]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/powerpc.cc
Allow both signed and unsigned fields in PowerPC cmpli insn
[thirdparty/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* relobj,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 {
962 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963 <Powerpc_relobj<size, big_endian>*>(relobj);
964 if (ppcobj->abiversion() == 1)
965 return false;
966 }
967 // For 32-bit and ELFv2, conservatively assume anything but calls to
968 // function code might be taking the address of the function.
969 return !is_branch_reloc(r_type);
970 }
971
972 inline bool
973 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974 Target_powerpc* ,
975 Sized_relobj_file<size, big_endian>* relobj,
976 unsigned int ,
977 Output_section* ,
978 const elfcpp::Rela<size, big_endian>& ,
979 unsigned int r_type,
980 Symbol*)
981 {
982 // As above.
983 if (size == 64)
984 {
985 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986 <Powerpc_relobj<size, big_endian>*>(relobj);
987 if (ppcobj->abiversion() == 1)
988 return false;
989 }
990 return !is_branch_reloc(r_type);
991 }
992
993 static bool
994 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995 Sized_relobj_file<size, big_endian>* object,
996 unsigned int r_type, bool report_err);
997
998 private:
999 static void
1000 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001 unsigned int r_type);
1002
1003 static void
1004 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005 unsigned int r_type, Symbol*);
1006
1007 static void
1008 generate_tls_call(Symbol_table* symtab, Layout* layout,
1009 Target_powerpc* target);
1010
1011 void
1012 check_non_pic(Relobj*, unsigned int r_type);
1013
1014 // Whether we have issued an error about a non-PIC compilation.
1015 bool issued_non_pic_error_;
1016 };
1017
1018 Address
1019 symval_for_branch(const Symbol_table* symtab, Address value,
1020 const Sized_symbol<size>* gsym,
1021 Powerpc_relobj<size, big_endian>* object,
1022 unsigned int *dest_shndx);
1023
1024 // The class which implements relocation.
1025 class Relocate : protected Track_tls
1026 {
1027 public:
1028 // Use 'at' branch hints when true, 'y' when false.
1029 // FIXME maybe: set this with an option.
1030 static const bool is_isa_v2 = true;
1031
1032 Relocate()
1033 : Track_tls()
1034 { }
1035
1036 // Do a relocation. Return false if the caller should not issue
1037 // any warnings about this relocation.
1038 inline bool
1039 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040 Output_section*, size_t relnum,
1041 const elfcpp::Rela<size, big_endian>&,
1042 unsigned int r_type, const Sized_symbol<size>*,
1043 const Symbol_value<size>*,
1044 unsigned char*,
1045 typename elfcpp::Elf_types<size>::Elf_Addr,
1046 section_size_type);
1047 };
1048
1049 class Relocate_comdat_behavior
1050 {
1051 public:
1052 // Decide what the linker should do for relocations that refer to
1053 // discarded comdat sections.
1054 inline Comdat_behavior
1055 get(const char* name)
1056 {
1057 gold::Default_comdat_behavior default_behavior;
1058 Comdat_behavior ret = default_behavior.get(name);
1059 if (ret == CB_WARNING)
1060 {
1061 if (size == 32
1062 && (strcmp(name, ".fixup") == 0
1063 || strcmp(name, ".got2") == 0))
1064 ret = CB_IGNORE;
1065 if (size == 64
1066 && (strcmp(name, ".opd") == 0
1067 || strcmp(name, ".toc") == 0
1068 || strcmp(name, ".toc1") == 0))
1069 ret = CB_IGNORE;
1070 }
1071 return ret;
1072 }
1073 };
1074
1075 // A class which returns the size required for a relocation type,
1076 // used while scanning relocs during a relocatable link.
1077 class Relocatable_size_for_reloc
1078 {
1079 public:
1080 unsigned int
1081 get_size_for_reloc(unsigned int, Relobj*)
1082 {
1083 gold_unreachable();
1084 return 0;
1085 }
1086 };
1087
1088 // Optimize the TLS relocation type based on what we know about the
1089 // symbol. IS_FINAL is true if the final address of this symbol is
1090 // known at link time.
1091
1092 tls::Tls_optimization
1093 optimize_tls_gd(bool is_final)
1094 {
1095 // If we are generating a shared library, then we can't do anything
1096 // in the linker.
1097 if (parameters->options().shared())
1098 return tls::TLSOPT_NONE;
1099
1100 if (!is_final)
1101 return tls::TLSOPT_TO_IE;
1102 return tls::TLSOPT_TO_LE;
1103 }
1104
1105 tls::Tls_optimization
1106 optimize_tls_ld()
1107 {
1108 if (parameters->options().shared())
1109 return tls::TLSOPT_NONE;
1110
1111 return tls::TLSOPT_TO_LE;
1112 }
1113
1114 tls::Tls_optimization
1115 optimize_tls_ie(bool is_final)
1116 {
1117 if (!is_final || parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 return tls::TLSOPT_TO_LE;
1121 }
1122
1123 // Create glink.
1124 void
1125 make_glink_section(Layout*);
1126
1127 // Create the PLT section.
1128 void
1129 make_plt_section(Symbol_table*, Layout*);
1130
1131 void
1132 make_iplt_section(Symbol_table*, Layout*);
1133
1134 void
1135 make_brlt_section(Layout*);
1136
1137 // Create a PLT entry for a global symbol.
1138 void
1139 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141 // Create a PLT entry for a local IFUNC symbol.
1142 void
1143 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144 Sized_relobj_file<size, big_endian>*,
1145 unsigned int);
1146
1147
1148 // Create a GOT entry for local dynamic __tls_get_addr.
1149 unsigned int
1150 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151 Sized_relobj_file<size, big_endian>* object);
1152
1153 unsigned int
1154 tlsld_got_offset() const
1155 {
1156 return this->tlsld_got_offset_;
1157 }
1158
1159 // Get the dynamic reloc section, creating it if necessary.
1160 Reloc_section*
1161 rela_dyn_section(Layout*);
1162
1163 // Similarly, but for ifunc symbols get the one for ifunc.
1164 Reloc_section*
1165 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167 // Copy a relocation against a global symbol.
1168 void
1169 copy_reloc(Symbol_table* symtab, Layout* layout,
1170 Sized_relobj_file<size, big_endian>* object,
1171 unsigned int shndx, Output_section* output_section,
1172 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173 {
1174 this->copy_relocs_.copy_reloc(symtab, layout,
1175 symtab->get_sized_symbol<size>(sym),
1176 object, shndx, output_section,
1177 reloc, this->rela_dyn_section(layout));
1178 }
1179
1180 // Look over all the input sections, deciding where to place stubs.
1181 void
1182 group_sections(Layout*, const Task*);
1183
1184 // Sort output sections by address.
1185 struct Sort_sections
1186 {
1187 bool
1188 operator()(const Output_section* sec1, const Output_section* sec2)
1189 { return sec1->address() < sec2->address(); }
1190 };
1191
1192 class Branch_info
1193 {
1194 public:
1195 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196 unsigned int data_shndx,
1197 Address r_offset,
1198 unsigned int r_type,
1199 unsigned int r_sym,
1200 Address addend)
1201 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203 { }
1204
1205 ~Branch_info()
1206 { }
1207
1208 // If this branch needs a plt call stub, or a long branch stub, make one.
1209 void
1210 make_stub(Stub_table<size, big_endian>*,
1211 Stub_table<size, big_endian>*,
1212 Symbol_table*) const;
1213
1214 private:
1215 // The branch location..
1216 Powerpc_relobj<size, big_endian>* object_;
1217 unsigned int shndx_;
1218 Address offset_;
1219 // ..and the branch type and destination.
1220 unsigned int r_type_;
1221 unsigned int r_sym_;
1222 Address addend_;
1223 };
1224
1225 // Information about this specific target which we pass to the
1226 // general Target structure.
1227 static Target::Target_info powerpc_info;
1228
1229 // The types of GOT entries needed for this platform.
1230 // These values are exposed to the ABI in an incremental link.
1231 // Do not renumber existing values without changing the version
1232 // number of the .gnu_incremental_inputs section.
1233 enum Got_type
1234 {
1235 GOT_TYPE_STANDARD,
1236 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1237 GOT_TYPE_DTPREL, // entry for @got@dtprel
1238 GOT_TYPE_TPREL // entry for @got@tprel
1239 };
1240
1241 // The GOT section.
1242 Output_data_got_powerpc<size, big_endian>* got_;
1243 // The PLT section. This is a container for a table of addresses,
1244 // and their relocations. Each address in the PLT has a dynamic
1245 // relocation (R_*_JMP_SLOT) and each address will have a
1246 // corresponding entry in .glink for lazy resolution of the PLT.
1247 // ppc32 initialises the PLT to point at the .glink entry, while
1248 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1249 // linker adds a stub that loads the PLT entry into ctr then
1250 // branches to ctr. There may be more than one stub for each PLT
1251 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1252 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253 Output_data_plt_powerpc<size, big_endian>* plt_;
1254 // The IPLT section. Like plt_, this is a container for a table of
1255 // addresses and their relocations, specifically for STT_GNU_IFUNC
1256 // functions that resolve locally (STT_GNU_IFUNC functions that
1257 // don't resolve locally go in PLT). Unlike plt_, these have no
1258 // entry in .glink for lazy resolution, and the relocation section
1259 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1260 // the relocation section may contain relocations against
1261 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1262 // relocation section will appear at the end of other dynamic
1263 // relocations, so that ld.so applies these relocations after other
1264 // dynamic relocations. In a static executable, the relocation
1265 // section is emitted and marked with __rela_iplt_start and
1266 // __rela_iplt_end symbols.
1267 Output_data_plt_powerpc<size, big_endian>* iplt_;
1268 // Section holding long branch destinations.
1269 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270 // The .glink section.
1271 Output_data_glink<size, big_endian>* glink_;
1272 // The dynamic reloc section.
1273 Reloc_section* rela_dyn_;
1274 // Relocs saved to avoid a COPY reloc.
1275 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277 unsigned int tlsld_got_offset_;
1278
1279 Stub_tables stub_tables_;
1280 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281 Branch_lookup_table branch_lookup_table_;
1282
1283 typedef std::vector<Branch_info> Branches;
1284 Branches branch_info_;
1285
1286 bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292 32, // size
1293 true, // is_big_endian
1294 elfcpp::EM_PPC, // machine_code
1295 false, // has_make_symbol
1296 false, // has_resolve
1297 false, // has_code_fill
1298 true, // is_default_stack_executable
1299 false, // can_icf_inline_merge_sections
1300 '\0', // wrap_char
1301 "/usr/lib/ld.so.1", // dynamic_linker
1302 0x10000000, // default_text_segment_address
1303 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1304 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1305 false, // isolate_execinstr
1306 0, // rosegment_gap
1307 elfcpp::SHN_UNDEF, // small_common_shndx
1308 elfcpp::SHN_UNDEF, // large_common_shndx
1309 0, // small_common_section_flags
1310 0, // large_common_section_flags
1311 NULL, // attributes_section
1312 NULL, // attributes_vendor
1313 "_start" // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319 32, // size
1320 false, // is_big_endian
1321 elfcpp::EM_PPC, // machine_code
1322 false, // has_make_symbol
1323 false, // has_resolve
1324 false, // has_code_fill
1325 true, // is_default_stack_executable
1326 false, // can_icf_inline_merge_sections
1327 '\0', // wrap_char
1328 "/usr/lib/ld.so.1", // dynamic_linker
1329 0x10000000, // default_text_segment_address
1330 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1331 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1332 false, // isolate_execinstr
1333 0, // rosegment_gap
1334 elfcpp::SHN_UNDEF, // small_common_shndx
1335 elfcpp::SHN_UNDEF, // large_common_shndx
1336 0, // small_common_section_flags
1337 0, // large_common_section_flags
1338 NULL, // attributes_section
1339 NULL, // attributes_vendor
1340 "_start" // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346 64, // size
1347 true, // is_big_endian
1348 elfcpp::EM_PPC64, // machine_code
1349 false, // has_make_symbol
1350 false, // has_resolve
1351 false, // has_code_fill
1352 true, // is_default_stack_executable
1353 false, // can_icf_inline_merge_sections
1354 '\0', // wrap_char
1355 "/usr/lib/ld.so.1", // dynamic_linker
1356 0x10000000, // default_text_segment_address
1357 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1358 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1359 false, // isolate_execinstr
1360 0, // rosegment_gap
1361 elfcpp::SHN_UNDEF, // small_common_shndx
1362 elfcpp::SHN_UNDEF, // large_common_shndx
1363 0, // small_common_section_flags
1364 0, // large_common_section_flags
1365 NULL, // attributes_section
1366 NULL, // attributes_vendor
1367 "_start" // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373 64, // size
1374 false, // is_big_endian
1375 elfcpp::EM_PPC64, // machine_code
1376 false, // has_make_symbol
1377 false, // has_resolve
1378 false, // has_code_fill
1379 true, // is_default_stack_executable
1380 false, // can_icf_inline_merge_sections
1381 '\0', // wrap_char
1382 "/usr/lib/ld.so.1", // dynamic_linker
1383 0x10000000, // default_text_segment_address
1384 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1385 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1386 false, // isolate_execinstr
1387 0, // rosegment_gap
1388 elfcpp::SHN_UNDEF, // small_common_shndx
1389 elfcpp::SHN_UNDEF, // large_common_shndx
1390 0, // small_common_section_flags
1391 0, // large_common_section_flags
1392 NULL, // attributes_section
1393 NULL, // attributes_vendor
1394 "_start" // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400 return (r_type == elfcpp::R_POWERPC_REL24
1401 || r_type == elfcpp::R_PPC_PLTREL24
1402 || r_type == elfcpp::R_PPC_LOCAL24PC
1403 || r_type == elfcpp::R_POWERPC_REL14
1404 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406 || r_type == elfcpp::R_POWERPC_ADDR24
1407 || r_type == elfcpp::R_POWERPC_ADDR14
1408 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0. If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418 if ((insn & (0x3f << 26)) != 31 << 26)
1419 return 0;
1420
1421 unsigned int rtra;
1422 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423 rtra = insn & ((1 << 26) - (1 << 16));
1424 else if (((insn >> 16) & 0x1f) == reg)
1425 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426 else
1427 return 0;
1428
1429 if ((insn & (0x3ff << 1)) == 266 << 1)
1430 // add -> addi
1431 insn = 14 << 26;
1432 else if ((insn & (0x1f << 1)) == 23 << 1
1433 && ((insn & (0x1f << 6)) < 14 << 6
1434 || ((insn & (0x1f << 6)) >= 16 << 6
1435 && (insn & (0x1f << 6)) < 24 << 6)))
1436 // load and store indexed -> dform
1437 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442 // lwax -> lwa
1443 insn = (58 << 26) | 2;
1444 else
1445 return 0;
1446 insn |= rtra;
1447 return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455 enum Overflow_check
1456 {
1457 CHECK_NONE,
1458 CHECK_SIGNED,
1459 CHECK_UNSIGNED,
1460 CHECK_BITFIELD,
1461 CHECK_LOW_INSN,
1462 CHECK_HIGH_INSN
1463 };
1464
1465 enum Status
1466 {
1467 STATUS_OK,
1468 STATUS_OVERFLOW
1469 };
1470
1471 private:
1472 typedef Powerpc_relocate_functions<size, big_endian> This;
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475 template<int valsize>
1476 static inline bool
1477 has_overflow_signed(Address value)
1478 {
1479 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481 limit <<= ((valsize - 1) >> 1);
1482 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483 return value + limit > (limit << 1) - 1;
1484 }
1485
1486 template<int valsize>
1487 static inline bool
1488 has_overflow_unsigned(Address value)
1489 {
1490 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491 limit <<= ((valsize - 1) >> 1);
1492 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493 return value > (limit << 1) - 1;
1494 }
1495
1496 template<int valsize>
1497 static inline bool
1498 has_overflow_bitfield(Address value)
1499 {
1500 return (has_overflow_unsigned<valsize>(value)
1501 && has_overflow_signed<valsize>(value));
1502 }
1503
1504 template<int valsize>
1505 static inline Status
1506 overflowed(Address value, Overflow_check overflow)
1507 {
1508 if (overflow == CHECK_SIGNED)
1509 {
1510 if (has_overflow_signed<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 else if (overflow == CHECK_UNSIGNED)
1514 {
1515 if (has_overflow_unsigned<valsize>(value))
1516 return STATUS_OVERFLOW;
1517 }
1518 else if (overflow == CHECK_BITFIELD)
1519 {
1520 if (has_overflow_bitfield<valsize>(value))
1521 return STATUS_OVERFLOW;
1522 }
1523 return STATUS_OK;
1524 }
1525
1526 // Do a simple RELA relocation
1527 template<int valsize>
1528 static inline Status
1529 rela(unsigned char* view, Address value, Overflow_check overflow)
1530 {
1531 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532 Valtype* wv = reinterpret_cast<Valtype*>(view);
1533 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534 return overflowed<valsize>(value, overflow);
1535 }
1536
1537 template<int valsize>
1538 static inline Status
1539 rela(unsigned char* view,
1540 unsigned int right_shift,
1541 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542 Address value,
1543 Overflow_check overflow)
1544 {
1545 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546 Valtype* wv = reinterpret_cast<Valtype*>(view);
1547 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548 Valtype reloc = value >> right_shift;
1549 val &= ~dst_mask;
1550 reloc &= dst_mask;
1551 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552 return overflowed<valsize>(value >> right_shift, overflow);
1553 }
1554
1555 // Do a simple RELA relocation, unaligned.
1556 template<int valsize>
1557 static inline Status
1558 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559 {
1560 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561 return overflowed<valsize>(value, overflow);
1562 }
1563
1564 template<int valsize>
1565 static inline Status
1566 rela_ua(unsigned char* view,
1567 unsigned int right_shift,
1568 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569 Address value,
1570 Overflow_check overflow)
1571 {
1572 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573 Valtype;
1574 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575 Valtype reloc = value >> right_shift;
1576 val &= ~dst_mask;
1577 reloc &= dst_mask;
1578 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579 return overflowed<valsize>(value >> right_shift, overflow);
1580 }
1581
1582 public:
1583 // R_PPC64_ADDR64: (Symbol + Addend)
1584 static inline void
1585 addr64(unsigned char* view, Address value)
1586 { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589 static inline void
1590 addr64_u(unsigned char* view, Address value)
1591 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593 // R_POWERPC_ADDR32: (Symbol + Addend)
1594 static inline Status
1595 addr32(unsigned char* view, Address value, Overflow_check overflow)
1596 { return This::template rela<32>(view, value, overflow); }
1597
1598 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599 static inline Status
1600 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601 { return This::template rela_ua<32>(view, value, overflow); }
1602
1603 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604 static inline Status
1605 addr24(unsigned char* view, Address value, Overflow_check overflow)
1606 {
1607 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608 if (overflow != CHECK_NONE && (value & 3) != 0)
1609 stat = STATUS_OVERFLOW;
1610 return stat;
1611 }
1612
1613 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614 static inline Status
1615 addr16(unsigned char* view, Address value, Overflow_check overflow)
1616 { return This::template rela<16>(view, value, overflow); }
1617
1618 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619 static inline Status
1620 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621 { return This::template rela_ua<16>(view, value, overflow); }
1622
1623 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624 static inline Status
1625 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626 {
1627 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628 if (overflow != CHECK_NONE && (value & 3) != 0)
1629 stat = STATUS_OVERFLOW;
1630 return stat;
1631 }
1632
1633 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634 static inline void
1635 addr16_hi(unsigned char* view, Address value)
1636 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639 static inline void
1640 addr16_ha(unsigned char* view, Address value)
1641 { This::addr16_hi(view, value + 0x8000); }
1642
1643 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644 static inline void
1645 addr16_hi2(unsigned char* view, Address value)
1646 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649 static inline void
1650 addr16_ha2(unsigned char* view, Address value)
1651 { This::addr16_hi2(view, value + 0x8000); }
1652
1653 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654 static inline void
1655 addr16_hi3(unsigned char* view, Address value)
1656 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659 static inline void
1660 addr16_ha3(unsigned char* view, Address value)
1661 { This::addr16_hi3(view, value + 0x8000); }
1662
1663 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664 static inline Status
1665 addr14(unsigned char* view, Address value, Overflow_check overflow)
1666 {
1667 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668 if (overflow != CHECK_NONE && (value & 3) != 0)
1669 stat = STATUS_OVERFLOW;
1670 return stat;
1671 }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680 this->e_flags_ |= ver;
1681 if (this->abiversion() != 0)
1682 {
1683 Target_powerpc<size, big_endian>* target =
1684 static_cast<Target_powerpc<size, big_endian>*>(
1685 parameters->sized_target<size, big_endian>());
1686 if (target->abiversion() == 0)
1687 target->set_abiversion(this->abiversion());
1688 else if (target->abiversion() != this->abiversion())
1689 gold_error(_("%s: ABI version %d is not compatible "
1690 "with ABI version %d output"),
1691 this->name().c_str(),
1692 this->abiversion(), target->abiversion());
1693
1694 }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703 Read_symbols_data* sd)
1704 {
1705 const unsigned char* const pshdrs = sd->section_headers->data();
1706 const unsigned char* namesu = sd->section_names->data();
1707 const char* names = reinterpret_cast<const char*>(namesu);
1708 section_size_type names_size = sd->section_names_size;
1709 const unsigned char* s;
1710
1711 s = this->template find_shdr<size, big_endian>(pshdrs,
1712 size == 32 ? ".got2" : ".opd",
1713 names, names_size, NULL);
1714 if (s != NULL)
1715 {
1716 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717 this->special_ = ndx;
1718 if (size == 64)
1719 {
1720 if (this->abiversion() == 0)
1721 this->set_abiversion(1);
1722 else if (this->abiversion() > 1)
1723 gold_error(_("%s: .opd invalid in abiv%d"),
1724 this->name().c_str(), this->abiversion());
1725 }
1726 }
1727 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735 size_t reloc_count,
1736 const unsigned char* prelocs,
1737 const unsigned char* plocal_syms)
1738 {
1739 if (size == 64)
1740 {
1741 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742 Reltype;
1743 const int reloc_size
1744 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746 Address expected_off = 0;
1747 bool regular = true;
1748 unsigned int opd_ent_size = 0;
1749
1750 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751 {
1752 Reltype reloc(prelocs);
1753 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754 = reloc.get_r_info();
1755 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756 if (r_type == elfcpp::R_PPC64_ADDR64)
1757 {
1758 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759 typename elfcpp::Elf_types<size>::Elf_Addr value;
1760 bool is_ordinary;
1761 unsigned int shndx;
1762 if (r_sym < this->local_symbol_count())
1763 {
1764 typename elfcpp::Sym<size, big_endian>
1765 lsym(plocal_syms + r_sym * sym_size);
1766 shndx = lsym.get_st_shndx();
1767 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768 value = lsym.get_st_value();
1769 }
1770 else
1771 shndx = this->symbol_section_and_value(r_sym, &value,
1772 &is_ordinary);
1773 this->set_opd_ent(reloc.get_r_offset(), shndx,
1774 value + reloc.get_r_addend());
1775 if (i == 2)
1776 {
1777 expected_off = reloc.get_r_offset();
1778 opd_ent_size = expected_off;
1779 }
1780 else if (expected_off != reloc.get_r_offset())
1781 regular = false;
1782 expected_off += opd_ent_size;
1783 }
1784 else if (r_type == elfcpp::R_PPC64_TOC)
1785 {
1786 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787 regular = false;
1788 }
1789 else
1790 {
1791 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792 this->name().c_str(), r_type);
1793 regular = false;
1794 }
1795 }
1796 if (reloc_count <= 2)
1797 opd_ent_size = this->section_size(this->opd_shndx());
1798 if (opd_ent_size != 24 && opd_ent_size != 16)
1799 regular = false;
1800 if (!regular)
1801 {
1802 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803 this->name().c_str());
1804 opd_ent_size = 0;
1805 }
1806 }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814 if (size == 64)
1815 {
1816 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817 p != rd->relocs.end();
1818 ++p)
1819 {
1820 if (p->data_shndx == this->opd_shndx())
1821 {
1822 uint64_t opd_size = this->section_size(this->opd_shndx());
1823 gold_assert(opd_size == static_cast<size_t>(opd_size));
1824 if (opd_size != 0)
1825 {
1826 this->init_opd(opd_size);
1827 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828 rd->local_symbols->data());
1829 }
1830 break;
1831 }
1832 }
1833 }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842 Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1843 if (size == 64)
1844 {
1845 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846 const unsigned char* const pshdrs = sd->section_headers->data();
1847 const unsigned int loccount = this->do_local_symbol_count();
1848 if (loccount != 0)
1849 {
1850 this->st_other_.resize(loccount);
1851 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852 off_t locsize = loccount * sym_size;
1853 const unsigned int symtab_shndx = this->symtab_shndx();
1854 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857 locsize, true, false);
1858 psyms += sym_size;
1859 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860 {
1861 elfcpp::Sym<size, big_endian> sym(psyms);
1862 unsigned char st_other = sym.get_st_other();
1863 this->st_other_[i] = st_other;
1864 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865 {
1866 if (this->abiversion() == 0)
1867 this->set_abiversion(2);
1868 else if (this->abiversion() < 2)
1869 gold_error(_("%s: local symbol %d has invalid st_other"
1870 " for ABI version 1"),
1871 this->name().c_str(), i);
1872 }
1873 }
1874 }
1875 }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882 this->e_flags_ |= ver;
1883 if (this->abiversion() != 0)
1884 {
1885 Target_powerpc<size, big_endian>* target =
1886 static_cast<Target_powerpc<size, big_endian>*>(
1887 parameters->sized_target<size, big_endian>());
1888 if (target->abiversion() == 0)
1889 target->set_abiversion(this->abiversion());
1890 else if (target->abiversion() != this->abiversion())
1891 gold_error(_("%s: ABI version %d is not compatible "
1892 "with ABI version %d output"),
1893 this->name().c_str(),
1894 this->abiversion(), target->abiversion());
1895
1896 }
1897 }
1898
1899 // Call Sized_dynobj::do_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906 Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1907 if (size == 64)
1908 {
1909 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910 const unsigned char* const pshdrs = sd->section_headers->data();
1911 const unsigned char* namesu = sd->section_names->data();
1912 const char* names = reinterpret_cast<const char*>(namesu);
1913 const unsigned char* s = NULL;
1914 const unsigned char* opd;
1915 section_size_type opd_size;
1916
1917 // Find and read .opd section.
1918 while (1)
1919 {
1920 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921 sd->section_names_size,
1922 s);
1923 if (s == NULL)
1924 return;
1925
1926 typename elfcpp::Shdr<size, big_endian> shdr(s);
1927 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929 {
1930 if (this->abiversion() == 0)
1931 this->set_abiversion(1);
1932 else if (this->abiversion() > 1)
1933 gold_error(_("%s: .opd invalid in abiv%d"),
1934 this->name().c_str(), this->abiversion());
1935
1936 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937 this->opd_address_ = shdr.get_sh_addr();
1938 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940 true, false);
1941 break;
1942 }
1943 }
1944
1945 // Build set of executable sections.
1946 // Using a set is probably overkill. There is likely to be only
1947 // a few executable sections, typically .init, .text and .fini,
1948 // and they are generally grouped together.
1949 typedef std::set<Sec_info> Exec_sections;
1950 Exec_sections exec_sections;
1951 s = pshdrs;
1952 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953 {
1954 typename elfcpp::Shdr<size, big_endian> shdr(s);
1955 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956 && ((shdr.get_sh_flags()
1957 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959 && shdr.get_sh_size() != 0)
1960 {
1961 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962 shdr.get_sh_size(), i));
1963 }
1964 }
1965 if (exec_sections.empty())
1966 return;
1967
1968 // Look over the OPD entries. This is complicated by the fact
1969 // that some binaries will use two-word entries while others
1970 // will use the standard three-word entries. In most cases
1971 // the third word (the environment pointer for languages like
1972 // Pascal) is unused and will be zero. If the third word is
1973 // used it should not be pointing into executable sections,
1974 // I think.
1975 this->init_opd(opd_size);
1976 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977 {
1978 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981 if (val == 0)
1982 // Chances are that this is the third word of an OPD entry.
1983 continue;
1984 typename Exec_sections::const_iterator e
1985 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986 if (e != exec_sections.begin())
1987 {
1988 --e;
1989 if (e->start <= val && val < e->start + e->len)
1990 {
1991 // We have an address in an executable section.
1992 // VAL ought to be the function entry, set it up.
1993 this->set_opd_ent(p - opd, e->shndx, val);
1994 // Skip second word of OPD entry, the TOC pointer.
1995 p += 8;
1996 }
1997 }
1998 // If we didn't match any executable sections, we likely
1999 // have a non-zero third word in the OPD entry.
2000 }
2001 }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009 Symbol_table* symtab,
2010 Layout* layout)
2011 {
2012 if (size == 32)
2013 {
2014 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015 // undefined when scanning relocs (and thus requires
2016 // non-relative dynamic relocs). The proper value will be
2017 // updated later.
2018 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019 if (gotsym != NULL && gotsym->is_undefined())
2020 {
2021 Target_powerpc<size, big_endian>* target =
2022 static_cast<Target_powerpc<size, big_endian>*>(
2023 parameters->sized_target<size, big_endian>());
2024 Output_data_got_powerpc<size, big_endian>* got
2025 = target->got_section(symtab, layout);
2026 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027 Symbol_table::PREDEFINED,
2028 got, 0, 0,
2029 elfcpp::STT_OBJECT,
2030 elfcpp::STB_LOCAL,
2031 elfcpp::STV_HIDDEN, 0,
2032 false, false);
2033 }
2034
2035 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037 if (sdasym != NULL && sdasym->is_undefined())
2038 {
2039 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040 Output_section* os
2041 = layout->add_output_section_data(".sdata", 0,
2042 elfcpp::SHF_ALLOC
2043 | elfcpp::SHF_WRITE,
2044 sdata, ORDER_SMALL_DATA, false);
2045 symtab->define_in_output_data("_SDA_BASE_", NULL,
2046 Symbol_table::PREDEFINED,
2047 os, 32768, 0, elfcpp::STT_OBJECT,
2048 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049 0, false, false);
2050 }
2051 }
2052 else
2053 {
2054 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056 if (gotsym != NULL && gotsym->is_undefined())
2057 {
2058 Target_powerpc<size, big_endian>* target =
2059 static_cast<Target_powerpc<size, big_endian>*>(
2060 parameters->sized_target<size, big_endian>());
2061 Output_data_got_powerpc<size, big_endian>* got
2062 = target->got_section(symtab, layout);
2063 symtab->define_in_output_data(".TOC.", NULL,
2064 Symbol_table::PREDEFINED,
2065 got, 0x8000, 0,
2066 elfcpp::STT_OBJECT,
2067 elfcpp::STB_LOCAL,
2068 elfcpp::STV_HIDDEN, 0,
2069 false, false);
2070 }
2071 }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079 const std::string& name,
2080 Input_file* input_file,
2081 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083 int et = ehdr.get_e_type();
2084 // ET_EXEC files are valid input for --just-symbols/-R,
2085 // and we treat them as relocatable objects.
2086 if (et == elfcpp::ET_REL
2087 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088 {
2089 Powerpc_relobj<size, big_endian>* obj =
2090 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091 obj->setup();
2092 return obj;
2093 }
2094 else if (et == elfcpp::ET_DYN)
2095 {
2096 Powerpc_dynobj<size, big_endian>* obj =
2097 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098 obj->setup();
2099 return obj;
2100 }
2101 else
2102 {
2103 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104 return NULL;
2105 }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116 : Output_data_got<size, big_endian>(),
2117 symtab_(symtab), layout_(layout),
2118 header_ent_cnt_(size == 32 ? 3 : 1),
2119 header_index_(size == 32 ? 0x2000 : 0)
2120 { }
2121
2122 // Override all the Output_data_got methods we use so as to first call
2123 // reserve_ent().
2124 bool
2125 add_global(Symbol* gsym, unsigned int got_type)
2126 {
2127 this->reserve_ent();
2128 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129 }
2130
2131 bool
2132 add_global_plt(Symbol* gsym, unsigned int got_type)
2133 {
2134 this->reserve_ent();
2135 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136 }
2137
2138 bool
2139 add_global_tls(Symbol* gsym, unsigned int got_type)
2140 { return this->add_global_plt(gsym, got_type); }
2141
2142 void
2143 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145 {
2146 this->reserve_ent();
2147 Output_data_got<size, big_endian>::
2148 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149 }
2150
2151 void
2152 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153 Output_data_reloc_generic* rel_dyn,
2154 unsigned int r_type_1, unsigned int r_type_2)
2155 {
2156 this->reserve_ent(2);
2157 Output_data_got<size, big_endian>::
2158 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159 }
2160
2161 bool
2162 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163 {
2164 this->reserve_ent();
2165 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166 got_type);
2167 }
2168
2169 bool
2170 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171 {
2172 this->reserve_ent();
2173 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174 got_type);
2175 }
2176
2177 bool
2178 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179 { return this->add_local_plt(object, sym_index, got_type); }
2180
2181 void
2182 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183 unsigned int got_type,
2184 Output_data_reloc_generic* rel_dyn,
2185 unsigned int r_type)
2186 {
2187 this->reserve_ent(2);
2188 Output_data_got<size, big_endian>::
2189 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190 }
2191
2192 unsigned int
2193 add_constant(Valtype constant)
2194 {
2195 this->reserve_ent();
2196 return Output_data_got<size, big_endian>::add_constant(constant);
2197 }
2198
2199 unsigned int
2200 add_constant_pair(Valtype c1, Valtype c2)
2201 {
2202 this->reserve_ent(2);
2203 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204 }
2205
2206 // Offset of _GLOBAL_OFFSET_TABLE_.
2207 unsigned int
2208 g_o_t() const
2209 {
2210 return this->got_offset(this->header_index_);
2211 }
2212
2213 // Offset of base used to access the GOT/TOC.
2214 // The got/toc pointer reg will be set to this value.
2215 Valtype
2216 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217 {
2218 if (size == 32)
2219 return this->g_o_t();
2220 else
2221 return (this->output_section()->address()
2222 + object->toc_base_offset()
2223 - this->address());
2224 }
2225
2226 // Ensure our GOT has a header.
2227 void
2228 set_final_data_size()
2229 {
2230 if (this->header_ent_cnt_ != 0)
2231 this->make_header();
2232 Output_data_got<size, big_endian>::set_final_data_size();
2233 }
2234
2235 // First word of GOT header needs some values that are not
2236 // handled by Output_data_got so poke them in here.
2237 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238 void
2239 do_write(Output_file* of)
2240 {
2241 Valtype val = 0;
2242 if (size == 32 && this->layout_->dynamic_data() != NULL)
2243 val = this->layout_->dynamic_section()->address();
2244 if (size == 64)
2245 val = this->output_section()->address() + 0x8000;
2246 this->replace_constant(this->header_index_, val);
2247 Output_data_got<size, big_endian>::do_write(of);
2248 }
2249
2250 private:
2251 void
2252 reserve_ent(unsigned int cnt = 1)
2253 {
2254 if (this->header_ent_cnt_ == 0)
2255 return;
2256 if (this->num_entries() + cnt > this->header_index_)
2257 this->make_header();
2258 }
2259
2260 void
2261 make_header()
2262 {
2263 this->header_ent_cnt_ = 0;
2264 this->header_index_ = this->num_entries();
2265 if (size == 32)
2266 {
2267 Output_data_got<size, big_endian>::add_constant(0);
2268 Output_data_got<size, big_endian>::add_constant(0);
2269 Output_data_got<size, big_endian>::add_constant(0);
2270
2271 // Define _GLOBAL_OFFSET_TABLE_ at the header
2272 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273 if (gotsym != NULL)
2274 {
2275 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276 sym->set_value(this->g_o_t());
2277 }
2278 else
2279 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280 Symbol_table::PREDEFINED,
2281 this, this->g_o_t(), 0,
2282 elfcpp::STT_OBJECT,
2283 elfcpp::STB_LOCAL,
2284 elfcpp::STV_HIDDEN, 0,
2285 false, false);
2286 }
2287 else
2288 Output_data_got<size, big_endian>::add_constant(0);
2289 }
2290
2291 // Stashed pointers.
2292 Symbol_table* symtab_;
2293 Layout* layout_;
2294
2295 // GOT header size.
2296 unsigned int header_ent_cnt_;
2297 // GOT header index.
2298 unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306 Layout* layout)
2307 {
2308 if (this->got_ == NULL)
2309 {
2310 gold_assert(symtab != NULL && layout != NULL);
2311
2312 this->got_
2313 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317 this->got_, ORDER_DATA, false);
2318 }
2319
2320 return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329 if (this->rela_dyn_ == NULL)
2330 {
2331 gold_assert(layout != NULL);
2332 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334 elfcpp::SHF_ALLOC, this->rela_dyn_,
2335 ORDER_DYNAMIC_RELOCS, false);
2336 }
2337 return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345 Layout* layout,
2346 bool for_ifunc)
2347 {
2348 if (!for_ifunc)
2349 return this->rela_dyn_section(layout);
2350
2351 if (this->iplt_ == NULL)
2352 this->make_iplt_section(symtab, layout);
2353 return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358 public:
2359 // Determine the stub group size. The group size is the absolute
2360 // value of the parameter --stub-group-size. If --stub-group-size
2361 // is passed a negative value, we restrict stubs to be always before
2362 // the stubbed branches.
2363 Stub_control(int32_t size)
2364 : state_(NO_GROUP), stub_group_size_(abs(size)),
2365 stub14_group_size_(abs(size)),
2366 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368 {
2369 if (stub_group_size_ == 1)
2370 {
2371 // Default values.
2372 if (stubs_always_before_branch_)
2373 {
2374 stub_group_size_ = 0x1e00000;
2375 stub14_group_size_ = 0x7800;
2376 }
2377 else
2378 {
2379 stub_group_size_ = 0x1c00000;
2380 stub14_group_size_ = 0x7000;
2381 }
2382 suppress_size_errors_ = true;
2383 }
2384 }
2385
2386 // Return true iff input section can be handled by current stub
2387 // group.
2388 bool
2389 can_add_to_stub_group(Output_section* o,
2390 const Output_section::Input_section* i,
2391 bool has14);
2392
2393 const Output_section::Input_section*
2394 owner()
2395 { return owner_; }
2396
2397 Output_section*
2398 output_section()
2399 { return output_section_; }
2400
2401 private:
2402 typedef enum
2403 {
2404 NO_GROUP,
2405 FINDING_STUB_SECTION,
2406 HAS_STUB_SECTION
2407 } State;
2408
2409 State state_;
2410 uint32_t stub_group_size_;
2411 uint32_t stub14_group_size_;
2412 bool stubs_always_before_branch_;
2413 bool suppress_size_errors_;
2414 uint64_t group_end_addr_;
2415 const Output_section::Input_section* owner_;
2416 Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424 const Output_section::Input_section* i,
2425 bool has14)
2426 {
2427 uint32_t group_size
2428 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430 uint64_t this_size;
2431 uint64_t start_addr = o->address();
2432
2433 if (whole_sec)
2434 // .init and .fini sections are pasted together to form a single
2435 // function. We can't be adding stubs in the middle of the function.
2436 this_size = o->data_size();
2437 else
2438 {
2439 start_addr += i->relobj()->output_section_offset(i->shndx());
2440 this_size = i->data_size();
2441 }
2442 uint64_t end_addr = start_addr + this_size;
2443 bool toobig = this_size > group_size;
2444
2445 if (toobig && !this->suppress_size_errors_)
2446 gold_warning(_("%s:%s exceeds group size"),
2447 i->relobj()->name().c_str(),
2448 i->relobj()->section_name(i->shndx()).c_str());
2449
2450 if (this->state_ != HAS_STUB_SECTION
2451 && (!whole_sec || this->output_section_ != o)
2452 && (this->state_ == NO_GROUP
2453 || this->group_end_addr_ - end_addr < group_size))
2454 {
2455 this->owner_ = i;
2456 this->output_section_ = o;
2457 }
2458
2459 if (this->state_ == NO_GROUP)
2460 {
2461 this->state_ = FINDING_STUB_SECTION;
2462 this->group_end_addr_ = end_addr;
2463 }
2464 else if (this->group_end_addr_ - start_addr < group_size)
2465 ;
2466 // Adding this section would make the group larger than GROUP_SIZE.
2467 else if (this->state_ == FINDING_STUB_SECTION
2468 && !this->stubs_always_before_branch_
2469 && !toobig)
2470 {
2471 // But wait, there's more! Input sections up to GROUP_SIZE
2472 // bytes before the stub table can be handled by it too.
2473 this->state_ = HAS_STUB_SECTION;
2474 this->group_end_addr_ = end_addr;
2475 }
2476 else
2477 {
2478 this->state_ = NO_GROUP;
2479 return false;
2480 }
2481 return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489 const Task*)
2490 {
2491 Stub_control stub_control(parameters->options().stub_group_size());
2492
2493 // Group input sections and insert stub table
2494 Stub_table<size, big_endian>* stub_table = NULL;
2495 Layout::Section_list section_list;
2496 layout->get_executable_sections(&section_list);
2497 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499 o != section_list.rend();
2500 ++o)
2501 {
2502 typedef Output_section::Input_section_list Input_section_list;
2503 for (Input_section_list::const_reverse_iterator i
2504 = (*o)->input_sections().rbegin();
2505 i != (*o)->input_sections().rend();
2506 ++i)
2507 {
2508 if (i->is_input_section())
2509 {
2510 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514 {
2515 stub_table->init(stub_control.owner(),
2516 stub_control.output_section());
2517 stub_table = NULL;
2518 }
2519 if (stub_table == NULL)
2520 stub_table = this->new_stub_table();
2521 ppcobj->set_stub_table(i->shndx(), stub_table);
2522 }
2523 }
2524 }
2525 if (stub_table != NULL)
2526 {
2527 const Output_section::Input_section* i = stub_control.owner();
2528 if (!i->is_input_section())
2529 {
2530 // Corner case. A new stub group was made for the first
2531 // section (last one looked at here) for some reason, but
2532 // the first section is already being used as the owner for
2533 // a stub table for following sections. Force it into that
2534 // stub group.
2535 gold_assert(this->stub_tables_.size() >= 2);
2536 this->stub_tables_.pop_back();
2537 delete stub_table;
2538 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541 }
2542 else
2543 stub_table->init(i, stub_control.output_section());
2544 }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552 Stub_table<size, big_endian>* stub_table,
2553 Stub_table<size, big_endian>* ifunc_stub_table,
2554 Symbol_table* symtab) const
2555 {
2556 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557 if (sym != NULL && sym->is_forwarder())
2558 sym = symtab->resolve_forwards(sym);
2559 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560 Target_powerpc<size, big_endian>* target =
2561 static_cast<Target_powerpc<size, big_endian>*>(
2562 parameters->sized_target<size, big_endian>());
2563 if (gsym != NULL
2564 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565 : this->object_->local_has_plt_offset(this->r_sym_))
2566 {
2567 if (size == 64
2568 && gsym != NULL
2569 && target->abiversion() >= 2
2570 && !parameters->options().output_is_position_independent()
2571 && !is_branch_reloc(this->r_type_))
2572 target->glink_section()->add_global_entry(gsym);
2573 else
2574 {
2575 if (stub_table == NULL)
2576 stub_table = this->object_->stub_table(this->shndx_);
2577 if (stub_table == NULL)
2578 {
2579 // This is a ref from a data section to an ifunc symbol.
2580 stub_table = ifunc_stub_table;
2581 }
2582 gold_assert(stub_table != NULL);
2583 if (gsym != NULL)
2584 stub_table->add_plt_call_entry(this->object_, gsym,
2585 this->r_type_, this->addend_);
2586 else
2587 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588 this->r_type_, this->addend_);
2589 }
2590 }
2591 else
2592 {
2593 unsigned long max_branch_offset;
2594 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597 max_branch_offset = 1 << 15;
2598 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601 max_branch_offset = 1 << 25;
2602 else
2603 return;
2604 Address from = this->object_->get_output_section_offset(this->shndx_);
2605 gold_assert(from != invalid_address);
2606 from += (this->object_->output_section(this->shndx_)->address()
2607 + this->offset_);
2608 Address to;
2609 if (gsym != NULL)
2610 {
2611 switch (gsym->source())
2612 {
2613 case Symbol::FROM_OBJECT:
2614 {
2615 Object* symobj = gsym->object();
2616 if (symobj->is_dynamic()
2617 || symobj->pluginobj() != NULL)
2618 return;
2619 bool is_ordinary;
2620 unsigned int shndx = gsym->shndx(&is_ordinary);
2621 if (shndx == elfcpp::SHN_UNDEF)
2622 return;
2623 }
2624 break;
2625
2626 case Symbol::IS_UNDEFINED:
2627 return;
2628
2629 default:
2630 break;
2631 }
2632 Symbol_table::Compute_final_value_status status;
2633 to = symtab->compute_final_value<size>(gsym, &status);
2634 if (status != Symbol_table::CFVS_OK)
2635 return;
2636 if (size == 64)
2637 to += this->object_->ppc64_local_entry_offset(gsym);
2638 }
2639 else
2640 {
2641 const Symbol_value<size>* psymval
2642 = this->object_->local_symbol(this->r_sym_);
2643 Symbol_value<size> symval;
2644 typedef Sized_relobj_file<size, big_endian> ObjType;
2645 typename ObjType::Compute_final_local_value_status status
2646 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647 &symval, symtab);
2648 if (status != ObjType::CFLV_OK
2649 || !symval.has_output_value())
2650 return;
2651 to = symval.value(this->object_, 0);
2652 if (size == 64)
2653 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654 }
2655 to += this->addend_;
2656 if (stub_table == NULL)
2657 stub_table = this->object_->stub_table(this->shndx_);
2658 if (size == 64 && target->abiversion() < 2)
2659 {
2660 unsigned int dest_shndx;
2661 to = target->symval_for_branch(symtab, to, gsym,
2662 this->object_, &dest_shndx);
2663 }
2664 Address delta = to - from;
2665 if (delta + max_branch_offset >= 2 * max_branch_offset)
2666 {
2667 if (stub_table == NULL)
2668 {
2669 gold_warning(_("%s:%s: branch in non-executable section,"
2670 " no long branch stub for you"),
2671 this->object_->name().c_str(),
2672 this->object_->section_name(this->shndx_).c_str());
2673 return;
2674 }
2675 stub_table->add_long_branch_entry(this->object_, to);
2676 }
2677 }
2678 }
2679
2680 // Relaxation hook. This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685 const Input_objects*,
2686 Symbol_table* symtab,
2687 Layout* layout,
2688 const Task* task)
2689 {
2690 unsigned int prev_brlt_size = 0;
2691 if (pass == 1)
2692 {
2693 bool thread_safe
2694 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695 if (size == 64
2696 && this->abiversion() < 2
2697 && !thread_safe
2698 && !parameters->options().user_set_plt_thread_safe())
2699 {
2700 static const char* const thread_starter[] =
2701 {
2702 "pthread_create",
2703 /* libstdc++ */
2704 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705 /* librt */
2706 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707 "mq_notify", "create_timer",
2708 /* libanl */
2709 "getaddrinfo_a",
2710 /* libgomp */
2711 "GOMP_parallel_start",
2712 "GOMP_parallel_loop_static_start",
2713 "GOMP_parallel_loop_dynamic_start",
2714 "GOMP_parallel_loop_guided_start",
2715 "GOMP_parallel_loop_runtime_start",
2716 "GOMP_parallel_sections_start",
2717 };
2718
2719 if (parameters->options().shared())
2720 thread_safe = true;
2721 else
2722 {
2723 for (unsigned int i = 0;
2724 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2725 i++)
2726 {
2727 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2728 thread_safe = (sym != NULL
2729 && sym->in_reg()
2730 && sym->in_real_elf());
2731 if (thread_safe)
2732 break;
2733 }
2734 }
2735 }
2736 this->plt_thread_safe_ = thread_safe;
2737 this->group_sections(layout, task);
2738 }
2739
2740 // We need address of stub tables valid for make_stub.
2741 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2742 p != this->stub_tables_.end();
2743 ++p)
2744 {
2745 const Powerpc_relobj<size, big_endian>* object
2746 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2747 Address off = object->get_output_section_offset((*p)->shndx());
2748 gold_assert(off != invalid_address);
2749 Output_section* os = (*p)->output_section();
2750 (*p)->set_address_and_size(os, off);
2751 }
2752
2753 if (pass != 1)
2754 {
2755 // Clear plt call stubs, long branch stubs and branch lookup table.
2756 prev_brlt_size = this->branch_lookup_table_.size();
2757 this->branch_lookup_table_.clear();
2758 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2759 p != this->stub_tables_.end();
2760 ++p)
2761 {
2762 (*p)->clear_stubs();
2763 }
2764 }
2765
2766 // Build all the stubs.
2767 Stub_table<size, big_endian>* ifunc_stub_table
2768 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2769 Stub_table<size, big_endian>* one_stub_table
2770 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2771 for (typename Branches::const_iterator b = this->branch_info_.begin();
2772 b != this->branch_info_.end();
2773 b++)
2774 {
2775 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2776 }
2777
2778 // Did anything change size?
2779 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2780 bool again = num_huge_branches != prev_brlt_size;
2781 if (size == 64 && num_huge_branches != 0)
2782 this->make_brlt_section(layout);
2783 if (size == 64 && again)
2784 this->brlt_section_->set_current_size(num_huge_branches);
2785
2786 typedef Unordered_set<Output_section*> Output_sections;
2787 Output_sections os_need_update;
2788 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2789 p != this->stub_tables_.end();
2790 ++p)
2791 {
2792 if ((*p)->size_update())
2793 {
2794 again = true;
2795 (*p)->add_eh_frame(layout);
2796 os_need_update.insert((*p)->output_section());
2797 }
2798 }
2799
2800 // Set output section offsets for all input sections in an output
2801 // section that just changed size. Anything past the stubs will
2802 // need updating.
2803 for (typename Output_sections::iterator p = os_need_update.begin();
2804 p != os_need_update.end();
2805 p++)
2806 {
2807 Output_section* os = *p;
2808 Address off = 0;
2809 typedef Output_section::Input_section_list Input_section_list;
2810 for (Input_section_list::const_iterator i = os->input_sections().begin();
2811 i != os->input_sections().end();
2812 ++i)
2813 {
2814 off = align_address(off, i->addralign());
2815 if (i->is_input_section() || i->is_relaxed_input_section())
2816 i->relobj()->set_section_offset(i->shndx(), off);
2817 if (i->is_relaxed_input_section())
2818 {
2819 Stub_table<size, big_endian>* stub_table
2820 = static_cast<Stub_table<size, big_endian>*>(
2821 i->relaxed_input_section());
2822 off += stub_table->set_address_and_size(os, off);
2823 }
2824 else
2825 off += i->data_size();
2826 }
2827 // If .branch_lt is part of this output section, then we have
2828 // just done the offset adjustment.
2829 os->clear_section_offsets_need_adjustment();
2830 }
2831
2832 if (size == 64
2833 && !again
2834 && num_huge_branches != 0
2835 && parameters->options().output_is_position_independent())
2836 {
2837 // Fill in the BRLT relocs.
2838 this->brlt_section_->reset_brlt_sizes();
2839 for (typename Branch_lookup_table::const_iterator p
2840 = this->branch_lookup_table_.begin();
2841 p != this->branch_lookup_table_.end();
2842 ++p)
2843 {
2844 this->brlt_section_->add_reloc(p->first, p->second);
2845 }
2846 this->brlt_section_->finalize_brlt_sizes();
2847 }
2848 return again;
2849 }
2850
2851 template<int size, bool big_endian>
2852 void
2853 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2854 unsigned char* oview,
2855 uint64_t* paddress,
2856 off_t* plen) const
2857 {
2858 uint64_t address = plt->address();
2859 off_t len = plt->data_size();
2860
2861 if (plt == this->glink_)
2862 {
2863 // See Output_data_glink::do_write() for glink contents.
2864 if (len == 0)
2865 {
2866 gold_assert(parameters->doing_static_link());
2867 // Static linking may need stubs, to support ifunc and long
2868 // branches. We need to create an output section for
2869 // .eh_frame early in the link process, to have a place to
2870 // attach stub .eh_frame info. We also need to have
2871 // registered a CIE that matches the stub CIE. Both of
2872 // these requirements are satisfied by creating an FDE and
2873 // CIE for .glink, even though static linking will leave
2874 // .glink zero length.
2875 // ??? Hopefully generating an FDE with a zero address range
2876 // won't confuse anything that consumes .eh_frame info.
2877 }
2878 else if (size == 64)
2879 {
2880 // There is one word before __glink_PLTresolve
2881 address += 8;
2882 len -= 8;
2883 }
2884 else if (parameters->options().output_is_position_independent())
2885 {
2886 // There are two FDEs for a position independent glink.
2887 // The first covers the branch table, the second
2888 // __glink_PLTresolve at the end of glink.
2889 off_t resolve_size = this->glink_->pltresolve_size;
2890 if (oview[9] == elfcpp::DW_CFA_nop)
2891 len -= resolve_size;
2892 else
2893 {
2894 address += len - resolve_size;
2895 len = resolve_size;
2896 }
2897 }
2898 }
2899 else
2900 {
2901 // Must be a stub table.
2902 const Stub_table<size, big_endian>* stub_table
2903 = static_cast<const Stub_table<size, big_endian>*>(plt);
2904 uint64_t stub_address = stub_table->stub_address();
2905 len -= stub_address - address;
2906 address = stub_address;
2907 }
2908
2909 *paddress = address;
2910 *plen = len;
2911 }
2912
2913 // A class to handle the PLT data.
2914
2915 template<int size, bool big_endian>
2916 class Output_data_plt_powerpc : public Output_section_data_build
2917 {
2918 public:
2919 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2920 size, big_endian> Reloc_section;
2921
2922 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2923 Reloc_section* plt_rel,
2924 const char* name)
2925 : Output_section_data_build(size == 32 ? 4 : 8),
2926 rel_(plt_rel),
2927 targ_(targ),
2928 name_(name)
2929 { }
2930
2931 // Add an entry to the PLT.
2932 void
2933 add_entry(Symbol*);
2934
2935 void
2936 add_ifunc_entry(Symbol*);
2937
2938 void
2939 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2940
2941 // Return the .rela.plt section data.
2942 Reloc_section*
2943 rel_plt() const
2944 {
2945 return this->rel_;
2946 }
2947
2948 // Return the number of PLT entries.
2949 unsigned int
2950 entry_count() const
2951 {
2952 if (this->current_data_size() == 0)
2953 return 0;
2954 return ((this->current_data_size() - this->first_plt_entry_offset())
2955 / this->plt_entry_size());
2956 }
2957
2958 protected:
2959 void
2960 do_adjust_output_section(Output_section* os)
2961 {
2962 os->set_entsize(0);
2963 }
2964
2965 // Write to a map file.
2966 void
2967 do_print_to_mapfile(Mapfile* mapfile) const
2968 { mapfile->print_output_data(this, this->name_); }
2969
2970 private:
2971 // Return the offset of the first non-reserved PLT entry.
2972 unsigned int
2973 first_plt_entry_offset() const
2974 {
2975 // IPLT has no reserved entry.
2976 if (this->name_[3] == 'I')
2977 return 0;
2978 return this->targ_->first_plt_entry_offset();
2979 }
2980
2981 // Return the size of each PLT entry.
2982 unsigned int
2983 plt_entry_size() const
2984 {
2985 return this->targ_->plt_entry_size();
2986 }
2987
2988 // Write out the PLT data.
2989 void
2990 do_write(Output_file*);
2991
2992 // The reloc section.
2993 Reloc_section* rel_;
2994 // Allows access to .glink for do_write.
2995 Target_powerpc<size, big_endian>* targ_;
2996 // What to report in map file.
2997 const char *name_;
2998 };
2999
3000 // Add an entry to the PLT.
3001
3002 template<int size, bool big_endian>
3003 void
3004 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3005 {
3006 if (!gsym->has_plt_offset())
3007 {
3008 section_size_type off = this->current_data_size();
3009 if (off == 0)
3010 off += this->first_plt_entry_offset();
3011 gsym->set_plt_offset(off);
3012 gsym->set_needs_dynsym_entry();
3013 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3014 this->rel_->add_global(gsym, dynrel, this, off, 0);
3015 off += this->plt_entry_size();
3016 this->set_current_data_size(off);
3017 }
3018 }
3019
3020 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3021
3022 template<int size, bool big_endian>
3023 void
3024 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3025 {
3026 if (!gsym->has_plt_offset())
3027 {
3028 section_size_type off = this->current_data_size();
3029 gsym->set_plt_offset(off);
3030 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3031 if (size == 64 && this->targ_->abiversion() < 2)
3032 dynrel = elfcpp::R_PPC64_JMP_IREL;
3033 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3034 off += this->plt_entry_size();
3035 this->set_current_data_size(off);
3036 }
3037 }
3038
3039 // Add an entry for a local ifunc symbol to the IPLT.
3040
3041 template<int size, bool big_endian>
3042 void
3043 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3044 Sized_relobj_file<size, big_endian>* relobj,
3045 unsigned int local_sym_index)
3046 {
3047 if (!relobj->local_has_plt_offset(local_sym_index))
3048 {
3049 section_size_type off = this->current_data_size();
3050 relobj->set_local_plt_offset(local_sym_index, off);
3051 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3052 if (size == 64 && this->targ_->abiversion() < 2)
3053 dynrel = elfcpp::R_PPC64_JMP_IREL;
3054 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3055 this, off, 0);
3056 off += this->plt_entry_size();
3057 this->set_current_data_size(off);
3058 }
3059 }
3060
3061 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3062 static const uint32_t add_2_2_11 = 0x7c425a14;
3063 static const uint32_t add_3_3_2 = 0x7c631214;
3064 static const uint32_t add_3_3_13 = 0x7c636a14;
3065 static const uint32_t add_11_0_11 = 0x7d605a14;
3066 static const uint32_t add_11_2_11 = 0x7d625a14;
3067 static const uint32_t add_11_11_2 = 0x7d6b1214;
3068 static const uint32_t addi_0_12 = 0x380c0000;
3069 static const uint32_t addi_2_2 = 0x38420000;
3070 static const uint32_t addi_3_3 = 0x38630000;
3071 static const uint32_t addi_11_11 = 0x396b0000;
3072 static const uint32_t addi_12_12 = 0x398c0000;
3073 static const uint32_t addis_0_2 = 0x3c020000;
3074 static const uint32_t addis_0_13 = 0x3c0d0000;
3075 static const uint32_t addis_3_2 = 0x3c620000;
3076 static const uint32_t addis_3_13 = 0x3c6d0000;
3077 static const uint32_t addis_11_2 = 0x3d620000;
3078 static const uint32_t addis_11_11 = 0x3d6b0000;
3079 static const uint32_t addis_11_30 = 0x3d7e0000;
3080 static const uint32_t addis_12_2 = 0x3d820000;
3081 static const uint32_t addis_12_12 = 0x3d8c0000;
3082 static const uint32_t b = 0x48000000;
3083 static const uint32_t bcl_20_31 = 0x429f0005;
3084 static const uint32_t bctr = 0x4e800420;
3085 static const uint32_t blr = 0x4e800020;
3086 static const uint32_t bnectr_p4 = 0x4ce20420;
3087 static const uint32_t cmpldi_2_0 = 0x28220000;
3088 static const uint32_t cror_15_15_15 = 0x4def7b82;
3089 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3090 static const uint32_t ld_0_1 = 0xe8010000;
3091 static const uint32_t ld_0_12 = 0xe80c0000;
3092 static const uint32_t ld_2_1 = 0xe8410000;
3093 static const uint32_t ld_2_2 = 0xe8420000;
3094 static const uint32_t ld_2_11 = 0xe84b0000;
3095 static const uint32_t ld_11_2 = 0xe9620000;
3096 static const uint32_t ld_11_11 = 0xe96b0000;
3097 static const uint32_t ld_12_2 = 0xe9820000;
3098 static const uint32_t ld_12_11 = 0xe98b0000;
3099 static const uint32_t ld_12_12 = 0xe98c0000;
3100 static const uint32_t lfd_0_1 = 0xc8010000;
3101 static const uint32_t li_0_0 = 0x38000000;
3102 static const uint32_t li_12_0 = 0x39800000;
3103 static const uint32_t lis_0_0 = 0x3c000000;
3104 static const uint32_t lis_11 = 0x3d600000;
3105 static const uint32_t lis_12 = 0x3d800000;
3106 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3107 static const uint32_t lwz_0_12 = 0x800c0000;
3108 static const uint32_t lwz_11_11 = 0x816b0000;
3109 static const uint32_t lwz_11_30 = 0x817e0000;
3110 static const uint32_t lwz_12_12 = 0x818c0000;
3111 static const uint32_t lwzu_0_12 = 0x840c0000;
3112 static const uint32_t mflr_0 = 0x7c0802a6;
3113 static const uint32_t mflr_11 = 0x7d6802a6;
3114 static const uint32_t mflr_12 = 0x7d8802a6;
3115 static const uint32_t mtctr_0 = 0x7c0903a6;
3116 static const uint32_t mtctr_11 = 0x7d6903a6;
3117 static const uint32_t mtctr_12 = 0x7d8903a6;
3118 static const uint32_t mtlr_0 = 0x7c0803a6;
3119 static const uint32_t mtlr_12 = 0x7d8803a6;
3120 static const uint32_t nop = 0x60000000;
3121 static const uint32_t ori_0_0_0 = 0x60000000;
3122 static const uint32_t srdi_0_0_2 = 0x7800f082;
3123 static const uint32_t std_0_1 = 0xf8010000;
3124 static const uint32_t std_0_12 = 0xf80c0000;
3125 static const uint32_t std_2_1 = 0xf8410000;
3126 static const uint32_t stfd_0_1 = 0xd8010000;
3127 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3128 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3129 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3130 static const uint32_t xor_2_12_12 = 0x7d826278;
3131 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3132
3133 // Write out the PLT.
3134
3135 template<int size, bool big_endian>
3136 void
3137 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3138 {
3139 if (size == 32 && this->name_[3] != 'I')
3140 {
3141 const section_size_type offset = this->offset();
3142 const section_size_type oview_size
3143 = convert_to_section_size_type(this->data_size());
3144 unsigned char* const oview = of->get_output_view(offset, oview_size);
3145 unsigned char* pov = oview;
3146 unsigned char* endpov = oview + oview_size;
3147
3148 // The address of the .glink branch table
3149 const Output_data_glink<size, big_endian>* glink
3150 = this->targ_->glink_section();
3151 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3152
3153 while (pov < endpov)
3154 {
3155 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3156 pov += 4;
3157 branch_tab += 4;
3158 }
3159
3160 of->write_output_view(offset, oview_size, oview);
3161 }
3162 }
3163
3164 // Create the PLT section.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3169 Layout* layout)
3170 {
3171 if (this->plt_ == NULL)
3172 {
3173 if (this->got_ == NULL)
3174 this->got_section(symtab, layout);
3175
3176 if (this->glink_ == NULL)
3177 make_glink_section(layout);
3178
3179 // Ensure that .rela.dyn always appears before .rela.plt This is
3180 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3181 // needs to include .rela.plt in its range.
3182 this->rela_dyn_section(layout);
3183
3184 Reloc_section* plt_rel = new Reloc_section(false);
3185 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3186 elfcpp::SHF_ALLOC, plt_rel,
3187 ORDER_DYNAMIC_PLT_RELOCS, false);
3188 this->plt_
3189 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3190 "** PLT");
3191 layout->add_output_section_data(".plt",
3192 (size == 32
3193 ? elfcpp::SHT_PROGBITS
3194 : elfcpp::SHT_NOBITS),
3195 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3196 this->plt_,
3197 (size == 32
3198 ? ORDER_SMALL_DATA
3199 : ORDER_SMALL_BSS),
3200 false);
3201 }
3202 }
3203
3204 // Create the IPLT section.
3205
3206 template<int size, bool big_endian>
3207 void
3208 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3209 Layout* layout)
3210 {
3211 if (this->iplt_ == NULL)
3212 {
3213 this->make_plt_section(symtab, layout);
3214
3215 Reloc_section* iplt_rel = new Reloc_section(false);
3216 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3217 this->iplt_
3218 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3219 "** IPLT");
3220 this->plt_->output_section()->add_output_section_data(this->iplt_);
3221 }
3222 }
3223
3224 // A section for huge long branch addresses, similar to plt section.
3225
3226 template<int size, bool big_endian>
3227 class Output_data_brlt_powerpc : public Output_section_data_build
3228 {
3229 public:
3230 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3231 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3232 size, big_endian> Reloc_section;
3233
3234 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3235 Reloc_section* brlt_rel)
3236 : Output_section_data_build(size == 32 ? 4 : 8),
3237 rel_(brlt_rel),
3238 targ_(targ)
3239 { }
3240
3241 void
3242 reset_brlt_sizes()
3243 {
3244 this->reset_data_size();
3245 this->rel_->reset_data_size();
3246 }
3247
3248 void
3249 finalize_brlt_sizes()
3250 {
3251 this->finalize_data_size();
3252 this->rel_->finalize_data_size();
3253 }
3254
3255 // Add a reloc for an entry in the BRLT.
3256 void
3257 add_reloc(Address to, unsigned int off)
3258 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3259
3260 // Update section and reloc section size.
3261 void
3262 set_current_size(unsigned int num_branches)
3263 {
3264 this->reset_address_and_file_offset();
3265 this->set_current_data_size(num_branches * 16);
3266 this->finalize_data_size();
3267 Output_section* os = this->output_section();
3268 os->set_section_offsets_need_adjustment();
3269 if (this->rel_ != NULL)
3270 {
3271 unsigned int reloc_size
3272 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3273 this->rel_->reset_address_and_file_offset();
3274 this->rel_->set_current_data_size(num_branches * reloc_size);
3275 this->rel_->finalize_data_size();
3276 Output_section* os = this->rel_->output_section();
3277 os->set_section_offsets_need_adjustment();
3278 }
3279 }
3280
3281 protected:
3282 void
3283 do_adjust_output_section(Output_section* os)
3284 {
3285 os->set_entsize(0);
3286 }
3287
3288 // Write to a map file.
3289 void
3290 do_print_to_mapfile(Mapfile* mapfile) const
3291 { mapfile->print_output_data(this, "** BRLT"); }
3292
3293 private:
3294 // Write out the BRLT data.
3295 void
3296 do_write(Output_file*);
3297
3298 // The reloc section.
3299 Reloc_section* rel_;
3300 Target_powerpc<size, big_endian>* targ_;
3301 };
3302
3303 // Make the branch lookup table section.
3304
3305 template<int size, bool big_endian>
3306 void
3307 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3308 {
3309 if (size == 64 && this->brlt_section_ == NULL)
3310 {
3311 Reloc_section* brlt_rel = NULL;
3312 bool is_pic = parameters->options().output_is_position_independent();
3313 if (is_pic)
3314 {
3315 // When PIC we can't fill in .branch_lt (like .plt it can be
3316 // a bss style section) but must initialise at runtime via
3317 // dynamic relocats.
3318 this->rela_dyn_section(layout);
3319 brlt_rel = new Reloc_section(false);
3320 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3321 }
3322 this->brlt_section_
3323 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3324 if (this->plt_ && is_pic)
3325 this->plt_->output_section()
3326 ->add_output_section_data(this->brlt_section_);
3327 else
3328 layout->add_output_section_data(".branch_lt",
3329 (is_pic ? elfcpp::SHT_NOBITS
3330 : elfcpp::SHT_PROGBITS),
3331 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3332 this->brlt_section_,
3333 (is_pic ? ORDER_SMALL_BSS
3334 : ORDER_SMALL_DATA),
3335 false);
3336 }
3337 }
3338
3339 // Write out .branch_lt when non-PIC.
3340
3341 template<int size, bool big_endian>
3342 void
3343 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3344 {
3345 if (size == 64 && !parameters->options().output_is_position_independent())
3346 {
3347 const section_size_type offset = this->offset();
3348 const section_size_type oview_size
3349 = convert_to_section_size_type(this->data_size());
3350 unsigned char* const oview = of->get_output_view(offset, oview_size);
3351
3352 this->targ_->write_branch_lookup_table(oview);
3353 of->write_output_view(offset, oview_size, oview);
3354 }
3355 }
3356
3357 static inline uint32_t
3358 l(uint32_t a)
3359 {
3360 return a & 0xffff;
3361 }
3362
3363 static inline uint32_t
3364 hi(uint32_t a)
3365 {
3366 return l(a >> 16);
3367 }
3368
3369 static inline uint32_t
3370 ha(uint32_t a)
3371 {
3372 return hi(a + 0x8000);
3373 }
3374
3375 template<int size>
3376 struct Eh_cie
3377 {
3378 static const unsigned char eh_frame_cie[12];
3379 };
3380
3381 template<int size>
3382 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3383 {
3384 1, // CIE version.
3385 'z', 'R', 0, // Augmentation string.
3386 4, // Code alignment.
3387 0x80 - size / 8 , // Data alignment.
3388 65, // RA reg.
3389 1, // Augmentation size.
3390 (elfcpp::DW_EH_PE_pcrel
3391 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3392 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3393 };
3394
3395 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3396 static const unsigned char glink_eh_frame_fde_64v1[] =
3397 {
3398 0, 0, 0, 0, // Replaced with offset to .glink.
3399 0, 0, 0, 0, // Replaced with size of .glink.
3400 0, // Augmentation size.
3401 elfcpp::DW_CFA_advance_loc + 1,
3402 elfcpp::DW_CFA_register, 65, 12,
3403 elfcpp::DW_CFA_advance_loc + 4,
3404 elfcpp::DW_CFA_restore_extended, 65
3405 };
3406
3407 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3408 static const unsigned char glink_eh_frame_fde_64v2[] =
3409 {
3410 0, 0, 0, 0, // Replaced with offset to .glink.
3411 0, 0, 0, 0, // Replaced with size of .glink.
3412 0, // Augmentation size.
3413 elfcpp::DW_CFA_advance_loc + 1,
3414 elfcpp::DW_CFA_register, 65, 0,
3415 elfcpp::DW_CFA_advance_loc + 4,
3416 elfcpp::DW_CFA_restore_extended, 65
3417 };
3418
3419 // Describe __glink_PLTresolve use of LR, 32-bit version.
3420 static const unsigned char glink_eh_frame_fde_32[] =
3421 {
3422 0, 0, 0, 0, // Replaced with offset to .glink.
3423 0, 0, 0, 0, // Replaced with size of .glink.
3424 0, // Augmentation size.
3425 elfcpp::DW_CFA_advance_loc + 2,
3426 elfcpp::DW_CFA_register, 65, 0,
3427 elfcpp::DW_CFA_advance_loc + 4,
3428 elfcpp::DW_CFA_restore_extended, 65
3429 };
3430
3431 static const unsigned char default_fde[] =
3432 {
3433 0, 0, 0, 0, // Replaced with offset to stubs.
3434 0, 0, 0, 0, // Replaced with size of stubs.
3435 0, // Augmentation size.
3436 elfcpp::DW_CFA_nop, // Pad.
3437 elfcpp::DW_CFA_nop,
3438 elfcpp::DW_CFA_nop
3439 };
3440
3441 template<bool big_endian>
3442 static inline void
3443 write_insn(unsigned char* p, uint32_t v)
3444 {
3445 elfcpp::Swap<32, big_endian>::writeval(p, v);
3446 }
3447
3448 // Stub_table holds information about plt and long branch stubs.
3449 // Stubs are built in an area following some input section determined
3450 // by group_sections(). This input section is converted to a relaxed
3451 // input section allowing it to be resized to accommodate the stubs
3452
3453 template<int size, bool big_endian>
3454 class Stub_table : public Output_relaxed_input_section
3455 {
3456 public:
3457 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3458 static const Address invalid_address = static_cast<Address>(0) - 1;
3459
3460 Stub_table(Target_powerpc<size, big_endian>* targ)
3461 : Output_relaxed_input_section(NULL, 0, 0),
3462 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3463 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3464 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3465 { }
3466
3467 // Delayed Output_relaxed_input_section init.
3468 void
3469 init(const Output_section::Input_section*, Output_section*);
3470
3471 // Add a plt call stub.
3472 void
3473 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3474 const Symbol*,
3475 unsigned int,
3476 Address);
3477
3478 void
3479 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3480 unsigned int,
3481 unsigned int,
3482 Address);
3483
3484 // Find a given plt call stub.
3485 Address
3486 find_plt_call_entry(const Symbol*) const;
3487
3488 Address
3489 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3490 unsigned int) const;
3491
3492 Address
3493 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3494 const Symbol*,
3495 unsigned int,
3496 Address) const;
3497
3498 Address
3499 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3500 unsigned int,
3501 unsigned int,
3502 Address) const;
3503
3504 // Add a long branch stub.
3505 void
3506 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3507
3508 Address
3509 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3510 Address) const;
3511
3512 void
3513 clear_stubs()
3514 {
3515 this->plt_call_stubs_.clear();
3516 this->plt_size_ = 0;
3517 this->long_branch_stubs_.clear();
3518 this->branch_size_ = 0;
3519 }
3520
3521 Address
3522 set_address_and_size(const Output_section* os, Address off)
3523 {
3524 Address start_off = off;
3525 off += this->orig_data_size_;
3526 Address my_size = this->plt_size_ + this->branch_size_;
3527 if (my_size != 0)
3528 off = align_address(off, this->stub_align());
3529 // Include original section size and alignment padding in size
3530 my_size += off - start_off;
3531 this->reset_address_and_file_offset();
3532 this->set_current_data_size(my_size);
3533 this->set_address_and_file_offset(os->address() + start_off,
3534 os->offset() + start_off);
3535 return my_size;
3536 }
3537
3538 Address
3539 stub_address() const
3540 {
3541 return align_address(this->address() + this->orig_data_size_,
3542 this->stub_align());
3543 }
3544
3545 Address
3546 stub_offset() const
3547 {
3548 return align_address(this->offset() + this->orig_data_size_,
3549 this->stub_align());
3550 }
3551
3552 section_size_type
3553 plt_size() const
3554 { return this->plt_size_; }
3555
3556 bool
3557 size_update()
3558 {
3559 Output_section* os = this->output_section();
3560 if (os->addralign() < this->stub_align())
3561 {
3562 os->set_addralign(this->stub_align());
3563 // FIXME: get rid of the insane checkpointing.
3564 // We can't increase alignment of the input section to which
3565 // stubs are attached; The input section may be .init which
3566 // is pasted together with other .init sections to form a
3567 // function. Aligning might insert zero padding resulting in
3568 // sigill. However we do need to increase alignment of the
3569 // output section so that the align_address() on offset in
3570 // set_address_and_size() adds the same padding as the
3571 // align_address() on address in stub_address().
3572 // What's more, we need this alignment for the layout done in
3573 // relaxation_loop_body() so that the output section starts at
3574 // a suitably aligned address.
3575 os->checkpoint_set_addralign(this->stub_align());
3576 }
3577 if (this->last_plt_size_ != this->plt_size_
3578 || this->last_branch_size_ != this->branch_size_)
3579 {
3580 this->last_plt_size_ = this->plt_size_;
3581 this->last_branch_size_ = this->branch_size_;
3582 return true;
3583 }
3584 return false;
3585 }
3586
3587 // Add .eh_frame info for this stub section. Unlike other linker
3588 // generated .eh_frame this is added late in the link, because we
3589 // only want the .eh_frame info if this particular stub section is
3590 // non-empty.
3591 void
3592 add_eh_frame(Layout* layout)
3593 {
3594 if (!this->eh_frame_added_)
3595 {
3596 if (!parameters->options().ld_generated_unwind_info())
3597 return;
3598
3599 // Since we add stub .eh_frame info late, it must be placed
3600 // after all other linker generated .eh_frame info so that
3601 // merge mapping need not be updated for input sections.
3602 // There is no provision to use a different CIE to that used
3603 // by .glink.
3604 if (!this->targ_->has_glink())
3605 return;
3606
3607 layout->add_eh_frame_for_plt(this,
3608 Eh_cie<size>::eh_frame_cie,
3609 sizeof (Eh_cie<size>::eh_frame_cie),
3610 default_fde,
3611 sizeof (default_fde));
3612 this->eh_frame_added_ = true;
3613 }
3614 }
3615
3616 Target_powerpc<size, big_endian>*
3617 targ() const
3618 { return targ_; }
3619
3620 private:
3621 class Plt_stub_ent;
3622 class Plt_stub_ent_hash;
3623 typedef Unordered_map<Plt_stub_ent, unsigned int,
3624 Plt_stub_ent_hash> Plt_stub_entries;
3625
3626 // Alignment of stub section.
3627 unsigned int
3628 stub_align() const
3629 {
3630 if (size == 32)
3631 return 16;
3632 unsigned int min_align = 32;
3633 unsigned int user_align = 1 << parameters->options().plt_align();
3634 return std::max(user_align, min_align);
3635 }
3636
3637 // Return the plt offset for the given call stub.
3638 Address
3639 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3640 {
3641 const Symbol* gsym = p->first.sym_;
3642 if (gsym != NULL)
3643 {
3644 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3645 && gsym->can_use_relative_reloc(false));
3646 return gsym->plt_offset();
3647 }
3648 else
3649 {
3650 *is_iplt = true;
3651 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3652 unsigned int local_sym_index = p->first.locsym_;
3653 return relobj->local_plt_offset(local_sym_index);
3654 }
3655 }
3656
3657 // Size of a given plt call stub.
3658 unsigned int
3659 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3660 {
3661 if (size == 32)
3662 return 16;
3663
3664 bool is_iplt;
3665 Address plt_addr = this->plt_off(p, &is_iplt);
3666 if (is_iplt)
3667 plt_addr += this->targ_->iplt_section()->address();
3668 else
3669 plt_addr += this->targ_->plt_section()->address();
3670 Address got_addr = this->targ_->got_section()->output_section()->address();
3671 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3672 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3673 got_addr += ppcobj->toc_base_offset();
3674 Address off = plt_addr - got_addr;
3675 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3676 if (this->targ_->abiversion() < 2)
3677 {
3678 bool static_chain = parameters->options().plt_static_chain();
3679 bool thread_safe = this->targ_->plt_thread_safe();
3680 bytes += (4
3681 + 4 * static_chain
3682 + 8 * thread_safe
3683 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3684 }
3685 unsigned int align = 1 << parameters->options().plt_align();
3686 if (align > 1)
3687 bytes = (bytes + align - 1) & -align;
3688 return bytes;
3689 }
3690
3691 // Return long branch stub size.
3692 unsigned int
3693 branch_stub_size(Address to)
3694 {
3695 Address loc
3696 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3697 if (to - loc + (1 << 25) < 2 << 25)
3698 return 4;
3699 if (size == 64 || !parameters->options().output_is_position_independent())
3700 return 16;
3701 return 32;
3702 }
3703
3704 // Write out stubs.
3705 void
3706 do_write(Output_file*);
3707
3708 // Plt call stub keys.
3709 class Plt_stub_ent
3710 {
3711 public:
3712 Plt_stub_ent(const Symbol* sym)
3713 : sym_(sym), object_(0), addend_(0), locsym_(0)
3714 { }
3715
3716 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3717 unsigned int locsym_index)
3718 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3719 { }
3720
3721 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3722 const Symbol* sym,
3723 unsigned int r_type,
3724 Address addend)
3725 : sym_(sym), object_(0), addend_(0), locsym_(0)
3726 {
3727 if (size != 32)
3728 this->addend_ = addend;
3729 else if (parameters->options().output_is_position_independent()
3730 && r_type == elfcpp::R_PPC_PLTREL24)
3731 {
3732 this->addend_ = addend;
3733 if (this->addend_ >= 32768)
3734 this->object_ = object;
3735 }
3736 }
3737
3738 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3739 unsigned int locsym_index,
3740 unsigned int r_type,
3741 Address addend)
3742 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3743 {
3744 if (size != 32)
3745 this->addend_ = addend;
3746 else if (parameters->options().output_is_position_independent()
3747 && r_type == elfcpp::R_PPC_PLTREL24)
3748 this->addend_ = addend;
3749 }
3750
3751 bool operator==(const Plt_stub_ent& that) const
3752 {
3753 return (this->sym_ == that.sym_
3754 && this->object_ == that.object_
3755 && this->addend_ == that.addend_
3756 && this->locsym_ == that.locsym_);
3757 }
3758
3759 const Symbol* sym_;
3760 const Sized_relobj_file<size, big_endian>* object_;
3761 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3762 unsigned int locsym_;
3763 };
3764
3765 class Plt_stub_ent_hash
3766 {
3767 public:
3768 size_t operator()(const Plt_stub_ent& ent) const
3769 {
3770 return (reinterpret_cast<uintptr_t>(ent.sym_)
3771 ^ reinterpret_cast<uintptr_t>(ent.object_)
3772 ^ ent.addend_
3773 ^ ent.locsym_);
3774 }
3775 };
3776
3777 // Long branch stub keys.
3778 class Branch_stub_ent
3779 {
3780 public:
3781 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3782 : dest_(to), toc_base_off_(0)
3783 {
3784 if (size == 64)
3785 toc_base_off_ = obj->toc_base_offset();
3786 }
3787
3788 bool operator==(const Branch_stub_ent& that) const
3789 {
3790 return (this->dest_ == that.dest_
3791 && (size == 32
3792 || this->toc_base_off_ == that.toc_base_off_));
3793 }
3794
3795 Address dest_;
3796 unsigned int toc_base_off_;
3797 };
3798
3799 class Branch_stub_ent_hash
3800 {
3801 public:
3802 size_t operator()(const Branch_stub_ent& ent) const
3803 { return ent.dest_ ^ ent.toc_base_off_; }
3804 };
3805
3806 // In a sane world this would be a global.
3807 Target_powerpc<size, big_endian>* targ_;
3808 // Map sym/object/addend to stub offset.
3809 Plt_stub_entries plt_call_stubs_;
3810 // Map destination address to stub offset.
3811 typedef Unordered_map<Branch_stub_ent, unsigned int,
3812 Branch_stub_ent_hash> Branch_stub_entries;
3813 Branch_stub_entries long_branch_stubs_;
3814 // size of input section
3815 section_size_type orig_data_size_;
3816 // size of stubs
3817 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3818 // Whether .eh_frame info has been created for this stub section.
3819 bool eh_frame_added_;
3820 };
3821
3822 // Make a new stub table, and record.
3823
3824 template<int size, bool big_endian>
3825 Stub_table<size, big_endian>*
3826 Target_powerpc<size, big_endian>::new_stub_table()
3827 {
3828 Stub_table<size, big_endian>* stub_table
3829 = new Stub_table<size, big_endian>(this);
3830 this->stub_tables_.push_back(stub_table);
3831 return stub_table;
3832 }
3833
3834 // Delayed stub table initialisation, because we create the stub table
3835 // before we know to which section it will be attached.
3836
3837 template<int size, bool big_endian>
3838 void
3839 Stub_table<size, big_endian>::init(
3840 const Output_section::Input_section* owner,
3841 Output_section* output_section)
3842 {
3843 this->set_relobj(owner->relobj());
3844 this->set_shndx(owner->shndx());
3845 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3846 this->set_output_section(output_section);
3847 this->orig_data_size_ = owner->current_data_size();
3848
3849 std::vector<Output_relaxed_input_section*> new_relaxed;
3850 new_relaxed.push_back(this);
3851 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3852 }
3853
3854 // Add a plt call stub, if we do not already have one for this
3855 // sym/object/addend combo.
3856
3857 template<int size, bool big_endian>
3858 void
3859 Stub_table<size, big_endian>::add_plt_call_entry(
3860 const Sized_relobj_file<size, big_endian>* object,
3861 const Symbol* gsym,
3862 unsigned int r_type,
3863 Address addend)
3864 {
3865 Plt_stub_ent ent(object, gsym, r_type, addend);
3866 unsigned int off = this->plt_size_;
3867 std::pair<typename Plt_stub_entries::iterator, bool> p
3868 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3869 if (p.second)
3870 this->plt_size_ = off + this->plt_call_size(p.first);
3871 }
3872
3873 template<int size, bool big_endian>
3874 void
3875 Stub_table<size, big_endian>::add_plt_call_entry(
3876 const Sized_relobj_file<size, big_endian>* object,
3877 unsigned int locsym_index,
3878 unsigned int r_type,
3879 Address addend)
3880 {
3881 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3882 unsigned int off = this->plt_size_;
3883 std::pair<typename Plt_stub_entries::iterator, bool> p
3884 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3885 if (p.second)
3886 this->plt_size_ = off + this->plt_call_size(p.first);
3887 }
3888
3889 // Find a plt call stub.
3890
3891 template<int size, bool big_endian>
3892 typename Stub_table<size, big_endian>::Address
3893 Stub_table<size, big_endian>::find_plt_call_entry(
3894 const Sized_relobj_file<size, big_endian>* object,
3895 const Symbol* gsym,
3896 unsigned int r_type,
3897 Address addend) const
3898 {
3899 Plt_stub_ent ent(object, gsym, r_type, addend);
3900 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3901 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3902 }
3903
3904 template<int size, bool big_endian>
3905 typename Stub_table<size, big_endian>::Address
3906 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3907 {
3908 Plt_stub_ent ent(gsym);
3909 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3910 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3911 }
3912
3913 template<int size, bool big_endian>
3914 typename Stub_table<size, big_endian>::Address
3915 Stub_table<size, big_endian>::find_plt_call_entry(
3916 const Sized_relobj_file<size, big_endian>* object,
3917 unsigned int locsym_index,
3918 unsigned int r_type,
3919 Address addend) const
3920 {
3921 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3922 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3923 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3924 }
3925
3926 template<int size, bool big_endian>
3927 typename Stub_table<size, big_endian>::Address
3928 Stub_table<size, big_endian>::find_plt_call_entry(
3929 const Sized_relobj_file<size, big_endian>* object,
3930 unsigned int locsym_index) const
3931 {
3932 Plt_stub_ent ent(object, locsym_index);
3933 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3934 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3935 }
3936
3937 // Add a long branch stub if we don't already have one to given
3938 // destination.
3939
3940 template<int size, bool big_endian>
3941 void
3942 Stub_table<size, big_endian>::add_long_branch_entry(
3943 const Powerpc_relobj<size, big_endian>* object,
3944 Address to)
3945 {
3946 Branch_stub_ent ent(object, to);
3947 Address off = this->branch_size_;
3948 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3949 {
3950 unsigned int stub_size = this->branch_stub_size(to);
3951 this->branch_size_ = off + stub_size;
3952 if (size == 64 && stub_size != 4)
3953 this->targ_->add_branch_lookup_table(to);
3954 }
3955 }
3956
3957 // Find long branch stub.
3958
3959 template<int size, bool big_endian>
3960 typename Stub_table<size, big_endian>::Address
3961 Stub_table<size, big_endian>::find_long_branch_entry(
3962 const Powerpc_relobj<size, big_endian>* object,
3963 Address to) const
3964 {
3965 Branch_stub_ent ent(object, to);
3966 typename Branch_stub_entries::const_iterator p
3967 = this->long_branch_stubs_.find(ent);
3968 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3969 }
3970
3971 // A class to handle .glink.
3972
3973 template<int size, bool big_endian>
3974 class Output_data_glink : public Output_section_data
3975 {
3976 public:
3977 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3978 static const Address invalid_address = static_cast<Address>(0) - 1;
3979 static const int pltresolve_size = 16*4;
3980
3981 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3982 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3983 end_branch_table_(), ge_size_(0)
3984 { }
3985
3986 void
3987 add_eh_frame(Layout* layout);
3988
3989 void
3990 add_global_entry(const Symbol*);
3991
3992 Address
3993 find_global_entry(const Symbol*) const;
3994
3995 Address
3996 global_entry_address() const
3997 {
3998 gold_assert(this->is_data_size_valid());
3999 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4000 return this->address() + global_entry_off;
4001 }
4002
4003 protected:
4004 // Write to a map file.
4005 void
4006 do_print_to_mapfile(Mapfile* mapfile) const
4007 { mapfile->print_output_data(this, _("** glink")); }
4008
4009 private:
4010 void
4011 set_final_data_size();
4012
4013 // Write out .glink
4014 void
4015 do_write(Output_file*);
4016
4017 // Allows access to .got and .plt for do_write.
4018 Target_powerpc<size, big_endian>* targ_;
4019
4020 // Map sym to stub offset.
4021 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4022 Global_entry_stub_entries global_entry_stubs_;
4023
4024 unsigned int end_branch_table_, ge_size_;
4025 };
4026
4027 template<int size, bool big_endian>
4028 void
4029 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4030 {
4031 if (!parameters->options().ld_generated_unwind_info())
4032 return;
4033
4034 if (size == 64)
4035 {
4036 if (this->targ_->abiversion() < 2)
4037 layout->add_eh_frame_for_plt(this,
4038 Eh_cie<64>::eh_frame_cie,
4039 sizeof (Eh_cie<64>::eh_frame_cie),
4040 glink_eh_frame_fde_64v1,
4041 sizeof (glink_eh_frame_fde_64v1));
4042 else
4043 layout->add_eh_frame_for_plt(this,
4044 Eh_cie<64>::eh_frame_cie,
4045 sizeof (Eh_cie<64>::eh_frame_cie),
4046 glink_eh_frame_fde_64v2,
4047 sizeof (glink_eh_frame_fde_64v2));
4048 }
4049 else
4050 {
4051 // 32-bit .glink can use the default since the CIE return
4052 // address reg, LR, is valid.
4053 layout->add_eh_frame_for_plt(this,
4054 Eh_cie<32>::eh_frame_cie,
4055 sizeof (Eh_cie<32>::eh_frame_cie),
4056 default_fde,
4057 sizeof (default_fde));
4058 // Except where LR is used in a PIC __glink_PLTresolve.
4059 if (parameters->options().output_is_position_independent())
4060 layout->add_eh_frame_for_plt(this,
4061 Eh_cie<32>::eh_frame_cie,
4062 sizeof (Eh_cie<32>::eh_frame_cie),
4063 glink_eh_frame_fde_32,
4064 sizeof (glink_eh_frame_fde_32));
4065 }
4066 }
4067
4068 template<int size, bool big_endian>
4069 void
4070 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4071 {
4072 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4073 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4074 if (p.second)
4075 this->ge_size_ += 16;
4076 }
4077
4078 template<int size, bool big_endian>
4079 typename Output_data_glink<size, big_endian>::Address
4080 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4081 {
4082 typename Global_entry_stub_entries::const_iterator p
4083 = this->global_entry_stubs_.find(gsym);
4084 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4085 }
4086
4087 template<int size, bool big_endian>
4088 void
4089 Output_data_glink<size, big_endian>::set_final_data_size()
4090 {
4091 unsigned int count = this->targ_->plt_entry_count();
4092 section_size_type total = 0;
4093
4094 if (count != 0)
4095 {
4096 if (size == 32)
4097 {
4098 // space for branch table
4099 total += 4 * (count - 1);
4100
4101 total += -total & 15;
4102 total += this->pltresolve_size;
4103 }
4104 else
4105 {
4106 total += this->pltresolve_size;
4107
4108 // space for branch table
4109 total += 4 * count;
4110 if (this->targ_->abiversion() < 2)
4111 {
4112 total += 4 * count;
4113 if (count > 0x8000)
4114 total += 4 * (count - 0x8000);
4115 }
4116 }
4117 }
4118 this->end_branch_table_ = total;
4119 total = (total + 15) & -16;
4120 total += this->ge_size_;
4121
4122 this->set_data_size(total);
4123 }
4124
4125 // Write out plt and long branch stub code.
4126
4127 template<int size, bool big_endian>
4128 void
4129 Stub_table<size, big_endian>::do_write(Output_file* of)
4130 {
4131 if (this->plt_call_stubs_.empty()
4132 && this->long_branch_stubs_.empty())
4133 return;
4134
4135 const section_size_type start_off = this->offset();
4136 const section_size_type off = this->stub_offset();
4137 const section_size_type oview_size =
4138 convert_to_section_size_type(this->data_size() - (off - start_off));
4139 unsigned char* const oview = of->get_output_view(off, oview_size);
4140 unsigned char* p;
4141
4142 if (size == 64)
4143 {
4144 const Output_data_got_powerpc<size, big_endian>* got
4145 = this->targ_->got_section();
4146 Address got_os_addr = got->output_section()->address();
4147
4148 if (!this->plt_call_stubs_.empty())
4149 {
4150 // The base address of the .plt section.
4151 Address plt_base = this->targ_->plt_section()->address();
4152 Address iplt_base = invalid_address;
4153
4154 // Write out plt call stubs.
4155 typename Plt_stub_entries::const_iterator cs;
4156 for (cs = this->plt_call_stubs_.begin();
4157 cs != this->plt_call_stubs_.end();
4158 ++cs)
4159 {
4160 bool is_iplt;
4161 Address pltoff = this->plt_off(cs, &is_iplt);
4162 Address plt_addr = pltoff;
4163 if (is_iplt)
4164 {
4165 if (iplt_base == invalid_address)
4166 iplt_base = this->targ_->iplt_section()->address();
4167 plt_addr += iplt_base;
4168 }
4169 else
4170 plt_addr += plt_base;
4171 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4172 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4173 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4174 Address off = plt_addr - got_addr;
4175
4176 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4177 gold_error(_("%s: linkage table error against `%s'"),
4178 cs->first.object_->name().c_str(),
4179 cs->first.sym_->demangled_name().c_str());
4180
4181 bool plt_load_toc = this->targ_->abiversion() < 2;
4182 bool static_chain
4183 = plt_load_toc && parameters->options().plt_static_chain();
4184 bool thread_safe
4185 = plt_load_toc && this->targ_->plt_thread_safe();
4186 bool use_fake_dep = false;
4187 Address cmp_branch_off = 0;
4188 if (thread_safe)
4189 {
4190 unsigned int pltindex
4191 = ((pltoff - this->targ_->first_plt_entry_offset())
4192 / this->targ_->plt_entry_size());
4193 Address glinkoff
4194 = (this->targ_->glink_section()->pltresolve_size
4195 + pltindex * 8);
4196 if (pltindex > 32768)
4197 glinkoff += (pltindex - 32768) * 4;
4198 Address to
4199 = this->targ_->glink_section()->address() + glinkoff;
4200 Address from
4201 = (this->stub_address() + cs->second + 24
4202 + 4 * (ha(off) != 0)
4203 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4204 + 4 * static_chain);
4205 cmp_branch_off = to - from;
4206 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4207 }
4208
4209 p = oview + cs->second;
4210 if (ha(off) != 0)
4211 {
4212 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4213 p += 4;
4214 if (plt_load_toc)
4215 {
4216 write_insn<big_endian>(p, addis_11_2 + ha(off));
4217 p += 4;
4218 write_insn<big_endian>(p, ld_12_11 + l(off));
4219 p += 4;
4220 }
4221 else
4222 {
4223 write_insn<big_endian>(p, addis_12_2 + ha(off));
4224 p += 4;
4225 write_insn<big_endian>(p, ld_12_12 + l(off));
4226 p += 4;
4227 }
4228 if (plt_load_toc
4229 && ha(off + 8 + 8 * static_chain) != ha(off))
4230 {
4231 write_insn<big_endian>(p, addi_11_11 + l(off));
4232 p += 4;
4233 off = 0;
4234 }
4235 write_insn<big_endian>(p, mtctr_12);
4236 p += 4;
4237 if (plt_load_toc)
4238 {
4239 if (use_fake_dep)
4240 {
4241 write_insn<big_endian>(p, xor_2_12_12);
4242 p += 4;
4243 write_insn<big_endian>(p, add_11_11_2);
4244 p += 4;
4245 }
4246 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4247 p += 4;
4248 if (static_chain)
4249 {
4250 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4251 p += 4;
4252 }
4253 }
4254 }
4255 else
4256 {
4257 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4258 p += 4;
4259 write_insn<big_endian>(p, ld_12_2 + l(off));
4260 p += 4;
4261 if (plt_load_toc
4262 && ha(off + 8 + 8 * static_chain) != ha(off))
4263 {
4264 write_insn<big_endian>(p, addi_2_2 + l(off));
4265 p += 4;
4266 off = 0;
4267 }
4268 write_insn<big_endian>(p, mtctr_12);
4269 p += 4;
4270 if (plt_load_toc)
4271 {
4272 if (use_fake_dep)
4273 {
4274 write_insn<big_endian>(p, xor_11_12_12);
4275 p += 4;
4276 write_insn<big_endian>(p, add_2_2_11);
4277 p += 4;
4278 }
4279 if (static_chain)
4280 {
4281 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4282 p += 4;
4283 }
4284 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4285 p += 4;
4286 }
4287 }
4288 if (thread_safe && !use_fake_dep)
4289 {
4290 write_insn<big_endian>(p, cmpldi_2_0);
4291 p += 4;
4292 write_insn<big_endian>(p, bnectr_p4);
4293 p += 4;
4294 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4295 }
4296 else
4297 write_insn<big_endian>(p, bctr);
4298 }
4299 }
4300
4301 // Write out long branch stubs.
4302 typename Branch_stub_entries::const_iterator bs;
4303 for (bs = this->long_branch_stubs_.begin();
4304 bs != this->long_branch_stubs_.end();
4305 ++bs)
4306 {
4307 p = oview + this->plt_size_ + bs->second;
4308 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4309 Address delta = bs->first.dest_ - loc;
4310 if (delta + (1 << 25) < 2 << 25)
4311 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4312 else
4313 {
4314 Address brlt_addr
4315 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4316 gold_assert(brlt_addr != invalid_address);
4317 brlt_addr += this->targ_->brlt_section()->address();
4318 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4319 Address brltoff = brlt_addr - got_addr;
4320 if (ha(brltoff) == 0)
4321 {
4322 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4323 }
4324 else
4325 {
4326 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4327 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4328 }
4329 write_insn<big_endian>(p, mtctr_12), p += 4;
4330 write_insn<big_endian>(p, bctr);
4331 }
4332 }
4333 }
4334 else
4335 {
4336 if (!this->plt_call_stubs_.empty())
4337 {
4338 // The base address of the .plt section.
4339 Address plt_base = this->targ_->plt_section()->address();
4340 Address iplt_base = invalid_address;
4341 // The address of _GLOBAL_OFFSET_TABLE_.
4342 Address g_o_t = invalid_address;
4343
4344 // Write out plt call stubs.
4345 typename Plt_stub_entries::const_iterator cs;
4346 for (cs = this->plt_call_stubs_.begin();
4347 cs != this->plt_call_stubs_.end();
4348 ++cs)
4349 {
4350 bool is_iplt;
4351 Address plt_addr = this->plt_off(cs, &is_iplt);
4352 if (is_iplt)
4353 {
4354 if (iplt_base == invalid_address)
4355 iplt_base = this->targ_->iplt_section()->address();
4356 plt_addr += iplt_base;
4357 }
4358 else
4359 plt_addr += plt_base;
4360
4361 p = oview + cs->second;
4362 if (parameters->options().output_is_position_independent())
4363 {
4364 Address got_addr;
4365 const Powerpc_relobj<size, big_endian>* ppcobj
4366 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4367 (cs->first.object_));
4368 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4369 {
4370 unsigned int got2 = ppcobj->got2_shndx();
4371 got_addr = ppcobj->get_output_section_offset(got2);
4372 gold_assert(got_addr != invalid_address);
4373 got_addr += (ppcobj->output_section(got2)->address()
4374 + cs->first.addend_);
4375 }
4376 else
4377 {
4378 if (g_o_t == invalid_address)
4379 {
4380 const Output_data_got_powerpc<size, big_endian>* got
4381 = this->targ_->got_section();
4382 g_o_t = got->address() + got->g_o_t();
4383 }
4384 got_addr = g_o_t;
4385 }
4386
4387 Address off = plt_addr - got_addr;
4388 if (ha(off) == 0)
4389 {
4390 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4391 write_insn<big_endian>(p + 4, mtctr_11);
4392 write_insn<big_endian>(p + 8, bctr);
4393 }
4394 else
4395 {
4396 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4397 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4398 write_insn<big_endian>(p + 8, mtctr_11);
4399 write_insn<big_endian>(p + 12, bctr);
4400 }
4401 }
4402 else
4403 {
4404 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4405 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4406 write_insn<big_endian>(p + 8, mtctr_11);
4407 write_insn<big_endian>(p + 12, bctr);
4408 }
4409 }
4410 }
4411
4412 // Write out long branch stubs.
4413 typename Branch_stub_entries::const_iterator bs;
4414 for (bs = this->long_branch_stubs_.begin();
4415 bs != this->long_branch_stubs_.end();
4416 ++bs)
4417 {
4418 p = oview + this->plt_size_ + bs->second;
4419 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4420 Address delta = bs->first.dest_ - loc;
4421 if (delta + (1 << 25) < 2 << 25)
4422 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4423 else if (!parameters->options().output_is_position_independent())
4424 {
4425 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4426 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4427 write_insn<big_endian>(p + 8, mtctr_12);
4428 write_insn<big_endian>(p + 12, bctr);
4429 }
4430 else
4431 {
4432 delta -= 8;
4433 write_insn<big_endian>(p + 0, mflr_0);
4434 write_insn<big_endian>(p + 4, bcl_20_31);
4435 write_insn<big_endian>(p + 8, mflr_12);
4436 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4437 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4438 write_insn<big_endian>(p + 20, mtlr_0);
4439 write_insn<big_endian>(p + 24, mtctr_12);
4440 write_insn<big_endian>(p + 28, bctr);
4441 }
4442 }
4443 }
4444 }
4445
4446 // Write out .glink.
4447
4448 template<int size, bool big_endian>
4449 void
4450 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4451 {
4452 const section_size_type off = this->offset();
4453 const section_size_type oview_size =
4454 convert_to_section_size_type(this->data_size());
4455 unsigned char* const oview = of->get_output_view(off, oview_size);
4456 unsigned char* p;
4457
4458 // The base address of the .plt section.
4459 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4460 Address plt_base = this->targ_->plt_section()->address();
4461
4462 if (size == 64)
4463 {
4464 if (this->end_branch_table_ != 0)
4465 {
4466 // Write pltresolve stub.
4467 p = oview;
4468 Address after_bcl = this->address() + 16;
4469 Address pltoff = plt_base - after_bcl;
4470
4471 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4472
4473 if (this->targ_->abiversion() < 2)
4474 {
4475 write_insn<big_endian>(p, mflr_12), p += 4;
4476 write_insn<big_endian>(p, bcl_20_31), p += 4;
4477 write_insn<big_endian>(p, mflr_11), p += 4;
4478 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4479 write_insn<big_endian>(p, mtlr_12), p += 4;
4480 write_insn<big_endian>(p, add_11_2_11), p += 4;
4481 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4482 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4483 write_insn<big_endian>(p, mtctr_12), p += 4;
4484 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4485 }
4486 else
4487 {
4488 write_insn<big_endian>(p, mflr_0), p += 4;
4489 write_insn<big_endian>(p, bcl_20_31), p += 4;
4490 write_insn<big_endian>(p, mflr_11), p += 4;
4491 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4492 write_insn<big_endian>(p, mtlr_0), p += 4;
4493 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4494 write_insn<big_endian>(p, add_11_2_11), p += 4;
4495 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4496 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4497 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4498 write_insn<big_endian>(p, mtctr_12), p += 4;
4499 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4500 }
4501 write_insn<big_endian>(p, bctr), p += 4;
4502 while (p < oview + this->pltresolve_size)
4503 write_insn<big_endian>(p, nop), p += 4;
4504
4505 // Write lazy link call stubs.
4506 uint32_t indx = 0;
4507 while (p < oview + this->end_branch_table_)
4508 {
4509 if (this->targ_->abiversion() < 2)
4510 {
4511 if (indx < 0x8000)
4512 {
4513 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4514 }
4515 else
4516 {
4517 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4518 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4519 }
4520 }
4521 uint32_t branch_off = 8 - (p - oview);
4522 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4523 indx++;
4524 }
4525 }
4526
4527 Address plt_base = this->targ_->plt_section()->address();
4528 Address iplt_base = invalid_address;
4529 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4530 Address global_entry_base = this->address() + global_entry_off;
4531 typename Global_entry_stub_entries::const_iterator ge;
4532 for (ge = this->global_entry_stubs_.begin();
4533 ge != this->global_entry_stubs_.end();
4534 ++ge)
4535 {
4536 p = oview + global_entry_off + ge->second;
4537 Address plt_addr = ge->first->plt_offset();
4538 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4539 && ge->first->can_use_relative_reloc(false))
4540 {
4541 if (iplt_base == invalid_address)
4542 iplt_base = this->targ_->iplt_section()->address();
4543 plt_addr += iplt_base;
4544 }
4545 else
4546 plt_addr += plt_base;
4547 Address my_addr = global_entry_base + ge->second;
4548 Address off = plt_addr - my_addr;
4549
4550 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4551 gold_error(_("%s: linkage table error against `%s'"),
4552 ge->first->object()->name().c_str(),
4553 ge->first->demangled_name().c_str());
4554
4555 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4556 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4557 write_insn<big_endian>(p, mtctr_12), p += 4;
4558 write_insn<big_endian>(p, bctr);
4559 }
4560 }
4561 else
4562 {
4563 const Output_data_got_powerpc<size, big_endian>* got
4564 = this->targ_->got_section();
4565 // The address of _GLOBAL_OFFSET_TABLE_.
4566 Address g_o_t = got->address() + got->g_o_t();
4567
4568 // Write out pltresolve branch table.
4569 p = oview;
4570 unsigned int the_end = oview_size - this->pltresolve_size;
4571 unsigned char* end_p = oview + the_end;
4572 while (p < end_p - 8 * 4)
4573 write_insn<big_endian>(p, b + end_p - p), p += 4;
4574 while (p < end_p)
4575 write_insn<big_endian>(p, nop), p += 4;
4576
4577 // Write out pltresolve call stub.
4578 if (parameters->options().output_is_position_independent())
4579 {
4580 Address res0_off = 0;
4581 Address after_bcl_off = the_end + 12;
4582 Address bcl_res0 = after_bcl_off - res0_off;
4583
4584 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4585 write_insn<big_endian>(p + 4, mflr_0);
4586 write_insn<big_endian>(p + 8, bcl_20_31);
4587 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4588 write_insn<big_endian>(p + 16, mflr_12);
4589 write_insn<big_endian>(p + 20, mtlr_0);
4590 write_insn<big_endian>(p + 24, sub_11_11_12);
4591
4592 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4593
4594 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4595 if (ha(got_bcl) == ha(got_bcl + 4))
4596 {
4597 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4598 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4599 }
4600 else
4601 {
4602 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4603 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4604 }
4605 write_insn<big_endian>(p + 40, mtctr_0);
4606 write_insn<big_endian>(p + 44, add_0_11_11);
4607 write_insn<big_endian>(p + 48, add_11_0_11);
4608 write_insn<big_endian>(p + 52, bctr);
4609 write_insn<big_endian>(p + 56, nop);
4610 write_insn<big_endian>(p + 60, nop);
4611 }
4612 else
4613 {
4614 Address res0 = this->address();
4615
4616 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4617 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4618 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4619 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4620 else
4621 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4622 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4623 write_insn<big_endian>(p + 16, mtctr_0);
4624 write_insn<big_endian>(p + 20, add_0_11_11);
4625 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4626 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4627 else
4628 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4629 write_insn<big_endian>(p + 28, add_11_0_11);
4630 write_insn<big_endian>(p + 32, bctr);
4631 write_insn<big_endian>(p + 36, nop);
4632 write_insn<big_endian>(p + 40, nop);
4633 write_insn<big_endian>(p + 44, nop);
4634 write_insn<big_endian>(p + 48, nop);
4635 write_insn<big_endian>(p + 52, nop);
4636 write_insn<big_endian>(p + 56, nop);
4637 write_insn<big_endian>(p + 60, nop);
4638 }
4639 p += 64;
4640 }
4641
4642 of->write_output_view(off, oview_size, oview);
4643 }
4644
4645
4646 // A class to handle linker generated save/restore functions.
4647
4648 template<int size, bool big_endian>
4649 class Output_data_save_res : public Output_section_data_build
4650 {
4651 public:
4652 Output_data_save_res(Symbol_table* symtab);
4653
4654 protected:
4655 // Write to a map file.
4656 void
4657 do_print_to_mapfile(Mapfile* mapfile) const
4658 { mapfile->print_output_data(this, _("** save/restore")); }
4659
4660 void
4661 do_write(Output_file*);
4662
4663 private:
4664 // The maximum size of save/restore contents.
4665 static const unsigned int savres_max = 218*4;
4666
4667 void
4668 savres_define(Symbol_table* symtab,
4669 const char *name,
4670 unsigned int lo, unsigned int hi,
4671 unsigned char* write_ent(unsigned char*, int),
4672 unsigned char* write_tail(unsigned char*, int));
4673
4674 unsigned char *contents_;
4675 };
4676
4677 template<bool big_endian>
4678 static unsigned char*
4679 savegpr0(unsigned char* p, int r)
4680 {
4681 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4682 write_insn<big_endian>(p, insn);
4683 return p + 4;
4684 }
4685
4686 template<bool big_endian>
4687 static unsigned char*
4688 savegpr0_tail(unsigned char* p, int r)
4689 {
4690 p = savegpr0<big_endian>(p, r);
4691 uint32_t insn = std_0_1 + 16;
4692 write_insn<big_endian>(p, insn);
4693 p = p + 4;
4694 write_insn<big_endian>(p, blr);
4695 return p + 4;
4696 }
4697
4698 template<bool big_endian>
4699 static unsigned char*
4700 restgpr0(unsigned char* p, int r)
4701 {
4702 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4703 write_insn<big_endian>(p, insn);
4704 return p + 4;
4705 }
4706
4707 template<bool big_endian>
4708 static unsigned char*
4709 restgpr0_tail(unsigned char* p, int r)
4710 {
4711 uint32_t insn = ld_0_1 + 16;
4712 write_insn<big_endian>(p, insn);
4713 p = p + 4;
4714 p = restgpr0<big_endian>(p, r);
4715 write_insn<big_endian>(p, mtlr_0);
4716 p = p + 4;
4717 if (r == 29)
4718 {
4719 p = restgpr0<big_endian>(p, 30);
4720 p = restgpr0<big_endian>(p, 31);
4721 }
4722 write_insn<big_endian>(p, blr);
4723 return p + 4;
4724 }
4725
4726 template<bool big_endian>
4727 static unsigned char*
4728 savegpr1(unsigned char* p, int r)
4729 {
4730 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4731 write_insn<big_endian>(p, insn);
4732 return p + 4;
4733 }
4734
4735 template<bool big_endian>
4736 static unsigned char*
4737 savegpr1_tail(unsigned char* p, int r)
4738 {
4739 p = savegpr1<big_endian>(p, r);
4740 write_insn<big_endian>(p, blr);
4741 return p + 4;
4742 }
4743
4744 template<bool big_endian>
4745 static unsigned char*
4746 restgpr1(unsigned char* p, int r)
4747 {
4748 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4749 write_insn<big_endian>(p, insn);
4750 return p + 4;
4751 }
4752
4753 template<bool big_endian>
4754 static unsigned char*
4755 restgpr1_tail(unsigned char* p, int r)
4756 {
4757 p = restgpr1<big_endian>(p, r);
4758 write_insn<big_endian>(p, blr);
4759 return p + 4;
4760 }
4761
4762 template<bool big_endian>
4763 static unsigned char*
4764 savefpr(unsigned char* p, int r)
4765 {
4766 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4767 write_insn<big_endian>(p, insn);
4768 return p + 4;
4769 }
4770
4771 template<bool big_endian>
4772 static unsigned char*
4773 savefpr0_tail(unsigned char* p, int r)
4774 {
4775 p = savefpr<big_endian>(p, r);
4776 write_insn<big_endian>(p, std_0_1 + 16);
4777 p = p + 4;
4778 write_insn<big_endian>(p, blr);
4779 return p + 4;
4780 }
4781
4782 template<bool big_endian>
4783 static unsigned char*
4784 restfpr(unsigned char* p, int r)
4785 {
4786 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4787 write_insn<big_endian>(p, insn);
4788 return p + 4;
4789 }
4790
4791 template<bool big_endian>
4792 static unsigned char*
4793 restfpr0_tail(unsigned char* p, int r)
4794 {
4795 write_insn<big_endian>(p, ld_0_1 + 16);
4796 p = p + 4;
4797 p = restfpr<big_endian>(p, r);
4798 write_insn<big_endian>(p, mtlr_0);
4799 p = p + 4;
4800 if (r == 29)
4801 {
4802 p = restfpr<big_endian>(p, 30);
4803 p = restfpr<big_endian>(p, 31);
4804 }
4805 write_insn<big_endian>(p, blr);
4806 return p + 4;
4807 }
4808
4809 template<bool big_endian>
4810 static unsigned char*
4811 savefpr1_tail(unsigned char* p, int r)
4812 {
4813 p = savefpr<big_endian>(p, r);
4814 write_insn<big_endian>(p, blr);
4815 return p + 4;
4816 }
4817
4818 template<bool big_endian>
4819 static unsigned char*
4820 restfpr1_tail(unsigned char* p, int r)
4821 {
4822 p = restfpr<big_endian>(p, r);
4823 write_insn<big_endian>(p, blr);
4824 return p + 4;
4825 }
4826
4827 template<bool big_endian>
4828 static unsigned char*
4829 savevr(unsigned char* p, int r)
4830 {
4831 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4832 write_insn<big_endian>(p, insn);
4833 p = p + 4;
4834 insn = stvx_0_12_0 + (r << 21);
4835 write_insn<big_endian>(p, insn);
4836 return p + 4;
4837 }
4838
4839 template<bool big_endian>
4840 static unsigned char*
4841 savevr_tail(unsigned char* p, int r)
4842 {
4843 p = savevr<big_endian>(p, r);
4844 write_insn<big_endian>(p, blr);
4845 return p + 4;
4846 }
4847
4848 template<bool big_endian>
4849 static unsigned char*
4850 restvr(unsigned char* p, int r)
4851 {
4852 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4853 write_insn<big_endian>(p, insn);
4854 p = p + 4;
4855 insn = lvx_0_12_0 + (r << 21);
4856 write_insn<big_endian>(p, insn);
4857 return p + 4;
4858 }
4859
4860 template<bool big_endian>
4861 static unsigned char*
4862 restvr_tail(unsigned char* p, int r)
4863 {
4864 p = restvr<big_endian>(p, r);
4865 write_insn<big_endian>(p, blr);
4866 return p + 4;
4867 }
4868
4869
4870 template<int size, bool big_endian>
4871 Output_data_save_res<size, big_endian>::Output_data_save_res(
4872 Symbol_table* symtab)
4873 : Output_section_data_build(4),
4874 contents_(NULL)
4875 {
4876 this->savres_define(symtab,
4877 "_savegpr0_", 14, 31,
4878 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4879 this->savres_define(symtab,
4880 "_restgpr0_", 14, 29,
4881 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4882 this->savres_define(symtab,
4883 "_restgpr0_", 30, 31,
4884 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4885 this->savres_define(symtab,
4886 "_savegpr1_", 14, 31,
4887 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4888 this->savres_define(symtab,
4889 "_restgpr1_", 14, 31,
4890 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4891 this->savres_define(symtab,
4892 "_savefpr_", 14, 31,
4893 savefpr<big_endian>, savefpr0_tail<big_endian>);
4894 this->savres_define(symtab,
4895 "_restfpr_", 14, 29,
4896 restfpr<big_endian>, restfpr0_tail<big_endian>);
4897 this->savres_define(symtab,
4898 "_restfpr_", 30, 31,
4899 restfpr<big_endian>, restfpr0_tail<big_endian>);
4900 this->savres_define(symtab,
4901 "._savef", 14, 31,
4902 savefpr<big_endian>, savefpr1_tail<big_endian>);
4903 this->savres_define(symtab,
4904 "._restf", 14, 31,
4905 restfpr<big_endian>, restfpr1_tail<big_endian>);
4906 this->savres_define(symtab,
4907 "_savevr_", 20, 31,
4908 savevr<big_endian>, savevr_tail<big_endian>);
4909 this->savres_define(symtab,
4910 "_restvr_", 20, 31,
4911 restvr<big_endian>, restvr_tail<big_endian>);
4912 }
4913
4914 template<int size, bool big_endian>
4915 void
4916 Output_data_save_res<size, big_endian>::savres_define(
4917 Symbol_table* symtab,
4918 const char *name,
4919 unsigned int lo, unsigned int hi,
4920 unsigned char* write_ent(unsigned char*, int),
4921 unsigned char* write_tail(unsigned char*, int))
4922 {
4923 size_t len = strlen(name);
4924 bool writing = false;
4925 char sym[16];
4926
4927 memcpy(sym, name, len);
4928 sym[len + 2] = 0;
4929
4930 for (unsigned int i = lo; i <= hi; i++)
4931 {
4932 sym[len + 0] = i / 10 + '0';
4933 sym[len + 1] = i % 10 + '0';
4934 Symbol* gsym = symtab->lookup(sym);
4935 bool refd = gsym != NULL && gsym->is_undefined();
4936 writing = writing || refd;
4937 if (writing)
4938 {
4939 if (this->contents_ == NULL)
4940 this->contents_ = new unsigned char[this->savres_max];
4941
4942 section_size_type value = this->current_data_size();
4943 unsigned char* p = this->contents_ + value;
4944 if (i != hi)
4945 p = write_ent(p, i);
4946 else
4947 p = write_tail(p, i);
4948 section_size_type cur_size = p - this->contents_;
4949 this->set_current_data_size(cur_size);
4950 if (refd)
4951 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4952 this, value, cur_size - value,
4953 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4954 elfcpp::STV_HIDDEN, 0, false, false);
4955 }
4956 }
4957 }
4958
4959 // Write out save/restore.
4960
4961 template<int size, bool big_endian>
4962 void
4963 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4964 {
4965 const section_size_type off = this->offset();
4966 const section_size_type oview_size =
4967 convert_to_section_size_type(this->data_size());
4968 unsigned char* const oview = of->get_output_view(off, oview_size);
4969 memcpy(oview, this->contents_, oview_size);
4970 of->write_output_view(off, oview_size, oview);
4971 }
4972
4973
4974 // Create the glink section.
4975
4976 template<int size, bool big_endian>
4977 void
4978 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4979 {
4980 if (this->glink_ == NULL)
4981 {
4982 this->glink_ = new Output_data_glink<size, big_endian>(this);
4983 this->glink_->add_eh_frame(layout);
4984 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4985 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4986 this->glink_, ORDER_TEXT, false);
4987 }
4988 }
4989
4990 // Create a PLT entry for a global symbol.
4991
4992 template<int size, bool big_endian>
4993 void
4994 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4995 Layout* layout,
4996 Symbol* gsym)
4997 {
4998 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4999 && gsym->can_use_relative_reloc(false))
5000 {
5001 if (this->iplt_ == NULL)
5002 this->make_iplt_section(symtab, layout);
5003 this->iplt_->add_ifunc_entry(gsym);
5004 }
5005 else
5006 {
5007 if (this->plt_ == NULL)
5008 this->make_plt_section(symtab, layout);
5009 this->plt_->add_entry(gsym);
5010 }
5011 }
5012
5013 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5014
5015 template<int size, bool big_endian>
5016 void
5017 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5018 Symbol_table* symtab,
5019 Layout* layout,
5020 Sized_relobj_file<size, big_endian>* relobj,
5021 unsigned int r_sym)
5022 {
5023 if (this->iplt_ == NULL)
5024 this->make_iplt_section(symtab, layout);
5025 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5026 }
5027
5028 // Return the number of entries in the PLT.
5029
5030 template<int size, bool big_endian>
5031 unsigned int
5032 Target_powerpc<size, big_endian>::plt_entry_count() const
5033 {
5034 if (this->plt_ == NULL)
5035 return 0;
5036 return this->plt_->entry_count();
5037 }
5038
5039 // Create a GOT entry for local dynamic __tls_get_addr calls.
5040
5041 template<int size, bool big_endian>
5042 unsigned int
5043 Target_powerpc<size, big_endian>::tlsld_got_offset(
5044 Symbol_table* symtab,
5045 Layout* layout,
5046 Sized_relobj_file<size, big_endian>* object)
5047 {
5048 if (this->tlsld_got_offset_ == -1U)
5049 {
5050 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5051 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5052 Output_data_got_powerpc<size, big_endian>* got
5053 = this->got_section(symtab, layout);
5054 unsigned int got_offset = got->add_constant_pair(0, 0);
5055 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5056 got_offset, 0);
5057 this->tlsld_got_offset_ = got_offset;
5058 }
5059 return this->tlsld_got_offset_;
5060 }
5061
5062 // Get the Reference_flags for a particular relocation.
5063
5064 template<int size, bool big_endian>
5065 int
5066 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5067 unsigned int r_type,
5068 const Target_powerpc* target)
5069 {
5070 int ref = 0;
5071
5072 switch (r_type)
5073 {
5074 case elfcpp::R_POWERPC_NONE:
5075 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5076 case elfcpp::R_POWERPC_GNU_VTENTRY:
5077 case elfcpp::R_PPC64_TOC:
5078 // No symbol reference.
5079 break;
5080
5081 case elfcpp::R_PPC64_ADDR64:
5082 case elfcpp::R_PPC64_UADDR64:
5083 case elfcpp::R_POWERPC_ADDR32:
5084 case elfcpp::R_POWERPC_UADDR32:
5085 case elfcpp::R_POWERPC_ADDR16:
5086 case elfcpp::R_POWERPC_UADDR16:
5087 case elfcpp::R_POWERPC_ADDR16_LO:
5088 case elfcpp::R_POWERPC_ADDR16_HI:
5089 case elfcpp::R_POWERPC_ADDR16_HA:
5090 ref = Symbol::ABSOLUTE_REF;
5091 break;
5092
5093 case elfcpp::R_POWERPC_ADDR24:
5094 case elfcpp::R_POWERPC_ADDR14:
5095 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5096 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5097 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5098 break;
5099
5100 case elfcpp::R_PPC64_REL64:
5101 case elfcpp::R_POWERPC_REL32:
5102 case elfcpp::R_PPC_LOCAL24PC:
5103 case elfcpp::R_POWERPC_REL16:
5104 case elfcpp::R_POWERPC_REL16_LO:
5105 case elfcpp::R_POWERPC_REL16_HI:
5106 case elfcpp::R_POWERPC_REL16_HA:
5107 ref = Symbol::RELATIVE_REF;
5108 break;
5109
5110 case elfcpp::R_POWERPC_REL24:
5111 case elfcpp::R_PPC_PLTREL24:
5112 case elfcpp::R_POWERPC_REL14:
5113 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5114 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5115 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5116 break;
5117
5118 case elfcpp::R_POWERPC_GOT16:
5119 case elfcpp::R_POWERPC_GOT16_LO:
5120 case elfcpp::R_POWERPC_GOT16_HI:
5121 case elfcpp::R_POWERPC_GOT16_HA:
5122 case elfcpp::R_PPC64_GOT16_DS:
5123 case elfcpp::R_PPC64_GOT16_LO_DS:
5124 case elfcpp::R_PPC64_TOC16:
5125 case elfcpp::R_PPC64_TOC16_LO:
5126 case elfcpp::R_PPC64_TOC16_HI:
5127 case elfcpp::R_PPC64_TOC16_HA:
5128 case elfcpp::R_PPC64_TOC16_DS:
5129 case elfcpp::R_PPC64_TOC16_LO_DS:
5130 // Absolute in GOT.
5131 ref = Symbol::ABSOLUTE_REF;
5132 break;
5133
5134 case elfcpp::R_POWERPC_GOT_TPREL16:
5135 case elfcpp::R_POWERPC_TLS:
5136 ref = Symbol::TLS_REF;
5137 break;
5138
5139 case elfcpp::R_POWERPC_COPY:
5140 case elfcpp::R_POWERPC_GLOB_DAT:
5141 case elfcpp::R_POWERPC_JMP_SLOT:
5142 case elfcpp::R_POWERPC_RELATIVE:
5143 case elfcpp::R_POWERPC_DTPMOD:
5144 default:
5145 // Not expected. We will give an error later.
5146 break;
5147 }
5148
5149 if (size == 64 && target->abiversion() < 2)
5150 ref |= Symbol::FUNC_DESC_ABI;
5151 return ref;
5152 }
5153
5154 // Report an unsupported relocation against a local symbol.
5155
5156 template<int size, bool big_endian>
5157 void
5158 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5159 Sized_relobj_file<size, big_endian>* object,
5160 unsigned int r_type)
5161 {
5162 gold_error(_("%s: unsupported reloc %u against local symbol"),
5163 object->name().c_str(), r_type);
5164 }
5165
5166 // We are about to emit a dynamic relocation of type R_TYPE. If the
5167 // dynamic linker does not support it, issue an error.
5168
5169 template<int size, bool big_endian>
5170 void
5171 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5172 unsigned int r_type)
5173 {
5174 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5175
5176 // These are the relocation types supported by glibc for both 32-bit
5177 // and 64-bit powerpc.
5178 switch (r_type)
5179 {
5180 case elfcpp::R_POWERPC_NONE:
5181 case elfcpp::R_POWERPC_RELATIVE:
5182 case elfcpp::R_POWERPC_GLOB_DAT:
5183 case elfcpp::R_POWERPC_DTPMOD:
5184 case elfcpp::R_POWERPC_DTPREL:
5185 case elfcpp::R_POWERPC_TPREL:
5186 case elfcpp::R_POWERPC_JMP_SLOT:
5187 case elfcpp::R_POWERPC_COPY:
5188 case elfcpp::R_POWERPC_IRELATIVE:
5189 case elfcpp::R_POWERPC_ADDR32:
5190 case elfcpp::R_POWERPC_UADDR32:
5191 case elfcpp::R_POWERPC_ADDR24:
5192 case elfcpp::R_POWERPC_ADDR16:
5193 case elfcpp::R_POWERPC_UADDR16:
5194 case elfcpp::R_POWERPC_ADDR16_LO:
5195 case elfcpp::R_POWERPC_ADDR16_HI:
5196 case elfcpp::R_POWERPC_ADDR16_HA:
5197 case elfcpp::R_POWERPC_ADDR14:
5198 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5199 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5200 case elfcpp::R_POWERPC_REL32:
5201 case elfcpp::R_POWERPC_REL24:
5202 case elfcpp::R_POWERPC_TPREL16:
5203 case elfcpp::R_POWERPC_TPREL16_LO:
5204 case elfcpp::R_POWERPC_TPREL16_HI:
5205 case elfcpp::R_POWERPC_TPREL16_HA:
5206 return;
5207
5208 default:
5209 break;
5210 }
5211
5212 if (size == 64)
5213 {
5214 switch (r_type)
5215 {
5216 // These are the relocation types supported only on 64-bit.
5217 case elfcpp::R_PPC64_ADDR64:
5218 case elfcpp::R_PPC64_UADDR64:
5219 case elfcpp::R_PPC64_JMP_IREL:
5220 case elfcpp::R_PPC64_ADDR16_DS:
5221 case elfcpp::R_PPC64_ADDR16_LO_DS:
5222 case elfcpp::R_PPC64_ADDR16_HIGH:
5223 case elfcpp::R_PPC64_ADDR16_HIGHA:
5224 case elfcpp::R_PPC64_ADDR16_HIGHER:
5225 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5226 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5227 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5228 case elfcpp::R_PPC64_REL64:
5229 case elfcpp::R_POWERPC_ADDR30:
5230 case elfcpp::R_PPC64_TPREL16_DS:
5231 case elfcpp::R_PPC64_TPREL16_LO_DS:
5232 case elfcpp::R_PPC64_TPREL16_HIGH:
5233 case elfcpp::R_PPC64_TPREL16_HIGHA:
5234 case elfcpp::R_PPC64_TPREL16_HIGHER:
5235 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5236 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5237 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5238 return;
5239
5240 default:
5241 break;
5242 }
5243 }
5244 else
5245 {
5246 switch (r_type)
5247 {
5248 // These are the relocation types supported only on 32-bit.
5249 // ??? glibc ld.so doesn't need to support these.
5250 case elfcpp::R_POWERPC_DTPREL16:
5251 case elfcpp::R_POWERPC_DTPREL16_LO:
5252 case elfcpp::R_POWERPC_DTPREL16_HI:
5253 case elfcpp::R_POWERPC_DTPREL16_HA:
5254 return;
5255
5256 default:
5257 break;
5258 }
5259 }
5260
5261 // This prevents us from issuing more than one error per reloc
5262 // section. But we can still wind up issuing more than one
5263 // error per object file.
5264 if (this->issued_non_pic_error_)
5265 return;
5266 gold_assert(parameters->options().output_is_position_independent());
5267 object->error(_("requires unsupported dynamic reloc; "
5268 "recompile with -fPIC"));
5269 this->issued_non_pic_error_ = true;
5270 return;
5271 }
5272
5273 // Return whether we need to make a PLT entry for a relocation of the
5274 // given type against a STT_GNU_IFUNC symbol.
5275
5276 template<int size, bool big_endian>
5277 bool
5278 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5279 Target_powerpc<size, big_endian>* target,
5280 Sized_relobj_file<size, big_endian>* object,
5281 unsigned int r_type,
5282 bool report_err)
5283 {
5284 // In non-pic code any reference will resolve to the plt call stub
5285 // for the ifunc symbol.
5286 if ((size == 32 || target->abiversion() >= 2)
5287 && !parameters->options().output_is_position_independent())
5288 return true;
5289
5290 switch (r_type)
5291 {
5292 // Word size refs from data sections are OK, but don't need a PLT entry.
5293 case elfcpp::R_POWERPC_ADDR32:
5294 case elfcpp::R_POWERPC_UADDR32:
5295 if (size == 32)
5296 return false;
5297 break;
5298
5299 case elfcpp::R_PPC64_ADDR64:
5300 case elfcpp::R_PPC64_UADDR64:
5301 if (size == 64)
5302 return false;
5303 break;
5304
5305 // GOT refs are good, but also don't need a PLT entry.
5306 case elfcpp::R_POWERPC_GOT16:
5307 case elfcpp::R_POWERPC_GOT16_LO:
5308 case elfcpp::R_POWERPC_GOT16_HI:
5309 case elfcpp::R_POWERPC_GOT16_HA:
5310 case elfcpp::R_PPC64_GOT16_DS:
5311 case elfcpp::R_PPC64_GOT16_LO_DS:
5312 return false;
5313
5314 // Function calls are good, and these do need a PLT entry.
5315 case elfcpp::R_POWERPC_ADDR24:
5316 case elfcpp::R_POWERPC_ADDR14:
5317 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5318 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5319 case elfcpp::R_POWERPC_REL24:
5320 case elfcpp::R_PPC_PLTREL24:
5321 case elfcpp::R_POWERPC_REL14:
5322 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5323 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5324 return true;
5325
5326 default:
5327 break;
5328 }
5329
5330 // Anything else is a problem.
5331 // If we are building a static executable, the libc startup function
5332 // responsible for applying indirect function relocations is going
5333 // to complain about the reloc type.
5334 // If we are building a dynamic executable, we will have a text
5335 // relocation. The dynamic loader will set the text segment
5336 // writable and non-executable to apply text relocations. So we'll
5337 // segfault when trying to run the indirection function to resolve
5338 // the reloc.
5339 if (report_err)
5340 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5341 object->name().c_str(), r_type);
5342 return false;
5343 }
5344
5345 // Scan a relocation for a local symbol.
5346
5347 template<int size, bool big_endian>
5348 inline void
5349 Target_powerpc<size, big_endian>::Scan::local(
5350 Symbol_table* symtab,
5351 Layout* layout,
5352 Target_powerpc<size, big_endian>* target,
5353 Sized_relobj_file<size, big_endian>* object,
5354 unsigned int data_shndx,
5355 Output_section* output_section,
5356 const elfcpp::Rela<size, big_endian>& reloc,
5357 unsigned int r_type,
5358 const elfcpp::Sym<size, big_endian>& lsym,
5359 bool is_discarded)
5360 {
5361 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5362
5363 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5364 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5365 {
5366 this->expect_tls_get_addr_call();
5367 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5368 if (tls_type != tls::TLSOPT_NONE)
5369 this->skip_next_tls_get_addr_call();
5370 }
5371 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5372 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5373 {
5374 this->expect_tls_get_addr_call();
5375 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5376 if (tls_type != tls::TLSOPT_NONE)
5377 this->skip_next_tls_get_addr_call();
5378 }
5379
5380 Powerpc_relobj<size, big_endian>* ppc_object
5381 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5382
5383 if (is_discarded)
5384 {
5385 if (size == 64
5386 && data_shndx == ppc_object->opd_shndx()
5387 && r_type == elfcpp::R_PPC64_ADDR64)
5388 ppc_object->set_opd_discard(reloc.get_r_offset());
5389 return;
5390 }
5391
5392 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5393 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5394 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5395 {
5396 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5397 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5398 r_type, r_sym, reloc.get_r_addend());
5399 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5400 }
5401
5402 switch (r_type)
5403 {
5404 case elfcpp::R_POWERPC_NONE:
5405 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5406 case elfcpp::R_POWERPC_GNU_VTENTRY:
5407 case elfcpp::R_PPC64_TOCSAVE:
5408 case elfcpp::R_POWERPC_TLS:
5409 break;
5410
5411 case elfcpp::R_PPC64_TOC:
5412 {
5413 Output_data_got_powerpc<size, big_endian>* got
5414 = target->got_section(symtab, layout);
5415 if (parameters->options().output_is_position_independent())
5416 {
5417 Address off = reloc.get_r_offset();
5418 if (size == 64
5419 && target->abiversion() < 2
5420 && data_shndx == ppc_object->opd_shndx()
5421 && ppc_object->get_opd_discard(off - 8))
5422 break;
5423
5424 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5425 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5426 rela_dyn->add_output_section_relative(got->output_section(),
5427 elfcpp::R_POWERPC_RELATIVE,
5428 output_section,
5429 object, data_shndx, off,
5430 symobj->toc_base_offset());
5431 }
5432 }
5433 break;
5434
5435 case elfcpp::R_PPC64_ADDR64:
5436 case elfcpp::R_PPC64_UADDR64:
5437 case elfcpp::R_POWERPC_ADDR32:
5438 case elfcpp::R_POWERPC_UADDR32:
5439 case elfcpp::R_POWERPC_ADDR24:
5440 case elfcpp::R_POWERPC_ADDR16:
5441 case elfcpp::R_POWERPC_ADDR16_LO:
5442 case elfcpp::R_POWERPC_ADDR16_HI:
5443 case elfcpp::R_POWERPC_ADDR16_HA:
5444 case elfcpp::R_POWERPC_UADDR16:
5445 case elfcpp::R_PPC64_ADDR16_HIGH:
5446 case elfcpp::R_PPC64_ADDR16_HIGHA:
5447 case elfcpp::R_PPC64_ADDR16_HIGHER:
5448 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5449 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5450 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5451 case elfcpp::R_PPC64_ADDR16_DS:
5452 case elfcpp::R_PPC64_ADDR16_LO_DS:
5453 case elfcpp::R_POWERPC_ADDR14:
5454 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5455 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5456 // If building a shared library (or a position-independent
5457 // executable), we need to create a dynamic relocation for
5458 // this location.
5459 if (parameters->options().output_is_position_independent()
5460 || (size == 64 && is_ifunc && target->abiversion() < 2))
5461 {
5462 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5463 is_ifunc);
5464 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5465 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5466 {
5467 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5468 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5469 : elfcpp::R_POWERPC_RELATIVE);
5470 rela_dyn->add_local_relative(object, r_sym, dynrel,
5471 output_section, data_shndx,
5472 reloc.get_r_offset(),
5473 reloc.get_r_addend(), false);
5474 }
5475 else
5476 {
5477 check_non_pic(object, r_type);
5478 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5479 rela_dyn->add_local(object, r_sym, r_type, output_section,
5480 data_shndx, reloc.get_r_offset(),
5481 reloc.get_r_addend());
5482 }
5483 }
5484 break;
5485
5486 case elfcpp::R_POWERPC_REL24:
5487 case elfcpp::R_PPC_PLTREL24:
5488 case elfcpp::R_PPC_LOCAL24PC:
5489 case elfcpp::R_POWERPC_REL14:
5490 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5491 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5492 if (!is_ifunc)
5493 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5494 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5495 reloc.get_r_addend());
5496 break;
5497
5498 case elfcpp::R_PPC64_REL64:
5499 case elfcpp::R_POWERPC_REL32:
5500 case elfcpp::R_POWERPC_REL16:
5501 case elfcpp::R_POWERPC_REL16_LO:
5502 case elfcpp::R_POWERPC_REL16_HI:
5503 case elfcpp::R_POWERPC_REL16_HA:
5504 case elfcpp::R_POWERPC_SECTOFF:
5505 case elfcpp::R_POWERPC_SECTOFF_LO:
5506 case elfcpp::R_POWERPC_SECTOFF_HI:
5507 case elfcpp::R_POWERPC_SECTOFF_HA:
5508 case elfcpp::R_PPC64_SECTOFF_DS:
5509 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5510 case elfcpp::R_POWERPC_TPREL16:
5511 case elfcpp::R_POWERPC_TPREL16_LO:
5512 case elfcpp::R_POWERPC_TPREL16_HI:
5513 case elfcpp::R_POWERPC_TPREL16_HA:
5514 case elfcpp::R_PPC64_TPREL16_DS:
5515 case elfcpp::R_PPC64_TPREL16_LO_DS:
5516 case elfcpp::R_PPC64_TPREL16_HIGH:
5517 case elfcpp::R_PPC64_TPREL16_HIGHA:
5518 case elfcpp::R_PPC64_TPREL16_HIGHER:
5519 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5520 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5521 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5522 case elfcpp::R_POWERPC_DTPREL16:
5523 case elfcpp::R_POWERPC_DTPREL16_LO:
5524 case elfcpp::R_POWERPC_DTPREL16_HI:
5525 case elfcpp::R_POWERPC_DTPREL16_HA:
5526 case elfcpp::R_PPC64_DTPREL16_DS:
5527 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5528 case elfcpp::R_PPC64_DTPREL16_HIGH:
5529 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5530 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5531 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5532 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5533 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5534 case elfcpp::R_PPC64_TLSGD:
5535 case elfcpp::R_PPC64_TLSLD:
5536 case elfcpp::R_PPC64_ADDR64_LOCAL:
5537 break;
5538
5539 case elfcpp::R_POWERPC_GOT16:
5540 case elfcpp::R_POWERPC_GOT16_LO:
5541 case elfcpp::R_POWERPC_GOT16_HI:
5542 case elfcpp::R_POWERPC_GOT16_HA:
5543 case elfcpp::R_PPC64_GOT16_DS:
5544 case elfcpp::R_PPC64_GOT16_LO_DS:
5545 {
5546 // The symbol requires a GOT entry.
5547 Output_data_got_powerpc<size, big_endian>* got
5548 = target->got_section(symtab, layout);
5549 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5550
5551 if (!parameters->options().output_is_position_independent())
5552 {
5553 if ((size == 32 && is_ifunc)
5554 || (size == 64 && target->abiversion() >= 2))
5555 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5556 else
5557 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5558 }
5559 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5560 {
5561 // If we are generating a shared object or a pie, this
5562 // symbol's GOT entry will be set by a dynamic relocation.
5563 unsigned int off;
5564 off = got->add_constant(0);
5565 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5566
5567 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5568 is_ifunc);
5569 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5570 : elfcpp::R_POWERPC_RELATIVE);
5571 rela_dyn->add_local_relative(object, r_sym, dynrel,
5572 got, off, 0, false);
5573 }
5574 }
5575 break;
5576
5577 case elfcpp::R_PPC64_TOC16:
5578 case elfcpp::R_PPC64_TOC16_LO:
5579 case elfcpp::R_PPC64_TOC16_HI:
5580 case elfcpp::R_PPC64_TOC16_HA:
5581 case elfcpp::R_PPC64_TOC16_DS:
5582 case elfcpp::R_PPC64_TOC16_LO_DS:
5583 // We need a GOT section.
5584 target->got_section(symtab, layout);
5585 break;
5586
5587 case elfcpp::R_POWERPC_GOT_TLSGD16:
5588 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5589 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5590 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5591 {
5592 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5593 if (tls_type == tls::TLSOPT_NONE)
5594 {
5595 Output_data_got_powerpc<size, big_endian>* got
5596 = target->got_section(symtab, layout);
5597 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5598 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5599 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5600 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5601 }
5602 else if (tls_type == tls::TLSOPT_TO_LE)
5603 {
5604 // no GOT relocs needed for Local Exec.
5605 }
5606 else
5607 gold_unreachable();
5608 }
5609 break;
5610
5611 case elfcpp::R_POWERPC_GOT_TLSLD16:
5612 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5613 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5614 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5615 {
5616 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5617 if (tls_type == tls::TLSOPT_NONE)
5618 target->tlsld_got_offset(symtab, layout, object);
5619 else if (tls_type == tls::TLSOPT_TO_LE)
5620 {
5621 // no GOT relocs needed for Local Exec.
5622 if (parameters->options().emit_relocs())
5623 {
5624 Output_section* os = layout->tls_segment()->first_section();
5625 gold_assert(os != NULL);
5626 os->set_needs_symtab_index();
5627 }
5628 }
5629 else
5630 gold_unreachable();
5631 }
5632 break;
5633
5634 case elfcpp::R_POWERPC_GOT_DTPREL16:
5635 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5636 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5637 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5638 {
5639 Output_data_got_powerpc<size, big_endian>* got
5640 = target->got_section(symtab, layout);
5641 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5642 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5643 }
5644 break;
5645
5646 case elfcpp::R_POWERPC_GOT_TPREL16:
5647 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5648 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5649 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5650 {
5651 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5652 if (tls_type == tls::TLSOPT_NONE)
5653 {
5654 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5655 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5656 {
5657 Output_data_got_powerpc<size, big_endian>* got
5658 = target->got_section(symtab, layout);
5659 unsigned int off = got->add_constant(0);
5660 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5661
5662 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5663 rela_dyn->add_symbolless_local_addend(object, r_sym,
5664 elfcpp::R_POWERPC_TPREL,
5665 got, off, 0);
5666 }
5667 }
5668 else if (tls_type == tls::TLSOPT_TO_LE)
5669 {
5670 // no GOT relocs needed for Local Exec.
5671 }
5672 else
5673 gold_unreachable();
5674 }
5675 break;
5676
5677 default:
5678 unsupported_reloc_local(object, r_type);
5679 break;
5680 }
5681
5682 switch (r_type)
5683 {
5684 case elfcpp::R_POWERPC_GOT_TLSLD16:
5685 case elfcpp::R_POWERPC_GOT_TLSGD16:
5686 case elfcpp::R_POWERPC_GOT_TPREL16:
5687 case elfcpp::R_POWERPC_GOT_DTPREL16:
5688 case elfcpp::R_POWERPC_GOT16:
5689 case elfcpp::R_PPC64_GOT16_DS:
5690 case elfcpp::R_PPC64_TOC16:
5691 case elfcpp::R_PPC64_TOC16_DS:
5692 ppc_object->set_has_small_toc_reloc();
5693 default:
5694 break;
5695 }
5696 }
5697
5698 // Report an unsupported relocation against a global symbol.
5699
5700 template<int size, bool big_endian>
5701 void
5702 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5703 Sized_relobj_file<size, big_endian>* object,
5704 unsigned int r_type,
5705 Symbol* gsym)
5706 {
5707 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5708 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5709 }
5710
5711 // Scan a relocation for a global symbol.
5712
5713 template<int size, bool big_endian>
5714 inline void
5715 Target_powerpc<size, big_endian>::Scan::global(
5716 Symbol_table* symtab,
5717 Layout* layout,
5718 Target_powerpc<size, big_endian>* target,
5719 Sized_relobj_file<size, big_endian>* object,
5720 unsigned int data_shndx,
5721 Output_section* output_section,
5722 const elfcpp::Rela<size, big_endian>& reloc,
5723 unsigned int r_type,
5724 Symbol* gsym)
5725 {
5726 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5727 return;
5728
5729 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5730 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5731 {
5732 this->expect_tls_get_addr_call();
5733 const bool final = gsym->final_value_is_known();
5734 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5735 if (tls_type != tls::TLSOPT_NONE)
5736 this->skip_next_tls_get_addr_call();
5737 }
5738 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5739 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5740 {
5741 this->expect_tls_get_addr_call();
5742 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5743 if (tls_type != tls::TLSOPT_NONE)
5744 this->skip_next_tls_get_addr_call();
5745 }
5746
5747 Powerpc_relobj<size, big_endian>* ppc_object
5748 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5749
5750 // A STT_GNU_IFUNC symbol may require a PLT entry.
5751 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5752 bool pushed_ifunc = false;
5753 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5754 {
5755 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5756 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5757 reloc.get_r_addend());
5758 target->make_plt_entry(symtab, layout, gsym);
5759 pushed_ifunc = true;
5760 }
5761
5762 switch (r_type)
5763 {
5764 case elfcpp::R_POWERPC_NONE:
5765 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5766 case elfcpp::R_POWERPC_GNU_VTENTRY:
5767 case elfcpp::R_PPC_LOCAL24PC:
5768 case elfcpp::R_POWERPC_TLS:
5769 break;
5770
5771 case elfcpp::R_PPC64_TOC:
5772 {
5773 Output_data_got_powerpc<size, big_endian>* got
5774 = target->got_section(symtab, layout);
5775 if (parameters->options().output_is_position_independent())
5776 {
5777 Address off = reloc.get_r_offset();
5778 if (size == 64
5779 && data_shndx == ppc_object->opd_shndx()
5780 && ppc_object->get_opd_discard(off - 8))
5781 break;
5782
5783 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5784 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5785 if (data_shndx != ppc_object->opd_shndx())
5786 symobj = static_cast
5787 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5788 rela_dyn->add_output_section_relative(got->output_section(),
5789 elfcpp::R_POWERPC_RELATIVE,
5790 output_section,
5791 object, data_shndx, off,
5792 symobj->toc_base_offset());
5793 }
5794 }
5795 break;
5796
5797 case elfcpp::R_PPC64_ADDR64:
5798 if (size == 64
5799 && target->abiversion() < 2
5800 && data_shndx == ppc_object->opd_shndx()
5801 && (gsym->is_defined_in_discarded_section()
5802 || gsym->object() != object))
5803 {
5804 ppc_object->set_opd_discard(reloc.get_r_offset());
5805 break;
5806 }
5807 // Fall thru
5808 case elfcpp::R_PPC64_UADDR64:
5809 case elfcpp::R_POWERPC_ADDR32:
5810 case elfcpp::R_POWERPC_UADDR32:
5811 case elfcpp::R_POWERPC_ADDR24:
5812 case elfcpp::R_POWERPC_ADDR16:
5813 case elfcpp::R_POWERPC_ADDR16_LO:
5814 case elfcpp::R_POWERPC_ADDR16_HI:
5815 case elfcpp::R_POWERPC_ADDR16_HA:
5816 case elfcpp::R_POWERPC_UADDR16:
5817 case elfcpp::R_PPC64_ADDR16_HIGH:
5818 case elfcpp::R_PPC64_ADDR16_HIGHA:
5819 case elfcpp::R_PPC64_ADDR16_HIGHER:
5820 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5821 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5822 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5823 case elfcpp::R_PPC64_ADDR16_DS:
5824 case elfcpp::R_PPC64_ADDR16_LO_DS:
5825 case elfcpp::R_POWERPC_ADDR14:
5826 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5827 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5828 {
5829 // Make a PLT entry if necessary.
5830 if (gsym->needs_plt_entry())
5831 {
5832 // Since this is not a PC-relative relocation, we may be
5833 // taking the address of a function. In that case we need to
5834 // set the entry in the dynamic symbol table to the address of
5835 // the PLT call stub.
5836 bool need_ifunc_plt = false;
5837 if ((size == 32 || target->abiversion() >= 2)
5838 && gsym->is_from_dynobj()
5839 && !parameters->options().output_is_position_independent())
5840 {
5841 gsym->set_needs_dynsym_value();
5842 need_ifunc_plt = true;
5843 }
5844 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5845 {
5846 target->push_branch(ppc_object, data_shndx,
5847 reloc.get_r_offset(), r_type,
5848 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5849 reloc.get_r_addend());
5850 target->make_plt_entry(symtab, layout, gsym);
5851 }
5852 }
5853 // Make a dynamic relocation if necessary.
5854 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5855 || (size == 64 && is_ifunc && target->abiversion() < 2))
5856 {
5857 if (!parameters->options().output_is_position_independent()
5858 && gsym->may_need_copy_reloc())
5859 {
5860 target->copy_reloc(symtab, layout, object,
5861 data_shndx, output_section, gsym, reloc);
5862 }
5863 else if ((((size == 32
5864 && r_type == elfcpp::R_POWERPC_ADDR32)
5865 || (size == 64
5866 && r_type == elfcpp::R_PPC64_ADDR64
5867 && target->abiversion() >= 2))
5868 && gsym->can_use_relative_reloc(false)
5869 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5870 && parameters->options().shared()))
5871 || (size == 64
5872 && r_type == elfcpp::R_PPC64_ADDR64
5873 && target->abiversion() < 2
5874 && (gsym->can_use_relative_reloc(false)
5875 || data_shndx == ppc_object->opd_shndx())))
5876 {
5877 Reloc_section* rela_dyn
5878 = target->rela_dyn_section(symtab, layout, is_ifunc);
5879 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5880 : elfcpp::R_POWERPC_RELATIVE);
5881 rela_dyn->add_symbolless_global_addend(
5882 gsym, dynrel, output_section, object, data_shndx,
5883 reloc.get_r_offset(), reloc.get_r_addend());
5884 }
5885 else
5886 {
5887 Reloc_section* rela_dyn
5888 = target->rela_dyn_section(symtab, layout, is_ifunc);
5889 check_non_pic(object, r_type);
5890 rela_dyn->add_global(gsym, r_type, output_section,
5891 object, data_shndx,
5892 reloc.get_r_offset(),
5893 reloc.get_r_addend());
5894 }
5895 }
5896 }
5897 break;
5898
5899 case elfcpp::R_PPC_PLTREL24:
5900 case elfcpp::R_POWERPC_REL24:
5901 if (!is_ifunc)
5902 {
5903 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5904 r_type,
5905 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5906 reloc.get_r_addend());
5907 if (gsym->needs_plt_entry()
5908 || (!gsym->final_value_is_known()
5909 && (gsym->is_undefined()
5910 || gsym->is_from_dynobj()
5911 || gsym->is_preemptible())))
5912 target->make_plt_entry(symtab, layout, gsym);
5913 }
5914 // Fall thru
5915
5916 case elfcpp::R_PPC64_REL64:
5917 case elfcpp::R_POWERPC_REL32:
5918 // Make a dynamic relocation if necessary.
5919 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5920 {
5921 if (!parameters->options().output_is_position_independent()
5922 && gsym->may_need_copy_reloc())
5923 {
5924 target->copy_reloc(symtab, layout, object,
5925 data_shndx, output_section, gsym,
5926 reloc);
5927 }
5928 else
5929 {
5930 Reloc_section* rela_dyn
5931 = target->rela_dyn_section(symtab, layout, is_ifunc);
5932 check_non_pic(object, r_type);
5933 rela_dyn->add_global(gsym, r_type, output_section, object,
5934 data_shndx, reloc.get_r_offset(),
5935 reloc.get_r_addend());
5936 }
5937 }
5938 break;
5939
5940 case elfcpp::R_POWERPC_REL14:
5941 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5942 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5943 if (!is_ifunc)
5944 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5945 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5946 reloc.get_r_addend());
5947 break;
5948
5949 case elfcpp::R_POWERPC_REL16:
5950 case elfcpp::R_POWERPC_REL16_LO:
5951 case elfcpp::R_POWERPC_REL16_HI:
5952 case elfcpp::R_POWERPC_REL16_HA:
5953 case elfcpp::R_POWERPC_SECTOFF:
5954 case elfcpp::R_POWERPC_SECTOFF_LO:
5955 case elfcpp::R_POWERPC_SECTOFF_HI:
5956 case elfcpp::R_POWERPC_SECTOFF_HA:
5957 case elfcpp::R_PPC64_SECTOFF_DS:
5958 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5959 case elfcpp::R_POWERPC_TPREL16:
5960 case elfcpp::R_POWERPC_TPREL16_LO:
5961 case elfcpp::R_POWERPC_TPREL16_HI:
5962 case elfcpp::R_POWERPC_TPREL16_HA:
5963 case elfcpp::R_PPC64_TPREL16_DS:
5964 case elfcpp::R_PPC64_TPREL16_LO_DS:
5965 case elfcpp::R_PPC64_TPREL16_HIGH:
5966 case elfcpp::R_PPC64_TPREL16_HIGHA:
5967 case elfcpp::R_PPC64_TPREL16_HIGHER:
5968 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5969 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5970 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5971 case elfcpp::R_POWERPC_DTPREL16:
5972 case elfcpp::R_POWERPC_DTPREL16_LO:
5973 case elfcpp::R_POWERPC_DTPREL16_HI:
5974 case elfcpp::R_POWERPC_DTPREL16_HA:
5975 case elfcpp::R_PPC64_DTPREL16_DS:
5976 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5977 case elfcpp::R_PPC64_DTPREL16_HIGH:
5978 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5979 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5980 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5981 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5982 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5983 case elfcpp::R_PPC64_TLSGD:
5984 case elfcpp::R_PPC64_TLSLD:
5985 case elfcpp::R_PPC64_ADDR64_LOCAL:
5986 break;
5987
5988 case elfcpp::R_POWERPC_GOT16:
5989 case elfcpp::R_POWERPC_GOT16_LO:
5990 case elfcpp::R_POWERPC_GOT16_HI:
5991 case elfcpp::R_POWERPC_GOT16_HA:
5992 case elfcpp::R_PPC64_GOT16_DS:
5993 case elfcpp::R_PPC64_GOT16_LO_DS:
5994 {
5995 // The symbol requires a GOT entry.
5996 Output_data_got_powerpc<size, big_endian>* got;
5997
5998 got = target->got_section(symtab, layout);
5999 if (gsym->final_value_is_known())
6000 {
6001 if ((size == 32 && is_ifunc)
6002 || (size == 64 && target->abiversion() >= 2))
6003 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6004 else
6005 got->add_global(gsym, GOT_TYPE_STANDARD);
6006 }
6007 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6008 {
6009 // If we are generating a shared object or a pie, this
6010 // symbol's GOT entry will be set by a dynamic relocation.
6011 unsigned int off = got->add_constant(0);
6012 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6013
6014 Reloc_section* rela_dyn
6015 = target->rela_dyn_section(symtab, layout, is_ifunc);
6016
6017 if (gsym->can_use_relative_reloc(false)
6018 && !((size == 32
6019 || target->abiversion() >= 2)
6020 && gsym->visibility() == elfcpp::STV_PROTECTED
6021 && parameters->options().shared()))
6022 {
6023 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6024 : elfcpp::R_POWERPC_RELATIVE);
6025 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6026 }
6027 else
6028 {
6029 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6030 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6031 }
6032 }
6033 }
6034 break;
6035
6036 case elfcpp::R_PPC64_TOC16:
6037 case elfcpp::R_PPC64_TOC16_LO:
6038 case elfcpp::R_PPC64_TOC16_HI:
6039 case elfcpp::R_PPC64_TOC16_HA:
6040 case elfcpp::R_PPC64_TOC16_DS:
6041 case elfcpp::R_PPC64_TOC16_LO_DS:
6042 // We need a GOT section.
6043 target->got_section(symtab, layout);
6044 break;
6045
6046 case elfcpp::R_POWERPC_GOT_TLSGD16:
6047 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6048 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6049 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6050 {
6051 const bool final = gsym->final_value_is_known();
6052 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6053 if (tls_type == tls::TLSOPT_NONE)
6054 {
6055 Output_data_got_powerpc<size, big_endian>* got
6056 = target->got_section(symtab, layout);
6057 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6058 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6059 elfcpp::R_POWERPC_DTPMOD,
6060 elfcpp::R_POWERPC_DTPREL);
6061 }
6062 else if (tls_type == tls::TLSOPT_TO_IE)
6063 {
6064 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6065 {
6066 Output_data_got_powerpc<size, big_endian>* got
6067 = target->got_section(symtab, layout);
6068 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6069 if (gsym->is_undefined()
6070 || gsym->is_from_dynobj())
6071 {
6072 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6073 elfcpp::R_POWERPC_TPREL);
6074 }
6075 else
6076 {
6077 unsigned int off = got->add_constant(0);
6078 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6079 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6080 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6081 got, off, 0);
6082 }
6083 }
6084 }
6085 else if (tls_type == tls::TLSOPT_TO_LE)
6086 {
6087 // no GOT relocs needed for Local Exec.
6088 }
6089 else
6090 gold_unreachable();
6091 }
6092 break;
6093
6094 case elfcpp::R_POWERPC_GOT_TLSLD16:
6095 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6096 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6097 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6098 {
6099 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6100 if (tls_type == tls::TLSOPT_NONE)
6101 target->tlsld_got_offset(symtab, layout, object);
6102 else if (tls_type == tls::TLSOPT_TO_LE)
6103 {
6104 // no GOT relocs needed for Local Exec.
6105 if (parameters->options().emit_relocs())
6106 {
6107 Output_section* os = layout->tls_segment()->first_section();
6108 gold_assert(os != NULL);
6109 os->set_needs_symtab_index();
6110 }
6111 }
6112 else
6113 gold_unreachable();
6114 }
6115 break;
6116
6117 case elfcpp::R_POWERPC_GOT_DTPREL16:
6118 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6119 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6120 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6121 {
6122 Output_data_got_powerpc<size, big_endian>* got
6123 = target->got_section(symtab, layout);
6124 if (!gsym->final_value_is_known()
6125 && (gsym->is_from_dynobj()
6126 || gsym->is_undefined()
6127 || gsym->is_preemptible()))
6128 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6129 target->rela_dyn_section(layout),
6130 elfcpp::R_POWERPC_DTPREL);
6131 else
6132 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6133 }
6134 break;
6135
6136 case elfcpp::R_POWERPC_GOT_TPREL16:
6137 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6138 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6139 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6140 {
6141 const bool final = gsym->final_value_is_known();
6142 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6143 if (tls_type == tls::TLSOPT_NONE)
6144 {
6145 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6146 {
6147 Output_data_got_powerpc<size, big_endian>* got
6148 = target->got_section(symtab, layout);
6149 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6150 if (gsym->is_undefined()
6151 || gsym->is_from_dynobj())
6152 {
6153 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6154 elfcpp::R_POWERPC_TPREL);
6155 }
6156 else
6157 {
6158 unsigned int off = got->add_constant(0);
6159 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6160 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6161 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6162 got, off, 0);
6163 }
6164 }
6165 }
6166 else if (tls_type == tls::TLSOPT_TO_LE)
6167 {
6168 // no GOT relocs needed for Local Exec.
6169 }
6170 else
6171 gold_unreachable();
6172 }
6173 break;
6174
6175 default:
6176 unsupported_reloc_global(object, r_type, gsym);
6177 break;
6178 }
6179
6180 switch (r_type)
6181 {
6182 case elfcpp::R_POWERPC_GOT_TLSLD16:
6183 case elfcpp::R_POWERPC_GOT_TLSGD16:
6184 case elfcpp::R_POWERPC_GOT_TPREL16:
6185 case elfcpp::R_POWERPC_GOT_DTPREL16:
6186 case elfcpp::R_POWERPC_GOT16:
6187 case elfcpp::R_PPC64_GOT16_DS:
6188 case elfcpp::R_PPC64_TOC16:
6189 case elfcpp::R_PPC64_TOC16_DS:
6190 ppc_object->set_has_small_toc_reloc();
6191 default:
6192 break;
6193 }
6194 }
6195
6196 // Process relocations for gc.
6197
6198 template<int size, bool big_endian>
6199 void
6200 Target_powerpc<size, big_endian>::gc_process_relocs(
6201 Symbol_table* symtab,
6202 Layout* layout,
6203 Sized_relobj_file<size, big_endian>* object,
6204 unsigned int data_shndx,
6205 unsigned int,
6206 const unsigned char* prelocs,
6207 size_t reloc_count,
6208 Output_section* output_section,
6209 bool needs_special_offset_handling,
6210 size_t local_symbol_count,
6211 const unsigned char* plocal_symbols)
6212 {
6213 typedef Target_powerpc<size, big_endian> Powerpc;
6214 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6215 Powerpc_relobj<size, big_endian>* ppc_object
6216 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6217 if (size == 64)
6218 ppc_object->set_opd_valid();
6219 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6220 {
6221 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6222 for (p = ppc_object->access_from_map()->begin();
6223 p != ppc_object->access_from_map()->end();
6224 ++p)
6225 {
6226 Address dst_off = p->first;
6227 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6228 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6229 for (s = p->second.begin(); s != p->second.end(); ++s)
6230 {
6231 Object* src_obj = s->first;
6232 unsigned int src_indx = s->second;
6233 symtab->gc()->add_reference(src_obj, src_indx,
6234 ppc_object, dst_indx);
6235 }
6236 p->second.clear();
6237 }
6238 ppc_object->access_from_map()->clear();
6239 ppc_object->process_gc_mark(symtab);
6240 // Don't look at .opd relocs as .opd will reference everything.
6241 return;
6242 }
6243
6244 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6245 typename Target_powerpc::Relocatable_size_for_reloc>(
6246 symtab,
6247 layout,
6248 this,
6249 object,
6250 data_shndx,
6251 prelocs,
6252 reloc_count,
6253 output_section,
6254 needs_special_offset_handling,
6255 local_symbol_count,
6256 plocal_symbols);
6257 }
6258
6259 // Handle target specific gc actions when adding a gc reference from
6260 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6261 // and DST_OFF. For powerpc64, this adds a referenc to the code
6262 // section of a function descriptor.
6263
6264 template<int size, bool big_endian>
6265 void
6266 Target_powerpc<size, big_endian>::do_gc_add_reference(
6267 Symbol_table* symtab,
6268 Object* src_obj,
6269 unsigned int src_shndx,
6270 Object* dst_obj,
6271 unsigned int dst_shndx,
6272 Address dst_off) const
6273 {
6274 if (size != 64 || dst_obj->is_dynamic())
6275 return;
6276
6277 Powerpc_relobj<size, big_endian>* ppc_object
6278 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6279 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6280 {
6281 if (ppc_object->opd_valid())
6282 {
6283 dst_shndx = ppc_object->get_opd_ent(dst_off);
6284 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6285 }
6286 else
6287 {
6288 // If we haven't run scan_opd_relocs, we must delay
6289 // processing this function descriptor reference.
6290 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6291 }
6292 }
6293 }
6294
6295 // Add any special sections for this symbol to the gc work list.
6296 // For powerpc64, this adds the code section of a function
6297 // descriptor.
6298
6299 template<int size, bool big_endian>
6300 void
6301 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6302 Symbol_table* symtab,
6303 Symbol* sym) const
6304 {
6305 if (size == 64)
6306 {
6307 Powerpc_relobj<size, big_endian>* ppc_object
6308 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6309 bool is_ordinary;
6310 unsigned int shndx = sym->shndx(&is_ordinary);
6311 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6312 {
6313 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6314 Address dst_off = gsym->value();
6315 if (ppc_object->opd_valid())
6316 {
6317 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6318 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6319 }
6320 else
6321 ppc_object->add_gc_mark(dst_off);
6322 }
6323 }
6324 }
6325
6326 // For a symbol location in .opd, set LOC to the location of the
6327 // function entry.
6328
6329 template<int size, bool big_endian>
6330 void
6331 Target_powerpc<size, big_endian>::do_function_location(
6332 Symbol_location* loc) const
6333 {
6334 if (size == 64 && loc->shndx != 0)
6335 {
6336 if (loc->object->is_dynamic())
6337 {
6338 Powerpc_dynobj<size, big_endian>* ppc_object
6339 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6340 if (loc->shndx == ppc_object->opd_shndx())
6341 {
6342 Address dest_off;
6343 Address off = loc->offset - ppc_object->opd_address();
6344 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6345 loc->offset = dest_off;
6346 }
6347 }
6348 else
6349 {
6350 const Powerpc_relobj<size, big_endian>* ppc_object
6351 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6352 if (loc->shndx == ppc_object->opd_shndx())
6353 {
6354 Address dest_off;
6355 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6356 loc->offset = dest_off;
6357 }
6358 }
6359 }
6360 }
6361
6362 // Scan relocations for a section.
6363
6364 template<int size, bool big_endian>
6365 void
6366 Target_powerpc<size, big_endian>::scan_relocs(
6367 Symbol_table* symtab,
6368 Layout* layout,
6369 Sized_relobj_file<size, big_endian>* object,
6370 unsigned int data_shndx,
6371 unsigned int sh_type,
6372 const unsigned char* prelocs,
6373 size_t reloc_count,
6374 Output_section* output_section,
6375 bool needs_special_offset_handling,
6376 size_t local_symbol_count,
6377 const unsigned char* plocal_symbols)
6378 {
6379 typedef Target_powerpc<size, big_endian> Powerpc;
6380 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6381
6382 if (sh_type == elfcpp::SHT_REL)
6383 {
6384 gold_error(_("%s: unsupported REL reloc section"),
6385 object->name().c_str());
6386 return;
6387 }
6388
6389 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6390 symtab,
6391 layout,
6392 this,
6393 object,
6394 data_shndx,
6395 prelocs,
6396 reloc_count,
6397 output_section,
6398 needs_special_offset_handling,
6399 local_symbol_count,
6400 plocal_symbols);
6401 }
6402
6403 // Functor class for processing the global symbol table.
6404 // Removes symbols defined on discarded opd entries.
6405
6406 template<bool big_endian>
6407 class Global_symbol_visitor_opd
6408 {
6409 public:
6410 Global_symbol_visitor_opd()
6411 { }
6412
6413 void
6414 operator()(Sized_symbol<64>* sym)
6415 {
6416 if (sym->has_symtab_index()
6417 || sym->source() != Symbol::FROM_OBJECT
6418 || !sym->in_real_elf())
6419 return;
6420
6421 if (sym->object()->is_dynamic())
6422 return;
6423
6424 Powerpc_relobj<64, big_endian>* symobj
6425 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6426 if (symobj->opd_shndx() == 0)
6427 return;
6428
6429 bool is_ordinary;
6430 unsigned int shndx = sym->shndx(&is_ordinary);
6431 if (shndx == symobj->opd_shndx()
6432 && symobj->get_opd_discard(sym->value()))
6433 sym->set_symtab_index(-1U);
6434 }
6435 };
6436
6437 template<int size, bool big_endian>
6438 void
6439 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6440 Layout* layout,
6441 Symbol_table* symtab)
6442 {
6443 if (size == 64)
6444 {
6445 Output_data_save_res<64, big_endian>* savres
6446 = new Output_data_save_res<64, big_endian>(symtab);
6447 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6448 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6449 savres, ORDER_TEXT, false);
6450 }
6451 }
6452
6453 // Sort linker created .got section first (for the header), then input
6454 // sections belonging to files using small model code.
6455
6456 template<bool big_endian>
6457 class Sort_toc_sections
6458 {
6459 public:
6460 bool
6461 operator()(const Output_section::Input_section& is1,
6462 const Output_section::Input_section& is2) const
6463 {
6464 if (!is1.is_input_section() && is2.is_input_section())
6465 return true;
6466 bool small1
6467 = (is1.is_input_section()
6468 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6469 ->has_small_toc_reloc()));
6470 bool small2
6471 = (is2.is_input_section()
6472 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6473 ->has_small_toc_reloc()));
6474 return small1 && !small2;
6475 }
6476 };
6477
6478 // Finalize the sections.
6479
6480 template<int size, bool big_endian>
6481 void
6482 Target_powerpc<size, big_endian>::do_finalize_sections(
6483 Layout* layout,
6484 const Input_objects*,
6485 Symbol_table* symtab)
6486 {
6487 if (parameters->doing_static_link())
6488 {
6489 // At least some versions of glibc elf-init.o have a strong
6490 // reference to __rela_iplt marker syms. A weak ref would be
6491 // better..
6492 if (this->iplt_ != NULL)
6493 {
6494 Reloc_section* rel = this->iplt_->rel_plt();
6495 symtab->define_in_output_data("__rela_iplt_start", NULL,
6496 Symbol_table::PREDEFINED, rel, 0, 0,
6497 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6498 elfcpp::STV_HIDDEN, 0, false, true);
6499 symtab->define_in_output_data("__rela_iplt_end", NULL,
6500 Symbol_table::PREDEFINED, rel, 0, 0,
6501 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6502 elfcpp::STV_HIDDEN, 0, true, true);
6503 }
6504 else
6505 {
6506 symtab->define_as_constant("__rela_iplt_start", NULL,
6507 Symbol_table::PREDEFINED, 0, 0,
6508 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6509 elfcpp::STV_HIDDEN, 0, true, false);
6510 symtab->define_as_constant("__rela_iplt_end", NULL,
6511 Symbol_table::PREDEFINED, 0, 0,
6512 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6513 elfcpp::STV_HIDDEN, 0, true, false);
6514 }
6515 }
6516
6517 if (size == 64)
6518 {
6519 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6520 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6521
6522 if (!parameters->options().relocatable())
6523 {
6524 this->define_save_restore_funcs(layout, symtab);
6525
6526 // Annoyingly, we need to make these sections now whether or
6527 // not we need them. If we delay until do_relax then we
6528 // need to mess with the relaxation machinery checkpointing.
6529 this->got_section(symtab, layout);
6530 this->make_brlt_section(layout);
6531
6532 if (parameters->options().toc_sort())
6533 {
6534 Output_section* os = this->got_->output_section();
6535 if (os != NULL && os->input_sections().size() > 1)
6536 std::stable_sort(os->input_sections().begin(),
6537 os->input_sections().end(),
6538 Sort_toc_sections<big_endian>());
6539 }
6540 }
6541 }
6542
6543 // Fill in some more dynamic tags.
6544 Output_data_dynamic* odyn = layout->dynamic_data();
6545 if (odyn != NULL)
6546 {
6547 const Reloc_section* rel_plt = (this->plt_ == NULL
6548 ? NULL
6549 : this->plt_->rel_plt());
6550 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6551 this->rela_dyn_, true, size == 32);
6552
6553 if (size == 32)
6554 {
6555 if (this->got_ != NULL)
6556 {
6557 this->got_->finalize_data_size();
6558 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6559 this->got_, this->got_->g_o_t());
6560 }
6561 }
6562 else
6563 {
6564 if (this->glink_ != NULL)
6565 {
6566 this->glink_->finalize_data_size();
6567 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6568 this->glink_,
6569 (this->glink_->pltresolve_size
6570 - 32));
6571 }
6572 }
6573 }
6574
6575 // Emit any relocs we saved in an attempt to avoid generating COPY
6576 // relocs.
6577 if (this->copy_relocs_.any_saved_relocs())
6578 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6579 }
6580
6581 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6582 // reloc.
6583
6584 static bool
6585 ok_lo_toc_insn(uint32_t insn)
6586 {
6587 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6588 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6589 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6590 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6591 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6592 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6593 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6594 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6595 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6596 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6597 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6598 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6599 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6600 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6601 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6602 && (insn & 3) != 1)
6603 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6604 && ((insn & 3) == 0 || (insn & 3) == 3))
6605 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6606 }
6607
6608 // Return the value to use for a branch relocation.
6609
6610 template<int size, bool big_endian>
6611 typename Target_powerpc<size, big_endian>::Address
6612 Target_powerpc<size, big_endian>::symval_for_branch(
6613 const Symbol_table* symtab,
6614 Address value,
6615 const Sized_symbol<size>* gsym,
6616 Powerpc_relobj<size, big_endian>* object,
6617 unsigned int *dest_shndx)
6618 {
6619 if (size == 32 || this->abiversion() >= 2)
6620 gold_unreachable();
6621 *dest_shndx = 0;
6622
6623 // If the symbol is defined in an opd section, ie. is a function
6624 // descriptor, use the function descriptor code entry address
6625 Powerpc_relobj<size, big_endian>* symobj = object;
6626 if (gsym != NULL
6627 && gsym->source() != Symbol::FROM_OBJECT)
6628 return value;
6629 if (gsym != NULL)
6630 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6631 unsigned int shndx = symobj->opd_shndx();
6632 if (shndx == 0)
6633 return value;
6634 Address opd_addr = symobj->get_output_section_offset(shndx);
6635 if (opd_addr == invalid_address)
6636 return value;
6637 opd_addr += symobj->output_section_address(shndx);
6638 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6639 {
6640 Address sec_off;
6641 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6642 if (symtab->is_section_folded(symobj, *dest_shndx))
6643 {
6644 Section_id folded
6645 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6646 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6647 *dest_shndx = folded.second;
6648 }
6649 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6650 gold_assert(sec_addr != invalid_address);
6651 sec_addr += symobj->output_section(*dest_shndx)->address();
6652 value = sec_addr + sec_off;
6653 }
6654 return value;
6655 }
6656
6657 // Perform a relocation.
6658
6659 template<int size, bool big_endian>
6660 inline bool
6661 Target_powerpc<size, big_endian>::Relocate::relocate(
6662 const Relocate_info<size, big_endian>* relinfo,
6663 Target_powerpc* target,
6664 Output_section* os,
6665 size_t relnum,
6666 const elfcpp::Rela<size, big_endian>& rela,
6667 unsigned int r_type,
6668 const Sized_symbol<size>* gsym,
6669 const Symbol_value<size>* psymval,
6670 unsigned char* view,
6671 Address address,
6672 section_size_type view_size)
6673 {
6674 if (view == NULL)
6675 return true;
6676
6677 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6678 {
6679 case Track_tls::NOT_EXPECTED:
6680 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6681 _("__tls_get_addr call lacks marker reloc"));
6682 break;
6683 case Track_tls::EXPECTED:
6684 // We have already complained.
6685 break;
6686 case Track_tls::SKIP:
6687 return true;
6688 case Track_tls::NORMAL:
6689 break;
6690 }
6691
6692 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6693 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6694 Powerpc_relobj<size, big_endian>* const object
6695 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6696 Address value = 0;
6697 bool has_plt_value = false;
6698 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6699 if ((gsym != NULL
6700 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6701 : object->local_has_plt_offset(r_sym))
6702 && (!psymval->is_ifunc_symbol()
6703 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6704 {
6705 if (size == 64
6706 && gsym != NULL
6707 && target->abiversion() >= 2
6708 && !parameters->options().output_is_position_independent()
6709 && !is_branch_reloc(r_type))
6710 {
6711 unsigned int off = target->glink_section()->find_global_entry(gsym);
6712 gold_assert(off != (unsigned int)-1);
6713 value = target->glink_section()->global_entry_address() + off;
6714 }
6715 else
6716 {
6717 Stub_table<size, big_endian>* stub_table
6718 = object->stub_table(relinfo->data_shndx);
6719 if (stub_table == NULL)
6720 {
6721 // This is a ref from a data section to an ifunc symbol.
6722 if (target->stub_tables().size() != 0)
6723 stub_table = target->stub_tables()[0];
6724 }
6725 gold_assert(stub_table != NULL);
6726 Address off;
6727 if (gsym != NULL)
6728 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6729 rela.get_r_addend());
6730 else
6731 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6732 rela.get_r_addend());
6733 gold_assert(off != invalid_address);
6734 value = stub_table->stub_address() + off;
6735 }
6736 has_plt_value = true;
6737 }
6738
6739 if (r_type == elfcpp::R_POWERPC_GOT16
6740 || r_type == elfcpp::R_POWERPC_GOT16_LO
6741 || r_type == elfcpp::R_POWERPC_GOT16_HI
6742 || r_type == elfcpp::R_POWERPC_GOT16_HA
6743 || r_type == elfcpp::R_PPC64_GOT16_DS
6744 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6745 {
6746 if (gsym != NULL)
6747 {
6748 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6749 value = gsym->got_offset(GOT_TYPE_STANDARD);
6750 }
6751 else
6752 {
6753 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6754 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6755 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6756 }
6757 value -= target->got_section()->got_base_offset(object);
6758 }
6759 else if (r_type == elfcpp::R_PPC64_TOC)
6760 {
6761 value = (target->got_section()->output_section()->address()
6762 + object->toc_base_offset());
6763 }
6764 else if (gsym != NULL
6765 && (r_type == elfcpp::R_POWERPC_REL24
6766 || r_type == elfcpp::R_PPC_PLTREL24)
6767 && has_plt_value)
6768 {
6769 if (size == 64)
6770 {
6771 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6772 Valtype* wv = reinterpret_cast<Valtype*>(view);
6773 bool can_plt_call = false;
6774 if (rela.get_r_offset() + 8 <= view_size)
6775 {
6776 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6777 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6778 if ((insn & 1) != 0
6779 && (insn2 == nop
6780 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6781 {
6782 elfcpp::Swap<32, big_endian>::
6783 writeval(wv + 1, ld_2_1 + target->stk_toc());
6784 can_plt_call = true;
6785 }
6786 }
6787 if (!can_plt_call)
6788 {
6789 // If we don't have a branch and link followed by a nop,
6790 // we can't go via the plt because there is no place to
6791 // put a toc restoring instruction.
6792 // Unless we know we won't be returning.
6793 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6794 can_plt_call = true;
6795 }
6796 if (!can_plt_call)
6797 {
6798 // g++ as of 20130507 emits self-calls without a
6799 // following nop. This is arguably wrong since we have
6800 // conflicting information. On the one hand a global
6801 // symbol and on the other a local call sequence, but
6802 // don't error for this special case.
6803 // It isn't possible to cheaply verify we have exactly
6804 // such a call. Allow all calls to the same section.
6805 bool ok = false;
6806 Address code = value;
6807 if (gsym->source() == Symbol::FROM_OBJECT
6808 && gsym->object() == object)
6809 {
6810 unsigned int dest_shndx = 0;
6811 if (target->abiversion() < 2)
6812 {
6813 Address addend = rela.get_r_addend();
6814 Address opdent = psymval->value(object, addend);
6815 code = target->symval_for_branch(relinfo->symtab,
6816 opdent, gsym, object,
6817 &dest_shndx);
6818 }
6819 bool is_ordinary;
6820 if (dest_shndx == 0)
6821 dest_shndx = gsym->shndx(&is_ordinary);
6822 ok = dest_shndx == relinfo->data_shndx;
6823 }
6824 if (!ok)
6825 {
6826 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6827 _("call lacks nop, can't restore toc; "
6828 "recompile with -fPIC"));
6829 value = code;
6830 }
6831 }
6832 }
6833 }
6834 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6835 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6836 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6837 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6838 {
6839 // First instruction of a global dynamic sequence, arg setup insn.
6840 const bool final = gsym == NULL || gsym->final_value_is_known();
6841 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6842 enum Got_type got_type = GOT_TYPE_STANDARD;
6843 if (tls_type == tls::TLSOPT_NONE)
6844 got_type = GOT_TYPE_TLSGD;
6845 else if (tls_type == tls::TLSOPT_TO_IE)
6846 got_type = GOT_TYPE_TPREL;
6847 if (got_type != GOT_TYPE_STANDARD)
6848 {
6849 if (gsym != NULL)
6850 {
6851 gold_assert(gsym->has_got_offset(got_type));
6852 value = gsym->got_offset(got_type);
6853 }
6854 else
6855 {
6856 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6857 gold_assert(object->local_has_got_offset(r_sym, got_type));
6858 value = object->local_got_offset(r_sym, got_type);
6859 }
6860 value -= target->got_section()->got_base_offset(object);
6861 }
6862 if (tls_type == tls::TLSOPT_TO_IE)
6863 {
6864 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6865 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6866 {
6867 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6868 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6869 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6870 if (size == 32)
6871 insn |= 32 << 26; // lwz
6872 else
6873 insn |= 58 << 26; // ld
6874 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6875 }
6876 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6877 - elfcpp::R_POWERPC_GOT_TLSGD16);
6878 }
6879 else if (tls_type == tls::TLSOPT_TO_LE)
6880 {
6881 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6882 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6883 {
6884 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6885 Insn insn = addis_3_13;
6886 if (size == 32)
6887 insn = addis_3_2;
6888 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6889 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6890 value = psymval->value(object, rela.get_r_addend());
6891 }
6892 else
6893 {
6894 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6895 Insn insn = nop;
6896 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6897 r_type = elfcpp::R_POWERPC_NONE;
6898 }
6899 }
6900 }
6901 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6902 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6903 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6904 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6905 {
6906 // First instruction of a local dynamic sequence, arg setup insn.
6907 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6908 if (tls_type == tls::TLSOPT_NONE)
6909 {
6910 value = target->tlsld_got_offset();
6911 value -= target->got_section()->got_base_offset(object);
6912 }
6913 else
6914 {
6915 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6916 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6917 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6918 {
6919 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6920 Insn insn = addis_3_13;
6921 if (size == 32)
6922 insn = addis_3_2;
6923 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6924 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6925 value = dtp_offset;
6926 }
6927 else
6928 {
6929 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6930 Insn insn = nop;
6931 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6932 r_type = elfcpp::R_POWERPC_NONE;
6933 }
6934 }
6935 }
6936 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6937 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6938 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6939 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6940 {
6941 // Accesses relative to a local dynamic sequence address,
6942 // no optimisation here.
6943 if (gsym != NULL)
6944 {
6945 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6946 value = gsym->got_offset(GOT_TYPE_DTPREL);
6947 }
6948 else
6949 {
6950 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6951 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6952 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6953 }
6954 value -= target->got_section()->got_base_offset(object);
6955 }
6956 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6957 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6958 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6959 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6960 {
6961 // First instruction of initial exec sequence.
6962 const bool final = gsym == NULL || gsym->final_value_is_known();
6963 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6964 if (tls_type == tls::TLSOPT_NONE)
6965 {
6966 if (gsym != NULL)
6967 {
6968 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6969 value = gsym->got_offset(GOT_TYPE_TPREL);
6970 }
6971 else
6972 {
6973 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6974 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6975 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6976 }
6977 value -= target->got_section()->got_base_offset(object);
6978 }
6979 else
6980 {
6981 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6982 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6983 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6984 {
6985 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6986 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6987 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6988 if (size == 32)
6989 insn |= addis_0_2;
6990 else
6991 insn |= addis_0_13;
6992 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6993 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6994 value = psymval->value(object, rela.get_r_addend());
6995 }
6996 else
6997 {
6998 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6999 Insn insn = nop;
7000 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001 r_type = elfcpp::R_POWERPC_NONE;
7002 }
7003 }
7004 }
7005 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7006 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7007 {
7008 // Second instruction of a global dynamic sequence,
7009 // the __tls_get_addr call
7010 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7011 const bool final = gsym == NULL || gsym->final_value_is_known();
7012 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7013 if (tls_type != tls::TLSOPT_NONE)
7014 {
7015 if (tls_type == tls::TLSOPT_TO_IE)
7016 {
7017 Insn* iview = reinterpret_cast<Insn*>(view);
7018 Insn insn = add_3_3_13;
7019 if (size == 32)
7020 insn = add_3_3_2;
7021 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7022 r_type = elfcpp::R_POWERPC_NONE;
7023 }
7024 else
7025 {
7026 Insn* iview = reinterpret_cast<Insn*>(view);
7027 Insn insn = addi_3_3;
7028 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7029 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7030 view += 2 * big_endian;
7031 value = psymval->value(object, rela.get_r_addend());
7032 }
7033 this->skip_next_tls_get_addr_call();
7034 }
7035 }
7036 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7037 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7038 {
7039 // Second instruction of a local dynamic sequence,
7040 // the __tls_get_addr call
7041 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7042 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7043 if (tls_type == tls::TLSOPT_TO_LE)
7044 {
7045 Insn* iview = reinterpret_cast<Insn*>(view);
7046 Insn insn = addi_3_3;
7047 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7048 this->skip_next_tls_get_addr_call();
7049 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7050 view += 2 * big_endian;
7051 value = dtp_offset;
7052 }
7053 }
7054 else if (r_type == elfcpp::R_POWERPC_TLS)
7055 {
7056 // Second instruction of an initial exec sequence
7057 const bool final = gsym == NULL || gsym->final_value_is_known();
7058 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7059 if (tls_type == tls::TLSOPT_TO_LE)
7060 {
7061 Insn* iview = reinterpret_cast<Insn*>(view);
7062 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7063 unsigned int reg = size == 32 ? 2 : 13;
7064 insn = at_tls_transform(insn, reg);
7065 gold_assert(insn != 0);
7066 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7067 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7068 view += 2 * big_endian;
7069 value = psymval->value(object, rela.get_r_addend());
7070 }
7071 }
7072 else if (!has_plt_value)
7073 {
7074 Address addend = 0;
7075 unsigned int dest_shndx;
7076 if (r_type != elfcpp::R_PPC_PLTREL24)
7077 addend = rela.get_r_addend();
7078 value = psymval->value(object, addend);
7079 if (size == 64 && is_branch_reloc(r_type))
7080 {
7081 if (target->abiversion() >= 2)
7082 {
7083 if (gsym != NULL)
7084 value += object->ppc64_local_entry_offset(gsym);
7085 else
7086 value += object->ppc64_local_entry_offset(r_sym);
7087 }
7088 else
7089 value = target->symval_for_branch(relinfo->symtab, value,
7090 gsym, object, &dest_shndx);
7091 }
7092 unsigned int max_branch_offset = 0;
7093 if (r_type == elfcpp::R_POWERPC_REL24
7094 || r_type == elfcpp::R_PPC_PLTREL24
7095 || r_type == elfcpp::R_PPC_LOCAL24PC)
7096 max_branch_offset = 1 << 25;
7097 else if (r_type == elfcpp::R_POWERPC_REL14
7098 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7099 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7100 max_branch_offset = 1 << 15;
7101 if (max_branch_offset != 0
7102 && value - address + max_branch_offset >= 2 * max_branch_offset)
7103 {
7104 Stub_table<size, big_endian>* stub_table
7105 = object->stub_table(relinfo->data_shndx);
7106 if (stub_table != NULL)
7107 {
7108 Address off = stub_table->find_long_branch_entry(object, value);
7109 if (off != invalid_address)
7110 value = (stub_table->stub_address() + stub_table->plt_size()
7111 + off);
7112 }
7113 }
7114 }
7115
7116 switch (r_type)
7117 {
7118 case elfcpp::R_PPC64_REL64:
7119 case elfcpp::R_POWERPC_REL32:
7120 case elfcpp::R_POWERPC_REL24:
7121 case elfcpp::R_PPC_PLTREL24:
7122 case elfcpp::R_PPC_LOCAL24PC:
7123 case elfcpp::R_POWERPC_REL16:
7124 case elfcpp::R_POWERPC_REL16_LO:
7125 case elfcpp::R_POWERPC_REL16_HI:
7126 case elfcpp::R_POWERPC_REL16_HA:
7127 case elfcpp::R_POWERPC_REL14:
7128 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7129 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7130 value -= address;
7131 break;
7132
7133 case elfcpp::R_PPC64_TOC16:
7134 case elfcpp::R_PPC64_TOC16_LO:
7135 case elfcpp::R_PPC64_TOC16_HI:
7136 case elfcpp::R_PPC64_TOC16_HA:
7137 case elfcpp::R_PPC64_TOC16_DS:
7138 case elfcpp::R_PPC64_TOC16_LO_DS:
7139 // Subtract the TOC base address.
7140 value -= (target->got_section()->output_section()->address()
7141 + object->toc_base_offset());
7142 break;
7143
7144 case elfcpp::R_POWERPC_SECTOFF:
7145 case elfcpp::R_POWERPC_SECTOFF_LO:
7146 case elfcpp::R_POWERPC_SECTOFF_HI:
7147 case elfcpp::R_POWERPC_SECTOFF_HA:
7148 case elfcpp::R_PPC64_SECTOFF_DS:
7149 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7150 if (os != NULL)
7151 value -= os->address();
7152 break;
7153
7154 case elfcpp::R_PPC64_TPREL16_DS:
7155 case elfcpp::R_PPC64_TPREL16_LO_DS:
7156 case elfcpp::R_PPC64_TPREL16_HIGH:
7157 case elfcpp::R_PPC64_TPREL16_HIGHA:
7158 if (size != 64)
7159 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7160 break;
7161 case elfcpp::R_POWERPC_TPREL16:
7162 case elfcpp::R_POWERPC_TPREL16_LO:
7163 case elfcpp::R_POWERPC_TPREL16_HI:
7164 case elfcpp::R_POWERPC_TPREL16_HA:
7165 case elfcpp::R_POWERPC_TPREL:
7166 case elfcpp::R_PPC64_TPREL16_HIGHER:
7167 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7168 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7169 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7170 // tls symbol values are relative to tls_segment()->vaddr()
7171 value -= tp_offset;
7172 break;
7173
7174 case elfcpp::R_PPC64_DTPREL16_DS:
7175 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7176 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7177 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7178 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7179 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7180 if (size != 64)
7181 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7182 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7183 break;
7184 case elfcpp::R_POWERPC_DTPREL16:
7185 case elfcpp::R_POWERPC_DTPREL16_LO:
7186 case elfcpp::R_POWERPC_DTPREL16_HI:
7187 case elfcpp::R_POWERPC_DTPREL16_HA:
7188 case elfcpp::R_POWERPC_DTPREL:
7189 case elfcpp::R_PPC64_DTPREL16_HIGH:
7190 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7191 // tls symbol values are relative to tls_segment()->vaddr()
7192 value -= dtp_offset;
7193 break;
7194
7195 case elfcpp::R_PPC64_ADDR64_LOCAL:
7196 if (gsym != NULL)
7197 value += object->ppc64_local_entry_offset(gsym);
7198 else
7199 value += object->ppc64_local_entry_offset(r_sym);
7200 break;
7201
7202 default:
7203 break;
7204 }
7205
7206 Insn branch_bit = 0;
7207 switch (r_type)
7208 {
7209 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7210 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7211 branch_bit = 1 << 21;
7212 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7213 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7214 {
7215 Insn* iview = reinterpret_cast<Insn*>(view);
7216 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7217 insn &= ~(1 << 21);
7218 insn |= branch_bit;
7219 if (this->is_isa_v2)
7220 {
7221 // Set 'a' bit. This is 0b00010 in BO field for branch
7222 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7223 // for branch on CTR insns (BO == 1a00t or 1a01t).
7224 if ((insn & (0x14 << 21)) == (0x04 << 21))
7225 insn |= 0x02 << 21;
7226 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7227 insn |= 0x08 << 21;
7228 else
7229 break;
7230 }
7231 else
7232 {
7233 // Invert 'y' bit if not the default.
7234 if (static_cast<Signed_address>(value) < 0)
7235 insn ^= 1 << 21;
7236 }
7237 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7238 }
7239 break;
7240
7241 default:
7242 break;
7243 }
7244
7245 if (size == 64)
7246 {
7247 // Multi-instruction sequences that access the TOC can be
7248 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7249 // to nop; addi rb,r2,x;
7250 switch (r_type)
7251 {
7252 default:
7253 break;
7254
7255 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7256 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7257 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7258 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7259 case elfcpp::R_POWERPC_GOT16_HA:
7260 case elfcpp::R_PPC64_TOC16_HA:
7261 if (parameters->options().toc_optimize())
7262 {
7263 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7264 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7265 if ((insn & ((0x3f << 26) | 0x1f << 16))
7266 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7267 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7268 _("toc optimization is not supported "
7269 "for %#08x instruction"), insn);
7270 else if (value + 0x8000 < 0x10000)
7271 {
7272 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7273 return true;
7274 }
7275 }
7276 break;
7277
7278 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7279 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7280 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7281 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7282 case elfcpp::R_POWERPC_GOT16_LO:
7283 case elfcpp::R_PPC64_GOT16_LO_DS:
7284 case elfcpp::R_PPC64_TOC16_LO:
7285 case elfcpp::R_PPC64_TOC16_LO_DS:
7286 if (parameters->options().toc_optimize())
7287 {
7288 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7289 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7290 if (!ok_lo_toc_insn(insn))
7291 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7292 _("toc optimization is not supported "
7293 "for %#08x instruction"), insn);
7294 else if (value + 0x8000 < 0x10000)
7295 {
7296 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7297 {
7298 // Transform addic to addi when we change reg.
7299 insn &= ~((0x3f << 26) | (0x1f << 16));
7300 insn |= (14u << 26) | (2 << 16);
7301 }
7302 else
7303 {
7304 insn &= ~(0x1f << 16);
7305 insn |= 2 << 16;
7306 }
7307 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7308 }
7309 }
7310 break;
7311 }
7312 }
7313
7314 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7315 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7316 switch (r_type)
7317 {
7318 case elfcpp::R_POWERPC_ADDR32:
7319 case elfcpp::R_POWERPC_UADDR32:
7320 if (size == 64)
7321 overflow = Reloc::CHECK_BITFIELD;
7322 break;
7323
7324 case elfcpp::R_POWERPC_REL32:
7325 if (size == 64)
7326 overflow = Reloc::CHECK_SIGNED;
7327 break;
7328
7329 case elfcpp::R_POWERPC_UADDR16:
7330 overflow = Reloc::CHECK_BITFIELD;
7331 break;
7332
7333 case elfcpp::R_POWERPC_ADDR16:
7334 // We really should have three separate relocations,
7335 // one for 16-bit data, one for insns with 16-bit signed fields,
7336 // and one for insns with 16-bit unsigned fields.
7337 overflow = Reloc::CHECK_BITFIELD;
7338 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7339 overflow = Reloc::CHECK_LOW_INSN;
7340 break;
7341
7342 case elfcpp::R_POWERPC_ADDR16_HI:
7343 case elfcpp::R_POWERPC_ADDR16_HA:
7344 case elfcpp::R_POWERPC_GOT16_HI:
7345 case elfcpp::R_POWERPC_GOT16_HA:
7346 case elfcpp::R_POWERPC_PLT16_HI:
7347 case elfcpp::R_POWERPC_PLT16_HA:
7348 case elfcpp::R_POWERPC_SECTOFF_HI:
7349 case elfcpp::R_POWERPC_SECTOFF_HA:
7350 case elfcpp::R_PPC64_TOC16_HI:
7351 case elfcpp::R_PPC64_TOC16_HA:
7352 case elfcpp::R_PPC64_PLTGOT16_HI:
7353 case elfcpp::R_PPC64_PLTGOT16_HA:
7354 case elfcpp::R_POWERPC_TPREL16_HI:
7355 case elfcpp::R_POWERPC_TPREL16_HA:
7356 case elfcpp::R_POWERPC_DTPREL16_HI:
7357 case elfcpp::R_POWERPC_DTPREL16_HA:
7358 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7359 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7360 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7361 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7362 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7363 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7364 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7365 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7366 case elfcpp::R_POWERPC_REL16_HI:
7367 case elfcpp::R_POWERPC_REL16_HA:
7368 if (size != 32)
7369 overflow = Reloc::CHECK_HIGH_INSN;
7370 break;
7371
7372 case elfcpp::R_POWERPC_REL16:
7373 case elfcpp::R_PPC64_TOC16:
7374 case elfcpp::R_POWERPC_GOT16:
7375 case elfcpp::R_POWERPC_SECTOFF:
7376 case elfcpp::R_POWERPC_TPREL16:
7377 case elfcpp::R_POWERPC_DTPREL16:
7378 case elfcpp::R_POWERPC_GOT_TLSGD16:
7379 case elfcpp::R_POWERPC_GOT_TLSLD16:
7380 case elfcpp::R_POWERPC_GOT_TPREL16:
7381 case elfcpp::R_POWERPC_GOT_DTPREL16:
7382 overflow = Reloc::CHECK_LOW_INSN;
7383 break;
7384
7385 case elfcpp::R_POWERPC_ADDR24:
7386 case elfcpp::R_POWERPC_ADDR14:
7387 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7388 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7389 case elfcpp::R_PPC64_ADDR16_DS:
7390 case elfcpp::R_POWERPC_REL24:
7391 case elfcpp::R_PPC_PLTREL24:
7392 case elfcpp::R_PPC_LOCAL24PC:
7393 case elfcpp::R_PPC64_TPREL16_DS:
7394 case elfcpp::R_PPC64_DTPREL16_DS:
7395 case elfcpp::R_PPC64_TOC16_DS:
7396 case elfcpp::R_PPC64_GOT16_DS:
7397 case elfcpp::R_PPC64_SECTOFF_DS:
7398 case elfcpp::R_POWERPC_REL14:
7399 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7400 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7401 overflow = Reloc::CHECK_SIGNED;
7402 break;
7403 }
7404
7405 if (overflow == Reloc::CHECK_LOW_INSN
7406 || overflow == Reloc::CHECK_HIGH_INSN)
7407 {
7408 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7409 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7410
7411 overflow = Reloc::CHECK_SIGNED;
7412 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7413 overflow = Reloc::CHECK_BITFIELD;
7414 else if (overflow == Reloc::CHECK_LOW_INSN
7415 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7416 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7417 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7418 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7419 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7420 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7421 overflow = Reloc::CHECK_UNSIGNED;
7422 }
7423
7424 typename Powerpc_relocate_functions<size, big_endian>::Status status
7425 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7426 switch (r_type)
7427 {
7428 case elfcpp::R_POWERPC_NONE:
7429 case elfcpp::R_POWERPC_TLS:
7430 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7431 case elfcpp::R_POWERPC_GNU_VTENTRY:
7432 break;
7433
7434 case elfcpp::R_PPC64_ADDR64:
7435 case elfcpp::R_PPC64_REL64:
7436 case elfcpp::R_PPC64_TOC:
7437 case elfcpp::R_PPC64_ADDR64_LOCAL:
7438 Reloc::addr64(view, value);
7439 break;
7440
7441 case elfcpp::R_POWERPC_TPREL:
7442 case elfcpp::R_POWERPC_DTPREL:
7443 if (size == 64)
7444 Reloc::addr64(view, value);
7445 else
7446 status = Reloc::addr32(view, value, overflow);
7447 break;
7448
7449 case elfcpp::R_PPC64_UADDR64:
7450 Reloc::addr64_u(view, value);
7451 break;
7452
7453 case elfcpp::R_POWERPC_ADDR32:
7454 status = Reloc::addr32(view, value, overflow);
7455 break;
7456
7457 case elfcpp::R_POWERPC_REL32:
7458 case elfcpp::R_POWERPC_UADDR32:
7459 status = Reloc::addr32_u(view, value, overflow);
7460 break;
7461
7462 case elfcpp::R_POWERPC_ADDR24:
7463 case elfcpp::R_POWERPC_REL24:
7464 case elfcpp::R_PPC_PLTREL24:
7465 case elfcpp::R_PPC_LOCAL24PC:
7466 status = Reloc::addr24(view, value, overflow);
7467 break;
7468
7469 case elfcpp::R_POWERPC_GOT_DTPREL16:
7470 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7471 if (size == 64)
7472 {
7473 status = Reloc::addr16_ds(view, value, overflow);
7474 break;
7475 }
7476 case elfcpp::R_POWERPC_ADDR16:
7477 case elfcpp::R_POWERPC_REL16:
7478 case elfcpp::R_PPC64_TOC16:
7479 case elfcpp::R_POWERPC_GOT16:
7480 case elfcpp::R_POWERPC_SECTOFF:
7481 case elfcpp::R_POWERPC_TPREL16:
7482 case elfcpp::R_POWERPC_DTPREL16:
7483 case elfcpp::R_POWERPC_GOT_TLSGD16:
7484 case elfcpp::R_POWERPC_GOT_TLSLD16:
7485 case elfcpp::R_POWERPC_GOT_TPREL16:
7486 case elfcpp::R_POWERPC_ADDR16_LO:
7487 case elfcpp::R_POWERPC_REL16_LO:
7488 case elfcpp::R_PPC64_TOC16_LO:
7489 case elfcpp::R_POWERPC_GOT16_LO:
7490 case elfcpp::R_POWERPC_SECTOFF_LO:
7491 case elfcpp::R_POWERPC_TPREL16_LO:
7492 case elfcpp::R_POWERPC_DTPREL16_LO:
7493 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7494 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7495 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7496 status = Reloc::addr16(view, value, overflow);
7497 break;
7498
7499 case elfcpp::R_POWERPC_UADDR16:
7500 status = Reloc::addr16_u(view, value, overflow);
7501 break;
7502
7503 case elfcpp::R_PPC64_ADDR16_HIGH:
7504 case elfcpp::R_PPC64_TPREL16_HIGH:
7505 case elfcpp::R_PPC64_DTPREL16_HIGH:
7506 if (size == 32)
7507 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7508 goto unsupp;
7509 case elfcpp::R_POWERPC_ADDR16_HI:
7510 case elfcpp::R_POWERPC_REL16_HI:
7511 case elfcpp::R_PPC64_TOC16_HI:
7512 case elfcpp::R_POWERPC_GOT16_HI:
7513 case elfcpp::R_POWERPC_SECTOFF_HI:
7514 case elfcpp::R_POWERPC_TPREL16_HI:
7515 case elfcpp::R_POWERPC_DTPREL16_HI:
7516 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7517 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7518 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7519 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7520 Reloc::addr16_hi(view, value);
7521 break;
7522
7523 case elfcpp::R_PPC64_ADDR16_HIGHA:
7524 case elfcpp::R_PPC64_TPREL16_HIGHA:
7525 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7526 if (size == 32)
7527 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7528 goto unsupp;
7529 case elfcpp::R_POWERPC_ADDR16_HA:
7530 case elfcpp::R_POWERPC_REL16_HA:
7531 case elfcpp::R_PPC64_TOC16_HA:
7532 case elfcpp::R_POWERPC_GOT16_HA:
7533 case elfcpp::R_POWERPC_SECTOFF_HA:
7534 case elfcpp::R_POWERPC_TPREL16_HA:
7535 case elfcpp::R_POWERPC_DTPREL16_HA:
7536 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7537 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7538 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7539 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7540 Reloc::addr16_ha(view, value);
7541 break;
7542
7543 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7544 if (size == 32)
7545 // R_PPC_EMB_NADDR16_LO
7546 goto unsupp;
7547 case elfcpp::R_PPC64_ADDR16_HIGHER:
7548 case elfcpp::R_PPC64_TPREL16_HIGHER:
7549 Reloc::addr16_hi2(view, value);
7550 break;
7551
7552 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7553 if (size == 32)
7554 // R_PPC_EMB_NADDR16_HI
7555 goto unsupp;
7556 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7557 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7558 Reloc::addr16_ha2(view, value);
7559 break;
7560
7561 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7562 if (size == 32)
7563 // R_PPC_EMB_NADDR16_HA
7564 goto unsupp;
7565 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7566 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7567 Reloc::addr16_hi3(view, value);
7568 break;
7569
7570 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7571 if (size == 32)
7572 // R_PPC_EMB_SDAI16
7573 goto unsupp;
7574 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7575 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7576 Reloc::addr16_ha3(view, value);
7577 break;
7578
7579 case elfcpp::R_PPC64_DTPREL16_DS:
7580 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7581 if (size == 32)
7582 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7583 goto unsupp;
7584 case elfcpp::R_PPC64_TPREL16_DS:
7585 case elfcpp::R_PPC64_TPREL16_LO_DS:
7586 if (size == 32)
7587 // R_PPC_TLSGD, R_PPC_TLSLD
7588 break;
7589 case elfcpp::R_PPC64_ADDR16_DS:
7590 case elfcpp::R_PPC64_ADDR16_LO_DS:
7591 case elfcpp::R_PPC64_TOC16_DS:
7592 case elfcpp::R_PPC64_TOC16_LO_DS:
7593 case elfcpp::R_PPC64_GOT16_DS:
7594 case elfcpp::R_PPC64_GOT16_LO_DS:
7595 case elfcpp::R_PPC64_SECTOFF_DS:
7596 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7597 status = Reloc::addr16_ds(view, value, overflow);
7598 break;
7599
7600 case elfcpp::R_POWERPC_ADDR14:
7601 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7602 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7603 case elfcpp::R_POWERPC_REL14:
7604 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7605 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7606 status = Reloc::addr14(view, value, overflow);
7607 break;
7608
7609 case elfcpp::R_POWERPC_COPY:
7610 case elfcpp::R_POWERPC_GLOB_DAT:
7611 case elfcpp::R_POWERPC_JMP_SLOT:
7612 case elfcpp::R_POWERPC_RELATIVE:
7613 case elfcpp::R_POWERPC_DTPMOD:
7614 case elfcpp::R_PPC64_JMP_IREL:
7615 case elfcpp::R_POWERPC_IRELATIVE:
7616 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7617 _("unexpected reloc %u in object file"),
7618 r_type);
7619 break;
7620
7621 case elfcpp::R_PPC_EMB_SDA21:
7622 if (size == 32)
7623 goto unsupp;
7624 else
7625 {
7626 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7627 }
7628 break;
7629
7630 case elfcpp::R_PPC_EMB_SDA2I16:
7631 case elfcpp::R_PPC_EMB_SDA2REL:
7632 if (size == 32)
7633 goto unsupp;
7634 // R_PPC64_TLSGD, R_PPC64_TLSLD
7635 break;
7636
7637 case elfcpp::R_POWERPC_PLT32:
7638 case elfcpp::R_POWERPC_PLTREL32:
7639 case elfcpp::R_POWERPC_PLT16_LO:
7640 case elfcpp::R_POWERPC_PLT16_HI:
7641 case elfcpp::R_POWERPC_PLT16_HA:
7642 case elfcpp::R_PPC_SDAREL16:
7643 case elfcpp::R_POWERPC_ADDR30:
7644 case elfcpp::R_PPC64_PLT64:
7645 case elfcpp::R_PPC64_PLTREL64:
7646 case elfcpp::R_PPC64_PLTGOT16:
7647 case elfcpp::R_PPC64_PLTGOT16_LO:
7648 case elfcpp::R_PPC64_PLTGOT16_HI:
7649 case elfcpp::R_PPC64_PLTGOT16_HA:
7650 case elfcpp::R_PPC64_PLT16_LO_DS:
7651 case elfcpp::R_PPC64_PLTGOT16_DS:
7652 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7653 case elfcpp::R_PPC_EMB_RELSDA:
7654 case elfcpp::R_PPC_TOC16:
7655 default:
7656 unsupp:
7657 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7658 _("unsupported reloc %u"),
7659 r_type);
7660 break;
7661 }
7662 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7663 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7664 _("relocation overflow"));
7665
7666 return true;
7667 }
7668
7669 // Relocate section data.
7670
7671 template<int size, bool big_endian>
7672 void
7673 Target_powerpc<size, big_endian>::relocate_section(
7674 const Relocate_info<size, big_endian>* relinfo,
7675 unsigned int sh_type,
7676 const unsigned char* prelocs,
7677 size_t reloc_count,
7678 Output_section* output_section,
7679 bool needs_special_offset_handling,
7680 unsigned char* view,
7681 Address address,
7682 section_size_type view_size,
7683 const Reloc_symbol_changes* reloc_symbol_changes)
7684 {
7685 typedef Target_powerpc<size, big_endian> Powerpc;
7686 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7687 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7688 Powerpc_comdat_behavior;
7689
7690 gold_assert(sh_type == elfcpp::SHT_RELA);
7691
7692 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7693 Powerpc_relocate, Powerpc_comdat_behavior>(
7694 relinfo,
7695 this,
7696 prelocs,
7697 reloc_count,
7698 output_section,
7699 needs_special_offset_handling,
7700 view,
7701 address,
7702 view_size,
7703 reloc_symbol_changes);
7704 }
7705
7706 class Powerpc_scan_relocatable_reloc
7707 {
7708 public:
7709 // Return the strategy to use for a local symbol which is not a
7710 // section symbol, given the relocation type.
7711 inline Relocatable_relocs::Reloc_strategy
7712 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7713 {
7714 if (r_type == 0 && r_sym == 0)
7715 return Relocatable_relocs::RELOC_DISCARD;
7716 return Relocatable_relocs::RELOC_COPY;
7717 }
7718
7719 // Return the strategy to use for a local symbol which is a section
7720 // symbol, given the relocation type.
7721 inline Relocatable_relocs::Reloc_strategy
7722 local_section_strategy(unsigned int, Relobj*)
7723 {
7724 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7725 }
7726
7727 // Return the strategy to use for a global symbol, given the
7728 // relocation type, the object, and the symbol index.
7729 inline Relocatable_relocs::Reloc_strategy
7730 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7731 {
7732 if (r_type == elfcpp::R_PPC_PLTREL24)
7733 return Relocatable_relocs::RELOC_SPECIAL;
7734 return Relocatable_relocs::RELOC_COPY;
7735 }
7736 };
7737
7738 // Scan the relocs during a relocatable link.
7739
7740 template<int size, bool big_endian>
7741 void
7742 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7743 Symbol_table* symtab,
7744 Layout* layout,
7745 Sized_relobj_file<size, big_endian>* object,
7746 unsigned int data_shndx,
7747 unsigned int sh_type,
7748 const unsigned char* prelocs,
7749 size_t reloc_count,
7750 Output_section* output_section,
7751 bool needs_special_offset_handling,
7752 size_t local_symbol_count,
7753 const unsigned char* plocal_symbols,
7754 Relocatable_relocs* rr)
7755 {
7756 gold_assert(sh_type == elfcpp::SHT_RELA);
7757
7758 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7759 Powerpc_scan_relocatable_reloc>(
7760 symtab,
7761 layout,
7762 object,
7763 data_shndx,
7764 prelocs,
7765 reloc_count,
7766 output_section,
7767 needs_special_offset_handling,
7768 local_symbol_count,
7769 plocal_symbols,
7770 rr);
7771 }
7772
7773 // Emit relocations for a section.
7774 // This is a modified version of the function by the same name in
7775 // target-reloc.h. Using relocate_special_relocatable for
7776 // R_PPC_PLTREL24 would require duplication of the entire body of the
7777 // loop, so we may as well duplicate the whole thing.
7778
7779 template<int size, bool big_endian>
7780 void
7781 Target_powerpc<size, big_endian>::relocate_relocs(
7782 const Relocate_info<size, big_endian>* relinfo,
7783 unsigned int sh_type,
7784 const unsigned char* prelocs,
7785 size_t reloc_count,
7786 Output_section* output_section,
7787 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7788 const Relocatable_relocs* rr,
7789 unsigned char*,
7790 Address view_address,
7791 section_size_type,
7792 unsigned char* reloc_view,
7793 section_size_type reloc_view_size)
7794 {
7795 gold_assert(sh_type == elfcpp::SHT_RELA);
7796
7797 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7798 Reltype;
7799 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7800 Reltype_write;
7801 const int reloc_size
7802 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7803
7804 Powerpc_relobj<size, big_endian>* const object
7805 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7806 const unsigned int local_count = object->local_symbol_count();
7807 unsigned int got2_shndx = object->got2_shndx();
7808 Address got2_addend = 0;
7809 if (got2_shndx != 0)
7810 {
7811 got2_addend = object->get_output_section_offset(got2_shndx);
7812 gold_assert(got2_addend != invalid_address);
7813 }
7814
7815 unsigned char* pwrite = reloc_view;
7816 bool zap_next = false;
7817 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7818 {
7819 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7820 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7821 continue;
7822
7823 Reltype reloc(prelocs);
7824 Reltype_write reloc_write(pwrite);
7825
7826 Address offset = reloc.get_r_offset();
7827 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7828 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7829 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7830 const unsigned int orig_r_sym = r_sym;
7831 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7832 = reloc.get_r_addend();
7833 const Symbol* gsym = NULL;
7834
7835 if (zap_next)
7836 {
7837 // We could arrange to discard these and other relocs for
7838 // tls optimised sequences in the strategy methods, but for
7839 // now do as BFD ld does.
7840 r_type = elfcpp::R_POWERPC_NONE;
7841 zap_next = false;
7842 }
7843
7844 // Get the new symbol index.
7845 if (r_sym < local_count)
7846 {
7847 switch (strategy)
7848 {
7849 case Relocatable_relocs::RELOC_COPY:
7850 case Relocatable_relocs::RELOC_SPECIAL:
7851 if (r_sym != 0)
7852 {
7853 r_sym = object->symtab_index(r_sym);
7854 gold_assert(r_sym != -1U);
7855 }
7856 break;
7857
7858 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7859 {
7860 // We are adjusting a section symbol. We need to find
7861 // the symbol table index of the section symbol for
7862 // the output section corresponding to input section
7863 // in which this symbol is defined.
7864 gold_assert(r_sym < local_count);
7865 bool is_ordinary;
7866 unsigned int shndx =
7867 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7868 gold_assert(is_ordinary);
7869 Output_section* os = object->output_section(shndx);
7870 gold_assert(os != NULL);
7871 gold_assert(os->needs_symtab_index());
7872 r_sym = os->symtab_index();
7873 }
7874 break;
7875
7876 default:
7877 gold_unreachable();
7878 }
7879 }
7880 else
7881 {
7882 gsym = object->global_symbol(r_sym);
7883 gold_assert(gsym != NULL);
7884 if (gsym->is_forwarder())
7885 gsym = relinfo->symtab->resolve_forwards(gsym);
7886
7887 gold_assert(gsym->has_symtab_index());
7888 r_sym = gsym->symtab_index();
7889 }
7890
7891 // Get the new offset--the location in the output section where
7892 // this relocation should be applied.
7893 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7894 offset += offset_in_output_section;
7895 else
7896 {
7897 section_offset_type sot_offset =
7898 convert_types<section_offset_type, Address>(offset);
7899 section_offset_type new_sot_offset =
7900 output_section->output_offset(object, relinfo->data_shndx,
7901 sot_offset);
7902 gold_assert(new_sot_offset != -1);
7903 offset = new_sot_offset;
7904 }
7905
7906 // In an object file, r_offset is an offset within the section.
7907 // In an executable or dynamic object, generated by
7908 // --emit-relocs, r_offset is an absolute address.
7909 if (!parameters->options().relocatable())
7910 {
7911 offset += view_address;
7912 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7913 offset -= offset_in_output_section;
7914 }
7915
7916 // Handle the reloc addend based on the strategy.
7917 if (strategy == Relocatable_relocs::RELOC_COPY)
7918 ;
7919 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7920 {
7921 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7922 addend = psymval->value(object, addend);
7923 }
7924 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7925 {
7926 if (addend >= 32768)
7927 addend += got2_addend;
7928 }
7929 else
7930 gold_unreachable();
7931
7932 if (!parameters->options().relocatable())
7933 {
7934 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7935 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7936 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7937 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7938 {
7939 // First instruction of a global dynamic sequence,
7940 // arg setup insn.
7941 const bool final = gsym == NULL || gsym->final_value_is_known();
7942 switch (this->optimize_tls_gd(final))
7943 {
7944 case tls::TLSOPT_TO_IE:
7945 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7946 - elfcpp::R_POWERPC_GOT_TLSGD16);
7947 break;
7948 case tls::TLSOPT_TO_LE:
7949 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7950 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7951 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7952 else
7953 {
7954 r_type = elfcpp::R_POWERPC_NONE;
7955 offset -= 2 * big_endian;
7956 }
7957 break;
7958 default:
7959 break;
7960 }
7961 }
7962 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7963 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7964 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7965 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7966 {
7967 // First instruction of a local dynamic sequence,
7968 // arg setup insn.
7969 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7970 {
7971 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7972 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7973 {
7974 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7975 const Output_section* os = relinfo->layout->tls_segment()
7976 ->first_section();
7977 gold_assert(os != NULL);
7978 gold_assert(os->needs_symtab_index());
7979 r_sym = os->symtab_index();
7980 addend = dtp_offset;
7981 }
7982 else
7983 {
7984 r_type = elfcpp::R_POWERPC_NONE;
7985 offset -= 2 * big_endian;
7986 }
7987 }
7988 }
7989 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7990 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7991 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7992 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7993 {
7994 // First instruction of initial exec sequence.
7995 const bool final = gsym == NULL || gsym->final_value_is_known();
7996 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7997 {
7998 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7999 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8000 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8001 else
8002 {
8003 r_type = elfcpp::R_POWERPC_NONE;
8004 offset -= 2 * big_endian;
8005 }
8006 }
8007 }
8008 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8009 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8010 {
8011 // Second instruction of a global dynamic sequence,
8012 // the __tls_get_addr call
8013 const bool final = gsym == NULL || gsym->final_value_is_known();
8014 switch (this->optimize_tls_gd(final))
8015 {
8016 case tls::TLSOPT_TO_IE:
8017 r_type = elfcpp::R_POWERPC_NONE;
8018 zap_next = true;
8019 break;
8020 case tls::TLSOPT_TO_LE:
8021 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8022 offset += 2 * big_endian;
8023 zap_next = true;
8024 break;
8025 default:
8026 break;
8027 }
8028 }
8029 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8030 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8031 {
8032 // Second instruction of a local dynamic sequence,
8033 // the __tls_get_addr call
8034 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8035 {
8036 const Output_section* os = relinfo->layout->tls_segment()
8037 ->first_section();
8038 gold_assert(os != NULL);
8039 gold_assert(os->needs_symtab_index());
8040 r_sym = os->symtab_index();
8041 addend = dtp_offset;
8042 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8043 offset += 2 * big_endian;
8044 zap_next = true;
8045 }
8046 }
8047 else if (r_type == elfcpp::R_POWERPC_TLS)
8048 {
8049 // Second instruction of an initial exec sequence
8050 const bool final = gsym == NULL || gsym->final_value_is_known();
8051 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8052 {
8053 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8054 offset += 2 * big_endian;
8055 }
8056 }
8057 }
8058
8059 reloc_write.put_r_offset(offset);
8060 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8061 reloc_write.put_r_addend(addend);
8062
8063 pwrite += reloc_size;
8064 }
8065
8066 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8067 == reloc_view_size);
8068 }
8069
8070 // Return the value to use for a dynamic symbol which requires special
8071 // treatment. This is how we support equality comparisons of function
8072 // pointers across shared library boundaries, as described in the
8073 // processor specific ABI supplement.
8074
8075 template<int size, bool big_endian>
8076 uint64_t
8077 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8078 {
8079 if (size == 32)
8080 {
8081 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8082 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8083 p != this->stub_tables_.end();
8084 ++p)
8085 {
8086 Address off = (*p)->find_plt_call_entry(gsym);
8087 if (off != invalid_address)
8088 return (*p)->stub_address() + off;
8089 }
8090 }
8091 else if (this->abiversion() >= 2)
8092 {
8093 unsigned int off = this->glink_section()->find_global_entry(gsym);
8094 if (off != (unsigned int)-1)
8095 return this->glink_section()->global_entry_address() + off;
8096 }
8097 gold_unreachable();
8098 }
8099
8100 // Return the PLT address to use for a local symbol.
8101 template<int size, bool big_endian>
8102 uint64_t
8103 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8104 const Relobj* object,
8105 unsigned int symndx) const
8106 {
8107 if (size == 32)
8108 {
8109 const Sized_relobj<size, big_endian>* relobj
8110 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8111 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8112 p != this->stub_tables_.end();
8113 ++p)
8114 {
8115 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8116 symndx);
8117 if (off != invalid_address)
8118 return (*p)->stub_address() + off;
8119 }
8120 }
8121 gold_unreachable();
8122 }
8123
8124 // Return the PLT address to use for a global symbol.
8125 template<int size, bool big_endian>
8126 uint64_t
8127 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8128 const Symbol* gsym) const
8129 {
8130 if (size == 32)
8131 {
8132 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8133 p != this->stub_tables_.end();
8134 ++p)
8135 {
8136 Address off = (*p)->find_plt_call_entry(gsym);
8137 if (off != invalid_address)
8138 return (*p)->stub_address() + off;
8139 }
8140 }
8141 else if (this->abiversion() >= 2)
8142 {
8143 unsigned int off = this->glink_section()->find_global_entry(gsym);
8144 if (off != (unsigned int)-1)
8145 return this->glink_section()->global_entry_address() + off;
8146 }
8147 gold_unreachable();
8148 }
8149
8150 // Return the offset to use for the GOT_INDX'th got entry which is
8151 // for a local tls symbol specified by OBJECT, SYMNDX.
8152 template<int size, bool big_endian>
8153 int64_t
8154 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8155 const Relobj* object,
8156 unsigned int symndx,
8157 unsigned int got_indx) const
8158 {
8159 const Powerpc_relobj<size, big_endian>* ppc_object
8160 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8161 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8162 {
8163 for (Got_type got_type = GOT_TYPE_TLSGD;
8164 got_type <= GOT_TYPE_TPREL;
8165 got_type = Got_type(got_type + 1))
8166 if (ppc_object->local_has_got_offset(symndx, got_type))
8167 {
8168 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8169 if (got_type == GOT_TYPE_TLSGD)
8170 off += size / 8;
8171 if (off == got_indx * (size / 8))
8172 {
8173 if (got_type == GOT_TYPE_TPREL)
8174 return -tp_offset;
8175 else
8176 return -dtp_offset;
8177 }
8178 }
8179 }
8180 gold_unreachable();
8181 }
8182
8183 // Return the offset to use for the GOT_INDX'th got entry which is
8184 // for global tls symbol GSYM.
8185 template<int size, bool big_endian>
8186 int64_t
8187 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8188 Symbol* gsym,
8189 unsigned int got_indx) const
8190 {
8191 if (gsym->type() == elfcpp::STT_TLS)
8192 {
8193 for (Got_type got_type = GOT_TYPE_TLSGD;
8194 got_type <= GOT_TYPE_TPREL;
8195 got_type = Got_type(got_type + 1))
8196 if (gsym->has_got_offset(got_type))
8197 {
8198 unsigned int off = gsym->got_offset(got_type);
8199 if (got_type == GOT_TYPE_TLSGD)
8200 off += size / 8;
8201 if (off == got_indx * (size / 8))
8202 {
8203 if (got_type == GOT_TYPE_TPREL)
8204 return -tp_offset;
8205 else
8206 return -dtp_offset;
8207 }
8208 }
8209 }
8210 gold_unreachable();
8211 }
8212
8213 // The selector for powerpc object files.
8214
8215 template<int size, bool big_endian>
8216 class Target_selector_powerpc : public Target_selector
8217 {
8218 public:
8219 Target_selector_powerpc()
8220 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8221 size, big_endian,
8222 (size == 64
8223 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8224 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8225 (size == 64
8226 ? (big_endian ? "elf64ppc" : "elf64lppc")
8227 : (big_endian ? "elf32ppc" : "elf32lppc")))
8228 { }
8229
8230 virtual Target*
8231 do_instantiate_target()
8232 { return new Target_powerpc<size, big_endian>(); }
8233 };
8234
8235 Target_selector_powerpc<32, true> target_selector_ppc32;
8236 Target_selector_powerpc<32, false> target_selector_ppc32le;
8237 Target_selector_powerpc<64, true> target_selector_ppc64;
8238 Target_selector_powerpc<64, false> target_selector_ppc64le;
8239
8240 // Instantiate these constants for -O0
8241 template<int size, bool big_endian>
8242 const int Output_data_glink<size, big_endian>::pltresolve_size;
8243 template<int size, bool big_endian>
8244 const typename Output_data_glink<size, big_endian>::Address
8245 Output_data_glink<size, big_endian>::invalid_address;
8246 template<int size, bool big_endian>
8247 const typename Stub_table<size, big_endian>::Address
8248 Stub_table<size, big_endian>::invalid_address;
8249 template<int size, bool big_endian>
8250 const typename Target_powerpc<size, big_endian>::Address
8251 Target_powerpc<size, big_endian>::invalid_address;
8252
8253 } // End anonymous namespace.