
7793 // If we haven't run scan_opd_relocs, we must delay
7794 // processing this function descriptor reference.
7795 ppc_object->add_reference(src_obj, src_shndx, dst_off);
7796 }
7797 }
7798 }
7799
7800 // Add any special sections for this symbol to the gc work list.
7801 // For powerpc64, this adds the code section of a function
7802 // descriptor.
7803
7804 template<int size, bool big_endian>
7805 void
7806 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7807 Symbol_table* symtab,
7808 Symbol* sym) const
7809 {
7810 if (size == 64)
7811 {
7812 Powerpc_relobj<size, big_endian>* ppc_object
7813 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7814 bool is_ordinary;
7815 unsigned int shndx = sym->shndx(&is_ordinary);
7816 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7817 {
7818 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7819 Address dst_off = gsym->value();
7820 if (ppc_object->opd_valid())
7821 {
7822 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7823 symtab->gc()->worklist().push_back(Section_id(ppc_object,
7824 dst_indx));
7825 }
7826 else
7827 ppc_object->add_gc_mark(dst_off);
7828 }
7829 }
7830 }
7831
7832 // For a symbol location in .opd, set LOC to the location of the
7833 // function entry.
7834
7835 template<int size, bool big_endian>
7836 void
7837 Target_powerpc<size, big_endian>::do_function_location(
7838 Symbol_location* loc) const
7839 {
7840 if (size == 64 && loc->shndx != 0)
7841 {
7842 if (loc->object->is_dynamic())
7843 {
7844 Powerpc_dynobj<size, big_endian>* ppc_object
7845 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7846 if (loc->shndx == ppc_object->opd_shndx())
7847 {
7848 Address dest_off;
7849 Address off = loc->offset - ppc_object->opd_address();
7850 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7851 loc->offset = dest_off;
7852 }
7853 }
7854 else
7855 {
7856 const Powerpc_relobj<size, big_endian>* ppc_object
7857 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7858 if (loc->shndx == ppc_object->opd_shndx())
7859 {
7860 Address dest_off;
7861 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7862 loc->offset = dest_off;
7863 }
7864 }
7865 }
7866 }
7867
7868 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7869 // compiled with -fsplit-stack. The function calls non-split-stack
7870 // code. Change the function to ensure it has enough stack space to
7871 // call some random function.
7872
7873 template<int size, bool big_endian>
7874 void
7875 Target_powerpc<size, big_endian>::do_calls_non_split(
7876 Relobj* object,
7877 unsigned int shndx,
7878 section_offset_type fnoffset,
7879 section_size_type fnsize,
7880 const unsigned char* prelocs,
7881 size_t reloc_count,
7882 unsigned char* view,
7883 section_size_type view_size,
7884 std::string* from,
7885 std::string* to) const
7886 {
7887 // 32-bit not supported.
7888 if (size == 32)
7889 {
7890 // warn
7891 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7892 prelocs, reloc_count, view, view_size,
7893 from, to);
7894 return;
7895 }
7896
7897 // The function always starts with
7898 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
7899 // addis %r12,%r1,-allocate@ha
7900 // addi %r12,%r12,-allocate@l
7901 // cmpld %r12,%r0
7902 // but note that the addis or addi may be replaced with a nop
7903
7904 unsigned char *entry = view + fnoffset;
7905 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7906
7907 if ((insn & 0xffff0000) == addis_2_12)
7908 {
7909 /* Skip ELFv2 global entry code. */
7910 entry += 8;
7911 insn = elfcpp::Swap<32, big_endian>::readval(entry);
7912 }
7913
7914 unsigned char *pinsn = entry;
7915 bool ok = false;
7916 const uint32_t ld_private_ss = 0xe80d8fc0;
7917 if (insn == ld_private_ss)
7918 {
7919 int32_t allocate = 0;
7920 while (1)
7921 {
7922 pinsn += 4;
7923 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7924 if ((insn & 0xffff0000) == addis_12_1)
7925 allocate += (insn & 0xffff) << 16;
7926 else if ((insn & 0xffff0000) == addi_12_1
7927 || (insn & 0xffff0000) == addi_12_12)
7928 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7929 else if (insn != nop)
7930 break;
7931 }
7932 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7933 {
7934 int extra = parameters->options().split_stack_adjust_size();
7935 allocate -= extra;
7936 if (allocate >= 0 || extra < 0)
7937 {
7938 object->error(_("split-stack stack size overflow at "
7939 "section %u offset %0zx"),
7940 shndx, static_cast<size_t>(fnoffset));
7941 return;
7942 }
7943 pinsn = entry + 4;
7944 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7945 if (insn != addis_12_1)
7946 {
7947 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7948 pinsn += 4;
7949 insn = addi_12_12 | (allocate & 0xffff);
7950 if (insn != addi_12_12)
7951 {
7952 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7953 pinsn += 4;
7954 }
7955 }
7956 else
7957 {
7958 insn = addi_12_1 | (allocate & 0xffff);
7959 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7960 pinsn += 4;
7961 }
7962 if (pinsn != entry + 12)
7963 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7964
7965 ok = true;
7966 }
7967 }
7968
7969 if (!ok)
7970 {
7971 if (!object->has_no_split_stack())
7972 object->error(_("failed to match split-stack sequence at "
7973 "section %u offset %0zx"),
7974 shndx, static_cast<size_t>(fnoffset));
7975 }
7976 }
7977
7978 // Scan relocations for a section.
7979
7980 template<int size, bool big_endian>
7981 void
7982 Target_powerpc<size, big_endian>::scan_relocs(
7983 Symbol_table* symtab,
7984 Layout* layout,
7985 Sized_relobj_file<size, big_endian>* object,
7986 unsigned int data_shndx,
7987 unsigned int sh_type,
7988 const unsigned char* prelocs,
7989 size_t reloc_count,
7990 Output_section* output_section,
7991 bool needs_special_offset_handling,
7992 size_t local_symbol_count,
7993 const unsigned char* plocal_symbols)
7994 {
7995 typedef Target_powerpc<size, big_endian> Powerpc;
7996 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7997 Classify_reloc;
7998
7999 if (!this->plt_localentry0_init_)
8000 {
8001 bool plt_localentry0 = false;
8002 if (size == 64
8003 && this->abiversion() >= 2)
8004 {
8005 if (parameters->options().user_set_plt_localentry())
8006 plt_localentry0 = parameters->options().plt_localentry();
8007 if (plt_localentry0
8008 && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8009 gold_warning(_("--plt-localentry is especially dangerous without "
8010 "ld.so support to detect ABI violations"));
8011 }
8012 this->plt_localentry0_ = plt_localentry0;
8013 this->plt_localentry0_init_ = true;
8014 }
8015
8016 if (sh_type == elfcpp::SHT_REL)
8017 {
8018 gold_error(_("%s: unsupported REL reloc section"),
8019 object->name().c_str());
8020 return;
8021 }
8022
8023 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8024 symtab,
8025 layout,
8026 this,
8027 object,
8028 data_shndx,
8029 prelocs,
8030 reloc_count,
8031 output_section,
8032 needs_special_offset_handling,
8033 local_symbol_count,
8034 plocal_symbols);
8035 }
8036
8037 // Functor class for processing the global symbol table.
8038 // Removes symbols defined on discarded opd entries.
8039
8040 template<bool big_endian>
8041 class Global_symbol_visitor_opd
8042 {
8043 public:
8044 Global_symbol_visitor_opd()
8045 { }
8046
8047 void
8048 operator()(Sized_symbol<64>* sym)
8049 {
8050 if (sym->has_symtab_index()
8051 || sym->source() != Symbol::FROM_OBJECT
8052 || !sym->in_real_elf())
8053 return;
8054
8055 if (sym->object()->is_dynamic())
8056 return;
8057
8058 Powerpc_relobj<64, big_endian>* symobj
8059 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8060 if (symobj->opd_shndx() == 0)
8061 return;
8062
8063 bool is_ordinary;
8064 unsigned int shndx = sym->shndx(&is_ordinary);
8065 if (shndx == symobj->opd_shndx()
8066 && symobj->get_opd_discard(sym->value()))
8067 {
8068 sym->set_undefined();
8069 sym->set_visibility(elfcpp::STV_DEFAULT);
8070 sym->set_is_defined_in_discarded_section();
8071 sym->set_symtab_index(-1U);
8072 }
8073 }
8074 };
8075
8076 template<int size, bool big_endian>
8077 void
8078 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8079 Layout* layout,
8080 Symbol_table* symtab)
8081 {
8082 if (size == 64)
8083 {
8084 Output_data_save_res<size, big_endian>* savres
8085 = new Output_data_save_res<size, big_endian>(symtab);
8086 this->savres_section_ = savres;
8087 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8088 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8089 savres, ORDER_TEXT, false);
8090 }
8091 }
8092
8093 // Sort linker created .got section first (for the header), then input
8094 // sections belonging to files using small model code.
8095
8096 template<bool big_endian>
8097 class Sort_toc_sections
8098 {
8099 public:
8100 bool
8101 operator()(const Output_section::Input_section& is1,
8102 const Output_section::Input_section& is2) const
8103 {
8104 if (!is1.is_input_section() && is2.is_input_section())
8105 return true;
8106 bool small1
8107 = (is1.is_input_section()
8108 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8109 ->has_small_toc_reloc()));
8110 bool small2
8111 = (is2.is_input_section()
8112 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8113 ->has_small_toc_reloc()));
8114 return small1 && !small2;
8115 }
8116 };
8117
8118 // Finalize the sections.
8119
8120 template<int size, bool big_endian>
8121 void
8122 Target_powerpc<size, big_endian>::do_finalize_sections(
8123 Layout* layout,
8124 const Input_objects*,
8125 Symbol_table* symtab)
8126 {
8127 if (parameters->doing_static_link())
8128 {
8129 // At least some versions of glibc elf-init.o have a strong
8130 // reference to __rela_iplt marker syms. A weak ref would be
8131 // better..
8132 if (this->iplt_ != NULL)
8133 {
8134 Reloc_section* rel = this->iplt_->rel_plt();
8135 symtab->define_in_output_data("__rela_iplt_start", NULL,
8136 Symbol_table::PREDEFINED, rel, 0, 0,
8137 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8138 elfcpp::STV_HIDDEN, 0, false, true);
8139 symtab->define_in_output_data("__rela_iplt_end", NULL,
8140 Symbol_table::PREDEFINED, rel, 0, 0,
8141 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8142 elfcpp::STV_HIDDEN, 0, true, true);
8143 }
8144 else
8145 {
8146 symtab->define_as_constant("__rela_iplt_start", NULL,
8147 Symbol_table::PREDEFINED, 0, 0,
8148 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8149 elfcpp::STV_HIDDEN, 0, true, false);
8150 symtab->define_as_constant("__rela_iplt_end", NULL,
8151 Symbol_table::PREDEFINED, 0, 0,
8152 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8153 elfcpp::STV_HIDDEN, 0, true, false);
8154 }
8155 }
8156
8157 if (size == 64)
8158 {
8159 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8160 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8161
8162 if (!parameters->options().relocatable())
8163 {
8164 this->define_save_restore_funcs(layout, symtab);
8165
8166 // Annoyingly, we need to make these sections now whether or
8167 // not we need them. If we delay until do_relax then we
8168 // need to mess with the relaxation machinery checkpointing.
8169 this->got_section(symtab, layout);
8170 this->make_brlt_section(layout);
8171
8172 if (parameters->options().toc_sort())
8173 {
8174 Output_section* os = this->got_->output_section();
8175 if (os != NULL && os->input_sections().size() > 1)
8176 std::stable_sort(os->input_sections().begin(),
8177 os->input_sections().end(),
8178 Sort_toc_sections<big_endian>());
8179 }
8180 }
8181 }
8182
8183 // Fill in some more dynamic tags.
8184 Output_data_dynamic* odyn = layout->dynamic_data();
8185 if (odyn != NULL)
8186 {
8187 const Reloc_section* rel_plt = (this->plt_ == NULL
8188 ? NULL
8189 : this->plt_->rel_plt());
8190 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8191 this->rela_dyn_, true, size == 32);
8192
8193 if (size == 32)
8194 {
8195 if (this->got_ != NULL)
8196 {
8197 this->got_->finalize_data_size();
8198 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8199 this->got_, this->got_->g_o_t());
8200 }
8201 if (this->has_tls_get_addr_opt_)
8202 odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8203 }
8204 else
8205 {
8206 if (this->glink_ != NULL)
8207 {
8208 this->glink_->finalize_data_size();
8209 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8210 this->glink_,
8211 (this->glink_->pltresolve_size()
8212 - 32));
8213 }
8214 if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8215 odyn->add_constant(elfcpp::DT_PPC64_OPT,
8216 ((this->has_localentry0_
8217 ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8218 | (this->has_tls_get_addr_opt_
8219 ? elfcpp::PPC64_OPT_TLS : 0)));
8220 }
8221 }
8222
8223 // Emit any relocs we saved in an attempt to avoid generating COPY
8224 // relocs.
8225 if (this->copy_relocs_.any_saved_relocs())
8226 this->copy_relocs_.emit(this->rela_dyn_section(layout));
8227 }
8228
8229 // Emit any saved relocs, and mark toc entries using any of these
8230 // relocs as not optimizable.
8231
8232 template<int sh_type, int size, bool big_endian>
8233 void
8234 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8235 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8236 {
8237 if (size == 64
8238 && parameters->options().toc_optimize())
8239 {
8240 for (typename Copy_relocs<sh_type, size, big_endian>::
8241 Copy_reloc_entries::iterator p = this->entries_.begin();
8242 p != this->entries_.end();
8243 ++p)
8244 {
8245 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8246 entry = *p;
8247
8248 // If the symbol is no longer defined in a dynamic object,
8249 // then we emitted a COPY relocation. If it is still
8250 // dynamic then we'll need dynamic relocations and thus
8251 // can't optimize toc entries.
8252 if (entry.sym_->is_from_dynobj())
8253 {
8254 Powerpc_relobj<size, big_endian>* ppc_object
8255 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8256 if (entry.shndx_ == ppc_object->toc_shndx())
8257 ppc_object->set_no_toc_opt(entry.address_);
8258 }
8259 }
8260 }
8261
8262 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8263 }
8264
8265 // Return the value to use for a branch relocation.
8266
8267 template<int size, bool big_endian>
8268 bool
8269 Target_powerpc<size, big_endian>::symval_for_branch(
8270 const Symbol_table* symtab,
8271 const Sized_symbol<size>* gsym,
8272 Powerpc_relobj<size, big_endian>* object,
8273 Address *value,
8274 unsigned int *dest_shndx)
8275 {
8276 if (size == 32 || this->abiversion() >= 2)
8277 gold_unreachable();
8278 *dest_shndx = 0;
8279
8280 // If the symbol is defined in an opd section, ie. is a function
8281 // descriptor, use the function descriptor code entry address
8282 Powerpc_relobj<size, big_endian>* symobj = object;
8283 if (gsym != NULL
8284 && (gsym->source() != Symbol::FROM_OBJECT
8285 || gsym->object()->is_dynamic()))
8286 return true;
8287 if (gsym != NULL)
8288 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8289 unsigned int shndx = symobj->opd_shndx();
8290 if (shndx == 0)
8291 return true;
8292 Address opd_addr = symobj->get_output_section_offset(shndx);
8293 if (opd_addr == invalid_address)
8294 return true;
8295 opd_addr += symobj->output_section_address(shndx);
8296 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8297 {
8298 Address sec_off;
8299 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8300 if (symtab->is_section_folded(symobj, *dest_shndx))
8301 {
8302 Section_id folded
8303 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8304 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8305 *dest_shndx = folded.second;
8306 }
8307 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8308 if (sec_addr == invalid_address)
8309 return false;
8310
8311 sec_addr += symobj->output_section(*dest_shndx)->address();
8312 *value = sec_addr + sec_off;
8313 }
8314 return true;
8315 }
8316
8317 // Perform a relocation.
8318
8319 template<int size, bool big_endian>
8320 inline bool
8321 Target_powerpc<size, big_endian>::Relocate::relocate(
8322 const Relocate_info<size, big_endian>* relinfo,
8323 unsigned int,
8324 Target_powerpc* target,
8325 Output_section* os,
8326 size_t relnum,
8327 const unsigned char* preloc,
8328 const Sized_symbol<size>* gsym,
8329 const Symbol_value<size>* psymval,
8330 unsigned char* view,
8331 Address address,
8332 section_size_type view_size)
8333 {
8334 if (view == NULL)
8335 return true;
8336
8337 if (target->replace_tls_get_addr(gsym))
8338 gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8339
8340 const elfcpp::Rela<size, big_endian> rela(preloc);
8341 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8342 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8343 {
8344 case Track_tls::NOT_EXPECTED:
8345 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8346 _("__tls_get_addr call lacks marker reloc"));
8347 break;
8348 case Track_tls::EXPECTED:
8349 // We have already complained.
8350 break;
8351 case Track_tls::SKIP:
8352 return true;
8353 case Track_tls::NORMAL:
8354 break;
8355 }
8356
8357 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8358 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8359 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8360 // Offset from start of insn to d-field reloc.
8361 const int d_offset = big_endian ? 2 : 0;
8362
8363 Powerpc_relobj<size, big_endian>* const object
8364 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8365 Address value = 0;
8366 bool has_stub_value = false;
8367 bool localentry0 = false;
8368 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8369 if ((gsym != NULL
8370 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8371 : object->local_has_plt_offset(r_sym))
8372 && (!psymval->is_ifunc_symbol()
8373 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8374 {
8375 if (size == 64
8376 && gsym != NULL
8377 && target->abiversion() >= 2
8378 && !parameters->options().output_is_position_independent()
8379 && !is_branch_reloc(r_type))
8380 {
8381 Address off = target->glink_section()->find_global_entry(gsym);
8382 if (off != invalid_address)
8383 {
8384 value = target->glink_section()->global_entry_address() + off;
8385 has_stub_value = true;
8386 }
8387 }
8388 else
8389 {
8390 Stub_table<size, big_endian>* stub_table = NULL;
8391 if (target->stub_tables().size() == 1)
8392 stub_table = target->stub_tables()[0];
8393 if (stub_table == NULL
8394 && !(size == 32
8395 && gsym != NULL
8396 && !parameters->options().output_is_position_independent()
8397 && !is_branch_reloc(r_type)))
8398 stub_table = object->stub_table(relinfo->data_shndx);
8399 if (stub_table == NULL)
8400 {
8401 // This is a ref from a data section to an ifunc symbol,
8402 // or a non-branch reloc for which we always want to use
8403 // one set of stubs for resolving function addresses.
8404 if (target->stub_tables().size() != 0)
8405 stub_table = target->stub_tables()[0];
8406 }
8407 if (stub_table != NULL)
8408 {
8409 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8410 if (gsym != NULL)
8411 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8412 rela.get_r_addend());
8413 else
8414 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8415 rela.get_r_addend());
8416 if (ent != NULL)
8417 {
8418 value = stub_table->stub_address() + ent->off_;
8419 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8420 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8421 size_t reloc_count = shdr.get_sh_size() / reloc_size;
8422 if (size == 64
8423 && ent->r2save_
8424 && relnum + 1 < reloc_count)
8425 {
8426 Reltype next_rela(preloc + reloc_size);
8427 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8428 == elfcpp::R_PPC64_TOCSAVE
8429 && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8430 value += 4;
8431 }
8432 localentry0 = ent->localentry0_;
8433 has_stub_value = true;
8434 }
8435 }
8436 }
8437 // We don't care too much about bogus debug references to
8438 // non-local functions, but otherwise there had better be a plt
8439 // call stub or global entry stub as appropriate.
8440 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8441 }
8442
8443 if (r_type == elfcpp::R_POWERPC_GOT16
8444 || r_type == elfcpp::R_POWERPC_GOT16_LO
8445 || r_type == elfcpp::R_POWERPC_GOT16_HI
8446 || r_type == elfcpp::R_POWERPC_GOT16_HA
8447 || r_type == elfcpp::R_PPC64_GOT16_DS
8448 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8449 {
8450 if (gsym != NULL)
8451 {
8452 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8453 value = gsym->got_offset(GOT_TYPE_STANDARD);
8454 }
8455 else
8456 {
8457 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8458 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8459 }
8460 value -= target->got_section()->got_base_offset(object);
8461 }
8462 else if (r_type == elfcpp::R_PPC64_TOC)
8463 {
8464 value = (target->got_section()->output_section()->address()
8465 + object->toc_base_offset());
8466 }
8467 else if (gsym != NULL
8468 && (r_type == elfcpp::R_POWERPC_REL24
8469 || r_type == elfcpp::R_PPC_PLTREL24)
8470 && has_stub_value)
8471 {
8472 if (size == 64)
8473 {
8474 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8475 Valtype* wv = reinterpret_cast<Valtype*>(view);
8476 bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
8477 if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
8478 {
8479 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8480 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8481 if ((insn & 1) != 0
8482 && (insn2 == nop
8483 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8484 {
8485 elfcpp::Swap<32, big_endian>::
8486 writeval(wv + 1, ld_2_1 + target->stk_toc());
8487 can_plt_call = true;
8488 }
8489 }
8490 if (!can_plt_call)
8491 {
8492 // If we don't have a branch and link followed by a nop,
8493 // we can't go via the plt because there is no place to
8494 // put a toc restoring instruction.
8495 // Unless we know we won't be returning.
8496 if (strcmp(gsym->name(), "__libc_start_main") == 0)
8497 can_plt_call = true;
8498 }
8499 if (!can_plt_call)
8500 {
8501 // g++ as of 20130507 emits self-calls without a
8502 // following nop. This is arguably wrong since we have
8503 // conflicting information. On the one hand a global
8504 // symbol and on the other a local call sequence, but
8505 // don't error for this special case.
8506 // It isn't possible to cheaply verify we have exactly
8507 // such a call. Allow all calls to the same section.
8508 bool ok = false;
8509 Address code = value;
8510 if (gsym->source() == Symbol::FROM_OBJECT
8511 && gsym->object() == object)
8512 {
8513 unsigned int dest_shndx = 0;
8514 if (target->abiversion() < 2)
8515 {
8516 Address addend = rela.get_r_addend();
8517 code = psymval->value(object, addend);
8518 target->symval_for_branch(relinfo->symtab, gsym, object,
8519 &code, &dest_shndx);
8520 }
8521 bool is_ordinary;
8522 if (dest_shndx == 0)
8523 dest_shndx = gsym->shndx(&is_ordinary);
8524 ok = dest_shndx == relinfo->data_shndx;
8525 }
8526 if (!ok)
8527 {
8528 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8529 _("call lacks nop, can't restore toc; "
8530 "recompile with -fPIC"));
8531 value = code;
8532 }
8533 }
8534 }
8535 }
8536 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8537 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8538 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8539 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8540 {
8541 // First instruction of a global dynamic sequence, arg setup insn.
8542 const bool final = gsym == NULL || gsym->final_value_is_known();
8543 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8544 enum Got_type got_type = GOT_TYPE_STANDARD;
8545 if (tls_type == tls::TLSOPT_NONE)
8546 got_type = GOT_TYPE_TLSGD;
8547 else if (tls_type == tls::TLSOPT_TO_IE)
8548 got_type = GOT_TYPE_TPREL;
8549 if (got_type != GOT_TYPE_STANDARD)
8550 {
8551 if (gsym != NULL)
8552 {
8553 gold_assert(gsym->has_got_offset(got_type));
8554 value = gsym->got_offset(got_type);
8555 }
8556 else
8557 {
8558 gold_assert(object->local_has_got_offset(r_sym, got_type));
8559 value = object->local_got_offset(r_sym, got_type);
8560 }
8561 value -= target->got_section()->got_base_offset(object);
8562 }
8563 if (tls_type == tls::TLSOPT_TO_IE)
8564 {
8565 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8566 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8567 {
8568 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8569 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8570 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8571 if (size == 32)
8572 insn |= 32 << 26; // lwz
8573 else
8574 insn |= 58 << 26; // ld
8575 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8576 }
8577 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8578 - elfcpp::R_POWERPC_GOT_TLSGD16);
8579 }
8580 else if (tls_type == tls::TLSOPT_TO_LE)
8581 {
8582 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8583 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8584 {
8585 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8586 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8587 insn &= (1 << 26) - (1 << 21); // extract rt
8588 if (size == 32)
8589 insn |= addis_0_2;
8590 else
8591 insn |= addis_0_13;
8592 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8593 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8594 value = psymval->value(object, rela.get_r_addend());
8595 }
8596 else
8597 {
8598 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8599 Insn insn = nop;
8600 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8601 r_type = elfcpp::R_POWERPC_NONE;
8602 }
8603 }
8604 }
8605 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8606 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8607 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8608 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8609 {
8610 // First instruction of a local dynamic sequence, arg setup insn.
8611 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8612 if (tls_type == tls::TLSOPT_NONE)
8613 {
8614 value = target->tlsld_got_offset();
8615 value -= target->got_section()->got_base_offset(object);
8616 }
8617 else
8618 {
8619 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8620 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8621 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8622 {
8623 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8624 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8625 insn &= (1 << 26) - (1 << 21); // extract rt
8626 if (size == 32)
8627 insn |= addis_0_2;
8628 else
8629 insn |= addis_0_13;
8630 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8631 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8632 value = dtp_offset;
8633 }
8634 else
8635 {
8636 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8637 Insn insn = nop;
8638 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8639 r_type = elfcpp::R_POWERPC_NONE;
8640 }
8641 }
8642 }
8643 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8644 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8645 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8646 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8647 {
8648 // Accesses relative to a local dynamic sequence address,
8649 // no optimisation here.
8650 if (gsym != NULL)
8651 {
8652 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8653 value = gsym->got_offset(GOT_TYPE_DTPREL);
8654 }
8655 else
8656 {
8657 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8658 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8659 }
8660 value -= target->got_section()->got_base_offset(object);
8661 }
8662 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8663 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8664 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8665 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8666 {
8667 // First instruction of initial exec sequence.
8668 const bool final = gsym == NULL || gsym->final_value_is_known();
8669 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8670 if (tls_type == tls::TLSOPT_NONE)
8671 {
8672 if (gsym != NULL)
8673 {
8674 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8675 value = gsym->got_offset(GOT_TYPE_TPREL);
8676 }
8677 else
8678 {
8679 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8680 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8681 }
8682 value -= target->got_section()->got_base_offset(object);
8683 }
8684 else
8685 {
8686 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8687 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8688 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8689 {
8690 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8691 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8692 insn &= (1 << 26) - (1 << 21); // extract rt from ld
8693 if (size == 32)
8694 insn |= addis_0_2;
8695 else
8696 insn |= addis_0_13;
8697 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8698 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8699 value = psymval->value(object, rela.get_r_addend());
8700 }
8701 else
8702 {
8703 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8704 Insn insn = nop;
8705 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8706 r_type = elfcpp::R_POWERPC_NONE;
8707 }
8708 }
8709 }
8710 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8711 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8712 {
8713 // Second instruction of a global dynamic sequence,
8714 // the __tls_get_addr call
8715 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8716 const bool final = gsym == NULL || gsym->final_value_is_known();
8717 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8718 if (tls_type != tls::TLSOPT_NONE)
8719 {
8720 if (tls_type == tls::TLSOPT_TO_IE)
8721 {
8722 Insn* iview = reinterpret_cast<Insn*>(view);
8723 Insn insn = add_3_3_13;
8724 if (size == 32)
8725 insn = add_3_3_2;
8726 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8727 r_type = elfcpp::R_POWERPC_NONE;
8728 }
8729 else
8730 {
8731 Insn* iview = reinterpret_cast<Insn*>(view);
8732 Insn insn = addi_3_3;
8733 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8734 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8735 view += d_offset;
8736 value = psymval->value(object, rela.get_r_addend());
8737 }
8738 this->skip_next_tls_get_addr_call();
8739 }
8740 }
8741 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8742 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8743 {
8744 // Second instruction of a local dynamic sequence,
8745 // the __tls_get_addr call
8746 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8747 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8748 if (tls_type == tls::TLSOPT_TO_LE)
8749 {
8750 Insn* iview = reinterpret_cast<Insn*>(view);
8751 Insn insn = addi_3_3;
8752 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8753 this->skip_next_tls_get_addr_call();
8754 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8755 view += d_offset;
8756 value = dtp_offset;
8757 }
8758 }
8759 else if (r_type == elfcpp::R_POWERPC_TLS)
8760 {
8761 // Second instruction of an initial exec sequence
8762 const bool final = gsym == NULL || gsym->final_value_is_known();
8763 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8764 if (tls_type == tls::TLSOPT_TO_LE)
8765 {
8766 Insn* iview = reinterpret_cast<Insn*>(view);
8767 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8768 unsigned int reg = size == 32 ? 2 : 13;
8769 insn = at_tls_transform(insn, reg);
8770 gold_assert(insn != 0);
8771 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8772 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8773 view += d_offset;
8774 value = psymval->value(object, rela.get_r_addend());
8775 }
8776 }
8777 else if (!has_stub_value)
8778 {
8779 Address addend = 0;
8780 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8781 addend = rela.get_r_addend();
8782 value = psymval->value(object, addend);
8783 if (size == 64 && is_branch_reloc(r_type))
8784 {
8785 if (target->abiversion() >= 2)
8786 {
8787 if (gsym != NULL)
8788 value += object->ppc64_local_entry_offset(gsym);
8789 else
8790 value += object->ppc64_local_entry_offset(r_sym);
8791 }
8792 else
8793 {
8794 unsigned int dest_shndx;
8795 target->symval_for_branch(relinfo->symtab, gsym, object,
8796 &value, &dest_shndx);
8797 }
8798 }
8799 Address max_branch_offset = max_branch_delta(r_type);
8800 if (max_branch_offset != 0
8801 && value - address + max_branch_offset >= 2 * max_branch_offset)
8802 {
8803 Stub_table<size, big_endian>* stub_table
8804 = object->stub_table(relinfo->data_shndx);
8805 if (stub_table != NULL)
8806 {
8807 Address off = stub_table->find_long_branch_entry(object, value);
8808 if (off != invalid_address)
8809 {
8810 value = (stub_table->stub_address() + stub_table->plt_size()
8811 + off);
8812 has_stub_value = true;
8813 }
8814 }
8815 }
8816 }
8817
8818 switch (r_type)
8819 {
8820 case elfcpp::R_PPC64_REL64:
8821 case elfcpp::R_POWERPC_REL32:
8822 case elfcpp::R_POWERPC_REL24:
8823 case elfcpp::R_PPC_PLTREL24:
8824 case elfcpp::R_PPC_LOCAL24PC:
8825 case elfcpp::R_POWERPC_REL16:
8826 case elfcpp::R_POWERPC_REL16_LO:
8827 case elfcpp::R_POWERPC_REL16_HI:
8828 case elfcpp::R_POWERPC_REL16_HA:
8829 case elfcpp::R_POWERPC_REL16DX_HA:
8830 case elfcpp::R_POWERPC_REL14:
8831 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8832 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8833 value -= address;
8834 break;
8835
8836 case elfcpp::R_PPC64_TOC16:
8837 case elfcpp::R_PPC64_TOC16_LO:
8838 case elfcpp::R_PPC64_TOC16_HI:
8839 case elfcpp::R_PPC64_TOC16_HA:
8840 case elfcpp::R_PPC64_TOC16_DS:
8841 case elfcpp::R_PPC64_TOC16_LO_DS:
8842 // Subtract the TOC base address.
8843 value -= (target->got_section()->output_section()->address()
8844 + object->toc_base_offset());
8845 break;
8846
8847 case elfcpp::R_POWERPC_SECTOFF:
8848 case elfcpp::R_POWERPC_SECTOFF_LO:
8849 case elfcpp::R_POWERPC_SECTOFF_HI:
8850 case elfcpp::R_POWERPC_SECTOFF_HA:
8851 case elfcpp::R_PPC64_SECTOFF_DS:
8852 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8853 if (os != NULL)
8854 value -= os->address();
8855 break;
8856
8857 case elfcpp::R_PPC64_TPREL16_DS:
8858 case elfcpp::R_PPC64_TPREL16_LO_DS:
8859 case elfcpp::R_PPC64_TPREL16_HIGH:
8860 case elfcpp::R_PPC64_TPREL16_HIGHA:
8861 if (size != 64)
8862 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8863 break;
8864 // Fall through.
8865 case elfcpp::R_POWERPC_TPREL16:
8866 case elfcpp::R_POWERPC_TPREL16_LO:
8867 case elfcpp::R_POWERPC_TPREL16_HI:
8868 case elfcpp::R_POWERPC_TPREL16_HA:
8869 case elfcpp::R_POWERPC_TPREL:
8870 case elfcpp::R_PPC64_TPREL16_HIGHER:
8871 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8872 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8873 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8874 // tls symbol values are relative to tls_segment()->vaddr()
8875 value -= tp_offset;
8876 break;
8877
8878 case elfcpp::R_PPC64_DTPREL16_DS:
8879 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8880 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8881 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8882 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8883 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8884 if (size != 64)
8885 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8886 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8887 break;
8888 // Fall through.
8889 case elfcpp::R_POWERPC_DTPREL16:
8890 case elfcpp::R_POWERPC_DTPREL16_LO:
8891 case elfcpp::R_POWERPC_DTPREL16_HI:
8892 case elfcpp::R_POWERPC_DTPREL16_HA:
8893 case elfcpp::R_POWERPC_DTPREL:
8894 case elfcpp::R_PPC64_DTPREL16_HIGH:
8895 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8896 // tls symbol values are relative to tls_segment()->vaddr()
8897 value -= dtp_offset;
8898 break;
8899
8900 case elfcpp::R_PPC64_ADDR64_LOCAL:
8901 if (gsym != NULL)
8902 value += object->ppc64_local_entry_offset(gsym);
8903 else
8904 value += object->ppc64_local_entry_offset(r_sym);
8905 break;
8906
8907 default:
8908 break;
8909 }
8910
8911 Insn branch_bit = 0;
8912 switch (r_type)
8913 {
8914 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8915 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8916 branch_bit = 1 << 21;
8917 // Fall through.
8918 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8919 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8920 {
8921 Insn* iview = reinterpret_cast<Insn*>(view);
8922 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8923 insn &= ~(1 << 21);
8924 insn |= branch_bit;
8925 if (this->is_isa_v2)
8926 {
8927 // Set 'a' bit. This is 0b00010 in BO field for branch
8928 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8929 // for branch on CTR insns (BO == 1a00t or 1a01t).
8930 if ((insn & (0x14 << 21)) == (0x04 << 21))
8931 insn |= 0x02 << 21;
8932 else if ((insn & (0x14 << 21)) == (0x10 << 21))
8933 insn |= 0x08 << 21;
8934 else
8935 break;
8936 }
8937 else
8938 {
8939 // Invert 'y' bit if not the default.
8940 if (static_cast<Signed_address>(value) < 0)
8941 insn ^= 1 << 21;
8942 }
8943 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8944 }
8945 break;
8946
8947 default:
8948 break;
8949 }
8950
8951 if (size == 64)
8952 {
8953 switch (r_type)
8954 {
8955 default:
8956 break;
8957
8958 // Multi-instruction sequences that access the GOT/TOC can
8959 // be optimized, eg.
8960 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8961 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8962 // and
8963 // addis ra,r2,0; addi rb,ra,x@toc@l;
8964 // to nop; addi rb,r2,x@toc;
8965 // FIXME: the @got sequence shown above is not yet
8966 // optimized. Note that gcc as of 2017-01-07 doesn't use
8967 // the ELF @got relocs except for TLS, instead using the
8968 // PowerOpen variant of a compiler managed GOT (called TOC).
8969 // The PowerOpen TOC sequence equivalent to the first
8970 // example is optimized.
8971 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8972 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8973 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8974 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8975 case elfcpp::R_POWERPC_GOT16_HA:
8976 case elfcpp::R_PPC64_TOC16_HA:
8977 if (parameters->options().toc_optimize())
8978 {
8979 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8980 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8981 if (r_type == elfcpp::R_PPC64_TOC16_HA
8982 && object->make_toc_relative(target, &value))
8983 {
8984 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8985 == ((15u << 26) | (2 << 16)));
8986 }
8987 if (((insn & ((0x3f << 26) | 0x1f << 16))
8988 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8989 && value + 0x8000 < 0x10000)
8990 {
8991 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8992 return true;
8993 }
8994 }
8995 break;
8996
8997 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8998 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8999 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9000 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9001 case elfcpp::R_POWERPC_GOT16_LO:
9002 case elfcpp::R_PPC64_GOT16_LO_DS:
9003 case elfcpp::R_PPC64_TOC16_LO:
9004 case elfcpp::R_PPC64_TOC16_LO_DS:
9005 if (parameters->options().toc_optimize())
9006 {
9007 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9008 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9009 bool changed = false;
9010 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9011 && object->make_toc_relative(target, &value))
9012 {
9013 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9014 insn ^= (14u << 26) ^ (58u << 26);
9015 r_type = elfcpp::R_PPC64_TOC16_LO;
9016 changed = true;
9017 }
9018 if (ok_lo_toc_insn(insn, r_type)
9019 && value + 0x8000 < 0x10000)
9020 {
9021 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9022 {
9023 // Transform addic to addi when we change reg.
9024 insn &= ~((0x3f << 26) | (0x1f << 16));
9025 insn |= (14u << 26) | (2 << 16);
9026 }
9027 else
9028 {
9029 insn &= ~(0x1f << 16);
9030 insn |= 2 << 16;
9031 }
9032 changed = true;
9033 }
9034 if (changed)
9035 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9036 }
9037 break;
9038
9039 case elfcpp::R_POWERPC_TPREL16_HA:
9040 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9041 {
9042 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9043 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9044 if ((insn & ((0x3f << 26) | 0x1f << 16))
9045 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9046 ;
9047 else
9048 {
9049 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9050 return true;
9051 }
9052 }
9053 break;
9054
9055 case elfcpp::R_PPC64_TPREL16_LO_DS:
9056 if (size == 32)
9057 // R_PPC_TLSGD, R_PPC_TLSLD
9058 break;
9059 // Fall through.
9060 case elfcpp::R_POWERPC_TPREL16_LO:
9061 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9062 {
9063 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9064 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9065 insn &= ~(0x1f << 16);
9066 insn |= (size == 32 ? 2 : 13) << 16;
9067 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9068 }
9069 break;
9070
9071 case elfcpp::R_PPC64_ENTRY:
9072 value = (target->got_section()->output_section()->address()
9073 + object->toc_base_offset());
9074 if (value + 0x80008000 <= 0xffffffff
9075 && !parameters->options().output_is_position_independent())
9076 {
9077 Insn* iview = reinterpret_cast<Insn*>(view);
9078 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9079 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9080
9081 if ((insn1 & ~0xfffc) == ld_2_12
9082 && insn2 == add_2_2_12)
9083 {
9084 insn1 = lis_2 + ha(value);
9085 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9086 insn2 = addi_2_2 + l(value);
9087 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9088 return true;
9089 }
9090 }
9091 else
9092 {
9093 value -= address;
9094 if (value + 0x80008000 <= 0xffffffff)
9095 {
9096 Insn* iview = reinterpret_cast<Insn*>(view);
9097 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9098 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9099
9100 if ((insn1 & ~0xfffc) == ld_2_12
9101 && insn2 == add_2_2_12)
9102 {
9103 insn1 = addis_2_12 + ha(value);
9104 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9105 insn2 = addi_2_2 + l(value);
9106 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9107 return true;
9108 }
9109 }
9110 }
9111 break;
9112
9113 case elfcpp::R_POWERPC_REL16_LO:
9114 // If we are generating a non-PIC executable, edit
9115 // 0: addis 2,12,.TOC.-0b@ha
9116 // addi 2,2,.TOC.-0b@l
9117 // used by ELFv2 global entry points to set up r2, to
9118 // lis 2,.TOC.@ha
9119 // addi 2,2,.TOC.@l
9120 // if .TOC. is in range. */
9121 if (value + address - 4 + 0x80008000 <= 0xffffffff
9122 && relnum != 0
9123 && preloc != NULL
9124 && target->abiversion() >= 2
9125 && !parameters->options().output_is_position_independent()
9126 && rela.get_r_addend() == d_offset + 4
9127 && gsym != NULL
9128 && strcmp(gsym->name(), ".TOC.") == 0)
9129 {
9130 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9131 Reltype prev_rela(preloc - reloc_size);
9132 if ((prev_rela.get_r_info()
9133 == elfcpp::elf_r_info<size>(r_sym,
9134 elfcpp::R_POWERPC_REL16_HA))
9135 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9136 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9137 {
9138 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9139 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9140 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9141
9142 if ((insn1 & 0xffff0000) == addis_2_12
9143 && (insn2 & 0xffff0000) == addi_2_2)
9144 {
9145 insn1 = lis_2 + ha(value + address - 4);
9146 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9147 insn2 = addi_2_2 + l(value + address - 4);
9148 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9149 if (relinfo->rr)
9150 {
9151 relinfo->rr->set_strategy(relnum - 1,
9152 Relocatable_relocs::RELOC_SPECIAL);
9153 relinfo->rr->set_strategy(relnum,
9154 Relocatable_relocs::RELOC_SPECIAL);
9155 }
9156 return true;
9157 }
9158 }
9159 }
9160 break;
9161 }
9162 }
9163
9164 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9165 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9166 switch (r_type)
9167 {
9168 case elfcpp::R_POWERPC_ADDR32:
9169 case elfcpp::R_POWERPC_UADDR32:
9170 if (size == 64)
9171 overflow = Reloc::CHECK_BITFIELD;
9172 break;
9173
9174 case elfcpp::R_POWERPC_REL32:
9175 case elfcpp::R_POWERPC_REL16DX_HA:
9176 if (size == 64)
9177 overflow = Reloc::CHECK_SIGNED;
9178 break;
9179
9180 case elfcpp::R_POWERPC_UADDR16:
9181 overflow = Reloc::CHECK_BITFIELD;
9182 break;
9183
9184 case elfcpp::R_POWERPC_ADDR16:
9185 // We really should have three separate relocations,
9186 // one for 16-bit data, one for insns with 16-bit signed fields,
9187 // and one for insns with 16-bit unsigned fields.
9188 overflow = Reloc::CHECK_BITFIELD;
9189 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9190 overflow = Reloc::CHECK_LOW_INSN;
9191 break;
9192
9193 case elfcpp::R_POWERPC_ADDR16_HI:
9194 case elfcpp::R_POWERPC_ADDR16_HA:
9195 case elfcpp::R_POWERPC_GOT16_HI:
9196 case elfcpp::R_POWERPC_GOT16_HA:
9197 case elfcpp::R_POWERPC_PLT16_HI:
9198 case elfcpp::R_POWERPC_PLT16_HA:
9199 case elfcpp::R_POWERPC_SECTOFF_HI:
9200 case elfcpp::R_POWERPC_SECTOFF_HA:
9201 case elfcpp::R_PPC64_TOC16_HI:
9202 case elfcpp::R_PPC64_TOC16_HA:
9203 case elfcpp::R_PPC64_PLTGOT16_HI:
9204 case elfcpp::R_PPC64_PLTGOT16_HA:
9205 case elfcpp::R_POWERPC_TPREL16_HI:
9206 case elfcpp::R_POWERPC_TPREL16_HA:
9207 case elfcpp::R_POWERPC_DTPREL16_HI:
9208 case elfcpp::R_POWERPC_DTPREL16_HA:
9209 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9210 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9211 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9212 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9213 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9214 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9215 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9216 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9217 case elfcpp::R_POWERPC_REL16_HI:
9218 case elfcpp::R_POWERPC_REL16_HA:
9219 if (size != 32)
9220 overflow = Reloc::CHECK_HIGH_INSN;
9221 break;
9222
9223 case elfcpp::R_POWERPC_REL16:
9224 case elfcpp::R_PPC64_TOC16:
9225 case elfcpp::R_POWERPC_GOT16:
9226 case elfcpp::R_POWERPC_SECTOFF:
9227 case elfcpp::R_POWERPC_TPREL16:
9228 case elfcpp::R_POWERPC_DTPREL16:
9229 case elfcpp::R_POWERPC_GOT_TLSGD16:
9230 case elfcpp::R_POWERPC_GOT_TLSLD16:
9231 case elfcpp::R_POWERPC_GOT_TPREL16:
9232 case elfcpp::R_POWERPC_GOT_DTPREL16:
9233 overflow = Reloc::CHECK_LOW_INSN;
9234 break;
9235
9236 case elfcpp::R_POWERPC_ADDR24:
9237 case elfcpp::R_POWERPC_ADDR14:
9238 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9239 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9240 case elfcpp::R_PPC64_ADDR16_DS:
9241 case elfcpp::R_POWERPC_REL24:
9242 case elfcpp::R_PPC_PLTREL24:
9243 case elfcpp::R_PPC_LOCAL24PC:
9244 case elfcpp::R_PPC64_TPREL16_DS:
9245 case elfcpp::R_PPC64_DTPREL16_DS:
9246 case elfcpp::R_PPC64_TOC16_DS:
9247 case elfcpp::R_PPC64_GOT16_DS:
9248 case elfcpp::R_PPC64_SECTOFF_DS:
9249 case elfcpp::R_POWERPC_REL14:
9250 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9251 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9252 overflow = Reloc::CHECK_SIGNED;
9253 break;
9254 }
9255
9256 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9257 Insn insn = 0;
9258
9259 if (overflow == Reloc::CHECK_LOW_INSN
9260 || overflow == Reloc::CHECK_HIGH_INSN)
9261 {
9262 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9263
9264 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9265 overflow = Reloc::CHECK_BITFIELD;
9266 else if (overflow == Reloc::CHECK_LOW_INSN
9267 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9268 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9269 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9270 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9271 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9272 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9273 overflow = Reloc::CHECK_UNSIGNED;
9274 else
9275 overflow = Reloc::CHECK_SIGNED;
9276 }
9277
9278 bool maybe_dq_reloc = false;
9279 typename Powerpc_relocate_functions<size, big_endian>::Status status
9280 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9281 switch (r_type)
9282 {
9283 case elfcpp::R_POWERPC_NONE:
9284 case elfcpp::R_POWERPC_TLS:
9285 case elfcpp::R_POWERPC_GNU_VTINHERIT:
9286 case elfcpp::R_POWERPC_GNU_VTENTRY:
9287 break;
9288
9289 case elfcpp::R_PPC64_ADDR64:
9290 case elfcpp::R_PPC64_REL64:
9291 case elfcpp::R_PPC64_TOC:
9292 case elfcpp::R_PPC64_ADDR64_LOCAL:
9293 Reloc::addr64(view, value);
9294 break;
9295
9296 case elfcpp::R_POWERPC_TPREL:
9297 case elfcpp::R_POWERPC_DTPREL:
9298 if (size == 64)
9299 Reloc::addr64(view, value);
9300 else
9301 status = Reloc::addr32(view, value, overflow);
9302 break;
9303
9304 case elfcpp::R_PPC64_UADDR64:
9305 Reloc::addr64_u(view, value);
9306 break;
9307
9308 case elfcpp::R_POWERPC_ADDR32:
9309 status = Reloc::addr32(view, value, overflow);
9310 break;
9311
9312 case elfcpp::R_POWERPC_REL32:
9313 case elfcpp::R_POWERPC_UADDR32:
9314 status = Reloc::addr32_u(view, value, overflow);
9315 break;
9316
9317 case elfcpp::R_POWERPC_ADDR24:
9318 case elfcpp::R_POWERPC_REL24:
9319 case elfcpp::R_PPC_PLTREL24:
9320 case elfcpp::R_PPC_LOCAL24PC:
9321 status = Reloc::addr24(view, value, overflow);
9322 break;
9323
9324 case elfcpp::R_POWERPC_GOT_DTPREL16:
9325 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9326 case elfcpp::R_POWERPC_GOT_TPREL16:
9327 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9328 if (size == 64)
9329 {
9330 // On ppc64 these are all ds form
9331 maybe_dq_reloc = true;
9332 break;
9333 }
9334 // Fall through.
9335 case elfcpp::R_POWERPC_ADDR16:
9336 case elfcpp::R_POWERPC_REL16:
9337 case elfcpp::R_PPC64_TOC16:
9338 case elfcpp::R_POWERPC_GOT16:
9339 case elfcpp::R_POWERPC_SECTOFF:
9340 case elfcpp::R_POWERPC_TPREL16:
9341 case elfcpp::R_POWERPC_DTPREL16:
9342 case elfcpp::R_POWERPC_GOT_TLSGD16:
9343 case elfcpp::R_POWERPC_GOT_TLSLD16:
9344 case elfcpp::R_POWERPC_ADDR16_LO:
9345 case elfcpp::R_POWERPC_REL16_LO:
9346 case elfcpp::R_PPC64_TOC16_LO:
9347 case elfcpp::R_POWERPC_GOT16_LO:
9348 case elfcpp::R_POWERPC_SECTOFF_LO:
9349 case elfcpp::R_POWERPC_TPREL16_LO:
9350 case elfcpp::R_POWERPC_DTPREL16_LO:
9351 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9352 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9353 if (size == 64)
9354 status = Reloc::addr16(view, value, overflow);
9355 else
9356 maybe_dq_reloc = true;
9357 break;
9358
9359 case elfcpp::R_POWERPC_UADDR16:
9360 status = Reloc::addr16_u(view, value, overflow);
9361 break;
9362
9363 case elfcpp::R_PPC64_ADDR16_HIGH:
9364 case elfcpp::R_PPC64_TPREL16_HIGH:
9365 case elfcpp::R_PPC64_DTPREL16_HIGH:
9366 if (size == 32)
9367 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9368 goto unsupp;
9369 // Fall through.
9370 case elfcpp::R_POWERPC_ADDR16_HI:
9371 case elfcpp::R_POWERPC_REL16_HI:
9372 case elfcpp::R_PPC64_TOC16_HI:
9373 case elfcpp::R_POWERPC_GOT16_HI:
9374 case elfcpp::R_POWERPC_SECTOFF_HI:
9375 case elfcpp::R_POWERPC_TPREL16_HI:
9376 case elfcpp::R_POWERPC_DTPREL16_HI:
9377 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9378 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9379 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9380 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9381 Reloc::addr16_hi(view, value);
9382 break;
9383
9384 case elfcpp::R_PPC64_ADDR16_HIGHA:
9385 case elfcpp::R_PPC64_TPREL16_HIGHA:
9386 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9387 if (size == 32)
9388 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
9389 goto unsupp;
9390 // Fall through.
9391 case elfcpp::R_POWERPC_ADDR16_HA:
9392 case elfcpp::R_POWERPC_REL16_HA:
9393 case elfcpp::R_PPC64_TOC16_HA:
9394 case elfcpp::R_POWERPC_GOT16_HA:
9395 case elfcpp::R_POWERPC_SECTOFF_HA:
9396 case elfcpp::R_POWERPC_TPREL16_HA:
9397 case elfcpp::R_POWERPC_DTPREL16_HA:
9398 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9399 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9400 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9401 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9402 Reloc::addr16_ha(view, value);
9403 break;
9404
9405 case elfcpp::R_POWERPC_REL16DX_HA:
9406 status = Reloc::addr16dx_ha(view, value, overflow);
9407 break;
9408
9409 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9410 if (size == 32)
9411 // R_PPC_EMB_NADDR16_LO
9412 goto unsupp;
9413 // Fall through.
9414 case elfcpp::R_PPC64_ADDR16_HIGHER:
9415 case elfcpp::R_PPC64_TPREL16_HIGHER:
9416 Reloc::addr16_hi2(view, value);
9417 break;
9418
9419 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9420 if (size == 32)
9421 // R_PPC_EMB_NADDR16_HI
9422 goto unsupp;
9423 // Fall through.
9424 case elfcpp::R_PPC64_ADDR16_HIGHERA:
9425 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9426 Reloc::addr16_ha2(view, value);
9427 break;
9428
9429 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9430 if (size == 32)
9431 // R_PPC_EMB_NADDR16_HA
9432 goto unsupp;
9433 // Fall through.
9434 case elfcpp::R_PPC64_ADDR16_HIGHEST:
9435 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9436 Reloc::addr16_hi3(view, value);
9437 break;
9438
9439 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9440 if (size == 32)
9441 // R_PPC_EMB_SDAI16
9442 goto unsupp;
9443 // Fall through.
9444 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9445 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9446 Reloc::addr16_ha3(view, value);
9447 break;
9448
9449 case elfcpp::R_PPC64_DTPREL16_DS:
9450 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9451 if (size == 32)
9452 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9453 goto unsupp;
9454 // Fall through.
9455 case elfcpp::R_PPC64_TPREL16_DS:
9456 case elfcpp::R_PPC64_TPREL16_LO_DS:
9457 if (size == 32)
9458 // R_PPC_TLSGD, R_PPC_TLSLD
9459 break;
9460 // Fall through.
9461 case elfcpp::R_PPC64_ADDR16_DS:
9462 case elfcpp::R_PPC64_ADDR16_LO_DS:
9463 case elfcpp::R_PPC64_TOC16_DS:
9464 case elfcpp::R_PPC64_TOC16_LO_DS:
9465 case elfcpp::R_PPC64_GOT16_DS:
9466 case elfcpp::R_PPC64_GOT16_LO_DS:
9467 case elfcpp::R_PPC64_SECTOFF_DS:
9468 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9469 maybe_dq_reloc = true;
9470 break;
9471
9472 case elfcpp::R_POWERPC_ADDR14:
9473 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9474 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9475 case elfcpp::R_POWERPC_REL14:
9476 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9477 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9478 status = Reloc::addr14(view, value, overflow);
9479 break;
9480
9481 case elfcpp::R_POWERPC_COPY:
9482 case elfcpp::R_POWERPC_GLOB_DAT:
9483 case elfcpp::R_POWERPC_JMP_SLOT:
9484 case elfcpp::R_POWERPC_RELATIVE:
9485 case elfcpp::R_POWERPC_DTPMOD:
9486 case elfcpp::R_PPC64_JMP_IREL:
9487 case elfcpp::R_POWERPC_IRELATIVE:
9488 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9489 _("unexpected reloc %u in object file"),
9490 r_type);
9491 break;
9492
9493 case elfcpp::R_PPC64_TOCSAVE:
9494 if (size == 32)
9495 // R_PPC_EMB_SDA21
9496 goto unsupp;
9497 else
9498 {
9499 Symbol_location loc;
9500 loc.object = relinfo->object;
9501 loc.shndx = relinfo->data_shndx;
9502 loc.offset = rela.get_r_offset();
9503 Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9504 if (p != target->tocsave_loc().end())
9505 {
9506 // If we've generated plt calls using this tocsave, then
9507 // the nop needs to be changed to save r2.
9508 Insn* iview = reinterpret_cast<Insn*>(view);
9509 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9510 elfcpp::Swap<32, big_endian>::
9511 writeval(iview, std_2_1 + target->stk_toc());
9512 }
9513 }
9514 break;
9515
9516 case elfcpp::R_PPC_EMB_SDA2I16:
9517 case elfcpp::R_PPC_EMB_SDA2REL:
9518 if (size == 32)
9519 goto unsupp;
9520 // R_PPC64_TLSGD, R_PPC64_TLSLD
9521 break;
9522
9523 case elfcpp::R_POWERPC_PLT32:
9524 case elfcpp::R_POWERPC_PLTREL32:
9525 case elfcpp::R_POWERPC_PLT16_LO:
9526 case elfcpp::R_POWERPC_PLT16_HI:
9527 case elfcpp::R_POWERPC_PLT16_HA:
9528 case elfcpp::R_PPC_SDAREL16:
9529 case elfcpp::R_POWERPC_ADDR30:
9530 case elfcpp::R_PPC64_PLT64:
9531 case elfcpp::R_PPC64_PLTREL64:
9532 case elfcpp::R_PPC64_PLTGOT16:
9533 case elfcpp::R_PPC64_PLTGOT16_LO:
9534 case elfcpp::R_PPC64_PLTGOT16_HI:
9535 case elfcpp::R_PPC64_PLTGOT16_HA:
9536 case elfcpp::R_PPC64_PLT16_LO_DS:
9537 case elfcpp::R_PPC64_PLTGOT16_DS:
9538 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9539 case elfcpp::R_PPC_EMB_RELSDA:
9540 case elfcpp::R_PPC_TOC16:
9541 default:
9542 unsupp:
9543 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9544 _("unsupported reloc %u"),
9545 r_type);
9546 break;
9547 }
9548
9549 if (maybe_dq_reloc)
9550 {
9551 if (insn == 0)
9552 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9553
9554 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9555 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9556 && (insn & 3) == 1))
9557 status = Reloc::addr16_dq(view, value, overflow);
9558 else if (size == 64
9559 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9560 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9561 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9562 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9563 status = Reloc::addr16_ds(view, value, overflow);
9564 else
9565 status = Reloc::addr16(view, value, overflow);
9566 }
9567
9568 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9569 && (has_stub_value
9570 || !(gsym != NULL
9571 && gsym->is_undefined()
9572 && is_branch_reloc(r_type))))
9573 {
9574 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9575 _("relocation overflow"));
9576 if (has_stub_value)
9577 gold_info(_("try relinking with a smaller --stub-group-size"));
9578 }
9579
9580 return true;
9581 }
9582
9583 // Relocate section data.
9584
9585 template<int size, bool big_endian>
9586 void
9587 Target_powerpc<size, big_endian>::relocate_section(
9588 const Relocate_info<size, big_endian>* relinfo,
9589 unsigned int sh_type,
9590 const unsigned char* prelocs,
9591 size_t reloc_count,
9592 Output_section* output_section,
9593 bool needs_special_offset_handling,
9594 unsigned char* view,
9595 Address address,
9596 section_size_type view_size,
9597 const Reloc_symbol_changes* reloc_symbol_changes)
9598 {
9599 typedef Target_powerpc<size, big_endian> Powerpc;
9600 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9601 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9602 Powerpc_comdat_behavior;
9603 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9604 Classify_reloc;
9605
9606 gold_assert(sh_type == elfcpp::SHT_RELA);
9607
9608 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9609 Powerpc_comdat_behavior, Classify_reloc>(
9610 relinfo,
9611 this,
9612 prelocs,
9613 reloc_count,
9614 output_section,
9615 needs_special_offset_handling,
9616 view,
9617 address,
9618 view_size,
9619 reloc_symbol_changes);
9620 }
9621
9622 template<int size, bool big_endian>
9623 class Powerpc_scan_relocatable_reloc
9624 {
9625 public:
9626 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9627 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9628 static const int sh_type = elfcpp::SHT_RELA;
9629
9630 // Return the symbol referred to by the relocation.
9631 static inline unsigned int
9632 get_r_sym(const Reltype* reloc)
9633 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9634
9635 // Return the type of the relocation.
9636 static inline unsigned int
9637 get_r_type(const Reltype* reloc)
9638 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9639
9640 // Return the strategy to use for a local symbol which is not a
9641 // section symbol, given the relocation type.
9642 inline Relocatable_relocs::Reloc_strategy
9643 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9644 {
9645 if (r_type == 0 && r_sym == 0)
9646 return Relocatable_relocs::RELOC_DISCARD;
9647 return Relocatable_relocs::RELOC_COPY;
9648 }
9649
9650 // Return the strategy to use for a local symbol which is a section
9651 // symbol, given the relocation type.
9652 inline Relocatable_relocs::Reloc_strategy
9653 local_section_strategy(unsigned int, Relobj*)
9654 {
9655 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9656 }
9657
9658 // Return the strategy to use for a global symbol, given the
9659 // relocation type, the object, and the symbol index.
9660 inline Relocatable_relocs::Reloc_strategy
9661 global_strategy(unsigned int r_type, Relobj*, unsigned int)
9662 {
9663 if (r_type == elfcpp::R_PPC_PLTREL24)
9664 return Relocatable_relocs::RELOC_SPECIAL;
9665 return Relocatable_relocs::RELOC_COPY;
9666 }
9667 };
9668
9669 // Scan the relocs during a relocatable link.
9670
9671 template<int size, bool big_endian>
9672 void
9673 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9674 Symbol_table* symtab,
9675 Layout* layout,
9676 Sized_relobj_file<size, big_endian>* object,
9677 unsigned int data_shndx,
9678 unsigned int sh_type,
9679 const unsigned char* prelocs,
9680 size_t reloc_count,
9681 Output_section* output_section,
9682 bool needs_special_offset_handling,
9683 size_t local_symbol_count,
9684 const unsigned char* plocal_symbols,
9685 Relocatable_relocs* rr)
9686 {
9687 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9688
9689 gold_assert(sh_type == elfcpp::SHT_RELA);
9690
9691 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9692 symtab,
9693 layout,
9694 object,
9695 data_shndx,
9696 prelocs,
9697 reloc_count,
9698 output_section,
9699 needs_special_offset_handling,
9700 local_symbol_count,
9701 plocal_symbols,
9702 rr);
9703 }
9704
9705 // Scan the relocs for --emit-relocs.
9706
9707 template<int size, bool big_endian>
9708 void
9709 Target_powerpc<size, big_endian>::emit_relocs_scan(
9710 Symbol_table* symtab,
9711 Layout* layout,
9712 Sized_relobj_file<size, big_endian>* object,
9713 unsigned int data_shndx,
9714 unsigned int sh_type,
9715 const unsigned char* prelocs,
9716 size_t reloc_count,
9717 Output_section* output_section,
9718 bool needs_special_offset_handling,
9719 size_t local_symbol_count,
9720 const unsigned char* plocal_syms,
9721 Relocatable_relocs* rr)
9722 {
9723 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9724 Classify_reloc;
9725 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9726 Emit_relocs_strategy;
9727
9728 gold_assert(sh_type == elfcpp::SHT_RELA);
9729
9730 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9731 symtab,
9732 layout,
9733 object,
9734 data_shndx,
9735 prelocs,
9736 reloc_count,
9737 output_section,
9738 needs_special_offset_handling,
9739 local_symbol_count,
9740 plocal_syms,
9741 rr);
9742 }
9743
9744 // Emit relocations for a section.
9745 // This is a modified version of the function by the same name in
9746 // target-reloc.h. Using relocate_special_relocatable for
9747 // R_PPC_PLTREL24 would require duplication of the entire body of the
9748 // loop, so we may as well duplicate the whole thing.
9749
9750 template<int size, bool big_endian>
9751 void
9752 Target_powerpc<size, big_endian>::relocate_relocs(
9753 const Relocate_info<size, big_endian>* relinfo,
9754 unsigned int sh_type,
9755 const unsigned char* prelocs,
9756 size_t reloc_count,
9757 Output_section* output_section,
9758 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9759 unsigned char*,
9760 Address view_address,
9761 section_size_type,
9762 unsigned char* reloc_view,
9763 section_size_type reloc_view_size)
9764 {
9765 gold_assert(sh_type == elfcpp::SHT_RELA);
9766
9767 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9768 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9769 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9770 // Offset from start of insn to d-field reloc.
9771 const int d_offset = big_endian ? 2 : 0;
9772
9773 Powerpc_relobj<size, big_endian>* const object
9774 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9775 const unsigned int local_count = object->local_symbol_count();
9776 unsigned int got2_shndx = object->got2_shndx();
9777 Address got2_addend = 0;
9778 if (got2_shndx != 0)
9779 {
9780 got2_addend = object->get_output_section_offset(got2_shndx);
9781 gold_assert(got2_addend != invalid_address);
9782 }
9783
9784 const bool relocatable = parameters->options().relocatable();
9785
9786 unsigned char* pwrite = reloc_view;
9787 bool zap_next = false;
9788 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9789 {
9790 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9791 if (strategy == Relocatable_relocs::RELOC_DISCARD)
9792 continue;
9793
9794 Reltype reloc(prelocs);
9795 Reltype_write reloc_write(pwrite);
9796
9797 Address offset = reloc.get_r_offset();
9798 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9799 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9800 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9801 const unsigned int orig_r_sym = r_sym;
9802 typename elfcpp::Elf_types<size>::Elf_Swxword addend
9803 = reloc.get_r_addend();
9804 const Symbol* gsym = NULL;
9805
9806 if (zap_next)
9807 {
9808 // We could arrange to discard these and other relocs for
9809 // tls optimised sequences in the strategy methods, but for
9810 // now do as BFD ld does.
9811 r_type = elfcpp::R_POWERPC_NONE;
9812 zap_next = false;
9813 }
9814
9815 // Get the new symbol index.
9816 Output_section* os = NULL;
9817 if (r_sym < local_count)
9818 {
9819 switch (strategy)
9820 {
9821 case Relocatable_relocs::RELOC_COPY:
9822 case Relocatable_relocs::RELOC_SPECIAL:
9823 if (r_sym != 0)
9824 {
9825 r_sym = object->symtab_index(r_sym);
9826 gold_assert(r_sym != -1U);
9827 }
9828 break;
9829
9830 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9831 {
9832 // We are adjusting a section symbol. We need to find
9833 // the symbol table index of the section symbol for
9834 // the output section corresponding to input section
9835 // in which this symbol is defined.
9836 gold_assert(r_sym < local_count);
9837 bool is_ordinary;
9838 unsigned int shndx =
9839 object->local_symbol_input_shndx(r_sym, &is_ordinary);
9840 gold_assert(is_ordinary);
9841 os = object->output_section(shndx);
9842 gold_assert(os != NULL);
9843 gold_assert(os->needs_symtab_index());
9844 r_sym = os->symtab_index();
9845 }
9846 break;
9847
9848 default:
9849 gold_unreachable();
9850 }
9851 }
9852 else
9853 {
9854 gsym = object->global_symbol(r_sym);
9855 gold_assert(gsym != NULL);
9856 if (gsym->is_forwarder())
9857 gsym = relinfo->symtab->resolve_forwards(gsym);
9858
9859 gold_assert(gsym->has_symtab_index());
9860 r_sym = gsym->symtab_index();
9861 }
9862
9863 // Get the new offset--the location in the output section where
9864 // this relocation should be applied.
9865 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9866 offset += offset_in_output_section;
9867 else
9868 {
9869 section_offset_type sot_offset =
9870 convert_types<section_offset_type, Address>(offset);
9871 section_offset_type new_sot_offset =
9872 output_section->output_offset(object, relinfo->data_shndx,
9873 sot_offset);
9874 gold_assert(new_sot_offset != -1);
9875 offset = new_sot_offset;
9876 }
9877
9878 // In an object file, r_offset is an offset within the section.
9879 // In an executable or dynamic object, generated by
9880 // --emit-relocs, r_offset is an absolute address.
9881 if (!relocatable)
9882 {
9883 offset += view_address;
9884 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9885 offset -= offset_in_output_section;
9886 }
9887
9888 // Handle the reloc addend based on the strategy.
9889 if (strategy == Relocatable_relocs::RELOC_COPY)
9890 ;
9891 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9892 {
9893 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9894 addend = psymval->value(object, addend);
9895 // In a relocatable link, the symbol value is relative to
9896 // the start of the output section. For a non-relocatable
9897 // link, we need to adjust the addend.
9898 if (!relocatable)
9899 {
9900 gold_assert(os != NULL);
9901 addend -= os->address();
9902 }
9903 }
9904 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9905 {
9906 if (size == 32)
9907 {
9908 if (addend >= 32768)
9909 addend += got2_addend;
9910 }
9911 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9912 {
9913 r_type = elfcpp::R_POWERPC_ADDR16_HA;
9914 addend -= d_offset;
9915 }
9916 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9917 {
9918 r_type = elfcpp::R_POWERPC_ADDR16_LO;
9919 addend -= d_offset + 4;
9920 }
9921 }
9922 else
9923 gold_unreachable();
9924
9925 if (!relocatable)
9926 {
9927 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9928 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9929 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9930 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9931 {
9932 // First instruction of a global dynamic sequence,
9933 // arg setup insn.
9934 const bool final = gsym == NULL || gsym->final_value_is_known();
9935 switch (this->optimize_tls_gd(final))
9936 {
9937 case tls::TLSOPT_TO_IE:
9938 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9939 - elfcpp::R_POWERPC_GOT_TLSGD16);
9940 break;
9941 case tls::TLSOPT_TO_LE:
9942 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9943 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9944 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9945 else
9946 {
9947 r_type = elfcpp::R_POWERPC_NONE;
9948 offset -= d_offset;
9949 }
9950 break;
9951 default:
9952 break;
9953 }
9954 }
9955 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9956 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9957 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9958 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9959 {
9960 // First instruction of a local dynamic sequence,
9961 // arg setup insn.
9962 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9963 {
9964 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9965 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9966 {
9967 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9968 const Output_section* os = relinfo->layout->tls_segment()
9969 ->first_section();
9970 gold_assert(os != NULL);
9971 gold_assert(os->needs_symtab_index());
9972 r_sym = os->symtab_index();
9973 addend = dtp_offset;
9974 }
9975 else
9976 {
9977 r_type = elfcpp::R_POWERPC_NONE;
9978 offset -= d_offset;
9979 }
9980 }
9981 }
9982 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9983 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9984 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9985 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9986 {
9987 // First instruction of initial exec sequence.
9988 const bool final = gsym == NULL || gsym->final_value_is_known();
9989 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9990 {
9991 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9992 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9993 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9994 else
9995 {
9996 r_type = elfcpp::R_POWERPC_NONE;
9997 offset -= d_offset;
9998 }
9999 }
10000 }
10001 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10002 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10003 {
10004 // Second instruction of a global dynamic sequence,
10005 // the __tls_get_addr call
10006 const bool final = gsym == NULL || gsym->final_value_is_known();
10007 switch (this->optimize_tls_gd(final))
10008 {
10009 case tls::TLSOPT_TO_IE:
10010 r_type = elfcpp::R_POWERPC_NONE;
10011 zap_next = true;
10012 break;
10013 case tls::TLSOPT_TO_LE:
10014 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10015 offset += d_offset;
10016 zap_next = true;
10017 break;
10018 default:
10019 break;
10020 }
10021 }
10022 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10023 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10024 {
10025 // Second instruction of a local dynamic sequence,
10026 // the __tls_get_addr call
10027 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10028 {
10029 const Output_section* os = relinfo->layout->tls_segment()
10030 ->first_section();
10031 gold_assert(os != NULL);
10032 gold_assert(os->needs_symtab_index());
10033 r_sym = os->symtab_index();
10034 addend = dtp_offset;
10035 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10036 offset += d_offset;
10037 zap_next = true;
10038 }
10039 }
10040 else if (r_type == elfcpp::R_POWERPC_TLS)
10041 {
10042 // Second instruction of an initial exec sequence
10043 const bool final = gsym == NULL || gsym->final_value_is_known();
10044 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10045 {
10046 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10047 offset += d_offset;
10048 }
10049 }
10050 }
10051
10052 reloc_write.put_r_offset(offset);
10053 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10054 reloc_write.put_r_addend(addend);
10055
10056 pwrite += reloc_size;
10057 }
10058
10059 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10060 == reloc_view_size);
10061 }
10062
10063 // Return the value to use for a dynamic symbol which requires special
10064 // treatment. This is how we support equality comparisons of function
10065 // pointers across shared library boundaries, as described in the
10066 // processor specific ABI supplement.
10067
10068 template<int size, bool big_endian>
10069 uint64_t
10070 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10071 {
10072 if (size == 32)
10073 {
10074 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10075 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10076 p != this->stub_tables_.end();
10077 ++p)
10078 {
10079 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10080 = (*p)->find_plt_call_entry(gsym);
10081 if (ent != NULL)
10082 return (*p)->stub_address() + ent->off_;
10083 }
10084 }
10085 else if (this->abiversion() >= 2)
10086 {
10087 Address off = this->glink_section()->find_global_entry(gsym);
10088 if (off != invalid_address)
10089 return this->glink_section()->global_entry_address() + off;
10090 }
10091 gold_unreachable();
10092 }
10093
10094 // Return the PLT address to use for a local symbol.
10095 template<int size, bool big_endian>
10096 uint64_t
10097 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10098 const Relobj* object,
10099 unsigned int symndx) const
10100 {
10101 if (size == 32)
10102 {
10103 const Sized_relobj<size, big_endian>* relobj
10104 = static_cast<const Sized_relobj<size, big_endian>*>(object);
10105 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10106 p != this->stub_tables_.end();
10107 ++p)
10108 {
10109 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10110 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10111 if (ent != NULL)
10112 return (*p)->stub_address() + ent->off_;
10113 }
10114 }
10115 gold_unreachable();
10116 }
10117
10118 // Return the PLT address to use for a global symbol.
10119 template<int size, bool big_endian>
10120 uint64_t
10121 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10122 const Symbol* gsym) const
10123 {
10124 if (size == 32)
10125 {
10126 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10127 p != this->stub_tables_.end();
10128 ++p)
10129 {
10130 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10131 = (*p)->find_plt_call_entry(gsym);
10132 if (ent != NULL)
10133 return (*p)->stub_address() + ent->off_;
10134 }
10135 }
10136 else if (this->abiversion() >= 2)
10137 {
10138 Address off = this->glink_section()->find_global_entry(gsym);
10139 if (off != invalid_address)
10140 return this->glink_section()->global_entry_address() + off;
10141 }
10142 gold_unreachable();
10143 }
10144
10145 // Return the offset to use for the GOT_INDX'th got entry which is
10146 // for a local tls symbol specified by OBJECT, SYMNDX.
10147 template<int size, bool big_endian>
10148 int64_t
10149 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10150 const Relobj* object,
10151 unsigned int symndx,
10152 unsigned int got_indx) const
10153 {
10154 const Powerpc_relobj<size, big_endian>* ppc_object
10155 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10156 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10157 {
10158 for (Got_type got_type = GOT_TYPE_TLSGD;
10159 got_type <= GOT_TYPE_TPREL;
10160 got_type = Got_type(got_type + 1))
10161 if (ppc_object->local_has_got_offset(symndx, got_type))
10162 {
10163 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10164 if (got_type == GOT_TYPE_TLSGD)
10165 off += size / 8;
10166 if (off == got_indx * (size / 8))
10167 {
10168 if (got_type == GOT_TYPE_TPREL)
10169 return -tp_offset;
10170 else
10171 return -dtp_offset;
10172 }
10173 }
10174 }
10175 gold_unreachable();
10176 }
10177
10178 // Return the offset to use for the GOT_INDX'th got entry which is
10179 // for global tls symbol GSYM.
10180 template<int size, bool big_endian>
10181 int64_t
10182 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10183 Symbol* gsym,
10184 unsigned int got_indx) const
10185 {
10186 if (gsym->type() == elfcpp::STT_TLS)
10187 {
10188 for (Got_type got_type = GOT_TYPE_TLSGD;
10189 got_type <= GOT_TYPE_TPREL;
10190 got_type = Got_type(got_type + 1))
10191 if (gsym->has_got_offset(got_type))
10192 {
10193 unsigned int off = gsym->got_offset(got_type);
10194 if (got_type == GOT_TYPE_TLSGD)
10195 off += size / 8;
10196 if (off == got_indx * (size / 8))
10197 {
10198 if (got_type == GOT_TYPE_TPREL)
10199 return -tp_offset;
10200 else
10201 return -dtp_offset;
10202 }
10203 }
10204 }
10205 gold_unreachable();
10206 }
10207
10208 // The selector for powerpc object files.
10209
10210 template<int size, bool big_endian>
10211 class Target_selector_powerpc : public Target_selector
10212 {
10213 public:
10214 Target_selector_powerpc()
10215 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10216 size, big_endian,
10217 (size == 64
10218 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10219 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10220 (size == 64
10221 ? (big_endian ? "elf64ppc" : "elf64lppc")
10222 : (big_endian ? "elf32ppc" : "elf32lppc")))
10223 { }
10224
10225 virtual Target*
10226 do_instantiate_target()
10227 { return new Target_powerpc<size, big_endian>(); }
10228 };
10229
10230 Target_selector_powerpc<32, true> target_selector_ppc32;
10231 Target_selector_powerpc<32, false> target_selector_ppc32le;
10232 Target_selector_powerpc<64, true> target_selector_ppc64;
10233 Target_selector_powerpc<64, false> target_selector_ppc64le;
10234
10235 // Instantiate these constants for -O0
10236 template<int size, bool big_endian>
10237 const typename Output_data_glink<size, big_endian>::Address
10238 Output_data_glink<size, big_endian>::invalid_address;
10239 template<int size, bool big_endian>
10240 const typename Stub_table<size, big_endian>::Address
10241 Stub_table<size, big_endian>::invalid_address;
10242 template<int size, bool big_endian>
10243 const typename Target_powerpc<size, big_endian>::Address
10244 Target_powerpc<size, big_endian>::invalid_address;
10245
10246 } // End anonymous namespace.