]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/powerpc.cc
PowerPC ld segfault on script discarding dynamic sections
[thirdparty/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2017 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 template<int size, bool big_endian>
85 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
86 {
87 public:
88 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
89 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
90 typedef Unordered_map<Address, Section_refs> Access_from;
91
92 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
93 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
94 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
95 special_(0), relatoc_(0), toc_(0), no_toc_opt_(),
96 has_small_toc_reloc_(false), opd_valid_(false), opd_ent_(),
97 access_from_map_(), has14_(), stub_table_index_(),
98 e_flags_(ehdr.get_e_flags()), st_other_()
99 {
100 this->set_abiversion(0);
101 }
102
103 ~Powerpc_relobj()
104 { }
105
106 // Read the symbols then set up st_other vector.
107 void
108 do_read_symbols(Read_symbols_data*);
109
110 // Arrange to always relocate .toc first.
111 virtual void
112 do_relocate_sections(
113 const Symbol_table* symtab, const Layout* layout,
114 const unsigned char* pshdrs, Output_file* of,
115 typename Sized_relobj_file<size, big_endian>::Views* pviews);
116
117 // The .toc section index.
118 unsigned int
119 toc_shndx() const
120 {
121 return this->toc_;
122 }
123
124 // Mark .toc entry at OFF as not optimizable.
125 void
126 set_no_toc_opt(Address off)
127 {
128 if (this->no_toc_opt_.empty())
129 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
130 / (size / 8));
131 off /= size / 8;
132 if (off < this->no_toc_opt_.size())
133 this->no_toc_opt_[off] = true;
134 }
135
136 // Mark the entire .toc as not optimizable.
137 void
138 set_no_toc_opt()
139 {
140 this->no_toc_opt_.resize(1);
141 this->no_toc_opt_[0] = true;
142 }
143
144 // Return true if code using the .toc entry at OFF should not be edited.
145 bool
146 no_toc_opt(Address off) const
147 {
148 if (this->no_toc_opt_.empty())
149 return false;
150 off /= size / 8;
151 if (off >= this->no_toc_opt_.size())
152 return true;
153 return this->no_toc_opt_[off];
154 }
155
156 // The .got2 section shndx.
157 unsigned int
158 got2_shndx() const
159 {
160 if (size == 32)
161 return this->special_;
162 else
163 return 0;
164 }
165
166 // The .opd section shndx.
167 unsigned int
168 opd_shndx() const
169 {
170 if (size == 32)
171 return 0;
172 else
173 return this->special_;
174 }
175
176 // Init OPD entry arrays.
177 void
178 init_opd(size_t opd_size)
179 {
180 size_t count = this->opd_ent_ndx(opd_size);
181 this->opd_ent_.resize(count);
182 }
183
184 // Return section and offset of function entry for .opd + R_OFF.
185 unsigned int
186 get_opd_ent(Address r_off, Address* value = NULL) const
187 {
188 size_t ndx = this->opd_ent_ndx(r_off);
189 gold_assert(ndx < this->opd_ent_.size());
190 gold_assert(this->opd_ent_[ndx].shndx != 0);
191 if (value != NULL)
192 *value = this->opd_ent_[ndx].off;
193 return this->opd_ent_[ndx].shndx;
194 }
195
196 // Set section and offset of function entry for .opd + R_OFF.
197 void
198 set_opd_ent(Address r_off, unsigned int shndx, Address value)
199 {
200 size_t ndx = this->opd_ent_ndx(r_off);
201 gold_assert(ndx < this->opd_ent_.size());
202 this->opd_ent_[ndx].shndx = shndx;
203 this->opd_ent_[ndx].off = value;
204 }
205
206 // Return discard flag for .opd + R_OFF.
207 bool
208 get_opd_discard(Address r_off) const
209 {
210 size_t ndx = this->opd_ent_ndx(r_off);
211 gold_assert(ndx < this->opd_ent_.size());
212 return this->opd_ent_[ndx].discard;
213 }
214
215 // Set discard flag for .opd + R_OFF.
216 void
217 set_opd_discard(Address r_off)
218 {
219 size_t ndx = this->opd_ent_ndx(r_off);
220 gold_assert(ndx < this->opd_ent_.size());
221 this->opd_ent_[ndx].discard = true;
222 }
223
224 bool
225 opd_valid() const
226 { return this->opd_valid_; }
227
228 void
229 set_opd_valid()
230 { this->opd_valid_ = true; }
231
232 // Examine .rela.opd to build info about function entry points.
233 void
234 scan_opd_relocs(size_t reloc_count,
235 const unsigned char* prelocs,
236 const unsigned char* plocal_syms);
237
238 // Returns true if a code sequence loading a TOC entry can be
239 // converted into code calculating a TOC pointer relative offset.
240 bool
241 make_toc_relative(Target_powerpc<size, big_endian>* target,
242 Address* value);
243
244 // Perform the Sized_relobj_file method, then set up opd info from
245 // .opd relocs.
246 void
247 do_read_relocs(Read_relocs_data*);
248
249 bool
250 do_find_special_sections(Read_symbols_data* sd);
251
252 // Adjust this local symbol value. Return false if the symbol
253 // should be discarded from the output file.
254 bool
255 do_adjust_local_symbol(Symbol_value<size>* lv) const
256 {
257 if (size == 64 && this->opd_shndx() != 0)
258 {
259 bool is_ordinary;
260 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
261 return true;
262 if (this->get_opd_discard(lv->input_value()))
263 return false;
264 }
265 return true;
266 }
267
268 Access_from*
269 access_from_map()
270 { return &this->access_from_map_; }
271
272 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
273 // section at DST_OFF.
274 void
275 add_reference(Relobj* src_obj,
276 unsigned int src_indx,
277 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
278 {
279 Section_id src_id(src_obj, src_indx);
280 this->access_from_map_[dst_off].insert(src_id);
281 }
282
283 // Add a reference to the code section specified by the .opd entry
284 // at DST_OFF
285 void
286 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
287 {
288 size_t ndx = this->opd_ent_ndx(dst_off);
289 if (ndx >= this->opd_ent_.size())
290 this->opd_ent_.resize(ndx + 1);
291 this->opd_ent_[ndx].gc_mark = true;
292 }
293
294 void
295 process_gc_mark(Symbol_table* symtab)
296 {
297 for (size_t i = 0; i < this->opd_ent_.size(); i++)
298 if (this->opd_ent_[i].gc_mark)
299 {
300 unsigned int shndx = this->opd_ent_[i].shndx;
301 symtab->gc()->worklist().push_back(Section_id(this, shndx));
302 }
303 }
304
305 // Return offset in output GOT section that this object will use
306 // as a TOC pointer. Won't be just a constant with multi-toc support.
307 Address
308 toc_base_offset() const
309 { return 0x8000; }
310
311 void
312 set_has_small_toc_reloc()
313 { has_small_toc_reloc_ = true; }
314
315 bool
316 has_small_toc_reloc() const
317 { return has_small_toc_reloc_; }
318
319 void
320 set_has_14bit_branch(unsigned int shndx)
321 {
322 if (shndx >= this->has14_.size())
323 this->has14_.resize(shndx + 1);
324 this->has14_[shndx] = true;
325 }
326
327 bool
328 has_14bit_branch(unsigned int shndx) const
329 { return shndx < this->has14_.size() && this->has14_[shndx]; }
330
331 void
332 set_stub_table(unsigned int shndx, unsigned int stub_index)
333 {
334 if (shndx >= this->stub_table_index_.size())
335 this->stub_table_index_.resize(shndx + 1, -1);
336 this->stub_table_index_[shndx] = stub_index;
337 }
338
339 Stub_table<size, big_endian>*
340 stub_table(unsigned int shndx)
341 {
342 if (shndx < this->stub_table_index_.size())
343 {
344 Target_powerpc<size, big_endian>* target
345 = static_cast<Target_powerpc<size, big_endian>*>(
346 parameters->sized_target<size, big_endian>());
347 unsigned int indx = this->stub_table_index_[shndx];
348 if (indx < target->stub_tables().size())
349 return target->stub_tables()[indx];
350 }
351 return NULL;
352 }
353
354 void
355 clear_stub_table()
356 {
357 this->stub_table_index_.clear();
358 }
359
360 int
361 abiversion() const
362 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
363
364 // Set ABI version for input and output
365 void
366 set_abiversion(int ver);
367
368 unsigned int
369 ppc64_local_entry_offset(const Symbol* sym) const
370 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
371
372 unsigned int
373 ppc64_local_entry_offset(unsigned int symndx) const
374 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
375
376 private:
377 struct Opd_ent
378 {
379 unsigned int shndx;
380 bool discard : 1;
381 bool gc_mark : 1;
382 Address off;
383 };
384
385 // Return index into opd_ent_ array for .opd entry at OFF.
386 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
387 // apart when the language doesn't use the last 8-byte word, the
388 // environment pointer. Thus dividing the entry section offset by
389 // 16 will give an index into opd_ent_ that works for either layout
390 // of .opd. (It leaves some elements of the vector unused when .opd
391 // entries are spaced 24 bytes apart, but we don't know the spacing
392 // until relocations are processed, and in any case it is possible
393 // for an object to have some entries spaced 16 bytes apart and
394 // others 24 bytes apart.)
395 size_t
396 opd_ent_ndx(size_t off) const
397 { return off >> 4;}
398
399 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
400 unsigned int special_;
401
402 // For 64-bit the .rela.toc and .toc section shdnx.
403 unsigned int relatoc_;
404 unsigned int toc_;
405
406 // For 64-bit, an array with one entry per 64-bit word in the .toc
407 // section, set if accesses using that word cannot be optimised.
408 std::vector<bool> no_toc_opt_;
409
410 // For 64-bit, whether this object uses small model relocs to access
411 // the toc.
412 bool has_small_toc_reloc_;
413
414 // Set at the start of gc_process_relocs, when we know opd_ent_
415 // vector is valid. The flag could be made atomic and set in
416 // do_read_relocs with memory_order_release and then tested with
417 // memory_order_acquire, potentially resulting in fewer entries in
418 // access_from_map_.
419 bool opd_valid_;
420
421 // The first 8-byte word of an OPD entry gives the address of the
422 // entry point of the function. Relocatable object files have a
423 // relocation on this word. The following vector records the
424 // section and offset specified by these relocations.
425 std::vector<Opd_ent> opd_ent_;
426
427 // References made to this object's .opd section when running
428 // gc_process_relocs for another object, before the opd_ent_ vector
429 // is valid for this object.
430 Access_from access_from_map_;
431
432 // Whether input section has a 14-bit branch reloc.
433 std::vector<bool> has14_;
434
435 // The stub table to use for a given input section.
436 std::vector<unsigned int> stub_table_index_;
437
438 // Header e_flags
439 elfcpp::Elf_Word e_flags_;
440
441 // ELF st_other field for local symbols.
442 std::vector<unsigned char> st_other_;
443 };
444
445 template<int size, bool big_endian>
446 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
447 {
448 public:
449 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
450
451 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
452 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
453 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
454 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
455 {
456 this->set_abiversion(0);
457 }
458
459 ~Powerpc_dynobj()
460 { }
461
462 // Call Sized_dynobj::do_read_symbols to read the symbols then
463 // read .opd from a dynamic object, filling in opd_ent_ vector,
464 void
465 do_read_symbols(Read_symbols_data*);
466
467 // The .opd section shndx.
468 unsigned int
469 opd_shndx() const
470 {
471 return this->opd_shndx_;
472 }
473
474 // The .opd section address.
475 Address
476 opd_address() const
477 {
478 return this->opd_address_;
479 }
480
481 // Init OPD entry arrays.
482 void
483 init_opd(size_t opd_size)
484 {
485 size_t count = this->opd_ent_ndx(opd_size);
486 this->opd_ent_.resize(count);
487 }
488
489 // Return section and offset of function entry for .opd + R_OFF.
490 unsigned int
491 get_opd_ent(Address r_off, Address* value = NULL) const
492 {
493 size_t ndx = this->opd_ent_ndx(r_off);
494 gold_assert(ndx < this->opd_ent_.size());
495 gold_assert(this->opd_ent_[ndx].shndx != 0);
496 if (value != NULL)
497 *value = this->opd_ent_[ndx].off;
498 return this->opd_ent_[ndx].shndx;
499 }
500
501 // Set section and offset of function entry for .opd + R_OFF.
502 void
503 set_opd_ent(Address r_off, unsigned int shndx, Address value)
504 {
505 size_t ndx = this->opd_ent_ndx(r_off);
506 gold_assert(ndx < this->opd_ent_.size());
507 this->opd_ent_[ndx].shndx = shndx;
508 this->opd_ent_[ndx].off = value;
509 }
510
511 int
512 abiversion() const
513 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
514
515 // Set ABI version for input and output.
516 void
517 set_abiversion(int ver);
518
519 private:
520 // Used to specify extent of executable sections.
521 struct Sec_info
522 {
523 Sec_info(Address start_, Address len_, unsigned int shndx_)
524 : start(start_), len(len_), shndx(shndx_)
525 { }
526
527 bool
528 operator<(const Sec_info& that) const
529 { return this->start < that.start; }
530
531 Address start;
532 Address len;
533 unsigned int shndx;
534 };
535
536 struct Opd_ent
537 {
538 unsigned int shndx;
539 Address off;
540 };
541
542 // Return index into opd_ent_ array for .opd entry at OFF.
543 size_t
544 opd_ent_ndx(size_t off) const
545 { return off >> 4;}
546
547 // For 64-bit the .opd section shndx and address.
548 unsigned int opd_shndx_;
549 Address opd_address_;
550
551 // The first 8-byte word of an OPD entry gives the address of the
552 // entry point of the function. Records the section and offset
553 // corresponding to the address. Note that in dynamic objects,
554 // offset is *not* relative to the section.
555 std::vector<Opd_ent> opd_ent_;
556
557 // Header e_flags
558 elfcpp::Elf_Word e_flags_;
559 };
560
561 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
562 // base class will emit.
563
564 template<int sh_type, int size, bool big_endian>
565 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
566 {
567 public:
568 Powerpc_copy_relocs()
569 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
570 { }
571
572 // Emit any saved relocations which turn out to be needed. This is
573 // called after all the relocs have been scanned.
574 void
575 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
576 };
577
578 template<int size, bool big_endian>
579 class Target_powerpc : public Sized_target<size, big_endian>
580 {
581 public:
582 typedef
583 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
584 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
585 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
586 static const Address invalid_address = static_cast<Address>(0) - 1;
587 // Offset of tp and dtp pointers from start of TLS block.
588 static const Address tp_offset = 0x7000;
589 static const Address dtp_offset = 0x8000;
590
591 Target_powerpc()
592 : Sized_target<size, big_endian>(&powerpc_info),
593 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
594 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
595 tlsld_got_offset_(-1U),
596 stub_tables_(), branch_lookup_table_(), branch_info_(),
597 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
598 stub_group_size_(0), savres_section_(0)
599 {
600 }
601
602 // Process the relocations to determine unreferenced sections for
603 // garbage collection.
604 void
605 gc_process_relocs(Symbol_table* symtab,
606 Layout* layout,
607 Sized_relobj_file<size, big_endian>* object,
608 unsigned int data_shndx,
609 unsigned int sh_type,
610 const unsigned char* prelocs,
611 size_t reloc_count,
612 Output_section* output_section,
613 bool needs_special_offset_handling,
614 size_t local_symbol_count,
615 const unsigned char* plocal_symbols);
616
617 // Scan the relocations to look for symbol adjustments.
618 void
619 scan_relocs(Symbol_table* symtab,
620 Layout* layout,
621 Sized_relobj_file<size, big_endian>* object,
622 unsigned int data_shndx,
623 unsigned int sh_type,
624 const unsigned char* prelocs,
625 size_t reloc_count,
626 Output_section* output_section,
627 bool needs_special_offset_handling,
628 size_t local_symbol_count,
629 const unsigned char* plocal_symbols);
630
631 // Map input .toc section to output .got section.
632 const char*
633 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
634 {
635 if (size == 64 && strcmp(name, ".toc") == 0)
636 {
637 *plen = 4;
638 return ".got";
639 }
640 return NULL;
641 }
642
643 // Provide linker defined save/restore functions.
644 void
645 define_save_restore_funcs(Layout*, Symbol_table*);
646
647 // No stubs unless a final link.
648 bool
649 do_may_relax() const
650 { return !parameters->options().relocatable(); }
651
652 bool
653 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
654
655 void
656 do_plt_fde_location(const Output_data*, unsigned char*,
657 uint64_t*, off_t*) const;
658
659 // Stash info about branches, for stub generation.
660 void
661 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
662 unsigned int data_shndx, Address r_offset,
663 unsigned int r_type, unsigned int r_sym, Address addend)
664 {
665 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
666 this->branch_info_.push_back(info);
667 if (r_type == elfcpp::R_POWERPC_REL14
668 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
669 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
670 ppc_object->set_has_14bit_branch(data_shndx);
671 }
672
673 void
674 do_define_standard_symbols(Symbol_table*, Layout*);
675
676 // Finalize the sections.
677 void
678 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
679
680 // Return the value to use for a dynamic which requires special
681 // treatment.
682 uint64_t
683 do_dynsym_value(const Symbol*) const;
684
685 // Return the PLT address to use for a local symbol.
686 uint64_t
687 do_plt_address_for_local(const Relobj*, unsigned int) const;
688
689 // Return the PLT address to use for a global symbol.
690 uint64_t
691 do_plt_address_for_global(const Symbol*) const;
692
693 // Return the offset to use for the GOT_INDX'th got entry which is
694 // for a local tls symbol specified by OBJECT, SYMNDX.
695 int64_t
696 do_tls_offset_for_local(const Relobj* object,
697 unsigned int symndx,
698 unsigned int got_indx) const;
699
700 // Return the offset to use for the GOT_INDX'th got entry which is
701 // for global tls symbol GSYM.
702 int64_t
703 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
704
705 void
706 do_function_location(Symbol_location*) const;
707
708 bool
709 do_can_check_for_function_pointers() const
710 { return true; }
711
712 // Adjust -fsplit-stack code which calls non-split-stack code.
713 void
714 do_calls_non_split(Relobj* object, unsigned int shndx,
715 section_offset_type fnoffset, section_size_type fnsize,
716 const unsigned char* prelocs, size_t reloc_count,
717 unsigned char* view, section_size_type view_size,
718 std::string* from, std::string* to) const;
719
720 // Relocate a section.
721 void
722 relocate_section(const Relocate_info<size, big_endian>*,
723 unsigned int sh_type,
724 const unsigned char* prelocs,
725 size_t reloc_count,
726 Output_section* output_section,
727 bool needs_special_offset_handling,
728 unsigned char* view,
729 Address view_address,
730 section_size_type view_size,
731 const Reloc_symbol_changes*);
732
733 // Scan the relocs during a relocatable link.
734 void
735 scan_relocatable_relocs(Symbol_table* symtab,
736 Layout* layout,
737 Sized_relobj_file<size, big_endian>* object,
738 unsigned int data_shndx,
739 unsigned int sh_type,
740 const unsigned char* prelocs,
741 size_t reloc_count,
742 Output_section* output_section,
743 bool needs_special_offset_handling,
744 size_t local_symbol_count,
745 const unsigned char* plocal_symbols,
746 Relocatable_relocs*);
747
748 // Scan the relocs for --emit-relocs.
749 void
750 emit_relocs_scan(Symbol_table* symtab,
751 Layout* layout,
752 Sized_relobj_file<size, big_endian>* object,
753 unsigned int data_shndx,
754 unsigned int sh_type,
755 const unsigned char* prelocs,
756 size_t reloc_count,
757 Output_section* output_section,
758 bool needs_special_offset_handling,
759 size_t local_symbol_count,
760 const unsigned char* plocal_syms,
761 Relocatable_relocs* rr);
762
763 // Emit relocations for a section.
764 void
765 relocate_relocs(const Relocate_info<size, big_endian>*,
766 unsigned int sh_type,
767 const unsigned char* prelocs,
768 size_t reloc_count,
769 Output_section* output_section,
770 typename elfcpp::Elf_types<size>::Elf_Off
771 offset_in_output_section,
772 unsigned char*,
773 Address view_address,
774 section_size_type,
775 unsigned char* reloc_view,
776 section_size_type reloc_view_size);
777
778 // Return whether SYM is defined by the ABI.
779 bool
780 do_is_defined_by_abi(const Symbol* sym) const
781 {
782 return strcmp(sym->name(), "__tls_get_addr") == 0;
783 }
784
785 // Return the size of the GOT section.
786 section_size_type
787 got_size() const
788 {
789 gold_assert(this->got_ != NULL);
790 return this->got_->data_size();
791 }
792
793 // Get the PLT section.
794 const Output_data_plt_powerpc<size, big_endian>*
795 plt_section() const
796 {
797 gold_assert(this->plt_ != NULL);
798 return this->plt_;
799 }
800
801 // Get the IPLT section.
802 const Output_data_plt_powerpc<size, big_endian>*
803 iplt_section() const
804 {
805 gold_assert(this->iplt_ != NULL);
806 return this->iplt_;
807 }
808
809 // Get the .glink section.
810 const Output_data_glink<size, big_endian>*
811 glink_section() const
812 {
813 gold_assert(this->glink_ != NULL);
814 return this->glink_;
815 }
816
817 Output_data_glink<size, big_endian>*
818 glink_section()
819 {
820 gold_assert(this->glink_ != NULL);
821 return this->glink_;
822 }
823
824 bool has_glink() const
825 { return this->glink_ != NULL; }
826
827 // Get the GOT section.
828 const Output_data_got_powerpc<size, big_endian>*
829 got_section() const
830 {
831 gold_assert(this->got_ != NULL);
832 return this->got_;
833 }
834
835 // Get the GOT section, creating it if necessary.
836 Output_data_got_powerpc<size, big_endian>*
837 got_section(Symbol_table*, Layout*);
838
839 Object*
840 do_make_elf_object(const std::string&, Input_file*, off_t,
841 const elfcpp::Ehdr<size, big_endian>&);
842
843 // Return the number of entries in the GOT.
844 unsigned int
845 got_entry_count() const
846 {
847 if (this->got_ == NULL)
848 return 0;
849 return this->got_size() / (size / 8);
850 }
851
852 // Return the number of entries in the PLT.
853 unsigned int
854 plt_entry_count() const;
855
856 // Return the offset of the first non-reserved PLT entry.
857 unsigned int
858 first_plt_entry_offset() const
859 {
860 if (size == 32)
861 return 0;
862 if (this->abiversion() >= 2)
863 return 16;
864 return 24;
865 }
866
867 // Return the size of each PLT entry.
868 unsigned int
869 plt_entry_size() const
870 {
871 if (size == 32)
872 return 4;
873 if (this->abiversion() >= 2)
874 return 8;
875 return 24;
876 }
877
878 Output_data_save_res<size, big_endian>*
879 savres_section() const
880 {
881 return this->savres_section_;
882 }
883
884 // Add any special sections for this symbol to the gc work list.
885 // For powerpc64, this adds the code section of a function
886 // descriptor.
887 void
888 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
889
890 // Handle target specific gc actions when adding a gc reference from
891 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
892 // and DST_OFF. For powerpc64, this adds a referenc to the code
893 // section of a function descriptor.
894 void
895 do_gc_add_reference(Symbol_table* symtab,
896 Relobj* src_obj,
897 unsigned int src_shndx,
898 Relobj* dst_obj,
899 unsigned int dst_shndx,
900 Address dst_off) const;
901
902 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
903 const Stub_tables&
904 stub_tables() const
905 { return this->stub_tables_; }
906
907 const Output_data_brlt_powerpc<size, big_endian>*
908 brlt_section() const
909 { return this->brlt_section_; }
910
911 void
912 add_branch_lookup_table(Address to)
913 {
914 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
915 this->branch_lookup_table_.insert(std::make_pair(to, off));
916 }
917
918 Address
919 find_branch_lookup_table(Address to)
920 {
921 typename Branch_lookup_table::const_iterator p
922 = this->branch_lookup_table_.find(to);
923 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
924 }
925
926 void
927 write_branch_lookup_table(unsigned char *oview)
928 {
929 for (typename Branch_lookup_table::const_iterator p
930 = this->branch_lookup_table_.begin();
931 p != this->branch_lookup_table_.end();
932 ++p)
933 {
934 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
935 }
936 }
937
938 bool
939 plt_thread_safe() const
940 { return this->plt_thread_safe_; }
941
942 int
943 abiversion () const
944 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
945
946 void
947 set_abiversion (int ver)
948 {
949 elfcpp::Elf_Word flags = this->processor_specific_flags();
950 flags &= ~elfcpp::EF_PPC64_ABI;
951 flags |= ver & elfcpp::EF_PPC64_ABI;
952 this->set_processor_specific_flags(flags);
953 }
954
955 // Offset to to save stack slot
956 int
957 stk_toc () const
958 { return this->abiversion() < 2 ? 40 : 24; }
959
960 private:
961
962 class Track_tls
963 {
964 public:
965 enum Tls_get_addr
966 {
967 NOT_EXPECTED = 0,
968 EXPECTED = 1,
969 SKIP = 2,
970 NORMAL = 3
971 };
972
973 Track_tls()
974 : tls_get_addr_(NOT_EXPECTED),
975 relinfo_(NULL), relnum_(0), r_offset_(0)
976 { }
977
978 ~Track_tls()
979 {
980 if (this->tls_get_addr_ != NOT_EXPECTED)
981 this->missing();
982 }
983
984 void
985 missing(void)
986 {
987 if (this->relinfo_ != NULL)
988 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
989 _("missing expected __tls_get_addr call"));
990 }
991
992 void
993 expect_tls_get_addr_call(
994 const Relocate_info<size, big_endian>* relinfo,
995 size_t relnum,
996 Address r_offset)
997 {
998 this->tls_get_addr_ = EXPECTED;
999 this->relinfo_ = relinfo;
1000 this->relnum_ = relnum;
1001 this->r_offset_ = r_offset;
1002 }
1003
1004 void
1005 expect_tls_get_addr_call()
1006 { this->tls_get_addr_ = EXPECTED; }
1007
1008 void
1009 skip_next_tls_get_addr_call()
1010 {this->tls_get_addr_ = SKIP; }
1011
1012 Tls_get_addr
1013 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
1014 {
1015 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1016 || r_type == elfcpp::R_PPC_PLTREL24)
1017 && gsym != NULL
1018 && strcmp(gsym->name(), "__tls_get_addr") == 0);
1019 Tls_get_addr last_tls = this->tls_get_addr_;
1020 this->tls_get_addr_ = NOT_EXPECTED;
1021 if (is_tls_call && last_tls != EXPECTED)
1022 return last_tls;
1023 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1024 {
1025 this->missing();
1026 return EXPECTED;
1027 }
1028 return NORMAL;
1029 }
1030
1031 private:
1032 // What we're up to regarding calls to __tls_get_addr.
1033 // On powerpc, the branch and link insn making a call to
1034 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1035 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1036 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1037 // The marker relocation always comes first, and has the same
1038 // symbol as the reloc on the insn setting up the __tls_get_addr
1039 // argument. This ties the arg setup insn with the call insn,
1040 // allowing ld to safely optimize away the call. We check that
1041 // every call to __tls_get_addr has a marker relocation, and that
1042 // every marker relocation is on a call to __tls_get_addr.
1043 Tls_get_addr tls_get_addr_;
1044 // Info about the last reloc for error message.
1045 const Relocate_info<size, big_endian>* relinfo_;
1046 size_t relnum_;
1047 Address r_offset_;
1048 };
1049
1050 // The class which scans relocations.
1051 class Scan : protected Track_tls
1052 {
1053 public:
1054 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1055
1056 Scan()
1057 : Track_tls(), issued_non_pic_error_(false)
1058 { }
1059
1060 static inline int
1061 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1062
1063 inline void
1064 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1065 Sized_relobj_file<size, big_endian>* object,
1066 unsigned int data_shndx,
1067 Output_section* output_section,
1068 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1069 const elfcpp::Sym<size, big_endian>& lsym,
1070 bool is_discarded);
1071
1072 inline void
1073 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1074 Sized_relobj_file<size, big_endian>* object,
1075 unsigned int data_shndx,
1076 Output_section* output_section,
1077 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1078 Symbol* gsym);
1079
1080 inline bool
1081 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1082 Target_powerpc* ,
1083 Sized_relobj_file<size, big_endian>* relobj,
1084 unsigned int ,
1085 Output_section* ,
1086 const elfcpp::Rela<size, big_endian>& ,
1087 unsigned int r_type,
1088 const elfcpp::Sym<size, big_endian>&)
1089 {
1090 // PowerPC64 .opd is not folded, so any identical function text
1091 // may be folded and we'll still keep function addresses distinct.
1092 // That means no reloc is of concern here.
1093 if (size == 64)
1094 {
1095 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1096 <Powerpc_relobj<size, big_endian>*>(relobj);
1097 if (ppcobj->abiversion() == 1)
1098 return false;
1099 }
1100 // For 32-bit and ELFv2, conservatively assume anything but calls to
1101 // function code might be taking the address of the function.
1102 return !is_branch_reloc(r_type);
1103 }
1104
1105 inline bool
1106 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1107 Target_powerpc* ,
1108 Sized_relobj_file<size, big_endian>* relobj,
1109 unsigned int ,
1110 Output_section* ,
1111 const elfcpp::Rela<size, big_endian>& ,
1112 unsigned int r_type,
1113 Symbol*)
1114 {
1115 // As above.
1116 if (size == 64)
1117 {
1118 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1119 <Powerpc_relobj<size, big_endian>*>(relobj);
1120 if (ppcobj->abiversion() == 1)
1121 return false;
1122 }
1123 return !is_branch_reloc(r_type);
1124 }
1125
1126 static bool
1127 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1128 Sized_relobj_file<size, big_endian>* object,
1129 unsigned int r_type, bool report_err);
1130
1131 private:
1132 static void
1133 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1134 unsigned int r_type);
1135
1136 static void
1137 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1138 unsigned int r_type, Symbol*);
1139
1140 static void
1141 generate_tls_call(Symbol_table* symtab, Layout* layout,
1142 Target_powerpc* target);
1143
1144 void
1145 check_non_pic(Relobj*, unsigned int r_type);
1146
1147 // Whether we have issued an error about a non-PIC compilation.
1148 bool issued_non_pic_error_;
1149 };
1150
1151 bool
1152 symval_for_branch(const Symbol_table* symtab,
1153 const Sized_symbol<size>* gsym,
1154 Powerpc_relobj<size, big_endian>* object,
1155 Address *value, unsigned int *dest_shndx);
1156
1157 // The class which implements relocation.
1158 class Relocate : protected Track_tls
1159 {
1160 public:
1161 // Use 'at' branch hints when true, 'y' when false.
1162 // FIXME maybe: set this with an option.
1163 static const bool is_isa_v2 = true;
1164
1165 Relocate()
1166 : Track_tls()
1167 { }
1168
1169 // Do a relocation. Return false if the caller should not issue
1170 // any warnings about this relocation.
1171 inline bool
1172 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1173 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1174 const Sized_symbol<size>*, const Symbol_value<size>*,
1175 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1176 section_size_type);
1177 };
1178
1179 class Relocate_comdat_behavior
1180 {
1181 public:
1182 // Decide what the linker should do for relocations that refer to
1183 // discarded comdat sections.
1184 inline Comdat_behavior
1185 get(const char* name)
1186 {
1187 gold::Default_comdat_behavior default_behavior;
1188 Comdat_behavior ret = default_behavior.get(name);
1189 if (ret == CB_WARNING)
1190 {
1191 if (size == 32
1192 && (strcmp(name, ".fixup") == 0
1193 || strcmp(name, ".got2") == 0))
1194 ret = CB_IGNORE;
1195 if (size == 64
1196 && (strcmp(name, ".opd") == 0
1197 || strcmp(name, ".toc") == 0
1198 || strcmp(name, ".toc1") == 0))
1199 ret = CB_IGNORE;
1200 }
1201 return ret;
1202 }
1203 };
1204
1205 // Optimize the TLS relocation type based on what we know about the
1206 // symbol. IS_FINAL is true if the final address of this symbol is
1207 // known at link time.
1208
1209 tls::Tls_optimization
1210 optimize_tls_gd(bool is_final)
1211 {
1212 // If we are generating a shared library, then we can't do anything
1213 // in the linker.
1214 if (parameters->options().shared())
1215 return tls::TLSOPT_NONE;
1216
1217 if (!is_final)
1218 return tls::TLSOPT_TO_IE;
1219 return tls::TLSOPT_TO_LE;
1220 }
1221
1222 tls::Tls_optimization
1223 optimize_tls_ld()
1224 {
1225 if (parameters->options().shared())
1226 return tls::TLSOPT_NONE;
1227
1228 return tls::TLSOPT_TO_LE;
1229 }
1230
1231 tls::Tls_optimization
1232 optimize_tls_ie(bool is_final)
1233 {
1234 if (!is_final || parameters->options().shared())
1235 return tls::TLSOPT_NONE;
1236
1237 return tls::TLSOPT_TO_LE;
1238 }
1239
1240 // Create glink.
1241 void
1242 make_glink_section(Layout*);
1243
1244 // Create the PLT section.
1245 void
1246 make_plt_section(Symbol_table*, Layout*);
1247
1248 void
1249 make_iplt_section(Symbol_table*, Layout*);
1250
1251 void
1252 make_brlt_section(Layout*);
1253
1254 // Create a PLT entry for a global symbol.
1255 void
1256 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1257
1258 // Create a PLT entry for a local IFUNC symbol.
1259 void
1260 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1261 Sized_relobj_file<size, big_endian>*,
1262 unsigned int);
1263
1264
1265 // Create a GOT entry for local dynamic __tls_get_addr.
1266 unsigned int
1267 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1268 Sized_relobj_file<size, big_endian>* object);
1269
1270 unsigned int
1271 tlsld_got_offset() const
1272 {
1273 return this->tlsld_got_offset_;
1274 }
1275
1276 // Get the dynamic reloc section, creating it if necessary.
1277 Reloc_section*
1278 rela_dyn_section(Layout*);
1279
1280 // Similarly, but for ifunc symbols get the one for ifunc.
1281 Reloc_section*
1282 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1283
1284 // Copy a relocation against a global symbol.
1285 void
1286 copy_reloc(Symbol_table* symtab, Layout* layout,
1287 Sized_relobj_file<size, big_endian>* object,
1288 unsigned int shndx, Output_section* output_section,
1289 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1290 {
1291 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1292 this->copy_relocs_.copy_reloc(symtab, layout,
1293 symtab->get_sized_symbol<size>(sym),
1294 object, shndx, output_section,
1295 r_type, reloc.get_r_offset(),
1296 reloc.get_r_addend(),
1297 this->rela_dyn_section(layout));
1298 }
1299
1300 // Look over all the input sections, deciding where to place stubs.
1301 void
1302 group_sections(Layout*, const Task*, bool);
1303
1304 // Sort output sections by address.
1305 struct Sort_sections
1306 {
1307 bool
1308 operator()(const Output_section* sec1, const Output_section* sec2)
1309 { return sec1->address() < sec2->address(); }
1310 };
1311
1312 class Branch_info
1313 {
1314 public:
1315 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1316 unsigned int data_shndx,
1317 Address r_offset,
1318 unsigned int r_type,
1319 unsigned int r_sym,
1320 Address addend)
1321 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1322 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1323 { }
1324
1325 ~Branch_info()
1326 { }
1327
1328 // If this branch needs a plt call stub, or a long branch stub, make one.
1329 bool
1330 make_stub(Stub_table<size, big_endian>*,
1331 Stub_table<size, big_endian>*,
1332 Symbol_table*) const;
1333
1334 private:
1335 // The branch location..
1336 Powerpc_relobj<size, big_endian>* object_;
1337 unsigned int shndx_;
1338 Address offset_;
1339 // ..and the branch type and destination.
1340 unsigned int r_type_;
1341 unsigned int r_sym_;
1342 Address addend_;
1343 };
1344
1345 // Information about this specific target which we pass to the
1346 // general Target structure.
1347 static Target::Target_info powerpc_info;
1348
1349 // The types of GOT entries needed for this platform.
1350 // These values are exposed to the ABI in an incremental link.
1351 // Do not renumber existing values without changing the version
1352 // number of the .gnu_incremental_inputs section.
1353 enum Got_type
1354 {
1355 GOT_TYPE_STANDARD,
1356 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1357 GOT_TYPE_DTPREL, // entry for @got@dtprel
1358 GOT_TYPE_TPREL // entry for @got@tprel
1359 };
1360
1361 // The GOT section.
1362 Output_data_got_powerpc<size, big_endian>* got_;
1363 // The PLT section. This is a container for a table of addresses,
1364 // and their relocations. Each address in the PLT has a dynamic
1365 // relocation (R_*_JMP_SLOT) and each address will have a
1366 // corresponding entry in .glink for lazy resolution of the PLT.
1367 // ppc32 initialises the PLT to point at the .glink entry, while
1368 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1369 // linker adds a stub that loads the PLT entry into ctr then
1370 // branches to ctr. There may be more than one stub for each PLT
1371 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1372 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1373 Output_data_plt_powerpc<size, big_endian>* plt_;
1374 // The IPLT section. Like plt_, this is a container for a table of
1375 // addresses and their relocations, specifically for STT_GNU_IFUNC
1376 // functions that resolve locally (STT_GNU_IFUNC functions that
1377 // don't resolve locally go in PLT). Unlike plt_, these have no
1378 // entry in .glink for lazy resolution, and the relocation section
1379 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1380 // the relocation section may contain relocations against
1381 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1382 // relocation section will appear at the end of other dynamic
1383 // relocations, so that ld.so applies these relocations after other
1384 // dynamic relocations. In a static executable, the relocation
1385 // section is emitted and marked with __rela_iplt_start and
1386 // __rela_iplt_end symbols.
1387 Output_data_plt_powerpc<size, big_endian>* iplt_;
1388 // Section holding long branch destinations.
1389 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1390 // The .glink section.
1391 Output_data_glink<size, big_endian>* glink_;
1392 // The dynamic reloc section.
1393 Reloc_section* rela_dyn_;
1394 // Relocs saved to avoid a COPY reloc.
1395 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1396 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1397 unsigned int tlsld_got_offset_;
1398
1399 Stub_tables stub_tables_;
1400 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1401 Branch_lookup_table branch_lookup_table_;
1402
1403 typedef std::vector<Branch_info> Branches;
1404 Branches branch_info_;
1405
1406 bool plt_thread_safe_;
1407
1408 bool relax_failed_;
1409 int relax_fail_count_;
1410 int32_t stub_group_size_;
1411
1412 Output_data_save_res<size, big_endian> *savres_section_;
1413 };
1414
1415 template<>
1416 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1417 {
1418 32, // size
1419 true, // is_big_endian
1420 elfcpp::EM_PPC, // machine_code
1421 false, // has_make_symbol
1422 false, // has_resolve
1423 false, // has_code_fill
1424 true, // is_default_stack_executable
1425 false, // can_icf_inline_merge_sections
1426 '\0', // wrap_char
1427 "/usr/lib/ld.so.1", // dynamic_linker
1428 0x10000000, // default_text_segment_address
1429 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1430 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1431 false, // isolate_execinstr
1432 0, // rosegment_gap
1433 elfcpp::SHN_UNDEF, // small_common_shndx
1434 elfcpp::SHN_UNDEF, // large_common_shndx
1435 0, // small_common_section_flags
1436 0, // large_common_section_flags
1437 NULL, // attributes_section
1438 NULL, // attributes_vendor
1439 "_start", // entry_symbol_name
1440 32, // hash_entry_size
1441 };
1442
1443 template<>
1444 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1445 {
1446 32, // size
1447 false, // is_big_endian
1448 elfcpp::EM_PPC, // machine_code
1449 false, // has_make_symbol
1450 false, // has_resolve
1451 false, // has_code_fill
1452 true, // is_default_stack_executable
1453 false, // can_icf_inline_merge_sections
1454 '\0', // wrap_char
1455 "/usr/lib/ld.so.1", // dynamic_linker
1456 0x10000000, // default_text_segment_address
1457 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1458 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1459 false, // isolate_execinstr
1460 0, // rosegment_gap
1461 elfcpp::SHN_UNDEF, // small_common_shndx
1462 elfcpp::SHN_UNDEF, // large_common_shndx
1463 0, // small_common_section_flags
1464 0, // large_common_section_flags
1465 NULL, // attributes_section
1466 NULL, // attributes_vendor
1467 "_start", // entry_symbol_name
1468 32, // hash_entry_size
1469 };
1470
1471 template<>
1472 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1473 {
1474 64, // size
1475 true, // is_big_endian
1476 elfcpp::EM_PPC64, // machine_code
1477 false, // has_make_symbol
1478 false, // has_resolve
1479 false, // has_code_fill
1480 true, // is_default_stack_executable
1481 false, // can_icf_inline_merge_sections
1482 '\0', // wrap_char
1483 "/usr/lib/ld.so.1", // dynamic_linker
1484 0x10000000, // default_text_segment_address
1485 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1486 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1487 false, // isolate_execinstr
1488 0, // rosegment_gap
1489 elfcpp::SHN_UNDEF, // small_common_shndx
1490 elfcpp::SHN_UNDEF, // large_common_shndx
1491 0, // small_common_section_flags
1492 0, // large_common_section_flags
1493 NULL, // attributes_section
1494 NULL, // attributes_vendor
1495 "_start", // entry_symbol_name
1496 32, // hash_entry_size
1497 };
1498
1499 template<>
1500 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1501 {
1502 64, // size
1503 false, // is_big_endian
1504 elfcpp::EM_PPC64, // machine_code
1505 false, // has_make_symbol
1506 false, // has_resolve
1507 false, // has_code_fill
1508 true, // is_default_stack_executable
1509 false, // can_icf_inline_merge_sections
1510 '\0', // wrap_char
1511 "/usr/lib/ld.so.1", // dynamic_linker
1512 0x10000000, // default_text_segment_address
1513 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1514 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1515 false, // isolate_execinstr
1516 0, // rosegment_gap
1517 elfcpp::SHN_UNDEF, // small_common_shndx
1518 elfcpp::SHN_UNDEF, // large_common_shndx
1519 0, // small_common_section_flags
1520 0, // large_common_section_flags
1521 NULL, // attributes_section
1522 NULL, // attributes_vendor
1523 "_start", // entry_symbol_name
1524 32, // hash_entry_size
1525 };
1526
1527 inline bool
1528 is_branch_reloc(unsigned int r_type)
1529 {
1530 return (r_type == elfcpp::R_POWERPC_REL24
1531 || r_type == elfcpp::R_PPC_PLTREL24
1532 || r_type == elfcpp::R_PPC_LOCAL24PC
1533 || r_type == elfcpp::R_POWERPC_REL14
1534 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1535 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1536 || r_type == elfcpp::R_POWERPC_ADDR24
1537 || r_type == elfcpp::R_POWERPC_ADDR14
1538 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1539 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1540 }
1541
1542 // If INSN is an opcode that may be used with an @tls operand, return
1543 // the transformed insn for TLS optimisation, otherwise return 0. If
1544 // REG is non-zero only match an insn with RB or RA equal to REG.
1545 uint32_t
1546 at_tls_transform(uint32_t insn, unsigned int reg)
1547 {
1548 if ((insn & (0x3f << 26)) != 31 << 26)
1549 return 0;
1550
1551 unsigned int rtra;
1552 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1553 rtra = insn & ((1 << 26) - (1 << 16));
1554 else if (((insn >> 16) & 0x1f) == reg)
1555 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1556 else
1557 return 0;
1558
1559 if ((insn & (0x3ff << 1)) == 266 << 1)
1560 // add -> addi
1561 insn = 14 << 26;
1562 else if ((insn & (0x1f << 1)) == 23 << 1
1563 && ((insn & (0x1f << 6)) < 14 << 6
1564 || ((insn & (0x1f << 6)) >= 16 << 6
1565 && (insn & (0x1f << 6)) < 24 << 6)))
1566 // load and store indexed -> dform
1567 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1568 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1569 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1570 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1571 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1572 // lwax -> lwa
1573 insn = (58 << 26) | 2;
1574 else
1575 return 0;
1576 insn |= rtra;
1577 return insn;
1578 }
1579
1580
1581 template<int size, bool big_endian>
1582 class Powerpc_relocate_functions
1583 {
1584 public:
1585 enum Overflow_check
1586 {
1587 CHECK_NONE,
1588 CHECK_SIGNED,
1589 CHECK_UNSIGNED,
1590 CHECK_BITFIELD,
1591 CHECK_LOW_INSN,
1592 CHECK_HIGH_INSN
1593 };
1594
1595 enum Status
1596 {
1597 STATUS_OK,
1598 STATUS_OVERFLOW
1599 };
1600
1601 private:
1602 typedef Powerpc_relocate_functions<size, big_endian> This;
1603 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1604 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1605
1606 template<int valsize>
1607 static inline bool
1608 has_overflow_signed(Address value)
1609 {
1610 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1611 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1612 limit <<= ((valsize - 1) >> 1);
1613 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1614 return value + limit > (limit << 1) - 1;
1615 }
1616
1617 template<int valsize>
1618 static inline bool
1619 has_overflow_unsigned(Address value)
1620 {
1621 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1622 limit <<= ((valsize - 1) >> 1);
1623 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1624 return value > (limit << 1) - 1;
1625 }
1626
1627 template<int valsize>
1628 static inline bool
1629 has_overflow_bitfield(Address value)
1630 {
1631 return (has_overflow_unsigned<valsize>(value)
1632 && has_overflow_signed<valsize>(value));
1633 }
1634
1635 template<int valsize>
1636 static inline Status
1637 overflowed(Address value, Overflow_check overflow)
1638 {
1639 if (overflow == CHECK_SIGNED)
1640 {
1641 if (has_overflow_signed<valsize>(value))
1642 return STATUS_OVERFLOW;
1643 }
1644 else if (overflow == CHECK_UNSIGNED)
1645 {
1646 if (has_overflow_unsigned<valsize>(value))
1647 return STATUS_OVERFLOW;
1648 }
1649 else if (overflow == CHECK_BITFIELD)
1650 {
1651 if (has_overflow_bitfield<valsize>(value))
1652 return STATUS_OVERFLOW;
1653 }
1654 return STATUS_OK;
1655 }
1656
1657 // Do a simple RELA relocation
1658 template<int fieldsize, int valsize>
1659 static inline Status
1660 rela(unsigned char* view, Address value, Overflow_check overflow)
1661 {
1662 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1663 Valtype* wv = reinterpret_cast<Valtype*>(view);
1664 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1665 return overflowed<valsize>(value, overflow);
1666 }
1667
1668 template<int fieldsize, int valsize>
1669 static inline Status
1670 rela(unsigned char* view,
1671 unsigned int right_shift,
1672 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1673 Address value,
1674 Overflow_check overflow)
1675 {
1676 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1677 Valtype* wv = reinterpret_cast<Valtype*>(view);
1678 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1679 Valtype reloc = value >> right_shift;
1680 val &= ~dst_mask;
1681 reloc &= dst_mask;
1682 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1683 return overflowed<valsize>(value >> right_shift, overflow);
1684 }
1685
1686 // Do a simple RELA relocation, unaligned.
1687 template<int fieldsize, int valsize>
1688 static inline Status
1689 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1690 {
1691 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1692 return overflowed<valsize>(value, overflow);
1693 }
1694
1695 template<int fieldsize, int valsize>
1696 static inline Status
1697 rela_ua(unsigned char* view,
1698 unsigned int right_shift,
1699 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1700 Address value,
1701 Overflow_check overflow)
1702 {
1703 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1704 Valtype;
1705 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1706 Valtype reloc = value >> right_shift;
1707 val &= ~dst_mask;
1708 reloc &= dst_mask;
1709 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1710 return overflowed<valsize>(value >> right_shift, overflow);
1711 }
1712
1713 public:
1714 // R_PPC64_ADDR64: (Symbol + Addend)
1715 static inline void
1716 addr64(unsigned char* view, Address value)
1717 { This::template rela<64,64>(view, value, CHECK_NONE); }
1718
1719 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1720 static inline void
1721 addr64_u(unsigned char* view, Address value)
1722 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1723
1724 // R_POWERPC_ADDR32: (Symbol + Addend)
1725 static inline Status
1726 addr32(unsigned char* view, Address value, Overflow_check overflow)
1727 { return This::template rela<32,32>(view, value, overflow); }
1728
1729 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1730 static inline Status
1731 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1732 { return This::template rela_ua<32,32>(view, value, overflow); }
1733
1734 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1735 static inline Status
1736 addr24(unsigned char* view, Address value, Overflow_check overflow)
1737 {
1738 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1739 value, overflow);
1740 if (overflow != CHECK_NONE && (value & 3) != 0)
1741 stat = STATUS_OVERFLOW;
1742 return stat;
1743 }
1744
1745 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1746 static inline Status
1747 addr16(unsigned char* view, Address value, Overflow_check overflow)
1748 { return This::template rela<16,16>(view, value, overflow); }
1749
1750 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1751 static inline Status
1752 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1753 { return This::template rela_ua<16,16>(view, value, overflow); }
1754
1755 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1756 static inline Status
1757 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1758 {
1759 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1760 if ((value & 3) != 0)
1761 stat = STATUS_OVERFLOW;
1762 return stat;
1763 }
1764
1765 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1766 static inline Status
1767 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1768 {
1769 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1770 if ((value & 15) != 0)
1771 stat = STATUS_OVERFLOW;
1772 return stat;
1773 }
1774
1775 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1776 static inline void
1777 addr16_hi(unsigned char* view, Address value)
1778 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1779
1780 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1781 static inline void
1782 addr16_ha(unsigned char* view, Address value)
1783 { This::addr16_hi(view, value + 0x8000); }
1784
1785 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1786 static inline void
1787 addr16_hi2(unsigned char* view, Address value)
1788 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1789
1790 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1791 static inline void
1792 addr16_ha2(unsigned char* view, Address value)
1793 { This::addr16_hi2(view, value + 0x8000); }
1794
1795 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1796 static inline void
1797 addr16_hi3(unsigned char* view, Address value)
1798 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1799
1800 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1801 static inline void
1802 addr16_ha3(unsigned char* view, Address value)
1803 { This::addr16_hi3(view, value + 0x8000); }
1804
1805 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1806 static inline Status
1807 addr14(unsigned char* view, Address value, Overflow_check overflow)
1808 {
1809 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1810 if (overflow != CHECK_NONE && (value & 3) != 0)
1811 stat = STATUS_OVERFLOW;
1812 return stat;
1813 }
1814
1815 // R_POWERPC_REL16DX_HA
1816 static inline Status
1817 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1818 {
1819 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1820 Valtype* wv = reinterpret_cast<Valtype*>(view);
1821 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1822 value += 0x8000;
1823 value = static_cast<SignedAddress>(value) >> 16;
1824 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1825 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1826 return overflowed<16>(value, overflow);
1827 }
1828 };
1829
1830 // Set ABI version for input and output.
1831
1832 template<int size, bool big_endian>
1833 void
1834 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1835 {
1836 this->e_flags_ |= ver;
1837 if (this->abiversion() != 0)
1838 {
1839 Target_powerpc<size, big_endian>* target =
1840 static_cast<Target_powerpc<size, big_endian>*>(
1841 parameters->sized_target<size, big_endian>());
1842 if (target->abiversion() == 0)
1843 target->set_abiversion(this->abiversion());
1844 else if (target->abiversion() != this->abiversion())
1845 gold_error(_("%s: ABI version %d is not compatible "
1846 "with ABI version %d output"),
1847 this->name().c_str(),
1848 this->abiversion(), target->abiversion());
1849
1850 }
1851 }
1852
1853 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
1854 // relocatable object, if such sections exists.
1855
1856 template<int size, bool big_endian>
1857 bool
1858 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1859 Read_symbols_data* sd)
1860 {
1861 const unsigned char* const pshdrs = sd->section_headers->data();
1862 const unsigned char* namesu = sd->section_names->data();
1863 const char* names = reinterpret_cast<const char*>(namesu);
1864 section_size_type names_size = sd->section_names_size;
1865 const unsigned char* s;
1866
1867 s = this->template find_shdr<size, big_endian>(pshdrs,
1868 size == 32 ? ".got2" : ".opd",
1869 names, names_size, NULL);
1870 if (s != NULL)
1871 {
1872 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1873 this->special_ = ndx;
1874 if (size == 64)
1875 {
1876 if (this->abiversion() == 0)
1877 this->set_abiversion(1);
1878 else if (this->abiversion() > 1)
1879 gold_error(_("%s: .opd invalid in abiv%d"),
1880 this->name().c_str(), this->abiversion());
1881 }
1882 }
1883 if (size == 64)
1884 {
1885 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
1886 names, names_size, NULL);
1887 if (s != NULL)
1888 {
1889 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1890 this->relatoc_ = ndx;
1891 typename elfcpp::Shdr<size, big_endian> shdr(s);
1892 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
1893 }
1894 }
1895 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1896 }
1897
1898 // Examine .rela.opd to build info about function entry points.
1899
1900 template<int size, bool big_endian>
1901 void
1902 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1903 size_t reloc_count,
1904 const unsigned char* prelocs,
1905 const unsigned char* plocal_syms)
1906 {
1907 if (size == 64)
1908 {
1909 typedef typename elfcpp::Rela<size, big_endian> Reltype;
1910 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1911 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1912 Address expected_off = 0;
1913 bool regular = true;
1914 unsigned int opd_ent_size = 0;
1915
1916 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1917 {
1918 Reltype reloc(prelocs);
1919 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1920 = reloc.get_r_info();
1921 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1922 if (r_type == elfcpp::R_PPC64_ADDR64)
1923 {
1924 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1925 typename elfcpp::Elf_types<size>::Elf_Addr value;
1926 bool is_ordinary;
1927 unsigned int shndx;
1928 if (r_sym < this->local_symbol_count())
1929 {
1930 typename elfcpp::Sym<size, big_endian>
1931 lsym(plocal_syms + r_sym * sym_size);
1932 shndx = lsym.get_st_shndx();
1933 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1934 value = lsym.get_st_value();
1935 }
1936 else
1937 shndx = this->symbol_section_and_value(r_sym, &value,
1938 &is_ordinary);
1939 this->set_opd_ent(reloc.get_r_offset(), shndx,
1940 value + reloc.get_r_addend());
1941 if (i == 2)
1942 {
1943 expected_off = reloc.get_r_offset();
1944 opd_ent_size = expected_off;
1945 }
1946 else if (expected_off != reloc.get_r_offset())
1947 regular = false;
1948 expected_off += opd_ent_size;
1949 }
1950 else if (r_type == elfcpp::R_PPC64_TOC)
1951 {
1952 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1953 regular = false;
1954 }
1955 else
1956 {
1957 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1958 this->name().c_str(), r_type);
1959 regular = false;
1960 }
1961 }
1962 if (reloc_count <= 2)
1963 opd_ent_size = this->section_size(this->opd_shndx());
1964 if (opd_ent_size != 24 && opd_ent_size != 16)
1965 regular = false;
1966 if (!regular)
1967 {
1968 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1969 this->name().c_str());
1970 opd_ent_size = 0;
1971 }
1972 }
1973 }
1974
1975 // Returns true if a code sequence loading the TOC entry at VALUE
1976 // relative to the TOC pointer can be converted into code calculating
1977 // a TOC pointer relative offset.
1978 // If so, the TOC pointer relative offset is stored to VALUE.
1979
1980 template<int size, bool big_endian>
1981 bool
1982 Powerpc_relobj<size, big_endian>::make_toc_relative(
1983 Target_powerpc<size, big_endian>* target,
1984 Address* value)
1985 {
1986 if (size != 64)
1987 return false;
1988
1989 // With -mcmodel=medium code it is quite possible to have
1990 // toc-relative relocs referring to objects outside the TOC.
1991 // Don't try to look at a non-existent TOC.
1992 if (this->toc_shndx() == 0)
1993 return false;
1994
1995 // Convert VALUE back to an address by adding got_base (see below),
1996 // then to an offset in the TOC by subtracting the TOC output
1997 // section address and the TOC output offset. Since this TOC output
1998 // section and the got output section are one and the same, we can
1999 // omit adding and subtracting the output section address.
2000 Address off = (*value + this->toc_base_offset()
2001 - this->output_section_offset(this->toc_shndx()));
2002 // Is this offset in the TOC? -mcmodel=medium code may be using
2003 // TOC relative access to variables outside the TOC. Those of
2004 // course can't be optimized. We also don't try to optimize code
2005 // that is using a different object's TOC.
2006 if (off >= this->section_size(this->toc_shndx()))
2007 return false;
2008
2009 if (this->no_toc_opt(off))
2010 return false;
2011
2012 section_size_type vlen;
2013 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2014 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2015 // The TOC pointer
2016 Address got_base = (target->got_section()->output_section()->address()
2017 + this->toc_base_offset());
2018 addr -= got_base;
2019 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2020 return false;
2021
2022 *value = addr;
2023 return true;
2024 }
2025
2026 // Perform the Sized_relobj_file method, then set up opd info from
2027 // .opd relocs.
2028
2029 template<int size, bool big_endian>
2030 void
2031 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2032 {
2033 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2034 if (size == 64)
2035 {
2036 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2037 p != rd->relocs.end();
2038 ++p)
2039 {
2040 if (p->data_shndx == this->opd_shndx())
2041 {
2042 uint64_t opd_size = this->section_size(this->opd_shndx());
2043 gold_assert(opd_size == static_cast<size_t>(opd_size));
2044 if (opd_size != 0)
2045 {
2046 this->init_opd(opd_size);
2047 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2048 rd->local_symbols->data());
2049 }
2050 break;
2051 }
2052 }
2053 }
2054 }
2055
2056 // Read the symbols then set up st_other vector.
2057
2058 template<int size, bool big_endian>
2059 void
2060 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2061 {
2062 this->base_read_symbols(sd);
2063 if (size == 64)
2064 {
2065 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2066 const unsigned char* const pshdrs = sd->section_headers->data();
2067 const unsigned int loccount = this->do_local_symbol_count();
2068 if (loccount != 0)
2069 {
2070 this->st_other_.resize(loccount);
2071 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2072 off_t locsize = loccount * sym_size;
2073 const unsigned int symtab_shndx = this->symtab_shndx();
2074 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2075 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2076 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2077 locsize, true, false);
2078 psyms += sym_size;
2079 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2080 {
2081 elfcpp::Sym<size, big_endian> sym(psyms);
2082 unsigned char st_other = sym.get_st_other();
2083 this->st_other_[i] = st_other;
2084 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2085 {
2086 if (this->abiversion() == 0)
2087 this->set_abiversion(2);
2088 else if (this->abiversion() < 2)
2089 gold_error(_("%s: local symbol %d has invalid st_other"
2090 " for ABI version 1"),
2091 this->name().c_str(), i);
2092 }
2093 }
2094 }
2095 }
2096 }
2097
2098 template<int size, bool big_endian>
2099 void
2100 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2101 {
2102 this->e_flags_ |= ver;
2103 if (this->abiversion() != 0)
2104 {
2105 Target_powerpc<size, big_endian>* target =
2106 static_cast<Target_powerpc<size, big_endian>*>(
2107 parameters->sized_target<size, big_endian>());
2108 if (target->abiversion() == 0)
2109 target->set_abiversion(this->abiversion());
2110 else if (target->abiversion() != this->abiversion())
2111 gold_error(_("%s: ABI version %d is not compatible "
2112 "with ABI version %d output"),
2113 this->name().c_str(),
2114 this->abiversion(), target->abiversion());
2115
2116 }
2117 }
2118
2119 // Call Sized_dynobj::base_read_symbols to read the symbols then
2120 // read .opd from a dynamic object, filling in opd_ent_ vector,
2121
2122 template<int size, bool big_endian>
2123 void
2124 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2125 {
2126 this->base_read_symbols(sd);
2127 if (size == 64)
2128 {
2129 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2130 const unsigned char* const pshdrs = sd->section_headers->data();
2131 const unsigned char* namesu = sd->section_names->data();
2132 const char* names = reinterpret_cast<const char*>(namesu);
2133 const unsigned char* s = NULL;
2134 const unsigned char* opd;
2135 section_size_type opd_size;
2136
2137 // Find and read .opd section.
2138 while (1)
2139 {
2140 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2141 sd->section_names_size,
2142 s);
2143 if (s == NULL)
2144 return;
2145
2146 typename elfcpp::Shdr<size, big_endian> shdr(s);
2147 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2148 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2149 {
2150 if (this->abiversion() == 0)
2151 this->set_abiversion(1);
2152 else if (this->abiversion() > 1)
2153 gold_error(_("%s: .opd invalid in abiv%d"),
2154 this->name().c_str(), this->abiversion());
2155
2156 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2157 this->opd_address_ = shdr.get_sh_addr();
2158 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2159 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2160 true, false);
2161 break;
2162 }
2163 }
2164
2165 // Build set of executable sections.
2166 // Using a set is probably overkill. There is likely to be only
2167 // a few executable sections, typically .init, .text and .fini,
2168 // and they are generally grouped together.
2169 typedef std::set<Sec_info> Exec_sections;
2170 Exec_sections exec_sections;
2171 s = pshdrs;
2172 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2173 {
2174 typename elfcpp::Shdr<size, big_endian> shdr(s);
2175 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2176 && ((shdr.get_sh_flags()
2177 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2178 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2179 && shdr.get_sh_size() != 0)
2180 {
2181 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2182 shdr.get_sh_size(), i));
2183 }
2184 }
2185 if (exec_sections.empty())
2186 return;
2187
2188 // Look over the OPD entries. This is complicated by the fact
2189 // that some binaries will use two-word entries while others
2190 // will use the standard three-word entries. In most cases
2191 // the third word (the environment pointer for languages like
2192 // Pascal) is unused and will be zero. If the third word is
2193 // used it should not be pointing into executable sections,
2194 // I think.
2195 this->init_opd(opd_size);
2196 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2197 {
2198 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2199 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2200 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2201 if (val == 0)
2202 // Chances are that this is the third word of an OPD entry.
2203 continue;
2204 typename Exec_sections::const_iterator e
2205 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2206 if (e != exec_sections.begin())
2207 {
2208 --e;
2209 if (e->start <= val && val < e->start + e->len)
2210 {
2211 // We have an address in an executable section.
2212 // VAL ought to be the function entry, set it up.
2213 this->set_opd_ent(p - opd, e->shndx, val);
2214 // Skip second word of OPD entry, the TOC pointer.
2215 p += 8;
2216 }
2217 }
2218 // If we didn't match any executable sections, we likely
2219 // have a non-zero third word in the OPD entry.
2220 }
2221 }
2222 }
2223
2224 // Relocate sections.
2225
2226 template<int size, bool big_endian>
2227 void
2228 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2229 const Symbol_table* symtab, const Layout* layout,
2230 const unsigned char* pshdrs, Output_file* of,
2231 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2232 {
2233 unsigned int start = 1;
2234 if (size == 64
2235 && this->relatoc_ != 0
2236 && !parameters->options().relocatable())
2237 {
2238 // Relocate .toc first.
2239 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2240 this->relatoc_, this->relatoc_);
2241 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2242 1, this->relatoc_ - 1);
2243 start = this->relatoc_ + 1;
2244 }
2245 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2246 start, this->shnum() - 1);
2247 }
2248
2249 // Set up some symbols.
2250
2251 template<int size, bool big_endian>
2252 void
2253 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2254 Symbol_table* symtab,
2255 Layout* layout)
2256 {
2257 if (size == 32)
2258 {
2259 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2260 // undefined when scanning relocs (and thus requires
2261 // non-relative dynamic relocs). The proper value will be
2262 // updated later.
2263 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2264 if (gotsym != NULL && gotsym->is_undefined())
2265 {
2266 Target_powerpc<size, big_endian>* target =
2267 static_cast<Target_powerpc<size, big_endian>*>(
2268 parameters->sized_target<size, big_endian>());
2269 Output_data_got_powerpc<size, big_endian>* got
2270 = target->got_section(symtab, layout);
2271 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2272 Symbol_table::PREDEFINED,
2273 got, 0, 0,
2274 elfcpp::STT_OBJECT,
2275 elfcpp::STB_LOCAL,
2276 elfcpp::STV_HIDDEN, 0,
2277 false, false);
2278 }
2279
2280 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2281 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2282 if (sdasym != NULL && sdasym->is_undefined())
2283 {
2284 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2285 Output_section* os
2286 = layout->add_output_section_data(".sdata", 0,
2287 elfcpp::SHF_ALLOC
2288 | elfcpp::SHF_WRITE,
2289 sdata, ORDER_SMALL_DATA, false);
2290 symtab->define_in_output_data("_SDA_BASE_", NULL,
2291 Symbol_table::PREDEFINED,
2292 os, 32768, 0, elfcpp::STT_OBJECT,
2293 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2294 0, false, false);
2295 }
2296 }
2297 else
2298 {
2299 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2300 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2301 if (gotsym != NULL && gotsym->is_undefined())
2302 {
2303 Target_powerpc<size, big_endian>* target =
2304 static_cast<Target_powerpc<size, big_endian>*>(
2305 parameters->sized_target<size, big_endian>());
2306 Output_data_got_powerpc<size, big_endian>* got
2307 = target->got_section(symtab, layout);
2308 symtab->define_in_output_data(".TOC.", NULL,
2309 Symbol_table::PREDEFINED,
2310 got, 0x8000, 0,
2311 elfcpp::STT_OBJECT,
2312 elfcpp::STB_LOCAL,
2313 elfcpp::STV_HIDDEN, 0,
2314 false, false);
2315 }
2316 }
2317 }
2318
2319 // Set up PowerPC target specific relobj.
2320
2321 template<int size, bool big_endian>
2322 Object*
2323 Target_powerpc<size, big_endian>::do_make_elf_object(
2324 const std::string& name,
2325 Input_file* input_file,
2326 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2327 {
2328 int et = ehdr.get_e_type();
2329 // ET_EXEC files are valid input for --just-symbols/-R,
2330 // and we treat them as relocatable objects.
2331 if (et == elfcpp::ET_REL
2332 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2333 {
2334 Powerpc_relobj<size, big_endian>* obj =
2335 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2336 obj->setup();
2337 return obj;
2338 }
2339 else if (et == elfcpp::ET_DYN)
2340 {
2341 Powerpc_dynobj<size, big_endian>* obj =
2342 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2343 obj->setup();
2344 return obj;
2345 }
2346 else
2347 {
2348 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2349 return NULL;
2350 }
2351 }
2352
2353 template<int size, bool big_endian>
2354 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2355 {
2356 public:
2357 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2358 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2359
2360 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2361 : Output_data_got<size, big_endian>(),
2362 symtab_(symtab), layout_(layout),
2363 header_ent_cnt_(size == 32 ? 3 : 1),
2364 header_index_(size == 32 ? 0x2000 : 0)
2365 {
2366 if (size == 64)
2367 this->set_addralign(256);
2368 }
2369
2370 // Override all the Output_data_got methods we use so as to first call
2371 // reserve_ent().
2372 bool
2373 add_global(Symbol* gsym, unsigned int got_type)
2374 {
2375 this->reserve_ent();
2376 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2377 }
2378
2379 bool
2380 add_global_plt(Symbol* gsym, unsigned int got_type)
2381 {
2382 this->reserve_ent();
2383 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2384 }
2385
2386 bool
2387 add_global_tls(Symbol* gsym, unsigned int got_type)
2388 { return this->add_global_plt(gsym, got_type); }
2389
2390 void
2391 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2392 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2393 {
2394 this->reserve_ent();
2395 Output_data_got<size, big_endian>::
2396 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2397 }
2398
2399 void
2400 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2401 Output_data_reloc_generic* rel_dyn,
2402 unsigned int r_type_1, unsigned int r_type_2)
2403 {
2404 this->reserve_ent(2);
2405 Output_data_got<size, big_endian>::
2406 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2407 }
2408
2409 bool
2410 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2411 {
2412 this->reserve_ent();
2413 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2414 got_type);
2415 }
2416
2417 bool
2418 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2419 {
2420 this->reserve_ent();
2421 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2422 got_type);
2423 }
2424
2425 bool
2426 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2427 { return this->add_local_plt(object, sym_index, got_type); }
2428
2429 void
2430 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2431 unsigned int got_type,
2432 Output_data_reloc_generic* rel_dyn,
2433 unsigned int r_type)
2434 {
2435 this->reserve_ent(2);
2436 Output_data_got<size, big_endian>::
2437 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2438 }
2439
2440 unsigned int
2441 add_constant(Valtype constant)
2442 {
2443 this->reserve_ent();
2444 return Output_data_got<size, big_endian>::add_constant(constant);
2445 }
2446
2447 unsigned int
2448 add_constant_pair(Valtype c1, Valtype c2)
2449 {
2450 this->reserve_ent(2);
2451 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2452 }
2453
2454 // Offset of _GLOBAL_OFFSET_TABLE_.
2455 unsigned int
2456 g_o_t() const
2457 {
2458 return this->got_offset(this->header_index_);
2459 }
2460
2461 // Offset of base used to access the GOT/TOC.
2462 // The got/toc pointer reg will be set to this value.
2463 Valtype
2464 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2465 {
2466 if (size == 32)
2467 return this->g_o_t();
2468 else
2469 return (this->output_section()->address()
2470 + object->toc_base_offset()
2471 - this->address());
2472 }
2473
2474 // Ensure our GOT has a header.
2475 void
2476 set_final_data_size()
2477 {
2478 if (this->header_ent_cnt_ != 0)
2479 this->make_header();
2480 Output_data_got<size, big_endian>::set_final_data_size();
2481 }
2482
2483 // First word of GOT header needs some values that are not
2484 // handled by Output_data_got so poke them in here.
2485 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2486 void
2487 do_write(Output_file* of)
2488 {
2489 Valtype val = 0;
2490 if (size == 32 && this->layout_->dynamic_data() != NULL)
2491 val = this->layout_->dynamic_section()->address();
2492 if (size == 64)
2493 val = this->output_section()->address() + 0x8000;
2494 this->replace_constant(this->header_index_, val);
2495 Output_data_got<size, big_endian>::do_write(of);
2496 }
2497
2498 private:
2499 void
2500 reserve_ent(unsigned int cnt = 1)
2501 {
2502 if (this->header_ent_cnt_ == 0)
2503 return;
2504 if (this->num_entries() + cnt > this->header_index_)
2505 this->make_header();
2506 }
2507
2508 void
2509 make_header()
2510 {
2511 this->header_ent_cnt_ = 0;
2512 this->header_index_ = this->num_entries();
2513 if (size == 32)
2514 {
2515 Output_data_got<size, big_endian>::add_constant(0);
2516 Output_data_got<size, big_endian>::add_constant(0);
2517 Output_data_got<size, big_endian>::add_constant(0);
2518
2519 // Define _GLOBAL_OFFSET_TABLE_ at the header
2520 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2521 if (gotsym != NULL)
2522 {
2523 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2524 sym->set_value(this->g_o_t());
2525 }
2526 else
2527 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2528 Symbol_table::PREDEFINED,
2529 this, this->g_o_t(), 0,
2530 elfcpp::STT_OBJECT,
2531 elfcpp::STB_LOCAL,
2532 elfcpp::STV_HIDDEN, 0,
2533 false, false);
2534 }
2535 else
2536 Output_data_got<size, big_endian>::add_constant(0);
2537 }
2538
2539 // Stashed pointers.
2540 Symbol_table* symtab_;
2541 Layout* layout_;
2542
2543 // GOT header size.
2544 unsigned int header_ent_cnt_;
2545 // GOT header index.
2546 unsigned int header_index_;
2547 };
2548
2549 // Get the GOT section, creating it if necessary.
2550
2551 template<int size, bool big_endian>
2552 Output_data_got_powerpc<size, big_endian>*
2553 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2554 Layout* layout)
2555 {
2556 if (this->got_ == NULL)
2557 {
2558 gold_assert(symtab != NULL && layout != NULL);
2559
2560 this->got_
2561 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2562
2563 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2564 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2565 this->got_, ORDER_DATA, false);
2566 }
2567
2568 return this->got_;
2569 }
2570
2571 // Get the dynamic reloc section, creating it if necessary.
2572
2573 template<int size, bool big_endian>
2574 typename Target_powerpc<size, big_endian>::Reloc_section*
2575 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2576 {
2577 if (this->rela_dyn_ == NULL)
2578 {
2579 gold_assert(layout != NULL);
2580 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2581 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2582 elfcpp::SHF_ALLOC, this->rela_dyn_,
2583 ORDER_DYNAMIC_RELOCS, false);
2584 }
2585 return this->rela_dyn_;
2586 }
2587
2588 // Similarly, but for ifunc symbols get the one for ifunc.
2589
2590 template<int size, bool big_endian>
2591 typename Target_powerpc<size, big_endian>::Reloc_section*
2592 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2593 Layout* layout,
2594 bool for_ifunc)
2595 {
2596 if (!for_ifunc)
2597 return this->rela_dyn_section(layout);
2598
2599 if (this->iplt_ == NULL)
2600 this->make_iplt_section(symtab, layout);
2601 return this->iplt_->rel_plt();
2602 }
2603
2604 class Stub_control
2605 {
2606 public:
2607 // Determine the stub group size. The group size is the absolute
2608 // value of the parameter --stub-group-size. If --stub-group-size
2609 // is passed a negative value, we restrict stubs to be always after
2610 // the stubbed branches.
2611 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2612 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2613 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2614 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2615 owner_(NULL), output_section_(NULL)
2616 {
2617 }
2618
2619 // Return true iff input section can be handled by current stub
2620 // group.
2621 bool
2622 can_add_to_stub_group(Output_section* o,
2623 const Output_section::Input_section* i,
2624 bool has14);
2625
2626 const Output_section::Input_section*
2627 owner()
2628 { return owner_; }
2629
2630 Output_section*
2631 output_section()
2632 { return output_section_; }
2633
2634 void
2635 set_output_and_owner(Output_section* o,
2636 const Output_section::Input_section* i)
2637 {
2638 this->output_section_ = o;
2639 this->owner_ = i;
2640 }
2641
2642 private:
2643 typedef enum
2644 {
2645 // Initial state.
2646 NO_GROUP,
2647 // Adding group sections before the stubs.
2648 FINDING_STUB_SECTION,
2649 // Adding group sections after the stubs.
2650 HAS_STUB_SECTION
2651 } State;
2652
2653 uint32_t stub_group_size_;
2654 bool stubs_always_after_branch_;
2655 bool suppress_size_errors_;
2656 // True if a stub group can serve multiple output sections.
2657 bool multi_os_;
2658 State state_;
2659 // Current max size of group. Starts at stub_group_size_ but is
2660 // reduced to stub_group_size_/1024 on seeing a section with
2661 // external conditional branches.
2662 uint32_t group_size_;
2663 uint64_t group_start_addr_;
2664 // owner_ and output_section_ specify the section to which stubs are
2665 // attached. The stubs are placed at the end of this section.
2666 const Output_section::Input_section* owner_;
2667 Output_section* output_section_;
2668 };
2669
2670 // Return true iff input section can be handled by current stub
2671 // group. Sections are presented to this function in order,
2672 // so the first section is the head of the group.
2673
2674 bool
2675 Stub_control::can_add_to_stub_group(Output_section* o,
2676 const Output_section::Input_section* i,
2677 bool has14)
2678 {
2679 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2680 uint64_t this_size;
2681 uint64_t start_addr = o->address();
2682
2683 if (whole_sec)
2684 // .init and .fini sections are pasted together to form a single
2685 // function. We can't be adding stubs in the middle of the function.
2686 this_size = o->data_size();
2687 else
2688 {
2689 start_addr += i->relobj()->output_section_offset(i->shndx());
2690 this_size = i->data_size();
2691 }
2692
2693 uint64_t end_addr = start_addr + this_size;
2694 uint32_t group_size = this->stub_group_size_;
2695 if (has14)
2696 this->group_size_ = group_size = group_size >> 10;
2697
2698 if (this_size > group_size && !this->suppress_size_errors_)
2699 gold_warning(_("%s:%s exceeds group size"),
2700 i->relobj()->name().c_str(),
2701 i->relobj()->section_name(i->shndx()).c_str());
2702
2703 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2704 has14 ? " 14bit" : "",
2705 i->relobj()->name().c_str(),
2706 i->relobj()->section_name(i->shndx()).c_str(),
2707 (long long) this_size,
2708 (this->state_ == NO_GROUP
2709 ? this_size
2710 : (long long) end_addr - this->group_start_addr_));
2711
2712 if (this->state_ == NO_GROUP)
2713 {
2714 // Only here on very first use of Stub_control
2715 this->owner_ = i;
2716 this->output_section_ = o;
2717 this->state_ = FINDING_STUB_SECTION;
2718 this->group_size_ = group_size;
2719 this->group_start_addr_ = start_addr;
2720 return true;
2721 }
2722 else if (!this->multi_os_ && this->output_section_ != o)
2723 ;
2724 else if (this->state_ == HAS_STUB_SECTION)
2725 {
2726 // Can we add this section, which is after the stubs, to the
2727 // group?
2728 if (end_addr - this->group_start_addr_ <= this->group_size_)
2729 return true;
2730 }
2731 else if (this->state_ == FINDING_STUB_SECTION)
2732 {
2733 if ((whole_sec && this->output_section_ == o)
2734 || end_addr - this->group_start_addr_ <= this->group_size_)
2735 {
2736 // Stubs are added at the end of "owner_".
2737 this->owner_ = i;
2738 this->output_section_ = o;
2739 return true;
2740 }
2741 // The group before the stubs has reached maximum size.
2742 // Now see about adding sections after the stubs to the
2743 // group. If the current section has a 14-bit branch and
2744 // the group before the stubs exceeds group_size_ (because
2745 // they didn't have 14-bit branches), don't add sections
2746 // after the stubs: The size of stubs for such a large
2747 // group may exceed the reach of a 14-bit branch.
2748 if (!this->stubs_always_after_branch_
2749 && this_size <= this->group_size_
2750 && start_addr - this->group_start_addr_ <= this->group_size_)
2751 {
2752 gold_debug(DEBUG_TARGET, "adding after stubs");
2753 this->state_ = HAS_STUB_SECTION;
2754 this->group_start_addr_ = start_addr;
2755 return true;
2756 }
2757 }
2758 else
2759 gold_unreachable();
2760
2761 gold_debug(DEBUG_TARGET,
2762 !this->multi_os_ && this->output_section_ != o
2763 ? "nope, new output section\n"
2764 : "nope, didn't fit\n");
2765
2766 // The section fails to fit in the current group. Set up a few
2767 // things for the next group. owner_ and output_section_ will be
2768 // set later after we've retrieved those values for the current
2769 // group.
2770 this->state_ = FINDING_STUB_SECTION;
2771 this->group_size_ = group_size;
2772 this->group_start_addr_ = start_addr;
2773 return false;
2774 }
2775
2776 // Look over all the input sections, deciding where to place stubs.
2777
2778 template<int size, bool big_endian>
2779 void
2780 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2781 const Task*,
2782 bool no_size_errors)
2783 {
2784 Stub_control stub_control(this->stub_group_size_, no_size_errors,
2785 parameters->options().stub_group_multi());
2786
2787 // Group input sections and insert stub table
2788 Stub_table_owner* table_owner = NULL;
2789 std::vector<Stub_table_owner*> tables;
2790 Layout::Section_list section_list;
2791 layout->get_executable_sections(&section_list);
2792 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2793 for (Layout::Section_list::iterator o = section_list.begin();
2794 o != section_list.end();
2795 ++o)
2796 {
2797 typedef Output_section::Input_section_list Input_section_list;
2798 for (Input_section_list::const_iterator i
2799 = (*o)->input_sections().begin();
2800 i != (*o)->input_sections().end();
2801 ++i)
2802 {
2803 if (i->is_input_section()
2804 || i->is_relaxed_input_section())
2805 {
2806 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2807 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2808 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2809 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2810 {
2811 table_owner->output_section = stub_control.output_section();
2812 table_owner->owner = stub_control.owner();
2813 stub_control.set_output_and_owner(*o, &*i);
2814 table_owner = NULL;
2815 }
2816 if (table_owner == NULL)
2817 {
2818 table_owner = new Stub_table_owner;
2819 tables.push_back(table_owner);
2820 }
2821 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2822 }
2823 }
2824 }
2825 if (table_owner != NULL)
2826 {
2827 table_owner->output_section = stub_control.output_section();
2828 table_owner->owner = stub_control.owner();;
2829 }
2830 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2831 t != tables.end();
2832 ++t)
2833 {
2834 Stub_table<size, big_endian>* stub_table;
2835
2836 if ((*t)->owner->is_input_section())
2837 stub_table = new Stub_table<size, big_endian>(this,
2838 (*t)->output_section,
2839 (*t)->owner);
2840 else if ((*t)->owner->is_relaxed_input_section())
2841 stub_table = static_cast<Stub_table<size, big_endian>*>(
2842 (*t)->owner->relaxed_input_section());
2843 else
2844 gold_unreachable();
2845 this->stub_tables_.push_back(stub_table);
2846 delete *t;
2847 }
2848 }
2849
2850 static unsigned long
2851 max_branch_delta (unsigned int r_type)
2852 {
2853 if (r_type == elfcpp::R_POWERPC_REL14
2854 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2855 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2856 return 1L << 15;
2857 if (r_type == elfcpp::R_POWERPC_REL24
2858 || r_type == elfcpp::R_PPC_PLTREL24
2859 || r_type == elfcpp::R_PPC_LOCAL24PC)
2860 return 1L << 25;
2861 return 0;
2862 }
2863
2864 // If this branch needs a plt call stub, or a long branch stub, make one.
2865
2866 template<int size, bool big_endian>
2867 bool
2868 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2869 Stub_table<size, big_endian>* stub_table,
2870 Stub_table<size, big_endian>* ifunc_stub_table,
2871 Symbol_table* symtab) const
2872 {
2873 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2874 if (sym != NULL && sym->is_forwarder())
2875 sym = symtab->resolve_forwards(sym);
2876 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2877 Target_powerpc<size, big_endian>* target =
2878 static_cast<Target_powerpc<size, big_endian>*>(
2879 parameters->sized_target<size, big_endian>());
2880 bool ok = true;
2881
2882 if (gsym != NULL
2883 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2884 : this->object_->local_has_plt_offset(this->r_sym_))
2885 {
2886 if (size == 64
2887 && gsym != NULL
2888 && target->abiversion() >= 2
2889 && !parameters->options().output_is_position_independent()
2890 && !is_branch_reloc(this->r_type_))
2891 target->glink_section()->add_global_entry(gsym);
2892 else
2893 {
2894 if (stub_table == NULL)
2895 stub_table = this->object_->stub_table(this->shndx_);
2896 if (stub_table == NULL)
2897 {
2898 // This is a ref from a data section to an ifunc symbol.
2899 stub_table = ifunc_stub_table;
2900 }
2901 gold_assert(stub_table != NULL);
2902 Address from = this->object_->get_output_section_offset(this->shndx_);
2903 if (from != invalid_address)
2904 from += (this->object_->output_section(this->shndx_)->address()
2905 + this->offset_);
2906 if (gsym != NULL)
2907 ok = stub_table->add_plt_call_entry(from,
2908 this->object_, gsym,
2909 this->r_type_, this->addend_);
2910 else
2911 ok = stub_table->add_plt_call_entry(from,
2912 this->object_, this->r_sym_,
2913 this->r_type_, this->addend_);
2914 }
2915 }
2916 else
2917 {
2918 Address max_branch_offset = max_branch_delta(this->r_type_);
2919 if (max_branch_offset == 0)
2920 return true;
2921 Address from = this->object_->get_output_section_offset(this->shndx_);
2922 gold_assert(from != invalid_address);
2923 from += (this->object_->output_section(this->shndx_)->address()
2924 + this->offset_);
2925 Address to;
2926 if (gsym != NULL)
2927 {
2928 switch (gsym->source())
2929 {
2930 case Symbol::FROM_OBJECT:
2931 {
2932 Object* symobj = gsym->object();
2933 if (symobj->is_dynamic()
2934 || symobj->pluginobj() != NULL)
2935 return true;
2936 bool is_ordinary;
2937 unsigned int shndx = gsym->shndx(&is_ordinary);
2938 if (shndx == elfcpp::SHN_UNDEF)
2939 return true;
2940 }
2941 break;
2942
2943 case Symbol::IS_UNDEFINED:
2944 return true;
2945
2946 default:
2947 break;
2948 }
2949 Symbol_table::Compute_final_value_status status;
2950 to = symtab->compute_final_value<size>(gsym, &status);
2951 if (status != Symbol_table::CFVS_OK)
2952 return true;
2953 if (size == 64)
2954 to += this->object_->ppc64_local_entry_offset(gsym);
2955 }
2956 else
2957 {
2958 const Symbol_value<size>* psymval
2959 = this->object_->local_symbol(this->r_sym_);
2960 Symbol_value<size> symval;
2961 if (psymval->is_section_symbol())
2962 symval.set_is_section_symbol();
2963 typedef Sized_relobj_file<size, big_endian> ObjType;
2964 typename ObjType::Compute_final_local_value_status status
2965 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2966 &symval, symtab);
2967 if (status != ObjType::CFLV_OK
2968 || !symval.has_output_value())
2969 return true;
2970 to = symval.value(this->object_, 0);
2971 if (size == 64)
2972 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2973 }
2974 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2975 to += this->addend_;
2976 if (stub_table == NULL)
2977 stub_table = this->object_->stub_table(this->shndx_);
2978 if (size == 64 && target->abiversion() < 2)
2979 {
2980 unsigned int dest_shndx;
2981 if (!target->symval_for_branch(symtab, gsym, this->object_,
2982 &to, &dest_shndx))
2983 return true;
2984 }
2985 Address delta = to - from;
2986 if (delta + max_branch_offset >= 2 * max_branch_offset)
2987 {
2988 if (stub_table == NULL)
2989 {
2990 gold_warning(_("%s:%s: branch in non-executable section,"
2991 " no long branch stub for you"),
2992 this->object_->name().c_str(),
2993 this->object_->section_name(this->shndx_).c_str());
2994 return true;
2995 }
2996 bool save_res = (size == 64
2997 && gsym != NULL
2998 && gsym->source() == Symbol::IN_OUTPUT_DATA
2999 && gsym->output_data() == target->savres_section());
3000 ok = stub_table->add_long_branch_entry(this->object_,
3001 this->r_type_,
3002 from, to, save_res);
3003 }
3004 }
3005 if (!ok)
3006 gold_debug(DEBUG_TARGET,
3007 "branch at %s:%s+%#lx\n"
3008 "can't reach stub attached to %s:%s",
3009 this->object_->name().c_str(),
3010 this->object_->section_name(this->shndx_).c_str(),
3011 (unsigned long) this->offset_,
3012 stub_table->relobj()->name().c_str(),
3013 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3014
3015 return ok;
3016 }
3017
3018 // Relaxation hook. This is where we do stub generation.
3019
3020 template<int size, bool big_endian>
3021 bool
3022 Target_powerpc<size, big_endian>::do_relax(int pass,
3023 const Input_objects*,
3024 Symbol_table* symtab,
3025 Layout* layout,
3026 const Task* task)
3027 {
3028 unsigned int prev_brlt_size = 0;
3029 if (pass == 1)
3030 {
3031 bool thread_safe
3032 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3033 if (size == 64
3034 && this->abiversion() < 2
3035 && !thread_safe
3036 && !parameters->options().user_set_plt_thread_safe())
3037 {
3038 static const char* const thread_starter[] =
3039 {
3040 "pthread_create",
3041 /* libstdc++ */
3042 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3043 /* librt */
3044 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3045 "mq_notify", "create_timer",
3046 /* libanl */
3047 "getaddrinfo_a",
3048 /* libgomp */
3049 "GOMP_parallel",
3050 "GOMP_parallel_start",
3051 "GOMP_parallel_loop_static",
3052 "GOMP_parallel_loop_static_start",
3053 "GOMP_parallel_loop_dynamic",
3054 "GOMP_parallel_loop_dynamic_start",
3055 "GOMP_parallel_loop_guided",
3056 "GOMP_parallel_loop_guided_start",
3057 "GOMP_parallel_loop_runtime",
3058 "GOMP_parallel_loop_runtime_start",
3059 "GOMP_parallel_sections",
3060 "GOMP_parallel_sections_start",
3061 /* libgo */
3062 "__go_go",
3063 };
3064
3065 if (parameters->options().shared())
3066 thread_safe = true;
3067 else
3068 {
3069 for (unsigned int i = 0;
3070 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3071 i++)
3072 {
3073 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3074 thread_safe = (sym != NULL
3075 && sym->in_reg()
3076 && sym->in_real_elf());
3077 if (thread_safe)
3078 break;
3079 }
3080 }
3081 }
3082 this->plt_thread_safe_ = thread_safe;
3083 }
3084
3085 if (pass == 1)
3086 {
3087 this->stub_group_size_ = parameters->options().stub_group_size();
3088 bool no_size_errors = true;
3089 if (this->stub_group_size_ == 1)
3090 this->stub_group_size_ = 0x1c00000;
3091 else if (this->stub_group_size_ == -1)
3092 this->stub_group_size_ = -0x1e00000;
3093 else
3094 no_size_errors = false;
3095 this->group_sections(layout, task, no_size_errors);
3096 }
3097 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3098 {
3099 this->branch_lookup_table_.clear();
3100 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3101 p != this->stub_tables_.end();
3102 ++p)
3103 {
3104 (*p)->clear_stubs(true);
3105 }
3106 this->stub_tables_.clear();
3107 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3108 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3109 program_name, this->stub_group_size_);
3110 this->group_sections(layout, task, true);
3111 }
3112
3113 // We need address of stub tables valid for make_stub.
3114 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3115 p != this->stub_tables_.end();
3116 ++p)
3117 {
3118 const Powerpc_relobj<size, big_endian>* object
3119 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3120 Address off = object->get_output_section_offset((*p)->shndx());
3121 gold_assert(off != invalid_address);
3122 Output_section* os = (*p)->output_section();
3123 (*p)->set_address_and_size(os, off);
3124 }
3125
3126 if (pass != 1)
3127 {
3128 // Clear plt call stubs, long branch stubs and branch lookup table.
3129 prev_brlt_size = this->branch_lookup_table_.size();
3130 this->branch_lookup_table_.clear();
3131 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3132 p != this->stub_tables_.end();
3133 ++p)
3134 {
3135 (*p)->clear_stubs(false);
3136 }
3137 }
3138
3139 // Build all the stubs.
3140 this->relax_failed_ = false;
3141 Stub_table<size, big_endian>* ifunc_stub_table
3142 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3143 Stub_table<size, big_endian>* one_stub_table
3144 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3145 for (typename Branches::const_iterator b = this->branch_info_.begin();
3146 b != this->branch_info_.end();
3147 b++)
3148 {
3149 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3150 && !this->relax_failed_)
3151 {
3152 this->relax_failed_ = true;
3153 this->relax_fail_count_++;
3154 if (this->relax_fail_count_ < 3)
3155 return true;
3156 }
3157 }
3158
3159 // Did anything change size?
3160 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3161 bool again = num_huge_branches != prev_brlt_size;
3162 if (size == 64 && num_huge_branches != 0)
3163 this->make_brlt_section(layout);
3164 if (size == 64 && again)
3165 this->brlt_section_->set_current_size(num_huge_branches);
3166
3167 typedef Unordered_set<Output_section*> Output_sections;
3168 Output_sections os_need_update;
3169 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3170 p != this->stub_tables_.end();
3171 ++p)
3172 {
3173 if ((*p)->size_update())
3174 {
3175 again = true;
3176 (*p)->add_eh_frame(layout);
3177 os_need_update.insert((*p)->output_section());
3178 }
3179 }
3180
3181 // Set output section offsets for all input sections in an output
3182 // section that just changed size. Anything past the stubs will
3183 // need updating.
3184 for (typename Output_sections::iterator p = os_need_update.begin();
3185 p != os_need_update.end();
3186 p++)
3187 {
3188 Output_section* os = *p;
3189 Address off = 0;
3190 typedef Output_section::Input_section_list Input_section_list;
3191 for (Input_section_list::const_iterator i = os->input_sections().begin();
3192 i != os->input_sections().end();
3193 ++i)
3194 {
3195 off = align_address(off, i->addralign());
3196 if (i->is_input_section() || i->is_relaxed_input_section())
3197 i->relobj()->set_section_offset(i->shndx(), off);
3198 if (i->is_relaxed_input_section())
3199 {
3200 Stub_table<size, big_endian>* stub_table
3201 = static_cast<Stub_table<size, big_endian>*>(
3202 i->relaxed_input_section());
3203 Address stub_table_size = stub_table->set_address_and_size(os, off);
3204 off += stub_table_size;
3205 // After a few iterations, set current stub table size
3206 // as min size threshold, so later stub tables can only
3207 // grow in size.
3208 if (pass >= 4)
3209 stub_table->set_min_size_threshold(stub_table_size);
3210 }
3211 else
3212 off += i->data_size();
3213 }
3214 // If .branch_lt is part of this output section, then we have
3215 // just done the offset adjustment.
3216 os->clear_section_offsets_need_adjustment();
3217 }
3218
3219 if (size == 64
3220 && !again
3221 && num_huge_branches != 0
3222 && parameters->options().output_is_position_independent())
3223 {
3224 // Fill in the BRLT relocs.
3225 this->brlt_section_->reset_brlt_sizes();
3226 for (typename Branch_lookup_table::const_iterator p
3227 = this->branch_lookup_table_.begin();
3228 p != this->branch_lookup_table_.end();
3229 ++p)
3230 {
3231 this->brlt_section_->add_reloc(p->first, p->second);
3232 }
3233 this->brlt_section_->finalize_brlt_sizes();
3234 }
3235 return again;
3236 }
3237
3238 template<int size, bool big_endian>
3239 void
3240 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3241 unsigned char* oview,
3242 uint64_t* paddress,
3243 off_t* plen) const
3244 {
3245 uint64_t address = plt->address();
3246 off_t len = plt->data_size();
3247
3248 if (plt == this->glink_)
3249 {
3250 // See Output_data_glink::do_write() for glink contents.
3251 if (len == 0)
3252 {
3253 gold_assert(parameters->doing_static_link());
3254 // Static linking may need stubs, to support ifunc and long
3255 // branches. We need to create an output section for
3256 // .eh_frame early in the link process, to have a place to
3257 // attach stub .eh_frame info. We also need to have
3258 // registered a CIE that matches the stub CIE. Both of
3259 // these requirements are satisfied by creating an FDE and
3260 // CIE for .glink, even though static linking will leave
3261 // .glink zero length.
3262 // ??? Hopefully generating an FDE with a zero address range
3263 // won't confuse anything that consumes .eh_frame info.
3264 }
3265 else if (size == 64)
3266 {
3267 // There is one word before __glink_PLTresolve
3268 address += 8;
3269 len -= 8;
3270 }
3271 else if (parameters->options().output_is_position_independent())
3272 {
3273 // There are two FDEs for a position independent glink.
3274 // The first covers the branch table, the second
3275 // __glink_PLTresolve at the end of glink.
3276 off_t resolve_size = this->glink_->pltresolve_size;
3277 if (oview[9] == elfcpp::DW_CFA_nop)
3278 len -= resolve_size;
3279 else
3280 {
3281 address += len - resolve_size;
3282 len = resolve_size;
3283 }
3284 }
3285 }
3286 else
3287 {
3288 // Must be a stub table.
3289 const Stub_table<size, big_endian>* stub_table
3290 = static_cast<const Stub_table<size, big_endian>*>(plt);
3291 uint64_t stub_address = stub_table->stub_address();
3292 len -= stub_address - address;
3293 address = stub_address;
3294 }
3295
3296 *paddress = address;
3297 *plen = len;
3298 }
3299
3300 // A class to handle the PLT data.
3301
3302 template<int size, bool big_endian>
3303 class Output_data_plt_powerpc : public Output_section_data_build
3304 {
3305 public:
3306 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3307 size, big_endian> Reloc_section;
3308
3309 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3310 Reloc_section* plt_rel,
3311 const char* name)
3312 : Output_section_data_build(size == 32 ? 4 : 8),
3313 rel_(plt_rel),
3314 targ_(targ),
3315 name_(name)
3316 { }
3317
3318 // Add an entry to the PLT.
3319 void
3320 add_entry(Symbol*);
3321
3322 void
3323 add_ifunc_entry(Symbol*);
3324
3325 void
3326 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3327
3328 // Return the .rela.plt section data.
3329 Reloc_section*
3330 rel_plt() const
3331 {
3332 return this->rel_;
3333 }
3334
3335 // Return the number of PLT entries.
3336 unsigned int
3337 entry_count() const
3338 {
3339 if (this->current_data_size() == 0)
3340 return 0;
3341 return ((this->current_data_size() - this->first_plt_entry_offset())
3342 / this->plt_entry_size());
3343 }
3344
3345 protected:
3346 void
3347 do_adjust_output_section(Output_section* os)
3348 {
3349 os->set_entsize(0);
3350 }
3351
3352 // Write to a map file.
3353 void
3354 do_print_to_mapfile(Mapfile* mapfile) const
3355 { mapfile->print_output_data(this, this->name_); }
3356
3357 private:
3358 // Return the offset of the first non-reserved PLT entry.
3359 unsigned int
3360 first_plt_entry_offset() const
3361 {
3362 // IPLT has no reserved entry.
3363 if (this->name_[3] == 'I')
3364 return 0;
3365 return this->targ_->first_plt_entry_offset();
3366 }
3367
3368 // Return the size of each PLT entry.
3369 unsigned int
3370 plt_entry_size() const
3371 {
3372 return this->targ_->plt_entry_size();
3373 }
3374
3375 // Write out the PLT data.
3376 void
3377 do_write(Output_file*);
3378
3379 // The reloc section.
3380 Reloc_section* rel_;
3381 // Allows access to .glink for do_write.
3382 Target_powerpc<size, big_endian>* targ_;
3383 // What to report in map file.
3384 const char *name_;
3385 };
3386
3387 // Add an entry to the PLT.
3388
3389 template<int size, bool big_endian>
3390 void
3391 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3392 {
3393 if (!gsym->has_plt_offset())
3394 {
3395 section_size_type off = this->current_data_size();
3396 if (off == 0)
3397 off += this->first_plt_entry_offset();
3398 gsym->set_plt_offset(off);
3399 gsym->set_needs_dynsym_entry();
3400 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3401 this->rel_->add_global(gsym, dynrel, this, off, 0);
3402 off += this->plt_entry_size();
3403 this->set_current_data_size(off);
3404 }
3405 }
3406
3407 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3408
3409 template<int size, bool big_endian>
3410 void
3411 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3412 {
3413 if (!gsym->has_plt_offset())
3414 {
3415 section_size_type off = this->current_data_size();
3416 gsym->set_plt_offset(off);
3417 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3418 if (size == 64 && this->targ_->abiversion() < 2)
3419 dynrel = elfcpp::R_PPC64_JMP_IREL;
3420 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3421 off += this->plt_entry_size();
3422 this->set_current_data_size(off);
3423 }
3424 }
3425
3426 // Add an entry for a local ifunc symbol to the IPLT.
3427
3428 template<int size, bool big_endian>
3429 void
3430 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3431 Sized_relobj_file<size, big_endian>* relobj,
3432 unsigned int local_sym_index)
3433 {
3434 if (!relobj->local_has_plt_offset(local_sym_index))
3435 {
3436 section_size_type off = this->current_data_size();
3437 relobj->set_local_plt_offset(local_sym_index, off);
3438 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3439 if (size == 64 && this->targ_->abiversion() < 2)
3440 dynrel = elfcpp::R_PPC64_JMP_IREL;
3441 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3442 this, off, 0);
3443 off += this->plt_entry_size();
3444 this->set_current_data_size(off);
3445 }
3446 }
3447
3448 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3449 static const uint32_t add_2_2_11 = 0x7c425a14;
3450 static const uint32_t add_2_2_12 = 0x7c426214;
3451 static const uint32_t add_3_3_2 = 0x7c631214;
3452 static const uint32_t add_3_3_13 = 0x7c636a14;
3453 static const uint32_t add_11_0_11 = 0x7d605a14;
3454 static const uint32_t add_11_2_11 = 0x7d625a14;
3455 static const uint32_t add_11_11_2 = 0x7d6b1214;
3456 static const uint32_t addi_0_12 = 0x380c0000;
3457 static const uint32_t addi_2_2 = 0x38420000;
3458 static const uint32_t addi_3_3 = 0x38630000;
3459 static const uint32_t addi_11_11 = 0x396b0000;
3460 static const uint32_t addi_12_1 = 0x39810000;
3461 static const uint32_t addi_12_12 = 0x398c0000;
3462 static const uint32_t addis_0_2 = 0x3c020000;
3463 static const uint32_t addis_0_13 = 0x3c0d0000;
3464 static const uint32_t addis_2_12 = 0x3c4c0000;
3465 static const uint32_t addis_11_2 = 0x3d620000;
3466 static const uint32_t addis_11_11 = 0x3d6b0000;
3467 static const uint32_t addis_11_30 = 0x3d7e0000;
3468 static const uint32_t addis_12_1 = 0x3d810000;
3469 static const uint32_t addis_12_2 = 0x3d820000;
3470 static const uint32_t addis_12_12 = 0x3d8c0000;
3471 static const uint32_t b = 0x48000000;
3472 static const uint32_t bcl_20_31 = 0x429f0005;
3473 static const uint32_t bctr = 0x4e800420;
3474 static const uint32_t blr = 0x4e800020;
3475 static const uint32_t bnectr_p4 = 0x4ce20420;
3476 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3477 static const uint32_t cmpldi_2_0 = 0x28220000;
3478 static const uint32_t cror_15_15_15 = 0x4def7b82;
3479 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3480 static const uint32_t ld_0_1 = 0xe8010000;
3481 static const uint32_t ld_0_12 = 0xe80c0000;
3482 static const uint32_t ld_2_1 = 0xe8410000;
3483 static const uint32_t ld_2_2 = 0xe8420000;
3484 static const uint32_t ld_2_11 = 0xe84b0000;
3485 static const uint32_t ld_2_12 = 0xe84c0000;
3486 static const uint32_t ld_11_2 = 0xe9620000;
3487 static const uint32_t ld_11_11 = 0xe96b0000;
3488 static const uint32_t ld_12_2 = 0xe9820000;
3489 static const uint32_t ld_12_11 = 0xe98b0000;
3490 static const uint32_t ld_12_12 = 0xe98c0000;
3491 static const uint32_t lfd_0_1 = 0xc8010000;
3492 static const uint32_t li_0_0 = 0x38000000;
3493 static const uint32_t li_12_0 = 0x39800000;
3494 static const uint32_t lis_0 = 0x3c000000;
3495 static const uint32_t lis_2 = 0x3c400000;
3496 static const uint32_t lis_11 = 0x3d600000;
3497 static const uint32_t lis_12 = 0x3d800000;
3498 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3499 static const uint32_t lwz_0_12 = 0x800c0000;
3500 static const uint32_t lwz_11_11 = 0x816b0000;
3501 static const uint32_t lwz_11_30 = 0x817e0000;
3502 static const uint32_t lwz_12_12 = 0x818c0000;
3503 static const uint32_t lwzu_0_12 = 0x840c0000;
3504 static const uint32_t mflr_0 = 0x7c0802a6;
3505 static const uint32_t mflr_11 = 0x7d6802a6;
3506 static const uint32_t mflr_12 = 0x7d8802a6;
3507 static const uint32_t mtctr_0 = 0x7c0903a6;
3508 static const uint32_t mtctr_11 = 0x7d6903a6;
3509 static const uint32_t mtctr_12 = 0x7d8903a6;
3510 static const uint32_t mtlr_0 = 0x7c0803a6;
3511 static const uint32_t mtlr_12 = 0x7d8803a6;
3512 static const uint32_t nop = 0x60000000;
3513 static const uint32_t ori_0_0_0 = 0x60000000;
3514 static const uint32_t srdi_0_0_2 = 0x7800f082;
3515 static const uint32_t std_0_1 = 0xf8010000;
3516 static const uint32_t std_0_12 = 0xf80c0000;
3517 static const uint32_t std_2_1 = 0xf8410000;
3518 static const uint32_t stfd_0_1 = 0xd8010000;
3519 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3520 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3521 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3522 static const uint32_t xor_2_12_12 = 0x7d826278;
3523 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3524
3525 // Write out the PLT.
3526
3527 template<int size, bool big_endian>
3528 void
3529 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3530 {
3531 if (size == 32 && this->name_[3] != 'I')
3532 {
3533 const section_size_type offset = this->offset();
3534 const section_size_type oview_size
3535 = convert_to_section_size_type(this->data_size());
3536 unsigned char* const oview = of->get_output_view(offset, oview_size);
3537 unsigned char* pov = oview;
3538 unsigned char* endpov = oview + oview_size;
3539
3540 // The address of the .glink branch table
3541 const Output_data_glink<size, big_endian>* glink
3542 = this->targ_->glink_section();
3543 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3544
3545 while (pov < endpov)
3546 {
3547 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3548 pov += 4;
3549 branch_tab += 4;
3550 }
3551
3552 of->write_output_view(offset, oview_size, oview);
3553 }
3554 }
3555
3556 // Create the PLT section.
3557
3558 template<int size, bool big_endian>
3559 void
3560 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3561 Layout* layout)
3562 {
3563 if (this->plt_ == NULL)
3564 {
3565 if (this->got_ == NULL)
3566 this->got_section(symtab, layout);
3567
3568 if (this->glink_ == NULL)
3569 make_glink_section(layout);
3570
3571 // Ensure that .rela.dyn always appears before .rela.plt This is
3572 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3573 // needs to include .rela.plt in its range.
3574 this->rela_dyn_section(layout);
3575
3576 Reloc_section* plt_rel = new Reloc_section(false);
3577 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3578 elfcpp::SHF_ALLOC, plt_rel,
3579 ORDER_DYNAMIC_PLT_RELOCS, false);
3580 this->plt_
3581 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3582 "** PLT");
3583 layout->add_output_section_data(".plt",
3584 (size == 32
3585 ? elfcpp::SHT_PROGBITS
3586 : elfcpp::SHT_NOBITS),
3587 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3588 this->plt_,
3589 (size == 32
3590 ? ORDER_SMALL_DATA
3591 : ORDER_SMALL_BSS),
3592 false);
3593
3594 Output_section* rela_plt_os = plt_rel->output_section();
3595 rela_plt_os->set_info_section(this->plt_->output_section());
3596 }
3597 }
3598
3599 // Create the IPLT section.
3600
3601 template<int size, bool big_endian>
3602 void
3603 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3604 Layout* layout)
3605 {
3606 if (this->iplt_ == NULL)
3607 {
3608 this->make_plt_section(symtab, layout);
3609
3610 Reloc_section* iplt_rel = new Reloc_section(false);
3611 if (this->rela_dyn_->output_section())
3612 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3613 this->iplt_
3614 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3615 "** IPLT");
3616 if (this->plt_->output_section())
3617 this->plt_->output_section()->add_output_section_data(this->iplt_);
3618 }
3619 }
3620
3621 // A section for huge long branch addresses, similar to plt section.
3622
3623 template<int size, bool big_endian>
3624 class Output_data_brlt_powerpc : public Output_section_data_build
3625 {
3626 public:
3627 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3628 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3629 size, big_endian> Reloc_section;
3630
3631 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3632 Reloc_section* brlt_rel)
3633 : Output_section_data_build(size == 32 ? 4 : 8),
3634 rel_(brlt_rel),
3635 targ_(targ)
3636 { }
3637
3638 void
3639 reset_brlt_sizes()
3640 {
3641 this->reset_data_size();
3642 this->rel_->reset_data_size();
3643 }
3644
3645 void
3646 finalize_brlt_sizes()
3647 {
3648 this->finalize_data_size();
3649 this->rel_->finalize_data_size();
3650 }
3651
3652 // Add a reloc for an entry in the BRLT.
3653 void
3654 add_reloc(Address to, unsigned int off)
3655 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3656
3657 // Update section and reloc section size.
3658 void
3659 set_current_size(unsigned int num_branches)
3660 {
3661 this->reset_address_and_file_offset();
3662 this->set_current_data_size(num_branches * 16);
3663 this->finalize_data_size();
3664 Output_section* os = this->output_section();
3665 os->set_section_offsets_need_adjustment();
3666 if (this->rel_ != NULL)
3667 {
3668 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3669 this->rel_->reset_address_and_file_offset();
3670 this->rel_->set_current_data_size(num_branches * reloc_size);
3671 this->rel_->finalize_data_size();
3672 Output_section* os = this->rel_->output_section();
3673 os->set_section_offsets_need_adjustment();
3674 }
3675 }
3676
3677 protected:
3678 void
3679 do_adjust_output_section(Output_section* os)
3680 {
3681 os->set_entsize(0);
3682 }
3683
3684 // Write to a map file.
3685 void
3686 do_print_to_mapfile(Mapfile* mapfile) const
3687 { mapfile->print_output_data(this, "** BRLT"); }
3688
3689 private:
3690 // Write out the BRLT data.
3691 void
3692 do_write(Output_file*);
3693
3694 // The reloc section.
3695 Reloc_section* rel_;
3696 Target_powerpc<size, big_endian>* targ_;
3697 };
3698
3699 // Make the branch lookup table section.
3700
3701 template<int size, bool big_endian>
3702 void
3703 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3704 {
3705 if (size == 64 && this->brlt_section_ == NULL)
3706 {
3707 Reloc_section* brlt_rel = NULL;
3708 bool is_pic = parameters->options().output_is_position_independent();
3709 if (is_pic)
3710 {
3711 // When PIC we can't fill in .branch_lt (like .plt it can be
3712 // a bss style section) but must initialise at runtime via
3713 // dynamic relocations.
3714 this->rela_dyn_section(layout);
3715 brlt_rel = new Reloc_section(false);
3716 if (this->rela_dyn_->output_section())
3717 this->rela_dyn_->output_section()
3718 ->add_output_section_data(brlt_rel);
3719 }
3720 this->brlt_section_
3721 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3722 if (this->plt_ && is_pic && this->plt_->output_section())
3723 this->plt_->output_section()
3724 ->add_output_section_data(this->brlt_section_);
3725 else
3726 layout->add_output_section_data(".branch_lt",
3727 (is_pic ? elfcpp::SHT_NOBITS
3728 : elfcpp::SHT_PROGBITS),
3729 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3730 this->brlt_section_,
3731 (is_pic ? ORDER_SMALL_BSS
3732 : ORDER_SMALL_DATA),
3733 false);
3734 }
3735 }
3736
3737 // Write out .branch_lt when non-PIC.
3738
3739 template<int size, bool big_endian>
3740 void
3741 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3742 {
3743 if (size == 64 && !parameters->options().output_is_position_independent())
3744 {
3745 const section_size_type offset = this->offset();
3746 const section_size_type oview_size
3747 = convert_to_section_size_type(this->data_size());
3748 unsigned char* const oview = of->get_output_view(offset, oview_size);
3749
3750 this->targ_->write_branch_lookup_table(oview);
3751 of->write_output_view(offset, oview_size, oview);
3752 }
3753 }
3754
3755 static inline uint32_t
3756 l(uint32_t a)
3757 {
3758 return a & 0xffff;
3759 }
3760
3761 static inline uint32_t
3762 hi(uint32_t a)
3763 {
3764 return l(a >> 16);
3765 }
3766
3767 static inline uint32_t
3768 ha(uint32_t a)
3769 {
3770 return hi(a + 0x8000);
3771 }
3772
3773 template<int size>
3774 struct Eh_cie
3775 {
3776 static const unsigned char eh_frame_cie[12];
3777 };
3778
3779 template<int size>
3780 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3781 {
3782 1, // CIE version.
3783 'z', 'R', 0, // Augmentation string.
3784 4, // Code alignment.
3785 0x80 - size / 8 , // Data alignment.
3786 65, // RA reg.
3787 1, // Augmentation size.
3788 (elfcpp::DW_EH_PE_pcrel
3789 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3790 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3791 };
3792
3793 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3794 static const unsigned char glink_eh_frame_fde_64v1[] =
3795 {
3796 0, 0, 0, 0, // Replaced with offset to .glink.
3797 0, 0, 0, 0, // Replaced with size of .glink.
3798 0, // Augmentation size.
3799 elfcpp::DW_CFA_advance_loc + 1,
3800 elfcpp::DW_CFA_register, 65, 12,
3801 elfcpp::DW_CFA_advance_loc + 4,
3802 elfcpp::DW_CFA_restore_extended, 65
3803 };
3804
3805 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3806 static const unsigned char glink_eh_frame_fde_64v2[] =
3807 {
3808 0, 0, 0, 0, // Replaced with offset to .glink.
3809 0, 0, 0, 0, // Replaced with size of .glink.
3810 0, // Augmentation size.
3811 elfcpp::DW_CFA_advance_loc + 1,
3812 elfcpp::DW_CFA_register, 65, 0,
3813 elfcpp::DW_CFA_advance_loc + 4,
3814 elfcpp::DW_CFA_restore_extended, 65
3815 };
3816
3817 // Describe __glink_PLTresolve use of LR, 32-bit version.
3818 static const unsigned char glink_eh_frame_fde_32[] =
3819 {
3820 0, 0, 0, 0, // Replaced with offset to .glink.
3821 0, 0, 0, 0, // Replaced with size of .glink.
3822 0, // Augmentation size.
3823 elfcpp::DW_CFA_advance_loc + 2,
3824 elfcpp::DW_CFA_register, 65, 0,
3825 elfcpp::DW_CFA_advance_loc + 4,
3826 elfcpp::DW_CFA_restore_extended, 65
3827 };
3828
3829 static const unsigned char default_fde[] =
3830 {
3831 0, 0, 0, 0, // Replaced with offset to stubs.
3832 0, 0, 0, 0, // Replaced with size of stubs.
3833 0, // Augmentation size.
3834 elfcpp::DW_CFA_nop, // Pad.
3835 elfcpp::DW_CFA_nop,
3836 elfcpp::DW_CFA_nop
3837 };
3838
3839 template<bool big_endian>
3840 static inline void
3841 write_insn(unsigned char* p, uint32_t v)
3842 {
3843 elfcpp::Swap<32, big_endian>::writeval(p, v);
3844 }
3845
3846 // Stub_table holds information about plt and long branch stubs.
3847 // Stubs are built in an area following some input section determined
3848 // by group_sections(). This input section is converted to a relaxed
3849 // input section allowing it to be resized to accommodate the stubs
3850
3851 template<int size, bool big_endian>
3852 class Stub_table : public Output_relaxed_input_section
3853 {
3854 public:
3855 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3856 static const Address invalid_address = static_cast<Address>(0) - 1;
3857
3858 Stub_table(Target_powerpc<size, big_endian>* targ,
3859 Output_section* output_section,
3860 const Output_section::Input_section* owner)
3861 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3862 owner->relobj()
3863 ->section_addralign(owner->shndx())),
3864 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3865 orig_data_size_(owner->current_data_size()),
3866 plt_size_(0), last_plt_size_(0),
3867 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3868 eh_frame_added_(false), need_save_res_(false)
3869 {
3870 this->set_output_section(output_section);
3871
3872 std::vector<Output_relaxed_input_section*> new_relaxed;
3873 new_relaxed.push_back(this);
3874 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3875 }
3876
3877 // Add a plt call stub.
3878 bool
3879 add_plt_call_entry(Address,
3880 const Sized_relobj_file<size, big_endian>*,
3881 const Symbol*,
3882 unsigned int,
3883 Address);
3884
3885 bool
3886 add_plt_call_entry(Address,
3887 const Sized_relobj_file<size, big_endian>*,
3888 unsigned int,
3889 unsigned int,
3890 Address);
3891
3892 // Find a given plt call stub.
3893 Address
3894 find_plt_call_entry(const Symbol*) const;
3895
3896 Address
3897 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3898 unsigned int) const;
3899
3900 Address
3901 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3902 const Symbol*,
3903 unsigned int,
3904 Address) const;
3905
3906 Address
3907 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3908 unsigned int,
3909 unsigned int,
3910 Address) const;
3911
3912 // Add a long branch stub.
3913 bool
3914 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3915 unsigned int, Address, Address, bool);
3916
3917 Address
3918 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3919 Address) const;
3920
3921 bool
3922 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3923 {
3924 Address max_branch_offset = max_branch_delta(r_type);
3925 if (max_branch_offset == 0)
3926 return true;
3927 gold_assert(from != invalid_address);
3928 Address loc = off + this->stub_address();
3929 return loc - from + max_branch_offset < 2 * max_branch_offset;
3930 }
3931
3932 void
3933 clear_stubs(bool all)
3934 {
3935 this->plt_call_stubs_.clear();
3936 this->plt_size_ = 0;
3937 this->long_branch_stubs_.clear();
3938 this->branch_size_ = 0;
3939 this->need_save_res_ = false;
3940 if (all)
3941 {
3942 this->last_plt_size_ = 0;
3943 this->last_branch_size_ = 0;
3944 }
3945 }
3946
3947 Address
3948 set_address_and_size(const Output_section* os, Address off)
3949 {
3950 Address start_off = off;
3951 off += this->orig_data_size_;
3952 Address my_size = this->plt_size_ + this->branch_size_;
3953 if (this->need_save_res_)
3954 my_size += this->targ_->savres_section()->data_size();
3955 if (my_size != 0)
3956 off = align_address(off, this->stub_align());
3957 // Include original section size and alignment padding in size
3958 my_size += off - start_off;
3959 // Ensure new size is always larger than min size
3960 // threshold. Alignment requirement is included in "my_size", so
3961 // increase "my_size" does not invalidate alignment.
3962 if (my_size < this->min_size_threshold_)
3963 my_size = this->min_size_threshold_;
3964 this->reset_address_and_file_offset();
3965 this->set_current_data_size(my_size);
3966 this->set_address_and_file_offset(os->address() + start_off,
3967 os->offset() + start_off);
3968 return my_size;
3969 }
3970
3971 Address
3972 stub_address() const
3973 {
3974 return align_address(this->address() + this->orig_data_size_,
3975 this->stub_align());
3976 }
3977
3978 Address
3979 stub_offset() const
3980 {
3981 return align_address(this->offset() + this->orig_data_size_,
3982 this->stub_align());
3983 }
3984
3985 section_size_type
3986 plt_size() const
3987 { return this->plt_size_; }
3988
3989 void set_min_size_threshold(Address min_size)
3990 { this->min_size_threshold_ = min_size; }
3991
3992 bool
3993 size_update()
3994 {
3995 Output_section* os = this->output_section();
3996 if (os->addralign() < this->stub_align())
3997 {
3998 os->set_addralign(this->stub_align());
3999 // FIXME: get rid of the insane checkpointing.
4000 // We can't increase alignment of the input section to which
4001 // stubs are attached; The input section may be .init which
4002 // is pasted together with other .init sections to form a
4003 // function. Aligning might insert zero padding resulting in
4004 // sigill. However we do need to increase alignment of the
4005 // output section so that the align_address() on offset in
4006 // set_address_and_size() adds the same padding as the
4007 // align_address() on address in stub_address().
4008 // What's more, we need this alignment for the layout done in
4009 // relaxation_loop_body() so that the output section starts at
4010 // a suitably aligned address.
4011 os->checkpoint_set_addralign(this->stub_align());
4012 }
4013 if (this->last_plt_size_ != this->plt_size_
4014 || this->last_branch_size_ != this->branch_size_)
4015 {
4016 this->last_plt_size_ = this->plt_size_;
4017 this->last_branch_size_ = this->branch_size_;
4018 return true;
4019 }
4020 return false;
4021 }
4022
4023 // Add .eh_frame info for this stub section. Unlike other linker
4024 // generated .eh_frame this is added late in the link, because we
4025 // only want the .eh_frame info if this particular stub section is
4026 // non-empty.
4027 void
4028 add_eh_frame(Layout* layout)
4029 {
4030 if (!this->eh_frame_added_)
4031 {
4032 if (!parameters->options().ld_generated_unwind_info())
4033 return;
4034
4035 // Since we add stub .eh_frame info late, it must be placed
4036 // after all other linker generated .eh_frame info so that
4037 // merge mapping need not be updated for input sections.
4038 // There is no provision to use a different CIE to that used
4039 // by .glink.
4040 if (!this->targ_->has_glink())
4041 return;
4042
4043 layout->add_eh_frame_for_plt(this,
4044 Eh_cie<size>::eh_frame_cie,
4045 sizeof (Eh_cie<size>::eh_frame_cie),
4046 default_fde,
4047 sizeof (default_fde));
4048 this->eh_frame_added_ = true;
4049 }
4050 }
4051
4052 Target_powerpc<size, big_endian>*
4053 targ() const
4054 { return targ_; }
4055
4056 private:
4057 class Plt_stub_ent;
4058 class Plt_stub_ent_hash;
4059 typedef Unordered_map<Plt_stub_ent, unsigned int,
4060 Plt_stub_ent_hash> Plt_stub_entries;
4061
4062 // Alignment of stub section.
4063 unsigned int
4064 stub_align() const
4065 {
4066 if (size == 32)
4067 return 16;
4068 unsigned int min_align = 32;
4069 unsigned int user_align = 1 << parameters->options().plt_align();
4070 return std::max(user_align, min_align);
4071 }
4072
4073 // Return the plt offset for the given call stub.
4074 Address
4075 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4076 {
4077 const Symbol* gsym = p->first.sym_;
4078 if (gsym != NULL)
4079 {
4080 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4081 && gsym->can_use_relative_reloc(false));
4082 return gsym->plt_offset();
4083 }
4084 else
4085 {
4086 *is_iplt = true;
4087 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4088 unsigned int local_sym_index = p->first.locsym_;
4089 return relobj->local_plt_offset(local_sym_index);
4090 }
4091 }
4092
4093 // Size of a given plt call stub.
4094 unsigned int
4095 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4096 {
4097 if (size == 32)
4098 return 16;
4099
4100 bool is_iplt;
4101 Address plt_addr = this->plt_off(p, &is_iplt);
4102 if (is_iplt)
4103 plt_addr += this->targ_->iplt_section()->address();
4104 else
4105 plt_addr += this->targ_->plt_section()->address();
4106 Address got_addr = this->targ_->got_section()->output_section()->address();
4107 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4108 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4109 got_addr += ppcobj->toc_base_offset();
4110 Address off = plt_addr - got_addr;
4111 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4112 if (this->targ_->abiversion() < 2)
4113 {
4114 bool static_chain = parameters->options().plt_static_chain();
4115 bool thread_safe = this->targ_->plt_thread_safe();
4116 bytes += (4
4117 + 4 * static_chain
4118 + 8 * thread_safe
4119 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4120 }
4121 unsigned int align = 1 << parameters->options().plt_align();
4122 if (align > 1)
4123 bytes = (bytes + align - 1) & -align;
4124 return bytes;
4125 }
4126
4127 // Return long branch stub size.
4128 unsigned int
4129 branch_stub_size(Address to)
4130 {
4131 Address loc
4132 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
4133 if (to - loc + (1 << 25) < 2 << 25)
4134 return 4;
4135 if (size == 64 || !parameters->options().output_is_position_independent())
4136 return 16;
4137 return 32;
4138 }
4139
4140 // Write out stubs.
4141 void
4142 do_write(Output_file*);
4143
4144 // Plt call stub keys.
4145 class Plt_stub_ent
4146 {
4147 public:
4148 Plt_stub_ent(const Symbol* sym)
4149 : sym_(sym), object_(0), addend_(0), locsym_(0)
4150 { }
4151
4152 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4153 unsigned int locsym_index)
4154 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4155 { }
4156
4157 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4158 const Symbol* sym,
4159 unsigned int r_type,
4160 Address addend)
4161 : sym_(sym), object_(0), addend_(0), locsym_(0)
4162 {
4163 if (size != 32)
4164 this->addend_ = addend;
4165 else if (parameters->options().output_is_position_independent()
4166 && r_type == elfcpp::R_PPC_PLTREL24)
4167 {
4168 this->addend_ = addend;
4169 if (this->addend_ >= 32768)
4170 this->object_ = object;
4171 }
4172 }
4173
4174 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4175 unsigned int locsym_index,
4176 unsigned int r_type,
4177 Address addend)
4178 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4179 {
4180 if (size != 32)
4181 this->addend_ = addend;
4182 else if (parameters->options().output_is_position_independent()
4183 && r_type == elfcpp::R_PPC_PLTREL24)
4184 this->addend_ = addend;
4185 }
4186
4187 bool operator==(const Plt_stub_ent& that) const
4188 {
4189 return (this->sym_ == that.sym_
4190 && this->object_ == that.object_
4191 && this->addend_ == that.addend_
4192 && this->locsym_ == that.locsym_);
4193 }
4194
4195 const Symbol* sym_;
4196 const Sized_relobj_file<size, big_endian>* object_;
4197 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4198 unsigned int locsym_;
4199 };
4200
4201 class Plt_stub_ent_hash
4202 {
4203 public:
4204 size_t operator()(const Plt_stub_ent& ent) const
4205 {
4206 return (reinterpret_cast<uintptr_t>(ent.sym_)
4207 ^ reinterpret_cast<uintptr_t>(ent.object_)
4208 ^ ent.addend_
4209 ^ ent.locsym_);
4210 }
4211 };
4212
4213 // Long branch stub keys.
4214 class Branch_stub_ent
4215 {
4216 public:
4217 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4218 Address to, bool save_res)
4219 : dest_(to), toc_base_off_(0), save_res_(save_res)
4220 {
4221 if (size == 64)
4222 toc_base_off_ = obj->toc_base_offset();
4223 }
4224
4225 bool operator==(const Branch_stub_ent& that) const
4226 {
4227 return (this->dest_ == that.dest_
4228 && (size == 32
4229 || this->toc_base_off_ == that.toc_base_off_));
4230 }
4231
4232 Address dest_;
4233 unsigned int toc_base_off_;
4234 bool save_res_;
4235 };
4236
4237 class Branch_stub_ent_hash
4238 {
4239 public:
4240 size_t operator()(const Branch_stub_ent& ent) const
4241 { return ent.dest_ ^ ent.toc_base_off_; }
4242 };
4243
4244 // In a sane world this would be a global.
4245 Target_powerpc<size, big_endian>* targ_;
4246 // Map sym/object/addend to stub offset.
4247 Plt_stub_entries plt_call_stubs_;
4248 // Map destination address to stub offset.
4249 typedef Unordered_map<Branch_stub_ent, unsigned int,
4250 Branch_stub_ent_hash> Branch_stub_entries;
4251 Branch_stub_entries long_branch_stubs_;
4252 // size of input section
4253 section_size_type orig_data_size_;
4254 // size of stubs
4255 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4256 // Some rare cases cause (PR/20529) fluctuation in stub table
4257 // size, which leads to an endless relax loop. This is to be fixed
4258 // by, after the first few iterations, allowing only increase of
4259 // stub table size. This variable sets the minimal possible size of
4260 // a stub table, it is zero for the first few iterations, then
4261 // increases monotonically.
4262 Address min_size_threshold_;
4263 // Whether .eh_frame info has been created for this stub section.
4264 bool eh_frame_added_;
4265 // Set if this stub group needs a copy of out-of-line register
4266 // save/restore functions.
4267 bool need_save_res_;
4268 };
4269
4270 // Add a plt call stub, if we do not already have one for this
4271 // sym/object/addend combo.
4272
4273 template<int size, bool big_endian>
4274 bool
4275 Stub_table<size, big_endian>::add_plt_call_entry(
4276 Address from,
4277 const Sized_relobj_file<size, big_endian>* object,
4278 const Symbol* gsym,
4279 unsigned int r_type,
4280 Address addend)
4281 {
4282 Plt_stub_ent ent(object, gsym, r_type, addend);
4283 unsigned int off = this->plt_size_;
4284 std::pair<typename Plt_stub_entries::iterator, bool> p
4285 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4286 if (p.second)
4287 this->plt_size_ = off + this->plt_call_size(p.first);
4288 return this->can_reach_stub(from, off, r_type);
4289 }
4290
4291 template<int size, bool big_endian>
4292 bool
4293 Stub_table<size, big_endian>::add_plt_call_entry(
4294 Address from,
4295 const Sized_relobj_file<size, big_endian>* object,
4296 unsigned int locsym_index,
4297 unsigned int r_type,
4298 Address addend)
4299 {
4300 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4301 unsigned int off = this->plt_size_;
4302 std::pair<typename Plt_stub_entries::iterator, bool> p
4303 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4304 if (p.second)
4305 this->plt_size_ = off + this->plt_call_size(p.first);
4306 return this->can_reach_stub(from, off, r_type);
4307 }
4308
4309 // Find a plt call stub.
4310
4311 template<int size, bool big_endian>
4312 typename Stub_table<size, big_endian>::Address
4313 Stub_table<size, big_endian>::find_plt_call_entry(
4314 const Sized_relobj_file<size, big_endian>* object,
4315 const Symbol* gsym,
4316 unsigned int r_type,
4317 Address addend) const
4318 {
4319 Plt_stub_ent ent(object, gsym, r_type, addend);
4320 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4321 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4322 }
4323
4324 template<int size, bool big_endian>
4325 typename Stub_table<size, big_endian>::Address
4326 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4327 {
4328 Plt_stub_ent ent(gsym);
4329 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4330 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4331 }
4332
4333 template<int size, bool big_endian>
4334 typename Stub_table<size, big_endian>::Address
4335 Stub_table<size, big_endian>::find_plt_call_entry(
4336 const Sized_relobj_file<size, big_endian>* object,
4337 unsigned int locsym_index,
4338 unsigned int r_type,
4339 Address addend) const
4340 {
4341 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4342 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4343 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4344 }
4345
4346 template<int size, bool big_endian>
4347 typename Stub_table<size, big_endian>::Address
4348 Stub_table<size, big_endian>::find_plt_call_entry(
4349 const Sized_relobj_file<size, big_endian>* object,
4350 unsigned int locsym_index) const
4351 {
4352 Plt_stub_ent ent(object, locsym_index);
4353 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4354 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4355 }
4356
4357 // Add a long branch stub if we don't already have one to given
4358 // destination.
4359
4360 template<int size, bool big_endian>
4361 bool
4362 Stub_table<size, big_endian>::add_long_branch_entry(
4363 const Powerpc_relobj<size, big_endian>* object,
4364 unsigned int r_type,
4365 Address from,
4366 Address to,
4367 bool save_res)
4368 {
4369 Branch_stub_ent ent(object, to, save_res);
4370 Address off = this->branch_size_;
4371 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4372 {
4373 if (save_res)
4374 this->need_save_res_ = true;
4375 else
4376 {
4377 unsigned int stub_size = this->branch_stub_size(to);
4378 this->branch_size_ = off + stub_size;
4379 if (size == 64 && stub_size != 4)
4380 this->targ_->add_branch_lookup_table(to);
4381 }
4382 }
4383 return this->can_reach_stub(from, off, r_type);
4384 }
4385
4386 // Find long branch stub offset.
4387
4388 template<int size, bool big_endian>
4389 typename Stub_table<size, big_endian>::Address
4390 Stub_table<size, big_endian>::find_long_branch_entry(
4391 const Powerpc_relobj<size, big_endian>* object,
4392 Address to) const
4393 {
4394 Branch_stub_ent ent(object, to, false);
4395 typename Branch_stub_entries::const_iterator p
4396 = this->long_branch_stubs_.find(ent);
4397 if (p == this->long_branch_stubs_.end())
4398 return invalid_address;
4399 if (p->first.save_res_)
4400 return to - this->targ_->savres_section()->address() + this->branch_size_;
4401 return p->second;
4402 }
4403
4404 // A class to handle .glink.
4405
4406 template<int size, bool big_endian>
4407 class Output_data_glink : public Output_section_data
4408 {
4409 public:
4410 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4411 static const Address invalid_address = static_cast<Address>(0) - 1;
4412 static const int pltresolve_size = 16*4;
4413
4414 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4415 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4416 end_branch_table_(), ge_size_(0)
4417 { }
4418
4419 void
4420 add_eh_frame(Layout* layout);
4421
4422 void
4423 add_global_entry(const Symbol*);
4424
4425 Address
4426 find_global_entry(const Symbol*) const;
4427
4428 Address
4429 global_entry_address() const
4430 {
4431 gold_assert(this->is_data_size_valid());
4432 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4433 return this->address() + global_entry_off;
4434 }
4435
4436 protected:
4437 // Write to a map file.
4438 void
4439 do_print_to_mapfile(Mapfile* mapfile) const
4440 { mapfile->print_output_data(this, _("** glink")); }
4441
4442 private:
4443 void
4444 set_final_data_size();
4445
4446 // Write out .glink
4447 void
4448 do_write(Output_file*);
4449
4450 // Allows access to .got and .plt for do_write.
4451 Target_powerpc<size, big_endian>* targ_;
4452
4453 // Map sym to stub offset.
4454 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4455 Global_entry_stub_entries global_entry_stubs_;
4456
4457 unsigned int end_branch_table_, ge_size_;
4458 };
4459
4460 template<int size, bool big_endian>
4461 void
4462 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4463 {
4464 if (!parameters->options().ld_generated_unwind_info())
4465 return;
4466
4467 if (size == 64)
4468 {
4469 if (this->targ_->abiversion() < 2)
4470 layout->add_eh_frame_for_plt(this,
4471 Eh_cie<64>::eh_frame_cie,
4472 sizeof (Eh_cie<64>::eh_frame_cie),
4473 glink_eh_frame_fde_64v1,
4474 sizeof (glink_eh_frame_fde_64v1));
4475 else
4476 layout->add_eh_frame_for_plt(this,
4477 Eh_cie<64>::eh_frame_cie,
4478 sizeof (Eh_cie<64>::eh_frame_cie),
4479 glink_eh_frame_fde_64v2,
4480 sizeof (glink_eh_frame_fde_64v2));
4481 }
4482 else
4483 {
4484 // 32-bit .glink can use the default since the CIE return
4485 // address reg, LR, is valid.
4486 layout->add_eh_frame_for_plt(this,
4487 Eh_cie<32>::eh_frame_cie,
4488 sizeof (Eh_cie<32>::eh_frame_cie),
4489 default_fde,
4490 sizeof (default_fde));
4491 // Except where LR is used in a PIC __glink_PLTresolve.
4492 if (parameters->options().output_is_position_independent())
4493 layout->add_eh_frame_for_plt(this,
4494 Eh_cie<32>::eh_frame_cie,
4495 sizeof (Eh_cie<32>::eh_frame_cie),
4496 glink_eh_frame_fde_32,
4497 sizeof (glink_eh_frame_fde_32));
4498 }
4499 }
4500
4501 template<int size, bool big_endian>
4502 void
4503 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4504 {
4505 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4506 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4507 if (p.second)
4508 this->ge_size_ += 16;
4509 }
4510
4511 template<int size, bool big_endian>
4512 typename Output_data_glink<size, big_endian>::Address
4513 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4514 {
4515 typename Global_entry_stub_entries::const_iterator p
4516 = this->global_entry_stubs_.find(gsym);
4517 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4518 }
4519
4520 template<int size, bool big_endian>
4521 void
4522 Output_data_glink<size, big_endian>::set_final_data_size()
4523 {
4524 unsigned int count = this->targ_->plt_entry_count();
4525 section_size_type total = 0;
4526
4527 if (count != 0)
4528 {
4529 if (size == 32)
4530 {
4531 // space for branch table
4532 total += 4 * (count - 1);
4533
4534 total += -total & 15;
4535 total += this->pltresolve_size;
4536 }
4537 else
4538 {
4539 total += this->pltresolve_size;
4540
4541 // space for branch table
4542 total += 4 * count;
4543 if (this->targ_->abiversion() < 2)
4544 {
4545 total += 4 * count;
4546 if (count > 0x8000)
4547 total += 4 * (count - 0x8000);
4548 }
4549 }
4550 }
4551 this->end_branch_table_ = total;
4552 total = (total + 15) & -16;
4553 total += this->ge_size_;
4554
4555 this->set_data_size(total);
4556 }
4557
4558 // Write out plt and long branch stub code.
4559
4560 template<int size, bool big_endian>
4561 void
4562 Stub_table<size, big_endian>::do_write(Output_file* of)
4563 {
4564 if (this->plt_call_stubs_.empty()
4565 && this->long_branch_stubs_.empty())
4566 return;
4567
4568 const section_size_type start_off = this->offset();
4569 const section_size_type off = this->stub_offset();
4570 const section_size_type oview_size =
4571 convert_to_section_size_type(this->data_size() - (off - start_off));
4572 unsigned char* const oview = of->get_output_view(off, oview_size);
4573 unsigned char* p;
4574
4575 if (size == 64)
4576 {
4577 const Output_data_got_powerpc<size, big_endian>* got
4578 = this->targ_->got_section();
4579 Address got_os_addr = got->output_section()->address();
4580
4581 if (!this->plt_call_stubs_.empty())
4582 {
4583 // The base address of the .plt section.
4584 Address plt_base = this->targ_->plt_section()->address();
4585 Address iplt_base = invalid_address;
4586
4587 // Write out plt call stubs.
4588 typename Plt_stub_entries::const_iterator cs;
4589 for (cs = this->plt_call_stubs_.begin();
4590 cs != this->plt_call_stubs_.end();
4591 ++cs)
4592 {
4593 bool is_iplt;
4594 Address pltoff = this->plt_off(cs, &is_iplt);
4595 Address plt_addr = pltoff;
4596 if (is_iplt)
4597 {
4598 if (iplt_base == invalid_address)
4599 iplt_base = this->targ_->iplt_section()->address();
4600 plt_addr += iplt_base;
4601 }
4602 else
4603 plt_addr += plt_base;
4604 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4605 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4606 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4607 Address off = plt_addr - got_addr;
4608
4609 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4610 gold_error(_("%s: linkage table error against `%s'"),
4611 cs->first.object_->name().c_str(),
4612 cs->first.sym_->demangled_name().c_str());
4613
4614 bool plt_load_toc = this->targ_->abiversion() < 2;
4615 bool static_chain
4616 = plt_load_toc && parameters->options().plt_static_chain();
4617 bool thread_safe
4618 = plt_load_toc && this->targ_->plt_thread_safe();
4619 bool use_fake_dep = false;
4620 Address cmp_branch_off = 0;
4621 if (thread_safe)
4622 {
4623 unsigned int pltindex
4624 = ((pltoff - this->targ_->first_plt_entry_offset())
4625 / this->targ_->plt_entry_size());
4626 Address glinkoff
4627 = (this->targ_->glink_section()->pltresolve_size
4628 + pltindex * 8);
4629 if (pltindex > 32768)
4630 glinkoff += (pltindex - 32768) * 4;
4631 Address to
4632 = this->targ_->glink_section()->address() + glinkoff;
4633 Address from
4634 = (this->stub_address() + cs->second + 24
4635 + 4 * (ha(off) != 0)
4636 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4637 + 4 * static_chain);
4638 cmp_branch_off = to - from;
4639 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4640 }
4641
4642 p = oview + cs->second;
4643 if (ha(off) != 0)
4644 {
4645 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4646 p += 4;
4647 if (plt_load_toc)
4648 {
4649 write_insn<big_endian>(p, addis_11_2 + ha(off));
4650 p += 4;
4651 write_insn<big_endian>(p, ld_12_11 + l(off));
4652 p += 4;
4653 }
4654 else
4655 {
4656 write_insn<big_endian>(p, addis_12_2 + ha(off));
4657 p += 4;
4658 write_insn<big_endian>(p, ld_12_12 + l(off));
4659 p += 4;
4660 }
4661 if (plt_load_toc
4662 && ha(off + 8 + 8 * static_chain) != ha(off))
4663 {
4664 write_insn<big_endian>(p, addi_11_11 + l(off));
4665 p += 4;
4666 off = 0;
4667 }
4668 write_insn<big_endian>(p, mtctr_12);
4669 p += 4;
4670 if (plt_load_toc)
4671 {
4672 if (use_fake_dep)
4673 {
4674 write_insn<big_endian>(p, xor_2_12_12);
4675 p += 4;
4676 write_insn<big_endian>(p, add_11_11_2);
4677 p += 4;
4678 }
4679 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4680 p += 4;
4681 if (static_chain)
4682 {
4683 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4684 p += 4;
4685 }
4686 }
4687 }
4688 else
4689 {
4690 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4691 p += 4;
4692 write_insn<big_endian>(p, ld_12_2 + l(off));
4693 p += 4;
4694 if (plt_load_toc
4695 && ha(off + 8 + 8 * static_chain) != ha(off))
4696 {
4697 write_insn<big_endian>(p, addi_2_2 + l(off));
4698 p += 4;
4699 off = 0;
4700 }
4701 write_insn<big_endian>(p, mtctr_12);
4702 p += 4;
4703 if (plt_load_toc)
4704 {
4705 if (use_fake_dep)
4706 {
4707 write_insn<big_endian>(p, xor_11_12_12);
4708 p += 4;
4709 write_insn<big_endian>(p, add_2_2_11);
4710 p += 4;
4711 }
4712 if (static_chain)
4713 {
4714 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4715 p += 4;
4716 }
4717 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4718 p += 4;
4719 }
4720 }
4721 if (thread_safe && !use_fake_dep)
4722 {
4723 write_insn<big_endian>(p, cmpldi_2_0);
4724 p += 4;
4725 write_insn<big_endian>(p, bnectr_p4);
4726 p += 4;
4727 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4728 }
4729 else
4730 write_insn<big_endian>(p, bctr);
4731 }
4732 }
4733
4734 // Write out long branch stubs.
4735 typename Branch_stub_entries::const_iterator bs;
4736 for (bs = this->long_branch_stubs_.begin();
4737 bs != this->long_branch_stubs_.end();
4738 ++bs)
4739 {
4740 if (bs->first.save_res_)
4741 continue;
4742 p = oview + this->plt_size_ + bs->second;
4743 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4744 Address delta = bs->first.dest_ - loc;
4745 if (delta + (1 << 25) < 2 << 25)
4746 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4747 else
4748 {
4749 Address brlt_addr
4750 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4751 gold_assert(brlt_addr != invalid_address);
4752 brlt_addr += this->targ_->brlt_section()->address();
4753 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4754 Address brltoff = brlt_addr - got_addr;
4755 if (ha(brltoff) == 0)
4756 {
4757 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4758 }
4759 else
4760 {
4761 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4762 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4763 }
4764 write_insn<big_endian>(p, mtctr_12), p += 4;
4765 write_insn<big_endian>(p, bctr);
4766 }
4767 }
4768 }
4769 else
4770 {
4771 if (!this->plt_call_stubs_.empty())
4772 {
4773 // The base address of the .plt section.
4774 Address plt_base = this->targ_->plt_section()->address();
4775 Address iplt_base = invalid_address;
4776 // The address of _GLOBAL_OFFSET_TABLE_.
4777 Address g_o_t = invalid_address;
4778
4779 // Write out plt call stubs.
4780 typename Plt_stub_entries::const_iterator cs;
4781 for (cs = this->plt_call_stubs_.begin();
4782 cs != this->plt_call_stubs_.end();
4783 ++cs)
4784 {
4785 bool is_iplt;
4786 Address plt_addr = this->plt_off(cs, &is_iplt);
4787 if (is_iplt)
4788 {
4789 if (iplt_base == invalid_address)
4790 iplt_base = this->targ_->iplt_section()->address();
4791 plt_addr += iplt_base;
4792 }
4793 else
4794 plt_addr += plt_base;
4795
4796 p = oview + cs->second;
4797 if (parameters->options().output_is_position_independent())
4798 {
4799 Address got_addr;
4800 const Powerpc_relobj<size, big_endian>* ppcobj
4801 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4802 (cs->first.object_));
4803 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4804 {
4805 unsigned int got2 = ppcobj->got2_shndx();
4806 got_addr = ppcobj->get_output_section_offset(got2);
4807 gold_assert(got_addr != invalid_address);
4808 got_addr += (ppcobj->output_section(got2)->address()
4809 + cs->first.addend_);
4810 }
4811 else
4812 {
4813 if (g_o_t == invalid_address)
4814 {
4815 const Output_data_got_powerpc<size, big_endian>* got
4816 = this->targ_->got_section();
4817 g_o_t = got->address() + got->g_o_t();
4818 }
4819 got_addr = g_o_t;
4820 }
4821
4822 Address off = plt_addr - got_addr;
4823 if (ha(off) == 0)
4824 {
4825 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4826 write_insn<big_endian>(p + 4, mtctr_11);
4827 write_insn<big_endian>(p + 8, bctr);
4828 }
4829 else
4830 {
4831 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4832 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4833 write_insn<big_endian>(p + 8, mtctr_11);
4834 write_insn<big_endian>(p + 12, bctr);
4835 }
4836 }
4837 else
4838 {
4839 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4840 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4841 write_insn<big_endian>(p + 8, mtctr_11);
4842 write_insn<big_endian>(p + 12, bctr);
4843 }
4844 }
4845 }
4846
4847 // Write out long branch stubs.
4848 typename Branch_stub_entries::const_iterator bs;
4849 for (bs = this->long_branch_stubs_.begin();
4850 bs != this->long_branch_stubs_.end();
4851 ++bs)
4852 {
4853 if (bs->first.save_res_)
4854 continue;
4855 p = oview + this->plt_size_ + bs->second;
4856 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4857 Address delta = bs->first.dest_ - loc;
4858 if (delta + (1 << 25) < 2 << 25)
4859 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4860 else if (!parameters->options().output_is_position_independent())
4861 {
4862 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4863 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4864 write_insn<big_endian>(p + 8, mtctr_12);
4865 write_insn<big_endian>(p + 12, bctr);
4866 }
4867 else
4868 {
4869 delta -= 8;
4870 write_insn<big_endian>(p + 0, mflr_0);
4871 write_insn<big_endian>(p + 4, bcl_20_31);
4872 write_insn<big_endian>(p + 8, mflr_12);
4873 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4874 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4875 write_insn<big_endian>(p + 20, mtlr_0);
4876 write_insn<big_endian>(p + 24, mtctr_12);
4877 write_insn<big_endian>(p + 28, bctr);
4878 }
4879 }
4880 }
4881 if (this->need_save_res_)
4882 {
4883 p = oview + this->plt_size_ + this->branch_size_;
4884 memcpy (p, this->targ_->savres_section()->contents(),
4885 this->targ_->savres_section()->data_size());
4886 }
4887 }
4888
4889 // Write out .glink.
4890
4891 template<int size, bool big_endian>
4892 void
4893 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4894 {
4895 const section_size_type off = this->offset();
4896 const section_size_type oview_size =
4897 convert_to_section_size_type(this->data_size());
4898 unsigned char* const oview = of->get_output_view(off, oview_size);
4899 unsigned char* p;
4900
4901 // The base address of the .plt section.
4902 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4903 Address plt_base = this->targ_->plt_section()->address();
4904
4905 if (size == 64)
4906 {
4907 if (this->end_branch_table_ != 0)
4908 {
4909 // Write pltresolve stub.
4910 p = oview;
4911 Address after_bcl = this->address() + 16;
4912 Address pltoff = plt_base - after_bcl;
4913
4914 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4915
4916 if (this->targ_->abiversion() < 2)
4917 {
4918 write_insn<big_endian>(p, mflr_12), p += 4;
4919 write_insn<big_endian>(p, bcl_20_31), p += 4;
4920 write_insn<big_endian>(p, mflr_11), p += 4;
4921 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4922 write_insn<big_endian>(p, mtlr_12), p += 4;
4923 write_insn<big_endian>(p, add_11_2_11), p += 4;
4924 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4925 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4926 write_insn<big_endian>(p, mtctr_12), p += 4;
4927 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4928 }
4929 else
4930 {
4931 write_insn<big_endian>(p, mflr_0), p += 4;
4932 write_insn<big_endian>(p, bcl_20_31), p += 4;
4933 write_insn<big_endian>(p, mflr_11), p += 4;
4934 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4935 write_insn<big_endian>(p, mtlr_0), p += 4;
4936 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4937 write_insn<big_endian>(p, add_11_2_11), p += 4;
4938 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4939 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4940 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4941 write_insn<big_endian>(p, mtctr_12), p += 4;
4942 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4943 }
4944 write_insn<big_endian>(p, bctr), p += 4;
4945 while (p < oview + this->pltresolve_size)
4946 write_insn<big_endian>(p, nop), p += 4;
4947
4948 // Write lazy link call stubs.
4949 uint32_t indx = 0;
4950 while (p < oview + this->end_branch_table_)
4951 {
4952 if (this->targ_->abiversion() < 2)
4953 {
4954 if (indx < 0x8000)
4955 {
4956 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4957 }
4958 else
4959 {
4960 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4961 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4962 }
4963 }
4964 uint32_t branch_off = 8 - (p - oview);
4965 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4966 indx++;
4967 }
4968 }
4969
4970 Address plt_base = this->targ_->plt_section()->address();
4971 Address iplt_base = invalid_address;
4972 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4973 Address global_entry_base = this->address() + global_entry_off;
4974 typename Global_entry_stub_entries::const_iterator ge;
4975 for (ge = this->global_entry_stubs_.begin();
4976 ge != this->global_entry_stubs_.end();
4977 ++ge)
4978 {
4979 p = oview + global_entry_off + ge->second;
4980 Address plt_addr = ge->first->plt_offset();
4981 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4982 && ge->first->can_use_relative_reloc(false))
4983 {
4984 if (iplt_base == invalid_address)
4985 iplt_base = this->targ_->iplt_section()->address();
4986 plt_addr += iplt_base;
4987 }
4988 else
4989 plt_addr += plt_base;
4990 Address my_addr = global_entry_base + ge->second;
4991 Address off = plt_addr - my_addr;
4992
4993 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4994 gold_error(_("%s: linkage table error against `%s'"),
4995 ge->first->object()->name().c_str(),
4996 ge->first->demangled_name().c_str());
4997
4998 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4999 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5000 write_insn<big_endian>(p, mtctr_12), p += 4;
5001 write_insn<big_endian>(p, bctr);
5002 }
5003 }
5004 else
5005 {
5006 const Output_data_got_powerpc<size, big_endian>* got
5007 = this->targ_->got_section();
5008 // The address of _GLOBAL_OFFSET_TABLE_.
5009 Address g_o_t = got->address() + got->g_o_t();
5010
5011 // Write out pltresolve branch table.
5012 p = oview;
5013 unsigned int the_end = oview_size - this->pltresolve_size;
5014 unsigned char* end_p = oview + the_end;
5015 while (p < end_p - 8 * 4)
5016 write_insn<big_endian>(p, b + end_p - p), p += 4;
5017 while (p < end_p)
5018 write_insn<big_endian>(p, nop), p += 4;
5019
5020 // Write out pltresolve call stub.
5021 if (parameters->options().output_is_position_independent())
5022 {
5023 Address res0_off = 0;
5024 Address after_bcl_off = the_end + 12;
5025 Address bcl_res0 = after_bcl_off - res0_off;
5026
5027 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
5028 write_insn<big_endian>(p + 4, mflr_0);
5029 write_insn<big_endian>(p + 8, bcl_20_31);
5030 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
5031 write_insn<big_endian>(p + 16, mflr_12);
5032 write_insn<big_endian>(p + 20, mtlr_0);
5033 write_insn<big_endian>(p + 24, sub_11_11_12);
5034
5035 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5036
5037 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
5038 if (ha(got_bcl) == ha(got_bcl + 4))
5039 {
5040 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
5041 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
5042 }
5043 else
5044 {
5045 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
5046 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
5047 }
5048 write_insn<big_endian>(p + 40, mtctr_0);
5049 write_insn<big_endian>(p + 44, add_0_11_11);
5050 write_insn<big_endian>(p + 48, add_11_0_11);
5051 write_insn<big_endian>(p + 52, bctr);
5052 write_insn<big_endian>(p + 56, nop);
5053 write_insn<big_endian>(p + 60, nop);
5054 }
5055 else
5056 {
5057 Address res0 = this->address();
5058
5059 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
5060 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
5061 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5062 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
5063 else
5064 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
5065 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
5066 write_insn<big_endian>(p + 16, mtctr_0);
5067 write_insn<big_endian>(p + 20, add_0_11_11);
5068 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5069 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
5070 else
5071 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
5072 write_insn<big_endian>(p + 28, add_11_0_11);
5073 write_insn<big_endian>(p + 32, bctr);
5074 write_insn<big_endian>(p + 36, nop);
5075 write_insn<big_endian>(p + 40, nop);
5076 write_insn<big_endian>(p + 44, nop);
5077 write_insn<big_endian>(p + 48, nop);
5078 write_insn<big_endian>(p + 52, nop);
5079 write_insn<big_endian>(p + 56, nop);
5080 write_insn<big_endian>(p + 60, nop);
5081 }
5082 p += 64;
5083 }
5084
5085 of->write_output_view(off, oview_size, oview);
5086 }
5087
5088
5089 // A class to handle linker generated save/restore functions.
5090
5091 template<int size, bool big_endian>
5092 class Output_data_save_res : public Output_section_data_build
5093 {
5094 public:
5095 Output_data_save_res(Symbol_table* symtab);
5096
5097 const unsigned char*
5098 contents() const
5099 {
5100 return contents_;
5101 }
5102
5103 protected:
5104 // Write to a map file.
5105 void
5106 do_print_to_mapfile(Mapfile* mapfile) const
5107 { mapfile->print_output_data(this, _("** save/restore")); }
5108
5109 void
5110 do_write(Output_file*);
5111
5112 private:
5113 // The maximum size of save/restore contents.
5114 static const unsigned int savres_max = 218*4;
5115
5116 void
5117 savres_define(Symbol_table* symtab,
5118 const char *name,
5119 unsigned int lo, unsigned int hi,
5120 unsigned char* write_ent(unsigned char*, int),
5121 unsigned char* write_tail(unsigned char*, int));
5122
5123 unsigned char *contents_;
5124 };
5125
5126 template<bool big_endian>
5127 static unsigned char*
5128 savegpr0(unsigned char* p, int r)
5129 {
5130 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5131 write_insn<big_endian>(p, insn);
5132 return p + 4;
5133 }
5134
5135 template<bool big_endian>
5136 static unsigned char*
5137 savegpr0_tail(unsigned char* p, int r)
5138 {
5139 p = savegpr0<big_endian>(p, r);
5140 uint32_t insn = std_0_1 + 16;
5141 write_insn<big_endian>(p, insn);
5142 p = p + 4;
5143 write_insn<big_endian>(p, blr);
5144 return p + 4;
5145 }
5146
5147 template<bool big_endian>
5148 static unsigned char*
5149 restgpr0(unsigned char* p, int r)
5150 {
5151 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5152 write_insn<big_endian>(p, insn);
5153 return p + 4;
5154 }
5155
5156 template<bool big_endian>
5157 static unsigned char*
5158 restgpr0_tail(unsigned char* p, int r)
5159 {
5160 uint32_t insn = ld_0_1 + 16;
5161 write_insn<big_endian>(p, insn);
5162 p = p + 4;
5163 p = restgpr0<big_endian>(p, r);
5164 write_insn<big_endian>(p, mtlr_0);
5165 p = p + 4;
5166 if (r == 29)
5167 {
5168 p = restgpr0<big_endian>(p, 30);
5169 p = restgpr0<big_endian>(p, 31);
5170 }
5171 write_insn<big_endian>(p, blr);
5172 return p + 4;
5173 }
5174
5175 template<bool big_endian>
5176 static unsigned char*
5177 savegpr1(unsigned char* p, int r)
5178 {
5179 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5180 write_insn<big_endian>(p, insn);
5181 return p + 4;
5182 }
5183
5184 template<bool big_endian>
5185 static unsigned char*
5186 savegpr1_tail(unsigned char* p, int r)
5187 {
5188 p = savegpr1<big_endian>(p, r);
5189 write_insn<big_endian>(p, blr);
5190 return p + 4;
5191 }
5192
5193 template<bool big_endian>
5194 static unsigned char*
5195 restgpr1(unsigned char* p, int r)
5196 {
5197 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5198 write_insn<big_endian>(p, insn);
5199 return p + 4;
5200 }
5201
5202 template<bool big_endian>
5203 static unsigned char*
5204 restgpr1_tail(unsigned char* p, int r)
5205 {
5206 p = restgpr1<big_endian>(p, r);
5207 write_insn<big_endian>(p, blr);
5208 return p + 4;
5209 }
5210
5211 template<bool big_endian>
5212 static unsigned char*
5213 savefpr(unsigned char* p, int r)
5214 {
5215 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5216 write_insn<big_endian>(p, insn);
5217 return p + 4;
5218 }
5219
5220 template<bool big_endian>
5221 static unsigned char*
5222 savefpr0_tail(unsigned char* p, int r)
5223 {
5224 p = savefpr<big_endian>(p, r);
5225 write_insn<big_endian>(p, std_0_1 + 16);
5226 p = p + 4;
5227 write_insn<big_endian>(p, blr);
5228 return p + 4;
5229 }
5230
5231 template<bool big_endian>
5232 static unsigned char*
5233 restfpr(unsigned char* p, int r)
5234 {
5235 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5236 write_insn<big_endian>(p, insn);
5237 return p + 4;
5238 }
5239
5240 template<bool big_endian>
5241 static unsigned char*
5242 restfpr0_tail(unsigned char* p, int r)
5243 {
5244 write_insn<big_endian>(p, ld_0_1 + 16);
5245 p = p + 4;
5246 p = restfpr<big_endian>(p, r);
5247 write_insn<big_endian>(p, mtlr_0);
5248 p = p + 4;
5249 if (r == 29)
5250 {
5251 p = restfpr<big_endian>(p, 30);
5252 p = restfpr<big_endian>(p, 31);
5253 }
5254 write_insn<big_endian>(p, blr);
5255 return p + 4;
5256 }
5257
5258 template<bool big_endian>
5259 static unsigned char*
5260 savefpr1_tail(unsigned char* p, int r)
5261 {
5262 p = savefpr<big_endian>(p, r);
5263 write_insn<big_endian>(p, blr);
5264 return p + 4;
5265 }
5266
5267 template<bool big_endian>
5268 static unsigned char*
5269 restfpr1_tail(unsigned char* p, int r)
5270 {
5271 p = restfpr<big_endian>(p, r);
5272 write_insn<big_endian>(p, blr);
5273 return p + 4;
5274 }
5275
5276 template<bool big_endian>
5277 static unsigned char*
5278 savevr(unsigned char* p, int r)
5279 {
5280 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5281 write_insn<big_endian>(p, insn);
5282 p = p + 4;
5283 insn = stvx_0_12_0 + (r << 21);
5284 write_insn<big_endian>(p, insn);
5285 return p + 4;
5286 }
5287
5288 template<bool big_endian>
5289 static unsigned char*
5290 savevr_tail(unsigned char* p, int r)
5291 {
5292 p = savevr<big_endian>(p, r);
5293 write_insn<big_endian>(p, blr);
5294 return p + 4;
5295 }
5296
5297 template<bool big_endian>
5298 static unsigned char*
5299 restvr(unsigned char* p, int r)
5300 {
5301 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5302 write_insn<big_endian>(p, insn);
5303 p = p + 4;
5304 insn = lvx_0_12_0 + (r << 21);
5305 write_insn<big_endian>(p, insn);
5306 return p + 4;
5307 }
5308
5309 template<bool big_endian>
5310 static unsigned char*
5311 restvr_tail(unsigned char* p, int r)
5312 {
5313 p = restvr<big_endian>(p, r);
5314 write_insn<big_endian>(p, blr);
5315 return p + 4;
5316 }
5317
5318
5319 template<int size, bool big_endian>
5320 Output_data_save_res<size, big_endian>::Output_data_save_res(
5321 Symbol_table* symtab)
5322 : Output_section_data_build(4),
5323 contents_(NULL)
5324 {
5325 this->savres_define(symtab,
5326 "_savegpr0_", 14, 31,
5327 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5328 this->savres_define(symtab,
5329 "_restgpr0_", 14, 29,
5330 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5331 this->savres_define(symtab,
5332 "_restgpr0_", 30, 31,
5333 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5334 this->savres_define(symtab,
5335 "_savegpr1_", 14, 31,
5336 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5337 this->savres_define(symtab,
5338 "_restgpr1_", 14, 31,
5339 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5340 this->savres_define(symtab,
5341 "_savefpr_", 14, 31,
5342 savefpr<big_endian>, savefpr0_tail<big_endian>);
5343 this->savres_define(symtab,
5344 "_restfpr_", 14, 29,
5345 restfpr<big_endian>, restfpr0_tail<big_endian>);
5346 this->savres_define(symtab,
5347 "_restfpr_", 30, 31,
5348 restfpr<big_endian>, restfpr0_tail<big_endian>);
5349 this->savres_define(symtab,
5350 "._savef", 14, 31,
5351 savefpr<big_endian>, savefpr1_tail<big_endian>);
5352 this->savres_define(symtab,
5353 "._restf", 14, 31,
5354 restfpr<big_endian>, restfpr1_tail<big_endian>);
5355 this->savres_define(symtab,
5356 "_savevr_", 20, 31,
5357 savevr<big_endian>, savevr_tail<big_endian>);
5358 this->savres_define(symtab,
5359 "_restvr_", 20, 31,
5360 restvr<big_endian>, restvr_tail<big_endian>);
5361 }
5362
5363 template<int size, bool big_endian>
5364 void
5365 Output_data_save_res<size, big_endian>::savres_define(
5366 Symbol_table* symtab,
5367 const char *name,
5368 unsigned int lo, unsigned int hi,
5369 unsigned char* write_ent(unsigned char*, int),
5370 unsigned char* write_tail(unsigned char*, int))
5371 {
5372 size_t len = strlen(name);
5373 bool writing = false;
5374 char sym[16];
5375
5376 memcpy(sym, name, len);
5377 sym[len + 2] = 0;
5378
5379 for (unsigned int i = lo; i <= hi; i++)
5380 {
5381 sym[len + 0] = i / 10 + '0';
5382 sym[len + 1] = i % 10 + '0';
5383 Symbol* gsym = symtab->lookup(sym);
5384 bool refd = gsym != NULL && gsym->is_undefined();
5385 writing = writing || refd;
5386 if (writing)
5387 {
5388 if (this->contents_ == NULL)
5389 this->contents_ = new unsigned char[this->savres_max];
5390
5391 section_size_type value = this->current_data_size();
5392 unsigned char* p = this->contents_ + value;
5393 if (i != hi)
5394 p = write_ent(p, i);
5395 else
5396 p = write_tail(p, i);
5397 section_size_type cur_size = p - this->contents_;
5398 this->set_current_data_size(cur_size);
5399 if (refd)
5400 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5401 this, value, cur_size - value,
5402 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5403 elfcpp::STV_HIDDEN, 0, false, false);
5404 }
5405 }
5406 }
5407
5408 // Write out save/restore.
5409
5410 template<int size, bool big_endian>
5411 void
5412 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5413 {
5414 const section_size_type off = this->offset();
5415 const section_size_type oview_size =
5416 convert_to_section_size_type(this->data_size());
5417 unsigned char* const oview = of->get_output_view(off, oview_size);
5418 memcpy(oview, this->contents_, oview_size);
5419 of->write_output_view(off, oview_size, oview);
5420 }
5421
5422
5423 // Create the glink section.
5424
5425 template<int size, bool big_endian>
5426 void
5427 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5428 {
5429 if (this->glink_ == NULL)
5430 {
5431 this->glink_ = new Output_data_glink<size, big_endian>(this);
5432 this->glink_->add_eh_frame(layout);
5433 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5434 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5435 this->glink_, ORDER_TEXT, false);
5436 }
5437 }
5438
5439 // Create a PLT entry for a global symbol.
5440
5441 template<int size, bool big_endian>
5442 void
5443 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5444 Layout* layout,
5445 Symbol* gsym)
5446 {
5447 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5448 && gsym->can_use_relative_reloc(false))
5449 {
5450 if (this->iplt_ == NULL)
5451 this->make_iplt_section(symtab, layout);
5452 this->iplt_->add_ifunc_entry(gsym);
5453 }
5454 else
5455 {
5456 if (this->plt_ == NULL)
5457 this->make_plt_section(symtab, layout);
5458 this->plt_->add_entry(gsym);
5459 }
5460 }
5461
5462 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5463
5464 template<int size, bool big_endian>
5465 void
5466 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5467 Symbol_table* symtab,
5468 Layout* layout,
5469 Sized_relobj_file<size, big_endian>* relobj,
5470 unsigned int r_sym)
5471 {
5472 if (this->iplt_ == NULL)
5473 this->make_iplt_section(symtab, layout);
5474 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5475 }
5476
5477 // Return the number of entries in the PLT.
5478
5479 template<int size, bool big_endian>
5480 unsigned int
5481 Target_powerpc<size, big_endian>::plt_entry_count() const
5482 {
5483 if (this->plt_ == NULL)
5484 return 0;
5485 return this->plt_->entry_count();
5486 }
5487
5488 // Create a GOT entry for local dynamic __tls_get_addr calls.
5489
5490 template<int size, bool big_endian>
5491 unsigned int
5492 Target_powerpc<size, big_endian>::tlsld_got_offset(
5493 Symbol_table* symtab,
5494 Layout* layout,
5495 Sized_relobj_file<size, big_endian>* object)
5496 {
5497 if (this->tlsld_got_offset_ == -1U)
5498 {
5499 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5500 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5501 Output_data_got_powerpc<size, big_endian>* got
5502 = this->got_section(symtab, layout);
5503 unsigned int got_offset = got->add_constant_pair(0, 0);
5504 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5505 got_offset, 0);
5506 this->tlsld_got_offset_ = got_offset;
5507 }
5508 return this->tlsld_got_offset_;
5509 }
5510
5511 // Get the Reference_flags for a particular relocation.
5512
5513 template<int size, bool big_endian>
5514 int
5515 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5516 unsigned int r_type,
5517 const Target_powerpc* target)
5518 {
5519 int ref = 0;
5520
5521 switch (r_type)
5522 {
5523 case elfcpp::R_POWERPC_NONE:
5524 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5525 case elfcpp::R_POWERPC_GNU_VTENTRY:
5526 case elfcpp::R_PPC64_TOC:
5527 // No symbol reference.
5528 break;
5529
5530 case elfcpp::R_PPC64_ADDR64:
5531 case elfcpp::R_PPC64_UADDR64:
5532 case elfcpp::R_POWERPC_ADDR32:
5533 case elfcpp::R_POWERPC_UADDR32:
5534 case elfcpp::R_POWERPC_ADDR16:
5535 case elfcpp::R_POWERPC_UADDR16:
5536 case elfcpp::R_POWERPC_ADDR16_LO:
5537 case elfcpp::R_POWERPC_ADDR16_HI:
5538 case elfcpp::R_POWERPC_ADDR16_HA:
5539 ref = Symbol::ABSOLUTE_REF;
5540 break;
5541
5542 case elfcpp::R_POWERPC_ADDR24:
5543 case elfcpp::R_POWERPC_ADDR14:
5544 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5545 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5546 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5547 break;
5548
5549 case elfcpp::R_PPC64_REL64:
5550 case elfcpp::R_POWERPC_REL32:
5551 case elfcpp::R_PPC_LOCAL24PC:
5552 case elfcpp::R_POWERPC_REL16:
5553 case elfcpp::R_POWERPC_REL16_LO:
5554 case elfcpp::R_POWERPC_REL16_HI:
5555 case elfcpp::R_POWERPC_REL16_HA:
5556 ref = Symbol::RELATIVE_REF;
5557 break;
5558
5559 case elfcpp::R_POWERPC_REL24:
5560 case elfcpp::R_PPC_PLTREL24:
5561 case elfcpp::R_POWERPC_REL14:
5562 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5563 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5564 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5565 break;
5566
5567 case elfcpp::R_POWERPC_GOT16:
5568 case elfcpp::R_POWERPC_GOT16_LO:
5569 case elfcpp::R_POWERPC_GOT16_HI:
5570 case elfcpp::R_POWERPC_GOT16_HA:
5571 case elfcpp::R_PPC64_GOT16_DS:
5572 case elfcpp::R_PPC64_GOT16_LO_DS:
5573 case elfcpp::R_PPC64_TOC16:
5574 case elfcpp::R_PPC64_TOC16_LO:
5575 case elfcpp::R_PPC64_TOC16_HI:
5576 case elfcpp::R_PPC64_TOC16_HA:
5577 case elfcpp::R_PPC64_TOC16_DS:
5578 case elfcpp::R_PPC64_TOC16_LO_DS:
5579 ref = Symbol::RELATIVE_REF;
5580 break;
5581
5582 case elfcpp::R_POWERPC_GOT_TPREL16:
5583 case elfcpp::R_POWERPC_TLS:
5584 ref = Symbol::TLS_REF;
5585 break;
5586
5587 case elfcpp::R_POWERPC_COPY:
5588 case elfcpp::R_POWERPC_GLOB_DAT:
5589 case elfcpp::R_POWERPC_JMP_SLOT:
5590 case elfcpp::R_POWERPC_RELATIVE:
5591 case elfcpp::R_POWERPC_DTPMOD:
5592 default:
5593 // Not expected. We will give an error later.
5594 break;
5595 }
5596
5597 if (size == 64 && target->abiversion() < 2)
5598 ref |= Symbol::FUNC_DESC_ABI;
5599 return ref;
5600 }
5601
5602 // Report an unsupported relocation against a local symbol.
5603
5604 template<int size, bool big_endian>
5605 void
5606 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5607 Sized_relobj_file<size, big_endian>* object,
5608 unsigned int r_type)
5609 {
5610 gold_error(_("%s: unsupported reloc %u against local symbol"),
5611 object->name().c_str(), r_type);
5612 }
5613
5614 // We are about to emit a dynamic relocation of type R_TYPE. If the
5615 // dynamic linker does not support it, issue an error.
5616
5617 template<int size, bool big_endian>
5618 void
5619 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5620 unsigned int r_type)
5621 {
5622 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5623
5624 // These are the relocation types supported by glibc for both 32-bit
5625 // and 64-bit powerpc.
5626 switch (r_type)
5627 {
5628 case elfcpp::R_POWERPC_NONE:
5629 case elfcpp::R_POWERPC_RELATIVE:
5630 case elfcpp::R_POWERPC_GLOB_DAT:
5631 case elfcpp::R_POWERPC_DTPMOD:
5632 case elfcpp::R_POWERPC_DTPREL:
5633 case elfcpp::R_POWERPC_TPREL:
5634 case elfcpp::R_POWERPC_JMP_SLOT:
5635 case elfcpp::R_POWERPC_COPY:
5636 case elfcpp::R_POWERPC_IRELATIVE:
5637 case elfcpp::R_POWERPC_ADDR32:
5638 case elfcpp::R_POWERPC_UADDR32:
5639 case elfcpp::R_POWERPC_ADDR24:
5640 case elfcpp::R_POWERPC_ADDR16:
5641 case elfcpp::R_POWERPC_UADDR16:
5642 case elfcpp::R_POWERPC_ADDR16_LO:
5643 case elfcpp::R_POWERPC_ADDR16_HI:
5644 case elfcpp::R_POWERPC_ADDR16_HA:
5645 case elfcpp::R_POWERPC_ADDR14:
5646 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5647 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5648 case elfcpp::R_POWERPC_REL32:
5649 case elfcpp::R_POWERPC_REL24:
5650 case elfcpp::R_POWERPC_TPREL16:
5651 case elfcpp::R_POWERPC_TPREL16_LO:
5652 case elfcpp::R_POWERPC_TPREL16_HI:
5653 case elfcpp::R_POWERPC_TPREL16_HA:
5654 return;
5655
5656 default:
5657 break;
5658 }
5659
5660 if (size == 64)
5661 {
5662 switch (r_type)
5663 {
5664 // These are the relocation types supported only on 64-bit.
5665 case elfcpp::R_PPC64_ADDR64:
5666 case elfcpp::R_PPC64_UADDR64:
5667 case elfcpp::R_PPC64_JMP_IREL:
5668 case elfcpp::R_PPC64_ADDR16_DS:
5669 case elfcpp::R_PPC64_ADDR16_LO_DS:
5670 case elfcpp::R_PPC64_ADDR16_HIGH:
5671 case elfcpp::R_PPC64_ADDR16_HIGHA:
5672 case elfcpp::R_PPC64_ADDR16_HIGHER:
5673 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5674 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5675 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5676 case elfcpp::R_PPC64_REL64:
5677 case elfcpp::R_POWERPC_ADDR30:
5678 case elfcpp::R_PPC64_TPREL16_DS:
5679 case elfcpp::R_PPC64_TPREL16_LO_DS:
5680 case elfcpp::R_PPC64_TPREL16_HIGH:
5681 case elfcpp::R_PPC64_TPREL16_HIGHA:
5682 case elfcpp::R_PPC64_TPREL16_HIGHER:
5683 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5684 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5685 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5686 return;
5687
5688 default:
5689 break;
5690 }
5691 }
5692 else
5693 {
5694 switch (r_type)
5695 {
5696 // These are the relocation types supported only on 32-bit.
5697 // ??? glibc ld.so doesn't need to support these.
5698 case elfcpp::R_POWERPC_DTPREL16:
5699 case elfcpp::R_POWERPC_DTPREL16_LO:
5700 case elfcpp::R_POWERPC_DTPREL16_HI:
5701 case elfcpp::R_POWERPC_DTPREL16_HA:
5702 return;
5703
5704 default:
5705 break;
5706 }
5707 }
5708
5709 // This prevents us from issuing more than one error per reloc
5710 // section. But we can still wind up issuing more than one
5711 // error per object file.
5712 if (this->issued_non_pic_error_)
5713 return;
5714 gold_assert(parameters->options().output_is_position_independent());
5715 object->error(_("requires unsupported dynamic reloc; "
5716 "recompile with -fPIC"));
5717 this->issued_non_pic_error_ = true;
5718 return;
5719 }
5720
5721 // Return whether we need to make a PLT entry for a relocation of the
5722 // given type against a STT_GNU_IFUNC symbol.
5723
5724 template<int size, bool big_endian>
5725 bool
5726 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5727 Target_powerpc<size, big_endian>* target,
5728 Sized_relobj_file<size, big_endian>* object,
5729 unsigned int r_type,
5730 bool report_err)
5731 {
5732 // In non-pic code any reference will resolve to the plt call stub
5733 // for the ifunc symbol.
5734 if ((size == 32 || target->abiversion() >= 2)
5735 && !parameters->options().output_is_position_independent())
5736 return true;
5737
5738 switch (r_type)
5739 {
5740 // Word size refs from data sections are OK, but don't need a PLT entry.
5741 case elfcpp::R_POWERPC_ADDR32:
5742 case elfcpp::R_POWERPC_UADDR32:
5743 if (size == 32)
5744 return false;
5745 break;
5746
5747 case elfcpp::R_PPC64_ADDR64:
5748 case elfcpp::R_PPC64_UADDR64:
5749 if (size == 64)
5750 return false;
5751 break;
5752
5753 // GOT refs are good, but also don't need a PLT entry.
5754 case elfcpp::R_POWERPC_GOT16:
5755 case elfcpp::R_POWERPC_GOT16_LO:
5756 case elfcpp::R_POWERPC_GOT16_HI:
5757 case elfcpp::R_POWERPC_GOT16_HA:
5758 case elfcpp::R_PPC64_GOT16_DS:
5759 case elfcpp::R_PPC64_GOT16_LO_DS:
5760 return false;
5761
5762 // Function calls are good, and these do need a PLT entry.
5763 case elfcpp::R_POWERPC_ADDR24:
5764 case elfcpp::R_POWERPC_ADDR14:
5765 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5766 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5767 case elfcpp::R_POWERPC_REL24:
5768 case elfcpp::R_PPC_PLTREL24:
5769 case elfcpp::R_POWERPC_REL14:
5770 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5771 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5772 return true;
5773
5774 default:
5775 break;
5776 }
5777
5778 // Anything else is a problem.
5779 // If we are building a static executable, the libc startup function
5780 // responsible for applying indirect function relocations is going
5781 // to complain about the reloc type.
5782 // If we are building a dynamic executable, we will have a text
5783 // relocation. The dynamic loader will set the text segment
5784 // writable and non-executable to apply text relocations. So we'll
5785 // segfault when trying to run the indirection function to resolve
5786 // the reloc.
5787 if (report_err)
5788 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5789 object->name().c_str(), r_type);
5790 return false;
5791 }
5792
5793 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5794 // reloc.
5795
5796 static bool
5797 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
5798 {
5799 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
5800 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
5801 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5802 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5803 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5804 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5805 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5806 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5807 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5808 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5809 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5810 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5811 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5812 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5813 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5814 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
5815 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
5816 /* Exclude lfqu by testing reloc. If relocs are ever
5817 defined for the reduced D field in psq_lu then those
5818 will need testing too. */
5819 && r_type != elfcpp::R_PPC64_TOC16_LO
5820 && r_type != elfcpp::R_POWERPC_GOT16_LO)
5821 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
5822 && (insn & 1) == 0)
5823 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
5824 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
5825 /* Exclude stfqu. psq_stu as above for psq_lu. */
5826 && r_type != elfcpp::R_PPC64_TOC16_LO
5827 && r_type != elfcpp::R_POWERPC_GOT16_LO)
5828 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
5829 && (insn & 1) == 0));
5830 }
5831
5832 // Scan a relocation for a local symbol.
5833
5834 template<int size, bool big_endian>
5835 inline void
5836 Target_powerpc<size, big_endian>::Scan::local(
5837 Symbol_table* symtab,
5838 Layout* layout,
5839 Target_powerpc<size, big_endian>* target,
5840 Sized_relobj_file<size, big_endian>* object,
5841 unsigned int data_shndx,
5842 Output_section* output_section,
5843 const elfcpp::Rela<size, big_endian>& reloc,
5844 unsigned int r_type,
5845 const elfcpp::Sym<size, big_endian>& lsym,
5846 bool is_discarded)
5847 {
5848 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5849
5850 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5851 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5852 {
5853 this->expect_tls_get_addr_call();
5854 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5855 if (tls_type != tls::TLSOPT_NONE)
5856 this->skip_next_tls_get_addr_call();
5857 }
5858 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5859 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5860 {
5861 this->expect_tls_get_addr_call();
5862 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5863 if (tls_type != tls::TLSOPT_NONE)
5864 this->skip_next_tls_get_addr_call();
5865 }
5866
5867 Powerpc_relobj<size, big_endian>* ppc_object
5868 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5869
5870 if (is_discarded)
5871 {
5872 if (size == 64
5873 && data_shndx == ppc_object->opd_shndx()
5874 && r_type == elfcpp::R_PPC64_ADDR64)
5875 ppc_object->set_opd_discard(reloc.get_r_offset());
5876 return;
5877 }
5878
5879 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5880 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5881 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5882 {
5883 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5884 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5885 r_type, r_sym, reloc.get_r_addend());
5886 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5887 }
5888
5889 switch (r_type)
5890 {
5891 case elfcpp::R_POWERPC_NONE:
5892 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5893 case elfcpp::R_POWERPC_GNU_VTENTRY:
5894 case elfcpp::R_PPC64_TOCSAVE:
5895 case elfcpp::R_POWERPC_TLS:
5896 case elfcpp::R_PPC64_ENTRY:
5897 break;
5898
5899 case elfcpp::R_PPC64_TOC:
5900 {
5901 Output_data_got_powerpc<size, big_endian>* got
5902 = target->got_section(symtab, layout);
5903 if (parameters->options().output_is_position_independent())
5904 {
5905 Address off = reloc.get_r_offset();
5906 if (size == 64
5907 && target->abiversion() < 2
5908 && data_shndx == ppc_object->opd_shndx()
5909 && ppc_object->get_opd_discard(off - 8))
5910 break;
5911
5912 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5913 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5914 rela_dyn->add_output_section_relative(got->output_section(),
5915 elfcpp::R_POWERPC_RELATIVE,
5916 output_section,
5917 object, data_shndx, off,
5918 symobj->toc_base_offset());
5919 }
5920 }
5921 break;
5922
5923 case elfcpp::R_PPC64_ADDR64:
5924 case elfcpp::R_PPC64_UADDR64:
5925 case elfcpp::R_POWERPC_ADDR32:
5926 case elfcpp::R_POWERPC_UADDR32:
5927 case elfcpp::R_POWERPC_ADDR24:
5928 case elfcpp::R_POWERPC_ADDR16:
5929 case elfcpp::R_POWERPC_ADDR16_LO:
5930 case elfcpp::R_POWERPC_ADDR16_HI:
5931 case elfcpp::R_POWERPC_ADDR16_HA:
5932 case elfcpp::R_POWERPC_UADDR16:
5933 case elfcpp::R_PPC64_ADDR16_HIGH:
5934 case elfcpp::R_PPC64_ADDR16_HIGHA:
5935 case elfcpp::R_PPC64_ADDR16_HIGHER:
5936 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5937 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5938 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5939 case elfcpp::R_PPC64_ADDR16_DS:
5940 case elfcpp::R_PPC64_ADDR16_LO_DS:
5941 case elfcpp::R_POWERPC_ADDR14:
5942 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5943 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5944 // If building a shared library (or a position-independent
5945 // executable), we need to create a dynamic relocation for
5946 // this location.
5947 if (parameters->options().output_is_position_independent()
5948 || (size == 64 && is_ifunc && target->abiversion() < 2))
5949 {
5950 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5951 is_ifunc);
5952 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5953 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5954 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5955 {
5956 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5957 : elfcpp::R_POWERPC_RELATIVE);
5958 rela_dyn->add_local_relative(object, r_sym, dynrel,
5959 output_section, data_shndx,
5960 reloc.get_r_offset(),
5961 reloc.get_r_addend(), false);
5962 }
5963 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5964 {
5965 check_non_pic(object, r_type);
5966 rela_dyn->add_local(object, r_sym, r_type, output_section,
5967 data_shndx, reloc.get_r_offset(),
5968 reloc.get_r_addend());
5969 }
5970 else
5971 {
5972 gold_assert(lsym.get_st_value() == 0);
5973 unsigned int shndx = lsym.get_st_shndx();
5974 bool is_ordinary;
5975 shndx = object->adjust_sym_shndx(r_sym, shndx,
5976 &is_ordinary);
5977 if (!is_ordinary)
5978 object->error(_("section symbol %u has bad shndx %u"),
5979 r_sym, shndx);
5980 else
5981 rela_dyn->add_local_section(object, shndx, r_type,
5982 output_section, data_shndx,
5983 reloc.get_r_offset());
5984 }
5985 }
5986 break;
5987
5988 case elfcpp::R_POWERPC_REL24:
5989 case elfcpp::R_PPC_PLTREL24:
5990 case elfcpp::R_PPC_LOCAL24PC:
5991 case elfcpp::R_POWERPC_REL14:
5992 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5993 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5994 if (!is_ifunc)
5995 {
5996 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5997 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5998 r_type, r_sym, reloc.get_r_addend());
5999 }
6000 break;
6001
6002 case elfcpp::R_PPC64_REL64:
6003 case elfcpp::R_POWERPC_REL32:
6004 case elfcpp::R_POWERPC_REL16:
6005 case elfcpp::R_POWERPC_REL16_LO:
6006 case elfcpp::R_POWERPC_REL16_HI:
6007 case elfcpp::R_POWERPC_REL16_HA:
6008 case elfcpp::R_POWERPC_REL16DX_HA:
6009 case elfcpp::R_POWERPC_SECTOFF:
6010 case elfcpp::R_POWERPC_SECTOFF_LO:
6011 case elfcpp::R_POWERPC_SECTOFF_HI:
6012 case elfcpp::R_POWERPC_SECTOFF_HA:
6013 case elfcpp::R_PPC64_SECTOFF_DS:
6014 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6015 case elfcpp::R_POWERPC_TPREL16:
6016 case elfcpp::R_POWERPC_TPREL16_LO:
6017 case elfcpp::R_POWERPC_TPREL16_HI:
6018 case elfcpp::R_POWERPC_TPREL16_HA:
6019 case elfcpp::R_PPC64_TPREL16_DS:
6020 case elfcpp::R_PPC64_TPREL16_LO_DS:
6021 case elfcpp::R_PPC64_TPREL16_HIGH:
6022 case elfcpp::R_PPC64_TPREL16_HIGHA:
6023 case elfcpp::R_PPC64_TPREL16_HIGHER:
6024 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6025 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6026 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6027 case elfcpp::R_POWERPC_DTPREL16:
6028 case elfcpp::R_POWERPC_DTPREL16_LO:
6029 case elfcpp::R_POWERPC_DTPREL16_HI:
6030 case elfcpp::R_POWERPC_DTPREL16_HA:
6031 case elfcpp::R_PPC64_DTPREL16_DS:
6032 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6033 case elfcpp::R_PPC64_DTPREL16_HIGH:
6034 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6035 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6036 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6037 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6038 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6039 case elfcpp::R_PPC64_TLSGD:
6040 case elfcpp::R_PPC64_TLSLD:
6041 case elfcpp::R_PPC64_ADDR64_LOCAL:
6042 break;
6043
6044 case elfcpp::R_POWERPC_GOT16:
6045 case elfcpp::R_POWERPC_GOT16_LO:
6046 case elfcpp::R_POWERPC_GOT16_HI:
6047 case elfcpp::R_POWERPC_GOT16_HA:
6048 case elfcpp::R_PPC64_GOT16_DS:
6049 case elfcpp::R_PPC64_GOT16_LO_DS:
6050 {
6051 // The symbol requires a GOT entry.
6052 Output_data_got_powerpc<size, big_endian>* got
6053 = target->got_section(symtab, layout);
6054 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6055
6056 if (!parameters->options().output_is_position_independent())
6057 {
6058 if (is_ifunc
6059 && (size == 32 || target->abiversion() >= 2))
6060 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6061 else
6062 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6063 }
6064 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6065 {
6066 // If we are generating a shared object or a pie, this
6067 // symbol's GOT entry will be set by a dynamic relocation.
6068 unsigned int off;
6069 off = got->add_constant(0);
6070 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6071
6072 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6073 is_ifunc);
6074 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6075 : elfcpp::R_POWERPC_RELATIVE);
6076 rela_dyn->add_local_relative(object, r_sym, dynrel,
6077 got, off, 0, false);
6078 }
6079 }
6080 break;
6081
6082 case elfcpp::R_PPC64_TOC16:
6083 case elfcpp::R_PPC64_TOC16_LO:
6084 case elfcpp::R_PPC64_TOC16_HI:
6085 case elfcpp::R_PPC64_TOC16_HA:
6086 case elfcpp::R_PPC64_TOC16_DS:
6087 case elfcpp::R_PPC64_TOC16_LO_DS:
6088 // We need a GOT section.
6089 target->got_section(symtab, layout);
6090 break;
6091
6092 case elfcpp::R_POWERPC_GOT_TLSGD16:
6093 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6094 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6095 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6096 {
6097 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6098 if (tls_type == tls::TLSOPT_NONE)
6099 {
6100 Output_data_got_powerpc<size, big_endian>* got
6101 = target->got_section(symtab, layout);
6102 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6103 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6104 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6105 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6106 }
6107 else if (tls_type == tls::TLSOPT_TO_LE)
6108 {
6109 // no GOT relocs needed for Local Exec.
6110 }
6111 else
6112 gold_unreachable();
6113 }
6114 break;
6115
6116 case elfcpp::R_POWERPC_GOT_TLSLD16:
6117 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6118 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6119 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6120 {
6121 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6122 if (tls_type == tls::TLSOPT_NONE)
6123 target->tlsld_got_offset(symtab, layout, object);
6124 else if (tls_type == tls::TLSOPT_TO_LE)
6125 {
6126 // no GOT relocs needed for Local Exec.
6127 if (parameters->options().emit_relocs())
6128 {
6129 Output_section* os = layout->tls_segment()->first_section();
6130 gold_assert(os != NULL);
6131 os->set_needs_symtab_index();
6132 }
6133 }
6134 else
6135 gold_unreachable();
6136 }
6137 break;
6138
6139 case elfcpp::R_POWERPC_GOT_DTPREL16:
6140 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6141 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6142 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6143 {
6144 Output_data_got_powerpc<size, big_endian>* got
6145 = target->got_section(symtab, layout);
6146 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6147 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6148 }
6149 break;
6150
6151 case elfcpp::R_POWERPC_GOT_TPREL16:
6152 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6153 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6154 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6155 {
6156 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6157 if (tls_type == tls::TLSOPT_NONE)
6158 {
6159 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6160 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6161 {
6162 Output_data_got_powerpc<size, big_endian>* got
6163 = target->got_section(symtab, layout);
6164 unsigned int off = got->add_constant(0);
6165 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6166
6167 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6168 rela_dyn->add_symbolless_local_addend(object, r_sym,
6169 elfcpp::R_POWERPC_TPREL,
6170 got, off, 0);
6171 }
6172 }
6173 else if (tls_type == tls::TLSOPT_TO_LE)
6174 {
6175 // no GOT relocs needed for Local Exec.
6176 }
6177 else
6178 gold_unreachable();
6179 }
6180 break;
6181
6182 default:
6183 unsupported_reloc_local(object, r_type);
6184 break;
6185 }
6186
6187 if (size == 64
6188 && parameters->options().toc_optimize())
6189 {
6190 if (data_shndx == ppc_object->toc_shndx())
6191 {
6192 bool ok = true;
6193 if (r_type != elfcpp::R_PPC64_ADDR64
6194 || (is_ifunc && target->abiversion() < 2))
6195 ok = false;
6196 else if (parameters->options().output_is_position_independent())
6197 {
6198 if (is_ifunc)
6199 ok = false;
6200 else
6201 {
6202 unsigned int shndx = lsym.get_st_shndx();
6203 if (shndx >= elfcpp::SHN_LORESERVE
6204 && shndx != elfcpp::SHN_XINDEX)
6205 ok = false;
6206 }
6207 }
6208 if (!ok)
6209 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6210 }
6211
6212 enum {no_check, check_lo, check_ha} insn_check;
6213 switch (r_type)
6214 {
6215 default:
6216 insn_check = no_check;
6217 break;
6218
6219 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6220 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6221 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6222 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6223 case elfcpp::R_POWERPC_GOT16_HA:
6224 case elfcpp::R_PPC64_TOC16_HA:
6225 insn_check = check_ha;
6226 break;
6227
6228 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6229 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6230 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6231 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6232 case elfcpp::R_POWERPC_GOT16_LO:
6233 case elfcpp::R_PPC64_GOT16_LO_DS:
6234 case elfcpp::R_PPC64_TOC16_LO:
6235 case elfcpp::R_PPC64_TOC16_LO_DS:
6236 insn_check = check_lo;
6237 break;
6238 }
6239
6240 section_size_type slen;
6241 const unsigned char* view = NULL;
6242 if (insn_check != no_check)
6243 {
6244 view = ppc_object->section_contents(data_shndx, &slen, false);
6245 section_size_type off =
6246 convert_to_section_size_type(reloc.get_r_offset()) & -4;
6247 if (off < slen)
6248 {
6249 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6250 if (insn_check == check_lo
6251 ? !ok_lo_toc_insn(insn, r_type)
6252 : ((insn & ((0x3f << 26) | 0x1f << 16))
6253 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6254 {
6255 ppc_object->set_no_toc_opt();
6256 gold_warning(_("%s: toc optimization is not supported "
6257 "for %#08x instruction"),
6258 ppc_object->name().c_str(), insn);
6259 }
6260 }
6261 }
6262
6263 switch (r_type)
6264 {
6265 default:
6266 break;
6267 case elfcpp::R_PPC64_TOC16:
6268 case elfcpp::R_PPC64_TOC16_LO:
6269 case elfcpp::R_PPC64_TOC16_HI:
6270 case elfcpp::R_PPC64_TOC16_HA:
6271 case elfcpp::R_PPC64_TOC16_DS:
6272 case elfcpp::R_PPC64_TOC16_LO_DS:
6273 unsigned int shndx = lsym.get_st_shndx();
6274 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6275 bool is_ordinary;
6276 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6277 if (is_ordinary && shndx == ppc_object->toc_shndx())
6278 {
6279 Address dst_off = lsym.get_st_value() + reloc.get_r_offset();
6280 if (dst_off < ppc_object->section_size(shndx))
6281 {
6282 bool ok = false;
6283 if (r_type == elfcpp::R_PPC64_TOC16_HA)
6284 ok = true;
6285 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6286 {
6287 // Need to check that the insn is a ld
6288 if (!view)
6289 view = ppc_object->section_contents(data_shndx,
6290 &slen,
6291 false);
6292 section_size_type off =
6293 (convert_to_section_size_type(reloc.get_r_offset())
6294 + (big_endian ? -2 : 3));
6295 if (off < slen
6296 && (view[off] & (0x3f << 2)) == 58u << 2)
6297 ok = true;
6298 }
6299 if (!ok)
6300 ppc_object->set_no_toc_opt(dst_off);
6301 }
6302 }
6303 break;
6304 }
6305 }
6306
6307 if (size == 32)
6308 {
6309 switch (r_type)
6310 {
6311 case elfcpp::R_POWERPC_REL32:
6312 if (ppc_object->got2_shndx() != 0
6313 && parameters->options().output_is_position_independent())
6314 {
6315 unsigned int shndx = lsym.get_st_shndx();
6316 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6317 bool is_ordinary;
6318 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6319 if (is_ordinary && shndx == ppc_object->got2_shndx()
6320 && (ppc_object->section_flags(data_shndx)
6321 & elfcpp::SHF_EXECINSTR) != 0)
6322 gold_error(_("%s: unsupported -mbss-plt code"),
6323 ppc_object->name().c_str());
6324 }
6325 break;
6326 default:
6327 break;
6328 }
6329 }
6330
6331 switch (r_type)
6332 {
6333 case elfcpp::R_POWERPC_GOT_TLSLD16:
6334 case elfcpp::R_POWERPC_GOT_TLSGD16:
6335 case elfcpp::R_POWERPC_GOT_TPREL16:
6336 case elfcpp::R_POWERPC_GOT_DTPREL16:
6337 case elfcpp::R_POWERPC_GOT16:
6338 case elfcpp::R_PPC64_GOT16_DS:
6339 case elfcpp::R_PPC64_TOC16:
6340 case elfcpp::R_PPC64_TOC16_DS:
6341 ppc_object->set_has_small_toc_reloc();
6342 default:
6343 break;
6344 }
6345 }
6346
6347 // Report an unsupported relocation against a global symbol.
6348
6349 template<int size, bool big_endian>
6350 void
6351 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
6352 Sized_relobj_file<size, big_endian>* object,
6353 unsigned int r_type,
6354 Symbol* gsym)
6355 {
6356 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6357 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6358 }
6359
6360 // Scan a relocation for a global symbol.
6361
6362 template<int size, bool big_endian>
6363 inline void
6364 Target_powerpc<size, big_endian>::Scan::global(
6365 Symbol_table* symtab,
6366 Layout* layout,
6367 Target_powerpc<size, big_endian>* target,
6368 Sized_relobj_file<size, big_endian>* object,
6369 unsigned int data_shndx,
6370 Output_section* output_section,
6371 const elfcpp::Rela<size, big_endian>& reloc,
6372 unsigned int r_type,
6373 Symbol* gsym)
6374 {
6375 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6376 return;
6377
6378 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6379 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6380 {
6381 this->expect_tls_get_addr_call();
6382 const bool final = gsym->final_value_is_known();
6383 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6384 if (tls_type != tls::TLSOPT_NONE)
6385 this->skip_next_tls_get_addr_call();
6386 }
6387 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6388 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6389 {
6390 this->expect_tls_get_addr_call();
6391 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6392 if (tls_type != tls::TLSOPT_NONE)
6393 this->skip_next_tls_get_addr_call();
6394 }
6395
6396 Powerpc_relobj<size, big_endian>* ppc_object
6397 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6398
6399 // A STT_GNU_IFUNC symbol may require a PLT entry.
6400 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6401 bool pushed_ifunc = false;
6402 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6403 {
6404 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6405 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6406 r_type, r_sym, reloc.get_r_addend());
6407 target->make_plt_entry(symtab, layout, gsym);
6408 pushed_ifunc = true;
6409 }
6410
6411 switch (r_type)
6412 {
6413 case elfcpp::R_POWERPC_NONE:
6414 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6415 case elfcpp::R_POWERPC_GNU_VTENTRY:
6416 case elfcpp::R_PPC_LOCAL24PC:
6417 case elfcpp::R_POWERPC_TLS:
6418 case elfcpp::R_PPC64_ENTRY:
6419 break;
6420
6421 case elfcpp::R_PPC64_TOC:
6422 {
6423 Output_data_got_powerpc<size, big_endian>* got
6424 = target->got_section(symtab, layout);
6425 if (parameters->options().output_is_position_independent())
6426 {
6427 Address off = reloc.get_r_offset();
6428 if (size == 64
6429 && data_shndx == ppc_object->opd_shndx()
6430 && ppc_object->get_opd_discard(off - 8))
6431 break;
6432
6433 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6434 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6435 if (data_shndx != ppc_object->opd_shndx())
6436 symobj = static_cast
6437 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6438 rela_dyn->add_output_section_relative(got->output_section(),
6439 elfcpp::R_POWERPC_RELATIVE,
6440 output_section,
6441 object, data_shndx, off,
6442 symobj->toc_base_offset());
6443 }
6444 }
6445 break;
6446
6447 case elfcpp::R_PPC64_ADDR64:
6448 if (size == 64
6449 && target->abiversion() < 2
6450 && data_shndx == ppc_object->opd_shndx()
6451 && (gsym->is_defined_in_discarded_section()
6452 || gsym->object() != object))
6453 {
6454 ppc_object->set_opd_discard(reloc.get_r_offset());
6455 break;
6456 }
6457 // Fall through.
6458 case elfcpp::R_PPC64_UADDR64:
6459 case elfcpp::R_POWERPC_ADDR32:
6460 case elfcpp::R_POWERPC_UADDR32:
6461 case elfcpp::R_POWERPC_ADDR24:
6462 case elfcpp::R_POWERPC_ADDR16:
6463 case elfcpp::R_POWERPC_ADDR16_LO:
6464 case elfcpp::R_POWERPC_ADDR16_HI:
6465 case elfcpp::R_POWERPC_ADDR16_HA:
6466 case elfcpp::R_POWERPC_UADDR16:
6467 case elfcpp::R_PPC64_ADDR16_HIGH:
6468 case elfcpp::R_PPC64_ADDR16_HIGHA:
6469 case elfcpp::R_PPC64_ADDR16_HIGHER:
6470 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6471 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6472 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6473 case elfcpp::R_PPC64_ADDR16_DS:
6474 case elfcpp::R_PPC64_ADDR16_LO_DS:
6475 case elfcpp::R_POWERPC_ADDR14:
6476 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6477 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6478 {
6479 // Make a PLT entry if necessary.
6480 if (gsym->needs_plt_entry())
6481 {
6482 // Since this is not a PC-relative relocation, we may be
6483 // taking the address of a function. In that case we need to
6484 // set the entry in the dynamic symbol table to the address of
6485 // the PLT call stub.
6486 bool need_ifunc_plt = false;
6487 if ((size == 32 || target->abiversion() >= 2)
6488 && gsym->is_from_dynobj()
6489 && !parameters->options().output_is_position_independent())
6490 {
6491 gsym->set_needs_dynsym_value();
6492 need_ifunc_plt = true;
6493 }
6494 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6495 {
6496 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6497 target->push_branch(ppc_object, data_shndx,
6498 reloc.get_r_offset(), r_type, r_sym,
6499 reloc.get_r_addend());
6500 target->make_plt_entry(symtab, layout, gsym);
6501 }
6502 }
6503 // Make a dynamic relocation if necessary.
6504 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6505 || (size == 64 && is_ifunc && target->abiversion() < 2))
6506 {
6507 if (!parameters->options().output_is_position_independent()
6508 && gsym->may_need_copy_reloc())
6509 {
6510 target->copy_reloc(symtab, layout, object,
6511 data_shndx, output_section, gsym, reloc);
6512 }
6513 else if ((((size == 32
6514 && r_type == elfcpp::R_POWERPC_ADDR32)
6515 || (size == 64
6516 && r_type == elfcpp::R_PPC64_ADDR64
6517 && target->abiversion() >= 2))
6518 && gsym->can_use_relative_reloc(false)
6519 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6520 && parameters->options().shared()))
6521 || (size == 64
6522 && r_type == elfcpp::R_PPC64_ADDR64
6523 && target->abiversion() < 2
6524 && (gsym->can_use_relative_reloc(false)
6525 || data_shndx == ppc_object->opd_shndx())))
6526 {
6527 Reloc_section* rela_dyn
6528 = target->rela_dyn_section(symtab, layout, is_ifunc);
6529 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6530 : elfcpp::R_POWERPC_RELATIVE);
6531 rela_dyn->add_symbolless_global_addend(
6532 gsym, dynrel, output_section, object, data_shndx,
6533 reloc.get_r_offset(), reloc.get_r_addend());
6534 }
6535 else
6536 {
6537 Reloc_section* rela_dyn
6538 = target->rela_dyn_section(symtab, layout, is_ifunc);
6539 check_non_pic(object, r_type);
6540 rela_dyn->add_global(gsym, r_type, output_section,
6541 object, data_shndx,
6542 reloc.get_r_offset(),
6543 reloc.get_r_addend());
6544
6545 if (size == 64
6546 && parameters->options().toc_optimize()
6547 && data_shndx == ppc_object->toc_shndx())
6548 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6549 }
6550 }
6551 }
6552 break;
6553
6554 case elfcpp::R_PPC_PLTREL24:
6555 case elfcpp::R_POWERPC_REL24:
6556 if (!is_ifunc)
6557 {
6558 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6559 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6560 r_type, r_sym, reloc.get_r_addend());
6561 if (gsym->needs_plt_entry()
6562 || (!gsym->final_value_is_known()
6563 && (gsym->is_undefined()
6564 || gsym->is_from_dynobj()
6565 || gsym->is_preemptible())))
6566 target->make_plt_entry(symtab, layout, gsym);
6567 }
6568 // Fall through.
6569
6570 case elfcpp::R_PPC64_REL64:
6571 case elfcpp::R_POWERPC_REL32:
6572 // Make a dynamic relocation if necessary.
6573 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6574 {
6575 if (!parameters->options().output_is_position_independent()
6576 && gsym->may_need_copy_reloc())
6577 {
6578 target->copy_reloc(symtab, layout, object,
6579 data_shndx, output_section, gsym,
6580 reloc);
6581 }
6582 else
6583 {
6584 Reloc_section* rela_dyn
6585 = target->rela_dyn_section(symtab, layout, is_ifunc);
6586 check_non_pic(object, r_type);
6587 rela_dyn->add_global(gsym, r_type, output_section, object,
6588 data_shndx, reloc.get_r_offset(),
6589 reloc.get_r_addend());
6590 }
6591 }
6592 break;
6593
6594 case elfcpp::R_POWERPC_REL14:
6595 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6596 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6597 if (!is_ifunc)
6598 {
6599 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6600 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6601 r_type, r_sym, reloc.get_r_addend());
6602 }
6603 break;
6604
6605 case elfcpp::R_POWERPC_REL16:
6606 case elfcpp::R_POWERPC_REL16_LO:
6607 case elfcpp::R_POWERPC_REL16_HI:
6608 case elfcpp::R_POWERPC_REL16_HA:
6609 case elfcpp::R_POWERPC_REL16DX_HA:
6610 case elfcpp::R_POWERPC_SECTOFF:
6611 case elfcpp::R_POWERPC_SECTOFF_LO:
6612 case elfcpp::R_POWERPC_SECTOFF_HI:
6613 case elfcpp::R_POWERPC_SECTOFF_HA:
6614 case elfcpp::R_PPC64_SECTOFF_DS:
6615 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6616 case elfcpp::R_POWERPC_TPREL16:
6617 case elfcpp::R_POWERPC_TPREL16_LO:
6618 case elfcpp::R_POWERPC_TPREL16_HI:
6619 case elfcpp::R_POWERPC_TPREL16_HA:
6620 case elfcpp::R_PPC64_TPREL16_DS:
6621 case elfcpp::R_PPC64_TPREL16_LO_DS:
6622 case elfcpp::R_PPC64_TPREL16_HIGH:
6623 case elfcpp::R_PPC64_TPREL16_HIGHA:
6624 case elfcpp::R_PPC64_TPREL16_HIGHER:
6625 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6626 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6627 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6628 case elfcpp::R_POWERPC_DTPREL16:
6629 case elfcpp::R_POWERPC_DTPREL16_LO:
6630 case elfcpp::R_POWERPC_DTPREL16_HI:
6631 case elfcpp::R_POWERPC_DTPREL16_HA:
6632 case elfcpp::R_PPC64_DTPREL16_DS:
6633 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6634 case elfcpp::R_PPC64_DTPREL16_HIGH:
6635 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6636 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6637 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6638 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6639 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6640 case elfcpp::R_PPC64_TLSGD:
6641 case elfcpp::R_PPC64_TLSLD:
6642 case elfcpp::R_PPC64_ADDR64_LOCAL:
6643 break;
6644
6645 case elfcpp::R_POWERPC_GOT16:
6646 case elfcpp::R_POWERPC_GOT16_LO:
6647 case elfcpp::R_POWERPC_GOT16_HI:
6648 case elfcpp::R_POWERPC_GOT16_HA:
6649 case elfcpp::R_PPC64_GOT16_DS:
6650 case elfcpp::R_PPC64_GOT16_LO_DS:
6651 {
6652 // The symbol requires a GOT entry.
6653 Output_data_got_powerpc<size, big_endian>* got;
6654
6655 got = target->got_section(symtab, layout);
6656 if (gsym->final_value_is_known())
6657 {
6658 if (is_ifunc
6659 && (size == 32 || target->abiversion() >= 2))
6660 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6661 else
6662 got->add_global(gsym, GOT_TYPE_STANDARD);
6663 }
6664 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6665 {
6666 // If we are generating a shared object or a pie, this
6667 // symbol's GOT entry will be set by a dynamic relocation.
6668 unsigned int off = got->add_constant(0);
6669 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6670
6671 Reloc_section* rela_dyn
6672 = target->rela_dyn_section(symtab, layout, is_ifunc);
6673
6674 if (gsym->can_use_relative_reloc(false)
6675 && !((size == 32
6676 || target->abiversion() >= 2)
6677 && gsym->visibility() == elfcpp::STV_PROTECTED
6678 && parameters->options().shared()))
6679 {
6680 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6681 : elfcpp::R_POWERPC_RELATIVE);
6682 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6683 }
6684 else
6685 {
6686 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6687 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6688 }
6689 }
6690 }
6691 break;
6692
6693 case elfcpp::R_PPC64_TOC16:
6694 case elfcpp::R_PPC64_TOC16_LO:
6695 case elfcpp::R_PPC64_TOC16_HI:
6696 case elfcpp::R_PPC64_TOC16_HA:
6697 case elfcpp::R_PPC64_TOC16_DS:
6698 case elfcpp::R_PPC64_TOC16_LO_DS:
6699 // We need a GOT section.
6700 target->got_section(symtab, layout);
6701 break;
6702
6703 case elfcpp::R_POWERPC_GOT_TLSGD16:
6704 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6705 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6706 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6707 {
6708 const bool final = gsym->final_value_is_known();
6709 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6710 if (tls_type == tls::TLSOPT_NONE)
6711 {
6712 Output_data_got_powerpc<size, big_endian>* got
6713 = target->got_section(symtab, layout);
6714 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6715 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6716 elfcpp::R_POWERPC_DTPMOD,
6717 elfcpp::R_POWERPC_DTPREL);
6718 }
6719 else if (tls_type == tls::TLSOPT_TO_IE)
6720 {
6721 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6722 {
6723 Output_data_got_powerpc<size, big_endian>* got
6724 = target->got_section(symtab, layout);
6725 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6726 if (gsym->is_undefined()
6727 || gsym->is_from_dynobj())
6728 {
6729 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6730 elfcpp::R_POWERPC_TPREL);
6731 }
6732 else
6733 {
6734 unsigned int off = got->add_constant(0);
6735 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6736 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6737 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6738 got, off, 0);
6739 }
6740 }
6741 }
6742 else if (tls_type == tls::TLSOPT_TO_LE)
6743 {
6744 // no GOT relocs needed for Local Exec.
6745 }
6746 else
6747 gold_unreachable();
6748 }
6749 break;
6750
6751 case elfcpp::R_POWERPC_GOT_TLSLD16:
6752 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6753 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6754 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6755 {
6756 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6757 if (tls_type == tls::TLSOPT_NONE)
6758 target->tlsld_got_offset(symtab, layout, object);
6759 else if (tls_type == tls::TLSOPT_TO_LE)
6760 {
6761 // no GOT relocs needed for Local Exec.
6762 if (parameters->options().emit_relocs())
6763 {
6764 Output_section* os = layout->tls_segment()->first_section();
6765 gold_assert(os != NULL);
6766 os->set_needs_symtab_index();
6767 }
6768 }
6769 else
6770 gold_unreachable();
6771 }
6772 break;
6773
6774 case elfcpp::R_POWERPC_GOT_DTPREL16:
6775 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6776 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6777 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6778 {
6779 Output_data_got_powerpc<size, big_endian>* got
6780 = target->got_section(symtab, layout);
6781 if (!gsym->final_value_is_known()
6782 && (gsym->is_from_dynobj()
6783 || gsym->is_undefined()
6784 || gsym->is_preemptible()))
6785 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6786 target->rela_dyn_section(layout),
6787 elfcpp::R_POWERPC_DTPREL);
6788 else
6789 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6790 }
6791 break;
6792
6793 case elfcpp::R_POWERPC_GOT_TPREL16:
6794 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6795 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6796 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6797 {
6798 const bool final = gsym->final_value_is_known();
6799 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6800 if (tls_type == tls::TLSOPT_NONE)
6801 {
6802 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6803 {
6804 Output_data_got_powerpc<size, big_endian>* got
6805 = target->got_section(symtab, layout);
6806 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6807 if (gsym->is_undefined()
6808 || gsym->is_from_dynobj())
6809 {
6810 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6811 elfcpp::R_POWERPC_TPREL);
6812 }
6813 else
6814 {
6815 unsigned int off = got->add_constant(0);
6816 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6817 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6818 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6819 got, off, 0);
6820 }
6821 }
6822 }
6823 else if (tls_type == tls::TLSOPT_TO_LE)
6824 {
6825 // no GOT relocs needed for Local Exec.
6826 }
6827 else
6828 gold_unreachable();
6829 }
6830 break;
6831
6832 default:
6833 unsupported_reloc_global(object, r_type, gsym);
6834 break;
6835 }
6836
6837 if (size == 64
6838 && parameters->options().toc_optimize())
6839 {
6840 if (data_shndx == ppc_object->toc_shndx())
6841 {
6842 bool ok = true;
6843 if (r_type != elfcpp::R_PPC64_ADDR64
6844 || (is_ifunc && target->abiversion() < 2))
6845 ok = false;
6846 else if (parameters->options().output_is_position_independent()
6847 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
6848 ok = false;
6849 if (!ok)
6850 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6851 }
6852
6853 enum {no_check, check_lo, check_ha} insn_check;
6854 switch (r_type)
6855 {
6856 default:
6857 insn_check = no_check;
6858 break;
6859
6860 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6861 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6862 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6863 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6864 case elfcpp::R_POWERPC_GOT16_HA:
6865 case elfcpp::R_PPC64_TOC16_HA:
6866 insn_check = check_ha;
6867 break;
6868
6869 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6870 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6871 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6872 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6873 case elfcpp::R_POWERPC_GOT16_LO:
6874 case elfcpp::R_PPC64_GOT16_LO_DS:
6875 case elfcpp::R_PPC64_TOC16_LO:
6876 case elfcpp::R_PPC64_TOC16_LO_DS:
6877 insn_check = check_lo;
6878 break;
6879 }
6880
6881 section_size_type slen;
6882 const unsigned char* view = NULL;
6883 if (insn_check != no_check)
6884 {
6885 view = ppc_object->section_contents(data_shndx, &slen, false);
6886 section_size_type off =
6887 convert_to_section_size_type(reloc.get_r_offset()) & -4;
6888 if (off < slen)
6889 {
6890 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6891 if (insn_check == check_lo
6892 ? !ok_lo_toc_insn(insn, r_type)
6893 : ((insn & ((0x3f << 26) | 0x1f << 16))
6894 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6895 {
6896 ppc_object->set_no_toc_opt();
6897 gold_warning(_("%s: toc optimization is not supported "
6898 "for %#08x instruction"),
6899 ppc_object->name().c_str(), insn);
6900 }
6901 }
6902 }
6903
6904 switch (r_type)
6905 {
6906 default:
6907 break;
6908 case elfcpp::R_PPC64_TOC16:
6909 case elfcpp::R_PPC64_TOC16_LO:
6910 case elfcpp::R_PPC64_TOC16_HI:
6911 case elfcpp::R_PPC64_TOC16_HA:
6912 case elfcpp::R_PPC64_TOC16_DS:
6913 case elfcpp::R_PPC64_TOC16_LO_DS:
6914 if (gsym->source() == Symbol::FROM_OBJECT
6915 && !gsym->object()->is_dynamic())
6916 {
6917 Powerpc_relobj<size, big_endian>* sym_object
6918 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6919 bool is_ordinary;
6920 unsigned int shndx = gsym->shndx(&is_ordinary);
6921 if (shndx == sym_object->toc_shndx())
6922 {
6923 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
6924 Address dst_off = sym->value() + reloc.get_r_offset();
6925 if (dst_off < sym_object->section_size(shndx))
6926 {
6927 bool ok = false;
6928 if (r_type == elfcpp::R_PPC64_TOC16_HA)
6929 ok = true;
6930 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6931 {
6932 // Need to check that the insn is a ld
6933 if (!view)
6934 view = ppc_object->section_contents(data_shndx,
6935 &slen,
6936 false);
6937 section_size_type off =
6938 (convert_to_section_size_type(reloc.get_r_offset())
6939 + (big_endian ? -2 : 3));
6940 if (off < slen
6941 && (view[off] & (0x3f << 2)) == (58u << 2))
6942 ok = true;
6943 }
6944 if (!ok)
6945 sym_object->set_no_toc_opt(dst_off);
6946 }
6947 }
6948 }
6949 break;
6950 }
6951 }
6952
6953 if (size == 32)
6954 {
6955 switch (r_type)
6956 {
6957 case elfcpp::R_PPC_LOCAL24PC:
6958 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
6959 gold_error(_("%s: unsupported -mbss-plt code"),
6960 ppc_object->name().c_str());
6961 break;
6962 default:
6963 break;
6964 }
6965 }
6966
6967 switch (r_type)
6968 {
6969 case elfcpp::R_POWERPC_GOT_TLSLD16:
6970 case elfcpp::R_POWERPC_GOT_TLSGD16:
6971 case elfcpp::R_POWERPC_GOT_TPREL16:
6972 case elfcpp::R_POWERPC_GOT_DTPREL16:
6973 case elfcpp::R_POWERPC_GOT16:
6974 case elfcpp::R_PPC64_GOT16_DS:
6975 case elfcpp::R_PPC64_TOC16:
6976 case elfcpp::R_PPC64_TOC16_DS:
6977 ppc_object->set_has_small_toc_reloc();
6978 default:
6979 break;
6980 }
6981 }
6982
6983 // Process relocations for gc.
6984
6985 template<int size, bool big_endian>
6986 void
6987 Target_powerpc<size, big_endian>::gc_process_relocs(
6988 Symbol_table* symtab,
6989 Layout* layout,
6990 Sized_relobj_file<size, big_endian>* object,
6991 unsigned int data_shndx,
6992 unsigned int,
6993 const unsigned char* prelocs,
6994 size_t reloc_count,
6995 Output_section* output_section,
6996 bool needs_special_offset_handling,
6997 size_t local_symbol_count,
6998 const unsigned char* plocal_symbols)
6999 {
7000 typedef Target_powerpc<size, big_endian> Powerpc;
7001 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7002 Classify_reloc;
7003
7004 Powerpc_relobj<size, big_endian>* ppc_object
7005 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7006 if (size == 64)
7007 ppc_object->set_opd_valid();
7008 if (size == 64 && data_shndx == ppc_object->opd_shndx())
7009 {
7010 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7011 for (p = ppc_object->access_from_map()->begin();
7012 p != ppc_object->access_from_map()->end();
7013 ++p)
7014 {
7015 Address dst_off = p->first;
7016 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7017 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7018 for (s = p->second.begin(); s != p->second.end(); ++s)
7019 {
7020 Relobj* src_obj = s->first;
7021 unsigned int src_indx = s->second;
7022 symtab->gc()->add_reference(src_obj, src_indx,
7023 ppc_object, dst_indx);
7024 }
7025 p->second.clear();
7026 }
7027 ppc_object->access_from_map()->clear();
7028 ppc_object->process_gc_mark(symtab);
7029 // Don't look at .opd relocs as .opd will reference everything.
7030 return;
7031 }
7032
7033 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7034 symtab,
7035 layout,
7036 this,
7037 object,
7038 data_shndx,
7039 prelocs,
7040 reloc_count,
7041 output_section,
7042 needs_special_offset_handling,
7043 local_symbol_count,
7044 plocal_symbols);
7045 }
7046
7047 // Handle target specific gc actions when adding a gc reference from
7048 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7049 // and DST_OFF. For powerpc64, this adds a referenc to the code
7050 // section of a function descriptor.
7051
7052 template<int size, bool big_endian>
7053 void
7054 Target_powerpc<size, big_endian>::do_gc_add_reference(
7055 Symbol_table* symtab,
7056 Relobj* src_obj,
7057 unsigned int src_shndx,
7058 Relobj* dst_obj,
7059 unsigned int dst_shndx,
7060 Address dst_off) const
7061 {
7062 if (size != 64 || dst_obj->is_dynamic())
7063 return;
7064
7065 Powerpc_relobj<size, big_endian>* ppc_object
7066 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7067 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7068 {
7069 if (ppc_object->opd_valid())
7070 {
7071 dst_shndx = ppc_object->get_opd_ent(dst_off);
7072 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7073 }
7074 else
7075 {
7076 // If we haven't run scan_opd_relocs, we must delay
7077 // processing this function descriptor reference.
7078 ppc_object->add_reference(src_obj, src_shndx, dst_off);
7079 }
7080 }
7081 }
7082
7083 // Add any special sections for this symbol to the gc work list.
7084 // For powerpc64, this adds the code section of a function
7085 // descriptor.
7086
7087 template<int size, bool big_endian>
7088 void
7089 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7090 Symbol_table* symtab,
7091 Symbol* sym) const
7092 {
7093 if (size == 64)
7094 {
7095 Powerpc_relobj<size, big_endian>* ppc_object
7096 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7097 bool is_ordinary;
7098 unsigned int shndx = sym->shndx(&is_ordinary);
7099 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7100 {
7101 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7102 Address dst_off = gsym->value();
7103 if (ppc_object->opd_valid())
7104 {
7105 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7106 symtab->gc()->worklist().push_back(Section_id(ppc_object,
7107 dst_indx));
7108 }
7109 else
7110 ppc_object->add_gc_mark(dst_off);
7111 }
7112 }
7113 }
7114
7115 // For a symbol location in .opd, set LOC to the location of the
7116 // function entry.
7117
7118 template<int size, bool big_endian>
7119 void
7120 Target_powerpc<size, big_endian>::do_function_location(
7121 Symbol_location* loc) const
7122 {
7123 if (size == 64 && loc->shndx != 0)
7124 {
7125 if (loc->object->is_dynamic())
7126 {
7127 Powerpc_dynobj<size, big_endian>* ppc_object
7128 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7129 if (loc->shndx == ppc_object->opd_shndx())
7130 {
7131 Address dest_off;
7132 Address off = loc->offset - ppc_object->opd_address();
7133 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7134 loc->offset = dest_off;
7135 }
7136 }
7137 else
7138 {
7139 const Powerpc_relobj<size, big_endian>* ppc_object
7140 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7141 if (loc->shndx == ppc_object->opd_shndx())
7142 {
7143 Address dest_off;
7144 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7145 loc->offset = dest_off;
7146 }
7147 }
7148 }
7149 }
7150
7151 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7152 // compiled with -fsplit-stack. The function calls non-split-stack
7153 // code. Change the function to ensure it has enough stack space to
7154 // call some random function.
7155
7156 template<int size, bool big_endian>
7157 void
7158 Target_powerpc<size, big_endian>::do_calls_non_split(
7159 Relobj* object,
7160 unsigned int shndx,
7161 section_offset_type fnoffset,
7162 section_size_type fnsize,
7163 const unsigned char* prelocs,
7164 size_t reloc_count,
7165 unsigned char* view,
7166 section_size_type view_size,
7167 std::string* from,
7168 std::string* to) const
7169 {
7170 // 32-bit not supported.
7171 if (size == 32)
7172 {
7173 // warn
7174 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7175 prelocs, reloc_count, view, view_size,
7176 from, to);
7177 return;
7178 }
7179
7180 // The function always starts with
7181 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
7182 // addis %r12,%r1,-allocate@ha
7183 // addi %r12,%r12,-allocate@l
7184 // cmpld %r12,%r0
7185 // but note that the addis or addi may be replaced with a nop
7186
7187 unsigned char *entry = view + fnoffset;
7188 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7189
7190 if ((insn & 0xffff0000) == addis_2_12)
7191 {
7192 /* Skip ELFv2 global entry code. */
7193 entry += 8;
7194 insn = elfcpp::Swap<32, big_endian>::readval(entry);
7195 }
7196
7197 unsigned char *pinsn = entry;
7198 bool ok = false;
7199 const uint32_t ld_private_ss = 0xe80d8fc0;
7200 if (insn == ld_private_ss)
7201 {
7202 int32_t allocate = 0;
7203 while (1)
7204 {
7205 pinsn += 4;
7206 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7207 if ((insn & 0xffff0000) == addis_12_1)
7208 allocate += (insn & 0xffff) << 16;
7209 else if ((insn & 0xffff0000) == addi_12_1
7210 || (insn & 0xffff0000) == addi_12_12)
7211 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7212 else if (insn != nop)
7213 break;
7214 }
7215 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7216 {
7217 int extra = parameters->options().split_stack_adjust_size();
7218 allocate -= extra;
7219 if (allocate >= 0 || extra < 0)
7220 {
7221 object->error(_("split-stack stack size overflow at "
7222 "section %u offset %0zx"),
7223 shndx, static_cast<size_t>(fnoffset));
7224 return;
7225 }
7226 pinsn = entry + 4;
7227 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7228 if (insn != addis_12_1)
7229 {
7230 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7231 pinsn += 4;
7232 insn = addi_12_12 | (allocate & 0xffff);
7233 if (insn != addi_12_12)
7234 {
7235 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7236 pinsn += 4;
7237 }
7238 }
7239 else
7240 {
7241 insn = addi_12_1 | (allocate & 0xffff);
7242 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7243 pinsn += 4;
7244 }
7245 if (pinsn != entry + 12)
7246 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7247
7248 ok = true;
7249 }
7250 }
7251
7252 if (!ok)
7253 {
7254 if (!object->has_no_split_stack())
7255 object->error(_("failed to match split-stack sequence at "
7256 "section %u offset %0zx"),
7257 shndx, static_cast<size_t>(fnoffset));
7258 }
7259 }
7260
7261 // Scan relocations for a section.
7262
7263 template<int size, bool big_endian>
7264 void
7265 Target_powerpc<size, big_endian>::scan_relocs(
7266 Symbol_table* symtab,
7267 Layout* layout,
7268 Sized_relobj_file<size, big_endian>* object,
7269 unsigned int data_shndx,
7270 unsigned int sh_type,
7271 const unsigned char* prelocs,
7272 size_t reloc_count,
7273 Output_section* output_section,
7274 bool needs_special_offset_handling,
7275 size_t local_symbol_count,
7276 const unsigned char* plocal_symbols)
7277 {
7278 typedef Target_powerpc<size, big_endian> Powerpc;
7279 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7280 Classify_reloc;
7281
7282 if (sh_type == elfcpp::SHT_REL)
7283 {
7284 gold_error(_("%s: unsupported REL reloc section"),
7285 object->name().c_str());
7286 return;
7287 }
7288
7289 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7290 symtab,
7291 layout,
7292 this,
7293 object,
7294 data_shndx,
7295 prelocs,
7296 reloc_count,
7297 output_section,
7298 needs_special_offset_handling,
7299 local_symbol_count,
7300 plocal_symbols);
7301 }
7302
7303 // Functor class for processing the global symbol table.
7304 // Removes symbols defined on discarded opd entries.
7305
7306 template<bool big_endian>
7307 class Global_symbol_visitor_opd
7308 {
7309 public:
7310 Global_symbol_visitor_opd()
7311 { }
7312
7313 void
7314 operator()(Sized_symbol<64>* sym)
7315 {
7316 if (sym->has_symtab_index()
7317 || sym->source() != Symbol::FROM_OBJECT
7318 || !sym->in_real_elf())
7319 return;
7320
7321 if (sym->object()->is_dynamic())
7322 return;
7323
7324 Powerpc_relobj<64, big_endian>* symobj
7325 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
7326 if (symobj->opd_shndx() == 0)
7327 return;
7328
7329 bool is_ordinary;
7330 unsigned int shndx = sym->shndx(&is_ordinary);
7331 if (shndx == symobj->opd_shndx()
7332 && symobj->get_opd_discard(sym->value()))
7333 {
7334 sym->set_undefined();
7335 sym->set_visibility(elfcpp::STV_DEFAULT);
7336 sym->set_is_defined_in_discarded_section();
7337 sym->set_symtab_index(-1U);
7338 }
7339 }
7340 };
7341
7342 template<int size, bool big_endian>
7343 void
7344 Target_powerpc<size, big_endian>::define_save_restore_funcs(
7345 Layout* layout,
7346 Symbol_table* symtab)
7347 {
7348 if (size == 64)
7349 {
7350 Output_data_save_res<size, big_endian>* savres
7351 = new Output_data_save_res<size, big_endian>(symtab);
7352 this->savres_section_ = savres;
7353 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7354 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7355 savres, ORDER_TEXT, false);
7356 }
7357 }
7358
7359 // Sort linker created .got section first (for the header), then input
7360 // sections belonging to files using small model code.
7361
7362 template<bool big_endian>
7363 class Sort_toc_sections
7364 {
7365 public:
7366 bool
7367 operator()(const Output_section::Input_section& is1,
7368 const Output_section::Input_section& is2) const
7369 {
7370 if (!is1.is_input_section() && is2.is_input_section())
7371 return true;
7372 bool small1
7373 = (is1.is_input_section()
7374 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
7375 ->has_small_toc_reloc()));
7376 bool small2
7377 = (is2.is_input_section()
7378 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
7379 ->has_small_toc_reloc()));
7380 return small1 && !small2;
7381 }
7382 };
7383
7384 // Finalize the sections.
7385
7386 template<int size, bool big_endian>
7387 void
7388 Target_powerpc<size, big_endian>::do_finalize_sections(
7389 Layout* layout,
7390 const Input_objects*,
7391 Symbol_table* symtab)
7392 {
7393 if (parameters->doing_static_link())
7394 {
7395 // At least some versions of glibc elf-init.o have a strong
7396 // reference to __rela_iplt marker syms. A weak ref would be
7397 // better..
7398 if (this->iplt_ != NULL)
7399 {
7400 Reloc_section* rel = this->iplt_->rel_plt();
7401 symtab->define_in_output_data("__rela_iplt_start", NULL,
7402 Symbol_table::PREDEFINED, rel, 0, 0,
7403 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7404 elfcpp::STV_HIDDEN, 0, false, true);
7405 symtab->define_in_output_data("__rela_iplt_end", NULL,
7406 Symbol_table::PREDEFINED, rel, 0, 0,
7407 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7408 elfcpp::STV_HIDDEN, 0, true, true);
7409 }
7410 else
7411 {
7412 symtab->define_as_constant("__rela_iplt_start", NULL,
7413 Symbol_table::PREDEFINED, 0, 0,
7414 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7415 elfcpp::STV_HIDDEN, 0, true, false);
7416 symtab->define_as_constant("__rela_iplt_end", NULL,
7417 Symbol_table::PREDEFINED, 0, 0,
7418 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7419 elfcpp::STV_HIDDEN, 0, true, false);
7420 }
7421 }
7422
7423 if (size == 64)
7424 {
7425 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
7426 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
7427
7428 if (!parameters->options().relocatable())
7429 {
7430 this->define_save_restore_funcs(layout, symtab);
7431
7432 // Annoyingly, we need to make these sections now whether or
7433 // not we need them. If we delay until do_relax then we
7434 // need to mess with the relaxation machinery checkpointing.
7435 this->got_section(symtab, layout);
7436 this->make_brlt_section(layout);
7437
7438 if (parameters->options().toc_sort())
7439 {
7440 Output_section* os = this->got_->output_section();
7441 if (os != NULL && os->input_sections().size() > 1)
7442 std::stable_sort(os->input_sections().begin(),
7443 os->input_sections().end(),
7444 Sort_toc_sections<big_endian>());
7445 }
7446 }
7447 }
7448
7449 // Fill in some more dynamic tags.
7450 Output_data_dynamic* odyn = layout->dynamic_data();
7451 if (odyn != NULL)
7452 {
7453 const Reloc_section* rel_plt = (this->plt_ == NULL
7454 ? NULL
7455 : this->plt_->rel_plt());
7456 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
7457 this->rela_dyn_, true, size == 32);
7458
7459 if (size == 32)
7460 {
7461 if (this->got_ != NULL)
7462 {
7463 this->got_->finalize_data_size();
7464 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
7465 this->got_, this->got_->g_o_t());
7466 }
7467 }
7468 else
7469 {
7470 if (this->glink_ != NULL)
7471 {
7472 this->glink_->finalize_data_size();
7473 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
7474 this->glink_,
7475 (this->glink_->pltresolve_size
7476 - 32));
7477 }
7478 }
7479 }
7480
7481 // Emit any relocs we saved in an attempt to avoid generating COPY
7482 // relocs.
7483 if (this->copy_relocs_.any_saved_relocs())
7484 this->copy_relocs_.emit(this->rela_dyn_section(layout));
7485 }
7486
7487 // Emit any saved relocs, and mark toc entries using any of these
7488 // relocs as not optimizable.
7489
7490 template<int sh_type, int size, bool big_endian>
7491 void
7492 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
7493 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
7494 {
7495 if (size == 64
7496 && parameters->options().toc_optimize())
7497 {
7498 for (typename Copy_relocs<sh_type, size, big_endian>::
7499 Copy_reloc_entries::iterator p = this->entries_.begin();
7500 p != this->entries_.end();
7501 ++p)
7502 {
7503 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
7504 entry = *p;
7505
7506 // If the symbol is no longer defined in a dynamic object,
7507 // then we emitted a COPY relocation. If it is still
7508 // dynamic then we'll need dynamic relocations and thus
7509 // can't optimize toc entries.
7510 if (entry.sym_->is_from_dynobj())
7511 {
7512 Powerpc_relobj<size, big_endian>* ppc_object
7513 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
7514 if (entry.shndx_ == ppc_object->toc_shndx())
7515 ppc_object->set_no_toc_opt(entry.address_);
7516 }
7517 }
7518 }
7519
7520 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
7521 }
7522
7523 // Return the value to use for a branch relocation.
7524
7525 template<int size, bool big_endian>
7526 bool
7527 Target_powerpc<size, big_endian>::symval_for_branch(
7528 const Symbol_table* symtab,
7529 const Sized_symbol<size>* gsym,
7530 Powerpc_relobj<size, big_endian>* object,
7531 Address *value,
7532 unsigned int *dest_shndx)
7533 {
7534 if (size == 32 || this->abiversion() >= 2)
7535 gold_unreachable();
7536 *dest_shndx = 0;
7537
7538 // If the symbol is defined in an opd section, ie. is a function
7539 // descriptor, use the function descriptor code entry address
7540 Powerpc_relobj<size, big_endian>* symobj = object;
7541 if (gsym != NULL
7542 && (gsym->source() != Symbol::FROM_OBJECT
7543 || gsym->object()->is_dynamic()))
7544 return true;
7545 if (gsym != NULL)
7546 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7547 unsigned int shndx = symobj->opd_shndx();
7548 if (shndx == 0)
7549 return true;
7550 Address opd_addr = symobj->get_output_section_offset(shndx);
7551 if (opd_addr == invalid_address)
7552 return true;
7553 opd_addr += symobj->output_section_address(shndx);
7554 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7555 {
7556 Address sec_off;
7557 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7558 if (symtab->is_section_folded(symobj, *dest_shndx))
7559 {
7560 Section_id folded
7561 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7562 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7563 *dest_shndx = folded.second;
7564 }
7565 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7566 if (sec_addr == invalid_address)
7567 return false;
7568
7569 sec_addr += symobj->output_section(*dest_shndx)->address();
7570 *value = sec_addr + sec_off;
7571 }
7572 return true;
7573 }
7574
7575 // Perform a relocation.
7576
7577 template<int size, bool big_endian>
7578 inline bool
7579 Target_powerpc<size, big_endian>::Relocate::relocate(
7580 const Relocate_info<size, big_endian>* relinfo,
7581 unsigned int,
7582 Target_powerpc* target,
7583 Output_section* os,
7584 size_t relnum,
7585 const unsigned char* preloc,
7586 const Sized_symbol<size>* gsym,
7587 const Symbol_value<size>* psymval,
7588 unsigned char* view,
7589 Address address,
7590 section_size_type view_size)
7591 {
7592 if (view == NULL)
7593 return true;
7594
7595 const elfcpp::Rela<size, big_endian> rela(preloc);
7596 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7597 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7598 {
7599 case Track_tls::NOT_EXPECTED:
7600 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7601 _("__tls_get_addr call lacks marker reloc"));
7602 break;
7603 case Track_tls::EXPECTED:
7604 // We have already complained.
7605 break;
7606 case Track_tls::SKIP:
7607 return true;
7608 case Track_tls::NORMAL:
7609 break;
7610 }
7611
7612 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7613 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7614 typedef typename elfcpp::Rela<size, big_endian> Reltype;
7615 // Offset from start of insn to d-field reloc.
7616 const int d_offset = big_endian ? 2 : 0;
7617
7618 Powerpc_relobj<size, big_endian>* const object
7619 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7620 Address value = 0;
7621 bool has_stub_value = false;
7622 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7623 if ((gsym != NULL
7624 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7625 : object->local_has_plt_offset(r_sym))
7626 && (!psymval->is_ifunc_symbol()
7627 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7628 {
7629 if (size == 64
7630 && gsym != NULL
7631 && target->abiversion() >= 2
7632 && !parameters->options().output_is_position_independent()
7633 && !is_branch_reloc(r_type))
7634 {
7635 Address off = target->glink_section()->find_global_entry(gsym);
7636 if (off != invalid_address)
7637 {
7638 value = target->glink_section()->global_entry_address() + off;
7639 has_stub_value = true;
7640 }
7641 }
7642 else
7643 {
7644 Stub_table<size, big_endian>* stub_table
7645 = object->stub_table(relinfo->data_shndx);
7646 if (stub_table == NULL)
7647 {
7648 // This is a ref from a data section to an ifunc symbol.
7649 if (target->stub_tables().size() != 0)
7650 stub_table = target->stub_tables()[0];
7651 }
7652 if (stub_table != NULL)
7653 {
7654 Address off;
7655 if (gsym != NULL)
7656 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7657 rela.get_r_addend());
7658 else
7659 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7660 rela.get_r_addend());
7661 if (off != invalid_address)
7662 {
7663 value = stub_table->stub_address() + off;
7664 has_stub_value = true;
7665 }
7666 }
7667 }
7668 // We don't care too much about bogus debug references to
7669 // non-local functions, but otherwise there had better be a plt
7670 // call stub or global entry stub as appropriate.
7671 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7672 }
7673
7674 if (r_type == elfcpp::R_POWERPC_GOT16
7675 || r_type == elfcpp::R_POWERPC_GOT16_LO
7676 || r_type == elfcpp::R_POWERPC_GOT16_HI
7677 || r_type == elfcpp::R_POWERPC_GOT16_HA
7678 || r_type == elfcpp::R_PPC64_GOT16_DS
7679 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7680 {
7681 if (gsym != NULL)
7682 {
7683 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7684 value = gsym->got_offset(GOT_TYPE_STANDARD);
7685 }
7686 else
7687 {
7688 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7689 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7690 }
7691 value -= target->got_section()->got_base_offset(object);
7692 }
7693 else if (r_type == elfcpp::R_PPC64_TOC)
7694 {
7695 value = (target->got_section()->output_section()->address()
7696 + object->toc_base_offset());
7697 }
7698 else if (gsym != NULL
7699 && (r_type == elfcpp::R_POWERPC_REL24
7700 || r_type == elfcpp::R_PPC_PLTREL24)
7701 && has_stub_value)
7702 {
7703 if (size == 64)
7704 {
7705 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7706 Valtype* wv = reinterpret_cast<Valtype*>(view);
7707 bool can_plt_call = false;
7708 if (rela.get_r_offset() + 8 <= view_size)
7709 {
7710 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7711 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7712 if ((insn & 1) != 0
7713 && (insn2 == nop
7714 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7715 {
7716 elfcpp::Swap<32, big_endian>::
7717 writeval(wv + 1, ld_2_1 + target->stk_toc());
7718 can_plt_call = true;
7719 }
7720 }
7721 if (!can_plt_call)
7722 {
7723 // If we don't have a branch and link followed by a nop,
7724 // we can't go via the plt because there is no place to
7725 // put a toc restoring instruction.
7726 // Unless we know we won't be returning.
7727 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7728 can_plt_call = true;
7729 }
7730 if (!can_plt_call)
7731 {
7732 // g++ as of 20130507 emits self-calls without a
7733 // following nop. This is arguably wrong since we have
7734 // conflicting information. On the one hand a global
7735 // symbol and on the other a local call sequence, but
7736 // don't error for this special case.
7737 // It isn't possible to cheaply verify we have exactly
7738 // such a call. Allow all calls to the same section.
7739 bool ok = false;
7740 Address code = value;
7741 if (gsym->source() == Symbol::FROM_OBJECT
7742 && gsym->object() == object)
7743 {
7744 unsigned int dest_shndx = 0;
7745 if (target->abiversion() < 2)
7746 {
7747 Address addend = rela.get_r_addend();
7748 code = psymval->value(object, addend);
7749 target->symval_for_branch(relinfo->symtab, gsym, object,
7750 &code, &dest_shndx);
7751 }
7752 bool is_ordinary;
7753 if (dest_shndx == 0)
7754 dest_shndx = gsym->shndx(&is_ordinary);
7755 ok = dest_shndx == relinfo->data_shndx;
7756 }
7757 if (!ok)
7758 {
7759 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7760 _("call lacks nop, can't restore toc; "
7761 "recompile with -fPIC"));
7762 value = code;
7763 }
7764 }
7765 }
7766 }
7767 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7768 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7769 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7770 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7771 {
7772 // First instruction of a global dynamic sequence, arg setup insn.
7773 const bool final = gsym == NULL || gsym->final_value_is_known();
7774 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7775 enum Got_type got_type = GOT_TYPE_STANDARD;
7776 if (tls_type == tls::TLSOPT_NONE)
7777 got_type = GOT_TYPE_TLSGD;
7778 else if (tls_type == tls::TLSOPT_TO_IE)
7779 got_type = GOT_TYPE_TPREL;
7780 if (got_type != GOT_TYPE_STANDARD)
7781 {
7782 if (gsym != NULL)
7783 {
7784 gold_assert(gsym->has_got_offset(got_type));
7785 value = gsym->got_offset(got_type);
7786 }
7787 else
7788 {
7789 gold_assert(object->local_has_got_offset(r_sym, got_type));
7790 value = object->local_got_offset(r_sym, got_type);
7791 }
7792 value -= target->got_section()->got_base_offset(object);
7793 }
7794 if (tls_type == tls::TLSOPT_TO_IE)
7795 {
7796 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7797 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7798 {
7799 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7800 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7801 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7802 if (size == 32)
7803 insn |= 32 << 26; // lwz
7804 else
7805 insn |= 58 << 26; // ld
7806 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7807 }
7808 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7809 - elfcpp::R_POWERPC_GOT_TLSGD16);
7810 }
7811 else if (tls_type == tls::TLSOPT_TO_LE)
7812 {
7813 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7814 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7815 {
7816 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7817 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7818 insn &= (1 << 26) - (1 << 21); // extract rt
7819 if (size == 32)
7820 insn |= addis_0_2;
7821 else
7822 insn |= addis_0_13;
7823 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7824 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7825 value = psymval->value(object, rela.get_r_addend());
7826 }
7827 else
7828 {
7829 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7830 Insn insn = nop;
7831 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7832 r_type = elfcpp::R_POWERPC_NONE;
7833 }
7834 }
7835 }
7836 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7837 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7838 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7839 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7840 {
7841 // First instruction of a local dynamic sequence, arg setup insn.
7842 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7843 if (tls_type == tls::TLSOPT_NONE)
7844 {
7845 value = target->tlsld_got_offset();
7846 value -= target->got_section()->got_base_offset(object);
7847 }
7848 else
7849 {
7850 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7851 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7852 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7853 {
7854 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7855 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7856 insn &= (1 << 26) - (1 << 21); // extract rt
7857 if (size == 32)
7858 insn |= addis_0_2;
7859 else
7860 insn |= addis_0_13;
7861 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7862 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7863 value = dtp_offset;
7864 }
7865 else
7866 {
7867 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7868 Insn insn = nop;
7869 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7870 r_type = elfcpp::R_POWERPC_NONE;
7871 }
7872 }
7873 }
7874 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7875 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7876 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7877 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7878 {
7879 // Accesses relative to a local dynamic sequence address,
7880 // no optimisation here.
7881 if (gsym != NULL)
7882 {
7883 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7884 value = gsym->got_offset(GOT_TYPE_DTPREL);
7885 }
7886 else
7887 {
7888 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7889 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7890 }
7891 value -= target->got_section()->got_base_offset(object);
7892 }
7893 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7894 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7895 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7896 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7897 {
7898 // First instruction of initial exec sequence.
7899 const bool final = gsym == NULL || gsym->final_value_is_known();
7900 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7901 if (tls_type == tls::TLSOPT_NONE)
7902 {
7903 if (gsym != NULL)
7904 {
7905 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7906 value = gsym->got_offset(GOT_TYPE_TPREL);
7907 }
7908 else
7909 {
7910 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7911 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7912 }
7913 value -= target->got_section()->got_base_offset(object);
7914 }
7915 else
7916 {
7917 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7918 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7919 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7920 {
7921 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7922 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7923 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7924 if (size == 32)
7925 insn |= addis_0_2;
7926 else
7927 insn |= addis_0_13;
7928 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7929 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7930 value = psymval->value(object, rela.get_r_addend());
7931 }
7932 else
7933 {
7934 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7935 Insn insn = nop;
7936 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7937 r_type = elfcpp::R_POWERPC_NONE;
7938 }
7939 }
7940 }
7941 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7942 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7943 {
7944 // Second instruction of a global dynamic sequence,
7945 // the __tls_get_addr call
7946 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7947 const bool final = gsym == NULL || gsym->final_value_is_known();
7948 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7949 if (tls_type != tls::TLSOPT_NONE)
7950 {
7951 if (tls_type == tls::TLSOPT_TO_IE)
7952 {
7953 Insn* iview = reinterpret_cast<Insn*>(view);
7954 Insn insn = add_3_3_13;
7955 if (size == 32)
7956 insn = add_3_3_2;
7957 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7958 r_type = elfcpp::R_POWERPC_NONE;
7959 }
7960 else
7961 {
7962 Insn* iview = reinterpret_cast<Insn*>(view);
7963 Insn insn = addi_3_3;
7964 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7965 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7966 view += d_offset;
7967 value = psymval->value(object, rela.get_r_addend());
7968 }
7969 this->skip_next_tls_get_addr_call();
7970 }
7971 }
7972 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7973 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7974 {
7975 // Second instruction of a local dynamic sequence,
7976 // the __tls_get_addr call
7977 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7978 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7979 if (tls_type == tls::TLSOPT_TO_LE)
7980 {
7981 Insn* iview = reinterpret_cast<Insn*>(view);
7982 Insn insn = addi_3_3;
7983 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7984 this->skip_next_tls_get_addr_call();
7985 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7986 view += d_offset;
7987 value = dtp_offset;
7988 }
7989 }
7990 else if (r_type == elfcpp::R_POWERPC_TLS)
7991 {
7992 // Second instruction of an initial exec sequence
7993 const bool final = gsym == NULL || gsym->final_value_is_known();
7994 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7995 if (tls_type == tls::TLSOPT_TO_LE)
7996 {
7997 Insn* iview = reinterpret_cast<Insn*>(view);
7998 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7999 unsigned int reg = size == 32 ? 2 : 13;
8000 insn = at_tls_transform(insn, reg);
8001 gold_assert(insn != 0);
8002 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8003 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8004 view += d_offset;
8005 value = psymval->value(object, rela.get_r_addend());
8006 }
8007 }
8008 else if (!has_stub_value)
8009 {
8010 Address addend = 0;
8011 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8012 addend = rela.get_r_addend();
8013 value = psymval->value(object, addend);
8014 if (size == 64 && is_branch_reloc(r_type))
8015 {
8016 if (target->abiversion() >= 2)
8017 {
8018 if (gsym != NULL)
8019 value += object->ppc64_local_entry_offset(gsym);
8020 else
8021 value += object->ppc64_local_entry_offset(r_sym);
8022 }
8023 else
8024 {
8025 unsigned int dest_shndx;
8026 target->symval_for_branch(relinfo->symtab, gsym, object,
8027 &value, &dest_shndx);
8028 }
8029 }
8030 Address max_branch_offset = max_branch_delta(r_type);
8031 if (max_branch_offset != 0
8032 && value - address + max_branch_offset >= 2 * max_branch_offset)
8033 {
8034 Stub_table<size, big_endian>* stub_table
8035 = object->stub_table(relinfo->data_shndx);
8036 if (stub_table != NULL)
8037 {
8038 Address off = stub_table->find_long_branch_entry(object, value);
8039 if (off != invalid_address)
8040 {
8041 value = (stub_table->stub_address() + stub_table->plt_size()
8042 + off);
8043 has_stub_value = true;
8044 }
8045 }
8046 }
8047 }
8048
8049 switch (r_type)
8050 {
8051 case elfcpp::R_PPC64_REL64:
8052 case elfcpp::R_POWERPC_REL32:
8053 case elfcpp::R_POWERPC_REL24:
8054 case elfcpp::R_PPC_PLTREL24:
8055 case elfcpp::R_PPC_LOCAL24PC:
8056 case elfcpp::R_POWERPC_REL16:
8057 case elfcpp::R_POWERPC_REL16_LO:
8058 case elfcpp::R_POWERPC_REL16_HI:
8059 case elfcpp::R_POWERPC_REL16_HA:
8060 case elfcpp::R_POWERPC_REL16DX_HA:
8061 case elfcpp::R_POWERPC_REL14:
8062 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8063 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8064 value -= address;
8065 break;
8066
8067 case elfcpp::R_PPC64_TOC16:
8068 case elfcpp::R_PPC64_TOC16_LO:
8069 case elfcpp::R_PPC64_TOC16_HI:
8070 case elfcpp::R_PPC64_TOC16_HA:
8071 case elfcpp::R_PPC64_TOC16_DS:
8072 case elfcpp::R_PPC64_TOC16_LO_DS:
8073 // Subtract the TOC base address.
8074 value -= (target->got_section()->output_section()->address()
8075 + object->toc_base_offset());
8076 break;
8077
8078 case elfcpp::R_POWERPC_SECTOFF:
8079 case elfcpp::R_POWERPC_SECTOFF_LO:
8080 case elfcpp::R_POWERPC_SECTOFF_HI:
8081 case elfcpp::R_POWERPC_SECTOFF_HA:
8082 case elfcpp::R_PPC64_SECTOFF_DS:
8083 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8084 if (os != NULL)
8085 value -= os->address();
8086 break;
8087
8088 case elfcpp::R_PPC64_TPREL16_DS:
8089 case elfcpp::R_PPC64_TPREL16_LO_DS:
8090 case elfcpp::R_PPC64_TPREL16_HIGH:
8091 case elfcpp::R_PPC64_TPREL16_HIGHA:
8092 if (size != 64)
8093 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8094 break;
8095 // Fall through.
8096 case elfcpp::R_POWERPC_TPREL16:
8097 case elfcpp::R_POWERPC_TPREL16_LO:
8098 case elfcpp::R_POWERPC_TPREL16_HI:
8099 case elfcpp::R_POWERPC_TPREL16_HA:
8100 case elfcpp::R_POWERPC_TPREL:
8101 case elfcpp::R_PPC64_TPREL16_HIGHER:
8102 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8103 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8104 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8105 // tls symbol values are relative to tls_segment()->vaddr()
8106 value -= tp_offset;
8107 break;
8108
8109 case elfcpp::R_PPC64_DTPREL16_DS:
8110 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8111 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8112 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8113 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8114 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8115 if (size != 64)
8116 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8117 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8118 break;
8119 // Fall through.
8120 case elfcpp::R_POWERPC_DTPREL16:
8121 case elfcpp::R_POWERPC_DTPREL16_LO:
8122 case elfcpp::R_POWERPC_DTPREL16_HI:
8123 case elfcpp::R_POWERPC_DTPREL16_HA:
8124 case elfcpp::R_POWERPC_DTPREL:
8125 case elfcpp::R_PPC64_DTPREL16_HIGH:
8126 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8127 // tls symbol values are relative to tls_segment()->vaddr()
8128 value -= dtp_offset;
8129 break;
8130
8131 case elfcpp::R_PPC64_ADDR64_LOCAL:
8132 if (gsym != NULL)
8133 value += object->ppc64_local_entry_offset(gsym);
8134 else
8135 value += object->ppc64_local_entry_offset(r_sym);
8136 break;
8137
8138 default:
8139 break;
8140 }
8141
8142 Insn branch_bit = 0;
8143 switch (r_type)
8144 {
8145 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8146 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8147 branch_bit = 1 << 21;
8148 // Fall through.
8149 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8150 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8151 {
8152 Insn* iview = reinterpret_cast<Insn*>(view);
8153 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8154 insn &= ~(1 << 21);
8155 insn |= branch_bit;
8156 if (this->is_isa_v2)
8157 {
8158 // Set 'a' bit. This is 0b00010 in BO field for branch
8159 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8160 // for branch on CTR insns (BO == 1a00t or 1a01t).
8161 if ((insn & (0x14 << 21)) == (0x04 << 21))
8162 insn |= 0x02 << 21;
8163 else if ((insn & (0x14 << 21)) == (0x10 << 21))
8164 insn |= 0x08 << 21;
8165 else
8166 break;
8167 }
8168 else
8169 {
8170 // Invert 'y' bit if not the default.
8171 if (static_cast<Signed_address>(value) < 0)
8172 insn ^= 1 << 21;
8173 }
8174 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8175 }
8176 break;
8177
8178 default:
8179 break;
8180 }
8181
8182 if (size == 64)
8183 {
8184 switch (r_type)
8185 {
8186 default:
8187 break;
8188
8189 // Multi-instruction sequences that access the GOT/TOC can
8190 // be optimized, eg.
8191 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8192 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8193 // and
8194 // addis ra,r2,0; addi rb,ra,x@toc@l;
8195 // to nop; addi rb,r2,x@toc;
8196 // FIXME: the @got sequence shown above is not yet
8197 // optimized. Note that gcc as of 2017-01-07 doesn't use
8198 // the ELF @got relocs except for TLS, instead using the
8199 // PowerOpen variant of a compiler managed GOT (called TOC).
8200 // The PowerOpen TOC sequence equivalent to the first
8201 // example is optimized.
8202 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8203 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8204 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8205 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8206 case elfcpp::R_POWERPC_GOT16_HA:
8207 case elfcpp::R_PPC64_TOC16_HA:
8208 if (parameters->options().toc_optimize())
8209 {
8210 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8211 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8212 if (r_type == elfcpp::R_PPC64_TOC16_HA
8213 && object->make_toc_relative(target, &value))
8214 {
8215 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8216 == ((15u << 26) | (2 << 16)));
8217 }
8218 if (((insn & ((0x3f << 26) | 0x1f << 16))
8219 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8220 && value + 0x8000 < 0x10000)
8221 {
8222 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8223 return true;
8224 }
8225 }
8226 break;
8227
8228 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8229 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8230 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8231 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8232 case elfcpp::R_POWERPC_GOT16_LO:
8233 case elfcpp::R_PPC64_GOT16_LO_DS:
8234 case elfcpp::R_PPC64_TOC16_LO:
8235 case elfcpp::R_PPC64_TOC16_LO_DS:
8236 if (parameters->options().toc_optimize())
8237 {
8238 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8239 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8240 bool changed = false;
8241 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
8242 && object->make_toc_relative(target, &value))
8243 {
8244 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
8245 insn ^= (14u << 26) ^ (58u << 26);
8246 r_type = elfcpp::R_PPC64_TOC16_LO;
8247 changed = true;
8248 }
8249 if (ok_lo_toc_insn(insn, r_type)
8250 && value + 0x8000 < 0x10000)
8251 {
8252 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
8253 {
8254 // Transform addic to addi when we change reg.
8255 insn &= ~((0x3f << 26) | (0x1f << 16));
8256 insn |= (14u << 26) | (2 << 16);
8257 }
8258 else
8259 {
8260 insn &= ~(0x1f << 16);
8261 insn |= 2 << 16;
8262 }
8263 changed = true;
8264 }
8265 if (changed)
8266 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8267 }
8268 break;
8269
8270 case elfcpp::R_PPC64_ENTRY:
8271 value = (target->got_section()->output_section()->address()
8272 + object->toc_base_offset());
8273 if (value + 0x80008000 <= 0xffffffff
8274 && !parameters->options().output_is_position_independent())
8275 {
8276 Insn* iview = reinterpret_cast<Insn*>(view);
8277 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8278 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8279
8280 if ((insn1 & ~0xfffc) == ld_2_12
8281 && insn2 == add_2_2_12)
8282 {
8283 insn1 = lis_2 + ha(value);
8284 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8285 insn2 = addi_2_2 + l(value);
8286 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8287 return true;
8288 }
8289 }
8290 else
8291 {
8292 value -= address;
8293 if (value + 0x80008000 <= 0xffffffff)
8294 {
8295 Insn* iview = reinterpret_cast<Insn*>(view);
8296 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8297 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8298
8299 if ((insn1 & ~0xfffc) == ld_2_12
8300 && insn2 == add_2_2_12)
8301 {
8302 insn1 = addis_2_12 + ha(value);
8303 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8304 insn2 = addi_2_2 + l(value);
8305 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8306 return true;
8307 }
8308 }
8309 }
8310 break;
8311
8312 case elfcpp::R_POWERPC_REL16_LO:
8313 // If we are generating a non-PIC executable, edit
8314 // 0: addis 2,12,.TOC.-0b@ha
8315 // addi 2,2,.TOC.-0b@l
8316 // used by ELFv2 global entry points to set up r2, to
8317 // lis 2,.TOC.@ha
8318 // addi 2,2,.TOC.@l
8319 // if .TOC. is in range. */
8320 if (value + address - 4 + 0x80008000 <= 0xffffffff
8321 && relnum != 0
8322 && preloc != NULL
8323 && target->abiversion() >= 2
8324 && !parameters->options().output_is_position_independent()
8325 && rela.get_r_addend() == d_offset + 4
8326 && gsym != NULL
8327 && strcmp(gsym->name(), ".TOC.") == 0)
8328 {
8329 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8330 Reltype prev_rela(preloc - reloc_size);
8331 if ((prev_rela.get_r_info()
8332 == elfcpp::elf_r_info<size>(r_sym,
8333 elfcpp::R_POWERPC_REL16_HA))
8334 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
8335 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
8336 {
8337 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8338 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
8339 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
8340
8341 if ((insn1 & 0xffff0000) == addis_2_12
8342 && (insn2 & 0xffff0000) == addi_2_2)
8343 {
8344 insn1 = lis_2 + ha(value + address - 4);
8345 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
8346 insn2 = addi_2_2 + l(value + address - 4);
8347 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
8348 if (relinfo->rr)
8349 {
8350 relinfo->rr->set_strategy(relnum - 1,
8351 Relocatable_relocs::RELOC_SPECIAL);
8352 relinfo->rr->set_strategy(relnum,
8353 Relocatable_relocs::RELOC_SPECIAL);
8354 }
8355 return true;
8356 }
8357 }
8358 }
8359 break;
8360 }
8361 }
8362
8363 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
8364 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
8365 switch (r_type)
8366 {
8367 case elfcpp::R_POWERPC_ADDR32:
8368 case elfcpp::R_POWERPC_UADDR32:
8369 if (size == 64)
8370 overflow = Reloc::CHECK_BITFIELD;
8371 break;
8372
8373 case elfcpp::R_POWERPC_REL32:
8374 case elfcpp::R_POWERPC_REL16DX_HA:
8375 if (size == 64)
8376 overflow = Reloc::CHECK_SIGNED;
8377 break;
8378
8379 case elfcpp::R_POWERPC_UADDR16:
8380 overflow = Reloc::CHECK_BITFIELD;
8381 break;
8382
8383 case elfcpp::R_POWERPC_ADDR16:
8384 // We really should have three separate relocations,
8385 // one for 16-bit data, one for insns with 16-bit signed fields,
8386 // and one for insns with 16-bit unsigned fields.
8387 overflow = Reloc::CHECK_BITFIELD;
8388 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
8389 overflow = Reloc::CHECK_LOW_INSN;
8390 break;
8391
8392 case elfcpp::R_POWERPC_ADDR16_HI:
8393 case elfcpp::R_POWERPC_ADDR16_HA:
8394 case elfcpp::R_POWERPC_GOT16_HI:
8395 case elfcpp::R_POWERPC_GOT16_HA:
8396 case elfcpp::R_POWERPC_PLT16_HI:
8397 case elfcpp::R_POWERPC_PLT16_HA:
8398 case elfcpp::R_POWERPC_SECTOFF_HI:
8399 case elfcpp::R_POWERPC_SECTOFF_HA:
8400 case elfcpp::R_PPC64_TOC16_HI:
8401 case elfcpp::R_PPC64_TOC16_HA:
8402 case elfcpp::R_PPC64_PLTGOT16_HI:
8403 case elfcpp::R_PPC64_PLTGOT16_HA:
8404 case elfcpp::R_POWERPC_TPREL16_HI:
8405 case elfcpp::R_POWERPC_TPREL16_HA:
8406 case elfcpp::R_POWERPC_DTPREL16_HI:
8407 case elfcpp::R_POWERPC_DTPREL16_HA:
8408 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8409 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8410 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8411 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8412 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8413 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8414 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8415 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8416 case elfcpp::R_POWERPC_REL16_HI:
8417 case elfcpp::R_POWERPC_REL16_HA:
8418 if (size != 32)
8419 overflow = Reloc::CHECK_HIGH_INSN;
8420 break;
8421
8422 case elfcpp::R_POWERPC_REL16:
8423 case elfcpp::R_PPC64_TOC16:
8424 case elfcpp::R_POWERPC_GOT16:
8425 case elfcpp::R_POWERPC_SECTOFF:
8426 case elfcpp::R_POWERPC_TPREL16:
8427 case elfcpp::R_POWERPC_DTPREL16:
8428 case elfcpp::R_POWERPC_GOT_TLSGD16:
8429 case elfcpp::R_POWERPC_GOT_TLSLD16:
8430 case elfcpp::R_POWERPC_GOT_TPREL16:
8431 case elfcpp::R_POWERPC_GOT_DTPREL16:
8432 overflow = Reloc::CHECK_LOW_INSN;
8433 break;
8434
8435 case elfcpp::R_POWERPC_ADDR24:
8436 case elfcpp::R_POWERPC_ADDR14:
8437 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8438 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8439 case elfcpp::R_PPC64_ADDR16_DS:
8440 case elfcpp::R_POWERPC_REL24:
8441 case elfcpp::R_PPC_PLTREL24:
8442 case elfcpp::R_PPC_LOCAL24PC:
8443 case elfcpp::R_PPC64_TPREL16_DS:
8444 case elfcpp::R_PPC64_DTPREL16_DS:
8445 case elfcpp::R_PPC64_TOC16_DS:
8446 case elfcpp::R_PPC64_GOT16_DS:
8447 case elfcpp::R_PPC64_SECTOFF_DS:
8448 case elfcpp::R_POWERPC_REL14:
8449 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8450 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8451 overflow = Reloc::CHECK_SIGNED;
8452 break;
8453 }
8454
8455 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8456 Insn insn = 0;
8457
8458 if (overflow == Reloc::CHECK_LOW_INSN
8459 || overflow == Reloc::CHECK_HIGH_INSN)
8460 {
8461 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8462
8463 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
8464 overflow = Reloc::CHECK_BITFIELD;
8465 else if (overflow == Reloc::CHECK_LOW_INSN
8466 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
8467 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
8468 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
8469 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
8470 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
8471 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
8472 overflow = Reloc::CHECK_UNSIGNED;
8473 else
8474 overflow = Reloc::CHECK_SIGNED;
8475 }
8476
8477 bool maybe_dq_reloc = false;
8478 typename Powerpc_relocate_functions<size, big_endian>::Status status
8479 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
8480 switch (r_type)
8481 {
8482 case elfcpp::R_POWERPC_NONE:
8483 case elfcpp::R_POWERPC_TLS:
8484 case elfcpp::R_POWERPC_GNU_VTINHERIT:
8485 case elfcpp::R_POWERPC_GNU_VTENTRY:
8486 break;
8487
8488 case elfcpp::R_PPC64_ADDR64:
8489 case elfcpp::R_PPC64_REL64:
8490 case elfcpp::R_PPC64_TOC:
8491 case elfcpp::R_PPC64_ADDR64_LOCAL:
8492 Reloc::addr64(view, value);
8493 break;
8494
8495 case elfcpp::R_POWERPC_TPREL:
8496 case elfcpp::R_POWERPC_DTPREL:
8497 if (size == 64)
8498 Reloc::addr64(view, value);
8499 else
8500 status = Reloc::addr32(view, value, overflow);
8501 break;
8502
8503 case elfcpp::R_PPC64_UADDR64:
8504 Reloc::addr64_u(view, value);
8505 break;
8506
8507 case elfcpp::R_POWERPC_ADDR32:
8508 status = Reloc::addr32(view, value, overflow);
8509 break;
8510
8511 case elfcpp::R_POWERPC_REL32:
8512 case elfcpp::R_POWERPC_UADDR32:
8513 status = Reloc::addr32_u(view, value, overflow);
8514 break;
8515
8516 case elfcpp::R_POWERPC_ADDR24:
8517 case elfcpp::R_POWERPC_REL24:
8518 case elfcpp::R_PPC_PLTREL24:
8519 case elfcpp::R_PPC_LOCAL24PC:
8520 status = Reloc::addr24(view, value, overflow);
8521 break;
8522
8523 case elfcpp::R_POWERPC_GOT_DTPREL16:
8524 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8525 case elfcpp::R_POWERPC_GOT_TPREL16:
8526 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8527 if (size == 64)
8528 {
8529 // On ppc64 these are all ds form
8530 maybe_dq_reloc = true;
8531 break;
8532 }
8533 // Fall through.
8534 case elfcpp::R_POWERPC_ADDR16:
8535 case elfcpp::R_POWERPC_REL16:
8536 case elfcpp::R_PPC64_TOC16:
8537 case elfcpp::R_POWERPC_GOT16:
8538 case elfcpp::R_POWERPC_SECTOFF:
8539 case elfcpp::R_POWERPC_TPREL16:
8540 case elfcpp::R_POWERPC_DTPREL16:
8541 case elfcpp::R_POWERPC_GOT_TLSGD16:
8542 case elfcpp::R_POWERPC_GOT_TLSLD16:
8543 case elfcpp::R_POWERPC_ADDR16_LO:
8544 case elfcpp::R_POWERPC_REL16_LO:
8545 case elfcpp::R_PPC64_TOC16_LO:
8546 case elfcpp::R_POWERPC_GOT16_LO:
8547 case elfcpp::R_POWERPC_SECTOFF_LO:
8548 case elfcpp::R_POWERPC_TPREL16_LO:
8549 case elfcpp::R_POWERPC_DTPREL16_LO:
8550 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8551 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8552 if (size == 64)
8553 status = Reloc::addr16(view, value, overflow);
8554 else
8555 maybe_dq_reloc = true;
8556 break;
8557
8558 case elfcpp::R_POWERPC_UADDR16:
8559 status = Reloc::addr16_u(view, value, overflow);
8560 break;
8561
8562 case elfcpp::R_PPC64_ADDR16_HIGH:
8563 case elfcpp::R_PPC64_TPREL16_HIGH:
8564 case elfcpp::R_PPC64_DTPREL16_HIGH:
8565 if (size == 32)
8566 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8567 goto unsupp;
8568 // Fall through.
8569 case elfcpp::R_POWERPC_ADDR16_HI:
8570 case elfcpp::R_POWERPC_REL16_HI:
8571 case elfcpp::R_PPC64_TOC16_HI:
8572 case elfcpp::R_POWERPC_GOT16_HI:
8573 case elfcpp::R_POWERPC_SECTOFF_HI:
8574 case elfcpp::R_POWERPC_TPREL16_HI:
8575 case elfcpp::R_POWERPC_DTPREL16_HI:
8576 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8577 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8578 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8579 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8580 Reloc::addr16_hi(view, value);
8581 break;
8582
8583 case elfcpp::R_PPC64_ADDR16_HIGHA:
8584 case elfcpp::R_PPC64_TPREL16_HIGHA:
8585 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8586 if (size == 32)
8587 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8588 goto unsupp;
8589 // Fall through.
8590 case elfcpp::R_POWERPC_ADDR16_HA:
8591 case elfcpp::R_POWERPC_REL16_HA:
8592 case elfcpp::R_PPC64_TOC16_HA:
8593 case elfcpp::R_POWERPC_GOT16_HA:
8594 case elfcpp::R_POWERPC_SECTOFF_HA:
8595 case elfcpp::R_POWERPC_TPREL16_HA:
8596 case elfcpp::R_POWERPC_DTPREL16_HA:
8597 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8598 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8599 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8600 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8601 Reloc::addr16_ha(view, value);
8602 break;
8603
8604 case elfcpp::R_POWERPC_REL16DX_HA:
8605 status = Reloc::addr16dx_ha(view, value, overflow);
8606 break;
8607
8608 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8609 if (size == 32)
8610 // R_PPC_EMB_NADDR16_LO
8611 goto unsupp;
8612 // Fall through.
8613 case elfcpp::R_PPC64_ADDR16_HIGHER:
8614 case elfcpp::R_PPC64_TPREL16_HIGHER:
8615 Reloc::addr16_hi2(view, value);
8616 break;
8617
8618 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8619 if (size == 32)
8620 // R_PPC_EMB_NADDR16_HI
8621 goto unsupp;
8622 // Fall through.
8623 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8624 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8625 Reloc::addr16_ha2(view, value);
8626 break;
8627
8628 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8629 if (size == 32)
8630 // R_PPC_EMB_NADDR16_HA
8631 goto unsupp;
8632 // Fall through.
8633 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8634 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8635 Reloc::addr16_hi3(view, value);
8636 break;
8637
8638 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8639 if (size == 32)
8640 // R_PPC_EMB_SDAI16
8641 goto unsupp;
8642 // Fall through.
8643 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8644 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8645 Reloc::addr16_ha3(view, value);
8646 break;
8647
8648 case elfcpp::R_PPC64_DTPREL16_DS:
8649 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8650 if (size == 32)
8651 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8652 goto unsupp;
8653 // Fall through.
8654 case elfcpp::R_PPC64_TPREL16_DS:
8655 case elfcpp::R_PPC64_TPREL16_LO_DS:
8656 if (size == 32)
8657 // R_PPC_TLSGD, R_PPC_TLSLD
8658 break;
8659 // Fall through.
8660 case elfcpp::R_PPC64_ADDR16_DS:
8661 case elfcpp::R_PPC64_ADDR16_LO_DS:
8662 case elfcpp::R_PPC64_TOC16_DS:
8663 case elfcpp::R_PPC64_TOC16_LO_DS:
8664 case elfcpp::R_PPC64_GOT16_DS:
8665 case elfcpp::R_PPC64_GOT16_LO_DS:
8666 case elfcpp::R_PPC64_SECTOFF_DS:
8667 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8668 maybe_dq_reloc = true;
8669 break;
8670
8671 case elfcpp::R_POWERPC_ADDR14:
8672 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8673 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8674 case elfcpp::R_POWERPC_REL14:
8675 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8676 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8677 status = Reloc::addr14(view, value, overflow);
8678 break;
8679
8680 case elfcpp::R_POWERPC_COPY:
8681 case elfcpp::R_POWERPC_GLOB_DAT:
8682 case elfcpp::R_POWERPC_JMP_SLOT:
8683 case elfcpp::R_POWERPC_RELATIVE:
8684 case elfcpp::R_POWERPC_DTPMOD:
8685 case elfcpp::R_PPC64_JMP_IREL:
8686 case elfcpp::R_POWERPC_IRELATIVE:
8687 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8688 _("unexpected reloc %u in object file"),
8689 r_type);
8690 break;
8691
8692 case elfcpp::R_PPC_EMB_SDA21:
8693 if (size == 32)
8694 goto unsupp;
8695 else
8696 {
8697 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8698 }
8699 break;
8700
8701 case elfcpp::R_PPC_EMB_SDA2I16:
8702 case elfcpp::R_PPC_EMB_SDA2REL:
8703 if (size == 32)
8704 goto unsupp;
8705 // R_PPC64_TLSGD, R_PPC64_TLSLD
8706 break;
8707
8708 case elfcpp::R_POWERPC_PLT32:
8709 case elfcpp::R_POWERPC_PLTREL32:
8710 case elfcpp::R_POWERPC_PLT16_LO:
8711 case elfcpp::R_POWERPC_PLT16_HI:
8712 case elfcpp::R_POWERPC_PLT16_HA:
8713 case elfcpp::R_PPC_SDAREL16:
8714 case elfcpp::R_POWERPC_ADDR30:
8715 case elfcpp::R_PPC64_PLT64:
8716 case elfcpp::R_PPC64_PLTREL64:
8717 case elfcpp::R_PPC64_PLTGOT16:
8718 case elfcpp::R_PPC64_PLTGOT16_LO:
8719 case elfcpp::R_PPC64_PLTGOT16_HI:
8720 case elfcpp::R_PPC64_PLTGOT16_HA:
8721 case elfcpp::R_PPC64_PLT16_LO_DS:
8722 case elfcpp::R_PPC64_PLTGOT16_DS:
8723 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8724 case elfcpp::R_PPC_EMB_RELSDA:
8725 case elfcpp::R_PPC_TOC16:
8726 default:
8727 unsupp:
8728 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8729 _("unsupported reloc %u"),
8730 r_type);
8731 break;
8732 }
8733
8734 if (maybe_dq_reloc)
8735 {
8736 if (insn == 0)
8737 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8738
8739 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8740 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8741 && (insn & 3) == 1))
8742 status = Reloc::addr16_dq(view, value, overflow);
8743 else if (size == 64
8744 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8745 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8746 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8747 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8748 status = Reloc::addr16_ds(view, value, overflow);
8749 else
8750 status = Reloc::addr16(view, value, overflow);
8751 }
8752
8753 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8754 && (has_stub_value
8755 || !(gsym != NULL
8756 && gsym->is_undefined()
8757 && is_branch_reloc(r_type))))
8758 {
8759 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8760 _("relocation overflow"));
8761 if (has_stub_value)
8762 gold_info(_("try relinking with a smaller --stub-group-size"));
8763 }
8764
8765 return true;
8766 }
8767
8768 // Relocate section data.
8769
8770 template<int size, bool big_endian>
8771 void
8772 Target_powerpc<size, big_endian>::relocate_section(
8773 const Relocate_info<size, big_endian>* relinfo,
8774 unsigned int sh_type,
8775 const unsigned char* prelocs,
8776 size_t reloc_count,
8777 Output_section* output_section,
8778 bool needs_special_offset_handling,
8779 unsigned char* view,
8780 Address address,
8781 section_size_type view_size,
8782 const Reloc_symbol_changes* reloc_symbol_changes)
8783 {
8784 typedef Target_powerpc<size, big_endian> Powerpc;
8785 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8786 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8787 Powerpc_comdat_behavior;
8788 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8789 Classify_reloc;
8790
8791 gold_assert(sh_type == elfcpp::SHT_RELA);
8792
8793 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8794 Powerpc_comdat_behavior, Classify_reloc>(
8795 relinfo,
8796 this,
8797 prelocs,
8798 reloc_count,
8799 output_section,
8800 needs_special_offset_handling,
8801 view,
8802 address,
8803 view_size,
8804 reloc_symbol_changes);
8805 }
8806
8807 template<int size, bool big_endian>
8808 class Powerpc_scan_relocatable_reloc
8809 {
8810 public:
8811 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8812 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8813 static const int sh_type = elfcpp::SHT_RELA;
8814
8815 // Return the symbol referred to by the relocation.
8816 static inline unsigned int
8817 get_r_sym(const Reltype* reloc)
8818 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8819
8820 // Return the type of the relocation.
8821 static inline unsigned int
8822 get_r_type(const Reltype* reloc)
8823 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8824
8825 // Return the strategy to use for a local symbol which is not a
8826 // section symbol, given the relocation type.
8827 inline Relocatable_relocs::Reloc_strategy
8828 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8829 {
8830 if (r_type == 0 && r_sym == 0)
8831 return Relocatable_relocs::RELOC_DISCARD;
8832 return Relocatable_relocs::RELOC_COPY;
8833 }
8834
8835 // Return the strategy to use for a local symbol which is a section
8836 // symbol, given the relocation type.
8837 inline Relocatable_relocs::Reloc_strategy
8838 local_section_strategy(unsigned int, Relobj*)
8839 {
8840 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8841 }
8842
8843 // Return the strategy to use for a global symbol, given the
8844 // relocation type, the object, and the symbol index.
8845 inline Relocatable_relocs::Reloc_strategy
8846 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8847 {
8848 if (r_type == elfcpp::R_PPC_PLTREL24)
8849 return Relocatable_relocs::RELOC_SPECIAL;
8850 return Relocatable_relocs::RELOC_COPY;
8851 }
8852 };
8853
8854 // Scan the relocs during a relocatable link.
8855
8856 template<int size, bool big_endian>
8857 void
8858 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8859 Symbol_table* symtab,
8860 Layout* layout,
8861 Sized_relobj_file<size, big_endian>* object,
8862 unsigned int data_shndx,
8863 unsigned int sh_type,
8864 const unsigned char* prelocs,
8865 size_t reloc_count,
8866 Output_section* output_section,
8867 bool needs_special_offset_handling,
8868 size_t local_symbol_count,
8869 const unsigned char* plocal_symbols,
8870 Relocatable_relocs* rr)
8871 {
8872 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8873
8874 gold_assert(sh_type == elfcpp::SHT_RELA);
8875
8876 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8877 symtab,
8878 layout,
8879 object,
8880 data_shndx,
8881 prelocs,
8882 reloc_count,
8883 output_section,
8884 needs_special_offset_handling,
8885 local_symbol_count,
8886 plocal_symbols,
8887 rr);
8888 }
8889
8890 // Scan the relocs for --emit-relocs.
8891
8892 template<int size, bool big_endian>
8893 void
8894 Target_powerpc<size, big_endian>::emit_relocs_scan(
8895 Symbol_table* symtab,
8896 Layout* layout,
8897 Sized_relobj_file<size, big_endian>* object,
8898 unsigned int data_shndx,
8899 unsigned int sh_type,
8900 const unsigned char* prelocs,
8901 size_t reloc_count,
8902 Output_section* output_section,
8903 bool needs_special_offset_handling,
8904 size_t local_symbol_count,
8905 const unsigned char* plocal_syms,
8906 Relocatable_relocs* rr)
8907 {
8908 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8909 Classify_reloc;
8910 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8911 Emit_relocs_strategy;
8912
8913 gold_assert(sh_type == elfcpp::SHT_RELA);
8914
8915 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8916 symtab,
8917 layout,
8918 object,
8919 data_shndx,
8920 prelocs,
8921 reloc_count,
8922 output_section,
8923 needs_special_offset_handling,
8924 local_symbol_count,
8925 plocal_syms,
8926 rr);
8927 }
8928
8929 // Emit relocations for a section.
8930 // This is a modified version of the function by the same name in
8931 // target-reloc.h. Using relocate_special_relocatable for
8932 // R_PPC_PLTREL24 would require duplication of the entire body of the
8933 // loop, so we may as well duplicate the whole thing.
8934
8935 template<int size, bool big_endian>
8936 void
8937 Target_powerpc<size, big_endian>::relocate_relocs(
8938 const Relocate_info<size, big_endian>* relinfo,
8939 unsigned int sh_type,
8940 const unsigned char* prelocs,
8941 size_t reloc_count,
8942 Output_section* output_section,
8943 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8944 unsigned char*,
8945 Address view_address,
8946 section_size_type,
8947 unsigned char* reloc_view,
8948 section_size_type reloc_view_size)
8949 {
8950 gold_assert(sh_type == elfcpp::SHT_RELA);
8951
8952 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8953 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
8954 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8955 // Offset from start of insn to d-field reloc.
8956 const int d_offset = big_endian ? 2 : 0;
8957
8958 Powerpc_relobj<size, big_endian>* const object
8959 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8960 const unsigned int local_count = object->local_symbol_count();
8961 unsigned int got2_shndx = object->got2_shndx();
8962 Address got2_addend = 0;
8963 if (got2_shndx != 0)
8964 {
8965 got2_addend = object->get_output_section_offset(got2_shndx);
8966 gold_assert(got2_addend != invalid_address);
8967 }
8968
8969 unsigned char* pwrite = reloc_view;
8970 bool zap_next = false;
8971 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8972 {
8973 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8974 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8975 continue;
8976
8977 Reltype reloc(prelocs);
8978 Reltype_write reloc_write(pwrite);
8979
8980 Address offset = reloc.get_r_offset();
8981 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8982 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8983 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8984 const unsigned int orig_r_sym = r_sym;
8985 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8986 = reloc.get_r_addend();
8987 const Symbol* gsym = NULL;
8988
8989 if (zap_next)
8990 {
8991 // We could arrange to discard these and other relocs for
8992 // tls optimised sequences in the strategy methods, but for
8993 // now do as BFD ld does.
8994 r_type = elfcpp::R_POWERPC_NONE;
8995 zap_next = false;
8996 }
8997
8998 // Get the new symbol index.
8999 Output_section* os = NULL;
9000 if (r_sym < local_count)
9001 {
9002 switch (strategy)
9003 {
9004 case Relocatable_relocs::RELOC_COPY:
9005 case Relocatable_relocs::RELOC_SPECIAL:
9006 if (r_sym != 0)
9007 {
9008 r_sym = object->symtab_index(r_sym);
9009 gold_assert(r_sym != -1U);
9010 }
9011 break;
9012
9013 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9014 {
9015 // We are adjusting a section symbol. We need to find
9016 // the symbol table index of the section symbol for
9017 // the output section corresponding to input section
9018 // in which this symbol is defined.
9019 gold_assert(r_sym < local_count);
9020 bool is_ordinary;
9021 unsigned int shndx =
9022 object->local_symbol_input_shndx(r_sym, &is_ordinary);
9023 gold_assert(is_ordinary);
9024 os = object->output_section(shndx);
9025 gold_assert(os != NULL);
9026 gold_assert(os->needs_symtab_index());
9027 r_sym = os->symtab_index();
9028 }
9029 break;
9030
9031 default:
9032 gold_unreachable();
9033 }
9034 }
9035 else
9036 {
9037 gsym = object->global_symbol(r_sym);
9038 gold_assert(gsym != NULL);
9039 if (gsym->is_forwarder())
9040 gsym = relinfo->symtab->resolve_forwards(gsym);
9041
9042 gold_assert(gsym->has_symtab_index());
9043 r_sym = gsym->symtab_index();
9044 }
9045
9046 // Get the new offset--the location in the output section where
9047 // this relocation should be applied.
9048 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9049 offset += offset_in_output_section;
9050 else
9051 {
9052 section_offset_type sot_offset =
9053 convert_types<section_offset_type, Address>(offset);
9054 section_offset_type new_sot_offset =
9055 output_section->output_offset(object, relinfo->data_shndx,
9056 sot_offset);
9057 gold_assert(new_sot_offset != -1);
9058 offset = new_sot_offset;
9059 }
9060
9061 // In an object file, r_offset is an offset within the section.
9062 // In an executable or dynamic object, generated by
9063 // --emit-relocs, r_offset is an absolute address.
9064 if (!parameters->options().relocatable())
9065 {
9066 offset += view_address;
9067 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9068 offset -= offset_in_output_section;
9069 }
9070
9071 // Handle the reloc addend based on the strategy.
9072 if (strategy == Relocatable_relocs::RELOC_COPY)
9073 ;
9074 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9075 {
9076 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9077 gold_assert(os != NULL);
9078 addend = psymval->value(object, addend) - os->address();
9079 }
9080 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9081 {
9082 if (size == 32)
9083 {
9084 if (addend >= 32768)
9085 addend += got2_addend;
9086 }
9087 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9088 {
9089 r_type = elfcpp::R_POWERPC_ADDR16_HA;
9090 addend -= d_offset;
9091 }
9092 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9093 {
9094 r_type = elfcpp::R_POWERPC_ADDR16_LO;
9095 addend -= d_offset + 4;
9096 }
9097 }
9098 else
9099 gold_unreachable();
9100
9101 if (!parameters->options().relocatable())
9102 {
9103 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9104 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9105 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9106 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9107 {
9108 // First instruction of a global dynamic sequence,
9109 // arg setup insn.
9110 const bool final = gsym == NULL || gsym->final_value_is_known();
9111 switch (this->optimize_tls_gd(final))
9112 {
9113 case tls::TLSOPT_TO_IE:
9114 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9115 - elfcpp::R_POWERPC_GOT_TLSGD16);
9116 break;
9117 case tls::TLSOPT_TO_LE:
9118 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9119 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9120 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9121 else
9122 {
9123 r_type = elfcpp::R_POWERPC_NONE;
9124 offset -= d_offset;
9125 }
9126 break;
9127 default:
9128 break;
9129 }
9130 }
9131 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9132 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9133 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9134 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9135 {
9136 // First instruction of a local dynamic sequence,
9137 // arg setup insn.
9138 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9139 {
9140 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9141 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9142 {
9143 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9144 const Output_section* os = relinfo->layout->tls_segment()
9145 ->first_section();
9146 gold_assert(os != NULL);
9147 gold_assert(os->needs_symtab_index());
9148 r_sym = os->symtab_index();
9149 addend = dtp_offset;
9150 }
9151 else
9152 {
9153 r_type = elfcpp::R_POWERPC_NONE;
9154 offset -= d_offset;
9155 }
9156 }
9157 }
9158 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9159 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9160 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9161 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9162 {
9163 // First instruction of initial exec sequence.
9164 const bool final = gsym == NULL || gsym->final_value_is_known();
9165 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9166 {
9167 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9168 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9169 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9170 else
9171 {
9172 r_type = elfcpp::R_POWERPC_NONE;
9173 offset -= d_offset;
9174 }
9175 }
9176 }
9177 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9178 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9179 {
9180 // Second instruction of a global dynamic sequence,
9181 // the __tls_get_addr call
9182 const bool final = gsym == NULL || gsym->final_value_is_known();
9183 switch (this->optimize_tls_gd(final))
9184 {
9185 case tls::TLSOPT_TO_IE:
9186 r_type = elfcpp::R_POWERPC_NONE;
9187 zap_next = true;
9188 break;
9189 case tls::TLSOPT_TO_LE:
9190 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9191 offset += d_offset;
9192 zap_next = true;
9193 break;
9194 default:
9195 break;
9196 }
9197 }
9198 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9199 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9200 {
9201 // Second instruction of a local dynamic sequence,
9202 // the __tls_get_addr call
9203 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9204 {
9205 const Output_section* os = relinfo->layout->tls_segment()
9206 ->first_section();
9207 gold_assert(os != NULL);
9208 gold_assert(os->needs_symtab_index());
9209 r_sym = os->symtab_index();
9210 addend = dtp_offset;
9211 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9212 offset += d_offset;
9213 zap_next = true;
9214 }
9215 }
9216 else if (r_type == elfcpp::R_POWERPC_TLS)
9217 {
9218 // Second instruction of an initial exec sequence
9219 const bool final = gsym == NULL || gsym->final_value_is_known();
9220 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9221 {
9222 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9223 offset += d_offset;
9224 }
9225 }
9226 }
9227
9228 reloc_write.put_r_offset(offset);
9229 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
9230 reloc_write.put_r_addend(addend);
9231
9232 pwrite += reloc_size;
9233 }
9234
9235 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
9236 == reloc_view_size);
9237 }
9238
9239 // Return the value to use for a dynamic symbol which requires special
9240 // treatment. This is how we support equality comparisons of function
9241 // pointers across shared library boundaries, as described in the
9242 // processor specific ABI supplement.
9243
9244 template<int size, bool big_endian>
9245 uint64_t
9246 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
9247 {
9248 if (size == 32)
9249 {
9250 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9251 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9252 p != this->stub_tables_.end();
9253 ++p)
9254 {
9255 Address off = (*p)->find_plt_call_entry(gsym);
9256 if (off != invalid_address)
9257 return (*p)->stub_address() + off;
9258 }
9259 }
9260 else if (this->abiversion() >= 2)
9261 {
9262 Address off = this->glink_section()->find_global_entry(gsym);
9263 if (off != invalid_address)
9264 return this->glink_section()->global_entry_address() + off;
9265 }
9266 gold_unreachable();
9267 }
9268
9269 // Return the PLT address to use for a local symbol.
9270 template<int size, bool big_endian>
9271 uint64_t
9272 Target_powerpc<size, big_endian>::do_plt_address_for_local(
9273 const Relobj* object,
9274 unsigned int symndx) const
9275 {
9276 if (size == 32)
9277 {
9278 const Sized_relobj<size, big_endian>* relobj
9279 = static_cast<const Sized_relobj<size, big_endian>*>(object);
9280 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9281 p != this->stub_tables_.end();
9282 ++p)
9283 {
9284 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
9285 symndx);
9286 if (off != invalid_address)
9287 return (*p)->stub_address() + off;
9288 }
9289 }
9290 gold_unreachable();
9291 }
9292
9293 // Return the PLT address to use for a global symbol.
9294 template<int size, bool big_endian>
9295 uint64_t
9296 Target_powerpc<size, big_endian>::do_plt_address_for_global(
9297 const Symbol* gsym) const
9298 {
9299 if (size == 32)
9300 {
9301 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9302 p != this->stub_tables_.end();
9303 ++p)
9304 {
9305 Address off = (*p)->find_plt_call_entry(gsym);
9306 if (off != invalid_address)
9307 return (*p)->stub_address() + off;
9308 }
9309 }
9310 else if (this->abiversion() >= 2)
9311 {
9312 Address off = this->glink_section()->find_global_entry(gsym);
9313 if (off != invalid_address)
9314 return this->glink_section()->global_entry_address() + off;
9315 }
9316 gold_unreachable();
9317 }
9318
9319 // Return the offset to use for the GOT_INDX'th got entry which is
9320 // for a local tls symbol specified by OBJECT, SYMNDX.
9321 template<int size, bool big_endian>
9322 int64_t
9323 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
9324 const Relobj* object,
9325 unsigned int symndx,
9326 unsigned int got_indx) const
9327 {
9328 const Powerpc_relobj<size, big_endian>* ppc_object
9329 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
9330 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
9331 {
9332 for (Got_type got_type = GOT_TYPE_TLSGD;
9333 got_type <= GOT_TYPE_TPREL;
9334 got_type = Got_type(got_type + 1))
9335 if (ppc_object->local_has_got_offset(symndx, got_type))
9336 {
9337 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
9338 if (got_type == GOT_TYPE_TLSGD)
9339 off += size / 8;
9340 if (off == got_indx * (size / 8))
9341 {
9342 if (got_type == GOT_TYPE_TPREL)
9343 return -tp_offset;
9344 else
9345 return -dtp_offset;
9346 }
9347 }
9348 }
9349 gold_unreachable();
9350 }
9351
9352 // Return the offset to use for the GOT_INDX'th got entry which is
9353 // for global tls symbol GSYM.
9354 template<int size, bool big_endian>
9355 int64_t
9356 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
9357 Symbol* gsym,
9358 unsigned int got_indx) const
9359 {
9360 if (gsym->type() == elfcpp::STT_TLS)
9361 {
9362 for (Got_type got_type = GOT_TYPE_TLSGD;
9363 got_type <= GOT_TYPE_TPREL;
9364 got_type = Got_type(got_type + 1))
9365 if (gsym->has_got_offset(got_type))
9366 {
9367 unsigned int off = gsym->got_offset(got_type);
9368 if (got_type == GOT_TYPE_TLSGD)
9369 off += size / 8;
9370 if (off == got_indx * (size / 8))
9371 {
9372 if (got_type == GOT_TYPE_TPREL)
9373 return -tp_offset;
9374 else
9375 return -dtp_offset;
9376 }
9377 }
9378 }
9379 gold_unreachable();
9380 }
9381
9382 // The selector for powerpc object files.
9383
9384 template<int size, bool big_endian>
9385 class Target_selector_powerpc : public Target_selector
9386 {
9387 public:
9388 Target_selector_powerpc()
9389 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
9390 size, big_endian,
9391 (size == 64
9392 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
9393 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
9394 (size == 64
9395 ? (big_endian ? "elf64ppc" : "elf64lppc")
9396 : (big_endian ? "elf32ppc" : "elf32lppc")))
9397 { }
9398
9399 virtual Target*
9400 do_instantiate_target()
9401 { return new Target_powerpc<size, big_endian>(); }
9402 };
9403
9404 Target_selector_powerpc<32, true> target_selector_ppc32;
9405 Target_selector_powerpc<32, false> target_selector_ppc32le;
9406 Target_selector_powerpc<64, true> target_selector_ppc64;
9407 Target_selector_powerpc<64, false> target_selector_ppc64le;
9408
9409 // Instantiate these constants for -O0
9410 template<int size, bool big_endian>
9411 const int Output_data_glink<size, big_endian>::pltresolve_size;
9412 template<int size, bool big_endian>
9413 const typename Output_data_glink<size, big_endian>::Address
9414 Output_data_glink<size, big_endian>::invalid_address;
9415 template<int size, bool big_endian>
9416 const typename Stub_table<size, big_endian>::Address
9417 Stub_table<size, big_endian>::invalid_address;
9418 template<int size, bool big_endian>
9419 const typename Target_powerpc<size, big_endian>::Address
9420 Target_powerpc<size, big_endian>::invalid_address;
9421
9422 } // End anonymous namespace.