]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/powerpc.cc
Support R_PPC64_ADDR64_LOCAL
[thirdparty/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* ,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 return false;
962 // For 32-bit, conservatively assume anything but calls to
963 // function code might be taking the address of the function.
964 return !is_branch_reloc(r_type);
965 }
966
967 inline bool
968 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969 Target_powerpc* ,
970 Sized_relobj_file<size, big_endian>* ,
971 unsigned int ,
972 Output_section* ,
973 const elfcpp::Rela<size, big_endian>& ,
974 unsigned int r_type,
975 Symbol*)
976 {
977 // As above.
978 if (size == 64)
979 return false;
980 return !is_branch_reloc(r_type);
981 }
982
983 static bool
984 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
985 Sized_relobj_file<size, big_endian>* object,
986 unsigned int r_type, bool report_err);
987
988 private:
989 static void
990 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
991 unsigned int r_type);
992
993 static void
994 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
995 unsigned int r_type, Symbol*);
996
997 static void
998 generate_tls_call(Symbol_table* symtab, Layout* layout,
999 Target_powerpc* target);
1000
1001 void
1002 check_non_pic(Relobj*, unsigned int r_type);
1003
1004 // Whether we have issued an error about a non-PIC compilation.
1005 bool issued_non_pic_error_;
1006 };
1007
1008 Address
1009 symval_for_branch(const Symbol_table* symtab, Address value,
1010 const Sized_symbol<size>* gsym,
1011 Powerpc_relobj<size, big_endian>* object,
1012 unsigned int *dest_shndx);
1013
1014 // The class which implements relocation.
1015 class Relocate : protected Track_tls
1016 {
1017 public:
1018 // Use 'at' branch hints when true, 'y' when false.
1019 // FIXME maybe: set this with an option.
1020 static const bool is_isa_v2 = true;
1021
1022 Relocate()
1023 : Track_tls()
1024 { }
1025
1026 // Do a relocation. Return false if the caller should not issue
1027 // any warnings about this relocation.
1028 inline bool
1029 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1030 Output_section*, size_t relnum,
1031 const elfcpp::Rela<size, big_endian>&,
1032 unsigned int r_type, const Sized_symbol<size>*,
1033 const Symbol_value<size>*,
1034 unsigned char*,
1035 typename elfcpp::Elf_types<size>::Elf_Addr,
1036 section_size_type);
1037 };
1038
1039 class Relocate_comdat_behavior
1040 {
1041 public:
1042 // Decide what the linker should do for relocations that refer to
1043 // discarded comdat sections.
1044 inline Comdat_behavior
1045 get(const char* name)
1046 {
1047 gold::Default_comdat_behavior default_behavior;
1048 Comdat_behavior ret = default_behavior.get(name);
1049 if (ret == CB_WARNING)
1050 {
1051 if (size == 32
1052 && (strcmp(name, ".fixup") == 0
1053 || strcmp(name, ".got2") == 0))
1054 ret = CB_IGNORE;
1055 if (size == 64
1056 && (strcmp(name, ".opd") == 0
1057 || strcmp(name, ".toc") == 0
1058 || strcmp(name, ".toc1") == 0))
1059 ret = CB_IGNORE;
1060 }
1061 return ret;
1062 }
1063 };
1064
1065 // A class which returns the size required for a relocation type,
1066 // used while scanning relocs during a relocatable link.
1067 class Relocatable_size_for_reloc
1068 {
1069 public:
1070 unsigned int
1071 get_size_for_reloc(unsigned int, Relobj*)
1072 {
1073 gold_unreachable();
1074 return 0;
1075 }
1076 };
1077
1078 // Optimize the TLS relocation type based on what we know about the
1079 // symbol. IS_FINAL is true if the final address of this symbol is
1080 // known at link time.
1081
1082 tls::Tls_optimization
1083 optimize_tls_gd(bool is_final)
1084 {
1085 // If we are generating a shared library, then we can't do anything
1086 // in the linker.
1087 if (parameters->options().shared())
1088 return tls::TLSOPT_NONE;
1089
1090 if (!is_final)
1091 return tls::TLSOPT_TO_IE;
1092 return tls::TLSOPT_TO_LE;
1093 }
1094
1095 tls::Tls_optimization
1096 optimize_tls_ld()
1097 {
1098 if (parameters->options().shared())
1099 return tls::TLSOPT_NONE;
1100
1101 return tls::TLSOPT_TO_LE;
1102 }
1103
1104 tls::Tls_optimization
1105 optimize_tls_ie(bool is_final)
1106 {
1107 if (!is_final || parameters->options().shared())
1108 return tls::TLSOPT_NONE;
1109
1110 return tls::TLSOPT_TO_LE;
1111 }
1112
1113 // Create glink.
1114 void
1115 make_glink_section(Layout*);
1116
1117 // Create the PLT section.
1118 void
1119 make_plt_section(Symbol_table*, Layout*);
1120
1121 void
1122 make_iplt_section(Symbol_table*, Layout*);
1123
1124 void
1125 make_brlt_section(Layout*);
1126
1127 // Create a PLT entry for a global symbol.
1128 void
1129 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1130
1131 // Create a PLT entry for a local IFUNC symbol.
1132 void
1133 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1134 Sized_relobj_file<size, big_endian>*,
1135 unsigned int);
1136
1137
1138 // Create a GOT entry for local dynamic __tls_get_addr.
1139 unsigned int
1140 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1141 Sized_relobj_file<size, big_endian>* object);
1142
1143 unsigned int
1144 tlsld_got_offset() const
1145 {
1146 return this->tlsld_got_offset_;
1147 }
1148
1149 // Get the dynamic reloc section, creating it if necessary.
1150 Reloc_section*
1151 rela_dyn_section(Layout*);
1152
1153 // Similarly, but for ifunc symbols get the one for ifunc.
1154 Reloc_section*
1155 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1156
1157 // Copy a relocation against a global symbol.
1158 void
1159 copy_reloc(Symbol_table* symtab, Layout* layout,
1160 Sized_relobj_file<size, big_endian>* object,
1161 unsigned int shndx, Output_section* output_section,
1162 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1163 {
1164 this->copy_relocs_.copy_reloc(symtab, layout,
1165 symtab->get_sized_symbol<size>(sym),
1166 object, shndx, output_section,
1167 reloc, this->rela_dyn_section(layout));
1168 }
1169
1170 // Look over all the input sections, deciding where to place stubs.
1171 void
1172 group_sections(Layout*, const Task*);
1173
1174 // Sort output sections by address.
1175 struct Sort_sections
1176 {
1177 bool
1178 operator()(const Output_section* sec1, const Output_section* sec2)
1179 { return sec1->address() < sec2->address(); }
1180 };
1181
1182 class Branch_info
1183 {
1184 public:
1185 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1186 unsigned int data_shndx,
1187 Address r_offset,
1188 unsigned int r_type,
1189 unsigned int r_sym,
1190 Address addend)
1191 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1192 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1193 { }
1194
1195 ~Branch_info()
1196 { }
1197
1198 // If this branch needs a plt call stub, or a long branch stub, make one.
1199 void
1200 make_stub(Stub_table<size, big_endian>*,
1201 Stub_table<size, big_endian>*,
1202 Symbol_table*) const;
1203
1204 private:
1205 // The branch location..
1206 Powerpc_relobj<size, big_endian>* object_;
1207 unsigned int shndx_;
1208 Address offset_;
1209 // ..and the branch type and destination.
1210 unsigned int r_type_;
1211 unsigned int r_sym_;
1212 Address addend_;
1213 };
1214
1215 // Information about this specific target which we pass to the
1216 // general Target structure.
1217 static Target::Target_info powerpc_info;
1218
1219 // The types of GOT entries needed for this platform.
1220 // These values are exposed to the ABI in an incremental link.
1221 // Do not renumber existing values without changing the version
1222 // number of the .gnu_incremental_inputs section.
1223 enum Got_type
1224 {
1225 GOT_TYPE_STANDARD,
1226 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1227 GOT_TYPE_DTPREL, // entry for @got@dtprel
1228 GOT_TYPE_TPREL // entry for @got@tprel
1229 };
1230
1231 // The GOT section.
1232 Output_data_got_powerpc<size, big_endian>* got_;
1233 // The PLT section. This is a container for a table of addresses,
1234 // and their relocations. Each address in the PLT has a dynamic
1235 // relocation (R_*_JMP_SLOT) and each address will have a
1236 // corresponding entry in .glink for lazy resolution of the PLT.
1237 // ppc32 initialises the PLT to point at the .glink entry, while
1238 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1239 // linker adds a stub that loads the PLT entry into ctr then
1240 // branches to ctr. There may be more than one stub for each PLT
1241 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1242 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1243 Output_data_plt_powerpc<size, big_endian>* plt_;
1244 // The IPLT section. Like plt_, this is a container for a table of
1245 // addresses and their relocations, specifically for STT_GNU_IFUNC
1246 // functions that resolve locally (STT_GNU_IFUNC functions that
1247 // don't resolve locally go in PLT). Unlike plt_, these have no
1248 // entry in .glink for lazy resolution, and the relocation section
1249 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1250 // the relocation section may contain relocations against
1251 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1252 // relocation section will appear at the end of other dynamic
1253 // relocations, so that ld.so applies these relocations after other
1254 // dynamic relocations. In a static executable, the relocation
1255 // section is emitted and marked with __rela_iplt_start and
1256 // __rela_iplt_end symbols.
1257 Output_data_plt_powerpc<size, big_endian>* iplt_;
1258 // Section holding long branch destinations.
1259 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1260 // The .glink section.
1261 Output_data_glink<size, big_endian>* glink_;
1262 // The dynamic reloc section.
1263 Reloc_section* rela_dyn_;
1264 // Relocs saved to avoid a COPY reloc.
1265 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1266 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1267 unsigned int tlsld_got_offset_;
1268
1269 Stub_tables stub_tables_;
1270 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1271 Branch_lookup_table branch_lookup_table_;
1272
1273 typedef std::vector<Branch_info> Branches;
1274 Branches branch_info_;
1275
1276 bool plt_thread_safe_;
1277 };
1278
1279 template<>
1280 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1281 {
1282 32, // size
1283 true, // is_big_endian
1284 elfcpp::EM_PPC, // machine_code
1285 false, // has_make_symbol
1286 false, // has_resolve
1287 false, // has_code_fill
1288 true, // is_default_stack_executable
1289 false, // can_icf_inline_merge_sections
1290 '\0', // wrap_char
1291 "/usr/lib/ld.so.1", // dynamic_linker
1292 0x10000000, // default_text_segment_address
1293 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1294 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1295 false, // isolate_execinstr
1296 0, // rosegment_gap
1297 elfcpp::SHN_UNDEF, // small_common_shndx
1298 elfcpp::SHN_UNDEF, // large_common_shndx
1299 0, // small_common_section_flags
1300 0, // large_common_section_flags
1301 NULL, // attributes_section
1302 NULL, // attributes_vendor
1303 "_start" // entry_symbol_name
1304 };
1305
1306 template<>
1307 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1308 {
1309 32, // size
1310 false, // is_big_endian
1311 elfcpp::EM_PPC, // machine_code
1312 false, // has_make_symbol
1313 false, // has_resolve
1314 false, // has_code_fill
1315 true, // is_default_stack_executable
1316 false, // can_icf_inline_merge_sections
1317 '\0', // wrap_char
1318 "/usr/lib/ld.so.1", // dynamic_linker
1319 0x10000000, // default_text_segment_address
1320 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1321 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1322 false, // isolate_execinstr
1323 0, // rosegment_gap
1324 elfcpp::SHN_UNDEF, // small_common_shndx
1325 elfcpp::SHN_UNDEF, // large_common_shndx
1326 0, // small_common_section_flags
1327 0, // large_common_section_flags
1328 NULL, // attributes_section
1329 NULL, // attributes_vendor
1330 "_start" // entry_symbol_name
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1335 {
1336 64, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC64, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start" // entry_symbol_name
1358 };
1359
1360 template<>
1361 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1362 {
1363 64, // size
1364 false, // is_big_endian
1365 elfcpp::EM_PPC64, // machine_code
1366 false, // has_make_symbol
1367 false, // has_resolve
1368 false, // has_code_fill
1369 true, // is_default_stack_executable
1370 false, // can_icf_inline_merge_sections
1371 '\0', // wrap_char
1372 "/usr/lib/ld.so.1", // dynamic_linker
1373 0x10000000, // default_text_segment_address
1374 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1375 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1376 false, // isolate_execinstr
1377 0, // rosegment_gap
1378 elfcpp::SHN_UNDEF, // small_common_shndx
1379 elfcpp::SHN_UNDEF, // large_common_shndx
1380 0, // small_common_section_flags
1381 0, // large_common_section_flags
1382 NULL, // attributes_section
1383 NULL, // attributes_vendor
1384 "_start" // entry_symbol_name
1385 };
1386
1387 inline bool
1388 is_branch_reloc(unsigned int r_type)
1389 {
1390 return (r_type == elfcpp::R_POWERPC_REL24
1391 || r_type == elfcpp::R_PPC_PLTREL24
1392 || r_type == elfcpp::R_PPC_LOCAL24PC
1393 || r_type == elfcpp::R_POWERPC_REL14
1394 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1395 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1396 || r_type == elfcpp::R_POWERPC_ADDR24
1397 || r_type == elfcpp::R_POWERPC_ADDR14
1398 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1399 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1400 }
1401
1402 // If INSN is an opcode that may be used with an @tls operand, return
1403 // the transformed insn for TLS optimisation, otherwise return 0. If
1404 // REG is non-zero only match an insn with RB or RA equal to REG.
1405 uint32_t
1406 at_tls_transform(uint32_t insn, unsigned int reg)
1407 {
1408 if ((insn & (0x3f << 26)) != 31 << 26)
1409 return 0;
1410
1411 unsigned int rtra;
1412 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1413 rtra = insn & ((1 << 26) - (1 << 16));
1414 else if (((insn >> 16) & 0x1f) == reg)
1415 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1416 else
1417 return 0;
1418
1419 if ((insn & (0x3ff << 1)) == 266 << 1)
1420 // add -> addi
1421 insn = 14 << 26;
1422 else if ((insn & (0x1f << 1)) == 23 << 1
1423 && ((insn & (0x1f << 6)) < 14 << 6
1424 || ((insn & (0x1f << 6)) >= 16 << 6
1425 && (insn & (0x1f << 6)) < 24 << 6)))
1426 // load and store indexed -> dform
1427 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1428 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1429 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1430 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1431 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1432 // lwax -> lwa
1433 insn = (58 << 26) | 2;
1434 else
1435 return 0;
1436 insn |= rtra;
1437 return insn;
1438 }
1439
1440
1441 template<int size, bool big_endian>
1442 class Powerpc_relocate_functions
1443 {
1444 public:
1445 enum Overflow_check
1446 {
1447 CHECK_NONE,
1448 CHECK_SIGNED,
1449 CHECK_BITFIELD
1450 };
1451
1452 enum Status
1453 {
1454 STATUS_OK,
1455 STATUS_OVERFLOW
1456 };
1457
1458 private:
1459 typedef Powerpc_relocate_functions<size, big_endian> This;
1460 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1461
1462 template<int valsize>
1463 static inline bool
1464 has_overflow_signed(Address value)
1465 {
1466 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1467 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1468 limit <<= ((valsize - 1) >> 1);
1469 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1470 return value + limit > (limit << 1) - 1;
1471 }
1472
1473 template<int valsize>
1474 static inline bool
1475 has_overflow_bitfield(Address value)
1476 {
1477 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1478 limit <<= ((valsize - 1) >> 1);
1479 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1480 return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1481 }
1482
1483 template<int valsize>
1484 static inline Status
1485 overflowed(Address value, Overflow_check overflow)
1486 {
1487 if (overflow == CHECK_SIGNED)
1488 {
1489 if (has_overflow_signed<valsize>(value))
1490 return STATUS_OVERFLOW;
1491 }
1492 else if (overflow == CHECK_BITFIELD)
1493 {
1494 if (has_overflow_bitfield<valsize>(value))
1495 return STATUS_OVERFLOW;
1496 }
1497 return STATUS_OK;
1498 }
1499
1500 // Do a simple RELA relocation
1501 template<int valsize>
1502 static inline Status
1503 rela(unsigned char* view, Address value, Overflow_check overflow)
1504 {
1505 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1506 Valtype* wv = reinterpret_cast<Valtype*>(view);
1507 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1508 return overflowed<valsize>(value, overflow);
1509 }
1510
1511 template<int valsize>
1512 static inline Status
1513 rela(unsigned char* view,
1514 unsigned int right_shift,
1515 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1516 Address value,
1517 Overflow_check overflow)
1518 {
1519 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1520 Valtype* wv = reinterpret_cast<Valtype*>(view);
1521 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1522 Valtype reloc = value >> right_shift;
1523 val &= ~dst_mask;
1524 reloc &= dst_mask;
1525 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1526 return overflowed<valsize>(value >> right_shift, overflow);
1527 }
1528
1529 // Do a simple RELA relocation, unaligned.
1530 template<int valsize>
1531 static inline Status
1532 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1533 {
1534 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1535 return overflowed<valsize>(value, overflow);
1536 }
1537
1538 template<int valsize>
1539 static inline Status
1540 rela_ua(unsigned char* view,
1541 unsigned int right_shift,
1542 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1543 Address value,
1544 Overflow_check overflow)
1545 {
1546 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1547 Valtype;
1548 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1549 Valtype reloc = value >> right_shift;
1550 val &= ~dst_mask;
1551 reloc &= dst_mask;
1552 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1553 return overflowed<valsize>(value >> right_shift, overflow);
1554 }
1555
1556 public:
1557 // R_PPC64_ADDR64: (Symbol + Addend)
1558 static inline void
1559 addr64(unsigned char* view, Address value)
1560 { This::template rela<64>(view, value, CHECK_NONE); }
1561
1562 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1563 static inline void
1564 addr64_u(unsigned char* view, Address value)
1565 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1566
1567 // R_POWERPC_ADDR32: (Symbol + Addend)
1568 static inline Status
1569 addr32(unsigned char* view, Address value, Overflow_check overflow)
1570 { return This::template rela<32>(view, value, overflow); }
1571
1572 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1573 static inline Status
1574 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1575 { return This::template rela_ua<32>(view, value, overflow); }
1576
1577 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1578 static inline Status
1579 addr24(unsigned char* view, Address value, Overflow_check overflow)
1580 {
1581 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1582 if (overflow != CHECK_NONE && (value & 3) != 0)
1583 stat = STATUS_OVERFLOW;
1584 return stat;
1585 }
1586
1587 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1588 static inline Status
1589 addr16(unsigned char* view, Address value, Overflow_check overflow)
1590 { return This::template rela<16>(view, value, overflow); }
1591
1592 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1593 static inline Status
1594 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1595 { return This::template rela_ua<16>(view, value, overflow); }
1596
1597 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1598 static inline Status
1599 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1600 {
1601 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1602 if (overflow != CHECK_NONE && (value & 3) != 0)
1603 stat = STATUS_OVERFLOW;
1604 return stat;
1605 }
1606
1607 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1608 static inline void
1609 addr16_hi(unsigned char* view, Address value)
1610 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1611
1612 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1613 static inline void
1614 addr16_ha(unsigned char* view, Address value)
1615 { This::addr16_hi(view, value + 0x8000); }
1616
1617 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1618 static inline void
1619 addr16_hi2(unsigned char* view, Address value)
1620 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1621
1622 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1623 static inline void
1624 addr16_ha2(unsigned char* view, Address value)
1625 { This::addr16_hi2(view, value + 0x8000); }
1626
1627 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1628 static inline void
1629 addr16_hi3(unsigned char* view, Address value)
1630 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1631
1632 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1633 static inline void
1634 addr16_ha3(unsigned char* view, Address value)
1635 { This::addr16_hi3(view, value + 0x8000); }
1636
1637 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1638 static inline Status
1639 addr14(unsigned char* view, Address value, Overflow_check overflow)
1640 {
1641 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1642 if (overflow != CHECK_NONE && (value & 3) != 0)
1643 stat = STATUS_OVERFLOW;
1644 return stat;
1645 }
1646 };
1647
1648 // Set ABI version for input and output.
1649
1650 template<int size, bool big_endian>
1651 void
1652 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1653 {
1654 this->e_flags_ |= ver;
1655 if (this->abiversion() != 0)
1656 {
1657 Target_powerpc<size, big_endian>* target =
1658 static_cast<Target_powerpc<size, big_endian>*>(
1659 parameters->sized_target<size, big_endian>());
1660 if (target->abiversion() == 0)
1661 target->set_abiversion(this->abiversion());
1662 else if (target->abiversion() != this->abiversion())
1663 gold_error(_("%s: ABI version %d is not compatible "
1664 "with ABI version %d output"),
1665 this->name().c_str(),
1666 this->abiversion(), target->abiversion());
1667
1668 }
1669 }
1670
1671 // Stash away the index of .got2 or .opd in a relocatable object, if
1672 // such a section exists.
1673
1674 template<int size, bool big_endian>
1675 bool
1676 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1677 Read_symbols_data* sd)
1678 {
1679 const unsigned char* const pshdrs = sd->section_headers->data();
1680 const unsigned char* namesu = sd->section_names->data();
1681 const char* names = reinterpret_cast<const char*>(namesu);
1682 section_size_type names_size = sd->section_names_size;
1683 const unsigned char* s;
1684
1685 s = this->template find_shdr<size, big_endian>(pshdrs,
1686 size == 32 ? ".got2" : ".opd",
1687 names, names_size, NULL);
1688 if (s != NULL)
1689 {
1690 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1691 this->special_ = ndx;
1692 if (size == 64)
1693 {
1694 if (this->abiversion() == 0)
1695 this->set_abiversion(1);
1696 else if (this->abiversion() > 1)
1697 gold_error(_("%s: .opd invalid in abiv%d"),
1698 this->name().c_str(), this->abiversion());
1699 }
1700 }
1701 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1702 }
1703
1704 // Examine .rela.opd to build info about function entry points.
1705
1706 template<int size, bool big_endian>
1707 void
1708 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1709 size_t reloc_count,
1710 const unsigned char* prelocs,
1711 const unsigned char* plocal_syms)
1712 {
1713 if (size == 64)
1714 {
1715 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1716 Reltype;
1717 const int reloc_size
1718 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1719 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1720 Address expected_off = 0;
1721 bool regular = true;
1722 unsigned int opd_ent_size = 0;
1723
1724 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1725 {
1726 Reltype reloc(prelocs);
1727 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1728 = reloc.get_r_info();
1729 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1730 if (r_type == elfcpp::R_PPC64_ADDR64)
1731 {
1732 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1733 typename elfcpp::Elf_types<size>::Elf_Addr value;
1734 bool is_ordinary;
1735 unsigned int shndx;
1736 if (r_sym < this->local_symbol_count())
1737 {
1738 typename elfcpp::Sym<size, big_endian>
1739 lsym(plocal_syms + r_sym * sym_size);
1740 shndx = lsym.get_st_shndx();
1741 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1742 value = lsym.get_st_value();
1743 }
1744 else
1745 shndx = this->symbol_section_and_value(r_sym, &value,
1746 &is_ordinary);
1747 this->set_opd_ent(reloc.get_r_offset(), shndx,
1748 value + reloc.get_r_addend());
1749 if (i == 2)
1750 {
1751 expected_off = reloc.get_r_offset();
1752 opd_ent_size = expected_off;
1753 }
1754 else if (expected_off != reloc.get_r_offset())
1755 regular = false;
1756 expected_off += opd_ent_size;
1757 }
1758 else if (r_type == elfcpp::R_PPC64_TOC)
1759 {
1760 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1761 regular = false;
1762 }
1763 else
1764 {
1765 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1766 this->name().c_str(), r_type);
1767 regular = false;
1768 }
1769 }
1770 if (reloc_count <= 2)
1771 opd_ent_size = this->section_size(this->opd_shndx());
1772 if (opd_ent_size != 24 && opd_ent_size != 16)
1773 regular = false;
1774 if (!regular)
1775 {
1776 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1777 this->name().c_str());
1778 opd_ent_size = 0;
1779 }
1780 }
1781 }
1782
1783 template<int size, bool big_endian>
1784 void
1785 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1786 {
1787 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1788 if (size == 64)
1789 {
1790 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1791 p != rd->relocs.end();
1792 ++p)
1793 {
1794 if (p->data_shndx == this->opd_shndx())
1795 {
1796 uint64_t opd_size = this->section_size(this->opd_shndx());
1797 gold_assert(opd_size == static_cast<size_t>(opd_size));
1798 if (opd_size != 0)
1799 {
1800 this->init_opd(opd_size);
1801 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1802 rd->local_symbols->data());
1803 }
1804 break;
1805 }
1806 }
1807 }
1808 }
1809
1810 // Read the symbols then set up st_other vector.
1811
1812 template<int size, bool big_endian>
1813 void
1814 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1815 {
1816 Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1817 if (size == 64)
1818 {
1819 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1820 const unsigned char* const pshdrs = sd->section_headers->data();
1821 const unsigned int loccount = this->do_local_symbol_count();
1822 if (loccount != 0)
1823 {
1824 this->st_other_.resize(loccount);
1825 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1826 off_t locsize = loccount * sym_size;
1827 const unsigned int symtab_shndx = this->symtab_shndx();
1828 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1829 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1830 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1831 locsize, true, false);
1832 psyms += sym_size;
1833 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1834 {
1835 elfcpp::Sym<size, big_endian> sym(psyms);
1836 unsigned char st_other = sym.get_st_other();
1837 this->st_other_[i] = st_other;
1838 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1839 {
1840 if (this->abiversion() == 0)
1841 this->set_abiversion(2);
1842 else if (this->abiversion() < 2)
1843 gold_error(_("%s: local symbol %d has invalid st_other"
1844 " for ABI version 1"),
1845 this->name().c_str(), i);
1846 }
1847 }
1848 }
1849 }
1850 }
1851
1852 template<int size, bool big_endian>
1853 void
1854 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1855 {
1856 this->e_flags_ |= ver;
1857 if (this->abiversion() != 0)
1858 {
1859 Target_powerpc<size, big_endian>* target =
1860 static_cast<Target_powerpc<size, big_endian>*>(
1861 parameters->sized_target<size, big_endian>());
1862 if (target->abiversion() == 0)
1863 target->set_abiversion(this->abiversion());
1864 else if (target->abiversion() != this->abiversion())
1865 gold_error(_("%s: ABI version %d is not compatible "
1866 "with ABI version %d output"),
1867 this->name().c_str(),
1868 this->abiversion(), target->abiversion());
1869
1870 }
1871 }
1872
1873 // Call Sized_dynobj::do_read_symbols to read the symbols then
1874 // read .opd from a dynamic object, filling in opd_ent_ vector,
1875
1876 template<int size, bool big_endian>
1877 void
1878 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1879 {
1880 Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1881 if (size == 64)
1882 {
1883 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1884 const unsigned char* const pshdrs = sd->section_headers->data();
1885 const unsigned char* namesu = sd->section_names->data();
1886 const char* names = reinterpret_cast<const char*>(namesu);
1887 const unsigned char* s = NULL;
1888 const unsigned char* opd;
1889 section_size_type opd_size;
1890
1891 // Find and read .opd section.
1892 while (1)
1893 {
1894 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1895 sd->section_names_size,
1896 s);
1897 if (s == NULL)
1898 return;
1899
1900 typename elfcpp::Shdr<size, big_endian> shdr(s);
1901 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1902 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1903 {
1904 if (this->abiversion() == 0)
1905 this->set_abiversion(1);
1906 else if (this->abiversion() > 1)
1907 gold_error(_("%s: .opd invalid in abiv%d"),
1908 this->name().c_str(), this->abiversion());
1909
1910 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1911 this->opd_address_ = shdr.get_sh_addr();
1912 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1913 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1914 true, false);
1915 break;
1916 }
1917 }
1918
1919 // Build set of executable sections.
1920 // Using a set is probably overkill. There is likely to be only
1921 // a few executable sections, typically .init, .text and .fini,
1922 // and they are generally grouped together.
1923 typedef std::set<Sec_info> Exec_sections;
1924 Exec_sections exec_sections;
1925 s = pshdrs;
1926 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1927 {
1928 typename elfcpp::Shdr<size, big_endian> shdr(s);
1929 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1930 && ((shdr.get_sh_flags()
1931 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1932 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1933 && shdr.get_sh_size() != 0)
1934 {
1935 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1936 shdr.get_sh_size(), i));
1937 }
1938 }
1939 if (exec_sections.empty())
1940 return;
1941
1942 // Look over the OPD entries. This is complicated by the fact
1943 // that some binaries will use two-word entries while others
1944 // will use the standard three-word entries. In most cases
1945 // the third word (the environment pointer for languages like
1946 // Pascal) is unused and will be zero. If the third word is
1947 // used it should not be pointing into executable sections,
1948 // I think.
1949 this->init_opd(opd_size);
1950 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1951 {
1952 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1953 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1954 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1955 if (val == 0)
1956 // Chances are that this is the third word of an OPD entry.
1957 continue;
1958 typename Exec_sections::const_iterator e
1959 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1960 if (e != exec_sections.begin())
1961 {
1962 --e;
1963 if (e->start <= val && val < e->start + e->len)
1964 {
1965 // We have an address in an executable section.
1966 // VAL ought to be the function entry, set it up.
1967 this->set_opd_ent(p - opd, e->shndx, val);
1968 // Skip second word of OPD entry, the TOC pointer.
1969 p += 8;
1970 }
1971 }
1972 // If we didn't match any executable sections, we likely
1973 // have a non-zero third word in the OPD entry.
1974 }
1975 }
1976 }
1977
1978 // Set up some symbols.
1979
1980 template<int size, bool big_endian>
1981 void
1982 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1983 Symbol_table* symtab,
1984 Layout* layout)
1985 {
1986 if (size == 32)
1987 {
1988 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1989 // undefined when scanning relocs (and thus requires
1990 // non-relative dynamic relocs). The proper value will be
1991 // updated later.
1992 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1993 if (gotsym != NULL && gotsym->is_undefined())
1994 {
1995 Target_powerpc<size, big_endian>* target =
1996 static_cast<Target_powerpc<size, big_endian>*>(
1997 parameters->sized_target<size, big_endian>());
1998 Output_data_got_powerpc<size, big_endian>* got
1999 = target->got_section(symtab, layout);
2000 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2001 Symbol_table::PREDEFINED,
2002 got, 0, 0,
2003 elfcpp::STT_OBJECT,
2004 elfcpp::STB_LOCAL,
2005 elfcpp::STV_HIDDEN, 0,
2006 false, false);
2007 }
2008
2009 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2010 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2011 if (sdasym != NULL && sdasym->is_undefined())
2012 {
2013 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2014 Output_section* os
2015 = layout->add_output_section_data(".sdata", 0,
2016 elfcpp::SHF_ALLOC
2017 | elfcpp::SHF_WRITE,
2018 sdata, ORDER_SMALL_DATA, false);
2019 symtab->define_in_output_data("_SDA_BASE_", NULL,
2020 Symbol_table::PREDEFINED,
2021 os, 32768, 0, elfcpp::STT_OBJECT,
2022 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2023 0, false, false);
2024 }
2025 }
2026 else
2027 {
2028 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2029 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2030 if (gotsym != NULL && gotsym->is_undefined())
2031 {
2032 Target_powerpc<size, big_endian>* target =
2033 static_cast<Target_powerpc<size, big_endian>*>(
2034 parameters->sized_target<size, big_endian>());
2035 Output_data_got_powerpc<size, big_endian>* got
2036 = target->got_section(symtab, layout);
2037 symtab->define_in_output_data(".TOC.", NULL,
2038 Symbol_table::PREDEFINED,
2039 got, 0x8000, 0,
2040 elfcpp::STT_OBJECT,
2041 elfcpp::STB_LOCAL,
2042 elfcpp::STV_HIDDEN, 0,
2043 false, false);
2044 }
2045 }
2046 }
2047
2048 // Set up PowerPC target specific relobj.
2049
2050 template<int size, bool big_endian>
2051 Object*
2052 Target_powerpc<size, big_endian>::do_make_elf_object(
2053 const std::string& name,
2054 Input_file* input_file,
2055 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2056 {
2057 int et = ehdr.get_e_type();
2058 // ET_EXEC files are valid input for --just-symbols/-R,
2059 // and we treat them as relocatable objects.
2060 if (et == elfcpp::ET_REL
2061 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2062 {
2063 Powerpc_relobj<size, big_endian>* obj =
2064 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2065 obj->setup();
2066 return obj;
2067 }
2068 else if (et == elfcpp::ET_DYN)
2069 {
2070 Powerpc_dynobj<size, big_endian>* obj =
2071 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2072 obj->setup();
2073 return obj;
2074 }
2075 else
2076 {
2077 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2078 return NULL;
2079 }
2080 }
2081
2082 template<int size, bool big_endian>
2083 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2084 {
2085 public:
2086 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2087 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2088
2089 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2090 : Output_data_got<size, big_endian>(),
2091 symtab_(symtab), layout_(layout),
2092 header_ent_cnt_(size == 32 ? 3 : 1),
2093 header_index_(size == 32 ? 0x2000 : 0)
2094 { }
2095
2096 // Override all the Output_data_got methods we use so as to first call
2097 // reserve_ent().
2098 bool
2099 add_global(Symbol* gsym, unsigned int got_type)
2100 {
2101 this->reserve_ent();
2102 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2103 }
2104
2105 bool
2106 add_global_plt(Symbol* gsym, unsigned int got_type)
2107 {
2108 this->reserve_ent();
2109 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2110 }
2111
2112 bool
2113 add_global_tls(Symbol* gsym, unsigned int got_type)
2114 { return this->add_global_plt(gsym, got_type); }
2115
2116 void
2117 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2118 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2119 {
2120 this->reserve_ent();
2121 Output_data_got<size, big_endian>::
2122 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2123 }
2124
2125 void
2126 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2127 Output_data_reloc_generic* rel_dyn,
2128 unsigned int r_type_1, unsigned int r_type_2)
2129 {
2130 this->reserve_ent(2);
2131 Output_data_got<size, big_endian>::
2132 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2133 }
2134
2135 bool
2136 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2137 {
2138 this->reserve_ent();
2139 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2140 got_type);
2141 }
2142
2143 bool
2144 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2145 {
2146 this->reserve_ent();
2147 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2148 got_type);
2149 }
2150
2151 bool
2152 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2153 { return this->add_local_plt(object, sym_index, got_type); }
2154
2155 void
2156 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2157 unsigned int got_type,
2158 Output_data_reloc_generic* rel_dyn,
2159 unsigned int r_type)
2160 {
2161 this->reserve_ent(2);
2162 Output_data_got<size, big_endian>::
2163 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2164 }
2165
2166 unsigned int
2167 add_constant(Valtype constant)
2168 {
2169 this->reserve_ent();
2170 return Output_data_got<size, big_endian>::add_constant(constant);
2171 }
2172
2173 unsigned int
2174 add_constant_pair(Valtype c1, Valtype c2)
2175 {
2176 this->reserve_ent(2);
2177 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2178 }
2179
2180 // Offset of _GLOBAL_OFFSET_TABLE_.
2181 unsigned int
2182 g_o_t() const
2183 {
2184 return this->got_offset(this->header_index_);
2185 }
2186
2187 // Offset of base used to access the GOT/TOC.
2188 // The got/toc pointer reg will be set to this value.
2189 Valtype
2190 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2191 {
2192 if (size == 32)
2193 return this->g_o_t();
2194 else
2195 return (this->output_section()->address()
2196 + object->toc_base_offset()
2197 - this->address());
2198 }
2199
2200 // Ensure our GOT has a header.
2201 void
2202 set_final_data_size()
2203 {
2204 if (this->header_ent_cnt_ != 0)
2205 this->make_header();
2206 Output_data_got<size, big_endian>::set_final_data_size();
2207 }
2208
2209 // First word of GOT header needs some values that are not
2210 // handled by Output_data_got so poke them in here.
2211 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2212 void
2213 do_write(Output_file* of)
2214 {
2215 Valtype val = 0;
2216 if (size == 32 && this->layout_->dynamic_data() != NULL)
2217 val = this->layout_->dynamic_section()->address();
2218 if (size == 64)
2219 val = this->output_section()->address() + 0x8000;
2220 this->replace_constant(this->header_index_, val);
2221 Output_data_got<size, big_endian>::do_write(of);
2222 }
2223
2224 private:
2225 void
2226 reserve_ent(unsigned int cnt = 1)
2227 {
2228 if (this->header_ent_cnt_ == 0)
2229 return;
2230 if (this->num_entries() + cnt > this->header_index_)
2231 this->make_header();
2232 }
2233
2234 void
2235 make_header()
2236 {
2237 this->header_ent_cnt_ = 0;
2238 this->header_index_ = this->num_entries();
2239 if (size == 32)
2240 {
2241 Output_data_got<size, big_endian>::add_constant(0);
2242 Output_data_got<size, big_endian>::add_constant(0);
2243 Output_data_got<size, big_endian>::add_constant(0);
2244
2245 // Define _GLOBAL_OFFSET_TABLE_ at the header
2246 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2247 if (gotsym != NULL)
2248 {
2249 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2250 sym->set_value(this->g_o_t());
2251 }
2252 else
2253 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2254 Symbol_table::PREDEFINED,
2255 this, this->g_o_t(), 0,
2256 elfcpp::STT_OBJECT,
2257 elfcpp::STB_LOCAL,
2258 elfcpp::STV_HIDDEN, 0,
2259 false, false);
2260 }
2261 else
2262 Output_data_got<size, big_endian>::add_constant(0);
2263 }
2264
2265 // Stashed pointers.
2266 Symbol_table* symtab_;
2267 Layout* layout_;
2268
2269 // GOT header size.
2270 unsigned int header_ent_cnt_;
2271 // GOT header index.
2272 unsigned int header_index_;
2273 };
2274
2275 // Get the GOT section, creating it if necessary.
2276
2277 template<int size, bool big_endian>
2278 Output_data_got_powerpc<size, big_endian>*
2279 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2280 Layout* layout)
2281 {
2282 if (this->got_ == NULL)
2283 {
2284 gold_assert(symtab != NULL && layout != NULL);
2285
2286 this->got_
2287 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2288
2289 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2290 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2291 this->got_, ORDER_DATA, false);
2292 }
2293
2294 return this->got_;
2295 }
2296
2297 // Get the dynamic reloc section, creating it if necessary.
2298
2299 template<int size, bool big_endian>
2300 typename Target_powerpc<size, big_endian>::Reloc_section*
2301 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2302 {
2303 if (this->rela_dyn_ == NULL)
2304 {
2305 gold_assert(layout != NULL);
2306 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2307 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2308 elfcpp::SHF_ALLOC, this->rela_dyn_,
2309 ORDER_DYNAMIC_RELOCS, false);
2310 }
2311 return this->rela_dyn_;
2312 }
2313
2314 // Similarly, but for ifunc symbols get the one for ifunc.
2315
2316 template<int size, bool big_endian>
2317 typename Target_powerpc<size, big_endian>::Reloc_section*
2318 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2319 Layout* layout,
2320 bool for_ifunc)
2321 {
2322 if (!for_ifunc)
2323 return this->rela_dyn_section(layout);
2324
2325 if (this->iplt_ == NULL)
2326 this->make_iplt_section(symtab, layout);
2327 return this->iplt_->rel_plt();
2328 }
2329
2330 class Stub_control
2331 {
2332 public:
2333 // Determine the stub group size. The group size is the absolute
2334 // value of the parameter --stub-group-size. If --stub-group-size
2335 // is passed a negative value, we restrict stubs to be always before
2336 // the stubbed branches.
2337 Stub_control(int32_t size)
2338 : state_(NO_GROUP), stub_group_size_(abs(size)),
2339 stub14_group_size_(abs(size)),
2340 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2341 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2342 {
2343 if (stub_group_size_ == 1)
2344 {
2345 // Default values.
2346 if (stubs_always_before_branch_)
2347 {
2348 stub_group_size_ = 0x1e00000;
2349 stub14_group_size_ = 0x7800;
2350 }
2351 else
2352 {
2353 stub_group_size_ = 0x1c00000;
2354 stub14_group_size_ = 0x7000;
2355 }
2356 suppress_size_errors_ = true;
2357 }
2358 }
2359
2360 // Return true iff input section can be handled by current stub
2361 // group.
2362 bool
2363 can_add_to_stub_group(Output_section* o,
2364 const Output_section::Input_section* i,
2365 bool has14);
2366
2367 const Output_section::Input_section*
2368 owner()
2369 { return owner_; }
2370
2371 Output_section*
2372 output_section()
2373 { return output_section_; }
2374
2375 private:
2376 typedef enum
2377 {
2378 NO_GROUP,
2379 FINDING_STUB_SECTION,
2380 HAS_STUB_SECTION
2381 } State;
2382
2383 State state_;
2384 uint32_t stub_group_size_;
2385 uint32_t stub14_group_size_;
2386 bool stubs_always_before_branch_;
2387 bool suppress_size_errors_;
2388 uint64_t group_end_addr_;
2389 const Output_section::Input_section* owner_;
2390 Output_section* output_section_;
2391 };
2392
2393 // Return true iff input section can be handled by current stub
2394 // group.
2395
2396 bool
2397 Stub_control::can_add_to_stub_group(Output_section* o,
2398 const Output_section::Input_section* i,
2399 bool has14)
2400 {
2401 uint32_t group_size
2402 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2403 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2404 uint64_t this_size;
2405 uint64_t start_addr = o->address();
2406
2407 if (whole_sec)
2408 // .init and .fini sections are pasted together to form a single
2409 // function. We can't be adding stubs in the middle of the function.
2410 this_size = o->data_size();
2411 else
2412 {
2413 start_addr += i->relobj()->output_section_offset(i->shndx());
2414 this_size = i->data_size();
2415 }
2416 uint64_t end_addr = start_addr + this_size;
2417 bool toobig = this_size > group_size;
2418
2419 if (toobig && !this->suppress_size_errors_)
2420 gold_warning(_("%s:%s exceeds group size"),
2421 i->relobj()->name().c_str(),
2422 i->relobj()->section_name(i->shndx()).c_str());
2423
2424 if (this->state_ != HAS_STUB_SECTION
2425 && (!whole_sec || this->output_section_ != o)
2426 && (this->state_ == NO_GROUP
2427 || this->group_end_addr_ - end_addr < group_size))
2428 {
2429 this->owner_ = i;
2430 this->output_section_ = o;
2431 }
2432
2433 if (this->state_ == NO_GROUP)
2434 {
2435 this->state_ = FINDING_STUB_SECTION;
2436 this->group_end_addr_ = end_addr;
2437 }
2438 else if (this->group_end_addr_ - start_addr < group_size)
2439 ;
2440 // Adding this section would make the group larger than GROUP_SIZE.
2441 else if (this->state_ == FINDING_STUB_SECTION
2442 && !this->stubs_always_before_branch_
2443 && !toobig)
2444 {
2445 // But wait, there's more! Input sections up to GROUP_SIZE
2446 // bytes before the stub table can be handled by it too.
2447 this->state_ = HAS_STUB_SECTION;
2448 this->group_end_addr_ = end_addr;
2449 }
2450 else
2451 {
2452 this->state_ = NO_GROUP;
2453 return false;
2454 }
2455 return true;
2456 }
2457
2458 // Look over all the input sections, deciding where to place stubs.
2459
2460 template<int size, bool big_endian>
2461 void
2462 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2463 const Task*)
2464 {
2465 Stub_control stub_control(parameters->options().stub_group_size());
2466
2467 // Group input sections and insert stub table
2468 Stub_table<size, big_endian>* stub_table = NULL;
2469 Layout::Section_list section_list;
2470 layout->get_executable_sections(&section_list);
2471 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2472 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2473 o != section_list.rend();
2474 ++o)
2475 {
2476 typedef Output_section::Input_section_list Input_section_list;
2477 for (Input_section_list::const_reverse_iterator i
2478 = (*o)->input_sections().rbegin();
2479 i != (*o)->input_sections().rend();
2480 ++i)
2481 {
2482 if (i->is_input_section())
2483 {
2484 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2485 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2486 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2487 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2488 {
2489 stub_table->init(stub_control.owner(),
2490 stub_control.output_section());
2491 stub_table = NULL;
2492 }
2493 if (stub_table == NULL)
2494 stub_table = this->new_stub_table();
2495 ppcobj->set_stub_table(i->shndx(), stub_table);
2496 }
2497 }
2498 }
2499 if (stub_table != NULL)
2500 {
2501 const Output_section::Input_section* i = stub_control.owner();
2502 if (!i->is_input_section())
2503 {
2504 // Corner case. A new stub group was made for the first
2505 // section (last one looked at here) for some reason, but
2506 // the first section is already being used as the owner for
2507 // a stub table for following sections. Force it into that
2508 // stub group.
2509 gold_assert(this->stub_tables_.size() >= 2);
2510 this->stub_tables_.pop_back();
2511 delete stub_table;
2512 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2513 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2514 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2515 }
2516 else
2517 stub_table->init(i, stub_control.output_section());
2518 }
2519 }
2520
2521 // If this branch needs a plt call stub, or a long branch stub, make one.
2522
2523 template<int size, bool big_endian>
2524 void
2525 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2526 Stub_table<size, big_endian>* stub_table,
2527 Stub_table<size, big_endian>* ifunc_stub_table,
2528 Symbol_table* symtab) const
2529 {
2530 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2531 if (sym != NULL && sym->is_forwarder())
2532 sym = symtab->resolve_forwards(sym);
2533 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2534 Target_powerpc<size, big_endian>* target =
2535 static_cast<Target_powerpc<size, big_endian>*>(
2536 parameters->sized_target<size, big_endian>());
2537 if (gsym != NULL
2538 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2539 : this->object_->local_has_plt_offset(this->r_sym_))
2540 {
2541 if (size == 64
2542 && gsym != NULL
2543 && target->abiversion() >= 2
2544 && !parameters->options().output_is_position_independent()
2545 && !is_branch_reloc(this->r_type_))
2546 target->glink_section()->add_global_entry(gsym);
2547 else
2548 {
2549 if (stub_table == NULL)
2550 stub_table = this->object_->stub_table(this->shndx_);
2551 if (stub_table == NULL)
2552 {
2553 // This is a ref from a data section to an ifunc symbol.
2554 stub_table = ifunc_stub_table;
2555 }
2556 gold_assert(stub_table != NULL);
2557 if (gsym != NULL)
2558 stub_table->add_plt_call_entry(this->object_, gsym,
2559 this->r_type_, this->addend_);
2560 else
2561 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2562 this->r_type_, this->addend_);
2563 }
2564 }
2565 else
2566 {
2567 unsigned long max_branch_offset;
2568 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2569 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2570 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2571 max_branch_offset = 1 << 15;
2572 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2573 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2574 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2575 max_branch_offset = 1 << 25;
2576 else
2577 return;
2578 Address from = this->object_->get_output_section_offset(this->shndx_);
2579 gold_assert(from != invalid_address);
2580 from += (this->object_->output_section(this->shndx_)->address()
2581 + this->offset_);
2582 Address to;
2583 if (gsym != NULL)
2584 {
2585 switch (gsym->source())
2586 {
2587 case Symbol::FROM_OBJECT:
2588 {
2589 Object* symobj = gsym->object();
2590 if (symobj->is_dynamic()
2591 || symobj->pluginobj() != NULL)
2592 return;
2593 bool is_ordinary;
2594 unsigned int shndx = gsym->shndx(&is_ordinary);
2595 if (shndx == elfcpp::SHN_UNDEF)
2596 return;
2597 }
2598 break;
2599
2600 case Symbol::IS_UNDEFINED:
2601 return;
2602
2603 default:
2604 break;
2605 }
2606 Symbol_table::Compute_final_value_status status;
2607 to = symtab->compute_final_value<size>(gsym, &status);
2608 if (status != Symbol_table::CFVS_OK)
2609 return;
2610 if (size == 64)
2611 to += this->object_->ppc64_local_entry_offset(gsym);
2612 }
2613 else
2614 {
2615 const Symbol_value<size>* psymval
2616 = this->object_->local_symbol(this->r_sym_);
2617 Symbol_value<size> symval;
2618 typedef Sized_relobj_file<size, big_endian> ObjType;
2619 typename ObjType::Compute_final_local_value_status status
2620 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2621 &symval, symtab);
2622 if (status != ObjType::CFLV_OK
2623 || !symval.has_output_value())
2624 return;
2625 to = symval.value(this->object_, 0);
2626 if (size == 64)
2627 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2628 }
2629 to += this->addend_;
2630 if (stub_table == NULL)
2631 stub_table = this->object_->stub_table(this->shndx_);
2632 if (size == 64 && target->abiversion() < 2)
2633 {
2634 unsigned int dest_shndx;
2635 to = target->symval_for_branch(symtab, to, gsym,
2636 this->object_, &dest_shndx);
2637 }
2638 Address delta = to - from;
2639 if (delta + max_branch_offset >= 2 * max_branch_offset)
2640 {
2641 if (stub_table == NULL)
2642 {
2643 gold_warning(_("%s:%s: branch in non-executable section,"
2644 " no long branch stub for you"),
2645 this->object_->name().c_str(),
2646 this->object_->section_name(this->shndx_).c_str());
2647 return;
2648 }
2649 stub_table->add_long_branch_entry(this->object_, to);
2650 }
2651 }
2652 }
2653
2654 // Relaxation hook. This is where we do stub generation.
2655
2656 template<int size, bool big_endian>
2657 bool
2658 Target_powerpc<size, big_endian>::do_relax(int pass,
2659 const Input_objects*,
2660 Symbol_table* symtab,
2661 Layout* layout,
2662 const Task* task)
2663 {
2664 unsigned int prev_brlt_size = 0;
2665 if (pass == 1)
2666 {
2667 bool thread_safe
2668 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2669 if (size == 64
2670 && this->abiversion() < 2
2671 && !thread_safe
2672 && !parameters->options().user_set_plt_thread_safe())
2673 {
2674 static const char* const thread_starter[] =
2675 {
2676 "pthread_create",
2677 /* libstdc++ */
2678 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2679 /* librt */
2680 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2681 "mq_notify", "create_timer",
2682 /* libanl */
2683 "getaddrinfo_a",
2684 /* libgomp */
2685 "GOMP_parallel_start",
2686 "GOMP_parallel_loop_static_start",
2687 "GOMP_parallel_loop_dynamic_start",
2688 "GOMP_parallel_loop_guided_start",
2689 "GOMP_parallel_loop_runtime_start",
2690 "GOMP_parallel_sections_start",
2691 };
2692
2693 if (parameters->options().shared())
2694 thread_safe = true;
2695 else
2696 {
2697 for (unsigned int i = 0;
2698 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2699 i++)
2700 {
2701 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2702 thread_safe = (sym != NULL
2703 && sym->in_reg()
2704 && sym->in_real_elf());
2705 if (thread_safe)
2706 break;
2707 }
2708 }
2709 }
2710 this->plt_thread_safe_ = thread_safe;
2711 this->group_sections(layout, task);
2712 }
2713
2714 // We need address of stub tables valid for make_stub.
2715 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2716 p != this->stub_tables_.end();
2717 ++p)
2718 {
2719 const Powerpc_relobj<size, big_endian>* object
2720 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2721 Address off = object->get_output_section_offset((*p)->shndx());
2722 gold_assert(off != invalid_address);
2723 Output_section* os = (*p)->output_section();
2724 (*p)->set_address_and_size(os, off);
2725 }
2726
2727 if (pass != 1)
2728 {
2729 // Clear plt call stubs, long branch stubs and branch lookup table.
2730 prev_brlt_size = this->branch_lookup_table_.size();
2731 this->branch_lookup_table_.clear();
2732 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2733 p != this->stub_tables_.end();
2734 ++p)
2735 {
2736 (*p)->clear_stubs();
2737 }
2738 }
2739
2740 // Build all the stubs.
2741 Stub_table<size, big_endian>* ifunc_stub_table
2742 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2743 Stub_table<size, big_endian>* one_stub_table
2744 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2745 for (typename Branches::const_iterator b = this->branch_info_.begin();
2746 b != this->branch_info_.end();
2747 b++)
2748 {
2749 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2750 }
2751
2752 // Did anything change size?
2753 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2754 bool again = num_huge_branches != prev_brlt_size;
2755 if (size == 64 && num_huge_branches != 0)
2756 this->make_brlt_section(layout);
2757 if (size == 64 && again)
2758 this->brlt_section_->set_current_size(num_huge_branches);
2759
2760 typedef Unordered_set<Output_section*> Output_sections;
2761 Output_sections os_need_update;
2762 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2763 p != this->stub_tables_.end();
2764 ++p)
2765 {
2766 if ((*p)->size_update())
2767 {
2768 again = true;
2769 (*p)->add_eh_frame(layout);
2770 os_need_update.insert((*p)->output_section());
2771 }
2772 }
2773
2774 // Set output section offsets for all input sections in an output
2775 // section that just changed size. Anything past the stubs will
2776 // need updating.
2777 for (typename Output_sections::iterator p = os_need_update.begin();
2778 p != os_need_update.end();
2779 p++)
2780 {
2781 Output_section* os = *p;
2782 Address off = 0;
2783 typedef Output_section::Input_section_list Input_section_list;
2784 for (Input_section_list::const_iterator i = os->input_sections().begin();
2785 i != os->input_sections().end();
2786 ++i)
2787 {
2788 off = align_address(off, i->addralign());
2789 if (i->is_input_section() || i->is_relaxed_input_section())
2790 i->relobj()->set_section_offset(i->shndx(), off);
2791 if (i->is_relaxed_input_section())
2792 {
2793 Stub_table<size, big_endian>* stub_table
2794 = static_cast<Stub_table<size, big_endian>*>(
2795 i->relaxed_input_section());
2796 off += stub_table->set_address_and_size(os, off);
2797 }
2798 else
2799 off += i->data_size();
2800 }
2801 // If .branch_lt is part of this output section, then we have
2802 // just done the offset adjustment.
2803 os->clear_section_offsets_need_adjustment();
2804 }
2805
2806 if (size == 64
2807 && !again
2808 && num_huge_branches != 0
2809 && parameters->options().output_is_position_independent())
2810 {
2811 // Fill in the BRLT relocs.
2812 this->brlt_section_->reset_brlt_sizes();
2813 for (typename Branch_lookup_table::const_iterator p
2814 = this->branch_lookup_table_.begin();
2815 p != this->branch_lookup_table_.end();
2816 ++p)
2817 {
2818 this->brlt_section_->add_reloc(p->first, p->second);
2819 }
2820 this->brlt_section_->finalize_brlt_sizes();
2821 }
2822 return again;
2823 }
2824
2825 template<int size, bool big_endian>
2826 void
2827 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2828 unsigned char* oview,
2829 uint64_t* paddress,
2830 off_t* plen) const
2831 {
2832 uint64_t address = plt->address();
2833 off_t len = plt->data_size();
2834
2835 if (plt == this->glink_)
2836 {
2837 // See Output_data_glink::do_write() for glink contents.
2838 if (size == 64)
2839 {
2840 // There is one word before __glink_PLTresolve
2841 address += 8;
2842 len -= 8;
2843 }
2844 else if (parameters->options().output_is_position_independent())
2845 {
2846 // There are two FDEs for a position independent glink.
2847 // The first covers the branch table, the second
2848 // __glink_PLTresolve at the end of glink.
2849 off_t resolve_size = this->glink_->pltresolve_size;
2850 if (oview[9] == 0)
2851 len -= resolve_size;
2852 else
2853 {
2854 address += len - resolve_size;
2855 len = resolve_size;
2856 }
2857 }
2858 }
2859 else
2860 {
2861 // Must be a stub table.
2862 const Stub_table<size, big_endian>* stub_table
2863 = static_cast<const Stub_table<size, big_endian>*>(plt);
2864 uint64_t stub_address = stub_table->stub_address();
2865 len -= stub_address - address;
2866 address = stub_address;
2867 }
2868
2869 *paddress = address;
2870 *plen = len;
2871 }
2872
2873 // A class to handle the PLT data.
2874
2875 template<int size, bool big_endian>
2876 class Output_data_plt_powerpc : public Output_section_data_build
2877 {
2878 public:
2879 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2880 size, big_endian> Reloc_section;
2881
2882 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2883 Reloc_section* plt_rel,
2884 const char* name)
2885 : Output_section_data_build(size == 32 ? 4 : 8),
2886 rel_(plt_rel),
2887 targ_(targ),
2888 name_(name)
2889 { }
2890
2891 // Add an entry to the PLT.
2892 void
2893 add_entry(Symbol*);
2894
2895 void
2896 add_ifunc_entry(Symbol*);
2897
2898 void
2899 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2900
2901 // Return the .rela.plt section data.
2902 Reloc_section*
2903 rel_plt() const
2904 {
2905 return this->rel_;
2906 }
2907
2908 // Return the number of PLT entries.
2909 unsigned int
2910 entry_count() const
2911 {
2912 if (this->current_data_size() == 0)
2913 return 0;
2914 return ((this->current_data_size() - this->first_plt_entry_offset())
2915 / this->plt_entry_size());
2916 }
2917
2918 protected:
2919 void
2920 do_adjust_output_section(Output_section* os)
2921 {
2922 os->set_entsize(0);
2923 }
2924
2925 // Write to a map file.
2926 void
2927 do_print_to_mapfile(Mapfile* mapfile) const
2928 { mapfile->print_output_data(this, this->name_); }
2929
2930 private:
2931 // Return the offset of the first non-reserved PLT entry.
2932 unsigned int
2933 first_plt_entry_offset() const
2934 {
2935 // IPLT has no reserved entry.
2936 if (this->name_[3] == 'I')
2937 return 0;
2938 return this->targ_->first_plt_entry_offset();
2939 }
2940
2941 // Return the size of each PLT entry.
2942 unsigned int
2943 plt_entry_size() const
2944 {
2945 return this->targ_->plt_entry_size();
2946 }
2947
2948 // Write out the PLT data.
2949 void
2950 do_write(Output_file*);
2951
2952 // The reloc section.
2953 Reloc_section* rel_;
2954 // Allows access to .glink for do_write.
2955 Target_powerpc<size, big_endian>* targ_;
2956 // What to report in map file.
2957 const char *name_;
2958 };
2959
2960 // Add an entry to the PLT.
2961
2962 template<int size, bool big_endian>
2963 void
2964 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2965 {
2966 if (!gsym->has_plt_offset())
2967 {
2968 section_size_type off = this->current_data_size();
2969 if (off == 0)
2970 off += this->first_plt_entry_offset();
2971 gsym->set_plt_offset(off);
2972 gsym->set_needs_dynsym_entry();
2973 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2974 this->rel_->add_global(gsym, dynrel, this, off, 0);
2975 off += this->plt_entry_size();
2976 this->set_current_data_size(off);
2977 }
2978 }
2979
2980 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2981
2982 template<int size, bool big_endian>
2983 void
2984 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2985 {
2986 if (!gsym->has_plt_offset())
2987 {
2988 section_size_type off = this->current_data_size();
2989 gsym->set_plt_offset(off);
2990 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2991 if (size == 64 && this->targ_->abiversion() < 2)
2992 dynrel = elfcpp::R_PPC64_JMP_IREL;
2993 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2994 off += this->plt_entry_size();
2995 this->set_current_data_size(off);
2996 }
2997 }
2998
2999 // Add an entry for a local ifunc symbol to the IPLT.
3000
3001 template<int size, bool big_endian>
3002 void
3003 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3004 Sized_relobj_file<size, big_endian>* relobj,
3005 unsigned int local_sym_index)
3006 {
3007 if (!relobj->local_has_plt_offset(local_sym_index))
3008 {
3009 section_size_type off = this->current_data_size();
3010 relobj->set_local_plt_offset(local_sym_index, off);
3011 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3012 if (size == 64 && this->targ_->abiversion() < 2)
3013 dynrel = elfcpp::R_PPC64_JMP_IREL;
3014 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3015 this, off, 0);
3016 off += this->plt_entry_size();
3017 this->set_current_data_size(off);
3018 }
3019 }
3020
3021 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3022 static const uint32_t add_2_2_11 = 0x7c425a14;
3023 static const uint32_t add_3_3_2 = 0x7c631214;
3024 static const uint32_t add_3_3_13 = 0x7c636a14;
3025 static const uint32_t add_11_0_11 = 0x7d605a14;
3026 static const uint32_t add_11_2_11 = 0x7d625a14;
3027 static const uint32_t add_11_11_2 = 0x7d6b1214;
3028 static const uint32_t addi_0_12 = 0x380c0000;
3029 static const uint32_t addi_2_2 = 0x38420000;
3030 static const uint32_t addi_3_3 = 0x38630000;
3031 static const uint32_t addi_11_11 = 0x396b0000;
3032 static const uint32_t addi_12_12 = 0x398c0000;
3033 static const uint32_t addis_0_2 = 0x3c020000;
3034 static const uint32_t addis_0_13 = 0x3c0d0000;
3035 static const uint32_t addis_3_2 = 0x3c620000;
3036 static const uint32_t addis_3_13 = 0x3c6d0000;
3037 static const uint32_t addis_11_2 = 0x3d620000;
3038 static const uint32_t addis_11_11 = 0x3d6b0000;
3039 static const uint32_t addis_11_30 = 0x3d7e0000;
3040 static const uint32_t addis_12_12 = 0x3d8c0000;
3041 static const uint32_t b = 0x48000000;
3042 static const uint32_t bcl_20_31 = 0x429f0005;
3043 static const uint32_t bctr = 0x4e800420;
3044 static const uint32_t blr = 0x4e800020;
3045 static const uint32_t bnectr_p4 = 0x4ce20420;
3046 static const uint32_t cmpldi_2_0 = 0x28220000;
3047 static const uint32_t cror_15_15_15 = 0x4def7b82;
3048 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3049 static const uint32_t ld_0_1 = 0xe8010000;
3050 static const uint32_t ld_0_12 = 0xe80c0000;
3051 static const uint32_t ld_2_1 = 0xe8410000;
3052 static const uint32_t ld_2_2 = 0xe8420000;
3053 static const uint32_t ld_2_11 = 0xe84b0000;
3054 static const uint32_t ld_11_2 = 0xe9620000;
3055 static const uint32_t ld_11_11 = 0xe96b0000;
3056 static const uint32_t ld_12_2 = 0xe9820000;
3057 static const uint32_t ld_12_11 = 0xe98b0000;
3058 static const uint32_t ld_12_12 = 0xe98c0000;
3059 static const uint32_t lfd_0_1 = 0xc8010000;
3060 static const uint32_t li_0_0 = 0x38000000;
3061 static const uint32_t li_12_0 = 0x39800000;
3062 static const uint32_t lis_0_0 = 0x3c000000;
3063 static const uint32_t lis_11 = 0x3d600000;
3064 static const uint32_t lis_12 = 0x3d800000;
3065 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3066 static const uint32_t lwz_0_12 = 0x800c0000;
3067 static const uint32_t lwz_11_11 = 0x816b0000;
3068 static const uint32_t lwz_11_30 = 0x817e0000;
3069 static const uint32_t lwz_12_12 = 0x818c0000;
3070 static const uint32_t lwzu_0_12 = 0x840c0000;
3071 static const uint32_t mflr_0 = 0x7c0802a6;
3072 static const uint32_t mflr_11 = 0x7d6802a6;
3073 static const uint32_t mflr_12 = 0x7d8802a6;
3074 static const uint32_t mtctr_0 = 0x7c0903a6;
3075 static const uint32_t mtctr_11 = 0x7d6903a6;
3076 static const uint32_t mtctr_12 = 0x7d8903a6;
3077 static const uint32_t mtlr_0 = 0x7c0803a6;
3078 static const uint32_t mtlr_12 = 0x7d8803a6;
3079 static const uint32_t nop = 0x60000000;
3080 static const uint32_t ori_0_0_0 = 0x60000000;
3081 static const uint32_t srdi_0_0_2 = 0x7800f082;
3082 static const uint32_t std_0_1 = 0xf8010000;
3083 static const uint32_t std_0_12 = 0xf80c0000;
3084 static const uint32_t std_2_1 = 0xf8410000;
3085 static const uint32_t stfd_0_1 = 0xd8010000;
3086 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3087 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3088 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3089 static const uint32_t xor_2_12_12 = 0x7d826278;
3090 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3091
3092 // Write out the PLT.
3093
3094 template<int size, bool big_endian>
3095 void
3096 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3097 {
3098 if (size == 32 && this->name_[3] != 'I')
3099 {
3100 const section_size_type offset = this->offset();
3101 const section_size_type oview_size
3102 = convert_to_section_size_type(this->data_size());
3103 unsigned char* const oview = of->get_output_view(offset, oview_size);
3104 unsigned char* pov = oview;
3105 unsigned char* endpov = oview + oview_size;
3106
3107 // The address of the .glink branch table
3108 const Output_data_glink<size, big_endian>* glink
3109 = this->targ_->glink_section();
3110 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3111
3112 while (pov < endpov)
3113 {
3114 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3115 pov += 4;
3116 branch_tab += 4;
3117 }
3118
3119 of->write_output_view(offset, oview_size, oview);
3120 }
3121 }
3122
3123 // Create the PLT section.
3124
3125 template<int size, bool big_endian>
3126 void
3127 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3128 Layout* layout)
3129 {
3130 if (this->plt_ == NULL)
3131 {
3132 if (this->got_ == NULL)
3133 this->got_section(symtab, layout);
3134
3135 if (this->glink_ == NULL)
3136 make_glink_section(layout);
3137
3138 // Ensure that .rela.dyn always appears before .rela.plt This is
3139 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3140 // needs to include .rela.plt in its range.
3141 this->rela_dyn_section(layout);
3142
3143 Reloc_section* plt_rel = new Reloc_section(false);
3144 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3145 elfcpp::SHF_ALLOC, plt_rel,
3146 ORDER_DYNAMIC_PLT_RELOCS, false);
3147 this->plt_
3148 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3149 "** PLT");
3150 layout->add_output_section_data(".plt",
3151 (size == 32
3152 ? elfcpp::SHT_PROGBITS
3153 : elfcpp::SHT_NOBITS),
3154 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3155 this->plt_,
3156 (size == 32
3157 ? ORDER_SMALL_DATA
3158 : ORDER_SMALL_BSS),
3159 false);
3160 }
3161 }
3162
3163 // Create the IPLT section.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3168 Layout* layout)
3169 {
3170 if (this->iplt_ == NULL)
3171 {
3172 this->make_plt_section(symtab, layout);
3173
3174 Reloc_section* iplt_rel = new Reloc_section(false);
3175 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3176 this->iplt_
3177 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3178 "** IPLT");
3179 this->plt_->output_section()->add_output_section_data(this->iplt_);
3180 }
3181 }
3182
3183 // A section for huge long branch addresses, similar to plt section.
3184
3185 template<int size, bool big_endian>
3186 class Output_data_brlt_powerpc : public Output_section_data_build
3187 {
3188 public:
3189 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3190 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3191 size, big_endian> Reloc_section;
3192
3193 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3194 Reloc_section* brlt_rel)
3195 : Output_section_data_build(size == 32 ? 4 : 8),
3196 rel_(brlt_rel),
3197 targ_(targ)
3198 { }
3199
3200 void
3201 reset_brlt_sizes()
3202 {
3203 this->reset_data_size();
3204 this->rel_->reset_data_size();
3205 }
3206
3207 void
3208 finalize_brlt_sizes()
3209 {
3210 this->finalize_data_size();
3211 this->rel_->finalize_data_size();
3212 }
3213
3214 // Add a reloc for an entry in the BRLT.
3215 void
3216 add_reloc(Address to, unsigned int off)
3217 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3218
3219 // Update section and reloc section size.
3220 void
3221 set_current_size(unsigned int num_branches)
3222 {
3223 this->reset_address_and_file_offset();
3224 this->set_current_data_size(num_branches * 16);
3225 this->finalize_data_size();
3226 Output_section* os = this->output_section();
3227 os->set_section_offsets_need_adjustment();
3228 if (this->rel_ != NULL)
3229 {
3230 unsigned int reloc_size
3231 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3232 this->rel_->reset_address_and_file_offset();
3233 this->rel_->set_current_data_size(num_branches * reloc_size);
3234 this->rel_->finalize_data_size();
3235 Output_section* os = this->rel_->output_section();
3236 os->set_section_offsets_need_adjustment();
3237 }
3238 }
3239
3240 protected:
3241 void
3242 do_adjust_output_section(Output_section* os)
3243 {
3244 os->set_entsize(0);
3245 }
3246
3247 // Write to a map file.
3248 void
3249 do_print_to_mapfile(Mapfile* mapfile) const
3250 { mapfile->print_output_data(this, "** BRLT"); }
3251
3252 private:
3253 // Write out the BRLT data.
3254 void
3255 do_write(Output_file*);
3256
3257 // The reloc section.
3258 Reloc_section* rel_;
3259 Target_powerpc<size, big_endian>* targ_;
3260 };
3261
3262 // Make the branch lookup table section.
3263
3264 template<int size, bool big_endian>
3265 void
3266 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3267 {
3268 if (size == 64 && this->brlt_section_ == NULL)
3269 {
3270 Reloc_section* brlt_rel = NULL;
3271 bool is_pic = parameters->options().output_is_position_independent();
3272 if (is_pic)
3273 {
3274 // When PIC we can't fill in .branch_lt (like .plt it can be
3275 // a bss style section) but must initialise at runtime via
3276 // dynamic relocats.
3277 this->rela_dyn_section(layout);
3278 brlt_rel = new Reloc_section(false);
3279 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3280 }
3281 this->brlt_section_
3282 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3283 if (this->plt_ && is_pic)
3284 this->plt_->output_section()
3285 ->add_output_section_data(this->brlt_section_);
3286 else
3287 layout->add_output_section_data(".branch_lt",
3288 (is_pic ? elfcpp::SHT_NOBITS
3289 : elfcpp::SHT_PROGBITS),
3290 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3291 this->brlt_section_,
3292 (is_pic ? ORDER_SMALL_BSS
3293 : ORDER_SMALL_DATA),
3294 false);
3295 }
3296 }
3297
3298 // Write out .branch_lt when non-PIC.
3299
3300 template<int size, bool big_endian>
3301 void
3302 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3303 {
3304 if (size == 64 && !parameters->options().output_is_position_independent())
3305 {
3306 const section_size_type offset = this->offset();
3307 const section_size_type oview_size
3308 = convert_to_section_size_type(this->data_size());
3309 unsigned char* const oview = of->get_output_view(offset, oview_size);
3310
3311 this->targ_->write_branch_lookup_table(oview);
3312 of->write_output_view(offset, oview_size, oview);
3313 }
3314 }
3315
3316 static inline uint32_t
3317 l(uint32_t a)
3318 {
3319 return a & 0xffff;
3320 }
3321
3322 static inline uint32_t
3323 hi(uint32_t a)
3324 {
3325 return l(a >> 16);
3326 }
3327
3328 static inline uint32_t
3329 ha(uint32_t a)
3330 {
3331 return hi(a + 0x8000);
3332 }
3333
3334 template<int size>
3335 struct Eh_cie
3336 {
3337 static const unsigned char eh_frame_cie[12];
3338 };
3339
3340 template<int size>
3341 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3342 {
3343 1, // CIE version.
3344 'z', 'R', 0, // Augmentation string.
3345 4, // Code alignment.
3346 0x80 - size / 8 , // Data alignment.
3347 65, // RA reg.
3348 1, // Augmentation size.
3349 (elfcpp::DW_EH_PE_pcrel
3350 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3351 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3352 };
3353
3354 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3355 static const unsigned char glink_eh_frame_fde_64v1[] =
3356 {
3357 0, 0, 0, 0, // Replaced with offset to .glink.
3358 0, 0, 0, 0, // Replaced with size of .glink.
3359 0, // Augmentation size.
3360 elfcpp::DW_CFA_advance_loc + 1,
3361 elfcpp::DW_CFA_register, 65, 12,
3362 elfcpp::DW_CFA_advance_loc + 4,
3363 elfcpp::DW_CFA_restore_extended, 65
3364 };
3365
3366 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3367 static const unsigned char glink_eh_frame_fde_64v2[] =
3368 {
3369 0, 0, 0, 0, // Replaced with offset to .glink.
3370 0, 0, 0, 0, // Replaced with size of .glink.
3371 0, // Augmentation size.
3372 elfcpp::DW_CFA_advance_loc + 1,
3373 elfcpp::DW_CFA_register, 65, 0,
3374 elfcpp::DW_CFA_advance_loc + 4,
3375 elfcpp::DW_CFA_restore_extended, 65
3376 };
3377
3378 // Describe __glink_PLTresolve use of LR, 32-bit version.
3379 static const unsigned char glink_eh_frame_fde_32[] =
3380 {
3381 0, 0, 0, 0, // Replaced with offset to .glink.
3382 0, 0, 0, 0, // Replaced with size of .glink.
3383 0, // Augmentation size.
3384 elfcpp::DW_CFA_advance_loc + 2,
3385 elfcpp::DW_CFA_register, 65, 0,
3386 elfcpp::DW_CFA_advance_loc + 4,
3387 elfcpp::DW_CFA_restore_extended, 65
3388 };
3389
3390 static const unsigned char default_fde[] =
3391 {
3392 0, 0, 0, 0, // Replaced with offset to stubs.
3393 0, 0, 0, 0, // Replaced with size of stubs.
3394 0, // Augmentation size.
3395 elfcpp::DW_CFA_nop, // Pad.
3396 elfcpp::DW_CFA_nop,
3397 elfcpp::DW_CFA_nop
3398 };
3399
3400 template<bool big_endian>
3401 static inline void
3402 write_insn(unsigned char* p, uint32_t v)
3403 {
3404 elfcpp::Swap<32, big_endian>::writeval(p, v);
3405 }
3406
3407 // Stub_table holds information about plt and long branch stubs.
3408 // Stubs are built in an area following some input section determined
3409 // by group_sections(). This input section is converted to a relaxed
3410 // input section allowing it to be resized to accommodate the stubs
3411
3412 template<int size, bool big_endian>
3413 class Stub_table : public Output_relaxed_input_section
3414 {
3415 public:
3416 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3417 static const Address invalid_address = static_cast<Address>(0) - 1;
3418
3419 Stub_table(Target_powerpc<size, big_endian>* targ)
3420 : Output_relaxed_input_section(NULL, 0, 0),
3421 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3422 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3423 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3424 { }
3425
3426 // Delayed Output_relaxed_input_section init.
3427 void
3428 init(const Output_section::Input_section*, Output_section*);
3429
3430 // Add a plt call stub.
3431 void
3432 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3433 const Symbol*,
3434 unsigned int,
3435 Address);
3436
3437 void
3438 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3439 unsigned int,
3440 unsigned int,
3441 Address);
3442
3443 // Find a given plt call stub.
3444 Address
3445 find_plt_call_entry(const Symbol*) const;
3446
3447 Address
3448 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3449 unsigned int) const;
3450
3451 Address
3452 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3453 const Symbol*,
3454 unsigned int,
3455 Address) const;
3456
3457 Address
3458 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3459 unsigned int,
3460 unsigned int,
3461 Address) const;
3462
3463 // Add a long branch stub.
3464 void
3465 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3466
3467 Address
3468 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3469 Address) const;
3470
3471 void
3472 clear_stubs()
3473 {
3474 this->plt_call_stubs_.clear();
3475 this->plt_size_ = 0;
3476 this->long_branch_stubs_.clear();
3477 this->branch_size_ = 0;
3478 }
3479
3480 Address
3481 set_address_and_size(const Output_section* os, Address off)
3482 {
3483 Address start_off = off;
3484 off += this->orig_data_size_;
3485 Address my_size = this->plt_size_ + this->branch_size_;
3486 if (my_size != 0)
3487 off = align_address(off, this->stub_align());
3488 // Include original section size and alignment padding in size
3489 my_size += off - start_off;
3490 this->reset_address_and_file_offset();
3491 this->set_current_data_size(my_size);
3492 this->set_address_and_file_offset(os->address() + start_off,
3493 os->offset() + start_off);
3494 return my_size;
3495 }
3496
3497 Address
3498 stub_address() const
3499 {
3500 return align_address(this->address() + this->orig_data_size_,
3501 this->stub_align());
3502 }
3503
3504 Address
3505 stub_offset() const
3506 {
3507 return align_address(this->offset() + this->orig_data_size_,
3508 this->stub_align());
3509 }
3510
3511 section_size_type
3512 plt_size() const
3513 { return this->plt_size_; }
3514
3515 bool
3516 size_update()
3517 {
3518 Output_section* os = this->output_section();
3519 if (os->addralign() < this->stub_align())
3520 {
3521 os->set_addralign(this->stub_align());
3522 // FIXME: get rid of the insane checkpointing.
3523 // We can't increase alignment of the input section to which
3524 // stubs are attached; The input section may be .init which
3525 // is pasted together with other .init sections to form a
3526 // function. Aligning might insert zero padding resulting in
3527 // sigill. However we do need to increase alignment of the
3528 // output section so that the align_address() on offset in
3529 // set_address_and_size() adds the same padding as the
3530 // align_address() on address in stub_address().
3531 // What's more, we need this alignment for the layout done in
3532 // relaxation_loop_body() so that the output section starts at
3533 // a suitably aligned address.
3534 os->checkpoint_set_addralign(this->stub_align());
3535 }
3536 if (this->last_plt_size_ != this->plt_size_
3537 || this->last_branch_size_ != this->branch_size_)
3538 {
3539 this->last_plt_size_ = this->plt_size_;
3540 this->last_branch_size_ = this->branch_size_;
3541 return true;
3542 }
3543 return false;
3544 }
3545
3546 // Add .eh_frame info for this stub section. Unlike other linker
3547 // generated .eh_frame this is added late in the link, because we
3548 // only want the .eh_frame info if this particular stub section is
3549 // non-empty.
3550 void
3551 add_eh_frame(Layout* layout)
3552 {
3553 if (!this->eh_frame_added_)
3554 {
3555 if (!parameters->options().ld_generated_unwind_info())
3556 return;
3557
3558 // Since we add stub .eh_frame info late, it must be placed
3559 // after all other linker generated .eh_frame info so that
3560 // merge mapping need not be updated for input sections.
3561 // There is no provision to use a different CIE to that used
3562 // by .glink.
3563 if (!this->targ_->has_glink())
3564 return;
3565
3566 layout->add_eh_frame_for_plt(this,
3567 Eh_cie<size>::eh_frame_cie,
3568 sizeof (Eh_cie<size>::eh_frame_cie),
3569 default_fde,
3570 sizeof (default_fde));
3571 this->eh_frame_added_ = true;
3572 }
3573 }
3574
3575 Target_powerpc<size, big_endian>*
3576 targ() const
3577 { return targ_; }
3578
3579 private:
3580 class Plt_stub_ent;
3581 class Plt_stub_ent_hash;
3582 typedef Unordered_map<Plt_stub_ent, unsigned int,
3583 Plt_stub_ent_hash> Plt_stub_entries;
3584
3585 // Alignment of stub section.
3586 unsigned int
3587 stub_align() const
3588 {
3589 if (size == 32)
3590 return 16;
3591 unsigned int min_align = 32;
3592 unsigned int user_align = 1 << parameters->options().plt_align();
3593 return std::max(user_align, min_align);
3594 }
3595
3596 // Return the plt offset for the given call stub.
3597 Address
3598 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3599 {
3600 const Symbol* gsym = p->first.sym_;
3601 if (gsym != NULL)
3602 {
3603 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3604 && gsym->can_use_relative_reloc(false));
3605 return gsym->plt_offset();
3606 }
3607 else
3608 {
3609 *is_iplt = true;
3610 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3611 unsigned int local_sym_index = p->first.locsym_;
3612 return relobj->local_plt_offset(local_sym_index);
3613 }
3614 }
3615
3616 // Size of a given plt call stub.
3617 unsigned int
3618 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3619 {
3620 if (size == 32)
3621 return 16;
3622
3623 bool is_iplt;
3624 Address plt_addr = this->plt_off(p, &is_iplt);
3625 if (is_iplt)
3626 plt_addr += this->targ_->iplt_section()->address();
3627 else
3628 plt_addr += this->targ_->plt_section()->address();
3629 Address got_addr = this->targ_->got_section()->output_section()->address();
3630 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3631 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3632 got_addr += ppcobj->toc_base_offset();
3633 Address off = plt_addr - got_addr;
3634 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3635 if (this->targ_->abiversion() < 2)
3636 {
3637 bool static_chain = parameters->options().plt_static_chain();
3638 bool thread_safe = this->targ_->plt_thread_safe();
3639 bytes += (4
3640 + 4 * static_chain
3641 + 8 * thread_safe
3642 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3643 }
3644 unsigned int align = 1 << parameters->options().plt_align();
3645 if (align > 1)
3646 bytes = (bytes + align - 1) & -align;
3647 return bytes;
3648 }
3649
3650 // Return long branch stub size.
3651 unsigned int
3652 branch_stub_size(Address to)
3653 {
3654 Address loc
3655 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3656 if (to - loc + (1 << 25) < 2 << 25)
3657 return 4;
3658 if (size == 64 || !parameters->options().output_is_position_independent())
3659 return 16;
3660 return 32;
3661 }
3662
3663 // Write out stubs.
3664 void
3665 do_write(Output_file*);
3666
3667 // Plt call stub keys.
3668 class Plt_stub_ent
3669 {
3670 public:
3671 Plt_stub_ent(const Symbol* sym)
3672 : sym_(sym), object_(0), addend_(0), locsym_(0)
3673 { }
3674
3675 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3676 unsigned int locsym_index)
3677 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3678 { }
3679
3680 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3681 const Symbol* sym,
3682 unsigned int r_type,
3683 Address addend)
3684 : sym_(sym), object_(0), addend_(0), locsym_(0)
3685 {
3686 if (size != 32)
3687 this->addend_ = addend;
3688 else if (parameters->options().output_is_position_independent()
3689 && r_type == elfcpp::R_PPC_PLTREL24)
3690 {
3691 this->addend_ = addend;
3692 if (this->addend_ >= 32768)
3693 this->object_ = object;
3694 }
3695 }
3696
3697 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3698 unsigned int locsym_index,
3699 unsigned int r_type,
3700 Address addend)
3701 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3702 {
3703 if (size != 32)
3704 this->addend_ = addend;
3705 else if (parameters->options().output_is_position_independent()
3706 && r_type == elfcpp::R_PPC_PLTREL24)
3707 this->addend_ = addend;
3708 }
3709
3710 bool operator==(const Plt_stub_ent& that) const
3711 {
3712 return (this->sym_ == that.sym_
3713 && this->object_ == that.object_
3714 && this->addend_ == that.addend_
3715 && this->locsym_ == that.locsym_);
3716 }
3717
3718 const Symbol* sym_;
3719 const Sized_relobj_file<size, big_endian>* object_;
3720 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3721 unsigned int locsym_;
3722 };
3723
3724 class Plt_stub_ent_hash
3725 {
3726 public:
3727 size_t operator()(const Plt_stub_ent& ent) const
3728 {
3729 return (reinterpret_cast<uintptr_t>(ent.sym_)
3730 ^ reinterpret_cast<uintptr_t>(ent.object_)
3731 ^ ent.addend_
3732 ^ ent.locsym_);
3733 }
3734 };
3735
3736 // Long branch stub keys.
3737 class Branch_stub_ent
3738 {
3739 public:
3740 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3741 : dest_(to), toc_base_off_(0)
3742 {
3743 if (size == 64)
3744 toc_base_off_ = obj->toc_base_offset();
3745 }
3746
3747 bool operator==(const Branch_stub_ent& that) const
3748 {
3749 return (this->dest_ == that.dest_
3750 && (size == 32
3751 || this->toc_base_off_ == that.toc_base_off_));
3752 }
3753
3754 Address dest_;
3755 unsigned int toc_base_off_;
3756 };
3757
3758 class Branch_stub_ent_hash
3759 {
3760 public:
3761 size_t operator()(const Branch_stub_ent& ent) const
3762 { return ent.dest_ ^ ent.toc_base_off_; }
3763 };
3764
3765 // In a sane world this would be a global.
3766 Target_powerpc<size, big_endian>* targ_;
3767 // Map sym/object/addend to stub offset.
3768 Plt_stub_entries plt_call_stubs_;
3769 // Map destination address to stub offset.
3770 typedef Unordered_map<Branch_stub_ent, unsigned int,
3771 Branch_stub_ent_hash> Branch_stub_entries;
3772 Branch_stub_entries long_branch_stubs_;
3773 // size of input section
3774 section_size_type orig_data_size_;
3775 // size of stubs
3776 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3777 // Whether .eh_frame info has been created for this stub section.
3778 bool eh_frame_added_;
3779 };
3780
3781 // Make a new stub table, and record.
3782
3783 template<int size, bool big_endian>
3784 Stub_table<size, big_endian>*
3785 Target_powerpc<size, big_endian>::new_stub_table()
3786 {
3787 Stub_table<size, big_endian>* stub_table
3788 = new Stub_table<size, big_endian>(this);
3789 this->stub_tables_.push_back(stub_table);
3790 return stub_table;
3791 }
3792
3793 // Delayed stub table initialisation, because we create the stub table
3794 // before we know to which section it will be attached.
3795
3796 template<int size, bool big_endian>
3797 void
3798 Stub_table<size, big_endian>::init(
3799 const Output_section::Input_section* owner,
3800 Output_section* output_section)
3801 {
3802 this->set_relobj(owner->relobj());
3803 this->set_shndx(owner->shndx());
3804 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3805 this->set_output_section(output_section);
3806 this->orig_data_size_ = owner->current_data_size();
3807
3808 std::vector<Output_relaxed_input_section*> new_relaxed;
3809 new_relaxed.push_back(this);
3810 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3811 }
3812
3813 // Add a plt call stub, if we do not already have one for this
3814 // sym/object/addend combo.
3815
3816 template<int size, bool big_endian>
3817 void
3818 Stub_table<size, big_endian>::add_plt_call_entry(
3819 const Sized_relobj_file<size, big_endian>* object,
3820 const Symbol* gsym,
3821 unsigned int r_type,
3822 Address addend)
3823 {
3824 Plt_stub_ent ent(object, gsym, r_type, addend);
3825 unsigned int off = this->plt_size_;
3826 std::pair<typename Plt_stub_entries::iterator, bool> p
3827 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3828 if (p.second)
3829 this->plt_size_ = off + this->plt_call_size(p.first);
3830 }
3831
3832 template<int size, bool big_endian>
3833 void
3834 Stub_table<size, big_endian>::add_plt_call_entry(
3835 const Sized_relobj_file<size, big_endian>* object,
3836 unsigned int locsym_index,
3837 unsigned int r_type,
3838 Address addend)
3839 {
3840 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3841 unsigned int off = this->plt_size_;
3842 std::pair<typename Plt_stub_entries::iterator, bool> p
3843 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3844 if (p.second)
3845 this->plt_size_ = off + this->plt_call_size(p.first);
3846 }
3847
3848 // Find a plt call stub.
3849
3850 template<int size, bool big_endian>
3851 typename Stub_table<size, big_endian>::Address
3852 Stub_table<size, big_endian>::find_plt_call_entry(
3853 const Sized_relobj_file<size, big_endian>* object,
3854 const Symbol* gsym,
3855 unsigned int r_type,
3856 Address addend) const
3857 {
3858 Plt_stub_ent ent(object, gsym, r_type, addend);
3859 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3860 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3861 }
3862
3863 template<int size, bool big_endian>
3864 typename Stub_table<size, big_endian>::Address
3865 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3866 {
3867 Plt_stub_ent ent(gsym);
3868 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3869 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3870 }
3871
3872 template<int size, bool big_endian>
3873 typename Stub_table<size, big_endian>::Address
3874 Stub_table<size, big_endian>::find_plt_call_entry(
3875 const Sized_relobj_file<size, big_endian>* object,
3876 unsigned int locsym_index,
3877 unsigned int r_type,
3878 Address addend) const
3879 {
3880 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3881 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3882 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3883 }
3884
3885 template<int size, bool big_endian>
3886 typename Stub_table<size, big_endian>::Address
3887 Stub_table<size, big_endian>::find_plt_call_entry(
3888 const Sized_relobj_file<size, big_endian>* object,
3889 unsigned int locsym_index) const
3890 {
3891 Plt_stub_ent ent(object, locsym_index);
3892 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3893 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3894 }
3895
3896 // Add a long branch stub if we don't already have one to given
3897 // destination.
3898
3899 template<int size, bool big_endian>
3900 void
3901 Stub_table<size, big_endian>::add_long_branch_entry(
3902 const Powerpc_relobj<size, big_endian>* object,
3903 Address to)
3904 {
3905 Branch_stub_ent ent(object, to);
3906 Address off = this->branch_size_;
3907 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3908 {
3909 unsigned int stub_size = this->branch_stub_size(to);
3910 this->branch_size_ = off + stub_size;
3911 if (size == 64 && stub_size != 4)
3912 this->targ_->add_branch_lookup_table(to);
3913 }
3914 }
3915
3916 // Find long branch stub.
3917
3918 template<int size, bool big_endian>
3919 typename Stub_table<size, big_endian>::Address
3920 Stub_table<size, big_endian>::find_long_branch_entry(
3921 const Powerpc_relobj<size, big_endian>* object,
3922 Address to) const
3923 {
3924 Branch_stub_ent ent(object, to);
3925 typename Branch_stub_entries::const_iterator p
3926 = this->long_branch_stubs_.find(ent);
3927 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3928 }
3929
3930 // A class to handle .glink.
3931
3932 template<int size, bool big_endian>
3933 class Output_data_glink : public Output_section_data
3934 {
3935 public:
3936 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3937 static const Address invalid_address = static_cast<Address>(0) - 1;
3938 static const int pltresolve_size = 16*4;
3939
3940 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3941 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3942 end_branch_table_(), ge_size_(0)
3943 { }
3944
3945 void
3946 add_eh_frame(Layout* layout);
3947
3948 void
3949 add_global_entry(const Symbol*);
3950
3951 Address
3952 find_global_entry(const Symbol*) const;
3953
3954 Address
3955 global_entry_address() const
3956 {
3957 gold_assert(this->is_data_size_valid());
3958 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3959 return this->address() + global_entry_off;
3960 }
3961
3962 protected:
3963 // Write to a map file.
3964 void
3965 do_print_to_mapfile(Mapfile* mapfile) const
3966 { mapfile->print_output_data(this, _("** glink")); }
3967
3968 private:
3969 void
3970 set_final_data_size();
3971
3972 // Write out .glink
3973 void
3974 do_write(Output_file*);
3975
3976 // Allows access to .got and .plt for do_write.
3977 Target_powerpc<size, big_endian>* targ_;
3978
3979 // Map sym to stub offset.
3980 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
3981 Global_entry_stub_entries global_entry_stubs_;
3982
3983 unsigned int end_branch_table_, ge_size_;
3984 };
3985
3986 template<int size, bool big_endian>
3987 void
3988 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
3989 {
3990 if (!parameters->options().ld_generated_unwind_info())
3991 return;
3992
3993 if (size == 64)
3994 {
3995 if (this->targ_->abiversion() < 2)
3996 layout->add_eh_frame_for_plt(this,
3997 Eh_cie<64>::eh_frame_cie,
3998 sizeof (Eh_cie<64>::eh_frame_cie),
3999 glink_eh_frame_fde_64v1,
4000 sizeof (glink_eh_frame_fde_64v1));
4001 else
4002 layout->add_eh_frame_for_plt(this,
4003 Eh_cie<64>::eh_frame_cie,
4004 sizeof (Eh_cie<64>::eh_frame_cie),
4005 glink_eh_frame_fde_64v2,
4006 sizeof (glink_eh_frame_fde_64v2));
4007 }
4008 else
4009 {
4010 // 32-bit .glink can use the default since the CIE return
4011 // address reg, LR, is valid.
4012 layout->add_eh_frame_for_plt(this,
4013 Eh_cie<32>::eh_frame_cie,
4014 sizeof (Eh_cie<32>::eh_frame_cie),
4015 default_fde,
4016 sizeof (default_fde));
4017 // Except where LR is used in a PIC __glink_PLTresolve.
4018 if (parameters->options().output_is_position_independent())
4019 layout->add_eh_frame_for_plt(this,
4020 Eh_cie<32>::eh_frame_cie,
4021 sizeof (Eh_cie<32>::eh_frame_cie),
4022 glink_eh_frame_fde_32,
4023 sizeof (glink_eh_frame_fde_32));
4024 }
4025 }
4026
4027 template<int size, bool big_endian>
4028 void
4029 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4030 {
4031 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4032 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4033 if (p.second)
4034 this->ge_size_ += 16;
4035 }
4036
4037 template<int size, bool big_endian>
4038 typename Output_data_glink<size, big_endian>::Address
4039 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4040 {
4041 typename Global_entry_stub_entries::const_iterator p
4042 = this->global_entry_stubs_.find(gsym);
4043 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4044 }
4045
4046 template<int size, bool big_endian>
4047 void
4048 Output_data_glink<size, big_endian>::set_final_data_size()
4049 {
4050 unsigned int count = this->targ_->plt_entry_count();
4051 section_size_type total = 0;
4052
4053 if (count != 0)
4054 {
4055 if (size == 32)
4056 {
4057 // space for branch table
4058 total += 4 * (count - 1);
4059
4060 total += -total & 15;
4061 total += this->pltresolve_size;
4062 }
4063 else
4064 {
4065 total += this->pltresolve_size;
4066
4067 // space for branch table
4068 total += 4 * count;
4069 if (this->targ_->abiversion() < 2)
4070 {
4071 total += 4 * count;
4072 if (count > 0x8000)
4073 total += 4 * (count - 0x8000);
4074 }
4075 }
4076 }
4077 this->end_branch_table_ = total;
4078 total = (total + 15) & -16;
4079 total += this->ge_size_;
4080
4081 this->set_data_size(total);
4082 }
4083
4084 // Write out plt and long branch stub code.
4085
4086 template<int size, bool big_endian>
4087 void
4088 Stub_table<size, big_endian>::do_write(Output_file* of)
4089 {
4090 if (this->plt_call_stubs_.empty()
4091 && this->long_branch_stubs_.empty())
4092 return;
4093
4094 const section_size_type start_off = this->offset();
4095 const section_size_type off = this->stub_offset();
4096 const section_size_type oview_size =
4097 convert_to_section_size_type(this->data_size() - (off - start_off));
4098 unsigned char* const oview = of->get_output_view(off, oview_size);
4099 unsigned char* p;
4100
4101 if (size == 64)
4102 {
4103 const Output_data_got_powerpc<size, big_endian>* got
4104 = this->targ_->got_section();
4105 Address got_os_addr = got->output_section()->address();
4106
4107 if (!this->plt_call_stubs_.empty())
4108 {
4109 // The base address of the .plt section.
4110 Address plt_base = this->targ_->plt_section()->address();
4111 Address iplt_base = invalid_address;
4112
4113 // Write out plt call stubs.
4114 typename Plt_stub_entries::const_iterator cs;
4115 for (cs = this->plt_call_stubs_.begin();
4116 cs != this->plt_call_stubs_.end();
4117 ++cs)
4118 {
4119 bool is_iplt;
4120 Address pltoff = this->plt_off(cs, &is_iplt);
4121 Address plt_addr = pltoff;
4122 if (is_iplt)
4123 {
4124 if (iplt_base == invalid_address)
4125 iplt_base = this->targ_->iplt_section()->address();
4126 plt_addr += iplt_base;
4127 }
4128 else
4129 plt_addr += plt_base;
4130 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4131 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4132 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4133 Address off = plt_addr - got_addr;
4134
4135 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4136 gold_error(_("%s: linkage table error against `%s'"),
4137 cs->first.object_->name().c_str(),
4138 cs->first.sym_->demangled_name().c_str());
4139
4140 bool plt_load_toc = this->targ_->abiversion() < 2;
4141 bool static_chain
4142 = plt_load_toc && parameters->options().plt_static_chain();
4143 bool thread_safe
4144 = plt_load_toc && this->targ_->plt_thread_safe();
4145 bool use_fake_dep = false;
4146 Address cmp_branch_off = 0;
4147 if (thread_safe)
4148 {
4149 unsigned int pltindex
4150 = ((pltoff - this->targ_->first_plt_entry_offset())
4151 / this->targ_->plt_entry_size());
4152 Address glinkoff
4153 = (this->targ_->glink_section()->pltresolve_size
4154 + pltindex * 8);
4155 if (pltindex > 32768)
4156 glinkoff += (pltindex - 32768) * 4;
4157 Address to
4158 = this->targ_->glink_section()->address() + glinkoff;
4159 Address from
4160 = (this->stub_address() + cs->second + 24
4161 + 4 * (ha(off) != 0)
4162 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4163 + 4 * static_chain);
4164 cmp_branch_off = to - from;
4165 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4166 }
4167
4168 p = oview + cs->second;
4169 if (ha(off) != 0)
4170 {
4171 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4172 p += 4;
4173 write_insn<big_endian>(p, addis_11_2 + ha(off));
4174 p += 4;
4175 write_insn<big_endian>(p, ld_12_11 + l(off));
4176 p += 4;
4177 if (plt_load_toc
4178 && ha(off + 8 + 8 * static_chain) != ha(off))
4179 {
4180 write_insn<big_endian>(p, addi_11_11 + l(off));
4181 p += 4;
4182 off = 0;
4183 }
4184 write_insn<big_endian>(p, mtctr_12);
4185 p += 4;
4186 if (plt_load_toc)
4187 {
4188 if (use_fake_dep)
4189 {
4190 write_insn<big_endian>(p, xor_2_12_12);
4191 p += 4;
4192 write_insn<big_endian>(p, add_11_11_2);
4193 p += 4;
4194 }
4195 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4196 p += 4;
4197 if (static_chain)
4198 {
4199 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4200 p += 4;
4201 }
4202 }
4203 }
4204 else
4205 {
4206 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4207 p += 4;
4208 write_insn<big_endian>(p, ld_12_2 + l(off));
4209 p += 4;
4210 if (plt_load_toc
4211 && ha(off + 8 + 8 * static_chain) != ha(off))
4212 {
4213 write_insn<big_endian>(p, addi_2_2 + l(off));
4214 p += 4;
4215 off = 0;
4216 }
4217 write_insn<big_endian>(p, mtctr_12);
4218 p += 4;
4219 if (plt_load_toc)
4220 {
4221 if (use_fake_dep)
4222 {
4223 write_insn<big_endian>(p, xor_11_12_12);
4224 p += 4;
4225 write_insn<big_endian>(p, add_2_2_11);
4226 p += 4;
4227 }
4228 if (static_chain)
4229 {
4230 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4231 p += 4;
4232 }
4233 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4234 p += 4;
4235 }
4236 }
4237 if (thread_safe && !use_fake_dep)
4238 {
4239 write_insn<big_endian>(p, cmpldi_2_0);
4240 p += 4;
4241 write_insn<big_endian>(p, bnectr_p4);
4242 p += 4;
4243 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4244 }
4245 else
4246 write_insn<big_endian>(p, bctr);
4247 }
4248 }
4249
4250 // Write out long branch stubs.
4251 typename Branch_stub_entries::const_iterator bs;
4252 for (bs = this->long_branch_stubs_.begin();
4253 bs != this->long_branch_stubs_.end();
4254 ++bs)
4255 {
4256 p = oview + this->plt_size_ + bs->second;
4257 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4258 Address delta = bs->first.dest_ - loc;
4259 if (delta + (1 << 25) < 2 << 25)
4260 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4261 else
4262 {
4263 Address brlt_addr
4264 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4265 gold_assert(brlt_addr != invalid_address);
4266 brlt_addr += this->targ_->brlt_section()->address();
4267 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4268 Address brltoff = brlt_addr - got_addr;
4269 if (ha(brltoff) == 0)
4270 {
4271 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4272 }
4273 else
4274 {
4275 write_insn<big_endian>(p, addis_11_2 + ha(brltoff)), p += 4;
4276 write_insn<big_endian>(p, ld_12_11 + l(brltoff)), p += 4;
4277 }
4278 write_insn<big_endian>(p, mtctr_12), p += 4;
4279 write_insn<big_endian>(p, bctr);
4280 }
4281 }
4282 }
4283 else
4284 {
4285 if (!this->plt_call_stubs_.empty())
4286 {
4287 // The base address of the .plt section.
4288 Address plt_base = this->targ_->plt_section()->address();
4289 Address iplt_base = invalid_address;
4290 // The address of _GLOBAL_OFFSET_TABLE_.
4291 Address g_o_t = invalid_address;
4292
4293 // Write out plt call stubs.
4294 typename Plt_stub_entries::const_iterator cs;
4295 for (cs = this->plt_call_stubs_.begin();
4296 cs != this->plt_call_stubs_.end();
4297 ++cs)
4298 {
4299 bool is_iplt;
4300 Address plt_addr = this->plt_off(cs, &is_iplt);
4301 if (is_iplt)
4302 {
4303 if (iplt_base == invalid_address)
4304 iplt_base = this->targ_->iplt_section()->address();
4305 plt_addr += iplt_base;
4306 }
4307 else
4308 plt_addr += plt_base;
4309
4310 p = oview + cs->second;
4311 if (parameters->options().output_is_position_independent())
4312 {
4313 Address got_addr;
4314 const Powerpc_relobj<size, big_endian>* ppcobj
4315 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4316 (cs->first.object_));
4317 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4318 {
4319 unsigned int got2 = ppcobj->got2_shndx();
4320 got_addr = ppcobj->get_output_section_offset(got2);
4321 gold_assert(got_addr != invalid_address);
4322 got_addr += (ppcobj->output_section(got2)->address()
4323 + cs->first.addend_);
4324 }
4325 else
4326 {
4327 if (g_o_t == invalid_address)
4328 {
4329 const Output_data_got_powerpc<size, big_endian>* got
4330 = this->targ_->got_section();
4331 g_o_t = got->address() + got->g_o_t();
4332 }
4333 got_addr = g_o_t;
4334 }
4335
4336 Address off = plt_addr - got_addr;
4337 if (ha(off) == 0)
4338 {
4339 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4340 write_insn<big_endian>(p + 4, mtctr_11);
4341 write_insn<big_endian>(p + 8, bctr);
4342 }
4343 else
4344 {
4345 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4346 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4347 write_insn<big_endian>(p + 8, mtctr_11);
4348 write_insn<big_endian>(p + 12, bctr);
4349 }
4350 }
4351 else
4352 {
4353 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4354 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4355 write_insn<big_endian>(p + 8, mtctr_11);
4356 write_insn<big_endian>(p + 12, bctr);
4357 }
4358 }
4359 }
4360
4361 // Write out long branch stubs.
4362 typename Branch_stub_entries::const_iterator bs;
4363 for (bs = this->long_branch_stubs_.begin();
4364 bs != this->long_branch_stubs_.end();
4365 ++bs)
4366 {
4367 p = oview + this->plt_size_ + bs->second;
4368 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4369 Address delta = bs->first.dest_ - loc;
4370 if (delta + (1 << 25) < 2 << 25)
4371 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4372 else if (!parameters->options().output_is_position_independent())
4373 {
4374 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4375 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4376 write_insn<big_endian>(p + 8, mtctr_12);
4377 write_insn<big_endian>(p + 12, bctr);
4378 }
4379 else
4380 {
4381 delta -= 8;
4382 write_insn<big_endian>(p + 0, mflr_0);
4383 write_insn<big_endian>(p + 4, bcl_20_31);
4384 write_insn<big_endian>(p + 8, mflr_12);
4385 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4386 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4387 write_insn<big_endian>(p + 20, mtlr_0);
4388 write_insn<big_endian>(p + 24, mtctr_12);
4389 write_insn<big_endian>(p + 28, bctr);
4390 }
4391 }
4392 }
4393 }
4394
4395 // Write out .glink.
4396
4397 template<int size, bool big_endian>
4398 void
4399 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4400 {
4401 const section_size_type off = this->offset();
4402 const section_size_type oview_size =
4403 convert_to_section_size_type(this->data_size());
4404 unsigned char* const oview = of->get_output_view(off, oview_size);
4405 unsigned char* p;
4406
4407 // The base address of the .plt section.
4408 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4409 Address plt_base = this->targ_->plt_section()->address();
4410
4411 if (size == 64)
4412 {
4413 if (this->end_branch_table_ != 0)
4414 {
4415 // Write pltresolve stub.
4416 p = oview;
4417 Address after_bcl = this->address() + 16;
4418 Address pltoff = plt_base - after_bcl;
4419
4420 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4421
4422 if (this->targ_->abiversion() < 2)
4423 {
4424 write_insn<big_endian>(p, mflr_12), p += 4;
4425 write_insn<big_endian>(p, bcl_20_31), p += 4;
4426 write_insn<big_endian>(p, mflr_11), p += 4;
4427 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4428 write_insn<big_endian>(p, mtlr_12), p += 4;
4429 write_insn<big_endian>(p, add_11_2_11), p += 4;
4430 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4431 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4432 write_insn<big_endian>(p, mtctr_12), p += 4;
4433 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4434 }
4435 else
4436 {
4437 write_insn<big_endian>(p, mflr_0), p += 4;
4438 write_insn<big_endian>(p, bcl_20_31), p += 4;
4439 write_insn<big_endian>(p, mflr_11), p += 4;
4440 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4441 write_insn<big_endian>(p, mtlr_0), p += 4;
4442 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4443 write_insn<big_endian>(p, add_11_2_11), p += 4;
4444 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4445 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4446 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4447 write_insn<big_endian>(p, mtctr_12), p += 4;
4448 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4449 }
4450 write_insn<big_endian>(p, bctr), p += 4;
4451 while (p < oview + this->pltresolve_size)
4452 write_insn<big_endian>(p, nop), p += 4;
4453
4454 // Write lazy link call stubs.
4455 uint32_t indx = 0;
4456 while (p < oview + this->end_branch_table_)
4457 {
4458 if (this->targ_->abiversion() < 2)
4459 {
4460 if (indx < 0x8000)
4461 {
4462 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4463 }
4464 else
4465 {
4466 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4467 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4468 }
4469 }
4470 uint32_t branch_off = 8 - (p - oview);
4471 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4472 indx++;
4473 }
4474 }
4475
4476 Address plt_base = this->targ_->plt_section()->address();
4477 Address iplt_base = invalid_address;
4478 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4479 Address global_entry_base = this->address() + global_entry_off;
4480 typename Global_entry_stub_entries::const_iterator ge;
4481 for (ge = this->global_entry_stubs_.begin();
4482 ge != this->global_entry_stubs_.end();
4483 ++ge)
4484 {
4485 p = oview + global_entry_off + ge->second;
4486 Address plt_addr = ge->first->plt_offset();
4487 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4488 && ge->first->can_use_relative_reloc(false))
4489 {
4490 if (iplt_base == invalid_address)
4491 iplt_base = this->targ_->iplt_section()->address();
4492 plt_addr += iplt_base;
4493 }
4494 else
4495 plt_addr += plt_base;
4496 Address my_addr = global_entry_base + ge->second;
4497 Address off = plt_addr - my_addr;
4498
4499 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4500 gold_error(_("%s: linkage table error against `%s'"),
4501 ge->first->object()->name().c_str(),
4502 ge->first->demangled_name().c_str());
4503
4504 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4505 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4506 write_insn<big_endian>(p, mtctr_12), p += 4;
4507 write_insn<big_endian>(p, bctr);
4508 }
4509 }
4510 else
4511 {
4512 const Output_data_got_powerpc<size, big_endian>* got
4513 = this->targ_->got_section();
4514 // The address of _GLOBAL_OFFSET_TABLE_.
4515 Address g_o_t = got->address() + got->g_o_t();
4516
4517 // Write out pltresolve branch table.
4518 p = oview;
4519 unsigned int the_end = oview_size - this->pltresolve_size;
4520 unsigned char* end_p = oview + the_end;
4521 while (p < end_p - 8 * 4)
4522 write_insn<big_endian>(p, b + end_p - p), p += 4;
4523 while (p < end_p)
4524 write_insn<big_endian>(p, nop), p += 4;
4525
4526 // Write out pltresolve call stub.
4527 if (parameters->options().output_is_position_independent())
4528 {
4529 Address res0_off = 0;
4530 Address after_bcl_off = the_end + 12;
4531 Address bcl_res0 = after_bcl_off - res0_off;
4532
4533 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4534 write_insn<big_endian>(p + 4, mflr_0);
4535 write_insn<big_endian>(p + 8, bcl_20_31);
4536 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4537 write_insn<big_endian>(p + 16, mflr_12);
4538 write_insn<big_endian>(p + 20, mtlr_0);
4539 write_insn<big_endian>(p + 24, sub_11_11_12);
4540
4541 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4542
4543 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4544 if (ha(got_bcl) == ha(got_bcl + 4))
4545 {
4546 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4547 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4548 }
4549 else
4550 {
4551 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4552 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4553 }
4554 write_insn<big_endian>(p + 40, mtctr_0);
4555 write_insn<big_endian>(p + 44, add_0_11_11);
4556 write_insn<big_endian>(p + 48, add_11_0_11);
4557 write_insn<big_endian>(p + 52, bctr);
4558 write_insn<big_endian>(p + 56, nop);
4559 write_insn<big_endian>(p + 60, nop);
4560 }
4561 else
4562 {
4563 Address res0 = this->address();
4564
4565 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4566 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4567 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4568 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4569 else
4570 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4571 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4572 write_insn<big_endian>(p + 16, mtctr_0);
4573 write_insn<big_endian>(p + 20, add_0_11_11);
4574 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4575 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4576 else
4577 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4578 write_insn<big_endian>(p + 28, add_11_0_11);
4579 write_insn<big_endian>(p + 32, bctr);
4580 write_insn<big_endian>(p + 36, nop);
4581 write_insn<big_endian>(p + 40, nop);
4582 write_insn<big_endian>(p + 44, nop);
4583 write_insn<big_endian>(p + 48, nop);
4584 write_insn<big_endian>(p + 52, nop);
4585 write_insn<big_endian>(p + 56, nop);
4586 write_insn<big_endian>(p + 60, nop);
4587 }
4588 p += 64;
4589 }
4590
4591 of->write_output_view(off, oview_size, oview);
4592 }
4593
4594
4595 // A class to handle linker generated save/restore functions.
4596
4597 template<int size, bool big_endian>
4598 class Output_data_save_res : public Output_section_data_build
4599 {
4600 public:
4601 Output_data_save_res(Symbol_table* symtab);
4602
4603 protected:
4604 // Write to a map file.
4605 void
4606 do_print_to_mapfile(Mapfile* mapfile) const
4607 { mapfile->print_output_data(this, _("** save/restore")); }
4608
4609 void
4610 do_write(Output_file*);
4611
4612 private:
4613 // The maximum size of save/restore contents.
4614 static const unsigned int savres_max = 218*4;
4615
4616 void
4617 savres_define(Symbol_table* symtab,
4618 const char *name,
4619 unsigned int lo, unsigned int hi,
4620 unsigned char* write_ent(unsigned char*, int),
4621 unsigned char* write_tail(unsigned char*, int));
4622
4623 unsigned char *contents_;
4624 };
4625
4626 template<bool big_endian>
4627 static unsigned char*
4628 savegpr0(unsigned char* p, int r)
4629 {
4630 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4631 write_insn<big_endian>(p, insn);
4632 return p + 4;
4633 }
4634
4635 template<bool big_endian>
4636 static unsigned char*
4637 savegpr0_tail(unsigned char* p, int r)
4638 {
4639 p = savegpr0<big_endian>(p, r);
4640 uint32_t insn = std_0_1 + 16;
4641 write_insn<big_endian>(p, insn);
4642 p = p + 4;
4643 write_insn<big_endian>(p, blr);
4644 return p + 4;
4645 }
4646
4647 template<bool big_endian>
4648 static unsigned char*
4649 restgpr0(unsigned char* p, int r)
4650 {
4651 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4652 write_insn<big_endian>(p, insn);
4653 return p + 4;
4654 }
4655
4656 template<bool big_endian>
4657 static unsigned char*
4658 restgpr0_tail(unsigned char* p, int r)
4659 {
4660 uint32_t insn = ld_0_1 + 16;
4661 write_insn<big_endian>(p, insn);
4662 p = p + 4;
4663 p = restgpr0<big_endian>(p, r);
4664 write_insn<big_endian>(p, mtlr_0);
4665 p = p + 4;
4666 if (r == 29)
4667 {
4668 p = restgpr0<big_endian>(p, 30);
4669 p = restgpr0<big_endian>(p, 31);
4670 }
4671 write_insn<big_endian>(p, blr);
4672 return p + 4;
4673 }
4674
4675 template<bool big_endian>
4676 static unsigned char*
4677 savegpr1(unsigned char* p, int r)
4678 {
4679 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4680 write_insn<big_endian>(p, insn);
4681 return p + 4;
4682 }
4683
4684 template<bool big_endian>
4685 static unsigned char*
4686 savegpr1_tail(unsigned char* p, int r)
4687 {
4688 p = savegpr1<big_endian>(p, r);
4689 write_insn<big_endian>(p, blr);
4690 return p + 4;
4691 }
4692
4693 template<bool big_endian>
4694 static unsigned char*
4695 restgpr1(unsigned char* p, int r)
4696 {
4697 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4698 write_insn<big_endian>(p, insn);
4699 return p + 4;
4700 }
4701
4702 template<bool big_endian>
4703 static unsigned char*
4704 restgpr1_tail(unsigned char* p, int r)
4705 {
4706 p = restgpr1<big_endian>(p, r);
4707 write_insn<big_endian>(p, blr);
4708 return p + 4;
4709 }
4710
4711 template<bool big_endian>
4712 static unsigned char*
4713 savefpr(unsigned char* p, int r)
4714 {
4715 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4716 write_insn<big_endian>(p, insn);
4717 return p + 4;
4718 }
4719
4720 template<bool big_endian>
4721 static unsigned char*
4722 savefpr0_tail(unsigned char* p, int r)
4723 {
4724 p = savefpr<big_endian>(p, r);
4725 write_insn<big_endian>(p, std_0_1 + 16);
4726 p = p + 4;
4727 write_insn<big_endian>(p, blr);
4728 return p + 4;
4729 }
4730
4731 template<bool big_endian>
4732 static unsigned char*
4733 restfpr(unsigned char* p, int r)
4734 {
4735 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4736 write_insn<big_endian>(p, insn);
4737 return p + 4;
4738 }
4739
4740 template<bool big_endian>
4741 static unsigned char*
4742 restfpr0_tail(unsigned char* p, int r)
4743 {
4744 write_insn<big_endian>(p, ld_0_1 + 16);
4745 p = p + 4;
4746 p = restfpr<big_endian>(p, r);
4747 write_insn<big_endian>(p, mtlr_0);
4748 p = p + 4;
4749 if (r == 29)
4750 {
4751 p = restfpr<big_endian>(p, 30);
4752 p = restfpr<big_endian>(p, 31);
4753 }
4754 write_insn<big_endian>(p, blr);
4755 return p + 4;
4756 }
4757
4758 template<bool big_endian>
4759 static unsigned char*
4760 savefpr1_tail(unsigned char* p, int r)
4761 {
4762 p = savefpr<big_endian>(p, r);
4763 write_insn<big_endian>(p, blr);
4764 return p + 4;
4765 }
4766
4767 template<bool big_endian>
4768 static unsigned char*
4769 restfpr1_tail(unsigned char* p, int r)
4770 {
4771 p = restfpr<big_endian>(p, r);
4772 write_insn<big_endian>(p, blr);
4773 return p + 4;
4774 }
4775
4776 template<bool big_endian>
4777 static unsigned char*
4778 savevr(unsigned char* p, int r)
4779 {
4780 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4781 write_insn<big_endian>(p, insn);
4782 p = p + 4;
4783 insn = stvx_0_12_0 + (r << 21);
4784 write_insn<big_endian>(p, insn);
4785 return p + 4;
4786 }
4787
4788 template<bool big_endian>
4789 static unsigned char*
4790 savevr_tail(unsigned char* p, int r)
4791 {
4792 p = savevr<big_endian>(p, r);
4793 write_insn<big_endian>(p, blr);
4794 return p + 4;
4795 }
4796
4797 template<bool big_endian>
4798 static unsigned char*
4799 restvr(unsigned char* p, int r)
4800 {
4801 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4802 write_insn<big_endian>(p, insn);
4803 p = p + 4;
4804 insn = lvx_0_12_0 + (r << 21);
4805 write_insn<big_endian>(p, insn);
4806 return p + 4;
4807 }
4808
4809 template<bool big_endian>
4810 static unsigned char*
4811 restvr_tail(unsigned char* p, int r)
4812 {
4813 p = restvr<big_endian>(p, r);
4814 write_insn<big_endian>(p, blr);
4815 return p + 4;
4816 }
4817
4818
4819 template<int size, bool big_endian>
4820 Output_data_save_res<size, big_endian>::Output_data_save_res(
4821 Symbol_table* symtab)
4822 : Output_section_data_build(4),
4823 contents_(NULL)
4824 {
4825 this->savres_define(symtab,
4826 "_savegpr0_", 14, 31,
4827 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4828 this->savres_define(symtab,
4829 "_restgpr0_", 14, 29,
4830 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4831 this->savres_define(symtab,
4832 "_restgpr0_", 30, 31,
4833 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4834 this->savres_define(symtab,
4835 "_savegpr1_", 14, 31,
4836 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4837 this->savres_define(symtab,
4838 "_restgpr1_", 14, 31,
4839 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4840 this->savres_define(symtab,
4841 "_savefpr_", 14, 31,
4842 savefpr<big_endian>, savefpr0_tail<big_endian>);
4843 this->savres_define(symtab,
4844 "_restfpr_", 14, 29,
4845 restfpr<big_endian>, restfpr0_tail<big_endian>);
4846 this->savres_define(symtab,
4847 "_restfpr_", 30, 31,
4848 restfpr<big_endian>, restfpr0_tail<big_endian>);
4849 this->savres_define(symtab,
4850 "._savef", 14, 31,
4851 savefpr<big_endian>, savefpr1_tail<big_endian>);
4852 this->savres_define(symtab,
4853 "._restf", 14, 31,
4854 restfpr<big_endian>, restfpr1_tail<big_endian>);
4855 this->savres_define(symtab,
4856 "_savevr_", 20, 31,
4857 savevr<big_endian>, savevr_tail<big_endian>);
4858 this->savres_define(symtab,
4859 "_restvr_", 20, 31,
4860 restvr<big_endian>, restvr_tail<big_endian>);
4861 }
4862
4863 template<int size, bool big_endian>
4864 void
4865 Output_data_save_res<size, big_endian>::savres_define(
4866 Symbol_table* symtab,
4867 const char *name,
4868 unsigned int lo, unsigned int hi,
4869 unsigned char* write_ent(unsigned char*, int),
4870 unsigned char* write_tail(unsigned char*, int))
4871 {
4872 size_t len = strlen(name);
4873 bool writing = false;
4874 char sym[16];
4875
4876 memcpy(sym, name, len);
4877 sym[len + 2] = 0;
4878
4879 for (unsigned int i = lo; i <= hi; i++)
4880 {
4881 sym[len + 0] = i / 10 + '0';
4882 sym[len + 1] = i % 10 + '0';
4883 Symbol* gsym = symtab->lookup(sym);
4884 bool refd = gsym != NULL && gsym->is_undefined();
4885 writing = writing || refd;
4886 if (writing)
4887 {
4888 if (this->contents_ == NULL)
4889 this->contents_ = new unsigned char[this->savres_max];
4890
4891 section_size_type value = this->current_data_size();
4892 unsigned char* p = this->contents_ + value;
4893 if (i != hi)
4894 p = write_ent(p, i);
4895 else
4896 p = write_tail(p, i);
4897 section_size_type cur_size = p - this->contents_;
4898 this->set_current_data_size(cur_size);
4899 if (refd)
4900 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4901 this, value, cur_size - value,
4902 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4903 elfcpp::STV_HIDDEN, 0, false, false);
4904 }
4905 }
4906 }
4907
4908 // Write out save/restore.
4909
4910 template<int size, bool big_endian>
4911 void
4912 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4913 {
4914 const section_size_type off = this->offset();
4915 const section_size_type oview_size =
4916 convert_to_section_size_type(this->data_size());
4917 unsigned char* const oview = of->get_output_view(off, oview_size);
4918 memcpy(oview, this->contents_, oview_size);
4919 of->write_output_view(off, oview_size, oview);
4920 }
4921
4922
4923 // Create the glink section.
4924
4925 template<int size, bool big_endian>
4926 void
4927 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4928 {
4929 if (this->glink_ == NULL)
4930 {
4931 this->glink_ = new Output_data_glink<size, big_endian>(this);
4932 this->glink_->add_eh_frame(layout);
4933 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4934 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4935 this->glink_, ORDER_TEXT, false);
4936 }
4937 }
4938
4939 // Create a PLT entry for a global symbol.
4940
4941 template<int size, bool big_endian>
4942 void
4943 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4944 Layout* layout,
4945 Symbol* gsym)
4946 {
4947 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4948 && gsym->can_use_relative_reloc(false))
4949 {
4950 if (this->iplt_ == NULL)
4951 this->make_iplt_section(symtab, layout);
4952 this->iplt_->add_ifunc_entry(gsym);
4953 }
4954 else
4955 {
4956 if (this->plt_ == NULL)
4957 this->make_plt_section(symtab, layout);
4958 this->plt_->add_entry(gsym);
4959 }
4960 }
4961
4962 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4963
4964 template<int size, bool big_endian>
4965 void
4966 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4967 Symbol_table* symtab,
4968 Layout* layout,
4969 Sized_relobj_file<size, big_endian>* relobj,
4970 unsigned int r_sym)
4971 {
4972 if (this->iplt_ == NULL)
4973 this->make_iplt_section(symtab, layout);
4974 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4975 }
4976
4977 // Return the number of entries in the PLT.
4978
4979 template<int size, bool big_endian>
4980 unsigned int
4981 Target_powerpc<size, big_endian>::plt_entry_count() const
4982 {
4983 if (this->plt_ == NULL)
4984 return 0;
4985 return this->plt_->entry_count();
4986 }
4987
4988 // Create a GOT entry for local dynamic __tls_get_addr calls.
4989
4990 template<int size, bool big_endian>
4991 unsigned int
4992 Target_powerpc<size, big_endian>::tlsld_got_offset(
4993 Symbol_table* symtab,
4994 Layout* layout,
4995 Sized_relobj_file<size, big_endian>* object)
4996 {
4997 if (this->tlsld_got_offset_ == -1U)
4998 {
4999 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5000 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5001 Output_data_got_powerpc<size, big_endian>* got
5002 = this->got_section(symtab, layout);
5003 unsigned int got_offset = got->add_constant_pair(0, 0);
5004 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5005 got_offset, 0);
5006 this->tlsld_got_offset_ = got_offset;
5007 }
5008 return this->tlsld_got_offset_;
5009 }
5010
5011 // Get the Reference_flags for a particular relocation.
5012
5013 template<int size, bool big_endian>
5014 int
5015 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5016 unsigned int r_type,
5017 const Target_powerpc* target)
5018 {
5019 int ref = 0;
5020
5021 switch (r_type)
5022 {
5023 case elfcpp::R_POWERPC_NONE:
5024 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5025 case elfcpp::R_POWERPC_GNU_VTENTRY:
5026 case elfcpp::R_PPC64_TOC:
5027 // No symbol reference.
5028 break;
5029
5030 case elfcpp::R_PPC64_ADDR64:
5031 case elfcpp::R_PPC64_UADDR64:
5032 case elfcpp::R_POWERPC_ADDR32:
5033 case elfcpp::R_POWERPC_UADDR32:
5034 case elfcpp::R_POWERPC_ADDR16:
5035 case elfcpp::R_POWERPC_UADDR16:
5036 case elfcpp::R_POWERPC_ADDR16_LO:
5037 case elfcpp::R_POWERPC_ADDR16_HI:
5038 case elfcpp::R_POWERPC_ADDR16_HA:
5039 ref = Symbol::ABSOLUTE_REF;
5040 break;
5041
5042 case elfcpp::R_POWERPC_ADDR24:
5043 case elfcpp::R_POWERPC_ADDR14:
5044 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5045 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5046 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5047 break;
5048
5049 case elfcpp::R_PPC64_REL64:
5050 case elfcpp::R_POWERPC_REL32:
5051 case elfcpp::R_PPC_LOCAL24PC:
5052 case elfcpp::R_POWERPC_REL16:
5053 case elfcpp::R_POWERPC_REL16_LO:
5054 case elfcpp::R_POWERPC_REL16_HI:
5055 case elfcpp::R_POWERPC_REL16_HA:
5056 ref = Symbol::RELATIVE_REF;
5057 break;
5058
5059 case elfcpp::R_POWERPC_REL24:
5060 case elfcpp::R_PPC_PLTREL24:
5061 case elfcpp::R_POWERPC_REL14:
5062 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5063 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5064 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5065 break;
5066
5067 case elfcpp::R_POWERPC_GOT16:
5068 case elfcpp::R_POWERPC_GOT16_LO:
5069 case elfcpp::R_POWERPC_GOT16_HI:
5070 case elfcpp::R_POWERPC_GOT16_HA:
5071 case elfcpp::R_PPC64_GOT16_DS:
5072 case elfcpp::R_PPC64_GOT16_LO_DS:
5073 case elfcpp::R_PPC64_TOC16:
5074 case elfcpp::R_PPC64_TOC16_LO:
5075 case elfcpp::R_PPC64_TOC16_HI:
5076 case elfcpp::R_PPC64_TOC16_HA:
5077 case elfcpp::R_PPC64_TOC16_DS:
5078 case elfcpp::R_PPC64_TOC16_LO_DS:
5079 // Absolute in GOT.
5080 ref = Symbol::ABSOLUTE_REF;
5081 break;
5082
5083 case elfcpp::R_POWERPC_GOT_TPREL16:
5084 case elfcpp::R_POWERPC_TLS:
5085 ref = Symbol::TLS_REF;
5086 break;
5087
5088 case elfcpp::R_POWERPC_COPY:
5089 case elfcpp::R_POWERPC_GLOB_DAT:
5090 case elfcpp::R_POWERPC_JMP_SLOT:
5091 case elfcpp::R_POWERPC_RELATIVE:
5092 case elfcpp::R_POWERPC_DTPMOD:
5093 default:
5094 // Not expected. We will give an error later.
5095 break;
5096 }
5097
5098 if (size == 64 && target->abiversion() < 2)
5099 ref |= Symbol::FUNC_DESC_ABI;
5100 return ref;
5101 }
5102
5103 // Report an unsupported relocation against a local symbol.
5104
5105 template<int size, bool big_endian>
5106 void
5107 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5108 Sized_relobj_file<size, big_endian>* object,
5109 unsigned int r_type)
5110 {
5111 gold_error(_("%s: unsupported reloc %u against local symbol"),
5112 object->name().c_str(), r_type);
5113 }
5114
5115 // We are about to emit a dynamic relocation of type R_TYPE. If the
5116 // dynamic linker does not support it, issue an error.
5117
5118 template<int size, bool big_endian>
5119 void
5120 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5121 unsigned int r_type)
5122 {
5123 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5124
5125 // These are the relocation types supported by glibc for both 32-bit
5126 // and 64-bit powerpc.
5127 switch (r_type)
5128 {
5129 case elfcpp::R_POWERPC_NONE:
5130 case elfcpp::R_POWERPC_RELATIVE:
5131 case elfcpp::R_POWERPC_GLOB_DAT:
5132 case elfcpp::R_POWERPC_DTPMOD:
5133 case elfcpp::R_POWERPC_DTPREL:
5134 case elfcpp::R_POWERPC_TPREL:
5135 case elfcpp::R_POWERPC_JMP_SLOT:
5136 case elfcpp::R_POWERPC_COPY:
5137 case elfcpp::R_POWERPC_IRELATIVE:
5138 case elfcpp::R_POWERPC_ADDR32:
5139 case elfcpp::R_POWERPC_UADDR32:
5140 case elfcpp::R_POWERPC_ADDR24:
5141 case elfcpp::R_POWERPC_ADDR16:
5142 case elfcpp::R_POWERPC_UADDR16:
5143 case elfcpp::R_POWERPC_ADDR16_LO:
5144 case elfcpp::R_POWERPC_ADDR16_HI:
5145 case elfcpp::R_POWERPC_ADDR16_HA:
5146 case elfcpp::R_POWERPC_ADDR14:
5147 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5148 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5149 case elfcpp::R_POWERPC_REL32:
5150 case elfcpp::R_POWERPC_REL24:
5151 case elfcpp::R_POWERPC_TPREL16:
5152 case elfcpp::R_POWERPC_TPREL16_LO:
5153 case elfcpp::R_POWERPC_TPREL16_HI:
5154 case elfcpp::R_POWERPC_TPREL16_HA:
5155 return;
5156
5157 default:
5158 break;
5159 }
5160
5161 if (size == 64)
5162 {
5163 switch (r_type)
5164 {
5165 // These are the relocation types supported only on 64-bit.
5166 case elfcpp::R_PPC64_ADDR64:
5167 case elfcpp::R_PPC64_UADDR64:
5168 case elfcpp::R_PPC64_JMP_IREL:
5169 case elfcpp::R_PPC64_ADDR16_DS:
5170 case elfcpp::R_PPC64_ADDR16_LO_DS:
5171 case elfcpp::R_PPC64_ADDR16_HIGH:
5172 case elfcpp::R_PPC64_ADDR16_HIGHA:
5173 case elfcpp::R_PPC64_ADDR16_HIGHER:
5174 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5175 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5176 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5177 case elfcpp::R_PPC64_REL64:
5178 case elfcpp::R_POWERPC_ADDR30:
5179 case elfcpp::R_PPC64_TPREL16_DS:
5180 case elfcpp::R_PPC64_TPREL16_LO_DS:
5181 case elfcpp::R_PPC64_TPREL16_HIGH:
5182 case elfcpp::R_PPC64_TPREL16_HIGHA:
5183 case elfcpp::R_PPC64_TPREL16_HIGHER:
5184 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5185 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5186 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5187 return;
5188
5189 default:
5190 break;
5191 }
5192 }
5193 else
5194 {
5195 switch (r_type)
5196 {
5197 // These are the relocation types supported only on 32-bit.
5198 // ??? glibc ld.so doesn't need to support these.
5199 case elfcpp::R_POWERPC_DTPREL16:
5200 case elfcpp::R_POWERPC_DTPREL16_LO:
5201 case elfcpp::R_POWERPC_DTPREL16_HI:
5202 case elfcpp::R_POWERPC_DTPREL16_HA:
5203 return;
5204
5205 default:
5206 break;
5207 }
5208 }
5209
5210 // This prevents us from issuing more than one error per reloc
5211 // section. But we can still wind up issuing more than one
5212 // error per object file.
5213 if (this->issued_non_pic_error_)
5214 return;
5215 gold_assert(parameters->options().output_is_position_independent());
5216 object->error(_("requires unsupported dynamic reloc; "
5217 "recompile with -fPIC"));
5218 this->issued_non_pic_error_ = true;
5219 return;
5220 }
5221
5222 // Return whether we need to make a PLT entry for a relocation of the
5223 // given type against a STT_GNU_IFUNC symbol.
5224
5225 template<int size, bool big_endian>
5226 bool
5227 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5228 Target_powerpc<size, big_endian>* target,
5229 Sized_relobj_file<size, big_endian>* object,
5230 unsigned int r_type,
5231 bool report_err)
5232 {
5233 // In non-pic code any reference will resolve to the plt call stub
5234 // for the ifunc symbol.
5235 if ((size == 32 || target->abiversion() >= 2)
5236 && !parameters->options().output_is_position_independent())
5237 return true;
5238
5239 switch (r_type)
5240 {
5241 // Word size refs from data sections are OK, but don't need a PLT entry.
5242 case elfcpp::R_POWERPC_ADDR32:
5243 case elfcpp::R_POWERPC_UADDR32:
5244 if (size == 32)
5245 return false;
5246 break;
5247
5248 case elfcpp::R_PPC64_ADDR64:
5249 case elfcpp::R_PPC64_UADDR64:
5250 if (size == 64)
5251 return false;
5252 break;
5253
5254 // GOT refs are good, but also don't need a PLT entry.
5255 case elfcpp::R_POWERPC_GOT16:
5256 case elfcpp::R_POWERPC_GOT16_LO:
5257 case elfcpp::R_POWERPC_GOT16_HI:
5258 case elfcpp::R_POWERPC_GOT16_HA:
5259 case elfcpp::R_PPC64_GOT16_DS:
5260 case elfcpp::R_PPC64_GOT16_LO_DS:
5261 return false;
5262
5263 // Function calls are good, and these do need a PLT entry.
5264 case elfcpp::R_POWERPC_ADDR24:
5265 case elfcpp::R_POWERPC_ADDR14:
5266 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5267 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5268 case elfcpp::R_POWERPC_REL24:
5269 case elfcpp::R_PPC_PLTREL24:
5270 case elfcpp::R_POWERPC_REL14:
5271 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5272 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5273 return true;
5274
5275 default:
5276 break;
5277 }
5278
5279 // Anything else is a problem.
5280 // If we are building a static executable, the libc startup function
5281 // responsible for applying indirect function relocations is going
5282 // to complain about the reloc type.
5283 // If we are building a dynamic executable, we will have a text
5284 // relocation. The dynamic loader will set the text segment
5285 // writable and non-executable to apply text relocations. So we'll
5286 // segfault when trying to run the indirection function to resolve
5287 // the reloc.
5288 if (report_err)
5289 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5290 object->name().c_str(), r_type);
5291 return false;
5292 }
5293
5294 // Scan a relocation for a local symbol.
5295
5296 template<int size, bool big_endian>
5297 inline void
5298 Target_powerpc<size, big_endian>::Scan::local(
5299 Symbol_table* symtab,
5300 Layout* layout,
5301 Target_powerpc<size, big_endian>* target,
5302 Sized_relobj_file<size, big_endian>* object,
5303 unsigned int data_shndx,
5304 Output_section* output_section,
5305 const elfcpp::Rela<size, big_endian>& reloc,
5306 unsigned int r_type,
5307 const elfcpp::Sym<size, big_endian>& lsym,
5308 bool is_discarded)
5309 {
5310 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5311
5312 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5313 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5314 {
5315 this->expect_tls_get_addr_call();
5316 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5317 if (tls_type != tls::TLSOPT_NONE)
5318 this->skip_next_tls_get_addr_call();
5319 }
5320 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5321 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5322 {
5323 this->expect_tls_get_addr_call();
5324 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5325 if (tls_type != tls::TLSOPT_NONE)
5326 this->skip_next_tls_get_addr_call();
5327 }
5328
5329 Powerpc_relobj<size, big_endian>* ppc_object
5330 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5331
5332 if (is_discarded)
5333 {
5334 if (size == 64
5335 && data_shndx == ppc_object->opd_shndx()
5336 && r_type == elfcpp::R_PPC64_ADDR64)
5337 ppc_object->set_opd_discard(reloc.get_r_offset());
5338 return;
5339 }
5340
5341 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5342 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5343 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5344 {
5345 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5346 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5347 r_type, r_sym, reloc.get_r_addend());
5348 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5349 }
5350
5351 switch (r_type)
5352 {
5353 case elfcpp::R_POWERPC_NONE:
5354 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5355 case elfcpp::R_POWERPC_GNU_VTENTRY:
5356 case elfcpp::R_PPC64_TOCSAVE:
5357 case elfcpp::R_POWERPC_TLS:
5358 break;
5359
5360 case elfcpp::R_PPC64_TOC:
5361 {
5362 Output_data_got_powerpc<size, big_endian>* got
5363 = target->got_section(symtab, layout);
5364 if (parameters->options().output_is_position_independent())
5365 {
5366 Address off = reloc.get_r_offset();
5367 if (size == 64
5368 && target->abiversion() < 2
5369 && data_shndx == ppc_object->opd_shndx()
5370 && ppc_object->get_opd_discard(off - 8))
5371 break;
5372
5373 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5374 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5375 rela_dyn->add_output_section_relative(got->output_section(),
5376 elfcpp::R_POWERPC_RELATIVE,
5377 output_section,
5378 object, data_shndx, off,
5379 symobj->toc_base_offset());
5380 }
5381 }
5382 break;
5383
5384 case elfcpp::R_PPC64_ADDR64:
5385 case elfcpp::R_PPC64_UADDR64:
5386 case elfcpp::R_POWERPC_ADDR32:
5387 case elfcpp::R_POWERPC_UADDR32:
5388 case elfcpp::R_POWERPC_ADDR24:
5389 case elfcpp::R_POWERPC_ADDR16:
5390 case elfcpp::R_POWERPC_ADDR16_LO:
5391 case elfcpp::R_POWERPC_ADDR16_HI:
5392 case elfcpp::R_POWERPC_ADDR16_HA:
5393 case elfcpp::R_POWERPC_UADDR16:
5394 case elfcpp::R_PPC64_ADDR16_HIGH:
5395 case elfcpp::R_PPC64_ADDR16_HIGHA:
5396 case elfcpp::R_PPC64_ADDR16_HIGHER:
5397 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5398 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5399 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5400 case elfcpp::R_PPC64_ADDR16_DS:
5401 case elfcpp::R_PPC64_ADDR16_LO_DS:
5402 case elfcpp::R_POWERPC_ADDR14:
5403 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5404 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5405 // If building a shared library (or a position-independent
5406 // executable), we need to create a dynamic relocation for
5407 // this location.
5408 if (parameters->options().output_is_position_independent()
5409 || (size == 64 && is_ifunc && target->abiversion() < 2))
5410 {
5411 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5412 is_ifunc);
5413 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5414 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5415 {
5416 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5417 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5418 : elfcpp::R_POWERPC_RELATIVE);
5419 rela_dyn->add_local_relative(object, r_sym, dynrel,
5420 output_section, data_shndx,
5421 reloc.get_r_offset(),
5422 reloc.get_r_addend(), false);
5423 }
5424 else
5425 {
5426 check_non_pic(object, r_type);
5427 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5428 rela_dyn->add_local(object, r_sym, r_type, output_section,
5429 data_shndx, reloc.get_r_offset(),
5430 reloc.get_r_addend());
5431 }
5432 }
5433 break;
5434
5435 case elfcpp::R_POWERPC_REL24:
5436 case elfcpp::R_PPC_PLTREL24:
5437 case elfcpp::R_PPC_LOCAL24PC:
5438 case elfcpp::R_POWERPC_REL14:
5439 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5440 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5441 if (!is_ifunc)
5442 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5443 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5444 reloc.get_r_addend());
5445 break;
5446
5447 case elfcpp::R_PPC64_REL64:
5448 case elfcpp::R_POWERPC_REL32:
5449 case elfcpp::R_POWERPC_REL16:
5450 case elfcpp::R_POWERPC_REL16_LO:
5451 case elfcpp::R_POWERPC_REL16_HI:
5452 case elfcpp::R_POWERPC_REL16_HA:
5453 case elfcpp::R_POWERPC_SECTOFF:
5454 case elfcpp::R_POWERPC_SECTOFF_LO:
5455 case elfcpp::R_POWERPC_SECTOFF_HI:
5456 case elfcpp::R_POWERPC_SECTOFF_HA:
5457 case elfcpp::R_PPC64_SECTOFF_DS:
5458 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5459 case elfcpp::R_POWERPC_TPREL16:
5460 case elfcpp::R_POWERPC_TPREL16_LO:
5461 case elfcpp::R_POWERPC_TPREL16_HI:
5462 case elfcpp::R_POWERPC_TPREL16_HA:
5463 case elfcpp::R_PPC64_TPREL16_DS:
5464 case elfcpp::R_PPC64_TPREL16_LO_DS:
5465 case elfcpp::R_PPC64_TPREL16_HIGH:
5466 case elfcpp::R_PPC64_TPREL16_HIGHA:
5467 case elfcpp::R_PPC64_TPREL16_HIGHER:
5468 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5469 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5470 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5471 case elfcpp::R_POWERPC_DTPREL16:
5472 case elfcpp::R_POWERPC_DTPREL16_LO:
5473 case elfcpp::R_POWERPC_DTPREL16_HI:
5474 case elfcpp::R_POWERPC_DTPREL16_HA:
5475 case elfcpp::R_PPC64_DTPREL16_DS:
5476 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5477 case elfcpp::R_PPC64_DTPREL16_HIGH:
5478 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5479 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5480 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5481 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5482 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5483 case elfcpp::R_PPC64_TLSGD:
5484 case elfcpp::R_PPC64_TLSLD:
5485 case elfcpp::R_PPC64_ADDR64_LOCAL:
5486 break;
5487
5488 case elfcpp::R_POWERPC_GOT16:
5489 case elfcpp::R_POWERPC_GOT16_LO:
5490 case elfcpp::R_POWERPC_GOT16_HI:
5491 case elfcpp::R_POWERPC_GOT16_HA:
5492 case elfcpp::R_PPC64_GOT16_DS:
5493 case elfcpp::R_PPC64_GOT16_LO_DS:
5494 {
5495 // The symbol requires a GOT entry.
5496 Output_data_got_powerpc<size, big_endian>* got
5497 = target->got_section(symtab, layout);
5498 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5499
5500 if (!parameters->options().output_is_position_independent())
5501 {
5502 if ((size == 32 && is_ifunc)
5503 || (size == 64 && target->abiversion() >= 2))
5504 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5505 else
5506 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5507 }
5508 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5509 {
5510 // If we are generating a shared object or a pie, this
5511 // symbol's GOT entry will be set by a dynamic relocation.
5512 unsigned int off;
5513 off = got->add_constant(0);
5514 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5515
5516 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5517 is_ifunc);
5518 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5519 : elfcpp::R_POWERPC_RELATIVE);
5520 rela_dyn->add_local_relative(object, r_sym, dynrel,
5521 got, off, 0, false);
5522 }
5523 }
5524 break;
5525
5526 case elfcpp::R_PPC64_TOC16:
5527 case elfcpp::R_PPC64_TOC16_LO:
5528 case elfcpp::R_PPC64_TOC16_HI:
5529 case elfcpp::R_PPC64_TOC16_HA:
5530 case elfcpp::R_PPC64_TOC16_DS:
5531 case elfcpp::R_PPC64_TOC16_LO_DS:
5532 // We need a GOT section.
5533 target->got_section(symtab, layout);
5534 break;
5535
5536 case elfcpp::R_POWERPC_GOT_TLSGD16:
5537 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5538 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5539 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5540 {
5541 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5542 if (tls_type == tls::TLSOPT_NONE)
5543 {
5544 Output_data_got_powerpc<size, big_endian>* got
5545 = target->got_section(symtab, layout);
5546 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5547 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5548 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5549 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5550 }
5551 else if (tls_type == tls::TLSOPT_TO_LE)
5552 {
5553 // no GOT relocs needed for Local Exec.
5554 }
5555 else
5556 gold_unreachable();
5557 }
5558 break;
5559
5560 case elfcpp::R_POWERPC_GOT_TLSLD16:
5561 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5562 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5563 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5564 {
5565 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5566 if (tls_type == tls::TLSOPT_NONE)
5567 target->tlsld_got_offset(symtab, layout, object);
5568 else if (tls_type == tls::TLSOPT_TO_LE)
5569 {
5570 // no GOT relocs needed for Local Exec.
5571 if (parameters->options().emit_relocs())
5572 {
5573 Output_section* os = layout->tls_segment()->first_section();
5574 gold_assert(os != NULL);
5575 os->set_needs_symtab_index();
5576 }
5577 }
5578 else
5579 gold_unreachable();
5580 }
5581 break;
5582
5583 case elfcpp::R_POWERPC_GOT_DTPREL16:
5584 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5585 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5586 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5587 {
5588 Output_data_got_powerpc<size, big_endian>* got
5589 = target->got_section(symtab, layout);
5590 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5591 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5592 }
5593 break;
5594
5595 case elfcpp::R_POWERPC_GOT_TPREL16:
5596 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5597 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5598 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5599 {
5600 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5601 if (tls_type == tls::TLSOPT_NONE)
5602 {
5603 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5604 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5605 {
5606 Output_data_got_powerpc<size, big_endian>* got
5607 = target->got_section(symtab, layout);
5608 unsigned int off = got->add_constant(0);
5609 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5610
5611 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5612 rela_dyn->add_symbolless_local_addend(object, r_sym,
5613 elfcpp::R_POWERPC_TPREL,
5614 got, off, 0);
5615 }
5616 }
5617 else if (tls_type == tls::TLSOPT_TO_LE)
5618 {
5619 // no GOT relocs needed for Local Exec.
5620 }
5621 else
5622 gold_unreachable();
5623 }
5624 break;
5625
5626 default:
5627 unsupported_reloc_local(object, r_type);
5628 break;
5629 }
5630
5631 switch (r_type)
5632 {
5633 case elfcpp::R_POWERPC_GOT_TLSLD16:
5634 case elfcpp::R_POWERPC_GOT_TLSGD16:
5635 case elfcpp::R_POWERPC_GOT_TPREL16:
5636 case elfcpp::R_POWERPC_GOT_DTPREL16:
5637 case elfcpp::R_POWERPC_GOT16:
5638 case elfcpp::R_PPC64_GOT16_DS:
5639 case elfcpp::R_PPC64_TOC16:
5640 case elfcpp::R_PPC64_TOC16_DS:
5641 ppc_object->set_has_small_toc_reloc();
5642 default:
5643 break;
5644 }
5645 }
5646
5647 // Report an unsupported relocation against a global symbol.
5648
5649 template<int size, bool big_endian>
5650 void
5651 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5652 Sized_relobj_file<size, big_endian>* object,
5653 unsigned int r_type,
5654 Symbol* gsym)
5655 {
5656 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5657 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5658 }
5659
5660 // Scan a relocation for a global symbol.
5661
5662 template<int size, bool big_endian>
5663 inline void
5664 Target_powerpc<size, big_endian>::Scan::global(
5665 Symbol_table* symtab,
5666 Layout* layout,
5667 Target_powerpc<size, big_endian>* target,
5668 Sized_relobj_file<size, big_endian>* object,
5669 unsigned int data_shndx,
5670 Output_section* output_section,
5671 const elfcpp::Rela<size, big_endian>& reloc,
5672 unsigned int r_type,
5673 Symbol* gsym)
5674 {
5675 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5676 return;
5677
5678 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5679 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5680 {
5681 this->expect_tls_get_addr_call();
5682 const bool final = gsym->final_value_is_known();
5683 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5684 if (tls_type != tls::TLSOPT_NONE)
5685 this->skip_next_tls_get_addr_call();
5686 }
5687 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5688 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5689 {
5690 this->expect_tls_get_addr_call();
5691 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5692 if (tls_type != tls::TLSOPT_NONE)
5693 this->skip_next_tls_get_addr_call();
5694 }
5695
5696 Powerpc_relobj<size, big_endian>* ppc_object
5697 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5698
5699 // A STT_GNU_IFUNC symbol may require a PLT entry.
5700 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5701 bool pushed_ifunc = false;
5702 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5703 {
5704 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5705 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5706 reloc.get_r_addend());
5707 target->make_plt_entry(symtab, layout, gsym);
5708 pushed_ifunc = true;
5709 }
5710
5711 switch (r_type)
5712 {
5713 case elfcpp::R_POWERPC_NONE:
5714 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5715 case elfcpp::R_POWERPC_GNU_VTENTRY:
5716 case elfcpp::R_PPC_LOCAL24PC:
5717 case elfcpp::R_POWERPC_TLS:
5718 break;
5719
5720 case elfcpp::R_PPC64_TOC:
5721 {
5722 Output_data_got_powerpc<size, big_endian>* got
5723 = target->got_section(symtab, layout);
5724 if (parameters->options().output_is_position_independent())
5725 {
5726 Address off = reloc.get_r_offset();
5727 if (size == 64
5728 && data_shndx == ppc_object->opd_shndx()
5729 && ppc_object->get_opd_discard(off - 8))
5730 break;
5731
5732 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5733 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5734 if (data_shndx != ppc_object->opd_shndx())
5735 symobj = static_cast
5736 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5737 rela_dyn->add_output_section_relative(got->output_section(),
5738 elfcpp::R_POWERPC_RELATIVE,
5739 output_section,
5740 object, data_shndx, off,
5741 symobj->toc_base_offset());
5742 }
5743 }
5744 break;
5745
5746 case elfcpp::R_PPC64_ADDR64:
5747 if (size == 64
5748 && target->abiversion() < 2
5749 && data_shndx == ppc_object->opd_shndx()
5750 && (gsym->is_defined_in_discarded_section()
5751 || gsym->object() != object))
5752 {
5753 ppc_object->set_opd_discard(reloc.get_r_offset());
5754 break;
5755 }
5756 // Fall thru
5757 case elfcpp::R_PPC64_UADDR64:
5758 case elfcpp::R_POWERPC_ADDR32:
5759 case elfcpp::R_POWERPC_UADDR32:
5760 case elfcpp::R_POWERPC_ADDR24:
5761 case elfcpp::R_POWERPC_ADDR16:
5762 case elfcpp::R_POWERPC_ADDR16_LO:
5763 case elfcpp::R_POWERPC_ADDR16_HI:
5764 case elfcpp::R_POWERPC_ADDR16_HA:
5765 case elfcpp::R_POWERPC_UADDR16:
5766 case elfcpp::R_PPC64_ADDR16_HIGH:
5767 case elfcpp::R_PPC64_ADDR16_HIGHA:
5768 case elfcpp::R_PPC64_ADDR16_HIGHER:
5769 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5770 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5771 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5772 case elfcpp::R_PPC64_ADDR16_DS:
5773 case elfcpp::R_PPC64_ADDR16_LO_DS:
5774 case elfcpp::R_POWERPC_ADDR14:
5775 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5776 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5777 {
5778 // Make a PLT entry if necessary.
5779 if (gsym->needs_plt_entry())
5780 {
5781 // Since this is not a PC-relative relocation, we may be
5782 // taking the address of a function. In that case we need to
5783 // set the entry in the dynamic symbol table to the address of
5784 // the PLT call stub.
5785 bool need_ifunc_plt = false;
5786 if ((size == 32 || target->abiversion() >= 2)
5787 && gsym->is_from_dynobj()
5788 && !parameters->options().output_is_position_independent())
5789 {
5790 gsym->set_needs_dynsym_value();
5791 need_ifunc_plt = true;
5792 }
5793 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5794 {
5795 target->push_branch(ppc_object, data_shndx,
5796 reloc.get_r_offset(), r_type,
5797 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5798 reloc.get_r_addend());
5799 target->make_plt_entry(symtab, layout, gsym);
5800 }
5801 }
5802 // Make a dynamic relocation if necessary.
5803 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5804 || (size == 64 && is_ifunc && target->abiversion() < 2))
5805 {
5806 if (gsym->may_need_copy_reloc())
5807 {
5808 target->copy_reloc(symtab, layout, object,
5809 data_shndx, output_section, gsym, reloc);
5810 }
5811 else if ((((size == 32
5812 && r_type == elfcpp::R_POWERPC_ADDR32)
5813 || (size == 64
5814 && r_type == elfcpp::R_PPC64_ADDR64
5815 && target->abiversion() >= 2))
5816 && gsym->can_use_relative_reloc(false)
5817 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5818 && parameters->options().shared()))
5819 || (size == 64
5820 && r_type == elfcpp::R_PPC64_ADDR64
5821 && target->abiversion() < 2
5822 && (gsym->can_use_relative_reloc(false)
5823 || data_shndx == ppc_object->opd_shndx())))
5824 {
5825 Reloc_section* rela_dyn
5826 = target->rela_dyn_section(symtab, layout, is_ifunc);
5827 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5828 : elfcpp::R_POWERPC_RELATIVE);
5829 rela_dyn->add_symbolless_global_addend(
5830 gsym, dynrel, output_section, object, data_shndx,
5831 reloc.get_r_offset(), reloc.get_r_addend());
5832 }
5833 else
5834 {
5835 Reloc_section* rela_dyn
5836 = target->rela_dyn_section(symtab, layout, is_ifunc);
5837 check_non_pic(object, r_type);
5838 rela_dyn->add_global(gsym, r_type, output_section,
5839 object, data_shndx,
5840 reloc.get_r_offset(),
5841 reloc.get_r_addend());
5842 }
5843 }
5844 }
5845 break;
5846
5847 case elfcpp::R_PPC_PLTREL24:
5848 case elfcpp::R_POWERPC_REL24:
5849 if (!is_ifunc)
5850 {
5851 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5852 r_type,
5853 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5854 reloc.get_r_addend());
5855 if (gsym->needs_plt_entry()
5856 || (!gsym->final_value_is_known()
5857 && (gsym->is_undefined()
5858 || gsym->is_from_dynobj()
5859 || gsym->is_preemptible())))
5860 target->make_plt_entry(symtab, layout, gsym);
5861 }
5862 // Fall thru
5863
5864 case elfcpp::R_PPC64_REL64:
5865 case elfcpp::R_POWERPC_REL32:
5866 // Make a dynamic relocation if necessary.
5867 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5868 {
5869 if (gsym->may_need_copy_reloc())
5870 {
5871 target->copy_reloc(symtab, layout, object,
5872 data_shndx, output_section, gsym,
5873 reloc);
5874 }
5875 else
5876 {
5877 Reloc_section* rela_dyn
5878 = target->rela_dyn_section(symtab, layout, is_ifunc);
5879 check_non_pic(object, r_type);
5880 rela_dyn->add_global(gsym, r_type, output_section, object,
5881 data_shndx, reloc.get_r_offset(),
5882 reloc.get_r_addend());
5883 }
5884 }
5885 break;
5886
5887 case elfcpp::R_POWERPC_REL14:
5888 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5889 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5890 if (!is_ifunc)
5891 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5892 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5893 reloc.get_r_addend());
5894 break;
5895
5896 case elfcpp::R_POWERPC_REL16:
5897 case elfcpp::R_POWERPC_REL16_LO:
5898 case elfcpp::R_POWERPC_REL16_HI:
5899 case elfcpp::R_POWERPC_REL16_HA:
5900 case elfcpp::R_POWERPC_SECTOFF:
5901 case elfcpp::R_POWERPC_SECTOFF_LO:
5902 case elfcpp::R_POWERPC_SECTOFF_HI:
5903 case elfcpp::R_POWERPC_SECTOFF_HA:
5904 case elfcpp::R_PPC64_SECTOFF_DS:
5905 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5906 case elfcpp::R_POWERPC_TPREL16:
5907 case elfcpp::R_POWERPC_TPREL16_LO:
5908 case elfcpp::R_POWERPC_TPREL16_HI:
5909 case elfcpp::R_POWERPC_TPREL16_HA:
5910 case elfcpp::R_PPC64_TPREL16_DS:
5911 case elfcpp::R_PPC64_TPREL16_LO_DS:
5912 case elfcpp::R_PPC64_TPREL16_HIGH:
5913 case elfcpp::R_PPC64_TPREL16_HIGHA:
5914 case elfcpp::R_PPC64_TPREL16_HIGHER:
5915 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5916 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5917 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5918 case elfcpp::R_POWERPC_DTPREL16:
5919 case elfcpp::R_POWERPC_DTPREL16_LO:
5920 case elfcpp::R_POWERPC_DTPREL16_HI:
5921 case elfcpp::R_POWERPC_DTPREL16_HA:
5922 case elfcpp::R_PPC64_DTPREL16_DS:
5923 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5924 case elfcpp::R_PPC64_DTPREL16_HIGH:
5925 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5926 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5927 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5928 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5929 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5930 case elfcpp::R_PPC64_TLSGD:
5931 case elfcpp::R_PPC64_TLSLD:
5932 case elfcpp::R_PPC64_ADDR64_LOCAL:
5933 break;
5934
5935 case elfcpp::R_POWERPC_GOT16:
5936 case elfcpp::R_POWERPC_GOT16_LO:
5937 case elfcpp::R_POWERPC_GOT16_HI:
5938 case elfcpp::R_POWERPC_GOT16_HA:
5939 case elfcpp::R_PPC64_GOT16_DS:
5940 case elfcpp::R_PPC64_GOT16_LO_DS:
5941 {
5942 // The symbol requires a GOT entry.
5943 Output_data_got_powerpc<size, big_endian>* got;
5944
5945 got = target->got_section(symtab, layout);
5946 if (gsym->final_value_is_known())
5947 {
5948 if ((size == 32 && is_ifunc)
5949 || (size == 64 && target->abiversion() >= 2))
5950 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5951 else
5952 got->add_global(gsym, GOT_TYPE_STANDARD);
5953 }
5954 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5955 {
5956 // If we are generating a shared object or a pie, this
5957 // symbol's GOT entry will be set by a dynamic relocation.
5958 unsigned int off = got->add_constant(0);
5959 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5960
5961 Reloc_section* rela_dyn
5962 = target->rela_dyn_section(symtab, layout, is_ifunc);
5963
5964 if (gsym->can_use_relative_reloc(false)
5965 && !((size == 32
5966 || target->abiversion() >= 2)
5967 && gsym->visibility() == elfcpp::STV_PROTECTED
5968 && parameters->options().shared()))
5969 {
5970 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5971 : elfcpp::R_POWERPC_RELATIVE);
5972 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5973 }
5974 else
5975 {
5976 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5977 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5978 }
5979 }
5980 }
5981 break;
5982
5983 case elfcpp::R_PPC64_TOC16:
5984 case elfcpp::R_PPC64_TOC16_LO:
5985 case elfcpp::R_PPC64_TOC16_HI:
5986 case elfcpp::R_PPC64_TOC16_HA:
5987 case elfcpp::R_PPC64_TOC16_DS:
5988 case elfcpp::R_PPC64_TOC16_LO_DS:
5989 // We need a GOT section.
5990 target->got_section(symtab, layout);
5991 break;
5992
5993 case elfcpp::R_POWERPC_GOT_TLSGD16:
5994 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5995 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5996 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5997 {
5998 const bool final = gsym->final_value_is_known();
5999 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6000 if (tls_type == tls::TLSOPT_NONE)
6001 {
6002 Output_data_got_powerpc<size, big_endian>* got
6003 = target->got_section(symtab, layout);
6004 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6005 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6006 elfcpp::R_POWERPC_DTPMOD,
6007 elfcpp::R_POWERPC_DTPREL);
6008 }
6009 else if (tls_type == tls::TLSOPT_TO_IE)
6010 {
6011 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6012 {
6013 Output_data_got_powerpc<size, big_endian>* got
6014 = target->got_section(symtab, layout);
6015 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6016 if (gsym->is_undefined()
6017 || gsym->is_from_dynobj())
6018 {
6019 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6020 elfcpp::R_POWERPC_TPREL);
6021 }
6022 else
6023 {
6024 unsigned int off = got->add_constant(0);
6025 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6026 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6027 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6028 got, off, 0);
6029 }
6030 }
6031 }
6032 else if (tls_type == tls::TLSOPT_TO_LE)
6033 {
6034 // no GOT relocs needed for Local Exec.
6035 }
6036 else
6037 gold_unreachable();
6038 }
6039 break;
6040
6041 case elfcpp::R_POWERPC_GOT_TLSLD16:
6042 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6043 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6044 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6045 {
6046 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6047 if (tls_type == tls::TLSOPT_NONE)
6048 target->tlsld_got_offset(symtab, layout, object);
6049 else if (tls_type == tls::TLSOPT_TO_LE)
6050 {
6051 // no GOT relocs needed for Local Exec.
6052 if (parameters->options().emit_relocs())
6053 {
6054 Output_section* os = layout->tls_segment()->first_section();
6055 gold_assert(os != NULL);
6056 os->set_needs_symtab_index();
6057 }
6058 }
6059 else
6060 gold_unreachable();
6061 }
6062 break;
6063
6064 case elfcpp::R_POWERPC_GOT_DTPREL16:
6065 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6066 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6067 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6068 {
6069 Output_data_got_powerpc<size, big_endian>* got
6070 = target->got_section(symtab, layout);
6071 if (!gsym->final_value_is_known()
6072 && (gsym->is_from_dynobj()
6073 || gsym->is_undefined()
6074 || gsym->is_preemptible()))
6075 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6076 target->rela_dyn_section(layout),
6077 elfcpp::R_POWERPC_DTPREL);
6078 else
6079 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6080 }
6081 break;
6082
6083 case elfcpp::R_POWERPC_GOT_TPREL16:
6084 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6085 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6086 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6087 {
6088 const bool final = gsym->final_value_is_known();
6089 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6090 if (tls_type == tls::TLSOPT_NONE)
6091 {
6092 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6093 {
6094 Output_data_got_powerpc<size, big_endian>* got
6095 = target->got_section(symtab, layout);
6096 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6097 if (gsym->is_undefined()
6098 || gsym->is_from_dynobj())
6099 {
6100 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6101 elfcpp::R_POWERPC_TPREL);
6102 }
6103 else
6104 {
6105 unsigned int off = got->add_constant(0);
6106 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6107 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6108 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6109 got, off, 0);
6110 }
6111 }
6112 }
6113 else if (tls_type == tls::TLSOPT_TO_LE)
6114 {
6115 // no GOT relocs needed for Local Exec.
6116 }
6117 else
6118 gold_unreachable();
6119 }
6120 break;
6121
6122 default:
6123 unsupported_reloc_global(object, r_type, gsym);
6124 break;
6125 }
6126
6127 switch (r_type)
6128 {
6129 case elfcpp::R_POWERPC_GOT_TLSLD16:
6130 case elfcpp::R_POWERPC_GOT_TLSGD16:
6131 case elfcpp::R_POWERPC_GOT_TPREL16:
6132 case elfcpp::R_POWERPC_GOT_DTPREL16:
6133 case elfcpp::R_POWERPC_GOT16:
6134 case elfcpp::R_PPC64_GOT16_DS:
6135 case elfcpp::R_PPC64_TOC16:
6136 case elfcpp::R_PPC64_TOC16_DS:
6137 ppc_object->set_has_small_toc_reloc();
6138 default:
6139 break;
6140 }
6141 }
6142
6143 // Process relocations for gc.
6144
6145 template<int size, bool big_endian>
6146 void
6147 Target_powerpc<size, big_endian>::gc_process_relocs(
6148 Symbol_table* symtab,
6149 Layout* layout,
6150 Sized_relobj_file<size, big_endian>* object,
6151 unsigned int data_shndx,
6152 unsigned int,
6153 const unsigned char* prelocs,
6154 size_t reloc_count,
6155 Output_section* output_section,
6156 bool needs_special_offset_handling,
6157 size_t local_symbol_count,
6158 const unsigned char* plocal_symbols)
6159 {
6160 typedef Target_powerpc<size, big_endian> Powerpc;
6161 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6162 Powerpc_relobj<size, big_endian>* ppc_object
6163 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6164 if (size == 64)
6165 ppc_object->set_opd_valid();
6166 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6167 {
6168 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6169 for (p = ppc_object->access_from_map()->begin();
6170 p != ppc_object->access_from_map()->end();
6171 ++p)
6172 {
6173 Address dst_off = p->first;
6174 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6175 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6176 for (s = p->second.begin(); s != p->second.end(); ++s)
6177 {
6178 Object* src_obj = s->first;
6179 unsigned int src_indx = s->second;
6180 symtab->gc()->add_reference(src_obj, src_indx,
6181 ppc_object, dst_indx);
6182 }
6183 p->second.clear();
6184 }
6185 ppc_object->access_from_map()->clear();
6186 ppc_object->process_gc_mark(symtab);
6187 // Don't look at .opd relocs as .opd will reference everything.
6188 return;
6189 }
6190
6191 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6192 typename Target_powerpc::Relocatable_size_for_reloc>(
6193 symtab,
6194 layout,
6195 this,
6196 object,
6197 data_shndx,
6198 prelocs,
6199 reloc_count,
6200 output_section,
6201 needs_special_offset_handling,
6202 local_symbol_count,
6203 plocal_symbols);
6204 }
6205
6206 // Handle target specific gc actions when adding a gc reference from
6207 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6208 // and DST_OFF. For powerpc64, this adds a referenc to the code
6209 // section of a function descriptor.
6210
6211 template<int size, bool big_endian>
6212 void
6213 Target_powerpc<size, big_endian>::do_gc_add_reference(
6214 Symbol_table* symtab,
6215 Object* src_obj,
6216 unsigned int src_shndx,
6217 Object* dst_obj,
6218 unsigned int dst_shndx,
6219 Address dst_off) const
6220 {
6221 if (size != 64 || dst_obj->is_dynamic())
6222 return;
6223
6224 Powerpc_relobj<size, big_endian>* ppc_object
6225 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6226 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6227 {
6228 if (ppc_object->opd_valid())
6229 {
6230 dst_shndx = ppc_object->get_opd_ent(dst_off);
6231 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6232 }
6233 else
6234 {
6235 // If we haven't run scan_opd_relocs, we must delay
6236 // processing this function descriptor reference.
6237 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6238 }
6239 }
6240 }
6241
6242 // Add any special sections for this symbol to the gc work list.
6243 // For powerpc64, this adds the code section of a function
6244 // descriptor.
6245
6246 template<int size, bool big_endian>
6247 void
6248 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6249 Symbol_table* symtab,
6250 Symbol* sym) const
6251 {
6252 if (size == 64)
6253 {
6254 Powerpc_relobj<size, big_endian>* ppc_object
6255 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6256 bool is_ordinary;
6257 unsigned int shndx = sym->shndx(&is_ordinary);
6258 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6259 {
6260 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6261 Address dst_off = gsym->value();
6262 if (ppc_object->opd_valid())
6263 {
6264 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6265 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6266 }
6267 else
6268 ppc_object->add_gc_mark(dst_off);
6269 }
6270 }
6271 }
6272
6273 // For a symbol location in .opd, set LOC to the location of the
6274 // function entry.
6275
6276 template<int size, bool big_endian>
6277 void
6278 Target_powerpc<size, big_endian>::do_function_location(
6279 Symbol_location* loc) const
6280 {
6281 if (size == 64 && loc->shndx != 0)
6282 {
6283 if (loc->object->is_dynamic())
6284 {
6285 Powerpc_dynobj<size, big_endian>* ppc_object
6286 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6287 if (loc->shndx == ppc_object->opd_shndx())
6288 {
6289 Address dest_off;
6290 Address off = loc->offset - ppc_object->opd_address();
6291 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6292 loc->offset = dest_off;
6293 }
6294 }
6295 else
6296 {
6297 const Powerpc_relobj<size, big_endian>* ppc_object
6298 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6299 if (loc->shndx == ppc_object->opd_shndx())
6300 {
6301 Address dest_off;
6302 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6303 loc->offset = dest_off;
6304 }
6305 }
6306 }
6307 }
6308
6309 // Scan relocations for a section.
6310
6311 template<int size, bool big_endian>
6312 void
6313 Target_powerpc<size, big_endian>::scan_relocs(
6314 Symbol_table* symtab,
6315 Layout* layout,
6316 Sized_relobj_file<size, big_endian>* object,
6317 unsigned int data_shndx,
6318 unsigned int sh_type,
6319 const unsigned char* prelocs,
6320 size_t reloc_count,
6321 Output_section* output_section,
6322 bool needs_special_offset_handling,
6323 size_t local_symbol_count,
6324 const unsigned char* plocal_symbols)
6325 {
6326 typedef Target_powerpc<size, big_endian> Powerpc;
6327 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6328
6329 if (sh_type == elfcpp::SHT_REL)
6330 {
6331 gold_error(_("%s: unsupported REL reloc section"),
6332 object->name().c_str());
6333 return;
6334 }
6335
6336 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6337 symtab,
6338 layout,
6339 this,
6340 object,
6341 data_shndx,
6342 prelocs,
6343 reloc_count,
6344 output_section,
6345 needs_special_offset_handling,
6346 local_symbol_count,
6347 plocal_symbols);
6348 }
6349
6350 // Functor class for processing the global symbol table.
6351 // Removes symbols defined on discarded opd entries.
6352
6353 template<bool big_endian>
6354 class Global_symbol_visitor_opd
6355 {
6356 public:
6357 Global_symbol_visitor_opd()
6358 { }
6359
6360 void
6361 operator()(Sized_symbol<64>* sym)
6362 {
6363 if (sym->has_symtab_index()
6364 || sym->source() != Symbol::FROM_OBJECT
6365 || !sym->in_real_elf())
6366 return;
6367
6368 if (sym->object()->is_dynamic())
6369 return;
6370
6371 Powerpc_relobj<64, big_endian>* symobj
6372 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6373 if (symobj->opd_shndx() == 0)
6374 return;
6375
6376 bool is_ordinary;
6377 unsigned int shndx = sym->shndx(&is_ordinary);
6378 if (shndx == symobj->opd_shndx()
6379 && symobj->get_opd_discard(sym->value()))
6380 sym->set_symtab_index(-1U);
6381 }
6382 };
6383
6384 template<int size, bool big_endian>
6385 void
6386 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6387 Layout* layout,
6388 Symbol_table* symtab)
6389 {
6390 if (size == 64)
6391 {
6392 Output_data_save_res<64, big_endian>* savres
6393 = new Output_data_save_res<64, big_endian>(symtab);
6394 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6395 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6396 savres, ORDER_TEXT, false);
6397 }
6398 }
6399
6400 // Sort linker created .got section first (for the header), then input
6401 // sections belonging to files using small model code.
6402
6403 template<bool big_endian>
6404 class Sort_toc_sections
6405 {
6406 public:
6407 bool
6408 operator()(const Output_section::Input_section& is1,
6409 const Output_section::Input_section& is2) const
6410 {
6411 if (!is1.is_input_section() && is2.is_input_section())
6412 return true;
6413 bool small1
6414 = (is1.is_input_section()
6415 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6416 ->has_small_toc_reloc()));
6417 bool small2
6418 = (is2.is_input_section()
6419 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6420 ->has_small_toc_reloc()));
6421 return small1 && !small2;
6422 }
6423 };
6424
6425 // Finalize the sections.
6426
6427 template<int size, bool big_endian>
6428 void
6429 Target_powerpc<size, big_endian>::do_finalize_sections(
6430 Layout* layout,
6431 const Input_objects*,
6432 Symbol_table* symtab)
6433 {
6434 if (parameters->doing_static_link())
6435 {
6436 // At least some versions of glibc elf-init.o have a strong
6437 // reference to __rela_iplt marker syms. A weak ref would be
6438 // better..
6439 if (this->iplt_ != NULL)
6440 {
6441 Reloc_section* rel = this->iplt_->rel_plt();
6442 symtab->define_in_output_data("__rela_iplt_start", NULL,
6443 Symbol_table::PREDEFINED, rel, 0, 0,
6444 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6445 elfcpp::STV_HIDDEN, 0, false, true);
6446 symtab->define_in_output_data("__rela_iplt_end", NULL,
6447 Symbol_table::PREDEFINED, rel, 0, 0,
6448 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6449 elfcpp::STV_HIDDEN, 0, true, true);
6450 }
6451 else
6452 {
6453 symtab->define_as_constant("__rela_iplt_start", NULL,
6454 Symbol_table::PREDEFINED, 0, 0,
6455 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6456 elfcpp::STV_HIDDEN, 0, true, false);
6457 symtab->define_as_constant("__rela_iplt_end", NULL,
6458 Symbol_table::PREDEFINED, 0, 0,
6459 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6460 elfcpp::STV_HIDDEN, 0, true, false);
6461 }
6462 }
6463
6464 if (size == 64)
6465 {
6466 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6467 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6468
6469 if (!parameters->options().relocatable())
6470 {
6471 this->define_save_restore_funcs(layout, symtab);
6472
6473 // Annoyingly, we need to make these sections now whether or
6474 // not we need them. If we delay until do_relax then we
6475 // need to mess with the relaxation machinery checkpointing.
6476 this->got_section(symtab, layout);
6477 this->make_brlt_section(layout);
6478
6479 if (parameters->options().toc_sort())
6480 {
6481 Output_section* os = this->got_->output_section();
6482 if (os != NULL && os->input_sections().size() > 1)
6483 std::stable_sort(os->input_sections().begin(),
6484 os->input_sections().end(),
6485 Sort_toc_sections<big_endian>());
6486 }
6487 }
6488 }
6489
6490 // Fill in some more dynamic tags.
6491 Output_data_dynamic* odyn = layout->dynamic_data();
6492 if (odyn != NULL)
6493 {
6494 const Reloc_section* rel_plt = (this->plt_ == NULL
6495 ? NULL
6496 : this->plt_->rel_plt());
6497 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6498 this->rela_dyn_, true, size == 32);
6499
6500 if (size == 32)
6501 {
6502 if (this->got_ != NULL)
6503 {
6504 this->got_->finalize_data_size();
6505 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6506 this->got_, this->got_->g_o_t());
6507 }
6508 }
6509 else
6510 {
6511 if (this->glink_ != NULL)
6512 {
6513 this->glink_->finalize_data_size();
6514 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6515 this->glink_,
6516 (this->glink_->pltresolve_size
6517 - 32));
6518 }
6519 }
6520 }
6521
6522 // Emit any relocs we saved in an attempt to avoid generating COPY
6523 // relocs.
6524 if (this->copy_relocs_.any_saved_relocs())
6525 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6526 }
6527
6528 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6529 // reloc.
6530
6531 static bool
6532 ok_lo_toc_insn(uint32_t insn)
6533 {
6534 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6535 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6536 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6537 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6538 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6539 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6540 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6541 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6542 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6543 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6544 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6545 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6546 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6547 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6548 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6549 && (insn & 3) != 1)
6550 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6551 && ((insn & 3) == 0 || (insn & 3) == 3))
6552 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6553 }
6554
6555 // Return the value to use for a branch relocation.
6556
6557 template<int size, bool big_endian>
6558 typename Target_powerpc<size, big_endian>::Address
6559 Target_powerpc<size, big_endian>::symval_for_branch(
6560 const Symbol_table* symtab,
6561 Address value,
6562 const Sized_symbol<size>* gsym,
6563 Powerpc_relobj<size, big_endian>* object,
6564 unsigned int *dest_shndx)
6565 {
6566 if (size == 32 || this->abiversion() >= 2)
6567 gold_unreachable();
6568 *dest_shndx = 0;
6569
6570 // If the symbol is defined in an opd section, ie. is a function
6571 // descriptor, use the function descriptor code entry address
6572 Powerpc_relobj<size, big_endian>* symobj = object;
6573 if (gsym != NULL
6574 && gsym->source() != Symbol::FROM_OBJECT)
6575 return value;
6576 if (gsym != NULL)
6577 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6578 unsigned int shndx = symobj->opd_shndx();
6579 if (shndx == 0)
6580 return value;
6581 Address opd_addr = symobj->get_output_section_offset(shndx);
6582 if (opd_addr == invalid_address)
6583 return value;
6584 opd_addr += symobj->output_section_address(shndx);
6585 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6586 {
6587 Address sec_off;
6588 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6589 if (symtab->is_section_folded(symobj, *dest_shndx))
6590 {
6591 Section_id folded
6592 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6593 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6594 *dest_shndx = folded.second;
6595 }
6596 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6597 gold_assert(sec_addr != invalid_address);
6598 sec_addr += symobj->output_section(*dest_shndx)->address();
6599 value = sec_addr + sec_off;
6600 }
6601 return value;
6602 }
6603
6604 // Perform a relocation.
6605
6606 template<int size, bool big_endian>
6607 inline bool
6608 Target_powerpc<size, big_endian>::Relocate::relocate(
6609 const Relocate_info<size, big_endian>* relinfo,
6610 Target_powerpc* target,
6611 Output_section* os,
6612 size_t relnum,
6613 const elfcpp::Rela<size, big_endian>& rela,
6614 unsigned int r_type,
6615 const Sized_symbol<size>* gsym,
6616 const Symbol_value<size>* psymval,
6617 unsigned char* view,
6618 Address address,
6619 section_size_type view_size)
6620 {
6621 if (view == NULL)
6622 return true;
6623
6624 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6625 {
6626 case Track_tls::NOT_EXPECTED:
6627 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6628 _("__tls_get_addr call lacks marker reloc"));
6629 break;
6630 case Track_tls::EXPECTED:
6631 // We have already complained.
6632 break;
6633 case Track_tls::SKIP:
6634 return true;
6635 case Track_tls::NORMAL:
6636 break;
6637 }
6638
6639 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6640 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6641 Powerpc_relobj<size, big_endian>* const object
6642 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6643 Address value = 0;
6644 bool has_plt_value = false;
6645 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6646 if ((gsym != NULL
6647 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6648 : object->local_has_plt_offset(r_sym))
6649 && (!psymval->is_ifunc_symbol()
6650 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6651 {
6652 if (size == 64
6653 && gsym != NULL
6654 && target->abiversion() >= 2
6655 && !parameters->options().output_is_position_independent()
6656 && !is_branch_reloc(r_type))
6657 {
6658 unsigned int off = target->glink_section()->find_global_entry(gsym);
6659 gold_assert(off != (unsigned int)-1);
6660 value = target->glink_section()->global_entry_address() + off;
6661 }
6662 else
6663 {
6664 Stub_table<size, big_endian>* stub_table
6665 = object->stub_table(relinfo->data_shndx);
6666 if (stub_table == NULL)
6667 {
6668 // This is a ref from a data section to an ifunc symbol.
6669 if (target->stub_tables().size() != 0)
6670 stub_table = target->stub_tables()[0];
6671 }
6672 gold_assert(stub_table != NULL);
6673 Address off;
6674 if (gsym != NULL)
6675 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6676 rela.get_r_addend());
6677 else
6678 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6679 rela.get_r_addend());
6680 gold_assert(off != invalid_address);
6681 value = stub_table->stub_address() + off;
6682 }
6683 has_plt_value = true;
6684 }
6685
6686 if (r_type == elfcpp::R_POWERPC_GOT16
6687 || r_type == elfcpp::R_POWERPC_GOT16_LO
6688 || r_type == elfcpp::R_POWERPC_GOT16_HI
6689 || r_type == elfcpp::R_POWERPC_GOT16_HA
6690 || r_type == elfcpp::R_PPC64_GOT16_DS
6691 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6692 {
6693 if (gsym != NULL)
6694 {
6695 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6696 value = gsym->got_offset(GOT_TYPE_STANDARD);
6697 }
6698 else
6699 {
6700 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6701 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6702 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6703 }
6704 value -= target->got_section()->got_base_offset(object);
6705 }
6706 else if (r_type == elfcpp::R_PPC64_TOC)
6707 {
6708 value = (target->got_section()->output_section()->address()
6709 + object->toc_base_offset());
6710 }
6711 else if (gsym != NULL
6712 && (r_type == elfcpp::R_POWERPC_REL24
6713 || r_type == elfcpp::R_PPC_PLTREL24)
6714 && has_plt_value)
6715 {
6716 if (size == 64)
6717 {
6718 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6719 Valtype* wv = reinterpret_cast<Valtype*>(view);
6720 bool can_plt_call = false;
6721 if (rela.get_r_offset() + 8 <= view_size)
6722 {
6723 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6724 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6725 if ((insn & 1) != 0
6726 && (insn2 == nop
6727 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6728 {
6729 elfcpp::Swap<32, big_endian>::
6730 writeval(wv + 1, ld_2_1 + target->stk_toc());
6731 can_plt_call = true;
6732 }
6733 }
6734 if (!can_plt_call)
6735 {
6736 // If we don't have a branch and link followed by a nop,
6737 // we can't go via the plt because there is no place to
6738 // put a toc restoring instruction.
6739 // Unless we know we won't be returning.
6740 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6741 can_plt_call = true;
6742 }
6743 if (!can_plt_call)
6744 {
6745 // g++ as of 20130507 emits self-calls without a
6746 // following nop. This is arguably wrong since we have
6747 // conflicting information. On the one hand a global
6748 // symbol and on the other a local call sequence, but
6749 // don't error for this special case.
6750 // It isn't possible to cheaply verify we have exactly
6751 // such a call. Allow all calls to the same section.
6752 bool ok = false;
6753 Address code = value;
6754 if (gsym->source() == Symbol::FROM_OBJECT
6755 && gsym->object() == object)
6756 {
6757 unsigned int dest_shndx = 0;
6758 if (target->abiversion() < 2)
6759 {
6760 Address addend = rela.get_r_addend();
6761 Address opdent = psymval->value(object, addend);
6762 code = target->symval_for_branch(relinfo->symtab,
6763 opdent, gsym, object,
6764 &dest_shndx);
6765 }
6766 bool is_ordinary;
6767 if (dest_shndx == 0)
6768 dest_shndx = gsym->shndx(&is_ordinary);
6769 ok = dest_shndx == relinfo->data_shndx;
6770 }
6771 if (!ok)
6772 {
6773 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6774 _("call lacks nop, can't restore toc; "
6775 "recompile with -fPIC"));
6776 value = code;
6777 }
6778 }
6779 }
6780 }
6781 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6782 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6783 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6784 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6785 {
6786 // First instruction of a global dynamic sequence, arg setup insn.
6787 const bool final = gsym == NULL || gsym->final_value_is_known();
6788 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6789 enum Got_type got_type = GOT_TYPE_STANDARD;
6790 if (tls_type == tls::TLSOPT_NONE)
6791 got_type = GOT_TYPE_TLSGD;
6792 else if (tls_type == tls::TLSOPT_TO_IE)
6793 got_type = GOT_TYPE_TPREL;
6794 if (got_type != GOT_TYPE_STANDARD)
6795 {
6796 if (gsym != NULL)
6797 {
6798 gold_assert(gsym->has_got_offset(got_type));
6799 value = gsym->got_offset(got_type);
6800 }
6801 else
6802 {
6803 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6804 gold_assert(object->local_has_got_offset(r_sym, got_type));
6805 value = object->local_got_offset(r_sym, got_type);
6806 }
6807 value -= target->got_section()->got_base_offset(object);
6808 }
6809 if (tls_type == tls::TLSOPT_TO_IE)
6810 {
6811 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6812 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6813 {
6814 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6815 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6816 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6817 if (size == 32)
6818 insn |= 32 << 26; // lwz
6819 else
6820 insn |= 58 << 26; // ld
6821 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6822 }
6823 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6824 - elfcpp::R_POWERPC_GOT_TLSGD16);
6825 }
6826 else if (tls_type == tls::TLSOPT_TO_LE)
6827 {
6828 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6829 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6830 {
6831 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6832 Insn insn = addis_3_13;
6833 if (size == 32)
6834 insn = addis_3_2;
6835 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6836 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6837 value = psymval->value(object, rela.get_r_addend());
6838 }
6839 else
6840 {
6841 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6842 Insn insn = nop;
6843 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6844 r_type = elfcpp::R_POWERPC_NONE;
6845 }
6846 }
6847 }
6848 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6849 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6850 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6851 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6852 {
6853 // First instruction of a local dynamic sequence, arg setup insn.
6854 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6855 if (tls_type == tls::TLSOPT_NONE)
6856 {
6857 value = target->tlsld_got_offset();
6858 value -= target->got_section()->got_base_offset(object);
6859 }
6860 else
6861 {
6862 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6863 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6864 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6865 {
6866 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6867 Insn insn = addis_3_13;
6868 if (size == 32)
6869 insn = addis_3_2;
6870 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6871 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6872 value = dtp_offset;
6873 }
6874 else
6875 {
6876 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6877 Insn insn = nop;
6878 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6879 r_type = elfcpp::R_POWERPC_NONE;
6880 }
6881 }
6882 }
6883 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6884 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6885 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6886 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6887 {
6888 // Accesses relative to a local dynamic sequence address,
6889 // no optimisation here.
6890 if (gsym != NULL)
6891 {
6892 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6893 value = gsym->got_offset(GOT_TYPE_DTPREL);
6894 }
6895 else
6896 {
6897 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6898 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6899 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6900 }
6901 value -= target->got_section()->got_base_offset(object);
6902 }
6903 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6904 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6905 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6906 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6907 {
6908 // First instruction of initial exec sequence.
6909 const bool final = gsym == NULL || gsym->final_value_is_known();
6910 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6911 if (tls_type == tls::TLSOPT_NONE)
6912 {
6913 if (gsym != NULL)
6914 {
6915 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6916 value = gsym->got_offset(GOT_TYPE_TPREL);
6917 }
6918 else
6919 {
6920 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6921 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6922 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6923 }
6924 value -= target->got_section()->got_base_offset(object);
6925 }
6926 else
6927 {
6928 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6929 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6930 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6931 {
6932 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6933 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6934 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6935 if (size == 32)
6936 insn |= addis_0_2;
6937 else
6938 insn |= addis_0_13;
6939 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6940 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6941 value = psymval->value(object, rela.get_r_addend());
6942 }
6943 else
6944 {
6945 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6946 Insn insn = nop;
6947 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6948 r_type = elfcpp::R_POWERPC_NONE;
6949 }
6950 }
6951 }
6952 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6953 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6954 {
6955 // Second instruction of a global dynamic sequence,
6956 // the __tls_get_addr call
6957 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6958 const bool final = gsym == NULL || gsym->final_value_is_known();
6959 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6960 if (tls_type != tls::TLSOPT_NONE)
6961 {
6962 if (tls_type == tls::TLSOPT_TO_IE)
6963 {
6964 Insn* iview = reinterpret_cast<Insn*>(view);
6965 Insn insn = add_3_3_13;
6966 if (size == 32)
6967 insn = add_3_3_2;
6968 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6969 r_type = elfcpp::R_POWERPC_NONE;
6970 }
6971 else
6972 {
6973 Insn* iview = reinterpret_cast<Insn*>(view);
6974 Insn insn = addi_3_3;
6975 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6976 r_type = elfcpp::R_POWERPC_TPREL16_LO;
6977 view += 2 * big_endian;
6978 value = psymval->value(object, rela.get_r_addend());
6979 }
6980 this->skip_next_tls_get_addr_call();
6981 }
6982 }
6983 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6984 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6985 {
6986 // Second instruction of a local dynamic sequence,
6987 // the __tls_get_addr call
6988 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6989 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6990 if (tls_type == tls::TLSOPT_TO_LE)
6991 {
6992 Insn* iview = reinterpret_cast<Insn*>(view);
6993 Insn insn = addi_3_3;
6994 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6995 this->skip_next_tls_get_addr_call();
6996 r_type = elfcpp::R_POWERPC_TPREL16_LO;
6997 view += 2 * big_endian;
6998 value = dtp_offset;
6999 }
7000 }
7001 else if (r_type == elfcpp::R_POWERPC_TLS)
7002 {
7003 // Second instruction of an initial exec sequence
7004 const bool final = gsym == NULL || gsym->final_value_is_known();
7005 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7006 if (tls_type == tls::TLSOPT_TO_LE)
7007 {
7008 Insn* iview = reinterpret_cast<Insn*>(view);
7009 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7010 unsigned int reg = size == 32 ? 2 : 13;
7011 insn = at_tls_transform(insn, reg);
7012 gold_assert(insn != 0);
7013 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7014 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7015 view += 2 * big_endian;
7016 value = psymval->value(object, rela.get_r_addend());
7017 }
7018 }
7019 else if (!has_plt_value)
7020 {
7021 Address addend = 0;
7022 unsigned int dest_shndx;
7023 if (r_type != elfcpp::R_PPC_PLTREL24)
7024 addend = rela.get_r_addend();
7025 value = psymval->value(object, addend);
7026 if (size == 64 && is_branch_reloc(r_type))
7027 {
7028 if (target->abiversion() >= 2)
7029 {
7030 if (gsym != NULL)
7031 value += object->ppc64_local_entry_offset(gsym);
7032 else
7033 value += object->ppc64_local_entry_offset(r_sym);
7034 }
7035 else
7036 value = target->symval_for_branch(relinfo->symtab, value,
7037 gsym, object, &dest_shndx);
7038 }
7039 unsigned int max_branch_offset = 0;
7040 if (r_type == elfcpp::R_POWERPC_REL24
7041 || r_type == elfcpp::R_PPC_PLTREL24
7042 || r_type == elfcpp::R_PPC_LOCAL24PC)
7043 max_branch_offset = 1 << 25;
7044 else if (r_type == elfcpp::R_POWERPC_REL14
7045 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7046 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7047 max_branch_offset = 1 << 15;
7048 if (max_branch_offset != 0
7049 && value - address + max_branch_offset >= 2 * max_branch_offset)
7050 {
7051 Stub_table<size, big_endian>* stub_table
7052 = object->stub_table(relinfo->data_shndx);
7053 if (stub_table != NULL)
7054 {
7055 Address off = stub_table->find_long_branch_entry(object, value);
7056 if (off != invalid_address)
7057 value = (stub_table->stub_address() + stub_table->plt_size()
7058 + off);
7059 }
7060 }
7061 }
7062
7063 switch (r_type)
7064 {
7065 case elfcpp::R_PPC64_REL64:
7066 case elfcpp::R_POWERPC_REL32:
7067 case elfcpp::R_POWERPC_REL24:
7068 case elfcpp::R_PPC_PLTREL24:
7069 case elfcpp::R_PPC_LOCAL24PC:
7070 case elfcpp::R_POWERPC_REL16:
7071 case elfcpp::R_POWERPC_REL16_LO:
7072 case elfcpp::R_POWERPC_REL16_HI:
7073 case elfcpp::R_POWERPC_REL16_HA:
7074 case elfcpp::R_POWERPC_REL14:
7075 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7076 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7077 value -= address;
7078 break;
7079
7080 case elfcpp::R_PPC64_TOC16:
7081 case elfcpp::R_PPC64_TOC16_LO:
7082 case elfcpp::R_PPC64_TOC16_HI:
7083 case elfcpp::R_PPC64_TOC16_HA:
7084 case elfcpp::R_PPC64_TOC16_DS:
7085 case elfcpp::R_PPC64_TOC16_LO_DS:
7086 // Subtract the TOC base address.
7087 value -= (target->got_section()->output_section()->address()
7088 + object->toc_base_offset());
7089 break;
7090
7091 case elfcpp::R_POWERPC_SECTOFF:
7092 case elfcpp::R_POWERPC_SECTOFF_LO:
7093 case elfcpp::R_POWERPC_SECTOFF_HI:
7094 case elfcpp::R_POWERPC_SECTOFF_HA:
7095 case elfcpp::R_PPC64_SECTOFF_DS:
7096 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7097 if (os != NULL)
7098 value -= os->address();
7099 break;
7100
7101 case elfcpp::R_PPC64_TPREL16_DS:
7102 case elfcpp::R_PPC64_TPREL16_LO_DS:
7103 case elfcpp::R_PPC64_TPREL16_HIGH:
7104 case elfcpp::R_PPC64_TPREL16_HIGHA:
7105 if (size != 64)
7106 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7107 break;
7108 case elfcpp::R_POWERPC_TPREL16:
7109 case elfcpp::R_POWERPC_TPREL16_LO:
7110 case elfcpp::R_POWERPC_TPREL16_HI:
7111 case elfcpp::R_POWERPC_TPREL16_HA:
7112 case elfcpp::R_POWERPC_TPREL:
7113 case elfcpp::R_PPC64_TPREL16_HIGHER:
7114 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7115 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7116 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7117 // tls symbol values are relative to tls_segment()->vaddr()
7118 value -= tp_offset;
7119 break;
7120
7121 case elfcpp::R_PPC64_DTPREL16_DS:
7122 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7123 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7124 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7125 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7126 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7127 if (size != 64)
7128 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7129 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7130 break;
7131 case elfcpp::R_POWERPC_DTPREL16:
7132 case elfcpp::R_POWERPC_DTPREL16_LO:
7133 case elfcpp::R_POWERPC_DTPREL16_HI:
7134 case elfcpp::R_POWERPC_DTPREL16_HA:
7135 case elfcpp::R_POWERPC_DTPREL:
7136 case elfcpp::R_PPC64_DTPREL16_HIGH:
7137 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7138 // tls symbol values are relative to tls_segment()->vaddr()
7139 value -= dtp_offset;
7140 break;
7141
7142 case elfcpp::R_PPC64_ADDR64_LOCAL:
7143 if (gsym != NULL)
7144 value += object->ppc64_local_entry_offset(gsym);
7145 else
7146 value += object->ppc64_local_entry_offset(r_sym);
7147 break;
7148
7149 default:
7150 break;
7151 }
7152
7153 Insn branch_bit = 0;
7154 switch (r_type)
7155 {
7156 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7157 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7158 branch_bit = 1 << 21;
7159 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7160 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7161 {
7162 Insn* iview = reinterpret_cast<Insn*>(view);
7163 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7164 insn &= ~(1 << 21);
7165 insn |= branch_bit;
7166 if (this->is_isa_v2)
7167 {
7168 // Set 'a' bit. This is 0b00010 in BO field for branch
7169 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7170 // for branch on CTR insns (BO == 1a00t or 1a01t).
7171 if ((insn & (0x14 << 21)) == (0x04 << 21))
7172 insn |= 0x02 << 21;
7173 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7174 insn |= 0x08 << 21;
7175 else
7176 break;
7177 }
7178 else
7179 {
7180 // Invert 'y' bit if not the default.
7181 if (static_cast<Signed_address>(value) < 0)
7182 insn ^= 1 << 21;
7183 }
7184 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7185 }
7186 break;
7187
7188 default:
7189 break;
7190 }
7191
7192 if (size == 64)
7193 {
7194 // Multi-instruction sequences that access the TOC can be
7195 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7196 // to nop; addi rb,r2,x;
7197 switch (r_type)
7198 {
7199 default:
7200 break;
7201
7202 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7203 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7204 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7205 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7206 case elfcpp::R_POWERPC_GOT16_HA:
7207 case elfcpp::R_PPC64_TOC16_HA:
7208 if (parameters->options().toc_optimize())
7209 {
7210 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7211 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7212 if ((insn & ((0x3f << 26) | 0x1f << 16))
7213 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7214 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7215 _("toc optimization is not supported "
7216 "for %#08x instruction"), insn);
7217 else if (value + 0x8000 < 0x10000)
7218 {
7219 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7220 return true;
7221 }
7222 }
7223 break;
7224
7225 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7226 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7227 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7228 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7229 case elfcpp::R_POWERPC_GOT16_LO:
7230 case elfcpp::R_PPC64_GOT16_LO_DS:
7231 case elfcpp::R_PPC64_TOC16_LO:
7232 case elfcpp::R_PPC64_TOC16_LO_DS:
7233 if (parameters->options().toc_optimize())
7234 {
7235 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7236 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7237 if (!ok_lo_toc_insn(insn))
7238 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7239 _("toc optimization is not supported "
7240 "for %#08x instruction"), insn);
7241 else if (value + 0x8000 < 0x10000)
7242 {
7243 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7244 {
7245 // Transform addic to addi when we change reg.
7246 insn &= ~((0x3f << 26) | (0x1f << 16));
7247 insn |= (14u << 26) | (2 << 16);
7248 }
7249 else
7250 {
7251 insn &= ~(0x1f << 16);
7252 insn |= 2 << 16;
7253 }
7254 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7255 }
7256 }
7257 break;
7258 }
7259 }
7260
7261 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7262 switch (r_type)
7263 {
7264 case elfcpp::R_POWERPC_ADDR32:
7265 case elfcpp::R_POWERPC_UADDR32:
7266 if (size == 64)
7267 overflow = Reloc::CHECK_BITFIELD;
7268 break;
7269
7270 case elfcpp::R_POWERPC_REL32:
7271 if (size == 64)
7272 overflow = Reloc::CHECK_SIGNED;
7273 break;
7274
7275 case elfcpp::R_POWERPC_ADDR24:
7276 case elfcpp::R_POWERPC_ADDR16:
7277 case elfcpp::R_POWERPC_UADDR16:
7278 case elfcpp::R_PPC64_ADDR16_DS:
7279 case elfcpp::R_POWERPC_ADDR14:
7280 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7281 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7282 overflow = Reloc::CHECK_BITFIELD;
7283 break;
7284
7285 case elfcpp::R_POWERPC_ADDR16_HI:
7286 case elfcpp::R_POWERPC_ADDR16_HA:
7287 case elfcpp::R_POWERPC_GOT16_HI:
7288 case elfcpp::R_POWERPC_GOT16_HA:
7289 case elfcpp::R_POWERPC_PLT16_HI:
7290 case elfcpp::R_POWERPC_PLT16_HA:
7291 case elfcpp::R_POWERPC_SECTOFF_HI:
7292 case elfcpp::R_POWERPC_SECTOFF_HA:
7293 case elfcpp::R_PPC64_TOC16_HI:
7294 case elfcpp::R_PPC64_TOC16_HA:
7295 case elfcpp::R_PPC64_PLTGOT16_HI:
7296 case elfcpp::R_PPC64_PLTGOT16_HA:
7297 case elfcpp::R_POWERPC_TPREL16_HI:
7298 case elfcpp::R_POWERPC_TPREL16_HA:
7299 case elfcpp::R_POWERPC_DTPREL16_HI:
7300 case elfcpp::R_POWERPC_DTPREL16_HA:
7301 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7302 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7303 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7304 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7305 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7306 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7307 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7308 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7309 case elfcpp::R_POWERPC_REL16_HI:
7310 case elfcpp::R_POWERPC_REL16_HA:
7311 if (size == 32)
7312 break;
7313 case elfcpp::R_POWERPC_REL24:
7314 case elfcpp::R_PPC_PLTREL24:
7315 case elfcpp::R_PPC_LOCAL24PC:
7316 case elfcpp::R_POWERPC_REL16:
7317 case elfcpp::R_PPC64_TOC16:
7318 case elfcpp::R_POWERPC_GOT16:
7319 case elfcpp::R_POWERPC_SECTOFF:
7320 case elfcpp::R_POWERPC_TPREL16:
7321 case elfcpp::R_POWERPC_DTPREL16:
7322 case elfcpp::R_PPC64_TPREL16_DS:
7323 case elfcpp::R_PPC64_DTPREL16_DS:
7324 case elfcpp::R_PPC64_TOC16_DS:
7325 case elfcpp::R_PPC64_GOT16_DS:
7326 case elfcpp::R_PPC64_SECTOFF_DS:
7327 case elfcpp::R_POWERPC_REL14:
7328 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7329 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7330 case elfcpp::R_POWERPC_GOT_TLSGD16:
7331 case elfcpp::R_POWERPC_GOT_TLSLD16:
7332 case elfcpp::R_POWERPC_GOT_TPREL16:
7333 case elfcpp::R_POWERPC_GOT_DTPREL16:
7334 overflow = Reloc::CHECK_SIGNED;
7335 break;
7336 }
7337
7338 typename Powerpc_relocate_functions<size, big_endian>::Status status
7339 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7340 switch (r_type)
7341 {
7342 case elfcpp::R_POWERPC_NONE:
7343 case elfcpp::R_POWERPC_TLS:
7344 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7345 case elfcpp::R_POWERPC_GNU_VTENTRY:
7346 break;
7347
7348 case elfcpp::R_PPC64_ADDR64:
7349 case elfcpp::R_PPC64_REL64:
7350 case elfcpp::R_PPC64_TOC:
7351 case elfcpp::R_PPC64_ADDR64_LOCAL:
7352 Reloc::addr64(view, value);
7353 break;
7354
7355 case elfcpp::R_POWERPC_TPREL:
7356 case elfcpp::R_POWERPC_DTPREL:
7357 if (size == 64)
7358 Reloc::addr64(view, value);
7359 else
7360 status = Reloc::addr32(view, value, overflow);
7361 break;
7362
7363 case elfcpp::R_PPC64_UADDR64:
7364 Reloc::addr64_u(view, value);
7365 break;
7366
7367 case elfcpp::R_POWERPC_ADDR32:
7368 status = Reloc::addr32(view, value, overflow);
7369 break;
7370
7371 case elfcpp::R_POWERPC_REL32:
7372 case elfcpp::R_POWERPC_UADDR32:
7373 status = Reloc::addr32_u(view, value, overflow);
7374 break;
7375
7376 case elfcpp::R_POWERPC_ADDR24:
7377 case elfcpp::R_POWERPC_REL24:
7378 case elfcpp::R_PPC_PLTREL24:
7379 case elfcpp::R_PPC_LOCAL24PC:
7380 status = Reloc::addr24(view, value, overflow);
7381 break;
7382
7383 case elfcpp::R_POWERPC_GOT_DTPREL16:
7384 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7385 if (size == 64)
7386 {
7387 status = Reloc::addr16_ds(view, value, overflow);
7388 break;
7389 }
7390 case elfcpp::R_POWERPC_ADDR16:
7391 case elfcpp::R_POWERPC_REL16:
7392 case elfcpp::R_PPC64_TOC16:
7393 case elfcpp::R_POWERPC_GOT16:
7394 case elfcpp::R_POWERPC_SECTOFF:
7395 case elfcpp::R_POWERPC_TPREL16:
7396 case elfcpp::R_POWERPC_DTPREL16:
7397 case elfcpp::R_POWERPC_GOT_TLSGD16:
7398 case elfcpp::R_POWERPC_GOT_TLSLD16:
7399 case elfcpp::R_POWERPC_GOT_TPREL16:
7400 case elfcpp::R_POWERPC_ADDR16_LO:
7401 case elfcpp::R_POWERPC_REL16_LO:
7402 case elfcpp::R_PPC64_TOC16_LO:
7403 case elfcpp::R_POWERPC_GOT16_LO:
7404 case elfcpp::R_POWERPC_SECTOFF_LO:
7405 case elfcpp::R_POWERPC_TPREL16_LO:
7406 case elfcpp::R_POWERPC_DTPREL16_LO:
7407 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7408 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7409 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7410 status = Reloc::addr16(view, value, overflow);
7411 break;
7412
7413 case elfcpp::R_POWERPC_UADDR16:
7414 status = Reloc::addr16_u(view, value, overflow);
7415 break;
7416
7417 case elfcpp::R_PPC64_ADDR16_HIGH:
7418 case elfcpp::R_PPC64_TPREL16_HIGH:
7419 case elfcpp::R_PPC64_DTPREL16_HIGH:
7420 if (size == 32)
7421 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7422 goto unsupp;
7423 case elfcpp::R_POWERPC_ADDR16_HI:
7424 case elfcpp::R_POWERPC_REL16_HI:
7425 case elfcpp::R_PPC64_TOC16_HI:
7426 case elfcpp::R_POWERPC_GOT16_HI:
7427 case elfcpp::R_POWERPC_SECTOFF_HI:
7428 case elfcpp::R_POWERPC_TPREL16_HI:
7429 case elfcpp::R_POWERPC_DTPREL16_HI:
7430 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7431 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7432 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7433 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7434 Reloc::addr16_hi(view, value);
7435 break;
7436
7437 case elfcpp::R_PPC64_ADDR16_HIGHA:
7438 case elfcpp::R_PPC64_TPREL16_HIGHA:
7439 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7440 if (size == 32)
7441 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7442 goto unsupp;
7443 case elfcpp::R_POWERPC_ADDR16_HA:
7444 case elfcpp::R_POWERPC_REL16_HA:
7445 case elfcpp::R_PPC64_TOC16_HA:
7446 case elfcpp::R_POWERPC_GOT16_HA:
7447 case elfcpp::R_POWERPC_SECTOFF_HA:
7448 case elfcpp::R_POWERPC_TPREL16_HA:
7449 case elfcpp::R_POWERPC_DTPREL16_HA:
7450 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7451 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7452 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7453 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7454 Reloc::addr16_ha(view, value);
7455 break;
7456
7457 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7458 if (size == 32)
7459 // R_PPC_EMB_NADDR16_LO
7460 goto unsupp;
7461 case elfcpp::R_PPC64_ADDR16_HIGHER:
7462 case elfcpp::R_PPC64_TPREL16_HIGHER:
7463 Reloc::addr16_hi2(view, value);
7464 break;
7465
7466 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7467 if (size == 32)
7468 // R_PPC_EMB_NADDR16_HI
7469 goto unsupp;
7470 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7471 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7472 Reloc::addr16_ha2(view, value);
7473 break;
7474
7475 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7476 if (size == 32)
7477 // R_PPC_EMB_NADDR16_HA
7478 goto unsupp;
7479 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7480 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7481 Reloc::addr16_hi3(view, value);
7482 break;
7483
7484 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7485 if (size == 32)
7486 // R_PPC_EMB_SDAI16
7487 goto unsupp;
7488 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7489 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7490 Reloc::addr16_ha3(view, value);
7491 break;
7492
7493 case elfcpp::R_PPC64_DTPREL16_DS:
7494 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7495 if (size == 32)
7496 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7497 goto unsupp;
7498 case elfcpp::R_PPC64_TPREL16_DS:
7499 case elfcpp::R_PPC64_TPREL16_LO_DS:
7500 if (size == 32)
7501 // R_PPC_TLSGD, R_PPC_TLSLD
7502 break;
7503 case elfcpp::R_PPC64_ADDR16_DS:
7504 case elfcpp::R_PPC64_ADDR16_LO_DS:
7505 case elfcpp::R_PPC64_TOC16_DS:
7506 case elfcpp::R_PPC64_TOC16_LO_DS:
7507 case elfcpp::R_PPC64_GOT16_DS:
7508 case elfcpp::R_PPC64_GOT16_LO_DS:
7509 case elfcpp::R_PPC64_SECTOFF_DS:
7510 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7511 status = Reloc::addr16_ds(view, value, overflow);
7512 break;
7513
7514 case elfcpp::R_POWERPC_ADDR14:
7515 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7516 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7517 case elfcpp::R_POWERPC_REL14:
7518 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7519 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7520 status = Reloc::addr14(view, value, overflow);
7521 break;
7522
7523 case elfcpp::R_POWERPC_COPY:
7524 case elfcpp::R_POWERPC_GLOB_DAT:
7525 case elfcpp::R_POWERPC_JMP_SLOT:
7526 case elfcpp::R_POWERPC_RELATIVE:
7527 case elfcpp::R_POWERPC_DTPMOD:
7528 case elfcpp::R_PPC64_JMP_IREL:
7529 case elfcpp::R_POWERPC_IRELATIVE:
7530 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7531 _("unexpected reloc %u in object file"),
7532 r_type);
7533 break;
7534
7535 case elfcpp::R_PPC_EMB_SDA21:
7536 if (size == 32)
7537 goto unsupp;
7538 else
7539 {
7540 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7541 }
7542 break;
7543
7544 case elfcpp::R_PPC_EMB_SDA2I16:
7545 case elfcpp::R_PPC_EMB_SDA2REL:
7546 if (size == 32)
7547 goto unsupp;
7548 // R_PPC64_TLSGD, R_PPC64_TLSLD
7549 break;
7550
7551 case elfcpp::R_POWERPC_PLT32:
7552 case elfcpp::R_POWERPC_PLTREL32:
7553 case elfcpp::R_POWERPC_PLT16_LO:
7554 case elfcpp::R_POWERPC_PLT16_HI:
7555 case elfcpp::R_POWERPC_PLT16_HA:
7556 case elfcpp::R_PPC_SDAREL16:
7557 case elfcpp::R_POWERPC_ADDR30:
7558 case elfcpp::R_PPC64_PLT64:
7559 case elfcpp::R_PPC64_PLTREL64:
7560 case elfcpp::R_PPC64_PLTGOT16:
7561 case elfcpp::R_PPC64_PLTGOT16_LO:
7562 case elfcpp::R_PPC64_PLTGOT16_HI:
7563 case elfcpp::R_PPC64_PLTGOT16_HA:
7564 case elfcpp::R_PPC64_PLT16_LO_DS:
7565 case elfcpp::R_PPC64_PLTGOT16_DS:
7566 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7567 case elfcpp::R_PPC_EMB_RELSDA:
7568 case elfcpp::R_PPC_TOC16:
7569 default:
7570 unsupp:
7571 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7572 _("unsupported reloc %u"),
7573 r_type);
7574 break;
7575 }
7576 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7577 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7578 _("relocation overflow"));
7579
7580 return true;
7581 }
7582
7583 // Relocate section data.
7584
7585 template<int size, bool big_endian>
7586 void
7587 Target_powerpc<size, big_endian>::relocate_section(
7588 const Relocate_info<size, big_endian>* relinfo,
7589 unsigned int sh_type,
7590 const unsigned char* prelocs,
7591 size_t reloc_count,
7592 Output_section* output_section,
7593 bool needs_special_offset_handling,
7594 unsigned char* view,
7595 Address address,
7596 section_size_type view_size,
7597 const Reloc_symbol_changes* reloc_symbol_changes)
7598 {
7599 typedef Target_powerpc<size, big_endian> Powerpc;
7600 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7601 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7602 Powerpc_comdat_behavior;
7603
7604 gold_assert(sh_type == elfcpp::SHT_RELA);
7605
7606 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7607 Powerpc_relocate, Powerpc_comdat_behavior>(
7608 relinfo,
7609 this,
7610 prelocs,
7611 reloc_count,
7612 output_section,
7613 needs_special_offset_handling,
7614 view,
7615 address,
7616 view_size,
7617 reloc_symbol_changes);
7618 }
7619
7620 class Powerpc_scan_relocatable_reloc
7621 {
7622 public:
7623 // Return the strategy to use for a local symbol which is not a
7624 // section symbol, given the relocation type.
7625 inline Relocatable_relocs::Reloc_strategy
7626 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7627 {
7628 if (r_type == 0 && r_sym == 0)
7629 return Relocatable_relocs::RELOC_DISCARD;
7630 return Relocatable_relocs::RELOC_COPY;
7631 }
7632
7633 // Return the strategy to use for a local symbol which is a section
7634 // symbol, given the relocation type.
7635 inline Relocatable_relocs::Reloc_strategy
7636 local_section_strategy(unsigned int, Relobj*)
7637 {
7638 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7639 }
7640
7641 // Return the strategy to use for a global symbol, given the
7642 // relocation type, the object, and the symbol index.
7643 inline Relocatable_relocs::Reloc_strategy
7644 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7645 {
7646 if (r_type == elfcpp::R_PPC_PLTREL24)
7647 return Relocatable_relocs::RELOC_SPECIAL;
7648 return Relocatable_relocs::RELOC_COPY;
7649 }
7650 };
7651
7652 // Scan the relocs during a relocatable link.
7653
7654 template<int size, bool big_endian>
7655 void
7656 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7657 Symbol_table* symtab,
7658 Layout* layout,
7659 Sized_relobj_file<size, big_endian>* object,
7660 unsigned int data_shndx,
7661 unsigned int sh_type,
7662 const unsigned char* prelocs,
7663 size_t reloc_count,
7664 Output_section* output_section,
7665 bool needs_special_offset_handling,
7666 size_t local_symbol_count,
7667 const unsigned char* plocal_symbols,
7668 Relocatable_relocs* rr)
7669 {
7670 gold_assert(sh_type == elfcpp::SHT_RELA);
7671
7672 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7673 Powerpc_scan_relocatable_reloc>(
7674 symtab,
7675 layout,
7676 object,
7677 data_shndx,
7678 prelocs,
7679 reloc_count,
7680 output_section,
7681 needs_special_offset_handling,
7682 local_symbol_count,
7683 plocal_symbols,
7684 rr);
7685 }
7686
7687 // Emit relocations for a section.
7688 // This is a modified version of the function by the same name in
7689 // target-reloc.h. Using relocate_special_relocatable for
7690 // R_PPC_PLTREL24 would require duplication of the entire body of the
7691 // loop, so we may as well duplicate the whole thing.
7692
7693 template<int size, bool big_endian>
7694 void
7695 Target_powerpc<size, big_endian>::relocate_relocs(
7696 const Relocate_info<size, big_endian>* relinfo,
7697 unsigned int sh_type,
7698 const unsigned char* prelocs,
7699 size_t reloc_count,
7700 Output_section* output_section,
7701 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7702 const Relocatable_relocs* rr,
7703 unsigned char*,
7704 Address view_address,
7705 section_size_type,
7706 unsigned char* reloc_view,
7707 section_size_type reloc_view_size)
7708 {
7709 gold_assert(sh_type == elfcpp::SHT_RELA);
7710
7711 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7712 Reltype;
7713 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7714 Reltype_write;
7715 const int reloc_size
7716 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7717
7718 Powerpc_relobj<size, big_endian>* const object
7719 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7720 const unsigned int local_count = object->local_symbol_count();
7721 unsigned int got2_shndx = object->got2_shndx();
7722 Address got2_addend = 0;
7723 if (got2_shndx != 0)
7724 {
7725 got2_addend = object->get_output_section_offset(got2_shndx);
7726 gold_assert(got2_addend != invalid_address);
7727 }
7728
7729 unsigned char* pwrite = reloc_view;
7730 bool zap_next = false;
7731 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7732 {
7733 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7734 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7735 continue;
7736
7737 Reltype reloc(prelocs);
7738 Reltype_write reloc_write(pwrite);
7739
7740 Address offset = reloc.get_r_offset();
7741 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7742 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7743 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7744 const unsigned int orig_r_sym = r_sym;
7745 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7746 = reloc.get_r_addend();
7747 const Symbol* gsym = NULL;
7748
7749 if (zap_next)
7750 {
7751 // We could arrange to discard these and other relocs for
7752 // tls optimised sequences in the strategy methods, but for
7753 // now do as BFD ld does.
7754 r_type = elfcpp::R_POWERPC_NONE;
7755 zap_next = false;
7756 }
7757
7758 // Get the new symbol index.
7759 if (r_sym < local_count)
7760 {
7761 switch (strategy)
7762 {
7763 case Relocatable_relocs::RELOC_COPY:
7764 case Relocatable_relocs::RELOC_SPECIAL:
7765 if (r_sym != 0)
7766 {
7767 r_sym = object->symtab_index(r_sym);
7768 gold_assert(r_sym != -1U);
7769 }
7770 break;
7771
7772 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7773 {
7774 // We are adjusting a section symbol. We need to find
7775 // the symbol table index of the section symbol for
7776 // the output section corresponding to input section
7777 // in which this symbol is defined.
7778 gold_assert(r_sym < local_count);
7779 bool is_ordinary;
7780 unsigned int shndx =
7781 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7782 gold_assert(is_ordinary);
7783 Output_section* os = object->output_section(shndx);
7784 gold_assert(os != NULL);
7785 gold_assert(os->needs_symtab_index());
7786 r_sym = os->symtab_index();
7787 }
7788 break;
7789
7790 default:
7791 gold_unreachable();
7792 }
7793 }
7794 else
7795 {
7796 gsym = object->global_symbol(r_sym);
7797 gold_assert(gsym != NULL);
7798 if (gsym->is_forwarder())
7799 gsym = relinfo->symtab->resolve_forwards(gsym);
7800
7801 gold_assert(gsym->has_symtab_index());
7802 r_sym = gsym->symtab_index();
7803 }
7804
7805 // Get the new offset--the location in the output section where
7806 // this relocation should be applied.
7807 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7808 offset += offset_in_output_section;
7809 else
7810 {
7811 section_offset_type sot_offset =
7812 convert_types<section_offset_type, Address>(offset);
7813 section_offset_type new_sot_offset =
7814 output_section->output_offset(object, relinfo->data_shndx,
7815 sot_offset);
7816 gold_assert(new_sot_offset != -1);
7817 offset = new_sot_offset;
7818 }
7819
7820 // In an object file, r_offset is an offset within the section.
7821 // In an executable or dynamic object, generated by
7822 // --emit-relocs, r_offset is an absolute address.
7823 if (!parameters->options().relocatable())
7824 {
7825 offset += view_address;
7826 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7827 offset -= offset_in_output_section;
7828 }
7829
7830 // Handle the reloc addend based on the strategy.
7831 if (strategy == Relocatable_relocs::RELOC_COPY)
7832 ;
7833 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7834 {
7835 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7836 addend = psymval->value(object, addend);
7837 }
7838 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7839 {
7840 if (addend >= 32768)
7841 addend += got2_addend;
7842 }
7843 else
7844 gold_unreachable();
7845
7846 if (!parameters->options().relocatable())
7847 {
7848 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7849 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7850 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7851 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7852 {
7853 // First instruction of a global dynamic sequence,
7854 // arg setup insn.
7855 const bool final = gsym == NULL || gsym->final_value_is_known();
7856 switch (this->optimize_tls_gd(final))
7857 {
7858 case tls::TLSOPT_TO_IE:
7859 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7860 - elfcpp::R_POWERPC_GOT_TLSGD16);
7861 break;
7862 case tls::TLSOPT_TO_LE:
7863 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7864 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7865 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7866 else
7867 {
7868 r_type = elfcpp::R_POWERPC_NONE;
7869 offset -= 2 * big_endian;
7870 }
7871 break;
7872 default:
7873 break;
7874 }
7875 }
7876 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7877 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7878 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7879 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7880 {
7881 // First instruction of a local dynamic sequence,
7882 // arg setup insn.
7883 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7884 {
7885 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7886 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7887 {
7888 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7889 const Output_section* os = relinfo->layout->tls_segment()
7890 ->first_section();
7891 gold_assert(os != NULL);
7892 gold_assert(os->needs_symtab_index());
7893 r_sym = os->symtab_index();
7894 addend = dtp_offset;
7895 }
7896 else
7897 {
7898 r_type = elfcpp::R_POWERPC_NONE;
7899 offset -= 2 * big_endian;
7900 }
7901 }
7902 }
7903 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7904 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7905 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7906 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7907 {
7908 // First instruction of initial exec sequence.
7909 const bool final = gsym == NULL || gsym->final_value_is_known();
7910 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7911 {
7912 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7913 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7914 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7915 else
7916 {
7917 r_type = elfcpp::R_POWERPC_NONE;
7918 offset -= 2 * big_endian;
7919 }
7920 }
7921 }
7922 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7923 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7924 {
7925 // Second instruction of a global dynamic sequence,
7926 // the __tls_get_addr call
7927 const bool final = gsym == NULL || gsym->final_value_is_known();
7928 switch (this->optimize_tls_gd(final))
7929 {
7930 case tls::TLSOPT_TO_IE:
7931 r_type = elfcpp::R_POWERPC_NONE;
7932 zap_next = true;
7933 break;
7934 case tls::TLSOPT_TO_LE:
7935 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7936 offset += 2 * big_endian;
7937 zap_next = true;
7938 break;
7939 default:
7940 break;
7941 }
7942 }
7943 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7944 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7945 {
7946 // Second instruction of a local dynamic sequence,
7947 // the __tls_get_addr call
7948 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7949 {
7950 const Output_section* os = relinfo->layout->tls_segment()
7951 ->first_section();
7952 gold_assert(os != NULL);
7953 gold_assert(os->needs_symtab_index());
7954 r_sym = os->symtab_index();
7955 addend = dtp_offset;
7956 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7957 offset += 2 * big_endian;
7958 zap_next = true;
7959 }
7960 }
7961 else if (r_type == elfcpp::R_POWERPC_TLS)
7962 {
7963 // Second instruction of an initial exec sequence
7964 const bool final = gsym == NULL || gsym->final_value_is_known();
7965 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7966 {
7967 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7968 offset += 2 * big_endian;
7969 }
7970 }
7971 }
7972
7973 reloc_write.put_r_offset(offset);
7974 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7975 reloc_write.put_r_addend(addend);
7976
7977 pwrite += reloc_size;
7978 }
7979
7980 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7981 == reloc_view_size);
7982 }
7983
7984 // Return the value to use for a dynamic symbol which requires special
7985 // treatment. This is how we support equality comparisons of function
7986 // pointers across shared library boundaries, as described in the
7987 // processor specific ABI supplement.
7988
7989 template<int size, bool big_endian>
7990 uint64_t
7991 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7992 {
7993 if (size == 32)
7994 {
7995 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7996 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7997 p != this->stub_tables_.end();
7998 ++p)
7999 {
8000 Address off = (*p)->find_plt_call_entry(gsym);
8001 if (off != invalid_address)
8002 return (*p)->stub_address() + off;
8003 }
8004 }
8005 else if (this->abiversion() >= 2)
8006 {
8007 unsigned int off = this->glink_section()->find_global_entry(gsym);
8008 if (off != (unsigned int)-1)
8009 return this->glink_section()->global_entry_address() + off;
8010 }
8011 gold_unreachable();
8012 }
8013
8014 // Return the PLT address to use for a local symbol.
8015 template<int size, bool big_endian>
8016 uint64_t
8017 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8018 const Relobj* object,
8019 unsigned int symndx) const
8020 {
8021 if (size == 32)
8022 {
8023 const Sized_relobj<size, big_endian>* relobj
8024 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8025 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8026 p != this->stub_tables_.end();
8027 ++p)
8028 {
8029 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8030 symndx);
8031 if (off != invalid_address)
8032 return (*p)->stub_address() + off;
8033 }
8034 }
8035 gold_unreachable();
8036 }
8037
8038 // Return the PLT address to use for a global symbol.
8039 template<int size, bool big_endian>
8040 uint64_t
8041 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8042 const Symbol* gsym) const
8043 {
8044 if (size == 32)
8045 {
8046 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8047 p != this->stub_tables_.end();
8048 ++p)
8049 {
8050 Address off = (*p)->find_plt_call_entry(gsym);
8051 if (off != invalid_address)
8052 return (*p)->stub_address() + off;
8053 }
8054 }
8055 else if (this->abiversion() >= 2)
8056 {
8057 unsigned int off = this->glink_section()->find_global_entry(gsym);
8058 if (off != (unsigned int)-1)
8059 return this->glink_section()->global_entry_address() + off;
8060 }
8061 gold_unreachable();
8062 }
8063
8064 // Return the offset to use for the GOT_INDX'th got entry which is
8065 // for a local tls symbol specified by OBJECT, SYMNDX.
8066 template<int size, bool big_endian>
8067 int64_t
8068 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8069 const Relobj* object,
8070 unsigned int symndx,
8071 unsigned int got_indx) const
8072 {
8073 const Powerpc_relobj<size, big_endian>* ppc_object
8074 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8075 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8076 {
8077 for (Got_type got_type = GOT_TYPE_TLSGD;
8078 got_type <= GOT_TYPE_TPREL;
8079 got_type = Got_type(got_type + 1))
8080 if (ppc_object->local_has_got_offset(symndx, got_type))
8081 {
8082 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8083 if (got_type == GOT_TYPE_TLSGD)
8084 off += size / 8;
8085 if (off == got_indx * (size / 8))
8086 {
8087 if (got_type == GOT_TYPE_TPREL)
8088 return -tp_offset;
8089 else
8090 return -dtp_offset;
8091 }
8092 }
8093 }
8094 gold_unreachable();
8095 }
8096
8097 // Return the offset to use for the GOT_INDX'th got entry which is
8098 // for global tls symbol GSYM.
8099 template<int size, bool big_endian>
8100 int64_t
8101 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8102 Symbol* gsym,
8103 unsigned int got_indx) const
8104 {
8105 if (gsym->type() == elfcpp::STT_TLS)
8106 {
8107 for (Got_type got_type = GOT_TYPE_TLSGD;
8108 got_type <= GOT_TYPE_TPREL;
8109 got_type = Got_type(got_type + 1))
8110 if (gsym->has_got_offset(got_type))
8111 {
8112 unsigned int off = gsym->got_offset(got_type);
8113 if (got_type == GOT_TYPE_TLSGD)
8114 off += size / 8;
8115 if (off == got_indx * (size / 8))
8116 {
8117 if (got_type == GOT_TYPE_TPREL)
8118 return -tp_offset;
8119 else
8120 return -dtp_offset;
8121 }
8122 }
8123 }
8124 gold_unreachable();
8125 }
8126
8127 // The selector for powerpc object files.
8128
8129 template<int size, bool big_endian>
8130 class Target_selector_powerpc : public Target_selector
8131 {
8132 public:
8133 Target_selector_powerpc()
8134 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8135 size, big_endian,
8136 (size == 64
8137 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8138 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8139 (size == 64
8140 ? (big_endian ? "elf64ppc" : "elf64lppc")
8141 : (big_endian ? "elf32ppc" : "elf32lppc")))
8142 { }
8143
8144 virtual Target*
8145 do_instantiate_target()
8146 { return new Target_powerpc<size, big_endian>(); }
8147 };
8148
8149 Target_selector_powerpc<32, true> target_selector_ppc32;
8150 Target_selector_powerpc<32, false> target_selector_ppc32le;
8151 Target_selector_powerpc<64, true> target_selector_ppc64;
8152 Target_selector_powerpc<64, false> target_selector_ppc64le;
8153
8154 // Instantiate these constants for -O0
8155 template<int size, bool big_endian>
8156 const int Output_data_glink<size, big_endian>::pltresolve_size;
8157 template<int size, bool big_endian>
8158 const typename Output_data_glink<size, big_endian>::Address
8159 Output_data_glink<size, big_endian>::invalid_address;
8160 template<int size, bool big_endian>
8161 const typename Stub_table<size, big_endian>::Address
8162 Stub_table<size, big_endian>::invalid_address;
8163 template<int size, bool big_endian>
8164 const typename Target_powerpc<size, big_endian>::Address
8165 Target_powerpc<size, big_endian>::invalid_address;
8166
8167 } // End anonymous namespace.