]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/powerpc.cc
[GOLD] PowerPC64 @notoc in non-power10 code
[thirdparty/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2021 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 #include "attributes.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 template<int size, bool big_endian>
52 class Output_data_plt_powerpc;
53
54 template<int size, bool big_endian>
55 class Output_data_brlt_powerpc;
56
57 template<int size, bool big_endian>
58 class Output_data_got_powerpc;
59
60 template<int size, bool big_endian>
61 class Output_data_glink;
62
63 template<int size, bool big_endian>
64 class Stub_table;
65
66 template<int size, bool big_endian>
67 class Output_data_save_res;
68
69 template<int size, bool big_endian>
70 class Target_powerpc;
71
72 struct Stub_table_owner
73 {
74 Stub_table_owner()
75 : output_section(NULL), owner(NULL)
76 { }
77
78 Output_section* output_section;
79 const Output_section::Input_section* owner;
80 };
81
82 template<int size>
83 inline bool is_branch_reloc(unsigned int);
84
85 template<int size>
86 inline bool is_plt16_reloc(unsigned int);
87
88 // Counter incremented on every Powerpc_relobj constructed.
89 static uint32_t object_id = 0;
90
91 template<int size, bool big_endian>
92 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
93 {
94 public:
95 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
96 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
97 typedef Unordered_map<Address, Section_refs> Access_from;
98
99 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
100 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
101 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
102 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
103 has_small_toc_reloc_(false), opd_valid_(false),
104 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
105 access_from_map_(), has14_(), stub_table_index_(), st_other_(),
106 attributes_section_data_(NULL)
107 {
108 this->set_abiversion(0);
109 }
110
111 ~Powerpc_relobj()
112 { delete this->attributes_section_data_; }
113
114 // Read the symbols then set up st_other vector.
115 void
116 do_read_symbols(Read_symbols_data*);
117
118 // Arrange to always relocate .toc first.
119 virtual void
120 do_relocate_sections(
121 const Symbol_table* symtab, const Layout* layout,
122 const unsigned char* pshdrs, Output_file* of,
123 typename Sized_relobj_file<size, big_endian>::Views* pviews);
124
125 // The .toc section index.
126 unsigned int
127 toc_shndx() const
128 {
129 return this->toc_;
130 }
131
132 // Mark .toc entry at OFF as not optimizable.
133 void
134 set_no_toc_opt(Address off)
135 {
136 if (this->no_toc_opt_.empty())
137 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
138 / (size / 8));
139 off /= size / 8;
140 if (off < this->no_toc_opt_.size())
141 this->no_toc_opt_[off] = true;
142 }
143
144 // Mark the entire .toc as not optimizable.
145 void
146 set_no_toc_opt()
147 {
148 this->no_toc_opt_.resize(1);
149 this->no_toc_opt_[0] = true;
150 }
151
152 // Return true if code using the .toc entry at OFF should not be edited.
153 bool
154 no_toc_opt(Address off) const
155 {
156 if (this->no_toc_opt_.empty())
157 return false;
158 off /= size / 8;
159 if (off >= this->no_toc_opt_.size())
160 return true;
161 return this->no_toc_opt_[off];
162 }
163
164 // The .got2 section shndx.
165 unsigned int
166 got2_shndx() const
167 {
168 if (size == 32)
169 return this->special_;
170 else
171 return 0;
172 }
173
174 // The .opd section shndx.
175 unsigned int
176 opd_shndx() const
177 {
178 if (size == 32)
179 return 0;
180 else
181 return this->special_;
182 }
183
184 // Init OPD entry arrays.
185 void
186 init_opd(size_t opd_size)
187 {
188 size_t count = this->opd_ent_ndx(opd_size);
189 this->opd_ent_.resize(count);
190 }
191
192 // Return section and offset of function entry for .opd + R_OFF.
193 unsigned int
194 get_opd_ent(Address r_off, Address* value = NULL) const
195 {
196 size_t ndx = this->opd_ent_ndx(r_off);
197 gold_assert(ndx < this->opd_ent_.size());
198 gold_assert(this->opd_ent_[ndx].shndx != 0);
199 if (value != NULL)
200 *value = this->opd_ent_[ndx].off;
201 return this->opd_ent_[ndx].shndx;
202 }
203
204 // Set section and offset of function entry for .opd + R_OFF.
205 void
206 set_opd_ent(Address r_off, unsigned int shndx, Address value)
207 {
208 size_t ndx = this->opd_ent_ndx(r_off);
209 gold_assert(ndx < this->opd_ent_.size());
210 this->opd_ent_[ndx].shndx = shndx;
211 this->opd_ent_[ndx].off = value;
212 }
213
214 // Return discard flag for .opd + R_OFF.
215 bool
216 get_opd_discard(Address r_off) const
217 {
218 size_t ndx = this->opd_ent_ndx(r_off);
219 gold_assert(ndx < this->opd_ent_.size());
220 return this->opd_ent_[ndx].discard;
221 }
222
223 // Set discard flag for .opd + R_OFF.
224 void
225 set_opd_discard(Address r_off)
226 {
227 size_t ndx = this->opd_ent_ndx(r_off);
228 gold_assert(ndx < this->opd_ent_.size());
229 this->opd_ent_[ndx].discard = true;
230 }
231
232 bool
233 opd_valid() const
234 { return this->opd_valid_; }
235
236 void
237 set_opd_valid()
238 { this->opd_valid_ = true; }
239
240 // Examine .rela.opd to build info about function entry points.
241 void
242 scan_opd_relocs(size_t reloc_count,
243 const unsigned char* prelocs,
244 const unsigned char* plocal_syms);
245
246 // Returns true if a code sequence loading a TOC entry can be
247 // converted into code calculating a TOC pointer relative offset.
248 bool
249 make_toc_relative(Target_powerpc<size, big_endian>* target,
250 Address* value);
251
252 bool
253 make_got_relative(Target_powerpc<size, big_endian>* target,
254 const Symbol_value<size>* psymval,
255 Address addend,
256 Address* value);
257
258 // Perform the Sized_relobj_file method, then set up opd info from
259 // .opd relocs.
260 void
261 do_read_relocs(Read_relocs_data*);
262
263 bool
264 do_find_special_sections(Read_symbols_data* sd);
265
266 // Adjust this local symbol value. Return false if the symbol
267 // should be discarded from the output file.
268 bool
269 do_adjust_local_symbol(Symbol_value<size>* lv) const
270 {
271 if (size == 64 && this->opd_shndx() != 0)
272 {
273 bool is_ordinary;
274 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
275 return true;
276 if (this->get_opd_discard(lv->input_value()))
277 return false;
278 }
279 return true;
280 }
281
282 Access_from*
283 access_from_map()
284 { return &this->access_from_map_; }
285
286 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
287 // section at DST_OFF.
288 void
289 add_reference(Relobj* src_obj,
290 unsigned int src_indx,
291 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
292 {
293 Section_id src_id(src_obj, src_indx);
294 this->access_from_map_[dst_off].insert(src_id);
295 }
296
297 // Add a reference to the code section specified by the .opd entry
298 // at DST_OFF
299 void
300 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
301 {
302 size_t ndx = this->opd_ent_ndx(dst_off);
303 if (ndx >= this->opd_ent_.size())
304 this->opd_ent_.resize(ndx + 1);
305 this->opd_ent_[ndx].gc_mark = true;
306 }
307
308 void
309 process_gc_mark(Symbol_table* symtab)
310 {
311 for (size_t i = 0; i < this->opd_ent_.size(); i++)
312 if (this->opd_ent_[i].gc_mark)
313 {
314 unsigned int shndx = this->opd_ent_[i].shndx;
315 symtab->gc()->worklist().push_back(Section_id(this, shndx));
316 }
317 }
318
319 void
320 set_has_small_toc_reloc()
321 { has_small_toc_reloc_ = true; }
322
323 bool
324 has_small_toc_reloc() const
325 { return has_small_toc_reloc_; }
326
327 void
328 set_has_14bit_branch(unsigned int shndx)
329 {
330 if (shndx >= this->has14_.size())
331 this->has14_.resize(shndx + 1);
332 this->has14_[shndx] = true;
333 }
334
335 bool
336 has_14bit_branch(unsigned int shndx) const
337 { return shndx < this->has14_.size() && this->has14_[shndx]; }
338
339 void
340 set_stub_table(unsigned int shndx, unsigned int stub_index)
341 {
342 if (shndx >= this->stub_table_index_.size())
343 this->stub_table_index_.resize(shndx + 1, -1);
344 this->stub_table_index_[shndx] = stub_index;
345 }
346
347 Stub_table<size, big_endian>*
348 stub_table(unsigned int shndx)
349 {
350 if (shndx < this->stub_table_index_.size())
351 {
352 Target_powerpc<size, big_endian>* target
353 = static_cast<Target_powerpc<size, big_endian>*>(
354 parameters->sized_target<size, big_endian>());
355 unsigned int indx = this->stub_table_index_[shndx];
356 if (indx < target->stub_tables().size())
357 return target->stub_tables()[indx];
358 }
359 return NULL;
360 }
361
362 void
363 clear_stub_table()
364 {
365 this->stub_table_index_.clear();
366 }
367
368 uint32_t
369 uniq() const
370 { return this->uniq_; }
371
372 int
373 abiversion() const
374 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
375
376 // Set ABI version for input and output
377 void
378 set_abiversion(int ver);
379
380 unsigned int
381 st_other (unsigned int symndx) const
382 {
383 return this->st_other_[symndx];
384 }
385
386 unsigned int
387 ppc64_local_entry_offset(const Symbol* sym) const
388 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
389
390 unsigned int
391 ppc64_local_entry_offset(unsigned int symndx) const
392 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
393
394 bool
395 ppc64_needs_toc(const Symbol* sym) const
396 { return sym->nonvis() > 1 << 3; }
397
398 bool
399 ppc64_needs_toc(unsigned int symndx) const
400 { return this->st_other_[symndx] > 1 << 5; }
401
402 // The contents of the .gnu.attributes section if there is one.
403 const Attributes_section_data*
404 attributes_section_data() const
405 { return this->attributes_section_data_; }
406
407 private:
408 struct Opd_ent
409 {
410 unsigned int shndx;
411 bool discard : 1;
412 bool gc_mark : 1;
413 Address off;
414 };
415
416 // Return index into opd_ent_ array for .opd entry at OFF.
417 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
418 // apart when the language doesn't use the last 8-byte word, the
419 // environment pointer. Thus dividing the entry section offset by
420 // 16 will give an index into opd_ent_ that works for either layout
421 // of .opd. (It leaves some elements of the vector unused when .opd
422 // entries are spaced 24 bytes apart, but we don't know the spacing
423 // until relocations are processed, and in any case it is possible
424 // for an object to have some entries spaced 16 bytes apart and
425 // others 24 bytes apart.)
426 size_t
427 opd_ent_ndx(size_t off) const
428 { return off >> 4;}
429
430 // Per object unique identifier
431 uint32_t uniq_;
432
433 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
434 unsigned int special_;
435
436 // For 64-bit the .rela.toc and .toc section shdnx.
437 unsigned int relatoc_;
438 unsigned int toc_;
439
440 // For 64-bit, whether this object uses small model relocs to access
441 // the toc.
442 bool has_small_toc_reloc_;
443
444 // Set at the start of gc_process_relocs, when we know opd_ent_
445 // vector is valid. The flag could be made atomic and set in
446 // do_read_relocs with memory_order_release and then tested with
447 // memory_order_acquire, potentially resulting in fewer entries in
448 // access_from_map_.
449 bool opd_valid_;
450
451 // Header e_flags
452 elfcpp::Elf_Word e_flags_;
453
454 // For 64-bit, an array with one entry per 64-bit word in the .toc
455 // section, set if accesses using that word cannot be optimised.
456 std::vector<bool> no_toc_opt_;
457
458 // The first 8-byte word of an OPD entry gives the address of the
459 // entry point of the function. Relocatable object files have a
460 // relocation on this word. The following vector records the
461 // section and offset specified by these relocations.
462 std::vector<Opd_ent> opd_ent_;
463
464 // References made to this object's .opd section when running
465 // gc_process_relocs for another object, before the opd_ent_ vector
466 // is valid for this object.
467 Access_from access_from_map_;
468
469 // Whether input section has a 14-bit branch reloc.
470 std::vector<bool> has14_;
471
472 // The stub table to use for a given input section.
473 std::vector<unsigned int> stub_table_index_;
474
475 // ELF st_other field for local symbols.
476 std::vector<unsigned char> st_other_;
477
478 // Object attributes if there is a .gnu.attributes section.
479 Attributes_section_data* attributes_section_data_;
480 };
481
482 template<int size, bool big_endian>
483 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
484 {
485 public:
486 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
487
488 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
489 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
490 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
491 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_(),
492 attributes_section_data_(NULL)
493 {
494 this->set_abiversion(0);
495 }
496
497 ~Powerpc_dynobj()
498 { delete this->attributes_section_data_; }
499
500 // Call Sized_dynobj::do_read_symbols to read the symbols then
501 // read .opd from a dynamic object, filling in opd_ent_ vector,
502 void
503 do_read_symbols(Read_symbols_data*);
504
505 // The .opd section shndx.
506 unsigned int
507 opd_shndx() const
508 {
509 return this->opd_shndx_;
510 }
511
512 // The .opd section address.
513 Address
514 opd_address() const
515 {
516 return this->opd_address_;
517 }
518
519 // Init OPD entry arrays.
520 void
521 init_opd(size_t opd_size)
522 {
523 size_t count = this->opd_ent_ndx(opd_size);
524 this->opd_ent_.resize(count);
525 }
526
527 // Return section and offset of function entry for .opd + R_OFF.
528 unsigned int
529 get_opd_ent(Address r_off, Address* value = NULL) const
530 {
531 size_t ndx = this->opd_ent_ndx(r_off);
532 gold_assert(ndx < this->opd_ent_.size());
533 gold_assert(this->opd_ent_[ndx].shndx != 0);
534 if (value != NULL)
535 *value = this->opd_ent_[ndx].off;
536 return this->opd_ent_[ndx].shndx;
537 }
538
539 // Set section and offset of function entry for .opd + R_OFF.
540 void
541 set_opd_ent(Address r_off, unsigned int shndx, Address value)
542 {
543 size_t ndx = this->opd_ent_ndx(r_off);
544 gold_assert(ndx < this->opd_ent_.size());
545 this->opd_ent_[ndx].shndx = shndx;
546 this->opd_ent_[ndx].off = value;
547 }
548
549 int
550 abiversion() const
551 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
552
553 // Set ABI version for input and output.
554 void
555 set_abiversion(int ver);
556
557 // The contents of the .gnu.attributes section if there is one.
558 const Attributes_section_data*
559 attributes_section_data() const
560 { return this->attributes_section_data_; }
561
562 private:
563 // Used to specify extent of executable sections.
564 struct Sec_info
565 {
566 Sec_info(Address start_, Address len_, unsigned int shndx_)
567 : start(start_), len(len_), shndx(shndx_)
568 { }
569
570 bool
571 operator<(const Sec_info& that) const
572 { return this->start < that.start; }
573
574 Address start;
575 Address len;
576 unsigned int shndx;
577 };
578
579 struct Opd_ent
580 {
581 unsigned int shndx;
582 Address off;
583 };
584
585 // Return index into opd_ent_ array for .opd entry at OFF.
586 size_t
587 opd_ent_ndx(size_t off) const
588 { return off >> 4;}
589
590 // For 64-bit the .opd section shndx and address.
591 unsigned int opd_shndx_;
592 Address opd_address_;
593
594 // Header e_flags
595 elfcpp::Elf_Word e_flags_;
596
597 // The first 8-byte word of an OPD entry gives the address of the
598 // entry point of the function. Records the section and offset
599 // corresponding to the address. Note that in dynamic objects,
600 // offset is *not* relative to the section.
601 std::vector<Opd_ent> opd_ent_;
602
603 // Object attributes if there is a .gnu.attributes section.
604 Attributes_section_data* attributes_section_data_;
605 };
606
607 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
608 // base class will emit.
609
610 template<int sh_type, int size, bool big_endian>
611 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
612 {
613 public:
614 Powerpc_copy_relocs()
615 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
616 { }
617
618 // Emit any saved relocations which turn out to be needed. This is
619 // called after all the relocs have been scanned.
620 void
621 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
622 };
623
624 // The types of GOT entries needed for this platform.
625 // These values are exposed to the ABI in an incremental link, but
626 // powerpc does not support incremental linking as yet.
627 enum Got_type
628 {
629 GOT_TYPE_STANDARD = 0,
630 GOT_TYPE_TLSGD = 1, // double entry for @got@tlsgd
631 GOT_TYPE_DTPREL = 2, // entry for @got@dtprel
632 GOT_TYPE_TPREL = 3, // entry for @got@tprel
633 GOT_TYPE_SMALL = 4,
634 GOT_TYPE_SMALL_TLSGD = 5,
635 GOT_TYPE_SMALL_DTPREL = 6,
636 GOT_TYPE_SMALL_TPREL = 7
637 };
638
639 template<int size, bool big_endian>
640 class Target_powerpc : public Sized_target<size, big_endian>
641 {
642 public:
643 typedef
644 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
645 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
646 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
647 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
648 static const Address invalid_address = static_cast<Address>(0) - 1;
649 // Offset of tp and dtp pointers from start of TLS block.
650 static const Address tp_offset = 0x7000;
651 static const Address dtp_offset = 0x8000;
652
653 Target_powerpc()
654 : Sized_target<size, big_endian>(&powerpc_info),
655 got_(NULL), biggot_(NULL), plt_(NULL), iplt_(NULL), lplt_(NULL),
656 brlt_section_(NULL), glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
657 tlsld_got_offset_(-1U),
658 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
659 power10_relocs_(false), plt_thread_safe_(false), plt_localentry0_(false),
660 plt_localentry0_init_(false), has_localentry0_(false),
661 has_tls_get_addr_opt_(false), no_tprel_opt_(false),
662 relax_failed_(false), relax_fail_count_(0),
663 stub_group_size_(0), savres_section_(0),
664 tls_get_addr_(NULL), tls_get_addr_opt_(NULL),
665 attributes_section_data_(NULL),
666 last_fp_(NULL), last_ld_(NULL), last_vec_(NULL), last_struct_(NULL)
667 {
668 }
669
670 // Process the relocations to determine unreferenced sections for
671 // garbage collection.
672 void
673 gc_process_relocs(Symbol_table* symtab,
674 Layout* layout,
675 Sized_relobj_file<size, big_endian>* object,
676 unsigned int data_shndx,
677 unsigned int sh_type,
678 const unsigned char* prelocs,
679 size_t reloc_count,
680 Output_section* output_section,
681 bool needs_special_offset_handling,
682 size_t local_symbol_count,
683 const unsigned char* plocal_symbols);
684
685 // Scan the relocations to look for symbol adjustments.
686 void
687 scan_relocs(Symbol_table* symtab,
688 Layout* layout,
689 Sized_relobj_file<size, big_endian>* object,
690 unsigned int data_shndx,
691 unsigned int sh_type,
692 const unsigned char* prelocs,
693 size_t reloc_count,
694 Output_section* output_section,
695 bool needs_special_offset_handling,
696 size_t local_symbol_count,
697 const unsigned char* plocal_symbols);
698
699 // Map input .toc section to output .got section.
700 const char*
701 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
702 {
703 if (size == 64 && strcmp(name, ".toc") == 0)
704 {
705 *plen = 4;
706 return ".got";
707 }
708 return NULL;
709 }
710
711 // Provide linker defined save/restore functions.
712 void
713 define_save_restore_funcs(Layout*, Symbol_table*);
714
715 // No stubs unless a final link.
716 bool
717 do_may_relax() const
718 { return !parameters->options().relocatable(); }
719
720 bool
721 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
722
723 void
724 do_plt_fde_location(const Output_data*, unsigned char*,
725 uint64_t*, off_t*) const;
726
727 // Stash info about branches, for stub generation.
728 void
729 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
730 unsigned int data_shndx, Address r_offset,
731 unsigned int r_type, unsigned int r_sym, Address addend)
732 {
733 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
734 this->branch_info_.push_back(info);
735 if (r_type == elfcpp::R_POWERPC_REL14
736 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
737 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
738 ppc_object->set_has_14bit_branch(data_shndx);
739 }
740
741 // Return whether the last branch is a plt call, and if so, mark the
742 // branch as having an R_PPC64_TOCSAVE.
743 bool
744 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
745 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
746 {
747 return (size == 64
748 && !this->branch_info_.empty()
749 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
750 r_offset, this, symtab));
751 }
752
753 // Say the given location, that of a nop in a function prologue with
754 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
755 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
756 void
757 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
758 unsigned int shndx, Address offset)
759 {
760 Symbol_location loc;
761 loc.object = ppc_object;
762 loc.shndx = shndx;
763 loc.offset = offset;
764 this->tocsave_loc_.insert(loc);
765 }
766
767 // Accessor
768 const Tocsave_loc*
769 tocsave_loc() const
770 {
771 return &this->tocsave_loc_;
772 }
773
774 void
775 do_define_standard_symbols(Symbol_table*, Layout*);
776
777 // Finalize the sections.
778 void
779 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
780
781 // Return the value to use for a dynamic which requires special
782 // treatment.
783 uint64_t
784 do_dynsym_value(const Symbol*) const;
785
786 // Return the PLT address to use for a local symbol.
787 uint64_t
788 do_plt_address_for_local(const Relobj*, unsigned int) const;
789
790 // Return the PLT address to use for a global symbol.
791 uint64_t
792 do_plt_address_for_global(const Symbol*) const;
793
794 // Return the offset to use for the GOT_INDX'th got entry which is
795 // for a local tls symbol specified by OBJECT, SYMNDX.
796 int64_t
797 do_tls_offset_for_local(const Relobj* object,
798 unsigned int symndx,
799 Output_data_got_base* got,
800 unsigned int got_indx,
801 uint64_t addend) const;
802
803 // Return the offset to use for the GOT_INDX'th got entry which is
804 // for global tls symbol GSYM.
805 int64_t
806 do_tls_offset_for_global(Symbol* gsym,
807 Output_data_got_base* got, unsigned int got_indx,
808 uint64_t addend) const;
809
810 void
811 do_function_location(Symbol_location*) const;
812
813 bool
814 do_can_check_for_function_pointers() const
815 { return true; }
816
817 // Adjust -fsplit-stack code which calls non-split-stack code.
818 void
819 do_calls_non_split(Relobj* object, unsigned int shndx,
820 section_offset_type fnoffset, section_size_type fnsize,
821 const unsigned char* prelocs, size_t reloc_count,
822 unsigned char* view, section_size_type view_size,
823 std::string* from, std::string* to) const;
824
825 // Relocate a section.
826 void
827 relocate_section(const Relocate_info<size, big_endian>*,
828 unsigned int sh_type,
829 const unsigned char* prelocs,
830 size_t reloc_count,
831 Output_section* output_section,
832 bool needs_special_offset_handling,
833 unsigned char* view,
834 Address view_address,
835 section_size_type view_size,
836 const Reloc_symbol_changes*);
837
838 // Scan the relocs during a relocatable link.
839 void
840 scan_relocatable_relocs(Symbol_table* symtab,
841 Layout* layout,
842 Sized_relobj_file<size, big_endian>* object,
843 unsigned int data_shndx,
844 unsigned int sh_type,
845 const unsigned char* prelocs,
846 size_t reloc_count,
847 Output_section* output_section,
848 bool needs_special_offset_handling,
849 size_t local_symbol_count,
850 const unsigned char* plocal_symbols,
851 Relocatable_relocs*);
852
853 // Scan the relocs for --emit-relocs.
854 void
855 emit_relocs_scan(Symbol_table* symtab,
856 Layout* layout,
857 Sized_relobj_file<size, big_endian>* object,
858 unsigned int data_shndx,
859 unsigned int sh_type,
860 const unsigned char* prelocs,
861 size_t reloc_count,
862 Output_section* output_section,
863 bool needs_special_offset_handling,
864 size_t local_symbol_count,
865 const unsigned char* plocal_syms,
866 Relocatable_relocs* rr);
867
868 // Emit relocations for a section.
869 void
870 relocate_relocs(const Relocate_info<size, big_endian>*,
871 unsigned int sh_type,
872 const unsigned char* prelocs,
873 size_t reloc_count,
874 Output_section* output_section,
875 typename elfcpp::Elf_types<size>::Elf_Off
876 offset_in_output_section,
877 unsigned char*,
878 Address view_address,
879 section_size_type,
880 unsigned char* reloc_view,
881 section_size_type reloc_view_size);
882
883 // Return whether SYM is defined by the ABI.
884 bool
885 do_is_defined_by_abi(const Symbol* sym) const
886 {
887 return strcmp(sym->name(), "__tls_get_addr") == 0;
888 }
889
890 // Return the size of the GOT section, for incremental linking
891 section_size_type
892 got_size() const
893 {
894 gold_assert(this->got_ != NULL);
895 return this->got_->data_size() + (this->biggot_
896 ? this->biggot_->data_size() : 0);
897 }
898
899 // Get the PLT section.
900 const Output_data_plt_powerpc<size, big_endian>*
901 plt_section() const
902 {
903 gold_assert(this->plt_ != NULL);
904 return this->plt_;
905 }
906
907 // Get the IPLT section.
908 const Output_data_plt_powerpc<size, big_endian>*
909 iplt_section() const
910 {
911 gold_assert(this->iplt_ != NULL);
912 return this->iplt_;
913 }
914
915 // Get the LPLT section.
916 const Output_data_plt_powerpc<size, big_endian>*
917 lplt_section() const
918 {
919 return this->lplt_;
920 }
921
922 // Return the plt offset and section for the given global sym.
923 Address
924 plt_off(const Symbol* gsym,
925 const Output_data_plt_powerpc<size, big_endian>** sec) const
926 {
927 if (gsym->type() == elfcpp::STT_GNU_IFUNC
928 && gsym->can_use_relative_reloc(false))
929 *sec = this->iplt_section();
930 else if (!parameters->doing_static_link())
931 *sec = this->plt_section();
932 else
933 *sec = this->lplt_section();
934 return gsym->plt_offset();
935 }
936
937 // Return the plt offset and section for the given local sym.
938 Address
939 plt_off(const Sized_relobj_file<size, big_endian>* relobj,
940 unsigned int local_sym_index,
941 const Output_data_plt_powerpc<size, big_endian>** sec) const
942 {
943 const Symbol_value<size>* lsym = relobj->local_symbol(local_sym_index);
944 if (lsym->is_ifunc_symbol())
945 *sec = this->iplt_section();
946 else
947 *sec = this->lplt_section();
948 return relobj->local_plt_offset(local_sym_index);
949 }
950
951 // Get the .glink section.
952 const Output_data_glink<size, big_endian>*
953 glink_section() const
954 {
955 gold_assert(this->glink_ != NULL);
956 return this->glink_;
957 }
958
959 Output_data_glink<size, big_endian>*
960 glink_section()
961 {
962 gold_assert(this->glink_ != NULL);
963 return this->glink_;
964 }
965
966 bool has_glink() const
967 { return this->glink_ != NULL; }
968
969 // Get the GOT section.
970 const Output_data_got_powerpc<size, big_endian>*
971 got_section(Got_type got_type) const
972 {
973 gold_assert(this->got_ != NULL);
974 if (size == 32 || (got_type & GOT_TYPE_SMALL))
975 return this->got_;
976 gold_assert(this->biggot_ != NULL);
977 return this->biggot_;
978 }
979
980 // Get the GOT section, creating it if necessary.
981 Output_data_got_powerpc<size, big_endian>*
982 got_section(Symbol_table*, Layout*, Got_type);
983
984 // The toc/got pointer reg will be set to this value.
985 Address
986 toc_pointer() const
987 {
988 return this->got_->address() + this->got_->g_o_t();
989 }
990
991 // Offset of base used to access the GOT/TOC relative to the GOT section.
992 Address
993 got_base_offset(Got_type got_type) const
994 {
995 if (size == 32 || (got_type & GOT_TYPE_SMALL))
996 return this->got_->g_o_t();
997 return this->toc_pointer() - this->biggot_->address();
998 }
999
1000 Object*
1001 do_make_elf_object(const std::string&, Input_file*, off_t,
1002 const elfcpp::Ehdr<size, big_endian>&);
1003
1004 // Return the number of entries in the GOT.
1005 unsigned int
1006 got_entry_count() const
1007 {
1008 if (this->got_ == NULL)
1009 return 0;
1010 return this->got_size() / (size / 8);
1011 }
1012
1013 // Return the number of entries in the PLT.
1014 unsigned int
1015 plt_entry_count() const;
1016
1017 // Return the offset of the first non-reserved PLT entry.
1018 unsigned int
1019 first_plt_entry_offset() const
1020 {
1021 if (size == 32)
1022 return 0;
1023 if (this->abiversion() >= 2)
1024 return 16;
1025 return 24;
1026 }
1027
1028 // Return the size of each PLT entry.
1029 unsigned int
1030 plt_entry_size() const
1031 {
1032 if (size == 32)
1033 return 4;
1034 if (this->abiversion() >= 2)
1035 return 8;
1036 return 24;
1037 }
1038
1039 Output_data_save_res<size, big_endian>*
1040 savres_section() const
1041 {
1042 return this->savres_section_;
1043 }
1044
1045 // Add any special sections for this symbol to the gc work list.
1046 // For powerpc64, this adds the code section of a function
1047 // descriptor.
1048 void
1049 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
1050
1051 // Handle target specific gc actions when adding a gc reference from
1052 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1053 // and DST_OFF. For powerpc64, this adds a referenc to the code
1054 // section of a function descriptor.
1055 void
1056 do_gc_add_reference(Symbol_table* symtab,
1057 Relobj* src_obj,
1058 unsigned int src_shndx,
1059 Relobj* dst_obj,
1060 unsigned int dst_shndx,
1061 Address dst_off) const;
1062
1063 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
1064 const Stub_tables&
1065 stub_tables() const
1066 { return this->stub_tables_; }
1067
1068 const Output_data_brlt_powerpc<size, big_endian>*
1069 brlt_section() const
1070 { return this->brlt_section_; }
1071
1072 void
1073 add_branch_lookup_table(Address to)
1074 {
1075 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
1076 this->branch_lookup_table_.insert(std::make_pair(to, off));
1077 }
1078
1079 Address
1080 find_branch_lookup_table(Address to)
1081 {
1082 typename Branch_lookup_table::const_iterator p
1083 = this->branch_lookup_table_.find(to);
1084 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
1085 }
1086
1087 void
1088 write_branch_lookup_table(unsigned char *oview)
1089 {
1090 for (typename Branch_lookup_table::const_iterator p
1091 = this->branch_lookup_table_.begin();
1092 p != this->branch_lookup_table_.end();
1093 ++p)
1094 {
1095 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
1096 }
1097 }
1098
1099 // Wrapper used after relax to define a local symbol in output data,
1100 // from the end if value < 0.
1101 void
1102 define_local(Symbol_table* symtab, const char* name,
1103 Output_data* od, Address value, unsigned int symsize)
1104 {
1105 Symbol* sym
1106 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1107 od, value, symsize, elfcpp::STT_NOTYPE,
1108 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1109 static_cast<Signed_address>(value) < 0,
1110 false);
1111 // We are creating this symbol late, so need to fix up things
1112 // done early in Layout::finalize.
1113 sym->set_dynsym_index(-1U);
1114 }
1115
1116 void
1117 set_power10_relocs()
1118 {
1119 this->power10_relocs_ = true;
1120 }
1121
1122 bool
1123 power10_stubs() const
1124 {
1125 return (this->power10_relocs_
1126 && (parameters->options().power10_stubs_enum()
1127 != General_options::POWER10_STUBS_NO));
1128 }
1129
1130 bool
1131 power10_stubs_auto() const
1132 {
1133 return (parameters->options().power10_stubs_enum()
1134 == General_options::POWER10_STUBS_AUTO);
1135 }
1136
1137 bool
1138 plt_thread_safe() const
1139 { return this->plt_thread_safe_; }
1140
1141 bool
1142 plt_localentry0() const
1143 { return this->plt_localentry0_; }
1144
1145 bool
1146 has_localentry0() const
1147 { return this->has_localentry0_; }
1148
1149 void
1150 set_has_localentry0()
1151 {
1152 this->has_localentry0_ = true;
1153 }
1154
1155 bool
1156 is_elfv2_localentry0(const Symbol* gsym) const
1157 {
1158 return (size == 64
1159 && this->abiversion() >= 2
1160 && this->plt_localentry0()
1161 && gsym->type() == elfcpp::STT_FUNC
1162 && gsym->is_defined()
1163 && gsym->nonvis() >> 3 == 0
1164 && !gsym->non_zero_localentry());
1165 }
1166
1167 bool
1168 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1169 unsigned int r_sym) const
1170 {
1171 const Powerpc_relobj<size, big_endian>* ppc_object
1172 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1173
1174 if (size == 64
1175 && this->abiversion() >= 2
1176 && this->plt_localentry0()
1177 && ppc_object->st_other(r_sym) >> 5 == 0)
1178 {
1179 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1180 bool is_ordinary;
1181 if (!psymval->is_ifunc_symbol()
1182 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1183 && is_ordinary)
1184 return true;
1185 }
1186 return false;
1187 }
1188
1189 bool
1190 tprel_opt() const
1191 { return !this->no_tprel_opt_ && parameters->options().tls_optimize(); }
1192
1193 void
1194 set_no_tprel_opt()
1195 { this->no_tprel_opt_ = true; }
1196
1197 // Remember any symbols seen with non-zero localentry, even those
1198 // not providing a definition
1199 bool
1200 resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1201 const char*)
1202 {
1203 if (size == 64)
1204 {
1205 unsigned char st_other = sym.get_st_other();
1206 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1207 to->set_non_zero_localentry();
1208 }
1209 // We haven't resolved anything, continue normal processing.
1210 return false;
1211 }
1212
1213 int
1214 abiversion() const
1215 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1216
1217 void
1218 set_abiversion(int ver)
1219 {
1220 elfcpp::Elf_Word flags = this->processor_specific_flags();
1221 flags &= ~elfcpp::EF_PPC64_ABI;
1222 flags |= ver & elfcpp::EF_PPC64_ABI;
1223 this->set_processor_specific_flags(flags);
1224 }
1225
1226 Symbol*
1227 tls_get_addr_opt() const
1228 { return this->tls_get_addr_opt_; }
1229
1230 Symbol*
1231 tls_get_addr() const
1232 { return this->tls_get_addr_; }
1233
1234 // If optimizing __tls_get_addr calls, whether this is the
1235 // "__tls_get_addr" symbol.
1236 bool
1237 is_tls_get_addr_opt(const Symbol* gsym) const
1238 {
1239 return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1240 || gsym == this->tls_get_addr_opt_);
1241 }
1242
1243 bool
1244 replace_tls_get_addr(const Symbol* gsym) const
1245 { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1246
1247 void
1248 set_has_tls_get_addr_opt()
1249 { this->has_tls_get_addr_opt_ = true; }
1250
1251 // Offset to toc save stack slot
1252 int
1253 stk_toc() const
1254 { return this->abiversion() < 2 ? 40 : 24; }
1255
1256 // Offset to linker save stack slot. ELFv2 doesn't have a linker word,
1257 // so use the CR save slot. Used only by __tls_get_addr call stub,
1258 // relying on __tls_get_addr not saving CR itself.
1259 int
1260 stk_linker() const
1261 { return this->abiversion() < 2 ? 32 : 8; }
1262
1263 // Merge object attributes from input object with those in the output.
1264 void
1265 merge_object_attributes(const Object*, const Attributes_section_data*);
1266
1267 bool
1268 symval_for_branch(const Symbol_table* symtab,
1269 const Sized_symbol<size>* gsym,
1270 Powerpc_relobj<size, big_endian>* object,
1271 Address *value, unsigned int *dest_shndx);
1272
1273 private:
1274
1275 class Track_tls
1276 {
1277 public:
1278 enum Tls_get_addr
1279 {
1280 NOT_EXPECTED = 0,
1281 EXPECTED = 1,
1282 SKIP = 2,
1283 NORMAL = 3
1284 };
1285
1286 Track_tls()
1287 : tls_get_addr_state_(NOT_EXPECTED),
1288 relinfo_(NULL), relnum_(0), r_offset_(0)
1289 { }
1290
1291 ~Track_tls()
1292 {
1293 if (this->tls_get_addr_state_ != NOT_EXPECTED)
1294 this->missing();
1295 }
1296
1297 void
1298 missing(void)
1299 {
1300 if (this->relinfo_ != NULL)
1301 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1302 _("missing expected __tls_get_addr call"));
1303 }
1304
1305 void
1306 expect_tls_get_addr_call(
1307 const Relocate_info<size, big_endian>* relinfo,
1308 size_t relnum,
1309 Address r_offset)
1310 {
1311 this->tls_get_addr_state_ = EXPECTED;
1312 this->relinfo_ = relinfo;
1313 this->relnum_ = relnum;
1314 this->r_offset_ = r_offset;
1315 }
1316
1317 void
1318 expect_tls_get_addr_call()
1319 { this->tls_get_addr_state_ = EXPECTED; }
1320
1321 void
1322 skip_next_tls_get_addr_call()
1323 {this->tls_get_addr_state_ = SKIP; }
1324
1325 Tls_get_addr
1326 maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1327 unsigned int r_type, const Symbol* gsym)
1328 {
1329 bool is_tls_call
1330 = ((r_type == elfcpp::R_POWERPC_REL24
1331 || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
1332 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC
1333 || r_type == elfcpp::R_PPC_PLTREL24
1334 || is_plt16_reloc<size>(r_type)
1335 || r_type == elfcpp::R_PPC64_PLT_PCREL34
1336 || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC
1337 || r_type == elfcpp::R_POWERPC_PLTSEQ
1338 || r_type == elfcpp::R_POWERPC_PLTCALL
1339 || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC
1340 || r_type == elfcpp::R_PPC64_PLTCALL_NOTOC)
1341 && gsym != NULL
1342 && (gsym == target->tls_get_addr()
1343 || gsym == target->tls_get_addr_opt()));
1344 Tls_get_addr last_tls = this->tls_get_addr_state_;
1345 this->tls_get_addr_state_ = NOT_EXPECTED;
1346 if (is_tls_call && last_tls != EXPECTED)
1347 return last_tls;
1348 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1349 {
1350 this->missing();
1351 return EXPECTED;
1352 }
1353 return NORMAL;
1354 }
1355
1356 private:
1357 // What we're up to regarding calls to __tls_get_addr.
1358 // On powerpc, the branch and link insn making a call to
1359 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1360 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1361 // usual R_POWERPC_REL24 or R_PPC_PLTREL24 relocation on a call.
1362 // The marker relocation always comes first, and has the same
1363 // symbol as the reloc on the insn setting up the __tls_get_addr
1364 // argument. This ties the arg setup insn with the call insn,
1365 // allowing ld to safely optimize away the call. We check that
1366 // every call to __tls_get_addr has a marker relocation, and that
1367 // every marker relocation is on a call to __tls_get_addr.
1368 Tls_get_addr tls_get_addr_state_;
1369 // Info about the last reloc for error message.
1370 const Relocate_info<size, big_endian>* relinfo_;
1371 size_t relnum_;
1372 Address r_offset_;
1373 };
1374
1375 // The class which scans relocations.
1376 class Scan : protected Track_tls
1377 {
1378 public:
1379 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1380
1381 Scan()
1382 : Track_tls(), issued_non_pic_error_(false)
1383 { }
1384
1385 static inline int
1386 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1387
1388 inline void
1389 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1390 Sized_relobj_file<size, big_endian>* object,
1391 unsigned int data_shndx,
1392 Output_section* output_section,
1393 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1394 const elfcpp::Sym<size, big_endian>& lsym,
1395 bool is_discarded);
1396
1397 inline void
1398 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1399 Sized_relobj_file<size, big_endian>* object,
1400 unsigned int data_shndx,
1401 Output_section* output_section,
1402 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1403 Symbol* gsym);
1404
1405 inline bool
1406 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1407 Target_powerpc* ,
1408 Sized_relobj_file<size, big_endian>* relobj,
1409 unsigned int ,
1410 Output_section* ,
1411 const elfcpp::Rela<size, big_endian>& ,
1412 unsigned int r_type,
1413 const elfcpp::Sym<size, big_endian>&)
1414 {
1415 // PowerPC64 .opd is not folded, so any identical function text
1416 // may be folded and we'll still keep function addresses distinct.
1417 // That means no reloc is of concern here.
1418 if (size == 64)
1419 {
1420 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1421 <Powerpc_relobj<size, big_endian>*>(relobj);
1422 if (ppcobj->abiversion() == 1)
1423 return false;
1424 }
1425 // For 32-bit and ELFv2, conservatively assume anything but calls to
1426 // function code might be taking the address of the function.
1427 return !is_branch_reloc<size>(r_type);
1428 }
1429
1430 inline bool
1431 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1432 Target_powerpc* ,
1433 Sized_relobj_file<size, big_endian>* relobj,
1434 unsigned int ,
1435 Output_section* ,
1436 const elfcpp::Rela<size, big_endian>& ,
1437 unsigned int r_type,
1438 Symbol*)
1439 {
1440 // As above.
1441 if (size == 64)
1442 {
1443 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1444 <Powerpc_relobj<size, big_endian>*>(relobj);
1445 if (ppcobj->abiversion() == 1)
1446 return false;
1447 }
1448 return !is_branch_reloc<size>(r_type);
1449 }
1450
1451 static bool
1452 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1453 Sized_relobj_file<size, big_endian>* object,
1454 unsigned int r_type, bool report_err);
1455
1456 private:
1457 static void
1458 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1459 unsigned int r_type);
1460
1461 static void
1462 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1463 unsigned int r_type, Symbol*);
1464
1465 static void
1466 generate_tls_call(Symbol_table* symtab, Layout* layout,
1467 Target_powerpc* target);
1468
1469 void
1470 check_non_pic(Relobj*, unsigned int r_type);
1471
1472 // Whether we have issued an error about a non-PIC compilation.
1473 bool issued_non_pic_error_;
1474 };
1475
1476 // The class which implements relocation.
1477 class Relocate : protected Track_tls
1478 {
1479 public:
1480 // Use 'at' branch hints when true, 'y' when false.
1481 // FIXME maybe: set this with an option.
1482 static const bool is_isa_v2 = true;
1483
1484 Relocate()
1485 : Track_tls()
1486 { }
1487
1488 // Do a relocation. Return false if the caller should not issue
1489 // any warnings about this relocation.
1490 inline bool
1491 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1492 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1493 const Sized_symbol<size>*, const Symbol_value<size>*,
1494 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1495 section_size_type);
1496 };
1497
1498 class Relocate_comdat_behavior
1499 {
1500 public:
1501 // Decide what the linker should do for relocations that refer to
1502 // discarded comdat sections.
1503 inline Comdat_behavior
1504 get(const char* name)
1505 {
1506 gold::Default_comdat_behavior default_behavior;
1507 Comdat_behavior ret = default_behavior.get(name);
1508 if (ret == CB_ERROR)
1509 {
1510 if (size == 32
1511 && (strcmp(name, ".fixup") == 0
1512 || strcmp(name, ".got2") == 0))
1513 ret = CB_IGNORE;
1514 if (size == 64
1515 && (strcmp(name, ".opd") == 0
1516 || strcmp(name, ".toc") == 0
1517 || strcmp(name, ".toc1") == 0))
1518 ret = CB_IGNORE;
1519 }
1520 return ret;
1521 }
1522 };
1523
1524 // Optimize the TLS relocation type based on what we know about the
1525 // symbol. IS_FINAL is true if the final address of this symbol is
1526 // known at link time.
1527
1528 tls::Tls_optimization
1529 optimize_tls_gd(bool is_final)
1530 {
1531 // If we are generating a shared library, then we can't do anything
1532 // in the linker.
1533 if (parameters->options().shared()
1534 || !parameters->options().tls_optimize())
1535 return tls::TLSOPT_NONE;
1536
1537 if (!is_final)
1538 return tls::TLSOPT_TO_IE;
1539 return tls::TLSOPT_TO_LE;
1540 }
1541
1542 tls::Tls_optimization
1543 optimize_tls_ld()
1544 {
1545 if (parameters->options().shared()
1546 || !parameters->options().tls_optimize())
1547 return tls::TLSOPT_NONE;
1548
1549 return tls::TLSOPT_TO_LE;
1550 }
1551
1552 tls::Tls_optimization
1553 optimize_tls_ie(bool is_final)
1554 {
1555 if (!is_final
1556 || parameters->options().shared()
1557 || !parameters->options().tls_optimize())
1558 return tls::TLSOPT_NONE;
1559
1560 return tls::TLSOPT_TO_LE;
1561 }
1562
1563 // Create glink.
1564 void
1565 make_glink_section(Layout*);
1566
1567 // Create the PLT section.
1568 void
1569 make_plt_section(Symbol_table*, Layout*);
1570
1571 void
1572 make_iplt_section(Symbol_table*, Layout*);
1573
1574 void
1575 make_lplt_section(Symbol_table*, Layout*);
1576
1577 void
1578 make_brlt_section(Layout*);
1579
1580 // Create a PLT entry for a global symbol.
1581 void
1582 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1583
1584 // Create a PLT entry for a local IFUNC symbol.
1585 void
1586 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1587 Sized_relobj_file<size, big_endian>*,
1588 unsigned int);
1589
1590 // Create a PLT entry for a local non-IFUNC symbol.
1591 void
1592 make_local_plt_entry(Symbol_table*, Layout*,
1593 Sized_relobj_file<size, big_endian>*,
1594 unsigned int);
1595
1596 void
1597 make_local_plt_entry(Symbol_table*, Layout*, Symbol*);
1598
1599 // Create a GOT entry for local dynamic __tls_get_addr.
1600 unsigned int
1601 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1602 Sized_relobj_file<size, big_endian>* object);
1603
1604 unsigned int
1605 tlsld_got_offset() const
1606 {
1607 return this->tlsld_got_offset_;
1608 }
1609
1610 // Get the dynamic reloc section, creating it if necessary.
1611 Reloc_section*
1612 rela_dyn_section(Layout*);
1613
1614 // Similarly, but for ifunc symbols get the one for ifunc.
1615 Reloc_section*
1616 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1617
1618 // Copy a relocation against a global symbol.
1619 void
1620 copy_reloc(Symbol_table* symtab, Layout* layout,
1621 Sized_relobj_file<size, big_endian>* object,
1622 unsigned int shndx, Output_section* output_section,
1623 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1624 {
1625 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1626 this->copy_relocs_.copy_reloc(symtab, layout,
1627 symtab->get_sized_symbol<size>(sym),
1628 object, shndx, output_section,
1629 r_type, reloc.get_r_offset(),
1630 reloc.get_r_addend(),
1631 this->rela_dyn_section(layout));
1632 }
1633
1634 // Look over all the input sections, deciding where to place stubs.
1635 void
1636 group_sections(Layout*, const Task*, bool);
1637
1638 // Sort output sections by address.
1639 struct Sort_sections
1640 {
1641 bool
1642 operator()(const Output_section* sec1, const Output_section* sec2)
1643 { return sec1->address() < sec2->address(); }
1644 };
1645
1646 class Branch_info
1647 {
1648 public:
1649 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1650 unsigned int data_shndx,
1651 Address r_offset,
1652 unsigned int r_type,
1653 unsigned int r_sym,
1654 Address addend)
1655 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1656 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1657 { }
1658
1659 ~Branch_info()
1660 { }
1661
1662 // Return whether this branch is going via a plt call stub, and if
1663 // so, mark it as having an R_PPC64_TOCSAVE.
1664 bool
1665 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1666 unsigned int shndx, Address offset,
1667 Target_powerpc* target, Symbol_table* symtab);
1668
1669 // If this branch needs a plt call stub, or a long branch stub, make one.
1670 bool
1671 make_stub(Stub_table<size, big_endian>*,
1672 Stub_table<size, big_endian>*,
1673 Symbol_table*) const;
1674
1675 private:
1676 // The branch location..
1677 Powerpc_relobj<size, big_endian>* object_;
1678 unsigned int shndx_;
1679 Address offset_;
1680 // ..and the branch type and destination.
1681 unsigned int r_type_ : 31;
1682 unsigned int tocsave_ : 1;
1683 unsigned int r_sym_;
1684 Address addend_;
1685 };
1686
1687 // Information about this specific target which we pass to the
1688 // general Target structure.
1689 static Target::Target_info powerpc_info;
1690
1691 // The small GOT section used by ppc32, and by ppc64 for entries that
1692 // must be addresseed +/-32k from the got pointer.
1693 Output_data_got_powerpc<size, big_endian>* got_;
1694 // Another GOT section used for entries that can be addressed +/- 2G
1695 // from the got pointer.
1696 Output_data_got_powerpc<size, big_endian>* biggot_;
1697
1698 // The PLT section. This is a container for a table of addresses,
1699 // and their relocations. Each address in the PLT has a dynamic
1700 // relocation (R_*_JMP_SLOT) and each address will have a
1701 // corresponding entry in .glink for lazy resolution of the PLT.
1702 // ppc32 initialises the PLT to point at the .glink entry, while
1703 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1704 // linker adds a stub that loads the PLT entry into ctr then
1705 // branches to ctr. There may be more than one stub for each PLT
1706 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1707 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1708 Output_data_plt_powerpc<size, big_endian>* plt_;
1709 // The IPLT section. Like plt_, this is a container for a table of
1710 // addresses and their relocations, specifically for STT_GNU_IFUNC
1711 // functions that resolve locally (STT_GNU_IFUNC functions that
1712 // don't resolve locally go in PLT). Unlike plt_, these have no
1713 // entry in .glink for lazy resolution, and the relocation section
1714 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1715 // the relocation section may contain relocations against
1716 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1717 // relocation section will appear at the end of other dynamic
1718 // relocations, so that ld.so applies these relocations after other
1719 // dynamic relocations. In a static executable, the relocation
1720 // section is emitted and marked with __rela_iplt_start and
1721 // __rela_iplt_end symbols.
1722 Output_data_plt_powerpc<size, big_endian>* iplt_;
1723 // A PLT style section for local, non-ifunc symbols
1724 Output_data_plt_powerpc<size, big_endian>* lplt_;
1725 // Section holding long branch destinations.
1726 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1727 // The .glink section.
1728 Output_data_glink<size, big_endian>* glink_;
1729 // The dynamic reloc section.
1730 Reloc_section* rela_dyn_;
1731 // Relocs saved to avoid a COPY reloc.
1732 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1733 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1734 unsigned int tlsld_got_offset_;
1735
1736 Stub_tables stub_tables_;
1737 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1738 Branch_lookup_table branch_lookup_table_;
1739
1740 typedef std::vector<Branch_info> Branches;
1741 Branches branch_info_;
1742 Tocsave_loc tocsave_loc_;
1743
1744 bool power10_relocs_;
1745 bool plt_thread_safe_;
1746 bool plt_localentry0_;
1747 bool plt_localentry0_init_;
1748 bool has_localentry0_;
1749 bool has_tls_get_addr_opt_;
1750 bool no_tprel_opt_;
1751
1752 bool relax_failed_;
1753 int relax_fail_count_;
1754 int32_t stub_group_size_;
1755
1756 Output_data_save_res<size, big_endian> *savres_section_;
1757
1758 // The "__tls_get_addr" symbol, if present
1759 Symbol* tls_get_addr_;
1760 // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1761 Symbol* tls_get_addr_opt_;
1762
1763 // Attributes in output.
1764 Attributes_section_data* attributes_section_data_;
1765
1766 // Last input file to change various attribute tags
1767 const char* last_fp_;
1768 const char* last_ld_;
1769 const char* last_vec_;
1770 const char* last_struct_;
1771 };
1772
1773 template<>
1774 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1775 {
1776 32, // size
1777 true, // is_big_endian
1778 elfcpp::EM_PPC, // machine_code
1779 false, // has_make_symbol
1780 false, // has_resolve
1781 false, // has_code_fill
1782 true, // is_default_stack_executable
1783 false, // can_icf_inline_merge_sections
1784 '\0', // wrap_char
1785 "/usr/lib/ld.so.1", // dynamic_linker
1786 0x10000000, // default_text_segment_address
1787 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1788 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1789 false, // isolate_execinstr
1790 0, // rosegment_gap
1791 elfcpp::SHN_UNDEF, // small_common_shndx
1792 elfcpp::SHN_UNDEF, // large_common_shndx
1793 0, // small_common_section_flags
1794 0, // large_common_section_flags
1795 NULL, // attributes_section
1796 NULL, // attributes_vendor
1797 "_start", // entry_symbol_name
1798 32, // hash_entry_size
1799 elfcpp::SHT_PROGBITS, // unwind_section_type
1800 };
1801
1802 template<>
1803 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1804 {
1805 32, // size
1806 false, // is_big_endian
1807 elfcpp::EM_PPC, // machine_code
1808 false, // has_make_symbol
1809 false, // has_resolve
1810 false, // has_code_fill
1811 true, // is_default_stack_executable
1812 false, // can_icf_inline_merge_sections
1813 '\0', // wrap_char
1814 "/usr/lib/ld.so.1", // dynamic_linker
1815 0x10000000, // default_text_segment_address
1816 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1817 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1818 false, // isolate_execinstr
1819 0, // rosegment_gap
1820 elfcpp::SHN_UNDEF, // small_common_shndx
1821 elfcpp::SHN_UNDEF, // large_common_shndx
1822 0, // small_common_section_flags
1823 0, // large_common_section_flags
1824 NULL, // attributes_section
1825 NULL, // attributes_vendor
1826 "_start", // entry_symbol_name
1827 32, // hash_entry_size
1828 elfcpp::SHT_PROGBITS, // unwind_section_type
1829 };
1830
1831 template<>
1832 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1833 {
1834 64, // size
1835 true, // is_big_endian
1836 elfcpp::EM_PPC64, // machine_code
1837 false, // has_make_symbol
1838 true, // has_resolve
1839 false, // has_code_fill
1840 false, // is_default_stack_executable
1841 false, // can_icf_inline_merge_sections
1842 '\0', // wrap_char
1843 "/usr/lib/ld.so.1", // dynamic_linker
1844 0x10000000, // default_text_segment_address
1845 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1846 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1847 false, // isolate_execinstr
1848 0, // rosegment_gap
1849 elfcpp::SHN_UNDEF, // small_common_shndx
1850 elfcpp::SHN_UNDEF, // large_common_shndx
1851 0, // small_common_section_flags
1852 0, // large_common_section_flags
1853 NULL, // attributes_section
1854 NULL, // attributes_vendor
1855 "_start", // entry_symbol_name
1856 32, // hash_entry_size
1857 elfcpp::SHT_PROGBITS, // unwind_section_type
1858 };
1859
1860 template<>
1861 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1862 {
1863 64, // size
1864 false, // is_big_endian
1865 elfcpp::EM_PPC64, // machine_code
1866 false, // has_make_symbol
1867 true, // has_resolve
1868 false, // has_code_fill
1869 false, // is_default_stack_executable
1870 false, // can_icf_inline_merge_sections
1871 '\0', // wrap_char
1872 "/usr/lib/ld.so.1", // dynamic_linker
1873 0x10000000, // default_text_segment_address
1874 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1875 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1876 false, // isolate_execinstr
1877 0, // rosegment_gap
1878 elfcpp::SHN_UNDEF, // small_common_shndx
1879 elfcpp::SHN_UNDEF, // large_common_shndx
1880 0, // small_common_section_flags
1881 0, // large_common_section_flags
1882 NULL, // attributes_section
1883 NULL, // attributes_vendor
1884 "_start", // entry_symbol_name
1885 32, // hash_entry_size
1886 elfcpp::SHT_PROGBITS, // unwind_section_type
1887 };
1888
1889 template<int size>
1890 inline bool
1891 is_branch_reloc(unsigned int r_type)
1892 {
1893 return (r_type == elfcpp::R_POWERPC_REL24
1894 || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
1895 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC
1896 || r_type == elfcpp::R_PPC_PLTREL24
1897 || r_type == elfcpp::R_PPC_LOCAL24PC
1898 || r_type == elfcpp::R_POWERPC_REL14
1899 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1900 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1901 || r_type == elfcpp::R_POWERPC_ADDR24
1902 || r_type == elfcpp::R_POWERPC_ADDR14
1903 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1904 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1905 }
1906
1907 // Reloc resolves to plt entry.
1908 template<int size>
1909 inline bool
1910 is_plt16_reloc(unsigned int r_type)
1911 {
1912 return (r_type == elfcpp::R_POWERPC_PLT16_LO
1913 || r_type == elfcpp::R_POWERPC_PLT16_HI
1914 || r_type == elfcpp::R_POWERPC_PLT16_HA
1915 || (size == 64 && r_type == elfcpp::R_PPC64_PLT16_LO_DS));
1916 }
1917
1918 // GOT_TYPE_STANDARD or GOT_TYPE_SMALL (ie. not TLS) GOT relocs
1919 inline bool
1920 is_got_reloc(unsigned int r_type)
1921 {
1922 return (r_type == elfcpp::R_POWERPC_GOT16
1923 || r_type == elfcpp::R_POWERPC_GOT16_LO
1924 || r_type == elfcpp::R_POWERPC_GOT16_HI
1925 || r_type == elfcpp::R_POWERPC_GOT16_HA
1926 || r_type == elfcpp::R_PPC64_GOT16_DS
1927 || r_type == elfcpp::R_PPC64_GOT16_LO_DS
1928 || r_type == elfcpp::R_PPC64_GOT_PCREL34);
1929 }
1930
1931 // If INSN is an opcode that may be used with an @tls operand, return
1932 // the transformed insn for TLS optimisation, otherwise return 0. If
1933 // REG is non-zero only match an insn with RB or RA equal to REG.
1934 uint32_t
1935 at_tls_transform(uint32_t insn, unsigned int reg)
1936 {
1937 if ((insn & (0x3f << 26)) != 31 << 26)
1938 return 0;
1939
1940 unsigned int rtra;
1941 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1942 rtra = insn & ((1 << 26) - (1 << 16));
1943 else if (((insn >> 16) & 0x1f) == reg)
1944 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1945 else
1946 return 0;
1947
1948 if ((insn & (0x3ff << 1)) == 266 << 1)
1949 // add -> addi
1950 insn = 14 << 26;
1951 else if ((insn & (0x1f << 1)) == 23 << 1
1952 && ((insn & (0x1f << 6)) < 14 << 6
1953 || ((insn & (0x1f << 6)) >= 16 << 6
1954 && (insn & (0x1f << 6)) < 24 << 6)))
1955 // load and store indexed -> dform
1956 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1957 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1958 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1959 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1960 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1961 // lwax -> lwa
1962 insn = (58 << 26) | 2;
1963 else
1964 return 0;
1965 insn |= rtra;
1966 return insn;
1967 }
1968
1969
1970 template<int size, bool big_endian>
1971 class Powerpc_relocate_functions
1972 {
1973 public:
1974 enum Overflow_check
1975 {
1976 CHECK_NONE,
1977 CHECK_SIGNED,
1978 CHECK_UNSIGNED,
1979 CHECK_BITFIELD,
1980 CHECK_LOW_INSN,
1981 CHECK_HIGH_INSN
1982 };
1983
1984 enum Status
1985 {
1986 STATUS_OK,
1987 STATUS_OVERFLOW
1988 };
1989
1990 private:
1991 typedef Powerpc_relocate_functions<size, big_endian> This;
1992 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1993 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1994
1995 template<int valsize>
1996 static inline bool
1997 has_overflow_signed(Address value)
1998 {
1999 // limit = 1 << (valsize - 1) without shift count exceeding size of type
2000 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
2001 limit <<= ((valsize - 1) >> 1);
2002 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
2003 return value + limit > (limit << 1) - 1;
2004 }
2005
2006 template<int valsize>
2007 static inline bool
2008 has_overflow_unsigned(Address value)
2009 {
2010 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
2011 limit <<= ((valsize - 1) >> 1);
2012 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
2013 return value > (limit << 1) - 1;
2014 }
2015
2016 template<int valsize>
2017 static inline bool
2018 has_overflow_bitfield(Address value)
2019 {
2020 return (has_overflow_unsigned<valsize>(value)
2021 && has_overflow_signed<valsize>(value));
2022 }
2023
2024 template<int valsize>
2025 static inline Status
2026 overflowed(Address value, Overflow_check overflow)
2027 {
2028 if (overflow == CHECK_SIGNED)
2029 {
2030 if (has_overflow_signed<valsize>(value))
2031 return STATUS_OVERFLOW;
2032 }
2033 else if (overflow == CHECK_UNSIGNED)
2034 {
2035 if (has_overflow_unsigned<valsize>(value))
2036 return STATUS_OVERFLOW;
2037 }
2038 else if (overflow == CHECK_BITFIELD)
2039 {
2040 if (has_overflow_bitfield<valsize>(value))
2041 return STATUS_OVERFLOW;
2042 }
2043 return STATUS_OK;
2044 }
2045
2046 // Do a simple RELA relocation
2047 template<int fieldsize, int valsize>
2048 static inline Status
2049 rela(unsigned char* view, Address value, Overflow_check overflow)
2050 {
2051 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
2052 Valtype* wv = reinterpret_cast<Valtype*>(view);
2053 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
2054 return overflowed<valsize>(value, overflow);
2055 }
2056
2057 template<int fieldsize, int valsize>
2058 static inline Status
2059 rela(unsigned char* view,
2060 unsigned int right_shift,
2061 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
2062 Address value,
2063 Overflow_check overflow)
2064 {
2065 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
2066 Valtype* wv = reinterpret_cast<Valtype*>(view);
2067 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
2068 if (overflow == CHECK_SIGNED)
2069 value = static_cast<SignedAddress>(value) >> right_shift;
2070 else
2071 value = value >> right_shift;
2072 Valtype reloc = value;
2073 val &= ~dst_mask;
2074 reloc &= dst_mask;
2075 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
2076 return overflowed<valsize>(value, overflow);
2077 }
2078
2079 // Do a simple RELA relocation, unaligned.
2080 template<int fieldsize, int valsize>
2081 static inline Status
2082 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
2083 {
2084 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
2085 return overflowed<valsize>(value, overflow);
2086 }
2087
2088 template<int fieldsize, int valsize>
2089 static inline Status
2090 rela_ua(unsigned char* view,
2091 unsigned int right_shift,
2092 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
2093 Address value,
2094 Overflow_check overflow)
2095 {
2096 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
2097 Valtype;
2098 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
2099 if (overflow == CHECK_SIGNED)
2100 value = static_cast<SignedAddress>(value) >> right_shift;
2101 else
2102 value = value >> right_shift;
2103 Valtype reloc = value;
2104 val &= ~dst_mask;
2105 reloc &= dst_mask;
2106 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
2107 return overflowed<valsize>(value, overflow);
2108 }
2109
2110 public:
2111 // R_PPC64_ADDR64: (Symbol + Addend)
2112 static inline void
2113 addr64(unsigned char* view, Address value)
2114 { This::template rela<64,64>(view, value, CHECK_NONE); }
2115
2116 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
2117 static inline void
2118 addr64_u(unsigned char* view, Address value)
2119 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
2120
2121 // R_POWERPC_ADDR32: (Symbol + Addend)
2122 static inline Status
2123 addr32(unsigned char* view, Address value, Overflow_check overflow)
2124 { return This::template rela<32,32>(view, value, overflow); }
2125
2126 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
2127 static inline Status
2128 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
2129 { return This::template rela_ua<32,32>(view, value, overflow); }
2130
2131 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
2132 static inline Status
2133 addr24(unsigned char* view, Address value, Overflow_check overflow)
2134 {
2135 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
2136 value, overflow);
2137 if (overflow != CHECK_NONE && (value & 3) != 0)
2138 stat = STATUS_OVERFLOW;
2139 return stat;
2140 }
2141
2142 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
2143 static inline Status
2144 addr16(unsigned char* view, Address value, Overflow_check overflow)
2145 { return This::template rela<16,16>(view, value, overflow); }
2146
2147 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
2148 static inline Status
2149 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
2150 { return This::template rela_ua<16,16>(view, value, overflow); }
2151
2152 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
2153 static inline Status
2154 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
2155 {
2156 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
2157 if ((value & 3) != 0)
2158 stat = STATUS_OVERFLOW;
2159 return stat;
2160 }
2161
2162 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
2163 static inline Status
2164 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
2165 {
2166 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
2167 if ((value & 15) != 0)
2168 stat = STATUS_OVERFLOW;
2169 return stat;
2170 }
2171
2172 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
2173 static inline void
2174 addr16_hi(unsigned char* view, Address value)
2175 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
2176
2177 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
2178 static inline void
2179 addr16_ha(unsigned char* view, Address value)
2180 { This::addr16_hi(view, value + 0x8000); }
2181
2182 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
2183 static inline void
2184 addr16_hi2(unsigned char* view, Address value)
2185 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
2186
2187 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
2188 static inline void
2189 addr16_ha2(unsigned char* view, Address value)
2190 { This::addr16_hi2(view, value + 0x8000); }
2191
2192 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
2193 static inline void
2194 addr16_hi3(unsigned char* view, Address value)
2195 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
2196
2197 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
2198 static inline void
2199 addr16_ha3(unsigned char* view, Address value)
2200 { This::addr16_hi3(view, value + 0x8000); }
2201
2202 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
2203 static inline Status
2204 addr14(unsigned char* view, Address value, Overflow_check overflow)
2205 {
2206 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2207 if (overflow != CHECK_NONE && (value & 3) != 0)
2208 stat = STATUS_OVERFLOW;
2209 return stat;
2210 }
2211
2212 // R_POWERPC_REL16DX_HA
2213 static inline Status
2214 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2215 {
2216 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2217 Valtype* wv = reinterpret_cast<Valtype*>(view);
2218 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2219 value += 0x8000;
2220 value = static_cast<SignedAddress>(value) >> 16;
2221 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2222 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2223 return overflowed<16>(value, overflow);
2224 }
2225
2226 // R_PPC64_D34
2227 static inline Status
2228 addr34(unsigned char *view, uint64_t value, Overflow_check overflow)
2229 {
2230 Status stat = This::template rela<32,18>(view, 16, 0x3ffff,
2231 value, overflow);
2232 This::rela<32,16>(view + 4, 0, 0xffff, value, CHECK_NONE);
2233 return stat;
2234 }
2235
2236 // R_PPC64_D34_HI30
2237 static inline void
2238 addr34_hi(unsigned char *view, uint64_t value)
2239 { This::addr34(view, value >> 34, CHECK_NONE);}
2240
2241 // R_PPC64_D34_HA30
2242 static inline void
2243 addr34_ha(unsigned char *view, uint64_t value)
2244 { This::addr34_hi(view, value + (1ULL << 33));}
2245
2246 // R_PPC64_D28
2247 static inline Status
2248 addr28(unsigned char *view, uint64_t value, Overflow_check overflow)
2249 {
2250 Status stat = This::template rela<32,12>(view, 16, 0xfff,
2251 value, overflow);
2252 This::rela<32,16>(view + 4, 0, 0xffff, value, CHECK_NONE);
2253 return stat;
2254 }
2255
2256 // R_PPC64_ADDR16_HIGHER34
2257 static inline void
2258 addr16_higher34(unsigned char* view, uint64_t value)
2259 { This::addr16(view, value >> 34, CHECK_NONE); }
2260
2261 // R_PPC64_ADDR16_HIGHERA34
2262 static inline void
2263 addr16_highera34(unsigned char* view, uint64_t value)
2264 { This::addr16_higher34(view, value + (1ULL << 33)); }
2265
2266 // R_PPC64_ADDR16_HIGHEST34
2267 static inline void
2268 addr16_highest34(unsigned char* view, uint64_t value)
2269 { This::addr16(view, value >> 50, CHECK_NONE); }
2270
2271 // R_PPC64_ADDR16_HIGHESTA34
2272 static inline void
2273 addr16_highesta34(unsigned char* view, uint64_t value)
2274 { This::addr16_highest34(view, value + (1ULL << 33)); }
2275 };
2276
2277 // Set ABI version for input and output.
2278
2279 template<int size, bool big_endian>
2280 void
2281 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2282 {
2283 this->e_flags_ |= ver;
2284 if (this->abiversion() != 0)
2285 {
2286 Target_powerpc<size, big_endian>* target =
2287 static_cast<Target_powerpc<size, big_endian>*>(
2288 parameters->sized_target<size, big_endian>());
2289 if (target->abiversion() == 0)
2290 target->set_abiversion(this->abiversion());
2291 else if (target->abiversion() != this->abiversion())
2292 gold_error(_("%s: ABI version %d is not compatible "
2293 "with ABI version %d output"),
2294 this->name().c_str(),
2295 this->abiversion(), target->abiversion());
2296
2297 }
2298 }
2299
2300 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2301 // relocatable object, if such sections exists.
2302
2303 template<int size, bool big_endian>
2304 bool
2305 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2306 Read_symbols_data* sd)
2307 {
2308 const unsigned char* const pshdrs = sd->section_headers->data();
2309 const unsigned char* namesu = sd->section_names->data();
2310 const char* names = reinterpret_cast<const char*>(namesu);
2311 section_size_type names_size = sd->section_names_size;
2312 const unsigned char* s;
2313
2314 s = this->template find_shdr<size, big_endian>(pshdrs,
2315 size == 32 ? ".got2" : ".opd",
2316 names, names_size, NULL);
2317 if (s != NULL)
2318 {
2319 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2320 this->special_ = ndx;
2321 if (size == 64)
2322 {
2323 if (this->abiversion() == 0)
2324 this->set_abiversion(1);
2325 else if (this->abiversion() > 1)
2326 gold_error(_("%s: .opd invalid in abiv%d"),
2327 this->name().c_str(), this->abiversion());
2328 }
2329 }
2330 if (size == 64)
2331 {
2332 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2333 names, names_size, NULL);
2334 if (s != NULL)
2335 {
2336 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2337 this->relatoc_ = ndx;
2338 typename elfcpp::Shdr<size, big_endian> shdr(s);
2339 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2340 }
2341 }
2342 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2343 }
2344
2345 // Examine .rela.opd to build info about function entry points.
2346
2347 template<int size, bool big_endian>
2348 void
2349 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2350 size_t reloc_count,
2351 const unsigned char* prelocs,
2352 const unsigned char* plocal_syms)
2353 {
2354 if (size == 64)
2355 {
2356 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2357 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2358 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2359 Address expected_off = 0;
2360 bool regular = true;
2361 unsigned int opd_ent_size = 0;
2362
2363 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2364 {
2365 Reltype reloc(prelocs);
2366 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2367 = reloc.get_r_info();
2368 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2369 if (r_type == elfcpp::R_PPC64_ADDR64)
2370 {
2371 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2372 typename elfcpp::Elf_types<size>::Elf_Addr value;
2373 bool is_ordinary;
2374 unsigned int shndx;
2375 if (r_sym < this->local_symbol_count())
2376 {
2377 typename elfcpp::Sym<size, big_endian>
2378 lsym(plocal_syms + r_sym * sym_size);
2379 shndx = lsym.get_st_shndx();
2380 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2381 value = lsym.get_st_value();
2382 }
2383 else
2384 shndx = this->symbol_section_and_value(r_sym, &value,
2385 &is_ordinary);
2386 this->set_opd_ent(reloc.get_r_offset(), shndx,
2387 value + reloc.get_r_addend());
2388 if (i == 2)
2389 {
2390 expected_off = reloc.get_r_offset();
2391 opd_ent_size = expected_off;
2392 }
2393 else if (expected_off != reloc.get_r_offset())
2394 regular = false;
2395 expected_off += opd_ent_size;
2396 }
2397 else if (r_type == elfcpp::R_PPC64_TOC)
2398 {
2399 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2400 regular = false;
2401 }
2402 else
2403 {
2404 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2405 this->name().c_str(), r_type);
2406 regular = false;
2407 }
2408 }
2409 if (reloc_count <= 2)
2410 opd_ent_size = this->section_size(this->opd_shndx());
2411 if (opd_ent_size != 24 && opd_ent_size != 16)
2412 regular = false;
2413 if (!regular)
2414 {
2415 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2416 this->name().c_str());
2417 opd_ent_size = 0;
2418 }
2419 }
2420 }
2421
2422 // Returns true if a code sequence loading the TOC entry at VALUE
2423 // relative to the TOC pointer can be converted into code calculating
2424 // a TOC pointer relative offset.
2425 // If so, the TOC pointer relative offset is stored to VALUE.
2426
2427 template<int size, bool big_endian>
2428 bool
2429 Powerpc_relobj<size, big_endian>::make_toc_relative(
2430 Target_powerpc<size, big_endian>* target,
2431 Address* value)
2432 {
2433 if (size != 64)
2434 return false;
2435
2436 // With -mcmodel=medium code it is quite possible to have
2437 // toc-relative relocs referring to objects outside the TOC.
2438 // Don't try to look at a non-existent TOC.
2439 if (this->toc_shndx() == 0
2440 || this->output_section(this->toc_shndx()) == 0)
2441 return false;
2442
2443 // Convert VALUE back to an address by adding got_base (see below),
2444 // then to an offset in the TOC by subtracting the TOC output
2445 // section address and the TOC output offset.
2446 Address off = (*value + target->toc_pointer()
2447 - this->output_section(this->toc_shndx())->address()
2448 - this->output_section_offset(this->toc_shndx()));
2449 // Is this offset in the TOC? -mcmodel=medium code may be using
2450 // TOC relative access to variables outside the TOC. Those of
2451 // course can't be optimized. We also don't try to optimize code
2452 // that is using a different object's TOC.
2453 if (off >= this->section_size(this->toc_shndx()))
2454 return false;
2455
2456 if (this->no_toc_opt(off))
2457 return false;
2458
2459 section_size_type vlen;
2460 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2461 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2462 // The TOC pointer
2463 Address got_base = target->toc_pointer();
2464 addr -= got_base;
2465 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2466 return false;
2467
2468 *value = addr;
2469 return true;
2470 }
2471
2472 template<int size, bool big_endian>
2473 bool
2474 Powerpc_relobj<size, big_endian>::make_got_relative(
2475 Target_powerpc<size, big_endian>* target,
2476 const Symbol_value<size>* psymval,
2477 Address addend,
2478 Address* value)
2479 {
2480 Address addr = psymval->value(this, addend);
2481 Address got_base = target->toc_pointer();
2482 addr -= got_base;
2483 if (addr + 0x80008000 > 0xffffffff)
2484 return false;
2485
2486 *value = addr;
2487 return true;
2488 }
2489
2490 // Perform the Sized_relobj_file method, then set up opd info from
2491 // .opd relocs.
2492
2493 template<int size, bool big_endian>
2494 void
2495 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2496 {
2497 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2498 if (size == 64)
2499 {
2500 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2501 p != rd->relocs.end();
2502 ++p)
2503 {
2504 if (p->data_shndx == this->opd_shndx())
2505 {
2506 uint64_t opd_size = this->section_size(this->opd_shndx());
2507 gold_assert(opd_size == static_cast<size_t>(opd_size));
2508 if (opd_size != 0)
2509 {
2510 this->init_opd(opd_size);
2511 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2512 rd->local_symbols->data());
2513 }
2514 break;
2515 }
2516 }
2517 }
2518 }
2519
2520 // Read the symbols then set up st_other vector.
2521
2522 template<int size, bool big_endian>
2523 void
2524 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2525 {
2526 this->base_read_symbols(sd);
2527 if (this->input_file()->format() != Input_file::FORMAT_ELF)
2528 return;
2529 if (size == 64)
2530 {
2531 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2532 const unsigned char* const pshdrs = sd->section_headers->data();
2533 const unsigned int loccount = this->do_local_symbol_count();
2534 if (loccount != 0)
2535 {
2536 this->st_other_.resize(loccount);
2537 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2538 off_t locsize = loccount * sym_size;
2539 const unsigned int symtab_shndx = this->symtab_shndx();
2540 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2541 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2542 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2543 locsize, true, false);
2544 psyms += sym_size;
2545 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2546 {
2547 elfcpp::Sym<size, big_endian> sym(psyms);
2548 unsigned char st_other = sym.get_st_other();
2549 this->st_other_[i] = st_other;
2550 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2551 {
2552 if (this->abiversion() == 0)
2553 this->set_abiversion(2);
2554 else if (this->abiversion() < 2)
2555 gold_error(_("%s: local symbol %d has invalid st_other"
2556 " for ABI version 1"),
2557 this->name().c_str(), i);
2558 }
2559 }
2560 }
2561 }
2562
2563 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2564 const unsigned char* ps = sd->section_headers->data() + shdr_size;
2565 bool merge_attributes = false;
2566 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
2567 {
2568 elfcpp::Shdr<size, big_endian> shdr(ps);
2569 switch (shdr.get_sh_type())
2570 {
2571 case elfcpp::SHT_GNU_ATTRIBUTES:
2572 {
2573 gold_assert(this->attributes_section_data_ == NULL);
2574 section_offset_type section_offset = shdr.get_sh_offset();
2575 section_size_type section_size =
2576 convert_to_section_size_type(shdr.get_sh_size());
2577 const unsigned char* view =
2578 this->get_view(section_offset, section_size, true, false);
2579 this->attributes_section_data_ =
2580 new Attributes_section_data(view, section_size);
2581 }
2582 break;
2583
2584 case elfcpp::SHT_SYMTAB:
2585 {
2586 // Sometimes an object has no contents except the section
2587 // name string table and an empty symbol table with the
2588 // undefined symbol. We don't want to merge
2589 // processor-specific flags from such an object.
2590 const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
2591 elfcpp::Elf_sizes<size>::sym_size;
2592 if (shdr.get_sh_size() > sym_size)
2593 merge_attributes = true;
2594 }
2595 break;
2596
2597 case elfcpp::SHT_STRTAB:
2598 break;
2599
2600 default:
2601 merge_attributes = true;
2602 break;
2603 }
2604 }
2605
2606 if (!merge_attributes)
2607 {
2608 // Should rarely happen.
2609 delete this->attributes_section_data_;
2610 this->attributes_section_data_ = NULL;
2611 }
2612 }
2613
2614 template<int size, bool big_endian>
2615 void
2616 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2617 {
2618 this->e_flags_ |= ver;
2619 if (this->abiversion() != 0)
2620 {
2621 Target_powerpc<size, big_endian>* target =
2622 static_cast<Target_powerpc<size, big_endian>*>(
2623 parameters->sized_target<size, big_endian>());
2624 if (target->abiversion() == 0)
2625 target->set_abiversion(this->abiversion());
2626 else if (target->abiversion() != this->abiversion())
2627 gold_error(_("%s: ABI version %d is not compatible "
2628 "with ABI version %d output"),
2629 this->name().c_str(),
2630 this->abiversion(), target->abiversion());
2631
2632 }
2633 }
2634
2635 // Call Sized_dynobj::base_read_symbols to read the symbols then
2636 // read .opd from a dynamic object, filling in opd_ent_ vector,
2637
2638 template<int size, bool big_endian>
2639 void
2640 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2641 {
2642 this->base_read_symbols(sd);
2643 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2644 const unsigned char* ps =
2645 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
2646 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
2647 {
2648 elfcpp::Shdr<size, big_endian> shdr(ps);
2649 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
2650 {
2651 section_offset_type section_offset = shdr.get_sh_offset();
2652 section_size_type section_size =
2653 convert_to_section_size_type(shdr.get_sh_size());
2654 const unsigned char* view =
2655 this->get_view(section_offset, section_size, true, false);
2656 this->attributes_section_data_ =
2657 new Attributes_section_data(view, section_size);
2658 break;
2659 }
2660 }
2661 if (size == 64)
2662 {
2663 const unsigned char* const pshdrs = sd->section_headers->data();
2664 const unsigned char* namesu = sd->section_names->data();
2665 const char* names = reinterpret_cast<const char*>(namesu);
2666 const unsigned char* s = NULL;
2667 const unsigned char* opd;
2668 section_size_type opd_size;
2669
2670 // Find and read .opd section.
2671 while (1)
2672 {
2673 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2674 sd->section_names_size,
2675 s);
2676 if (s == NULL)
2677 return;
2678
2679 typename elfcpp::Shdr<size, big_endian> shdr(s);
2680 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2681 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2682 {
2683 if (this->abiversion() == 0)
2684 this->set_abiversion(1);
2685 else if (this->abiversion() > 1)
2686 gold_error(_("%s: .opd invalid in abiv%d"),
2687 this->name().c_str(), this->abiversion());
2688
2689 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2690 this->opd_address_ = shdr.get_sh_addr();
2691 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2692 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2693 true, false);
2694 break;
2695 }
2696 }
2697
2698 // Build set of executable sections.
2699 // Using a set is probably overkill. There is likely to be only
2700 // a few executable sections, typically .init, .text and .fini,
2701 // and they are generally grouped together.
2702 typedef std::set<Sec_info> Exec_sections;
2703 Exec_sections exec_sections;
2704 s = pshdrs;
2705 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2706 {
2707 typename elfcpp::Shdr<size, big_endian> shdr(s);
2708 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2709 && ((shdr.get_sh_flags()
2710 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2711 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2712 && shdr.get_sh_size() != 0)
2713 {
2714 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2715 shdr.get_sh_size(), i));
2716 }
2717 }
2718 if (exec_sections.empty())
2719 return;
2720
2721 // Look over the OPD entries. This is complicated by the fact
2722 // that some binaries will use two-word entries while others
2723 // will use the standard three-word entries. In most cases
2724 // the third word (the environment pointer for languages like
2725 // Pascal) is unused and will be zero. If the third word is
2726 // used it should not be pointing into executable sections,
2727 // I think.
2728 this->init_opd(opd_size);
2729 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2730 {
2731 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2732 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2733 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2734 if (val == 0)
2735 // Chances are that this is the third word of an OPD entry.
2736 continue;
2737 typename Exec_sections::const_iterator e
2738 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2739 if (e != exec_sections.begin())
2740 {
2741 --e;
2742 if (e->start <= val && val < e->start + e->len)
2743 {
2744 // We have an address in an executable section.
2745 // VAL ought to be the function entry, set it up.
2746 this->set_opd_ent(p - opd, e->shndx, val);
2747 // Skip second word of OPD entry, the TOC pointer.
2748 p += 8;
2749 }
2750 }
2751 // If we didn't match any executable sections, we likely
2752 // have a non-zero third word in the OPD entry.
2753 }
2754 }
2755 }
2756
2757 // Relocate sections.
2758
2759 template<int size, bool big_endian>
2760 void
2761 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2762 const Symbol_table* symtab, const Layout* layout,
2763 const unsigned char* pshdrs, Output_file* of,
2764 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2765 {
2766 unsigned int start = 1;
2767 if (size == 64
2768 && this->relatoc_ != 0
2769 && !parameters->options().relocatable())
2770 {
2771 // Relocate .toc first.
2772 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2773 this->relatoc_, this->relatoc_);
2774 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2775 1, this->relatoc_ - 1);
2776 start = this->relatoc_ + 1;
2777 }
2778 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2779 start, this->shnum() - 1);
2780 }
2781
2782 // Set up some symbols.
2783
2784 template<int size, bool big_endian>
2785 void
2786 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2787 Symbol_table* symtab,
2788 Layout* layout)
2789 {
2790 if (size == 32)
2791 {
2792 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2793 // undefined when scanning relocs (and thus requires
2794 // non-relative dynamic relocs). The proper value will be
2795 // updated later.
2796 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2797 if (gotsym != NULL && gotsym->is_undefined())
2798 {
2799 Target_powerpc<size, big_endian>* target =
2800 static_cast<Target_powerpc<size, big_endian>*>(
2801 parameters->sized_target<size, big_endian>());
2802 Output_data_got_powerpc<size, big_endian>* got
2803 = target->got_section(symtab, layout, GOT_TYPE_SMALL);
2804 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2805 Symbol_table::PREDEFINED,
2806 got, 0, 0,
2807 elfcpp::STT_OBJECT,
2808 elfcpp::STB_LOCAL,
2809 elfcpp::STV_HIDDEN, 0,
2810 false, false);
2811 }
2812
2813 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2814 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2815 if (sdasym != NULL && sdasym->is_undefined())
2816 {
2817 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2818 Output_section* os
2819 = layout->add_output_section_data(".sdata", 0,
2820 elfcpp::SHF_ALLOC
2821 | elfcpp::SHF_WRITE,
2822 sdata, ORDER_SMALL_DATA, false);
2823 symtab->define_in_output_data("_SDA_BASE_", NULL,
2824 Symbol_table::PREDEFINED,
2825 os, 32768, 0, elfcpp::STT_OBJECT,
2826 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2827 0, false, false);
2828 }
2829 }
2830 else
2831 {
2832 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2833 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2834 if (gotsym != NULL && gotsym->is_undefined())
2835 {
2836 Target_powerpc<size, big_endian>* target =
2837 static_cast<Target_powerpc<size, big_endian>*>(
2838 parameters->sized_target<size, big_endian>());
2839 Output_data_got_powerpc<size, big_endian>* got
2840 = target->got_section(symtab, layout, GOT_TYPE_SMALL);
2841 symtab->define_in_output_data(".TOC.", NULL,
2842 Symbol_table::PREDEFINED,
2843 got, 0x8000, 0,
2844 elfcpp::STT_OBJECT,
2845 elfcpp::STB_LOCAL,
2846 elfcpp::STV_HIDDEN, 0,
2847 false, false);
2848 }
2849 }
2850
2851 this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2852 if (parameters->options().tls_get_addr_optimize()
2853 && this->tls_get_addr_ != NULL
2854 && this->tls_get_addr_->in_reg())
2855 this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2856 if (this->tls_get_addr_opt_ != NULL)
2857 {
2858 if (this->tls_get_addr_->is_undefined()
2859 || this->tls_get_addr_->is_from_dynobj())
2860 {
2861 // Make it seem as if references to __tls_get_addr are
2862 // really to __tls_get_addr_opt, so the latter symbol is
2863 // made dynamic, not the former.
2864 this->tls_get_addr_->clear_in_reg();
2865 this->tls_get_addr_opt_->set_in_reg();
2866 }
2867 // We have a non-dynamic definition for __tls_get_addr.
2868 // Make __tls_get_addr_opt the same, if it does not already have
2869 // a non-dynamic definition.
2870 else if (this->tls_get_addr_opt_->is_undefined()
2871 || this->tls_get_addr_opt_->is_from_dynobj())
2872 {
2873 Sized_symbol<size>* from
2874 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2875 Sized_symbol<size>* to
2876 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2877 symtab->clone<size>(to, from);
2878 }
2879 }
2880 }
2881
2882 // Set up PowerPC target specific relobj.
2883
2884 template<int size, bool big_endian>
2885 Object*
2886 Target_powerpc<size, big_endian>::do_make_elf_object(
2887 const std::string& name,
2888 Input_file* input_file,
2889 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2890 {
2891 int et = ehdr.get_e_type();
2892 // ET_EXEC files are valid input for --just-symbols/-R,
2893 // and we treat them as relocatable objects.
2894 if (et == elfcpp::ET_REL
2895 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2896 {
2897 Powerpc_relobj<size, big_endian>* obj =
2898 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2899 obj->setup();
2900 return obj;
2901 }
2902 else if (et == elfcpp::ET_DYN)
2903 {
2904 Powerpc_dynobj<size, big_endian>* obj =
2905 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2906 obj->setup();
2907 return obj;
2908 }
2909 else
2910 {
2911 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2912 return NULL;
2913 }
2914 }
2915
2916 template<int size, bool big_endian>
2917 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2918 {
2919 public:
2920 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2921 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2922
2923 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout,
2924 Got_type got_type)
2925 : Output_data_got<size, big_endian>(),
2926 symtab_(symtab), layout_(layout),
2927 header_ent_cnt_(size == 32 ? 3 : 1),
2928 header_index_(size == 32 ? 0x2000 : -1u)
2929 {
2930 if (size == 64)
2931 this->set_addralign(256);
2932 if (size == 64 && (got_type & GOT_TYPE_SMALL))
2933 this->make_header();
2934 }
2935
2936 // Override all the Output_data_got methods we use so as to first call
2937 // reserve_ent().
2938 bool
2939 add_global(Symbol* gsym, unsigned int got_type, uint64_t addend)
2940 {
2941 this->reserve_ent();
2942 return Output_data_got<size, big_endian>::add_global(gsym, got_type,
2943 addend);
2944 }
2945
2946 bool
2947 add_global_plt(Symbol* gsym, unsigned int got_type, uint64_t addend)
2948 {
2949 this->reserve_ent();
2950 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type,
2951 addend);
2952 }
2953
2954 bool
2955 add_global_tls(Symbol* gsym, unsigned int got_type, uint64_t addend)
2956 { return this->add_global_plt(gsym, got_type, addend); }
2957
2958 void
2959 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2960 Output_data_reloc_generic* rel_dyn,
2961 unsigned int r_type, uint64_t addend)
2962 {
2963 this->reserve_ent();
2964 Output_data_got<size, big_endian>::
2965 add_global_with_rel(gsym, got_type, rel_dyn, r_type, addend);
2966 }
2967
2968 void
2969 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2970 Output_data_reloc_generic* rel_dyn,
2971 unsigned int r_type_1, unsigned int r_type_2,
2972 uint64_t addend)
2973 {
2974 if (gsym->has_got_offset(got_type))
2975 return;
2976
2977 this->reserve_ent(2);
2978 Output_data_got<size, big_endian>::
2979 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2,
2980 addend);
2981 }
2982
2983 bool
2984 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
2985 uint64_t addend)
2986 {
2987 this->reserve_ent();
2988 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2989 got_type, addend);
2990 }
2991
2992 bool
2993 add_local_plt(Relobj* object, unsigned int sym_index,
2994 unsigned int got_type, uint64_t addend)
2995 {
2996 this->reserve_ent();
2997 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2998 got_type, addend);
2999 }
3000
3001 bool
3002 add_local_tls(Relobj* object, unsigned int sym_index,
3003 unsigned int got_type, uint64_t addend)
3004 { return this->add_local_plt(object, sym_index, got_type, addend); }
3005
3006 void
3007 add_local_tls_pair(Relobj* object, unsigned int sym_index,
3008 unsigned int got_type,
3009 Output_data_reloc_generic* rel_dyn,
3010 unsigned int r_type, uint64_t addend)
3011 {
3012 if (object->local_has_got_offset(sym_index, got_type, addend))
3013 return;
3014
3015 this->reserve_ent(2);
3016 Output_data_got<size, big_endian>::
3017 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type, addend);
3018 }
3019
3020 unsigned int
3021 add_constant(Valtype constant)
3022 {
3023 this->reserve_ent();
3024 return Output_data_got<size, big_endian>::add_constant(constant);
3025 }
3026
3027 unsigned int
3028 add_constant_pair(Valtype c1, Valtype c2)
3029 {
3030 this->reserve_ent(2);
3031 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
3032 }
3033
3034 // Offset of _GLOBAL_OFFSET_TABLE_ and .TOC. in this section.
3035 unsigned int
3036 g_o_t() const
3037 {
3038 if (size == 32)
3039 return this->got_offset(this->header_index_);
3040 else if (this->header_index_ != -1u)
3041 return this->got_offset(this->header_index_) + 0x8000;
3042 else
3043 gold_unreachable();
3044 }
3045
3046 // Ensure our GOT has a header.
3047 void
3048 set_final_data_size()
3049 {
3050 if (size == 32 && this->header_ent_cnt_ != 0)
3051 this->make_header();
3052 Output_data_got<size, big_endian>::set_final_data_size();
3053 }
3054
3055 // First word of GOT header needs some values that are not
3056 // handled by Output_data_got so poke them in here.
3057 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
3058 void
3059 do_write(Output_file* of)
3060 {
3061 if (this->header_index_ != -1u)
3062 {
3063 Valtype val = 0;
3064 if (size == 32 && this->layout_->dynamic_data() != NULL)
3065 val = this->layout_->dynamic_section()->address();
3066 if (size == 64)
3067 val = this->address() + this->g_o_t();
3068 this->replace_constant(this->header_index_, val);
3069 }
3070 Output_data_got<size, big_endian>::do_write(of);
3071 }
3072
3073 private:
3074 void
3075 reserve_ent(unsigned int cnt = 1)
3076 {
3077 if (size != 32 || this->header_ent_cnt_ == 0)
3078 return;
3079 if (this->num_entries() + cnt > this->header_index_)
3080 this->make_header();
3081 }
3082
3083 void
3084 make_header()
3085 {
3086 this->header_ent_cnt_ = 0;
3087 this->header_index_ = this->num_entries();
3088 if (size == 32)
3089 {
3090 Output_data_got<size, big_endian>::add_constant(0);
3091 Output_data_got<size, big_endian>::add_constant(0);
3092 Output_data_got<size, big_endian>::add_constant(0);
3093
3094 // Define _GLOBAL_OFFSET_TABLE_ at the header
3095 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
3096 if (gotsym != NULL)
3097 {
3098 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
3099 sym->set_value(this->g_o_t());
3100 }
3101 else
3102 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3103 Symbol_table::PREDEFINED,
3104 this, this->g_o_t(), 0,
3105 elfcpp::STT_OBJECT,
3106 elfcpp::STB_LOCAL,
3107 elfcpp::STV_HIDDEN, 0,
3108 false, false);
3109 }
3110 else
3111 Output_data_got<size, big_endian>::add_constant(0);
3112 }
3113
3114 // Stashed pointers.
3115 Symbol_table* symtab_;
3116 Layout* layout_;
3117
3118 // GOT header size.
3119 unsigned int header_ent_cnt_;
3120 // GOT header index.
3121 unsigned int header_index_;
3122 };
3123
3124 // Get the GOT section, creating it if necessary.
3125
3126 template<int size, bool big_endian>
3127 Output_data_got_powerpc<size, big_endian>*
3128 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
3129 Layout* layout,
3130 Got_type got_type)
3131 {
3132 if (this->got_ == NULL)
3133 {
3134 gold_assert(symtab != NULL && layout != NULL);
3135
3136 this->got_
3137 = new Output_data_got_powerpc<size, big_endian>(symtab, layout,
3138 GOT_TYPE_SMALL);
3139
3140 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3141 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3142 this->got_, ORDER_DATA, false);
3143 }
3144
3145 if (size == 32 || (got_type & GOT_TYPE_SMALL))
3146 return this->got_;
3147
3148 if (this->biggot_ == NULL)
3149 {
3150 this->biggot_
3151 = new Output_data_got_powerpc<size, big_endian>(symtab, layout,
3152 GOT_TYPE_STANDARD);
3153
3154 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3155 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3156 this->biggot_, ORDER_DATA, false);
3157 }
3158
3159 return this->biggot_;
3160 }
3161
3162 // Get the dynamic reloc section, creating it if necessary.
3163
3164 template<int size, bool big_endian>
3165 typename Target_powerpc<size, big_endian>::Reloc_section*
3166 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
3167 {
3168 if (this->rela_dyn_ == NULL)
3169 {
3170 gold_assert(layout != NULL);
3171 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3172 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3173 elfcpp::SHF_ALLOC, this->rela_dyn_,
3174 ORDER_DYNAMIC_RELOCS, false);
3175 }
3176 return this->rela_dyn_;
3177 }
3178
3179 // Similarly, but for ifunc symbols get the one for ifunc.
3180
3181 template<int size, bool big_endian>
3182 typename Target_powerpc<size, big_endian>::Reloc_section*
3183 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
3184 Layout* layout,
3185 bool for_ifunc)
3186 {
3187 if (!for_ifunc)
3188 return this->rela_dyn_section(layout);
3189
3190 if (this->iplt_ == NULL)
3191 this->make_iplt_section(symtab, layout);
3192 return this->iplt_->rel_plt();
3193 }
3194
3195 class Stub_control
3196 {
3197 public:
3198 // Determine the stub group size. The group size is the absolute
3199 // value of the parameter --stub-group-size. If --stub-group-size
3200 // is passed a negative value, we restrict stubs to be always after
3201 // the stubbed branches.
3202 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
3203 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
3204 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
3205 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
3206 owner_(NULL), output_section_(NULL)
3207 {
3208 }
3209
3210 // Return true iff input section can be handled by current stub
3211 // group.
3212 bool
3213 can_add_to_stub_group(Output_section* o,
3214 const Output_section::Input_section* i,
3215 bool has14);
3216
3217 const Output_section::Input_section*
3218 owner()
3219 { return owner_; }
3220
3221 Output_section*
3222 output_section()
3223 { return output_section_; }
3224
3225 void
3226 set_output_and_owner(Output_section* o,
3227 const Output_section::Input_section* i)
3228 {
3229 this->output_section_ = o;
3230 this->owner_ = i;
3231 }
3232
3233 private:
3234 typedef enum
3235 {
3236 // Initial state.
3237 NO_GROUP,
3238 // Adding group sections before the stubs.
3239 FINDING_STUB_SECTION,
3240 // Adding group sections after the stubs.
3241 HAS_STUB_SECTION
3242 } State;
3243
3244 uint32_t stub_group_size_;
3245 bool stubs_always_after_branch_;
3246 bool suppress_size_errors_;
3247 // True if a stub group can serve multiple output sections.
3248 bool multi_os_;
3249 State state_;
3250 // Current max size of group. Starts at stub_group_size_ but is
3251 // reduced to stub_group_size_/1024 on seeing a section with
3252 // external conditional branches.
3253 uint32_t group_size_;
3254 uint64_t group_start_addr_;
3255 // owner_ and output_section_ specify the section to which stubs are
3256 // attached. The stubs are placed at the end of this section.
3257 const Output_section::Input_section* owner_;
3258 Output_section* output_section_;
3259 };
3260
3261 // Return true iff input section can be handled by current stub
3262 // group. Sections are presented to this function in order,
3263 // so the first section is the head of the group.
3264
3265 bool
3266 Stub_control::can_add_to_stub_group(Output_section* o,
3267 const Output_section::Input_section* i,
3268 bool has14)
3269 {
3270 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
3271 uint64_t this_size;
3272 uint64_t start_addr = o->address();
3273
3274 if (whole_sec)
3275 // .init and .fini sections are pasted together to form a single
3276 // function. We can't be adding stubs in the middle of the function.
3277 this_size = o->data_size();
3278 else
3279 {
3280 start_addr += i->relobj()->output_section_offset(i->shndx());
3281 this_size = i->data_size();
3282 }
3283
3284 uint64_t end_addr = start_addr + this_size;
3285 uint32_t group_size = this->stub_group_size_;
3286 if (has14)
3287 this->group_size_ = group_size = group_size >> 10;
3288
3289 if (this_size > group_size && !this->suppress_size_errors_)
3290 gold_warning(_("%s:%s exceeds group size"),
3291 i->relobj()->name().c_str(),
3292 i->relobj()->section_name(i->shndx()).c_str());
3293
3294 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
3295 has14 ? " 14bit" : "",
3296 i->relobj()->name().c_str(),
3297 i->relobj()->section_name(i->shndx()).c_str(),
3298 (long long) this_size,
3299 (this->state_ == NO_GROUP
3300 ? this_size
3301 : (long long) end_addr - this->group_start_addr_));
3302
3303 if (this->state_ == NO_GROUP)
3304 {
3305 // Only here on very first use of Stub_control
3306 this->owner_ = i;
3307 this->output_section_ = o;
3308 this->state_ = FINDING_STUB_SECTION;
3309 this->group_size_ = group_size;
3310 this->group_start_addr_ = start_addr;
3311 return true;
3312 }
3313 else if (!this->multi_os_ && this->output_section_ != o)
3314 ;
3315 else if (this->state_ == HAS_STUB_SECTION)
3316 {
3317 // Can we add this section, which is after the stubs, to the
3318 // group?
3319 if (end_addr - this->group_start_addr_ <= this->group_size_)
3320 return true;
3321 }
3322 else if (this->state_ == FINDING_STUB_SECTION)
3323 {
3324 if ((whole_sec && this->output_section_ == o)
3325 || end_addr - this->group_start_addr_ <= this->group_size_)
3326 {
3327 // Stubs are added at the end of "owner_".
3328 this->owner_ = i;
3329 this->output_section_ = o;
3330 return true;
3331 }
3332 // The group before the stubs has reached maximum size.
3333 // Now see about adding sections after the stubs to the
3334 // group. If the current section has a 14-bit branch and
3335 // the group before the stubs exceeds group_size_ (because
3336 // they didn't have 14-bit branches), don't add sections
3337 // after the stubs: The size of stubs for such a large
3338 // group may exceed the reach of a 14-bit branch.
3339 if (!this->stubs_always_after_branch_
3340 && this_size <= this->group_size_
3341 && start_addr - this->group_start_addr_ <= this->group_size_)
3342 {
3343 gold_debug(DEBUG_TARGET, "adding after stubs");
3344 this->state_ = HAS_STUB_SECTION;
3345 this->group_start_addr_ = start_addr;
3346 return true;
3347 }
3348 }
3349 else
3350 gold_unreachable();
3351
3352 gold_debug(DEBUG_TARGET,
3353 !this->multi_os_ && this->output_section_ != o
3354 ? "nope, new output section\n"
3355 : "nope, didn't fit\n");
3356
3357 // The section fails to fit in the current group. Set up a few
3358 // things for the next group. owner_ and output_section_ will be
3359 // set later after we've retrieved those values for the current
3360 // group.
3361 this->state_ = FINDING_STUB_SECTION;
3362 this->group_size_ = group_size;
3363 this->group_start_addr_ = start_addr;
3364 return false;
3365 }
3366
3367 // Look over all the input sections, deciding where to place stubs.
3368
3369 template<int size, bool big_endian>
3370 void
3371 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3372 const Task*,
3373 bool no_size_errors)
3374 {
3375 Stub_control stub_control(this->stub_group_size_, no_size_errors,
3376 parameters->options().stub_group_multi());
3377
3378 // Group input sections and insert stub table
3379 Stub_table_owner* table_owner = NULL;
3380 std::vector<Stub_table_owner*> tables;
3381 Layout::Section_list section_list;
3382 layout->get_executable_sections(&section_list);
3383 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3384 for (Layout::Section_list::iterator o = section_list.begin();
3385 o != section_list.end();
3386 ++o)
3387 {
3388 typedef Output_section::Input_section_list Input_section_list;
3389 for (Input_section_list::const_iterator i
3390 = (*o)->input_sections().begin();
3391 i != (*o)->input_sections().end();
3392 ++i)
3393 {
3394 if (i->is_input_section()
3395 || i->is_relaxed_input_section())
3396 {
3397 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3398 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3399 bool has14 = ppcobj->has_14bit_branch(i->shndx());
3400 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3401 {
3402 table_owner->output_section = stub_control.output_section();
3403 table_owner->owner = stub_control.owner();
3404 stub_control.set_output_and_owner(*o, &*i);
3405 table_owner = NULL;
3406 }
3407 if (table_owner == NULL)
3408 {
3409 table_owner = new Stub_table_owner;
3410 tables.push_back(table_owner);
3411 }
3412 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3413 }
3414 }
3415 }
3416 if (table_owner != NULL)
3417 {
3418 table_owner->output_section = stub_control.output_section();
3419 table_owner->owner = stub_control.owner();;
3420 }
3421 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3422 t != tables.end();
3423 ++t)
3424 {
3425 Stub_table<size, big_endian>* stub_table;
3426
3427 if ((*t)->owner->is_input_section())
3428 stub_table = new Stub_table<size, big_endian>(this,
3429 (*t)->output_section,
3430 (*t)->owner,
3431 this->stub_tables_.size());
3432 else if ((*t)->owner->is_relaxed_input_section())
3433 stub_table = static_cast<Stub_table<size, big_endian>*>(
3434 (*t)->owner->relaxed_input_section());
3435 else
3436 gold_unreachable();
3437 this->stub_tables_.push_back(stub_table);
3438 delete *t;
3439 }
3440 }
3441
3442 template<int size>
3443 static unsigned long
3444 max_branch_delta (unsigned int r_type)
3445 {
3446 if (r_type == elfcpp::R_POWERPC_REL14
3447 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3448 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3449 return 1L << 15;
3450 if (r_type == elfcpp::R_POWERPC_REL24
3451 || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
3452 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC
3453 || r_type == elfcpp::R_PPC_PLTREL24
3454 || r_type == elfcpp::R_PPC_LOCAL24PC)
3455 return 1L << 25;
3456 return 0;
3457 }
3458
3459 // Return whether this branch is going via a plt call stub.
3460
3461 template<int size, bool big_endian>
3462 bool
3463 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3464 Powerpc_relobj<size, big_endian>* ppc_object,
3465 unsigned int shndx,
3466 Address offset,
3467 Target_powerpc* target,
3468 Symbol_table* symtab)
3469 {
3470 if (this->object_ != ppc_object
3471 || this->shndx_ != shndx
3472 || this->offset_ != offset)
3473 return false;
3474
3475 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3476 if (sym != NULL && sym->is_forwarder())
3477 sym = symtab->resolve_forwards(sym);
3478 if (target->replace_tls_get_addr(sym))
3479 sym = target->tls_get_addr_opt();
3480 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3481 if (gsym != NULL
3482 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3483 && !target->is_elfv2_localentry0(gsym))
3484 : (this->object_->local_has_plt_offset(this->r_sym_)
3485 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3486 {
3487 this->tocsave_ = 1;
3488 return true;
3489 }
3490 return false;
3491 }
3492
3493 // If this branch needs a plt call stub, or a long branch stub, make one.
3494
3495 template<int size, bool big_endian>
3496 bool
3497 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3498 Stub_table<size, big_endian>* stub_table,
3499 Stub_table<size, big_endian>* ifunc_stub_table,
3500 Symbol_table* symtab) const
3501 {
3502 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3503 Target_powerpc<size, big_endian>* target =
3504 static_cast<Target_powerpc<size, big_endian>*>(
3505 parameters->sized_target<size, big_endian>());
3506 if (sym != NULL && sym->is_forwarder())
3507 sym = symtab->resolve_forwards(sym);
3508 if (target->replace_tls_get_addr(sym))
3509 sym = target->tls_get_addr_opt();
3510 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3511 bool ok = true;
3512
3513 if (gsym != NULL
3514 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3515 : this->object_->local_has_plt_offset(this->r_sym_))
3516 {
3517 if (size == 64
3518 && gsym != NULL
3519 && target->abiversion() >= 2
3520 && !parameters->options().output_is_position_independent()
3521 && !is_branch_reloc<size>(this->r_type_))
3522 target->glink_section()->add_global_entry(gsym);
3523 else
3524 {
3525 if (stub_table == NULL
3526 && !(size == 32
3527 && gsym != NULL
3528 && !parameters->options().output_is_position_independent()
3529 && !is_branch_reloc<size>(this->r_type_)))
3530 stub_table = this->object_->stub_table(this->shndx_);
3531 if (stub_table == NULL)
3532 {
3533 // This is a ref from a data section to an ifunc symbol,
3534 // or a non-branch reloc for which we always want to use
3535 // one set of stubs for resolving function addresses.
3536 stub_table = ifunc_stub_table;
3537 }
3538 gold_assert(stub_table != NULL);
3539 Address from = this->object_->get_output_section_offset(this->shndx_);
3540 if (from != invalid_address)
3541 from += (this->object_->output_section(this->shndx_)->address()
3542 + this->offset_);
3543 if (gsym != NULL)
3544 ok = stub_table->add_plt_call_entry(from,
3545 this->object_, gsym,
3546 this->r_type_, this->addend_,
3547 this->tocsave_);
3548 else
3549 ok = stub_table->add_plt_call_entry(from,
3550 this->object_, this->r_sym_,
3551 this->r_type_, this->addend_,
3552 this->tocsave_);
3553 }
3554 }
3555 else
3556 {
3557 Address max_branch_offset = max_branch_delta<size>(this->r_type_);
3558 if (max_branch_offset == 0)
3559 return true;
3560 Address from = this->object_->get_output_section_offset(this->shndx_);
3561 gold_assert(from != invalid_address);
3562 from += (this->object_->output_section(this->shndx_)->address()
3563 + this->offset_);
3564 Address to;
3565 unsigned int other = 0;
3566 if (gsym != NULL)
3567 {
3568 switch (gsym->source())
3569 {
3570 case Symbol::FROM_OBJECT:
3571 {
3572 Object* symobj = gsym->object();
3573 if (symobj->is_dynamic()
3574 || symobj->pluginobj() != NULL)
3575 return true;
3576 bool is_ordinary;
3577 unsigned int shndx = gsym->shndx(&is_ordinary);
3578 if (shndx == elfcpp::SHN_UNDEF)
3579 return true;
3580 }
3581 break;
3582
3583 case Symbol::IS_UNDEFINED:
3584 return true;
3585
3586 default:
3587 break;
3588 }
3589 Symbol_table::Compute_final_value_status status;
3590 to = symtab->compute_final_value<size>(gsym, &status);
3591 if (status != Symbol_table::CFVS_OK)
3592 return true;
3593 if (size == 64)
3594 other = gsym->nonvis() >> 3;
3595 }
3596 else
3597 {
3598 const Symbol_value<size>* psymval
3599 = this->object_->local_symbol(this->r_sym_);
3600 Symbol_value<size> symval;
3601 if (psymval->is_section_symbol())
3602 symval.set_is_section_symbol();
3603 typedef Sized_relobj_file<size, big_endian> ObjType;
3604 typename ObjType::Compute_final_local_value_status status
3605 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3606 &symval, symtab);
3607 if (status != ObjType::CFLV_OK
3608 || !symval.has_output_value())
3609 return true;
3610 to = symval.value(this->object_, 0);
3611 if (size == 64)
3612 other = this->object_->st_other(this->r_sym_) >> 5;
3613 }
3614 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3615 to += this->addend_;
3616 if (stub_table == NULL)
3617 stub_table = this->object_->stub_table(this->shndx_);
3618 if (size == 64 && target->abiversion() < 2)
3619 {
3620 unsigned int dest_shndx;
3621 if (!target->symval_for_branch(symtab, gsym, this->object_,
3622 &to, &dest_shndx))
3623 return true;
3624 }
3625 unsigned int local_ent = 0;
3626 if (size == 64
3627 && this->r_type_ != elfcpp::R_PPC64_REL24_NOTOC
3628 && this->r_type_ != elfcpp::R_PPC64_REL24_P9NOTOC)
3629 local_ent = elfcpp::ppc64_decode_local_entry(other);
3630 Address delta = to + local_ent - from;
3631 if (delta + max_branch_offset >= 2 * max_branch_offset
3632 || (size == 64
3633 && (this->r_type_ == elfcpp::R_PPC64_REL24_NOTOC
3634 || this->r_type_ == elfcpp::R_PPC64_REL24_P9NOTOC)
3635 && (gsym != NULL
3636 ? this->object_->ppc64_needs_toc(gsym)
3637 : this->object_->ppc64_needs_toc(this->r_sym_))))
3638 {
3639 if (stub_table == NULL)
3640 {
3641 gold_warning(_("%s:%s: branch in non-executable section,"
3642 " no long branch stub for you"),
3643 this->object_->name().c_str(),
3644 this->object_->section_name(this->shndx_).c_str());
3645 return true;
3646 }
3647 bool save_res = (size == 64
3648 && gsym != NULL
3649 && gsym->source() == Symbol::IN_OUTPUT_DATA
3650 && gsym->output_data() == target->savres_section());
3651 ok = stub_table->add_long_branch_entry(this->r_type_,
3652 from, to, other, save_res);
3653 }
3654 }
3655 if (!ok)
3656 gold_debug(DEBUG_TARGET,
3657 "branch at %s:%s+%#lx\n"
3658 "can't reach stub attached to %s:%s",
3659 this->object_->name().c_str(),
3660 this->object_->section_name(this->shndx_).c_str(),
3661 (unsigned long) this->offset_,
3662 stub_table->relobj()->name().c_str(),
3663 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3664
3665 return ok;
3666 }
3667
3668 // Relaxation hook. This is where we do stub generation.
3669
3670 template<int size, bool big_endian>
3671 bool
3672 Target_powerpc<size, big_endian>::do_relax(int pass,
3673 const Input_objects*,
3674 Symbol_table* symtab,
3675 Layout* layout,
3676 const Task* task)
3677 {
3678 unsigned int prev_brlt_size = 0;
3679 if (pass == 1)
3680 {
3681 bool thread_safe
3682 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3683 if (size == 64
3684 && this->abiversion() < 2
3685 && !thread_safe
3686 && !parameters->options().user_set_plt_thread_safe())
3687 {
3688 static const char* const thread_starter[] =
3689 {
3690 "pthread_create",
3691 /* libstdc++ */
3692 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3693 /* librt */
3694 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3695 "mq_notify", "create_timer",
3696 /* libanl */
3697 "getaddrinfo_a",
3698 /* libgomp */
3699 "GOMP_parallel",
3700 "GOMP_parallel_start",
3701 "GOMP_parallel_loop_static",
3702 "GOMP_parallel_loop_static_start",
3703 "GOMP_parallel_loop_dynamic",
3704 "GOMP_parallel_loop_dynamic_start",
3705 "GOMP_parallel_loop_guided",
3706 "GOMP_parallel_loop_guided_start",
3707 "GOMP_parallel_loop_runtime",
3708 "GOMP_parallel_loop_runtime_start",
3709 "GOMP_parallel_sections",
3710 "GOMP_parallel_sections_start",
3711 /* libgo */
3712 "__go_go",
3713 };
3714
3715 if (parameters->options().shared())
3716 thread_safe = true;
3717 else
3718 {
3719 for (unsigned int i = 0;
3720 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3721 i++)
3722 {
3723 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3724 thread_safe = (sym != NULL
3725 && sym->in_reg()
3726 && sym->in_real_elf());
3727 if (thread_safe)
3728 break;
3729 }
3730 }
3731 }
3732 this->plt_thread_safe_ = thread_safe;
3733 }
3734
3735 if (pass == 1)
3736 {
3737 this->stub_group_size_ = parameters->options().stub_group_size();
3738 bool no_size_errors = true;
3739 if (this->stub_group_size_ == 1)
3740 this->stub_group_size_ = 0x1c00000;
3741 else if (this->stub_group_size_ == -1)
3742 this->stub_group_size_ = -0x1e00000;
3743 else
3744 no_size_errors = false;
3745 this->group_sections(layout, task, no_size_errors);
3746 }
3747 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3748 {
3749 this->branch_lookup_table_.clear();
3750 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3751 p != this->stub_tables_.end();
3752 ++p)
3753 {
3754 (*p)->clear_stubs(true);
3755 }
3756 this->stub_tables_.clear();
3757 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3758 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3759 program_name, this->stub_group_size_);
3760 this->group_sections(layout, task, true);
3761 }
3762
3763 // We need address of stub tables valid for make_stub.
3764 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3765 p != this->stub_tables_.end();
3766 ++p)
3767 {
3768 const Powerpc_relobj<size, big_endian>* object
3769 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3770 Address off = object->get_output_section_offset((*p)->shndx());
3771 gold_assert(off != invalid_address);
3772 Output_section* os = (*p)->output_section();
3773 (*p)->set_address_and_size(os, off);
3774 }
3775
3776 if (pass != 1)
3777 {
3778 // Clear plt call stubs, long branch stubs and branch lookup table.
3779 prev_brlt_size = this->branch_lookup_table_.size();
3780 this->branch_lookup_table_.clear();
3781 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3782 p != this->stub_tables_.end();
3783 ++p)
3784 {
3785 (*p)->clear_stubs(false);
3786 }
3787 }
3788
3789 // Build all the stubs.
3790 this->relax_failed_ = false;
3791 Stub_table<size, big_endian>* ifunc_stub_table
3792 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3793 Stub_table<size, big_endian>* one_stub_table
3794 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3795 for (typename Branches::const_iterator b = this->branch_info_.begin();
3796 b != this->branch_info_.end();
3797 b++)
3798 {
3799 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3800 && !this->relax_failed_)
3801 {
3802 this->relax_failed_ = true;
3803 this->relax_fail_count_++;
3804 if (this->relax_fail_count_ < 3)
3805 return true;
3806 }
3807 }
3808 bool do_resize = false;
3809 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3810 p != this->stub_tables_.end();
3811 ++p)
3812 if ((*p)->need_resize())
3813 {
3814 do_resize = true;
3815 break;
3816 }
3817 if (do_resize)
3818 {
3819 this->branch_lookup_table_.clear();
3820 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3821 p != this->stub_tables_.end();
3822 ++p)
3823 (*p)->set_resizing(true);
3824 for (typename Branches::const_iterator b = this->branch_info_.begin();
3825 b != this->branch_info_.end();
3826 b++)
3827 {
3828 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3829 && !this->relax_failed_)
3830 {
3831 this->relax_failed_ = true;
3832 this->relax_fail_count_++;
3833 if (this->relax_fail_count_ < 3)
3834 return true;
3835 }
3836 }
3837 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3838 p != this->stub_tables_.end();
3839 ++p)
3840 (*p)->set_resizing(false);
3841 }
3842
3843 // Did anything change size?
3844 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3845 bool again = num_huge_branches != prev_brlt_size;
3846 if (size == 64 && num_huge_branches != 0)
3847 this->make_brlt_section(layout);
3848 if (size == 64 && again)
3849 this->brlt_section_->set_current_size(num_huge_branches);
3850
3851 for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3852 p != this->stub_tables_.rend();
3853 ++p)
3854 (*p)->remove_eh_frame(layout);
3855
3856 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3857 p != this->stub_tables_.end();
3858 ++p)
3859 (*p)->add_eh_frame(layout);
3860
3861 typedef Unordered_set<Output_section*> Output_sections;
3862 Output_sections os_need_update;
3863 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3864 p != this->stub_tables_.end();
3865 ++p)
3866 {
3867 if ((*p)->size_update())
3868 {
3869 again = true;
3870 os_need_update.insert((*p)->output_section());
3871 }
3872 }
3873
3874 // Set output section offsets for all input sections in an output
3875 // section that just changed size. Anything past the stubs will
3876 // need updating.
3877 for (typename Output_sections::iterator p = os_need_update.begin();
3878 p != os_need_update.end();
3879 p++)
3880 {
3881 Output_section* os = *p;
3882 Address off = 0;
3883 typedef Output_section::Input_section_list Input_section_list;
3884 for (Input_section_list::const_iterator i = os->input_sections().begin();
3885 i != os->input_sections().end();
3886 ++i)
3887 {
3888 off = align_address(off, i->addralign());
3889 if (i->is_input_section() || i->is_relaxed_input_section())
3890 i->relobj()->set_section_offset(i->shndx(), off);
3891 if (i->is_relaxed_input_section())
3892 {
3893 Stub_table<size, big_endian>* stub_table
3894 = static_cast<Stub_table<size, big_endian>*>(
3895 i->relaxed_input_section());
3896 Address stub_table_size = stub_table->set_address_and_size(os, off);
3897 off += stub_table_size;
3898 // After a few iterations, set current stub table size
3899 // as min size threshold, so later stub tables can only
3900 // grow in size.
3901 if (pass >= 4)
3902 stub_table->set_min_size_threshold(stub_table_size);
3903 }
3904 else
3905 off += i->data_size();
3906 }
3907 // If .branch_lt is part of this output section, then we have
3908 // just done the offset adjustment.
3909 os->clear_section_offsets_need_adjustment();
3910 }
3911
3912 if (size == 64
3913 && !again
3914 && num_huge_branches != 0
3915 && parameters->options().output_is_position_independent())
3916 {
3917 // Fill in the BRLT relocs.
3918 this->brlt_section_->reset_brlt_sizes();
3919 for (typename Branch_lookup_table::const_iterator p
3920 = this->branch_lookup_table_.begin();
3921 p != this->branch_lookup_table_.end();
3922 ++p)
3923 {
3924 this->brlt_section_->add_reloc(p->first, p->second);
3925 }
3926 this->brlt_section_->finalize_brlt_sizes();
3927 }
3928
3929 if (!again
3930 && (parameters->options().user_set_emit_stub_syms()
3931 ? parameters->options().emit_stub_syms()
3932 : (size == 64
3933 || parameters->options().output_is_position_independent()
3934 || parameters->options().emit_relocs())))
3935 {
3936 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3937 p != this->stub_tables_.end();
3938 ++p)
3939 (*p)->define_stub_syms(symtab);
3940
3941 if (this->glink_ != NULL)
3942 {
3943 int stub_size = this->glink_->pltresolve_size();
3944 Address value = -stub_size;
3945 if (size == 64)
3946 {
3947 value = 8;
3948 stub_size -= 8;
3949 }
3950 this->define_local(symtab, "__glink_PLTresolve",
3951 this->glink_, value, stub_size);
3952
3953 if (size != 64)
3954 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3955 }
3956 }
3957
3958 return again;
3959 }
3960
3961 template<int size, bool big_endian>
3962 void
3963 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3964 unsigned char* oview,
3965 uint64_t* paddress,
3966 off_t* plen) const
3967 {
3968 uint64_t address = plt->address();
3969 off_t len = plt->data_size();
3970
3971 if (plt == this->glink_)
3972 {
3973 // See Output_data_glink::do_write() for glink contents.
3974 if (len == 0)
3975 {
3976 // Static linking may need stubs, to support ifunc and long
3977 // branches. We need to create an output section for
3978 // .eh_frame early in the link process, to have a place to
3979 // attach stub .eh_frame info. We also need to have
3980 // registered a CIE that matches the stub CIE. Both of
3981 // these requirements are satisfied by creating an FDE and
3982 // CIE for .glink, even though static linking will leave
3983 // .glink zero length.
3984 // ??? Hopefully generating an FDE with a zero address range
3985 // won't confuse anything that consumes .eh_frame info.
3986 }
3987 else if (size == 64)
3988 {
3989 // There is one word before __glink_PLTresolve
3990 address += 8;
3991 len -= 8;
3992 }
3993 else if (parameters->options().output_is_position_independent())
3994 {
3995 // There are two FDEs for a position independent glink.
3996 // The first covers the branch table, the second
3997 // __glink_PLTresolve at the end of glink.
3998 off_t resolve_size = this->glink_->pltresolve_size();
3999 if (oview[9] == elfcpp::DW_CFA_nop)
4000 len -= resolve_size;
4001 else
4002 {
4003 address += len - resolve_size;
4004 len = resolve_size;
4005 }
4006 }
4007 }
4008 else
4009 {
4010 // Must be a stub table.
4011 const Stub_table<size, big_endian>* stub_table
4012 = static_cast<const Stub_table<size, big_endian>*>(plt);
4013 uint64_t stub_address = stub_table->stub_address();
4014 len -= stub_address - address;
4015 address = stub_address;
4016 }
4017
4018 *paddress = address;
4019 *plen = len;
4020 }
4021
4022 // A class to handle the PLT data.
4023
4024 template<int size, bool big_endian>
4025 class Output_data_plt_powerpc : public Output_section_data_build
4026 {
4027 public:
4028 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4029 size, big_endian> Reloc_section;
4030
4031 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
4032 Symbol_table* symtab,
4033 Reloc_section* plt_rel,
4034 const char* name)
4035 : Output_section_data_build(size == 32 ? 4 : 8),
4036 rel_(plt_rel), targ_(targ), symtab_(symtab), name_(name), sym_ents_()
4037 { }
4038
4039 // Add an entry to the PLT.
4040 void
4041 add_entry(Symbol*, bool = false);
4042
4043 void
4044 add_ifunc_entry(Symbol*);
4045
4046 void
4047 add_local_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
4048
4049 void
4050 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
4051
4052 // Return the .rela.plt section data.
4053 Reloc_section*
4054 rel_plt() const
4055 {
4056 return this->rel_;
4057 }
4058
4059 // Return the number of PLT entries.
4060 unsigned int
4061 entry_count() const
4062 {
4063 if (this->current_data_size() == 0)
4064 return 0;
4065 return ((this->current_data_size() - this->first_plt_entry_offset())
4066 / this->plt_entry_size());
4067 }
4068
4069 protected:
4070 void
4071 do_adjust_output_section(Output_section* os)
4072 {
4073 os->set_entsize(0);
4074 }
4075
4076 // Write to a map file.
4077 void
4078 do_print_to_mapfile(Mapfile* mapfile) const
4079 { mapfile->print_output_data(this, this->name_); }
4080
4081 private:
4082 struct Local_plt_ent
4083 {
4084 Local_plt_ent(Sized_relobj_file<size, big_endian>* obj, unsigned int rsym)
4085 { rsym_ = rsym; u.obj_ = obj; }
4086 Local_plt_ent(Symbol* sym)
4087 { rsym_ = -1u; u.gsym_ = sym; }
4088 ~Local_plt_ent()
4089 { }
4090
4091 unsigned int rsym_;
4092 union
4093 {
4094 Sized_relobj_file<size, big_endian>* obj_;
4095 Symbol* gsym_;
4096 } u;
4097 };
4098
4099 // Return the offset of the first non-reserved PLT entry.
4100 unsigned int
4101 first_plt_entry_offset() const
4102 {
4103 // IPLT and LPLT have no reserved entry.
4104 if (this->name_[3] == 'I' || this->name_[3] == 'L')
4105 return 0;
4106 return this->targ_->first_plt_entry_offset();
4107 }
4108
4109 // Return the size of each PLT entry.
4110 unsigned int
4111 plt_entry_size() const
4112 {
4113 return this->targ_->plt_entry_size();
4114 }
4115
4116 // Write out the PLT data.
4117 void
4118 do_write(Output_file*);
4119
4120 // The reloc section.
4121 Reloc_section* rel_;
4122 // Allows access to .glink for do_write.
4123 Target_powerpc<size, big_endian>* targ_;
4124 Symbol_table* symtab_;
4125 // What to report in map file.
4126 const char *name_;
4127
4128 std::vector<Local_plt_ent> sym_ents_;
4129 };
4130
4131 // Add an entry to the PLT.
4132
4133 template<int size, bool big_endian>
4134 void
4135 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym,
4136 bool stash)
4137 {
4138 if (!gsym->has_plt_offset())
4139 {
4140 section_size_type off = this->current_data_size();
4141 if (off == 0)
4142 off += this->first_plt_entry_offset();
4143 gsym->set_plt_offset(off);
4144 if (this->rel_)
4145 {
4146 gsym->set_needs_dynsym_entry();
4147 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
4148 this->rel_->add_global(gsym, dynrel, this, off, 0);
4149 }
4150 off += this->plt_entry_size();
4151 this->set_current_data_size(off);
4152 if (stash)
4153 {
4154 Local_plt_ent sym(gsym);
4155 this->sym_ents_.push_back(sym);
4156 }
4157 }
4158 }
4159
4160 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
4161
4162 template<int size, bool big_endian>
4163 void
4164 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
4165 {
4166 if (!gsym->has_plt_offset())
4167 {
4168 section_size_type off = this->current_data_size();
4169 gsym->set_plt_offset(off);
4170 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
4171 if (size == 64 && this->targ_->abiversion() < 2)
4172 dynrel = elfcpp::R_PPC64_JMP_IREL;
4173 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
4174 off += this->plt_entry_size();
4175 this->set_current_data_size(off);
4176 }
4177 }
4178
4179 // Add an entry for a local symbol to the PLT.
4180
4181 template<int size, bool big_endian>
4182 void
4183 Output_data_plt_powerpc<size, big_endian>::add_local_entry(
4184 Sized_relobj_file<size, big_endian>* relobj,
4185 unsigned int local_sym_index)
4186 {
4187 if (!relobj->local_has_plt_offset(local_sym_index))
4188 {
4189 section_size_type off = this->current_data_size();
4190 relobj->set_local_plt_offset(local_sym_index, off);
4191 if (this->rel_)
4192 {
4193 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4194 if (size == 64 && this->targ_->abiversion() < 2)
4195 dynrel = elfcpp::R_POWERPC_JMP_SLOT;
4196 this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
4197 dynrel, this, off, 0);
4198 }
4199 off += this->plt_entry_size();
4200 this->set_current_data_size(off);
4201 Local_plt_ent sym(relobj, local_sym_index);
4202 this->sym_ents_.push_back(sym);
4203 }
4204 }
4205
4206 // Add an entry for a local ifunc symbol to the IPLT.
4207
4208 template<int size, bool big_endian>
4209 void
4210 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
4211 Sized_relobj_file<size, big_endian>* relobj,
4212 unsigned int local_sym_index)
4213 {
4214 if (!relobj->local_has_plt_offset(local_sym_index))
4215 {
4216 section_size_type off = this->current_data_size();
4217 relobj->set_local_plt_offset(local_sym_index, off);
4218 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
4219 if (size == 64 && this->targ_->abiversion() < 2)
4220 dynrel = elfcpp::R_PPC64_JMP_IREL;
4221 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
4222 this, off, 0);
4223 off += this->plt_entry_size();
4224 this->set_current_data_size(off);
4225 }
4226 }
4227
4228 static const uint32_t add_0_11_11 = 0x7c0b5a14;
4229 static const uint32_t add_2_2_11 = 0x7c425a14;
4230 static const uint32_t add_2_2_12 = 0x7c426214;
4231 static const uint32_t add_3_3_2 = 0x7c631214;
4232 static const uint32_t add_3_3_13 = 0x7c636a14;
4233 static const uint32_t add_3_12_2 = 0x7c6c1214;
4234 static const uint32_t add_3_12_13 = 0x7c6c6a14;
4235 static const uint32_t add_11_0_11 = 0x7d605a14;
4236 static const uint32_t add_11_2_11 = 0x7d625a14;
4237 static const uint32_t add_11_11_2 = 0x7d6b1214;
4238 static const uint32_t add_12_11_12 = 0x7d8b6214;
4239 static const uint32_t addi_0_12 = 0x380c0000;
4240 static const uint32_t addi_2_2 = 0x38420000;
4241 static const uint32_t addi_3_3 = 0x38630000;
4242 static const uint32_t addi_11_11 = 0x396b0000;
4243 static const uint32_t addi_12_1 = 0x39810000;
4244 static const uint32_t addi_12_11 = 0x398b0000;
4245 static const uint32_t addi_12_12 = 0x398c0000;
4246 static const uint32_t addis_0_2 = 0x3c020000;
4247 static const uint32_t addis_0_13 = 0x3c0d0000;
4248 static const uint32_t addis_2_12 = 0x3c4c0000;
4249 static const uint32_t addis_11_2 = 0x3d620000;
4250 static const uint32_t addis_11_11 = 0x3d6b0000;
4251 static const uint32_t addis_11_30 = 0x3d7e0000;
4252 static const uint32_t addis_12_1 = 0x3d810000;
4253 static const uint32_t addis_12_2 = 0x3d820000;
4254 static const uint32_t addis_12_11 = 0x3d8b0000;
4255 static const uint32_t addis_12_12 = 0x3d8c0000;
4256 static const uint32_t b = 0x48000000;
4257 static const uint32_t bcl_20_31 = 0x429f0005;
4258 static const uint32_t bctr = 0x4e800420;
4259 static const uint32_t bctrl = 0x4e800421;
4260 static const uint32_t beqlr = 0x4d820020;
4261 static const uint32_t blr = 0x4e800020;
4262 static const uint32_t bnectr_p4 = 0x4ce20420;
4263 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
4264 static const uint32_t cmpldi_2_0 = 0x28220000;
4265 static const uint32_t cmpdi_11_0 = 0x2c2b0000;
4266 static const uint32_t cmpwi_11_0 = 0x2c0b0000;
4267 static const uint32_t cror_15_15_15 = 0x4def7b82;
4268 static const uint32_t cror_31_31_31 = 0x4ffffb82;
4269 static const uint32_t ld_0_1 = 0xe8010000;
4270 static const uint32_t ld_0_11 = 0xe80b0000;
4271 static const uint32_t ld_0_12 = 0xe80c0000;
4272 static const uint32_t ld_2_1 = 0xe8410000;
4273 static const uint32_t ld_2_2 = 0xe8420000;
4274 static const uint32_t ld_2_11 = 0xe84b0000;
4275 static const uint32_t ld_2_12 = 0xe84c0000;
4276 static const uint32_t ld_11_1 = 0xe9610000;
4277 static const uint32_t ld_11_2 = 0xe9620000;
4278 static const uint32_t ld_11_3 = 0xe9630000;
4279 static const uint32_t ld_11_11 = 0xe96b0000;
4280 static const uint32_t ld_12_2 = 0xe9820000;
4281 static const uint32_t ld_12_3 = 0xe9830000;
4282 static const uint32_t ld_12_11 = 0xe98b0000;
4283 static const uint32_t ld_12_12 = 0xe98c0000;
4284 static const uint32_t ldx_12_11_12 = 0x7d8b602a;
4285 static const uint32_t lfd_0_1 = 0xc8010000;
4286 static const uint32_t li_0_0 = 0x38000000;
4287 static const uint32_t li_11_0 = 0x39600000;
4288 static const uint32_t li_12_0 = 0x39800000;
4289 static const uint32_t lis_0 = 0x3c000000;
4290 static const uint32_t lis_2 = 0x3c400000;
4291 static const uint32_t lis_11 = 0x3d600000;
4292 static const uint32_t lis_12 = 0x3d800000;
4293 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
4294 static const uint32_t lwz_0_12 = 0x800c0000;
4295 static const uint32_t lwz_11_3 = 0x81630000;
4296 static const uint32_t lwz_11_11 = 0x816b0000;
4297 static const uint32_t lwz_11_30 = 0x817e0000;
4298 static const uint32_t lwz_12_3 = 0x81830000;
4299 static const uint32_t lwz_12_12 = 0x818c0000;
4300 static const uint32_t lwzu_0_12 = 0x840c0000;
4301 static const uint32_t mflr_0 = 0x7c0802a6;
4302 static const uint32_t mflr_11 = 0x7d6802a6;
4303 static const uint32_t mflr_12 = 0x7d8802a6;
4304 static const uint32_t mr_0_3 = 0x7c601b78;
4305 static const uint32_t mr_3_0 = 0x7c030378;
4306 static const uint32_t mtctr_0 = 0x7c0903a6;
4307 static const uint32_t mtctr_11 = 0x7d6903a6;
4308 static const uint32_t mtctr_12 = 0x7d8903a6;
4309 static const uint32_t mtlr_0 = 0x7c0803a6;
4310 static const uint32_t mtlr_11 = 0x7d6803a6;
4311 static const uint32_t mtlr_12 = 0x7d8803a6;
4312 static const uint32_t nop = 0x60000000;
4313 static const uint32_t ori_0_0_0 = 0x60000000;
4314 static const uint32_t ori_11_11_0 = 0x616b0000;
4315 static const uint32_t ori_12_12_0 = 0x618c0000;
4316 static const uint32_t oris_12_12_0 = 0x658c0000;
4317 static const uint32_t sldi_11_11_34 = 0x796b1746;
4318 static const uint32_t sldi_12_12_32 = 0x799c07c6;
4319 static const uint32_t srdi_0_0_2 = 0x7800f082;
4320 static const uint32_t std_0_1 = 0xf8010000;
4321 static const uint32_t std_0_12 = 0xf80c0000;
4322 static const uint32_t std_2_1 = 0xf8410000;
4323 static const uint32_t std_11_1 = 0xf9610000;
4324 static const uint32_t stfd_0_1 = 0xd8010000;
4325 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
4326 static const uint32_t sub_11_11_12 = 0x7d6c5850;
4327 static const uint32_t sub_12_12_11 = 0x7d8b6050;
4328 static const uint32_t xor_2_12_12 = 0x7d826278;
4329 static const uint32_t xor_11_12_12 = 0x7d8b6278;
4330
4331 static const uint64_t paddi_12_pc = 0x0610000039800000ULL;
4332 static const uint64_t pld_12_pc = 0x04100000e5800000ULL;
4333 static const uint64_t pnop = 0x0700000000000000ULL;
4334
4335 // Write out the PLT.
4336
4337 template<int size, bool big_endian>
4338 void
4339 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
4340 {
4341 if (!this->sym_ents_.empty())
4342 {
4343 const section_size_type offset = this->offset();
4344 const section_size_type oview_size
4345 = convert_to_section_size_type(this->data_size());
4346 unsigned char* const oview = of->get_output_view(offset, oview_size);
4347 unsigned char* pov = oview;
4348 unsigned char* endpov = oview + oview_size;
4349
4350 for (typename std::vector<Local_plt_ent>::iterator e
4351 = this->sym_ents_.begin();
4352 e != this->sym_ents_.end();
4353 e++)
4354 {
4355 typename elfcpp::Elf_types<size>::Elf_Addr val;
4356 Sized_symbol<size>* gsym = NULL;
4357 Powerpc_relobj<size, big_endian>* obj = NULL;
4358 if (e->rsym_ == -1u)
4359 {
4360 gsym = static_cast<Sized_symbol<size>*>(e->u.gsym_);
4361 val = gsym->value();
4362 }
4363 else
4364 {
4365 obj = static_cast<Powerpc_relobj<size, big_endian>*>(e->u.obj_);
4366 val = obj->local_symbol(e->rsym_)->value(obj, 0);
4367 }
4368 if (this->targ_->abiversion() >= 2)
4369 {
4370 elfcpp::Swap<size, big_endian>::writeval(pov, val);
4371 pov += size / 8;
4372 }
4373 else
4374 {
4375 unsigned int shndx;
4376 this->targ_->symval_for_branch(this->symtab_, gsym, obj,
4377 &val, &shndx);
4378 elfcpp::Swap<size, big_endian>::writeval(pov, val);
4379 pov += size / 8;
4380 val = this->targ_->toc_pointer();
4381 elfcpp::Swap<size, big_endian>::writeval(pov, val);
4382 pov += size / 8;
4383 if (this->plt_entry_size() > 16)
4384 {
4385 elfcpp::Swap<size, big_endian>::writeval(pov, 0);
4386 pov += size / 8;
4387 }
4388 }
4389 }
4390 gold_assert(pov == endpov);
4391 }
4392
4393 if (size == 32 && (this->name_[3] != 'I' && this->name_[3] != 'L'))
4394 {
4395 const section_size_type offset = this->offset();
4396 const section_size_type oview_size
4397 = convert_to_section_size_type(this->data_size());
4398 unsigned char* const oview = of->get_output_view(offset, oview_size);
4399 unsigned char* pov = oview;
4400 unsigned char* endpov = oview + oview_size;
4401
4402 // The address of the .glink branch table
4403 const Output_data_glink<size, big_endian>* glink
4404 = this->targ_->glink_section();
4405 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
4406
4407 while (pov < endpov)
4408 {
4409 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
4410 pov += 4;
4411 branch_tab += 4;
4412 }
4413
4414 of->write_output_view(offset, oview_size, oview);
4415 }
4416 }
4417
4418 // Create the PLT section.
4419
4420 template<int size, bool big_endian>
4421 void
4422 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
4423 Layout* layout)
4424 {
4425 if (this->plt_ == NULL)
4426 {
4427 if (this->got_ == NULL)
4428 this->got_section(symtab, layout, GOT_TYPE_SMALL);
4429
4430 if (this->glink_ == NULL)
4431 make_glink_section(layout);
4432
4433 // Ensure that .rela.dyn always appears before .rela.plt This is
4434 // necessary due to how, on PowerPC and some other targets, .rela.dyn
4435 // needs to include .rela.plt in its range.
4436 this->rela_dyn_section(layout);
4437
4438 Reloc_section* plt_rel = new Reloc_section(false);
4439 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4440 elfcpp::SHF_ALLOC, plt_rel,
4441 ORDER_DYNAMIC_PLT_RELOCS, false);
4442 this->plt_
4443 = new Output_data_plt_powerpc<size, big_endian>(this, symtab, plt_rel,
4444 "** PLT");
4445 layout->add_output_section_data(".plt",
4446 (size == 32
4447 ? elfcpp::SHT_PROGBITS
4448 : elfcpp::SHT_NOBITS),
4449 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4450 this->plt_,
4451 (size == 32
4452 ? ORDER_SMALL_DATA
4453 : ORDER_SMALL_BSS),
4454 false);
4455
4456 Output_section* rela_plt_os = plt_rel->output_section();
4457 rela_plt_os->set_info_section(this->plt_->output_section());
4458 }
4459 }
4460
4461 // Create the IPLT section.
4462
4463 template<int size, bool big_endian>
4464 void
4465 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
4466 Layout* layout)
4467 {
4468 if (this->iplt_ == NULL)
4469 {
4470 this->make_plt_section(symtab, layout);
4471 this->make_lplt_section(symtab, layout);
4472
4473 Reloc_section* iplt_rel = new Reloc_section(false);
4474 if (this->rela_dyn_->output_section())
4475 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
4476 this->iplt_
4477 = new Output_data_plt_powerpc<size, big_endian>(this, symtab, iplt_rel,
4478 "** IPLT");
4479 if (this->plt_->output_section())
4480 this->plt_->output_section()->add_output_section_data(this->iplt_);
4481 }
4482 }
4483
4484 // Create the LPLT section.
4485
4486 template<int size, bool big_endian>
4487 void
4488 Target_powerpc<size, big_endian>::make_lplt_section(Symbol_table* symtab,
4489 Layout* layout)
4490 {
4491 if (this->lplt_ == NULL)
4492 {
4493 Reloc_section* lplt_rel = NULL;
4494 if (parameters->options().output_is_position_independent())
4495 {
4496 lplt_rel = new Reloc_section(false);
4497 this->rela_dyn_section(layout);
4498 if (this->rela_dyn_->output_section())
4499 this->rela_dyn_->output_section()
4500 ->add_output_section_data(lplt_rel);
4501 }
4502 this->lplt_
4503 = new Output_data_plt_powerpc<size, big_endian>(this, symtab, lplt_rel,
4504 "** LPLT");
4505 this->make_brlt_section(layout);
4506 if (this->brlt_section_ && this->brlt_section_->output_section())
4507 this->brlt_section_->output_section()
4508 ->add_output_section_data(this->lplt_);
4509 else
4510 layout->add_output_section_data(".branch_lt",
4511 elfcpp::SHT_PROGBITS,
4512 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4513 this->lplt_,
4514 ORDER_RELRO,
4515 true);
4516 }
4517 }
4518
4519 // A section for huge long branch addresses, similar to plt section.
4520
4521 template<int size, bool big_endian>
4522 class Output_data_brlt_powerpc : public Output_section_data_build
4523 {
4524 public:
4525 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4526 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4527 size, big_endian> Reloc_section;
4528
4529 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
4530 Reloc_section* brlt_rel)
4531 : Output_section_data_build(size == 32 ? 4 : 8),
4532 rel_(brlt_rel),
4533 targ_(targ)
4534 { }
4535
4536 void
4537 reset_brlt_sizes()
4538 {
4539 this->reset_data_size();
4540 this->rel_->reset_data_size();
4541 }
4542
4543 void
4544 finalize_brlt_sizes()
4545 {
4546 this->finalize_data_size();
4547 this->rel_->finalize_data_size();
4548 }
4549
4550 // Add a reloc for an entry in the BRLT.
4551 void
4552 add_reloc(Address to, unsigned int off)
4553 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
4554
4555 // Update section and reloc section size.
4556 void
4557 set_current_size(unsigned int num_branches)
4558 {
4559 this->reset_address_and_file_offset();
4560 this->set_current_data_size(num_branches * 16);
4561 this->finalize_data_size();
4562 Output_section* os = this->output_section();
4563 os->set_section_offsets_need_adjustment();
4564 if (this->rel_ != NULL)
4565 {
4566 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
4567 this->rel_->reset_address_and_file_offset();
4568 this->rel_->set_current_data_size(num_branches * reloc_size);
4569 this->rel_->finalize_data_size();
4570 Output_section* os = this->rel_->output_section();
4571 os->set_section_offsets_need_adjustment();
4572 }
4573 }
4574
4575 protected:
4576 void
4577 do_adjust_output_section(Output_section* os)
4578 {
4579 os->set_entsize(0);
4580 }
4581
4582 // Write to a map file.
4583 void
4584 do_print_to_mapfile(Mapfile* mapfile) const
4585 { mapfile->print_output_data(this, "** BRLT"); }
4586
4587 private:
4588 // Write out the BRLT data.
4589 void
4590 do_write(Output_file*);
4591
4592 // The reloc section.
4593 Reloc_section* rel_;
4594 Target_powerpc<size, big_endian>* targ_;
4595 };
4596
4597 // Make the branch lookup table section.
4598
4599 template<int size, bool big_endian>
4600 void
4601 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4602 {
4603 if (size == 64 && this->brlt_section_ == NULL)
4604 {
4605 Reloc_section* brlt_rel = NULL;
4606 bool is_pic = parameters->options().output_is_position_independent();
4607 if (is_pic)
4608 {
4609 // When PIC we can't fill in .branch_lt but must initialise at
4610 // runtime via dynamic relocations.
4611 this->rela_dyn_section(layout);
4612 brlt_rel = new Reloc_section(false);
4613 if (this->rela_dyn_->output_section())
4614 this->rela_dyn_->output_section()
4615 ->add_output_section_data(brlt_rel);
4616 }
4617 this->brlt_section_
4618 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4619 if (this->plt_ && is_pic && this->plt_->output_section())
4620 this->plt_->output_section()
4621 ->add_output_section_data(this->brlt_section_);
4622 else
4623 layout->add_output_section_data(".branch_lt",
4624 elfcpp::SHT_PROGBITS,
4625 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4626 this->brlt_section_,
4627 ORDER_RELRO,
4628 true);
4629 }
4630 }
4631
4632 // Write out .branch_lt when non-PIC.
4633
4634 template<int size, bool big_endian>
4635 void
4636 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4637 {
4638 if (size == 64 && !parameters->options().output_is_position_independent())
4639 {
4640 const section_size_type offset = this->offset();
4641 const section_size_type oview_size
4642 = convert_to_section_size_type(this->data_size());
4643 unsigned char* const oview = of->get_output_view(offset, oview_size);
4644
4645 this->targ_->write_branch_lookup_table(oview);
4646 of->write_output_view(offset, oview_size, oview);
4647 }
4648 }
4649
4650 static inline uint32_t
4651 l(uint32_t a)
4652 {
4653 return a & 0xffff;
4654 }
4655
4656 static inline uint32_t
4657 hi(uint32_t a)
4658 {
4659 return l(a >> 16);
4660 }
4661
4662 static inline uint32_t
4663 ha(uint32_t a)
4664 {
4665 return hi(a + 0x8000);
4666 }
4667
4668 static inline uint64_t
4669 d34(uint64_t v)
4670 {
4671 return ((v & 0x3ffff0000ULL) << 16) | (v & 0xffff);
4672 }
4673
4674 static inline uint64_t
4675 ha34(uint64_t v)
4676 {
4677 return (v + (1ULL << 33)) >> 34;
4678 }
4679
4680 template<int size>
4681 struct Eh_cie
4682 {
4683 static const unsigned char eh_frame_cie[12];
4684 };
4685
4686 template<int size>
4687 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4688 {
4689 1, // CIE version.
4690 'z', 'R', 0, // Augmentation string.
4691 4, // Code alignment.
4692 0x80 - size / 8 , // Data alignment.
4693 65, // RA reg.
4694 1, // Augmentation size.
4695 (elfcpp::DW_EH_PE_pcrel
4696 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
4697 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
4698 };
4699
4700 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4701 static const unsigned char glink_eh_frame_fde_64v1[] =
4702 {
4703 0, 0, 0, 0, // Replaced with offset to .glink.
4704 0, 0, 0, 0, // Replaced with size of .glink.
4705 0, // Augmentation size.
4706 elfcpp::DW_CFA_advance_loc + 2,
4707 elfcpp::DW_CFA_register, 65, 12,
4708 elfcpp::DW_CFA_advance_loc + 4,
4709 elfcpp::DW_CFA_restore_extended, 65
4710 };
4711
4712 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4713 static const unsigned char glink_eh_frame_fde_64v2[] =
4714 {
4715 0, 0, 0, 0, // Replaced with offset to .glink.
4716 0, 0, 0, 0, // Replaced with size of .glink.
4717 0, // Augmentation size.
4718 elfcpp::DW_CFA_advance_loc + 2,
4719 elfcpp::DW_CFA_register, 65, 0,
4720 elfcpp::DW_CFA_advance_loc + 2,
4721 elfcpp::DW_CFA_restore_extended, 65
4722 };
4723
4724 static const unsigned char glink_eh_frame_fde_64v2_localentry0[] =
4725 {
4726 0, 0, 0, 0, // Replaced with offset to .glink.
4727 0, 0, 0, 0, // Replaced with size of .glink.
4728 0, // Augmentation size.
4729 elfcpp::DW_CFA_advance_loc + 3,
4730 elfcpp::DW_CFA_register, 65, 0,
4731 elfcpp::DW_CFA_advance_loc + 2,
4732 elfcpp::DW_CFA_restore_extended, 65
4733 };
4734
4735 // Describe __glink_PLTresolve use of LR, 32-bit version.
4736 static const unsigned char glink_eh_frame_fde_32[] =
4737 {
4738 0, 0, 0, 0, // Replaced with offset to .glink.
4739 0, 0, 0, 0, // Replaced with size of .glink.
4740 0, // Augmentation size.
4741 elfcpp::DW_CFA_advance_loc + 2,
4742 elfcpp::DW_CFA_register, 65, 0,
4743 elfcpp::DW_CFA_advance_loc + 4,
4744 elfcpp::DW_CFA_restore_extended, 65
4745 };
4746
4747 static const unsigned char default_fde[] =
4748 {
4749 0, 0, 0, 0, // Replaced with offset to stubs.
4750 0, 0, 0, 0, // Replaced with size of stubs.
4751 0, // Augmentation size.
4752 elfcpp::DW_CFA_nop, // Pad.
4753 elfcpp::DW_CFA_nop,
4754 elfcpp::DW_CFA_nop
4755 };
4756
4757 template<bool big_endian>
4758 static inline void
4759 write_insn(unsigned char* p, uint32_t v)
4760 {
4761 elfcpp::Swap<32, big_endian>::writeval(p, v);
4762 }
4763
4764 template<int size>
4765 static inline unsigned int
4766 param_plt_align()
4767 {
4768 if (!parameters->options().user_set_plt_align())
4769 return size == 64 ? 32 : 8;
4770 return 1 << parameters->options().plt_align();
4771 }
4772
4773 // Stub_table holds information about plt and long branch stubs.
4774 // Stubs are built in an area following some input section determined
4775 // by group_sections(). This input section is converted to a relaxed
4776 // input section allowing it to be resized to accommodate the stubs
4777
4778 template<int size, bool big_endian>
4779 class Stub_table : public Output_relaxed_input_section
4780 {
4781 public:
4782 struct Plt_stub_ent
4783 {
4784 Plt_stub_ent(unsigned int off, unsigned int indx)
4785 : off_(off), indx_(indx), tocoff_(0), p9off_(0), tsize_ (0), iter_(0),
4786 toc_(0), notoc_(0), p9notoc_(0), r2save_(0), localentry0_(0)
4787 { }
4788
4789 unsigned int off_;
4790 unsigned int indx_;
4791 // off_ points at p10 notoc stub, tocoff_ is offset from there to
4792 // toc stub, p9off_ is offset to p9notoc stub
4793 unsigned int tocoff_ : 8;
4794 unsigned int p9off_ : 8;
4795 // The size of the toc stub, used to locate blr on tls_get_addr stub.
4796 unsigned int tsize_ : 8;
4797 // Stub revision management
4798 unsigned int iter_ : 1;
4799 // The three types of stubs.
4800 unsigned int toc_ : 1;
4801 unsigned int notoc_ : 1;
4802 unsigned int p9notoc_ : 1;
4803 // Each with a possible variant saving r2 first
4804 unsigned int r2save_ : 1;
4805 // Handy cached info from symbol
4806 unsigned int localentry0_ : 1;
4807 };
4808 struct Branch_stub_ent
4809 {
4810 Branch_stub_ent(unsigned int off)
4811 : off_(off), tocoff_(0), p9off_(0), iter_(0), toc_(0), notoc_(0),
4812 p9notoc_(0), save_res_(0), other_(0)
4813 { }
4814
4815 unsigned int off_;
4816 // off_ points at p10 notoc stub, tocoff_ is offset from there to
4817 // toc stub, p9off_ is offset to p9notoc stub
4818 unsigned int tocoff_ : 8;
4819 unsigned int p9off_ : 8;
4820 // Stub revision management
4821 unsigned int iter_ : 1;
4822 // Four types of stubs.
4823 unsigned int toc_ : 1;
4824 unsigned int notoc_ : 1;
4825 unsigned int p9notoc_ : 1;
4826 unsigned int save_res_ : 1;
4827 // Handy cached info from symbol
4828 unsigned int other_ : 3;
4829 };
4830 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4831 static const Address invalid_address = static_cast<Address>(0) - 1;
4832
4833 Stub_table(Target_powerpc<size, big_endian>* targ,
4834 Output_section* output_section,
4835 const Output_section::Input_section* owner,
4836 uint32_t id)
4837 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4838 owner->relobj()
4839 ->section_addralign(owner->shndx())),
4840 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4841 orig_data_size_(owner->current_data_size()),
4842 plt_size_(0), last_plt_size_(0),
4843 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4844 need_save_res_(false), need_resize_(false), resizing_(false),
4845 uniq_(id)
4846 {
4847 this->set_output_section(output_section);
4848
4849 std::vector<Output_relaxed_input_section*> new_relaxed;
4850 new_relaxed.push_back(this);
4851 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4852 }
4853
4854 // Add a plt call stub.
4855 bool
4856 add_plt_call_entry(Address,
4857 const Sized_relobj_file<size, big_endian>*,
4858 const Symbol*,
4859 unsigned int,
4860 Address,
4861 bool);
4862
4863 bool
4864 add_plt_call_entry(Address,
4865 const Sized_relobj_file<size, big_endian>*,
4866 unsigned int,
4867 unsigned int,
4868 Address,
4869 bool);
4870
4871 // Find a given plt call stub.
4872 const Plt_stub_ent*
4873 find_plt_call_entry(const Symbol*) const;
4874
4875 const Plt_stub_ent*
4876 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4877 unsigned int) const;
4878
4879 const Plt_stub_ent*
4880 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4881 const Symbol*,
4882 unsigned int,
4883 Address) const;
4884
4885 const Plt_stub_ent*
4886 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4887 unsigned int,
4888 unsigned int,
4889 Address) const;
4890
4891 // Add a long branch stub.
4892 bool
4893 add_long_branch_entry(unsigned int, Address, Address, unsigned int, bool);
4894
4895 const Branch_stub_ent*
4896 find_long_branch_entry(Address) const;
4897
4898 bool
4899 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4900 {
4901 Address max_branch_offset = max_branch_delta<size>(r_type);
4902 if (max_branch_offset == 0)
4903 return true;
4904 gold_assert(from != invalid_address);
4905 Address loc = off + this->stub_address();
4906 return loc - from + max_branch_offset < 2 * max_branch_offset;
4907 }
4908
4909 void
4910 clear_stubs(bool all)
4911 {
4912 this->plt_call_stubs_.clear();
4913 this->plt_size_ = 0;
4914 this->long_branch_stubs_.clear();
4915 this->branch_size_ = 0;
4916 this->need_save_res_ = false;
4917 if (all)
4918 {
4919 this->last_plt_size_ = 0;
4920 this->last_branch_size_ = 0;
4921 }
4922 }
4923
4924 bool
4925 need_resize() const
4926 { return need_resize_; }
4927
4928 void
4929 set_resizing(bool val)
4930 {
4931 this->resizing_ = val;
4932 if (val)
4933 {
4934 this->need_resize_ = false;
4935 this->plt_size_ = 0;
4936 this->branch_size_ = 0;
4937 this->need_save_res_ = false;
4938 }
4939 }
4940
4941 Address
4942 set_address_and_size(const Output_section* os, Address off)
4943 {
4944 Address start_off = off;
4945 off += this->orig_data_size_;
4946 Address my_size = this->plt_size_ + this->branch_size_;
4947 if (this->need_save_res_)
4948 my_size += this->targ_->savres_section()->data_size();
4949 if (my_size != 0)
4950 off = align_address(off, this->stub_align());
4951 // Include original section size and alignment padding in size
4952 my_size += off - start_off;
4953 // Ensure new size is always larger than min size
4954 // threshold. Alignment requirement is included in "my_size", so
4955 // increase "my_size" does not invalidate alignment.
4956 if (my_size < this->min_size_threshold_)
4957 my_size = this->min_size_threshold_;
4958 this->reset_address_and_file_offset();
4959 this->set_current_data_size(my_size);
4960 this->set_address_and_file_offset(os->address() + start_off,
4961 os->offset() + start_off);
4962 return my_size;
4963 }
4964
4965 Address
4966 stub_address() const
4967 {
4968 return align_address(this->address() + this->orig_data_size_,
4969 this->stub_align());
4970 }
4971
4972 Address
4973 stub_offset() const
4974 {
4975 return align_address(this->offset() + this->orig_data_size_,
4976 this->stub_align());
4977 }
4978
4979 section_size_type
4980 plt_size() const
4981 { return this->plt_size_; }
4982
4983 section_size_type
4984 branch_size() const
4985 { return this->branch_size_; }
4986
4987 void
4988 set_min_size_threshold(Address min_size)
4989 { this->min_size_threshold_ = min_size; }
4990
4991 void
4992 define_stub_syms(Symbol_table*);
4993
4994 bool
4995 size_update()
4996 {
4997 Output_section* os = this->output_section();
4998 if (os->addralign() < this->stub_align())
4999 {
5000 os->set_addralign(this->stub_align());
5001 // FIXME: get rid of the insane checkpointing.
5002 // We can't increase alignment of the input section to which
5003 // stubs are attached; The input section may be .init which
5004 // is pasted together with other .init sections to form a
5005 // function. Aligning might insert zero padding resulting in
5006 // sigill. However we do need to increase alignment of the
5007 // output section so that the align_address() on offset in
5008 // set_address_and_size() adds the same padding as the
5009 // align_address() on address in stub_address().
5010 // What's more, we need this alignment for the layout done in
5011 // relaxation_loop_body() so that the output section starts at
5012 // a suitably aligned address.
5013 os->checkpoint_set_addralign(this->stub_align());
5014 }
5015 if (this->last_plt_size_ != this->plt_size_
5016 || this->last_branch_size_ != this->branch_size_)
5017 {
5018 this->last_plt_size_ = this->plt_size_;
5019 this->last_branch_size_ = this->branch_size_;
5020 return true;
5021 }
5022 return false;
5023 }
5024
5025 // Add .eh_frame info for this stub section.
5026 void
5027 add_eh_frame(Layout* layout);
5028
5029 // Remove .eh_frame info for this stub section.
5030 void
5031 remove_eh_frame(Layout* layout);
5032
5033 Target_powerpc<size, big_endian>*
5034 targ() const
5035 { return targ_; }
5036
5037 private:
5038 class Plt_stub_key;
5039 class Plt_stub_key_hash;
5040 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
5041 Plt_stub_key_hash> Plt_stub_entries;
5042 class Branch_stub_key;
5043 class Branch_stub_key_hash;
5044 typedef Unordered_map<Branch_stub_key, Branch_stub_ent,
5045 Branch_stub_key_hash> Branch_stub_entries;
5046
5047 // Alignment of stub section.
5048 unsigned int
5049 stub_align() const
5050 {
5051 unsigned int min_align = size == 64 ? 32 : 16;
5052 unsigned int user_align = 1 << parameters->options().plt_align();
5053 return std::max(user_align, min_align);
5054 }
5055
5056 // Return the plt offset for the given call stub.
5057 Address
5058 plt_off(typename Plt_stub_entries::const_iterator p,
5059 const Output_data_plt_powerpc<size, big_endian>** sec) const
5060 {
5061 const Symbol* gsym = p->first.sym_;
5062 if (gsym != NULL)
5063 return this->targ_->plt_off(gsym, sec);
5064 else
5065 {
5066 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
5067 unsigned int local_sym_index = p->first.locsym_;
5068 return this->targ_->plt_off(relobj, local_sym_index, sec);
5069 }
5070 }
5071
5072 // Size of a given plt call stub.
5073 unsigned int
5074 plt_call_size(typename Plt_stub_entries::iterator p) const;
5075
5076 unsigned int
5077 plt_call_align(unsigned int bytes) const
5078 {
5079 unsigned int align = param_plt_align<size>();
5080 return (bytes + align - 1) & -align;
5081 }
5082
5083 // Return long branch stub size.
5084 unsigned int
5085 branch_stub_size(typename Branch_stub_entries::iterator p,
5086 bool* need_lt);
5087
5088 void
5089 build_tls_opt_head(unsigned char** pp, bool save_lr);
5090
5091 void
5092 build_tls_opt_tail(unsigned char* p);
5093
5094 void
5095 plt_error(const Plt_stub_key& p);
5096
5097 // Write out stubs.
5098 void
5099 do_write(Output_file*);
5100
5101 // Plt call stub keys.
5102 class Plt_stub_key
5103 {
5104 public:
5105 Plt_stub_key(const Symbol* sym)
5106 : sym_(sym), object_(0), addend_(0), locsym_(0)
5107 { }
5108
5109 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
5110 unsigned int locsym_index)
5111 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
5112 { }
5113
5114 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
5115 const Symbol* sym,
5116 unsigned int r_type,
5117 Address addend)
5118 : sym_(sym), object_(0), addend_(0), locsym_(0)
5119 {
5120 if (size != 32)
5121 this->addend_ = addend;
5122 else if (parameters->options().output_is_position_independent()
5123 && (r_type == elfcpp::R_PPC_PLTREL24
5124 || r_type == elfcpp::R_POWERPC_PLTCALL))
5125 {
5126 this->addend_ = addend;
5127 if (this->addend_ >= 32768)
5128 this->object_ = object;
5129 }
5130 }
5131
5132 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
5133 unsigned int locsym_index,
5134 unsigned int r_type,
5135 Address addend)
5136 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
5137 {
5138 if (size != 32)
5139 this->addend_ = addend;
5140 else if (parameters->options().output_is_position_independent()
5141 && (r_type == elfcpp::R_PPC_PLTREL24
5142 || r_type == elfcpp::R_POWERPC_PLTCALL))
5143 this->addend_ = addend;
5144 }
5145
5146 bool operator==(const Plt_stub_key& that) const
5147 {
5148 return (this->sym_ == that.sym_
5149 && this->object_ == that.object_
5150 && this->addend_ == that.addend_
5151 && this->locsym_ == that.locsym_);
5152 }
5153
5154 const Symbol* sym_;
5155 const Sized_relobj_file<size, big_endian>* object_;
5156 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
5157 unsigned int locsym_;
5158 };
5159
5160 class Plt_stub_key_hash
5161 {
5162 public:
5163 size_t operator()(const Plt_stub_key& ent) const
5164 {
5165 return (reinterpret_cast<uintptr_t>(ent.sym_)
5166 ^ reinterpret_cast<uintptr_t>(ent.object_)
5167 ^ ent.addend_
5168 ^ ent.locsym_);
5169 }
5170 };
5171
5172 // Long branch stub keys.
5173 class Branch_stub_key
5174 {
5175 public:
5176 Branch_stub_key(Address to)
5177 : dest_(to)
5178 { }
5179
5180 bool operator==(const Branch_stub_key& that) const
5181 {
5182 return this->dest_ == that.dest_;
5183 }
5184
5185 Address dest_;
5186 };
5187
5188 class Branch_stub_key_hash
5189 {
5190 public:
5191 size_t operator()(const Branch_stub_key& key) const
5192 { return key.dest_; }
5193 };
5194
5195 // In a sane world this would be a global.
5196 Target_powerpc<size, big_endian>* targ_;
5197 // Map sym/object/addend to stub offset.
5198 Plt_stub_entries plt_call_stubs_;
5199 // Map destination address to stub offset.
5200 Branch_stub_entries long_branch_stubs_;
5201 // size of input section
5202 section_size_type orig_data_size_;
5203 // size of stubs
5204 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
5205 // Some rare cases cause (PR/20529) fluctuation in stub table
5206 // size, which leads to an endless relax loop. This is to be fixed
5207 // by, after the first few iterations, allowing only increase of
5208 // stub table size. This variable sets the minimal possible size of
5209 // a stub table, it is zero for the first few iterations, then
5210 // increases monotonically.
5211 Address min_size_threshold_;
5212 // Set if this stub group needs a copy of out-of-line register
5213 // save/restore functions.
5214 bool need_save_res_;
5215 // Set when notoc_/r2save_ changes after sizing a stub
5216 bool need_resize_;
5217 // Set when resizing stubs
5218 bool resizing_;
5219 // Per stub table unique identifier.
5220 uint32_t uniq_;
5221 };
5222
5223 // Add a plt call stub, if we do not already have one for this
5224 // sym/object/addend combo.
5225
5226 template<int size, bool big_endian>
5227 bool
5228 Stub_table<size, big_endian>::add_plt_call_entry(
5229 Address from,
5230 const Sized_relobj_file<size, big_endian>* object,
5231 const Symbol* gsym,
5232 unsigned int r_type,
5233 Address addend,
5234 bool tocsave)
5235 {
5236 Plt_stub_key key(object, gsym, r_type, addend);
5237 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
5238 std::pair<typename Plt_stub_entries::iterator, bool> p
5239 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
5240 if (size == 64)
5241 {
5242 if (p.second
5243 && this->targ_->is_elfv2_localentry0(gsym))
5244 {
5245 p.first->second.localentry0_ = 1;
5246 this->targ_->set_has_localentry0();
5247 }
5248 if (r_type == elfcpp::R_PPC64_REL24_NOTOC
5249 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC)
5250 {
5251 if (this->targ_->power10_stubs()
5252 && (!this->targ_->power10_stubs_auto()
5253 || r_type == elfcpp::R_PPC64_REL24_NOTOC))
5254 {
5255 if (!p.second && !p.first->second.notoc_)
5256 this->need_resize_ = true;
5257 p.first->second.notoc_ = 1;
5258 }
5259 else
5260 {
5261 if (!p.second && !p.first->second.p9notoc_)
5262 this->need_resize_ = true;
5263 p.first->second.p9notoc_ = 1;
5264 }
5265 }
5266 else
5267 {
5268 if (!p.second && !p.first->second.toc_)
5269 this->need_resize_ = true;
5270 p.first->second.toc_ = 1;
5271 if (!tocsave && !p.first->second.localentry0_)
5272 {
5273 if (!p.second && !p.first->second.r2save_)
5274 this->need_resize_ = true;
5275 p.first->second.r2save_ = 1;
5276 }
5277 }
5278 }
5279 if (p.second || (this->resizing_ && !p.first->second.iter_))
5280 {
5281 if (this->resizing_)
5282 {
5283 p.first->second.iter_ = 1;
5284 p.first->second.off_ = this->plt_size_;
5285 }
5286 this->plt_size_ += this->plt_call_size(p.first);
5287 if (this->targ_->is_tls_get_addr_opt(gsym))
5288 this->targ_->set_has_tls_get_addr_opt();
5289 }
5290 return this->can_reach_stub(from, p.first->second.off_, r_type);
5291 }
5292
5293 template<int size, bool big_endian>
5294 bool
5295 Stub_table<size, big_endian>::add_plt_call_entry(
5296 Address from,
5297 const Sized_relobj_file<size, big_endian>* object,
5298 unsigned int locsym_index,
5299 unsigned int r_type,
5300 Address addend,
5301 bool tocsave)
5302 {
5303 Plt_stub_key key(object, locsym_index, r_type, addend);
5304 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
5305 std::pair<typename Plt_stub_entries::iterator, bool> p
5306 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
5307 if (size == 64)
5308 {
5309 if (p.second
5310 && this->targ_->is_elfv2_localentry0(object, locsym_index))
5311 {
5312 p.first->second.localentry0_ = 1;
5313 this->targ_->set_has_localentry0();
5314 }
5315 if (r_type == elfcpp::R_PPC64_REL24_NOTOC
5316 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC)
5317 {
5318 if (this->targ_->power10_stubs()
5319 && (!this->targ_->power10_stubs_auto()
5320 || r_type == elfcpp::R_PPC64_REL24_NOTOC))
5321 {
5322 if (!p.second && !p.first->second.notoc_)
5323 this->need_resize_ = true;
5324 p.first->second.notoc_ = 1;
5325 }
5326 else
5327 {
5328 if (!p.second && !p.first->second.p9notoc_)
5329 this->need_resize_ = true;
5330 p.first->second.p9notoc_ = 1;
5331 }
5332 }
5333 else
5334 {
5335 if (!p.second && !p.first->second.toc_)
5336 this->need_resize_ = true;
5337 p.first->second.toc_ = 1;
5338 if (!tocsave && !p.first->second.localentry0_)
5339 {
5340 if (!p.second && !p.first->second.r2save_)
5341 this->need_resize_ = true;
5342 p.first->second.r2save_ = 1;
5343 }
5344 }
5345 }
5346 if (p.second || (this->resizing_ && !p.first->second.iter_))
5347 {
5348 if (this->resizing_)
5349 {
5350 p.first->second.iter_ = 1;
5351 p.first->second.off_ = this->plt_size_;
5352 }
5353 this->plt_size_ += this->plt_call_size(p.first);
5354 }
5355 return this->can_reach_stub(from, p.first->second.off_, r_type);
5356 }
5357
5358 // Find a plt call stub.
5359
5360 template<int size, bool big_endian>
5361 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5362 Stub_table<size, big_endian>::find_plt_call_entry(
5363 const Sized_relobj_file<size, big_endian>* object,
5364 const Symbol* gsym,
5365 unsigned int r_type,
5366 Address addend) const
5367 {
5368 Plt_stub_key key(object, gsym, r_type, addend);
5369 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5370 if (p == this->plt_call_stubs_.end())
5371 return NULL;
5372 return &p->second;
5373 }
5374
5375 template<int size, bool big_endian>
5376 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5377 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
5378 {
5379 Plt_stub_key key(gsym);
5380 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5381 if (p == this->plt_call_stubs_.end())
5382 return NULL;
5383 return &p->second;
5384 }
5385
5386 template<int size, bool big_endian>
5387 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5388 Stub_table<size, big_endian>::find_plt_call_entry(
5389 const Sized_relobj_file<size, big_endian>* object,
5390 unsigned int locsym_index,
5391 unsigned int r_type,
5392 Address addend) const
5393 {
5394 Plt_stub_key key(object, locsym_index, r_type, addend);
5395 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5396 if (p == this->plt_call_stubs_.end())
5397 return NULL;
5398 return &p->second;
5399 }
5400
5401 template<int size, bool big_endian>
5402 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5403 Stub_table<size, big_endian>::find_plt_call_entry(
5404 const Sized_relobj_file<size, big_endian>* object,
5405 unsigned int locsym_index) const
5406 {
5407 Plt_stub_key key(object, locsym_index);
5408 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5409 if (p == this->plt_call_stubs_.end())
5410 return NULL;
5411 return &p->second;
5412 }
5413
5414 // Add a long branch stub if we don't already have one to given
5415 // destination.
5416
5417 template<int size, bool big_endian>
5418 bool
5419 Stub_table<size, big_endian>::add_long_branch_entry(
5420 unsigned int r_type,
5421 Address from,
5422 Address to,
5423 unsigned int other,
5424 bool save_res)
5425 {
5426 Branch_stub_key key(to);
5427 Branch_stub_ent ent(this->branch_size_);
5428 std::pair<typename Branch_stub_entries::iterator, bool> p
5429 = this->long_branch_stubs_.insert(std::make_pair(key, ent));
5430 if (save_res)
5431 {
5432 if (!p.second && !p.first->second.save_res_)
5433 this->need_resize_ = true;
5434 p.first->second.save_res_ = true;
5435 }
5436 else if (size == 64
5437 && (r_type == elfcpp::R_PPC64_REL24_NOTOC
5438 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC))
5439 {
5440 if (this->targ_->power10_stubs()
5441 && (!this->targ_->power10_stubs_auto()
5442 || r_type == elfcpp::R_PPC64_REL24_NOTOC))
5443 {
5444 if (!p.second && !p.first->second.notoc_)
5445 this->need_resize_ = true;
5446 p.first->second.notoc_ = true;
5447 }
5448 else
5449 {
5450 if (!p.second && !p.first->second.p9notoc_)
5451 this->need_resize_ = true;
5452 p.first->second.p9notoc_ = true;
5453 }
5454 }
5455 else
5456 {
5457 if (!p.second && !p.first->second.toc_)
5458 this->need_resize_ = true;
5459 p.first->second.toc_ = true;
5460 }
5461 if (size == 64 && p.first->second.other_ == 0)
5462 p.first->second.other_ = other;
5463 if (p.second || (this->resizing_ && !p.first->second.iter_))
5464 {
5465 if (this->resizing_)
5466 {
5467 p.first->second.iter_ = 1;
5468 p.first->second.off_ = this->branch_size_;
5469 }
5470 if (save_res)
5471 this->need_save_res_ = true;
5472 else
5473 {
5474 bool need_lt = false;
5475 unsigned int stub_size = this->branch_stub_size(p.first, &need_lt);
5476 this->branch_size_ += stub_size;
5477 if (size == 64 && need_lt)
5478 this->targ_->add_branch_lookup_table(to);
5479 }
5480 }
5481 return this->can_reach_stub(from, p.first->second.off_, r_type);
5482 }
5483
5484 // Find long branch stub offset.
5485
5486 template<int size, bool big_endian>
5487 const typename Stub_table<size, big_endian>::Branch_stub_ent*
5488 Stub_table<size, big_endian>::find_long_branch_entry(Address to) const
5489 {
5490 Branch_stub_key key(to);
5491 typename Branch_stub_entries::const_iterator p
5492 = this->long_branch_stubs_.find(key);
5493 if (p == this->long_branch_stubs_.end())
5494 return NULL;
5495 return &p->second;
5496 }
5497
5498 template<bool big_endian>
5499 static void
5500 eh_advance (std::vector<unsigned char>& fde, unsigned int delta)
5501 {
5502 delta /= 4;
5503 if (delta < 64)
5504 fde.push_back(elfcpp::DW_CFA_advance_loc + delta);
5505 else if (delta < 256)
5506 {
5507 fde.push_back(elfcpp::DW_CFA_advance_loc1);
5508 fde.push_back(delta);
5509 }
5510 else if (delta < 65536)
5511 {
5512 fde.resize(fde.size() + 3);
5513 unsigned char *p = &*fde.end() - 3;
5514 *p++ = elfcpp::DW_CFA_advance_loc2;
5515 elfcpp::Swap<16, big_endian>::writeval(p, delta);
5516 }
5517 else
5518 {
5519 fde.resize(fde.size() + 5);
5520 unsigned char *p = &*fde.end() - 5;
5521 *p++ = elfcpp::DW_CFA_advance_loc4;
5522 elfcpp::Swap<32, big_endian>::writeval(p, delta);
5523 }
5524 }
5525
5526 template<typename T>
5527 static bool
5528 stub_sort(T s1, T s2)
5529 {
5530 return s1->second.off_ < s2->second.off_;
5531 }
5532
5533 // Add .eh_frame info for this stub section. Unlike other linker
5534 // generated .eh_frame this is added late in the link, because we
5535 // only want the .eh_frame info if this particular stub section is
5536 // non-empty.
5537
5538 template<int size, bool big_endian>
5539 void
5540 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
5541 {
5542 if (size != 64
5543 || !parameters->options().ld_generated_unwind_info())
5544 return;
5545
5546 // Since we add stub .eh_frame info late, it must be placed
5547 // after all other linker generated .eh_frame info so that
5548 // merge mapping need not be updated for input sections.
5549 // There is no provision to use a different CIE to that used
5550 // by .glink.
5551 if (!this->targ_->has_glink())
5552 return;
5553
5554 typedef typename Plt_stub_entries::iterator plt_iter;
5555 std::vector<plt_iter> calls;
5556 if (!this->plt_call_stubs_.empty())
5557 for (plt_iter cs = this->plt_call_stubs_.begin();
5558 cs != this->plt_call_stubs_.end();
5559 ++cs)
5560 if (cs->second.p9notoc_
5561 || (cs->second.toc_
5562 && cs->second.r2save_
5563 && !cs->second.localentry0_
5564 && this->targ_->is_tls_get_addr_opt(cs->first.sym_)))
5565 calls.push_back(cs);
5566 if (calls.size() > 1)
5567 std::stable_sort(calls.begin(), calls.end(),
5568 stub_sort<plt_iter>);
5569
5570 typedef typename Branch_stub_entries::const_iterator branch_iter;
5571 std::vector<branch_iter> branches;
5572 if (!this->long_branch_stubs_.empty()
5573 && !this->targ_->power10_stubs())
5574 for (branch_iter bs = this->long_branch_stubs_.begin();
5575 bs != this->long_branch_stubs_.end();
5576 ++bs)
5577 if (bs->second.notoc_)
5578 branches.push_back(bs);
5579 if (branches.size() > 1)
5580 std::stable_sort(branches.begin(), branches.end(),
5581 stub_sort<branch_iter>);
5582
5583 if (calls.empty() && branches.empty())
5584 return;
5585
5586 unsigned int last_eh_loc = 0;
5587 // offset pcrel sdata4, size udata4, and augmentation size byte.
5588 std::vector<unsigned char> fde(9, 0);
5589
5590 for (unsigned int i = 0; i < calls.size(); i++)
5591 {
5592 plt_iter cs = calls[i];
5593 unsigned int off = cs->second.off_;
5594 // The __tls_get_addr_opt call stub needs to describe where
5595 // it saves LR, to support exceptions that might be thrown
5596 // from __tls_get_addr, and to support asynchronous exceptions.
5597 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5598 {
5599 off += 7 * 4;
5600 if (cs->second.toc_
5601 && cs->second.r2save_
5602 && !cs->second.localentry0_)
5603 {
5604 off += cs->second.tocoff_ + 2 * 4;
5605 eh_advance<big_endian>(fde, off - last_eh_loc);
5606 fde.resize(fde.size() + 6);
5607 unsigned char* p = &*fde.end() - 6;
5608 *p++ = elfcpp::DW_CFA_offset_extended_sf;
5609 *p++ = 65;
5610 *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
5611 unsigned int delta = cs->second.tsize_ - 9 * 4 - 4;
5612 *p++ = elfcpp::DW_CFA_advance_loc + delta / 4;
5613 *p++ = elfcpp::DW_CFA_restore_extended;
5614 *p++ = 65;
5615 last_eh_loc = off + delta;
5616 off = cs->second.off_ + 7 * 4;
5617 }
5618 }
5619 // notoc stubs also should describe LR changes, to support
5620 // asynchronous exceptions.
5621 if (cs->second.p9notoc_)
5622 {
5623 off += cs->second.p9off_;
5624 off += (cs->second.r2save_ ? 4 : 0) + 8;
5625 eh_advance<big_endian>(fde, off - last_eh_loc);
5626 fde.resize(fde.size() + 6);
5627 unsigned char* p = &*fde.end() - 6;
5628 *p++ = elfcpp::DW_CFA_register;
5629 *p++ = 65;
5630 *p++ = 12;
5631 *p++ = elfcpp::DW_CFA_advance_loc + 8 / 4;
5632 *p++ = elfcpp::DW_CFA_restore_extended;
5633 *p++ = 65;
5634 last_eh_loc = off + 8;
5635 }
5636 }
5637
5638 for (unsigned int i = 0; i < branches.size(); i++)
5639 {
5640 branch_iter bs = branches[i];
5641 unsigned int off = bs->second.off_ + 8;
5642 eh_advance<big_endian>(fde, off - last_eh_loc);
5643 fde.resize(fde.size() + 6);
5644 unsigned char* p = &*fde.end() - 6;
5645 *p++ = elfcpp::DW_CFA_register;
5646 *p++ = 65;
5647 *p++ = 12;
5648 *p++ = elfcpp::DW_CFA_advance_loc + 8 / 4;
5649 *p++ = elfcpp::DW_CFA_restore_extended;
5650 *p++ = 65;
5651 last_eh_loc = off + 8;
5652 }
5653
5654 layout->add_eh_frame_for_plt(this,
5655 Eh_cie<size>::eh_frame_cie,
5656 sizeof (Eh_cie<size>::eh_frame_cie),
5657 &*fde.begin(), fde.size());
5658 }
5659
5660 template<int size, bool big_endian>
5661 void
5662 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
5663 {
5664 if (size == 64
5665 && parameters->options().ld_generated_unwind_info()
5666 && this->targ_->has_glink())
5667 layout->remove_eh_frame_for_plt(this,
5668 Eh_cie<size>::eh_frame_cie,
5669 sizeof (Eh_cie<size>::eh_frame_cie));
5670 }
5671
5672 // A class to handle .glink.
5673
5674 template<int size, bool big_endian>
5675 class Output_data_glink : public Output_section_data
5676 {
5677 public:
5678 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5679 static const Address invalid_address = static_cast<Address>(0) - 1;
5680
5681 Output_data_glink(Target_powerpc<size, big_endian>* targ)
5682 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
5683 end_branch_table_(), ge_size_(0)
5684 { }
5685
5686 void
5687 add_eh_frame(Layout* layout);
5688
5689 void
5690 add_global_entry(const Symbol*);
5691
5692 Address
5693 find_global_entry(const Symbol*) const;
5694
5695 unsigned int
5696 global_entry_align(unsigned int off) const
5697 {
5698 unsigned int align = param_plt_align<size>();
5699 return (off + align - 1) & -align;
5700 }
5701
5702 unsigned int
5703 global_entry_off() const
5704 {
5705 return this->global_entry_align(this->end_branch_table_);
5706 }
5707
5708 Address
5709 global_entry_address() const
5710 {
5711 gold_assert(this->is_data_size_valid());
5712 return this->address() + this->global_entry_off();
5713 }
5714
5715 int
5716 pltresolve_size() const
5717 {
5718 if (size == 64)
5719 return (8
5720 + (this->targ_->abiversion() < 2 ? 11 * 4
5721 : this->targ_->has_localentry0() ? 14 * 4 : 13 * 4));
5722 return 16 * 4;
5723 }
5724
5725 protected:
5726 // Write to a map file.
5727 void
5728 do_print_to_mapfile(Mapfile* mapfile) const
5729 { mapfile->print_output_data(this, _("** glink")); }
5730
5731 private:
5732 void
5733 set_final_data_size();
5734
5735 // Write out .glink
5736 void
5737 do_write(Output_file*);
5738
5739 // Allows access to .got and .plt for do_write.
5740 Target_powerpc<size, big_endian>* targ_;
5741
5742 // Map sym to stub offset.
5743 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
5744 Global_entry_stub_entries global_entry_stubs_;
5745
5746 unsigned int end_branch_table_, ge_size_;
5747 };
5748
5749 template<int size, bool big_endian>
5750 void
5751 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
5752 {
5753 if (!parameters->options().ld_generated_unwind_info())
5754 return;
5755
5756 if (size == 64)
5757 {
5758 if (this->targ_->abiversion() < 2)
5759 layout->add_eh_frame_for_plt(this,
5760 Eh_cie<64>::eh_frame_cie,
5761 sizeof (Eh_cie<64>::eh_frame_cie),
5762 glink_eh_frame_fde_64v1,
5763 sizeof (glink_eh_frame_fde_64v1));
5764 else if (this->targ_->has_localentry0())
5765 layout->add_eh_frame_for_plt(this,
5766 Eh_cie<64>::eh_frame_cie,
5767 sizeof (Eh_cie<64>::eh_frame_cie),
5768 glink_eh_frame_fde_64v2_localentry0,
5769 sizeof (glink_eh_frame_fde_64v2));
5770 else
5771 layout->add_eh_frame_for_plt(this,
5772 Eh_cie<64>::eh_frame_cie,
5773 sizeof (Eh_cie<64>::eh_frame_cie),
5774 glink_eh_frame_fde_64v2,
5775 sizeof (glink_eh_frame_fde_64v2));
5776 }
5777 else
5778 {
5779 // 32-bit .glink can use the default since the CIE return
5780 // address reg, LR, is valid.
5781 layout->add_eh_frame_for_plt(this,
5782 Eh_cie<32>::eh_frame_cie,
5783 sizeof (Eh_cie<32>::eh_frame_cie),
5784 default_fde,
5785 sizeof (default_fde));
5786 // Except where LR is used in a PIC __glink_PLTresolve.
5787 if (parameters->options().output_is_position_independent())
5788 layout->add_eh_frame_for_plt(this,
5789 Eh_cie<32>::eh_frame_cie,
5790 sizeof (Eh_cie<32>::eh_frame_cie),
5791 glink_eh_frame_fde_32,
5792 sizeof (glink_eh_frame_fde_32));
5793 }
5794 }
5795
5796 template<int size, bool big_endian>
5797 void
5798 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5799 {
5800 unsigned int off = this->global_entry_align(this->ge_size_);
5801 std::pair<typename Global_entry_stub_entries::iterator, bool> p
5802 = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5803 if (p.second)
5804 this->ge_size_ = off + 16;
5805 }
5806
5807 template<int size, bool big_endian>
5808 typename Output_data_glink<size, big_endian>::Address
5809 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5810 {
5811 typename Global_entry_stub_entries::const_iterator p
5812 = this->global_entry_stubs_.find(gsym);
5813 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5814 }
5815
5816 template<int size, bool big_endian>
5817 void
5818 Output_data_glink<size, big_endian>::set_final_data_size()
5819 {
5820 unsigned int count = this->targ_->plt_entry_count();
5821 section_size_type total = 0;
5822
5823 if (count != 0)
5824 {
5825 if (size == 32)
5826 {
5827 // space for branch table
5828 total += 4 * (count - 1);
5829
5830 total += -total & 15;
5831 total += this->pltresolve_size();
5832 }
5833 else
5834 {
5835 total += this->pltresolve_size();
5836
5837 // space for branch table
5838 total += 4 * count;
5839 if (this->targ_->abiversion() < 2)
5840 {
5841 total += 4 * count;
5842 if (count > 0x8000)
5843 total += 4 * (count - 0x8000);
5844 }
5845 }
5846 }
5847 this->end_branch_table_ = total;
5848 total = this->global_entry_align(total);
5849 total += this->ge_size_;
5850
5851 this->set_data_size(total);
5852 }
5853
5854 // Define symbols on stubs, identifying the stub.
5855
5856 template<int size, bool big_endian>
5857 void
5858 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5859 {
5860 if (!this->plt_call_stubs_.empty())
5861 {
5862 // The key for the plt call stub hash table includes addresses,
5863 // therefore traversal order depends on those addresses, which
5864 // can change between runs if gold is a PIE. Unfortunately the
5865 // output .symtab ordering depends on the order in which symbols
5866 // are added to the linker symtab. We want reproducible output
5867 // so must sort the call stub symbols.
5868 typedef typename Plt_stub_entries::iterator plt_iter;
5869 std::vector<plt_iter> sorted;
5870 sorted.resize(this->plt_call_stubs_.size());
5871
5872 for (plt_iter cs = this->plt_call_stubs_.begin();
5873 cs != this->plt_call_stubs_.end();
5874 ++cs)
5875 sorted[cs->second.indx_] = cs;
5876
5877 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5878 {
5879 plt_iter cs = sorted[i];
5880 char add[10];
5881 add[0] = 0;
5882 if (cs->first.addend_ != 0)
5883 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5884 char obj[10];
5885 obj[0] = 0;
5886 if (cs->first.object_)
5887 {
5888 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5889 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5890 sprintf(obj, "%x:", ppcobj->uniq());
5891 }
5892 char localname[9];
5893 const char *symname;
5894 if (cs->first.sym_ == NULL)
5895 {
5896 sprintf(localname, "%x", cs->first.locsym_);
5897 symname = localname;
5898 }
5899 else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5900 symname = this->targ_->tls_get_addr_opt()->name();
5901 else
5902 symname = cs->first.sym_->name();
5903 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5904 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5905 Address value
5906 = this->stub_address() - this->address() + cs->second.off_;
5907 unsigned int stub_size = this->plt_call_size(cs);
5908 this->targ_->define_local(symtab, name, this, value, stub_size);
5909 }
5910 }
5911
5912 typedef typename Branch_stub_entries::iterator branch_iter;
5913 for (branch_iter bs = this->long_branch_stubs_.begin();
5914 bs != this->long_branch_stubs_.end();
5915 ++bs)
5916 {
5917 if (bs->second.save_res_)
5918 continue;
5919
5920 char* name = new char[8 + 13 + 16 + 1];
5921 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5922 static_cast<unsigned long long>(bs->first.dest_));
5923 Address value = (this->stub_address() - this->address()
5924 + this->plt_size_ + bs->second.off_);
5925 bool need_lt = false;
5926 unsigned int stub_size = this->branch_stub_size(bs, &need_lt);
5927 this->targ_->define_local(symtab, name, this, value, stub_size);
5928 }
5929 }
5930
5931 // Emit the start of a __tls_get_addr_opt plt call stub.
5932
5933 template<int size, bool big_endian>
5934 void
5935 Stub_table<size, big_endian>::build_tls_opt_head(unsigned char** pp,
5936 bool save_lr)
5937 {
5938 unsigned char* p = *pp;
5939 if (size == 64)
5940 {
5941 write_insn<big_endian>(p, ld_11_3 + 0);
5942 p += 4;
5943 write_insn<big_endian>(p, ld_12_3 + 8);
5944 p += 4;
5945 write_insn<big_endian>(p, mr_0_3);
5946 p += 4;
5947 write_insn<big_endian>(p, cmpdi_11_0);
5948 p += 4;
5949 write_insn<big_endian>(p, add_3_12_13);
5950 p += 4;
5951 write_insn<big_endian>(p, beqlr);
5952 p += 4;
5953 write_insn<big_endian>(p, mr_3_0);
5954 p += 4;
5955 if (save_lr)
5956 {
5957 write_insn<big_endian>(p, mflr_11);
5958 p += 4;
5959 write_insn<big_endian>(p, (std_11_1 + this->targ_->stk_linker()));
5960 p += 4;
5961 }
5962 }
5963 else
5964 {
5965 write_insn<big_endian>(p, lwz_11_3 + 0);
5966 p += 4;
5967 write_insn<big_endian>(p, lwz_12_3 + 4);
5968 p += 4;
5969 write_insn<big_endian>(p, mr_0_3);
5970 p += 4;
5971 write_insn<big_endian>(p, cmpwi_11_0);
5972 p += 4;
5973 write_insn<big_endian>(p, add_3_12_2);
5974 p += 4;
5975 write_insn<big_endian>(p, beqlr);
5976 p += 4;
5977 write_insn<big_endian>(p, mr_3_0);
5978 p += 4;
5979 write_insn<big_endian>(p, nop);
5980 p += 4;
5981 }
5982 *pp = p;
5983 }
5984
5985 // Emit the tail of a __tls_get_addr_opt plt call stub.
5986
5987 template<int size, bool big_endian>
5988 void
5989 Stub_table<size, big_endian>::build_tls_opt_tail(unsigned char* p)
5990 {
5991 write_insn<big_endian>(p, bctrl);
5992 p += 4;
5993 write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5994 p += 4;
5995 write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5996 p += 4;
5997 write_insn<big_endian>(p, mtlr_11);
5998 p += 4;
5999 write_insn<big_endian>(p, blr);
6000 }
6001
6002 // Emit pc-relative plt call stub code.
6003
6004 template<bool big_endian>
6005 static unsigned char*
6006 build_power10_offset(unsigned char* p, uint64_t off, uint64_t odd, bool load)
6007 {
6008 uint64_t insn;
6009 if (off - odd + (1ULL << 33) < 1ULL << 34)
6010 {
6011 off -= odd;
6012 if (odd)
6013 {
6014 write_insn<big_endian>(p, nop);
6015 p += 4;
6016 }
6017 if (load)
6018 insn = pld_12_pc;
6019 else
6020 insn = paddi_12_pc;
6021 insn |= d34(off);
6022 write_insn<big_endian>(p, insn >> 32);
6023 p += 4;
6024 write_insn<big_endian>(p, insn & 0xffffffff);
6025 }
6026 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
6027 {
6028 off -= 8 - odd;
6029 write_insn<big_endian>(p, li_11_0 | (ha34(off) & 0xffff));
6030 p += 4;
6031 if (!odd)
6032 {
6033 write_insn<big_endian>(p, sldi_11_11_34);
6034 p += 4;
6035 }
6036 insn = paddi_12_pc | d34(off);
6037 write_insn<big_endian>(p, insn >> 32);
6038 p += 4;
6039 write_insn<big_endian>(p, insn & 0xffffffff);
6040 p += 4;
6041 if (odd)
6042 {
6043 write_insn<big_endian>(p, sldi_11_11_34);
6044 p += 4;
6045 }
6046 if (load)
6047 write_insn<big_endian>(p, ldx_12_11_12);
6048 else
6049 write_insn<big_endian>(p, add_12_11_12);
6050 }
6051 else
6052 {
6053 off -= odd + 8;
6054 write_insn<big_endian>(p, lis_11 | ((ha34(off) >> 16) & 0x3fff));
6055 p += 4;
6056 write_insn<big_endian>(p, ori_11_11_0 | (ha34(off) & 0xffff));
6057 p += 4;
6058 if (odd)
6059 {
6060 write_insn<big_endian>(p, sldi_11_11_34);
6061 p += 4;
6062 }
6063 insn = paddi_12_pc | d34(off);
6064 write_insn<big_endian>(p, insn >> 32);
6065 p += 4;
6066 write_insn<big_endian>(p, insn & 0xffffffff);
6067 p += 4;
6068 if (!odd)
6069 {
6070 write_insn<big_endian>(p, sldi_11_11_34);
6071 p += 4;
6072 }
6073 if (load)
6074 write_insn<big_endian>(p, ldx_12_11_12);
6075 else
6076 write_insn<big_endian>(p, add_12_11_12);
6077 }
6078 p += 4;
6079 return p;
6080 }
6081
6082 // Gets the address of a label (1:) in r11 and builds an offset in r12,
6083 // then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
6084 // mflr %r12
6085 // bcl 20,31,1f
6086 // 1: mflr %r11
6087 // mtlr %r12
6088 // lis %r12,xxx-1b@highest
6089 // ori %r12,%r12,xxx-1b@higher
6090 // sldi %r12,%r12,32
6091 // oris %r12,%r12,xxx-1b@high
6092 // ori %r12,%r12,xxx-1b@l
6093 // add/ldx %r12,%r11,%r12
6094
6095 template<bool big_endian>
6096 static unsigned char*
6097 build_notoc_offset(unsigned char* p, uint64_t off, bool load)
6098 {
6099 write_insn<big_endian>(p, mflr_12);
6100 p += 4;
6101 write_insn<big_endian>(p, bcl_20_31);
6102 p += 4;
6103 write_insn<big_endian>(p, mflr_11);
6104 p += 4;
6105 write_insn<big_endian>(p, mtlr_12);
6106 p += 4;
6107 if (off + 0x8000 < 0x10000)
6108 {
6109 if (load)
6110 write_insn<big_endian>(p, ld_12_11 + l(off));
6111 else
6112 write_insn<big_endian>(p, addi_12_11 + l(off));
6113 }
6114 else if (off + 0x80008000ULL < 0x100000000ULL)
6115 {
6116 write_insn<big_endian>(p, addis_12_11 + ha(off));
6117 p += 4;
6118 if (load)
6119 write_insn<big_endian>(p, ld_12_12 + l(off));
6120 else
6121 write_insn<big_endian>(p, addi_12_12 + l(off));
6122 }
6123 else
6124 {
6125 if (off + 0x800000000000ULL < 0x1000000000000ULL)
6126 {
6127 write_insn<big_endian>(p, li_12_0 + ((off >> 32) & 0xffff));
6128 p += 4;
6129 }
6130 else
6131 {
6132 write_insn<big_endian>(p, lis_12 + ((off >> 48) & 0xffff));
6133 p += 4;
6134 if (((off >> 32) & 0xffff) != 0)
6135 {
6136 write_insn<big_endian>(p, ori_12_12_0 + ((off >> 32) & 0xffff));
6137 p += 4;
6138 }
6139 }
6140 if (((off >> 32) & 0xffffffffULL) != 0)
6141 {
6142 write_insn<big_endian>(p, sldi_12_12_32);
6143 p += 4;
6144 }
6145 if (hi(off) != 0)
6146 {
6147 write_insn<big_endian>(p, oris_12_12_0 + hi(off));
6148 p += 4;
6149 }
6150 if (l(off) != 0)
6151 {
6152 write_insn<big_endian>(p, ori_12_12_0 + l(off));
6153 p += 4;
6154 }
6155 if (load)
6156 write_insn<big_endian>(p, ldx_12_11_12);
6157 else
6158 write_insn<big_endian>(p, add_12_11_12);
6159 }
6160 p += 4;
6161 return p;
6162 }
6163
6164 // Size of a given plt call stub.
6165
6166 template<int size, bool big_endian>
6167 unsigned int
6168 Stub_table<size, big_endian>::plt_call_size(
6169 typename Plt_stub_entries::iterator p) const
6170 {
6171 if (size == 32)
6172 {
6173 unsigned int bytes = 4 * 4;
6174 if (this->targ_->is_tls_get_addr_opt(p->first.sym_))
6175 bytes = 12 * 4;
6176 return this->plt_call_align(bytes);
6177 }
6178
6179 const Output_data_plt_powerpc<size, big_endian>* plt;
6180 uint64_t plt_addr = this->plt_off(p, &plt);
6181 plt_addr += plt->address();
6182 if (this->targ_->power10_stubs()
6183 && this->targ_->power10_stubs_auto())
6184 {
6185 unsigned int bytes = 0;
6186 if (p->second.notoc_)
6187 {
6188 if (this->targ_->is_tls_get_addr_opt(p->first.sym_))
6189 bytes = 7 * 4;
6190 uint64_t from = this->stub_address() + p->second.off_ + bytes;
6191 uint64_t odd = from & 4;
6192 uint64_t off = plt_addr - from;
6193 if (off - odd + (1ULL << 33) < 1ULL << 34)
6194 bytes += odd + 4 * 4;
6195 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
6196 bytes += 7 * 4;
6197 else
6198 bytes += 8 * 4;
6199 bytes = this->plt_call_align(bytes);
6200 }
6201 if (p->second.toc_)
6202 {
6203 p->second.tocoff_ = bytes;
6204 if (this->targ_->is_tls_get_addr_opt(p->first.sym_))
6205 {
6206 bytes += 7 * 4;
6207 if (p->second.r2save_ && !p->second.localentry0_)
6208 bytes += 2 * 4 + 4 * 4;
6209 }
6210 if (p->second.r2save_)
6211 bytes += 4;
6212 uint64_t got_addr = this->targ_->toc_pointer();
6213 uint64_t off = plt_addr - got_addr;
6214 bytes += 3 * 4 + 4 * (ha(off) != 0);
6215 p->second.tsize_ = bytes - p->second.tocoff_;
6216 bytes = this->plt_call_align(bytes);
6217 }
6218 if (p->second.p9notoc_)
6219 {
6220 p->second.p9off_ = bytes;
6221 if (this->targ_->is_tls_get_addr_opt(p->first.sym_))
6222 bytes += 7 * 4;
6223 uint64_t from = this->stub_address() + p->second.off_ + bytes + 2 * 4;
6224 uint64_t off = plt_addr - from;
6225 if (off + 0x8000 < 0x10000)
6226 bytes += 7 * 4;
6227 else if (off + 0x80008000ULL < 0x100000000ULL)
6228 bytes += 8 * 4;
6229 else
6230 {
6231 bytes += 8 * 4;
6232 if (off + 0x800000000000ULL >= 0x1000000000000ULL
6233 && ((off >> 32) & 0xffff) != 0)
6234 bytes += 4;
6235 if (((off >> 32) & 0xffffffffULL) != 0)
6236 bytes += 4;
6237 if (hi(off) != 0)
6238 bytes += 4;
6239 if (l(off) != 0)
6240 bytes += 4;
6241 }
6242 bytes = this->plt_call_align(bytes);
6243 }
6244 return bytes;
6245 }
6246 else
6247 {
6248 unsigned int bytes = 0;
6249 unsigned int tail = 0;
6250 if (this->targ_->is_tls_get_addr_opt(p->first.sym_))
6251 {
6252 bytes = 7 * 4;
6253 if (p->second.r2save_ && !p->second.localentry0_)
6254 {
6255 bytes = 9 * 4;
6256 tail = 4 * 4;
6257 }
6258 }
6259
6260 if (p->second.r2save_)
6261 bytes += 4;
6262
6263 if (this->targ_->power10_stubs())
6264 {
6265 uint64_t from = this->stub_address() + p->second.off_ + bytes;
6266 uint64_t odd = from & 4;
6267 uint64_t off = plt_addr - from;
6268 if (off - odd + (1ULL << 33) < 1ULL << 34)
6269 bytes += odd + 4 * 4;
6270 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
6271 bytes += 7 * 4;
6272 else
6273 bytes += 8 * 4;
6274 return this->plt_call_align(bytes + tail);
6275 }
6276
6277 if (p->second.p9notoc_)
6278 {
6279 uint64_t from = this->stub_address() + p->second.off_ + bytes + 2 * 4;
6280 uint64_t off = plt_addr - from;
6281 if (off + 0x8000 < 0x10000)
6282 bytes += 7 * 4;
6283 else if (off + 0x80008000ULL < 0x100000000ULL)
6284 bytes += 8 * 4;
6285 else
6286 {
6287 bytes += 8 * 4;
6288 if (off + 0x800000000000ULL >= 0x1000000000000ULL
6289 && ((off >> 32) & 0xffff) != 0)
6290 bytes += 4;
6291 if (((off >> 32) & 0xffffffffULL) != 0)
6292 bytes += 4;
6293 if (hi(off) != 0)
6294 bytes += 4;
6295 if (l(off) != 0)
6296 bytes += 4;
6297 }
6298 return this->plt_call_align(bytes + tail);
6299 }
6300
6301 uint64_t got_addr = this->targ_->toc_pointer();
6302 uint64_t off = plt_addr - got_addr;
6303 bytes += 3 * 4 + 4 * (ha(off) != 0);
6304 if (this->targ_->abiversion() < 2)
6305 {
6306 bool static_chain = parameters->options().plt_static_chain();
6307 bool thread_safe = this->targ_->plt_thread_safe();
6308 bytes += (4
6309 + 4 * static_chain
6310 + 8 * thread_safe
6311 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
6312 }
6313 return this->plt_call_align(bytes + tail);
6314 }
6315 }
6316
6317 // Return long branch stub size.
6318
6319 template<int size, bool big_endian>
6320 unsigned int
6321 Stub_table<size, big_endian>::branch_stub_size(
6322 typename Branch_stub_entries::iterator p,
6323 bool* need_lt)
6324 {
6325 Address loc = this->stub_address() + this->last_plt_size_ + p->second.off_;
6326 if (size == 32)
6327 {
6328 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
6329 return 4;
6330 if (parameters->options().output_is_position_independent())
6331 return 32;
6332 return 16;
6333 }
6334
6335 uint64_t off = p->first.dest_ - loc;
6336 unsigned int bytes = 0;
6337 if (p->second.notoc_)
6338 {
6339 if (this->targ_->power10_stubs())
6340 {
6341 Address odd = loc & 4;
6342 if (off + (1 << 25) < 2 << 25)
6343 bytes = odd + 12;
6344 else if (off - odd + (1ULL << 33) < 1ULL << 34)
6345 bytes = odd + 16;
6346 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
6347 bytes = 28;
6348 else
6349 bytes = 32;
6350 if (!(p->second.toc_ && this->targ_->power10_stubs_auto()))
6351 return bytes;
6352 p->second.tocoff_ = bytes;
6353 }
6354 else
6355 {
6356 off -= 8;
6357 if (off + 0x8000 < 0x10000)
6358 return 24;
6359 if (off + 0x80008000ULL < 0x100000000ULL)
6360 {
6361 if (off + 24 + (1 << 25) < 2 << 25)
6362 return 28;
6363 return 32;
6364 }
6365
6366 bytes = 32;
6367 if (off + 0x800000000000ULL >= 0x1000000000000ULL
6368 && ((off >> 32) & 0xffff) != 0)
6369 bytes += 4;
6370 if (((off >> 32) & 0xffffffffULL) != 0)
6371 bytes += 4;
6372 if (hi(off) != 0)
6373 bytes += 4;
6374 if (l(off) != 0)
6375 bytes += 4;
6376 return bytes;
6377 }
6378 }
6379
6380 off += elfcpp::ppc64_decode_local_entry(p->second.other_);
6381 if (off + (1 << 25) < 2 << 25)
6382 return bytes + 4;
6383 if (!this->targ_->power10_stubs()
6384 || (p->second.toc_ && this->targ_->power10_stubs_auto()))
6385 *need_lt = true;
6386 return bytes + 16;
6387 }
6388
6389 template<int size, bool big_endian>
6390 void
6391 Stub_table<size, big_endian>::plt_error(const Plt_stub_key& p)
6392 {
6393 if (p.sym_)
6394 gold_error(_("linkage table error against `%s'"),
6395 p.sym_->demangled_name().c_str());
6396 else
6397 gold_error(_("linkage table error against `%s:[local %u]'"),
6398 p.object_->name().c_str(),
6399 p.locsym_);
6400 }
6401
6402 // Write out plt and long branch stub code.
6403
6404 template<int size, bool big_endian>
6405 void
6406 Stub_table<size, big_endian>::do_write(Output_file* of)
6407 {
6408 if (this->plt_call_stubs_.empty()
6409 && this->long_branch_stubs_.empty())
6410 return;
6411
6412 const section_size_type start_off = this->offset();
6413 const section_size_type off = this->stub_offset();
6414 const section_size_type oview_size =
6415 convert_to_section_size_type(this->data_size() - (off - start_off));
6416 unsigned char* const oview = of->get_output_view(off, oview_size);
6417 unsigned char* p;
6418
6419 if (size == 64
6420 && this->targ_->power10_stubs())
6421 {
6422 if (!this->plt_call_stubs_.empty())
6423 {
6424 // Write out plt call stubs.
6425 typename Plt_stub_entries::const_iterator cs;
6426 for (cs = this->plt_call_stubs_.begin();
6427 cs != this->plt_call_stubs_.end();
6428 ++cs)
6429 {
6430 p = oview + cs->second.off_;
6431 const Output_data_plt_powerpc<size, big_endian>* plt;
6432 Address pltoff = this->plt_off(cs, &plt);
6433 Address plt_addr = pltoff + plt->address();
6434 if (this->targ_->power10_stubs_auto())
6435 {
6436 if (cs->second.notoc_)
6437 {
6438 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6439 this->build_tls_opt_head(&p, false);
6440 Address from = this->stub_address() + (p - oview);
6441 Address delta = plt_addr - from;
6442 p = build_power10_offset<big_endian>(p, delta, from & 4,
6443 true);
6444 write_insn<big_endian>(p, mtctr_12);
6445 p += 4;
6446 write_insn<big_endian>(p, bctr);
6447 p += 4;
6448 p = oview + this->plt_call_align(p - oview);
6449 }
6450 if (cs->second.toc_)
6451 {
6452 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6453 {
6454 bool save_lr
6455 = cs->second.r2save_ && !cs->second.localentry0_;
6456 this->build_tls_opt_head(&p, save_lr);
6457 }
6458 Address got_addr = this->targ_->toc_pointer();
6459 Address off = plt_addr - got_addr;
6460
6461 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
6462 this->plt_error(cs->first);
6463
6464 if (cs->second.r2save_)
6465 {
6466 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6467 p += 4;
6468 }
6469 if (ha(off) != 0)
6470 {
6471 write_insn<big_endian>(p, addis_12_2 + ha(off));
6472 p += 4;
6473 write_insn<big_endian>(p, ld_12_12 + l(off));
6474 p += 4;
6475 }
6476 else
6477 {
6478 write_insn<big_endian>(p, ld_12_2 + l(off));
6479 p += 4;
6480 }
6481 write_insn<big_endian>(p, mtctr_12);
6482 p += 4;
6483 if (cs->second.r2save_
6484 && !cs->second.localentry0_
6485 && this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6486 this->build_tls_opt_tail(p);
6487 else
6488 write_insn<big_endian>(p, bctr);
6489 }
6490 if (cs->second.p9notoc_)
6491 {
6492 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6493 this->build_tls_opt_head(&p, false);
6494 Address from = this->stub_address() + (p - oview);
6495 Address delta = plt_addr - from;
6496 p = build_notoc_offset<big_endian>(p, delta, true);
6497 write_insn<big_endian>(p, mtctr_12);
6498 p += 4;
6499 write_insn<big_endian>(p, bctr);
6500 p += 4;
6501 p = oview + this->plt_call_align(p - oview);
6502 }
6503 }
6504 else
6505 {
6506 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6507 {
6508 bool save_lr
6509 = cs->second.r2save_ && !cs->second.localentry0_;
6510 this->build_tls_opt_head(&p, save_lr);
6511 }
6512 if (cs->second.r2save_)
6513 {
6514 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6515 p += 4;
6516 }
6517 Address from = this->stub_address() + (p - oview);
6518 Address delta = plt_addr - from;
6519 p = build_power10_offset<big_endian>(p, delta, from & 4, true);
6520 write_insn<big_endian>(p, mtctr_12);
6521 p += 4;
6522 if (cs->second.r2save_
6523 && !cs->second.localentry0_
6524 && this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6525 this->build_tls_opt_tail(p);
6526 else
6527 write_insn<big_endian>(p, bctr);
6528 }
6529 }
6530 }
6531
6532 // Write out long branch stubs.
6533 typename Branch_stub_entries::const_iterator bs;
6534 for (bs = this->long_branch_stubs_.begin();
6535 bs != this->long_branch_stubs_.end();
6536 ++bs)
6537 {
6538 if (bs->second.save_res_)
6539 continue;
6540 Address off = this->plt_size_ + bs->second.off_;
6541 p = oview + off;
6542 Address loc = this->stub_address() + off;
6543 Address delta = bs->first.dest_ - loc;
6544 if (this->targ_->power10_stubs_auto())
6545 {
6546 if (bs->second.notoc_)
6547 {
6548 unsigned char* startp = p;
6549 p = build_power10_offset<big_endian>(p, delta,
6550 loc & 4, false);
6551 delta -= p - startp;
6552 startp = p;
6553 if (delta + (1 << 25) < 2 << 25)
6554 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6555 else
6556 {
6557 write_insn<big_endian>(p, mtctr_12);
6558 p += 4;
6559 write_insn<big_endian>(p, bctr);
6560 }
6561 p += 4;
6562 delta -= p - startp;
6563 }
6564 if (bs->second.toc_)
6565 {
6566 delta += elfcpp::ppc64_decode_local_entry(bs->second.other_);
6567 if (delta + (1 << 25) >= 2 << 25)
6568 {
6569 Address brlt_addr
6570 = this->targ_->find_branch_lookup_table(bs->first.dest_);
6571 gold_assert(brlt_addr != invalid_address);
6572 brlt_addr += this->targ_->brlt_section()->address();
6573 Address got_addr = this->targ_->toc_pointer();
6574 Address brltoff = brlt_addr - got_addr;
6575 if (ha(brltoff) == 0)
6576 {
6577 write_insn<big_endian>(p, ld_12_2 + l(brltoff));
6578 p += 4;
6579 }
6580 else
6581 {
6582 write_insn<big_endian>(p, addis_12_2 + ha(brltoff));
6583 p += 4;
6584 write_insn<big_endian>(p, ld_12_12 + l(brltoff));
6585 p += 4;
6586 }
6587 }
6588 if (delta + (1 << 25) < 2 << 25)
6589 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6590 else
6591 {
6592 write_insn<big_endian>(p, mtctr_12);
6593 p += 4;
6594 write_insn<big_endian>(p, bctr);
6595 }
6596 }
6597 if (bs->second.p9notoc_)
6598 {
6599 unsigned char* startp = p;
6600 p = build_notoc_offset<big_endian>(p, delta, false);
6601 delta -= p - startp;
6602 startp = p;
6603 if (delta + (1 << 25) < 2 << 25)
6604 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6605 else
6606 {
6607 write_insn<big_endian>(p, mtctr_12);
6608 p += 4;
6609 write_insn<big_endian>(p, bctr);
6610 }
6611 p += 4;
6612 delta -= p - startp;
6613 }
6614 }
6615 else
6616 {
6617 if (!bs->second.notoc_)
6618 delta += elfcpp::ppc64_decode_local_entry(bs->second.other_);
6619 if (bs->second.notoc_ || delta + (1 << 25) >= 2 << 25)
6620 {
6621 unsigned char* startp = p;
6622 p = build_power10_offset<big_endian>(p, delta,
6623 loc & 4, false);
6624 delta -= p - startp;
6625 }
6626 if (delta + (1 << 25) < 2 << 25)
6627 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6628 else
6629 {
6630 write_insn<big_endian>(p, mtctr_12);
6631 p += 4;
6632 write_insn<big_endian>(p, bctr);
6633 }
6634 }
6635 }
6636 }
6637 else if (size == 64)
6638 {
6639
6640 if (!this->plt_call_stubs_.empty()
6641 && this->targ_->abiversion() >= 2)
6642 {
6643 // Write out plt call stubs for ELFv2.
6644 typename Plt_stub_entries::const_iterator cs;
6645 for (cs = this->plt_call_stubs_.begin();
6646 cs != this->plt_call_stubs_.end();
6647 ++cs)
6648 {
6649 const Output_data_plt_powerpc<size, big_endian>* plt;
6650 Address pltoff = this->plt_off(cs, &plt);
6651 Address plt_addr = pltoff + plt->address();
6652
6653 p = oview + cs->second.off_;
6654 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6655 {
6656 bool save_lr = cs->second.r2save_ && !cs->second.localentry0_;
6657 this->build_tls_opt_head(&p, save_lr);
6658 }
6659 if (cs->second.r2save_)
6660 {
6661 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6662 p += 4;
6663 }
6664 if (cs->second.p9notoc_)
6665 {
6666 Address from = this->stub_address() + (p - oview) + 8;
6667 Address off = plt_addr - from;
6668 p = build_notoc_offset<big_endian>(p, off, true);
6669 }
6670 else
6671 {
6672 Address got_addr = this->targ_->toc_pointer();
6673 Address off = plt_addr - got_addr;
6674
6675 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
6676 this->plt_error(cs->first);
6677
6678 if (ha(off) != 0)
6679 {
6680 write_insn<big_endian>(p, addis_12_2 + ha(off));
6681 p += 4;
6682 write_insn<big_endian>(p, ld_12_12 + l(off));
6683 p += 4;
6684 }
6685 else
6686 {
6687 write_insn<big_endian>(p, ld_12_2 + l(off));
6688 p += 4;
6689 }
6690 }
6691 write_insn<big_endian>(p, mtctr_12);
6692 p += 4;
6693 if (cs->second.r2save_
6694 && !cs->second.localentry0_
6695 && this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6696 this->build_tls_opt_tail(p);
6697 else
6698 write_insn<big_endian>(p, bctr);
6699 }
6700 }
6701 else if (!this->plt_call_stubs_.empty())
6702 {
6703 // Write out plt call stubs for ELFv1.
6704 typename Plt_stub_entries::const_iterator cs;
6705 for (cs = this->plt_call_stubs_.begin();
6706 cs != this->plt_call_stubs_.end();
6707 ++cs)
6708 {
6709 const Output_data_plt_powerpc<size, big_endian>* plt;
6710 Address pltoff = this->plt_off(cs, &plt);
6711 Address plt_addr = pltoff + plt->address();
6712 Address got_addr = this->targ_->toc_pointer();
6713 Address off = plt_addr - got_addr;
6714
6715 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0
6716 || cs->second.notoc_)
6717 this->plt_error(cs->first);
6718
6719 bool static_chain = parameters->options().plt_static_chain();
6720 bool thread_safe = this->targ_->plt_thread_safe();
6721 bool use_fake_dep = false;
6722 Address cmp_branch_off = 0;
6723 if (thread_safe)
6724 {
6725 unsigned int pltindex
6726 = ((pltoff - this->targ_->first_plt_entry_offset())
6727 / this->targ_->plt_entry_size());
6728 Address glinkoff
6729 = (this->targ_->glink_section()->pltresolve_size()
6730 + pltindex * 8);
6731 if (pltindex > 32768)
6732 glinkoff += (pltindex - 32768) * 4;
6733 Address to
6734 = this->targ_->glink_section()->address() + glinkoff;
6735 Address from
6736 = (this->stub_address() + cs->second.off_ + 20
6737 + 4 * cs->second.r2save_
6738 + 4 * (ha(off) != 0)
6739 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
6740 + 4 * static_chain);
6741 cmp_branch_off = to - from;
6742 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
6743 }
6744
6745 p = oview + cs->second.off_;
6746 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6747 {
6748 bool save_lr = cs->second.r2save_ && !cs->second.localentry0_;
6749 this->build_tls_opt_head(&p, save_lr);
6750 use_fake_dep = thread_safe;
6751 }
6752 if (cs->second.r2save_)
6753 {
6754 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6755 p += 4;
6756 }
6757 if (ha(off) != 0)
6758 {
6759 write_insn<big_endian>(p, addis_11_2 + ha(off));
6760 p += 4;
6761 write_insn<big_endian>(p, ld_12_11 + l(off));
6762 p += 4;
6763 if (ha(off + 8 + 8 * static_chain) != ha(off))
6764 {
6765 write_insn<big_endian>(p, addi_11_11 + l(off));
6766 p += 4;
6767 off = 0;
6768 }
6769 write_insn<big_endian>(p, mtctr_12);
6770 p += 4;
6771 if (use_fake_dep)
6772 {
6773 write_insn<big_endian>(p, xor_2_12_12);
6774 p += 4;
6775 write_insn<big_endian>(p, add_11_11_2);
6776 p += 4;
6777 }
6778 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
6779 p += 4;
6780 if (static_chain)
6781 {
6782 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
6783 p += 4;
6784 }
6785 }
6786 else
6787 {
6788 write_insn<big_endian>(p, ld_12_2 + l(off));
6789 p += 4;
6790 if (ha(off + 8 + 8 * static_chain) != ha(off))
6791 {
6792 write_insn<big_endian>(p, addi_2_2 + l(off));
6793 p += 4;
6794 off = 0;
6795 }
6796 write_insn<big_endian>(p, mtctr_12);
6797 p += 4;
6798 if (use_fake_dep)
6799 {
6800 write_insn<big_endian>(p, xor_11_12_12);
6801 p += 4;
6802 write_insn<big_endian>(p, add_2_2_11);
6803 p += 4;
6804 }
6805 if (static_chain)
6806 {
6807 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
6808 p += 4;
6809 }
6810 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
6811 p += 4;
6812 }
6813 if (cs->second.r2save_
6814 && !cs->second.localentry0_
6815 && this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6816 this->build_tls_opt_tail(p);
6817 else if (thread_safe && !use_fake_dep)
6818 {
6819 write_insn<big_endian>(p, cmpldi_2_0);
6820 p += 4;
6821 write_insn<big_endian>(p, bnectr_p4);
6822 p += 4;
6823 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
6824 }
6825 else
6826 write_insn<big_endian>(p, bctr);
6827 }
6828 }
6829
6830 // Write out long branch stubs.
6831 typename Branch_stub_entries::const_iterator bs;
6832 for (bs = this->long_branch_stubs_.begin();
6833 bs != this->long_branch_stubs_.end();
6834 ++bs)
6835 {
6836 if (bs->second.save_res_)
6837 continue;
6838 Address off = this->plt_size_ + bs->second.off_;
6839 p = oview + off;
6840 Address loc = this->stub_address() + off;
6841 Address delta = bs->first.dest_ - loc;
6842 if (!bs->second.p9notoc_)
6843 delta += elfcpp::ppc64_decode_local_entry(bs->second.other_);
6844 if (bs->second.p9notoc_)
6845 {
6846 unsigned char* startp = p;
6847 p = build_notoc_offset<big_endian>(p, off, false);
6848 delta -= p - startp;
6849 }
6850 else if (delta + (1 << 25) >= 2 << 25)
6851 {
6852 Address brlt_addr
6853 = this->targ_->find_branch_lookup_table(bs->first.dest_);
6854 gold_assert(brlt_addr != invalid_address);
6855 brlt_addr += this->targ_->brlt_section()->address();
6856 Address got_addr = this->targ_->toc_pointer();
6857 Address brltoff = brlt_addr - got_addr;
6858 if (ha(brltoff) == 0)
6859 {
6860 write_insn<big_endian>(p, ld_12_2 + l(brltoff));
6861 p += 4;
6862 }
6863 else
6864 {
6865 write_insn<big_endian>(p, addis_12_2 + ha(brltoff));
6866 p += 4;
6867 write_insn<big_endian>(p, ld_12_12 + l(brltoff));
6868 p += 4;
6869 }
6870 }
6871 if (delta + (1 << 25) < 2 << 25)
6872 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6873 else
6874 {
6875 write_insn<big_endian>(p, mtctr_12);
6876 p += 4;
6877 write_insn<big_endian>(p, bctr);
6878 }
6879 }
6880 }
6881 else // size == 32
6882 {
6883 if (!this->plt_call_stubs_.empty())
6884 {
6885 // The address of _GLOBAL_OFFSET_TABLE_.
6886 Address g_o_t = invalid_address;
6887
6888 // Write out plt call stubs.
6889 typename Plt_stub_entries::const_iterator cs;
6890 for (cs = this->plt_call_stubs_.begin();
6891 cs != this->plt_call_stubs_.end();
6892 ++cs)
6893 {
6894 const Output_data_plt_powerpc<size, big_endian>* plt;
6895 Address plt_addr = this->plt_off(cs, &plt);
6896 plt_addr += plt->address();
6897
6898 p = oview + cs->second.off_;
6899 if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
6900 this->build_tls_opt_head(&p, false);
6901 if (parameters->options().output_is_position_independent())
6902 {
6903 Address got_addr;
6904 const Powerpc_relobj<size, big_endian>* ppcobj
6905 = (static_cast<const Powerpc_relobj<size, big_endian>*>
6906 (cs->first.object_));
6907 if (ppcobj != NULL && cs->first.addend_ >= 32768)
6908 {
6909 unsigned int got2 = ppcobj->got2_shndx();
6910 got_addr = ppcobj->get_output_section_offset(got2);
6911 gold_assert(got_addr != invalid_address);
6912 got_addr += (ppcobj->output_section(got2)->address()
6913 + cs->first.addend_);
6914 }
6915 else
6916 {
6917 if (g_o_t == invalid_address)
6918 g_o_t = this->targ_->toc_pointer();
6919 got_addr = g_o_t;
6920 }
6921
6922 Address off = plt_addr - got_addr;
6923 if (ha(off) == 0)
6924 write_insn<big_endian>(p, lwz_11_30 + l(off));
6925 else
6926 {
6927 write_insn<big_endian>(p, addis_11_30 + ha(off));
6928 p += 4;
6929 write_insn<big_endian>(p, lwz_11_11 + l(off));
6930 }
6931 }
6932 else
6933 {
6934 write_insn<big_endian>(p, lis_11 + ha(plt_addr));
6935 p += 4;
6936 write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
6937 }
6938 p += 4;
6939 write_insn<big_endian>(p, mtctr_11);
6940 p += 4;
6941 write_insn<big_endian>(p, bctr);
6942 }
6943 }
6944
6945 // Write out long branch stubs.
6946 typename Branch_stub_entries::const_iterator bs;
6947 for (bs = this->long_branch_stubs_.begin();
6948 bs != this->long_branch_stubs_.end();
6949 ++bs)
6950 {
6951 if (bs->second.save_res_)
6952 continue;
6953 Address off = this->plt_size_ + bs->second.off_;
6954 p = oview + off;
6955 Address loc = this->stub_address() + off;
6956 Address delta = bs->first.dest_ - loc;
6957 if (delta + (1 << 25) < 2 << 25)
6958 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6959 else if (!parameters->options().output_is_position_independent())
6960 {
6961 write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
6962 p += 4;
6963 write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
6964 }
6965 else
6966 {
6967 delta -= 8;
6968 write_insn<big_endian>(p, mflr_0);
6969 p += 4;
6970 write_insn<big_endian>(p, bcl_20_31);
6971 p += 4;
6972 write_insn<big_endian>(p, mflr_12);
6973 p += 4;
6974 write_insn<big_endian>(p, addis_12_12 + ha(delta));
6975 p += 4;
6976 write_insn<big_endian>(p, addi_12_12 + l(delta));
6977 p += 4;
6978 write_insn<big_endian>(p, mtlr_0);
6979 }
6980 p += 4;
6981 write_insn<big_endian>(p, mtctr_12);
6982 p += 4;
6983 write_insn<big_endian>(p, bctr);
6984 }
6985 }
6986 if (this->need_save_res_)
6987 {
6988 p = oview + this->plt_size_ + this->branch_size_;
6989 memcpy (p, this->targ_->savres_section()->contents(),
6990 this->targ_->savres_section()->data_size());
6991 }
6992 }
6993
6994 // Write out .glink.
6995
6996 template<int size, bool big_endian>
6997 void
6998 Output_data_glink<size, big_endian>::do_write(Output_file* of)
6999 {
7000 const section_size_type off = this->offset();
7001 const section_size_type oview_size =
7002 convert_to_section_size_type(this->data_size());
7003 unsigned char* const oview = of->get_output_view(off, oview_size);
7004 unsigned char* p;
7005
7006 // The base address of the .plt section.
7007 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
7008 Address plt_base = this->targ_->plt_section()->address();
7009
7010 if (size == 64)
7011 {
7012 if (this->end_branch_table_ != 0)
7013 {
7014 // Write pltresolve stub.
7015 p = oview;
7016 Address after_bcl = this->address() + 16;
7017 Address pltoff = plt_base - after_bcl;
7018
7019 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
7020
7021 if (this->targ_->abiversion() < 2)
7022 {
7023 write_insn<big_endian>(p, mflr_12), p += 4;
7024 write_insn<big_endian>(p, bcl_20_31), p += 4;
7025 write_insn<big_endian>(p, mflr_11), p += 4;
7026 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
7027 write_insn<big_endian>(p, mtlr_12), p += 4;
7028 write_insn<big_endian>(p, add_11_2_11), p += 4;
7029 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
7030 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
7031 write_insn<big_endian>(p, mtctr_12), p += 4;
7032 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
7033 }
7034 else
7035 {
7036 if (this->targ_->has_localentry0())
7037 {
7038 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
7039 }
7040 write_insn<big_endian>(p, mflr_0), p += 4;
7041 write_insn<big_endian>(p, bcl_20_31), p += 4;
7042 write_insn<big_endian>(p, mflr_11), p += 4;
7043 write_insn<big_endian>(p, mtlr_0), p += 4;
7044 if (this->targ_->has_localentry0())
7045 {
7046 write_insn<big_endian>(p, ld_0_11 + l(-20)), p += 4;
7047 }
7048 else
7049 {
7050 write_insn<big_endian>(p, ld_0_11 + l(-16)), p += 4;
7051 }
7052 write_insn<big_endian>(p, sub_12_12_11), p += 4;
7053 write_insn<big_endian>(p, add_11_0_11), p += 4;
7054 write_insn<big_endian>(p, addi_0_12 + l(-44)), p += 4;
7055 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
7056 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
7057 write_insn<big_endian>(p, mtctr_12), p += 4;
7058 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
7059 }
7060 write_insn<big_endian>(p, bctr), p += 4;
7061 gold_assert(p == oview + this->pltresolve_size());
7062
7063 // Write lazy link call stubs.
7064 uint32_t indx = 0;
7065 while (p < oview + this->end_branch_table_)
7066 {
7067 if (this->targ_->abiversion() < 2)
7068 {
7069 if (indx < 0x8000)
7070 {
7071 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
7072 }
7073 else
7074 {
7075 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
7076 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
7077 }
7078 }
7079 uint32_t branch_off = 8 - (p - oview);
7080 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
7081 indx++;
7082 }
7083 }
7084
7085 Address plt_base = this->targ_->plt_section()->address();
7086 Address iplt_base = invalid_address;
7087 unsigned int global_entry_off = this->global_entry_off();
7088 Address global_entry_base = this->address() + global_entry_off;
7089 typename Global_entry_stub_entries::const_iterator ge;
7090 for (ge = this->global_entry_stubs_.begin();
7091 ge != this->global_entry_stubs_.end();
7092 ++ge)
7093 {
7094 p = oview + global_entry_off + ge->second;
7095 Address plt_addr = ge->first->plt_offset();
7096 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
7097 && ge->first->can_use_relative_reloc(false))
7098 {
7099 if (iplt_base == invalid_address)
7100 iplt_base = this->targ_->iplt_section()->address();
7101 plt_addr += iplt_base;
7102 }
7103 else
7104 plt_addr += plt_base;
7105 Address my_addr = global_entry_base + ge->second;
7106 Address off = plt_addr - my_addr;
7107
7108 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
7109 gold_error(_("linkage table error against `%s'"),
7110 ge->first->demangled_name().c_str());
7111
7112 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
7113 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
7114 write_insn<big_endian>(p, mtctr_12), p += 4;
7115 write_insn<big_endian>(p, bctr);
7116 }
7117 }
7118 else
7119 {
7120 // The address of _GLOBAL_OFFSET_TABLE_.
7121 Address g_o_t = this->targ_->toc_pointer();
7122
7123 // Write out pltresolve branch table.
7124 p = oview;
7125 unsigned int the_end = oview_size - this->pltresolve_size();
7126 unsigned char* end_p = oview + the_end;
7127 while (p < end_p - 8 * 4)
7128 write_insn<big_endian>(p, b + end_p - p), p += 4;
7129 while (p < end_p)
7130 write_insn<big_endian>(p, nop), p += 4;
7131
7132 // Write out pltresolve call stub.
7133 end_p = oview + oview_size;
7134 if (parameters->options().output_is_position_independent())
7135 {
7136 Address res0_off = 0;
7137 Address after_bcl_off = the_end + 12;
7138 Address bcl_res0 = after_bcl_off - res0_off;
7139
7140 write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
7141 p += 4;
7142 write_insn<big_endian>(p, mflr_0);
7143 p += 4;
7144 write_insn<big_endian>(p, bcl_20_31);
7145 p += 4;
7146 write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
7147 p += 4;
7148 write_insn<big_endian>(p, mflr_12);
7149 p += 4;
7150 write_insn<big_endian>(p, mtlr_0);
7151 p += 4;
7152 write_insn<big_endian>(p, sub_11_11_12);
7153 p += 4;
7154
7155 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
7156
7157 write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
7158 p += 4;
7159 if (ha(got_bcl) == ha(got_bcl + 4))
7160 {
7161 write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
7162 p += 4;
7163 write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
7164 }
7165 else
7166 {
7167 write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
7168 p += 4;
7169 write_insn<big_endian>(p, lwz_12_12 + 4);
7170 }
7171 p += 4;
7172 write_insn<big_endian>(p, mtctr_0);
7173 p += 4;
7174 write_insn<big_endian>(p, add_0_11_11);
7175 p += 4;
7176 write_insn<big_endian>(p, add_11_0_11);
7177 }
7178 else
7179 {
7180 Address res0 = this->address();
7181
7182 write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
7183 p += 4;
7184 write_insn<big_endian>(p, addis_11_11 + ha(-res0));
7185 p += 4;
7186 if (ha(g_o_t + 4) == ha(g_o_t + 8))
7187 write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
7188 else
7189 write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
7190 p += 4;
7191 write_insn<big_endian>(p, addi_11_11 + l(-res0));
7192 p += 4;
7193 write_insn<big_endian>(p, mtctr_0);
7194 p += 4;
7195 write_insn<big_endian>(p, add_0_11_11);
7196 p += 4;
7197 if (ha(g_o_t + 4) == ha(g_o_t + 8))
7198 write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
7199 else
7200 write_insn<big_endian>(p, lwz_12_12 + 4);
7201 p += 4;
7202 write_insn<big_endian>(p, add_11_0_11);
7203 }
7204 p += 4;
7205 write_insn<big_endian>(p, bctr);
7206 p += 4;
7207 while (p < end_p)
7208 {
7209 write_insn<big_endian>(p, nop);
7210 p += 4;
7211 }
7212 }
7213
7214 of->write_output_view(off, oview_size, oview);
7215 }
7216
7217
7218 // A class to handle linker generated save/restore functions.
7219
7220 template<int size, bool big_endian>
7221 class Output_data_save_res : public Output_section_data_build
7222 {
7223 public:
7224 Output_data_save_res(Symbol_table* symtab);
7225
7226 const unsigned char*
7227 contents() const
7228 {
7229 return contents_;
7230 }
7231
7232 protected:
7233 // Write to a map file.
7234 void
7235 do_print_to_mapfile(Mapfile* mapfile) const
7236 { mapfile->print_output_data(this, _("** save/restore")); }
7237
7238 void
7239 do_write(Output_file*);
7240
7241 private:
7242 // The maximum size of save/restore contents.
7243 static const unsigned int savres_max = 218*4;
7244
7245 void
7246 savres_define(Symbol_table* symtab,
7247 const char *name,
7248 unsigned int lo, unsigned int hi,
7249 unsigned char* write_ent(unsigned char*, int),
7250 unsigned char* write_tail(unsigned char*, int));
7251
7252 unsigned char *contents_;
7253 };
7254
7255 template<bool big_endian>
7256 static unsigned char*
7257 savegpr0(unsigned char* p, int r)
7258 {
7259 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
7260 write_insn<big_endian>(p, insn);
7261 return p + 4;
7262 }
7263
7264 template<bool big_endian>
7265 static unsigned char*
7266 savegpr0_tail(unsigned char* p, int r)
7267 {
7268 p = savegpr0<big_endian>(p, r);
7269 uint32_t insn = std_0_1 + 16;
7270 write_insn<big_endian>(p, insn);
7271 p = p + 4;
7272 write_insn<big_endian>(p, blr);
7273 return p + 4;
7274 }
7275
7276 template<bool big_endian>
7277 static unsigned char*
7278 restgpr0(unsigned char* p, int r)
7279 {
7280 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
7281 write_insn<big_endian>(p, insn);
7282 return p + 4;
7283 }
7284
7285 template<bool big_endian>
7286 static unsigned char*
7287 restgpr0_tail(unsigned char* p, int r)
7288 {
7289 uint32_t insn = ld_0_1 + 16;
7290 write_insn<big_endian>(p, insn);
7291 p = p + 4;
7292 p = restgpr0<big_endian>(p, r);
7293 write_insn<big_endian>(p, mtlr_0);
7294 p = p + 4;
7295 if (r == 29)
7296 {
7297 p = restgpr0<big_endian>(p, 30);
7298 p = restgpr0<big_endian>(p, 31);
7299 }
7300 write_insn<big_endian>(p, blr);
7301 return p + 4;
7302 }
7303
7304 template<bool big_endian>
7305 static unsigned char*
7306 savegpr1(unsigned char* p, int r)
7307 {
7308 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
7309 write_insn<big_endian>(p, insn);
7310 return p + 4;
7311 }
7312
7313 template<bool big_endian>
7314 static unsigned char*
7315 savegpr1_tail(unsigned char* p, int r)
7316 {
7317 p = savegpr1<big_endian>(p, r);
7318 write_insn<big_endian>(p, blr);
7319 return p + 4;
7320 }
7321
7322 template<bool big_endian>
7323 static unsigned char*
7324 restgpr1(unsigned char* p, int r)
7325 {
7326 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
7327 write_insn<big_endian>(p, insn);
7328 return p + 4;
7329 }
7330
7331 template<bool big_endian>
7332 static unsigned char*
7333 restgpr1_tail(unsigned char* p, int r)
7334 {
7335 p = restgpr1<big_endian>(p, r);
7336 write_insn<big_endian>(p, blr);
7337 return p + 4;
7338 }
7339
7340 template<bool big_endian>
7341 static unsigned char*
7342 savefpr(unsigned char* p, int r)
7343 {
7344 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
7345 write_insn<big_endian>(p, insn);
7346 return p + 4;
7347 }
7348
7349 template<bool big_endian>
7350 static unsigned char*
7351 savefpr0_tail(unsigned char* p, int r)
7352 {
7353 p = savefpr<big_endian>(p, r);
7354 write_insn<big_endian>(p, std_0_1 + 16);
7355 p = p + 4;
7356 write_insn<big_endian>(p, blr);
7357 return p + 4;
7358 }
7359
7360 template<bool big_endian>
7361 static unsigned char*
7362 restfpr(unsigned char* p, int r)
7363 {
7364 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
7365 write_insn<big_endian>(p, insn);
7366 return p + 4;
7367 }
7368
7369 template<bool big_endian>
7370 static unsigned char*
7371 restfpr0_tail(unsigned char* p, int r)
7372 {
7373 write_insn<big_endian>(p, ld_0_1 + 16);
7374 p = p + 4;
7375 p = restfpr<big_endian>(p, r);
7376 write_insn<big_endian>(p, mtlr_0);
7377 p = p + 4;
7378 if (r == 29)
7379 {
7380 p = restfpr<big_endian>(p, 30);
7381 p = restfpr<big_endian>(p, 31);
7382 }
7383 write_insn<big_endian>(p, blr);
7384 return p + 4;
7385 }
7386
7387 template<bool big_endian>
7388 static unsigned char*
7389 savefpr1_tail(unsigned char* p, int r)
7390 {
7391 p = savefpr<big_endian>(p, r);
7392 write_insn<big_endian>(p, blr);
7393 return p + 4;
7394 }
7395
7396 template<bool big_endian>
7397 static unsigned char*
7398 restfpr1_tail(unsigned char* p, int r)
7399 {
7400 p = restfpr<big_endian>(p, r);
7401 write_insn<big_endian>(p, blr);
7402 return p + 4;
7403 }
7404
7405 template<bool big_endian>
7406 static unsigned char*
7407 savevr(unsigned char* p, int r)
7408 {
7409 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
7410 write_insn<big_endian>(p, insn);
7411 p = p + 4;
7412 insn = stvx_0_12_0 + (r << 21);
7413 write_insn<big_endian>(p, insn);
7414 return p + 4;
7415 }
7416
7417 template<bool big_endian>
7418 static unsigned char*
7419 savevr_tail(unsigned char* p, int r)
7420 {
7421 p = savevr<big_endian>(p, r);
7422 write_insn<big_endian>(p, blr);
7423 return p + 4;
7424 }
7425
7426 template<bool big_endian>
7427 static unsigned char*
7428 restvr(unsigned char* p, int r)
7429 {
7430 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
7431 write_insn<big_endian>(p, insn);
7432 p = p + 4;
7433 insn = lvx_0_12_0 + (r << 21);
7434 write_insn<big_endian>(p, insn);
7435 return p + 4;
7436 }
7437
7438 template<bool big_endian>
7439 static unsigned char*
7440 restvr_tail(unsigned char* p, int r)
7441 {
7442 p = restvr<big_endian>(p, r);
7443 write_insn<big_endian>(p, blr);
7444 return p + 4;
7445 }
7446
7447
7448 template<int size, bool big_endian>
7449 Output_data_save_res<size, big_endian>::Output_data_save_res(
7450 Symbol_table* symtab)
7451 : Output_section_data_build(4),
7452 contents_(NULL)
7453 {
7454 this->savres_define(symtab,
7455 "_savegpr0_", 14, 31,
7456 savegpr0<big_endian>, savegpr0_tail<big_endian>);
7457 this->savres_define(symtab,
7458 "_restgpr0_", 14, 29,
7459 restgpr0<big_endian>, restgpr0_tail<big_endian>);
7460 this->savres_define(symtab,
7461 "_restgpr0_", 30, 31,
7462 restgpr0<big_endian>, restgpr0_tail<big_endian>);
7463 this->savres_define(symtab,
7464 "_savegpr1_", 14, 31,
7465 savegpr1<big_endian>, savegpr1_tail<big_endian>);
7466 this->savres_define(symtab,
7467 "_restgpr1_", 14, 31,
7468 restgpr1<big_endian>, restgpr1_tail<big_endian>);
7469 this->savres_define(symtab,
7470 "_savefpr_", 14, 31,
7471 savefpr<big_endian>, savefpr0_tail<big_endian>);
7472 this->savres_define(symtab,
7473 "_restfpr_", 14, 29,
7474 restfpr<big_endian>, restfpr0_tail<big_endian>);
7475 this->savres_define(symtab,
7476 "_restfpr_", 30, 31,
7477 restfpr<big_endian>, restfpr0_tail<big_endian>);
7478 this->savres_define(symtab,
7479 "._savef", 14, 31,
7480 savefpr<big_endian>, savefpr1_tail<big_endian>);
7481 this->savres_define(symtab,
7482 "._restf", 14, 31,
7483 restfpr<big_endian>, restfpr1_tail<big_endian>);
7484 this->savres_define(symtab,
7485 "_savevr_", 20, 31,
7486 savevr<big_endian>, savevr_tail<big_endian>);
7487 this->savres_define(symtab,
7488 "_restvr_", 20, 31,
7489 restvr<big_endian>, restvr_tail<big_endian>);
7490 }
7491
7492 template<int size, bool big_endian>
7493 void
7494 Output_data_save_res<size, big_endian>::savres_define(
7495 Symbol_table* symtab,
7496 const char *name,
7497 unsigned int lo, unsigned int hi,
7498 unsigned char* write_ent(unsigned char*, int),
7499 unsigned char* write_tail(unsigned char*, int))
7500 {
7501 size_t len = strlen(name);
7502 bool writing = false;
7503 char sym[16];
7504
7505 memcpy(sym, name, len);
7506 sym[len + 2] = 0;
7507
7508 for (unsigned int i = lo; i <= hi; i++)
7509 {
7510 sym[len + 0] = i / 10 + '0';
7511 sym[len + 1] = i % 10 + '0';
7512 Symbol* gsym = symtab->lookup(sym);
7513 bool refd = gsym != NULL && gsym->is_undefined();
7514 writing = writing || refd;
7515 if (writing)
7516 {
7517 if (this->contents_ == NULL)
7518 this->contents_ = new unsigned char[this->savres_max];
7519
7520 section_size_type value = this->current_data_size();
7521 unsigned char* p = this->contents_ + value;
7522 if (i != hi)
7523 p = write_ent(p, i);
7524 else
7525 p = write_tail(p, i);
7526 section_size_type cur_size = p - this->contents_;
7527 this->set_current_data_size(cur_size);
7528 if (refd)
7529 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
7530 this, value, cur_size - value,
7531 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
7532 elfcpp::STV_HIDDEN, 0, false, false);
7533 }
7534 }
7535 }
7536
7537 // Write out save/restore.
7538
7539 template<int size, bool big_endian>
7540 void
7541 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
7542 {
7543 const section_size_type off = this->offset();
7544 const section_size_type oview_size =
7545 convert_to_section_size_type(this->data_size());
7546 unsigned char* const oview = of->get_output_view(off, oview_size);
7547 memcpy(oview, this->contents_, oview_size);
7548 of->write_output_view(off, oview_size, oview);
7549 }
7550
7551
7552 // Create the glink section.
7553
7554 template<int size, bool big_endian>
7555 void
7556 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
7557 {
7558 if (this->glink_ == NULL)
7559 {
7560 this->glink_ = new Output_data_glink<size, big_endian>(this);
7561 this->glink_->add_eh_frame(layout);
7562 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7563 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7564 this->glink_, ORDER_TEXT, false);
7565 }
7566 }
7567
7568 // Create a PLT entry for a global symbol.
7569
7570 template<int size, bool big_endian>
7571 void
7572 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7573 Layout* layout,
7574 Symbol* gsym)
7575 {
7576 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7577 && gsym->can_use_relative_reloc(false))
7578 {
7579 if (this->iplt_ == NULL)
7580 this->make_iplt_section(symtab, layout);
7581 this->iplt_->add_ifunc_entry(gsym);
7582 }
7583 else
7584 {
7585 if (this->plt_ == NULL)
7586 this->make_plt_section(symtab, layout);
7587 this->plt_->add_entry(gsym);
7588 }
7589 }
7590
7591 // Make a PLT entry for a local symbol.
7592
7593 template<int size, bool big_endian>
7594 void
7595 Target_powerpc<size, big_endian>::make_local_plt_entry(
7596 Symbol_table* symtab,
7597 Layout* layout,
7598 Sized_relobj_file<size, big_endian>* relobj,
7599 unsigned int r_sym)
7600 {
7601 if (this->lplt_ == NULL)
7602 this->make_lplt_section(symtab, layout);
7603 this->lplt_->add_local_entry(relobj, r_sym);
7604 }
7605
7606 template<int size, bool big_endian>
7607 void
7608 Target_powerpc<size, big_endian>::make_local_plt_entry(Symbol_table* symtab,
7609 Layout* layout,
7610 Symbol* gsym)
7611 {
7612 if (this->lplt_ == NULL)
7613 this->make_lplt_section(symtab, layout);
7614 this->lplt_->add_entry(gsym, true);
7615 }
7616
7617 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7618
7619 template<int size, bool big_endian>
7620 void
7621 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
7622 Symbol_table* symtab,
7623 Layout* layout,
7624 Sized_relobj_file<size, big_endian>* relobj,
7625 unsigned int r_sym)
7626 {
7627 if (this->iplt_ == NULL)
7628 this->make_iplt_section(symtab, layout);
7629 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
7630 }
7631
7632 // Return the number of entries in the PLT.
7633
7634 template<int size, bool big_endian>
7635 unsigned int
7636 Target_powerpc<size, big_endian>::plt_entry_count() const
7637 {
7638 if (this->plt_ == NULL)
7639 return 0;
7640 return this->plt_->entry_count();
7641 }
7642
7643 // Create a GOT entry for local dynamic __tls_get_addr calls.
7644
7645 template<int size, bool big_endian>
7646 unsigned int
7647 Target_powerpc<size, big_endian>::tlsld_got_offset(
7648 Symbol_table* symtab,
7649 Layout* layout,
7650 Sized_relobj_file<size, big_endian>* object)
7651 {
7652 if (this->tlsld_got_offset_ == -1U)
7653 {
7654 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7655 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
7656 Output_data_got_powerpc<size, big_endian>* got
7657 = this->got_section(symtab, layout, GOT_TYPE_SMALL);
7658 unsigned int got_offset = got->add_constant_pair(0, 0);
7659 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
7660 got_offset, 0);
7661 this->tlsld_got_offset_ = got_offset;
7662 }
7663 return this->tlsld_got_offset_;
7664 }
7665
7666 // Get the Reference_flags for a particular relocation.
7667
7668 template<int size, bool big_endian>
7669 int
7670 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
7671 unsigned int r_type,
7672 const Target_powerpc* target)
7673 {
7674 int ref = 0;
7675
7676 switch (r_type)
7677 {
7678 case elfcpp::R_POWERPC_NONE:
7679 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7680 case elfcpp::R_POWERPC_GNU_VTENTRY:
7681 case elfcpp::R_PPC64_TOC:
7682 // No symbol reference.
7683 break;
7684
7685 case elfcpp::R_PPC64_ADDR64:
7686 case elfcpp::R_PPC64_UADDR64:
7687 case elfcpp::R_POWERPC_ADDR32:
7688 case elfcpp::R_POWERPC_UADDR32:
7689 case elfcpp::R_POWERPC_ADDR16:
7690 case elfcpp::R_POWERPC_UADDR16:
7691 case elfcpp::R_POWERPC_ADDR16_LO:
7692 case elfcpp::R_POWERPC_ADDR16_HI:
7693 case elfcpp::R_POWERPC_ADDR16_HA:
7694 case elfcpp::R_PPC64_ADDR16_HIGHER34:
7695 case elfcpp::R_PPC64_ADDR16_HIGHERA34:
7696 case elfcpp::R_PPC64_ADDR16_HIGHEST34:
7697 case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
7698 case elfcpp::R_PPC64_D34:
7699 case elfcpp::R_PPC64_D34_LO:
7700 case elfcpp::R_PPC64_D34_HI30:
7701 case elfcpp::R_PPC64_D34_HA30:
7702 case elfcpp::R_PPC64_D28:
7703 ref = Symbol::ABSOLUTE_REF;
7704 break;
7705
7706 case elfcpp::R_POWERPC_ADDR24:
7707 case elfcpp::R_POWERPC_ADDR14:
7708 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7709 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7710 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
7711 break;
7712
7713 case elfcpp::R_PPC64_REL64:
7714 case elfcpp::R_POWERPC_REL32:
7715 case elfcpp::R_PPC_LOCAL24PC:
7716 case elfcpp::R_POWERPC_REL16:
7717 case elfcpp::R_POWERPC_REL16_LO:
7718 case elfcpp::R_POWERPC_REL16_HI:
7719 case elfcpp::R_POWERPC_REL16_HA:
7720 case elfcpp::R_PPC64_REL16_HIGH:
7721 case elfcpp::R_PPC64_REL16_HIGHA:
7722 case elfcpp::R_PPC64_REL16_HIGHER:
7723 case elfcpp::R_PPC64_REL16_HIGHERA:
7724 case elfcpp::R_PPC64_REL16_HIGHEST:
7725 case elfcpp::R_PPC64_REL16_HIGHESTA:
7726 case elfcpp::R_PPC64_PCREL34:
7727 case elfcpp::R_PPC64_REL16_HIGHER34:
7728 case elfcpp::R_PPC64_REL16_HIGHERA34:
7729 case elfcpp::R_PPC64_REL16_HIGHEST34:
7730 case elfcpp::R_PPC64_REL16_HIGHESTA34:
7731 case elfcpp::R_PPC64_PCREL28:
7732 ref = Symbol::RELATIVE_REF;
7733 break;
7734
7735 case elfcpp::R_PPC64_REL24_NOTOC:
7736 if (size == 32)
7737 break;
7738 // Fall through.
7739 case elfcpp::R_PPC64_REL24_P9NOTOC:
7740 case elfcpp::R_POWERPC_REL24:
7741 case elfcpp::R_PPC_PLTREL24:
7742 case elfcpp::R_POWERPC_REL14:
7743 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7744 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7745 case elfcpp::R_POWERPC_PLT16_LO:
7746 case elfcpp::R_POWERPC_PLT16_HI:
7747 case elfcpp::R_POWERPC_PLT16_HA:
7748 case elfcpp::R_PPC64_PLT16_LO_DS:
7749 case elfcpp::R_POWERPC_PLTSEQ:
7750 case elfcpp::R_PPC64_PLTSEQ_NOTOC:
7751 case elfcpp::R_POWERPC_PLTCALL:
7752 case elfcpp::R_PPC64_PLTCALL_NOTOC:
7753 case elfcpp::R_PPC64_PLT_PCREL34:
7754 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
7755 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7756 break;
7757
7758 case elfcpp::R_POWERPC_GOT16:
7759 case elfcpp::R_POWERPC_GOT16_LO:
7760 case elfcpp::R_POWERPC_GOT16_HI:
7761 case elfcpp::R_POWERPC_GOT16_HA:
7762 case elfcpp::R_PPC64_GOT16_DS:
7763 case elfcpp::R_PPC64_GOT16_LO_DS:
7764 case elfcpp::R_PPC64_GOT_PCREL34:
7765 case elfcpp::R_PPC64_TOC16:
7766 case elfcpp::R_PPC64_TOC16_LO:
7767 case elfcpp::R_PPC64_TOC16_HI:
7768 case elfcpp::R_PPC64_TOC16_HA:
7769 case elfcpp::R_PPC64_TOC16_DS:
7770 case elfcpp::R_PPC64_TOC16_LO_DS:
7771 ref = Symbol::RELATIVE_REF;
7772 break;
7773
7774 case elfcpp::R_POWERPC_GOT_TPREL16:
7775 case elfcpp::R_POWERPC_TLS:
7776 case elfcpp::R_PPC64_TLSGD:
7777 case elfcpp::R_PPC64_TLSLD:
7778 case elfcpp::R_PPC64_TPREL34:
7779 case elfcpp::R_PPC64_DTPREL34:
7780 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
7781 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
7782 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
7783 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
7784 ref = Symbol::TLS_REF;
7785 break;
7786
7787 case elfcpp::R_POWERPC_COPY:
7788 case elfcpp::R_POWERPC_GLOB_DAT:
7789 case elfcpp::R_POWERPC_JMP_SLOT:
7790 case elfcpp::R_POWERPC_RELATIVE:
7791 case elfcpp::R_POWERPC_DTPMOD:
7792 default:
7793 // Not expected. We will give an error later.
7794 break;
7795 }
7796
7797 if (size == 64 && target->abiversion() < 2)
7798 ref |= Symbol::FUNC_DESC_ABI;
7799 return ref;
7800 }
7801
7802 // Report an unsupported relocation against a local symbol.
7803
7804 template<int size, bool big_endian>
7805 void
7806 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
7807 Sized_relobj_file<size, big_endian>* object,
7808 unsigned int r_type)
7809 {
7810 gold_error(_("%s: unsupported reloc %u against local symbol"),
7811 object->name().c_str(), r_type);
7812 }
7813
7814 // We are about to emit a dynamic relocation of type R_TYPE. If the
7815 // dynamic linker does not support it, issue an error.
7816
7817 template<int size, bool big_endian>
7818 void
7819 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
7820 unsigned int r_type)
7821 {
7822 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
7823
7824 // These are the relocation types supported by glibc for both 32-bit
7825 // and 64-bit powerpc.
7826 switch (r_type)
7827 {
7828 case elfcpp::R_POWERPC_NONE:
7829 case elfcpp::R_POWERPC_RELATIVE:
7830 case elfcpp::R_POWERPC_GLOB_DAT:
7831 case elfcpp::R_POWERPC_DTPMOD:
7832 case elfcpp::R_POWERPC_DTPREL:
7833 case elfcpp::R_POWERPC_TPREL:
7834 case elfcpp::R_POWERPC_JMP_SLOT:
7835 case elfcpp::R_POWERPC_COPY:
7836 case elfcpp::R_POWERPC_IRELATIVE:
7837 case elfcpp::R_POWERPC_ADDR32:
7838 case elfcpp::R_POWERPC_UADDR32:
7839 case elfcpp::R_POWERPC_ADDR24:
7840 case elfcpp::R_POWERPC_ADDR16:
7841 case elfcpp::R_POWERPC_UADDR16:
7842 case elfcpp::R_POWERPC_ADDR16_LO:
7843 case elfcpp::R_POWERPC_ADDR16_HI:
7844 case elfcpp::R_POWERPC_ADDR16_HA:
7845 case elfcpp::R_POWERPC_ADDR14:
7846 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7847 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7848 case elfcpp::R_POWERPC_REL32:
7849 case elfcpp::R_POWERPC_TPREL16:
7850 case elfcpp::R_POWERPC_TPREL16_LO:
7851 case elfcpp::R_POWERPC_TPREL16_HI:
7852 case elfcpp::R_POWERPC_TPREL16_HA:
7853 return;
7854
7855 default:
7856 break;
7857 }
7858
7859 if (size == 64)
7860 {
7861 switch (r_type)
7862 {
7863 // These are the relocation types supported only on 64-bit.
7864 case elfcpp::R_PPC64_ADDR64:
7865 case elfcpp::R_PPC64_UADDR64:
7866 case elfcpp::R_PPC64_JMP_IREL:
7867 case elfcpp::R_PPC64_ADDR16_DS:
7868 case elfcpp::R_PPC64_ADDR16_LO_DS:
7869 case elfcpp::R_PPC64_ADDR16_HIGH:
7870 case elfcpp::R_PPC64_ADDR16_HIGHA:
7871 case elfcpp::R_PPC64_ADDR16_HIGHER:
7872 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7873 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7874 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7875 case elfcpp::R_PPC64_REL64:
7876 case elfcpp::R_POWERPC_ADDR30:
7877 case elfcpp::R_PPC64_TPREL16_DS:
7878 case elfcpp::R_PPC64_TPREL16_LO_DS:
7879 case elfcpp::R_PPC64_TPREL16_HIGH:
7880 case elfcpp::R_PPC64_TPREL16_HIGHA:
7881 case elfcpp::R_PPC64_TPREL16_HIGHER:
7882 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7883 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7884 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7885 return;
7886
7887 default:
7888 break;
7889 }
7890 }
7891 else
7892 {
7893 switch (r_type)
7894 {
7895 // These are the relocation types supported only on 32-bit.
7896 // ??? glibc ld.so doesn't need to support these.
7897 case elfcpp::R_POWERPC_REL24:
7898 case elfcpp::R_POWERPC_DTPREL16:
7899 case elfcpp::R_POWERPC_DTPREL16_LO:
7900 case elfcpp::R_POWERPC_DTPREL16_HI:
7901 case elfcpp::R_POWERPC_DTPREL16_HA:
7902 return;
7903
7904 default:
7905 break;
7906 }
7907 }
7908
7909 // This prevents us from issuing more than one error per reloc
7910 // section. But we can still wind up issuing more than one
7911 // error per object file.
7912 if (this->issued_non_pic_error_)
7913 return;
7914 gold_assert(parameters->options().output_is_position_independent());
7915 object->error(_("requires unsupported dynamic reloc; "
7916 "recompile with -fPIC"));
7917 this->issued_non_pic_error_ = true;
7918 return;
7919 }
7920
7921 // Return whether we need to make a PLT entry for a relocation of the
7922 // given type against a STT_GNU_IFUNC symbol.
7923
7924 template<int size, bool big_endian>
7925 bool
7926 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
7927 Target_powerpc<size, big_endian>* target,
7928 Sized_relobj_file<size, big_endian>* object,
7929 unsigned int r_type,
7930 bool report_err)
7931 {
7932 // In non-pic code any reference will resolve to the plt call stub
7933 // for the ifunc symbol.
7934 if ((size == 32 || target->abiversion() >= 2)
7935 && !parameters->options().output_is_position_independent())
7936 return true;
7937
7938 switch (r_type)
7939 {
7940 // Word size refs from data sections are OK, but don't need a PLT entry.
7941 case elfcpp::R_POWERPC_ADDR32:
7942 case elfcpp::R_POWERPC_UADDR32:
7943 if (size == 32)
7944 return false;
7945 break;
7946
7947 case elfcpp::R_PPC64_ADDR64:
7948 case elfcpp::R_PPC64_UADDR64:
7949 if (size == 64)
7950 return false;
7951 break;
7952
7953 // GOT refs are good, but also don't need a PLT entry.
7954 case elfcpp::R_POWERPC_GOT16:
7955 case elfcpp::R_POWERPC_GOT16_LO:
7956 case elfcpp::R_POWERPC_GOT16_HI:
7957 case elfcpp::R_POWERPC_GOT16_HA:
7958 case elfcpp::R_PPC64_GOT16_DS:
7959 case elfcpp::R_PPC64_GOT16_LO_DS:
7960 case elfcpp::R_PPC64_GOT_PCREL34:
7961 return false;
7962
7963 // PLT relocs are OK and need a PLT entry.
7964 case elfcpp::R_POWERPC_PLT16_LO:
7965 case elfcpp::R_POWERPC_PLT16_HI:
7966 case elfcpp::R_POWERPC_PLT16_HA:
7967 case elfcpp::R_PPC64_PLT16_LO_DS:
7968 case elfcpp::R_POWERPC_PLTSEQ:
7969 case elfcpp::R_POWERPC_PLTCALL:
7970 case elfcpp::R_PPC64_PLTSEQ_NOTOC:
7971 case elfcpp::R_PPC64_PLTCALL_NOTOC:
7972 case elfcpp::R_PPC64_PLT_PCREL34:
7973 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
7974 return true;
7975 break;
7976
7977 // Function calls are good, and these do need a PLT entry.
7978 case elfcpp::R_PPC64_REL24_NOTOC:
7979 if (size == 32)
7980 break;
7981 // Fall through.
7982 case elfcpp::R_PPC64_REL24_P9NOTOC:
7983 case elfcpp::R_POWERPC_ADDR24:
7984 case elfcpp::R_POWERPC_ADDR14:
7985 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7986 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7987 case elfcpp::R_POWERPC_REL24:
7988 case elfcpp::R_PPC_PLTREL24:
7989 case elfcpp::R_POWERPC_REL14:
7990 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7991 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7992 return true;
7993
7994 default:
7995 break;
7996 }
7997
7998 // Anything else is a problem.
7999 // If we are building a static executable, the libc startup function
8000 // responsible for applying indirect function relocations is going
8001 // to complain about the reloc type.
8002 // If we are building a dynamic executable, we will have a text
8003 // relocation. The dynamic loader will set the text segment
8004 // writable and non-executable to apply text relocations. So we'll
8005 // segfault when trying to run the indirection function to resolve
8006 // the reloc.
8007 if (report_err)
8008 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
8009 object->name().c_str(), r_type);
8010 return false;
8011 }
8012
8013 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
8014 // reloc.
8015
8016 static bool
8017 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
8018 {
8019 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
8020 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
8021 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8022 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8023 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8024 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8025 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8026 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8027 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8028 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8029 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8030 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8031 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8032 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8033 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8034 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
8035 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8036 /* Exclude lfqu by testing reloc. If relocs are ever
8037 defined for the reduced D field in psq_lu then those
8038 will need testing too. */
8039 && r_type != elfcpp::R_PPC64_TOC16_LO
8040 && r_type != elfcpp::R_POWERPC_GOT16_LO)
8041 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
8042 && (insn & 1) == 0)
8043 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
8044 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8045 /* Exclude stfqu. psq_stu as above for psq_lu. */
8046 && r_type != elfcpp::R_PPC64_TOC16_LO
8047 && r_type != elfcpp::R_POWERPC_GOT16_LO)
8048 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
8049 && (insn & 1) == 0));
8050 }
8051
8052 // Scan a relocation for a local symbol.
8053
8054 template<int size, bool big_endian>
8055 inline void
8056 Target_powerpc<size, big_endian>::Scan::local(
8057 Symbol_table* symtab,
8058 Layout* layout,
8059 Target_powerpc<size, big_endian>* target,
8060 Sized_relobj_file<size, big_endian>* object,
8061 unsigned int data_shndx,
8062 Output_section* output_section,
8063 const elfcpp::Rela<size, big_endian>& reloc,
8064 unsigned int r_type,
8065 const elfcpp::Sym<size, big_endian>& lsym,
8066 bool is_discarded)
8067 {
8068 Powerpc_relobj<size, big_endian>* ppc_object
8069 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8070
8071 this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
8072
8073 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8074 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8075 {
8076 this->expect_tls_get_addr_call();
8077 tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
8078 if (tls_type != tls::TLSOPT_NONE)
8079 this->skip_next_tls_get_addr_call();
8080 }
8081 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8082 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8083 {
8084 this->expect_tls_get_addr_call();
8085 tls::Tls_optimization tls_type = target->optimize_tls_ld();
8086 if (tls_type != tls::TLSOPT_NONE)
8087 this->skip_next_tls_get_addr_call();
8088 }
8089
8090 if (is_discarded)
8091 {
8092 if (size == 64
8093 && data_shndx == ppc_object->opd_shndx()
8094 && r_type == elfcpp::R_PPC64_ADDR64)
8095 ppc_object->set_opd_discard(reloc.get_r_offset());
8096 return;
8097 }
8098
8099 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8100 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8101 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
8102 {
8103 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8104 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8105 r_type, r_sym, reloc.get_r_addend());
8106 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8107 }
8108
8109 switch (r_type)
8110 {
8111 case elfcpp::R_POWERPC_NONE:
8112 case elfcpp::R_POWERPC_GNU_VTINHERIT:
8113 case elfcpp::R_POWERPC_GNU_VTENTRY:
8114 case elfcpp::R_POWERPC_TLS:
8115 case elfcpp::R_PPC64_ENTRY:
8116 case elfcpp::R_POWERPC_PLTSEQ:
8117 case elfcpp::R_POWERPC_PLTCALL:
8118 case elfcpp::R_PPC64_PLTSEQ_NOTOC:
8119 case elfcpp::R_PPC64_PLTCALL_NOTOC:
8120 case elfcpp::R_PPC64_PCREL_OPT:
8121 case elfcpp::R_PPC64_ADDR16_HIGHER34:
8122 case elfcpp::R_PPC64_ADDR16_HIGHERA34:
8123 case elfcpp::R_PPC64_ADDR16_HIGHEST34:
8124 case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
8125 case elfcpp::R_PPC64_REL16_HIGHER34:
8126 case elfcpp::R_PPC64_REL16_HIGHERA34:
8127 case elfcpp::R_PPC64_REL16_HIGHEST34:
8128 case elfcpp::R_PPC64_REL16_HIGHESTA34:
8129 case elfcpp::R_PPC64_D34:
8130 case elfcpp::R_PPC64_D34_LO:
8131 case elfcpp::R_PPC64_D34_HI30:
8132 case elfcpp::R_PPC64_D34_HA30:
8133 case elfcpp::R_PPC64_D28:
8134 case elfcpp::R_PPC64_PCREL34:
8135 case elfcpp::R_PPC64_PCREL28:
8136 case elfcpp::R_PPC64_TPREL34:
8137 case elfcpp::R_PPC64_DTPREL34:
8138 break;
8139
8140 case elfcpp::R_PPC64_TOC:
8141 {
8142 Output_data_got_powerpc<size, big_endian>* got
8143 = target->got_section(symtab, layout, GOT_TYPE_SMALL);
8144 if (parameters->options().output_is_position_independent())
8145 {
8146 Address off = reloc.get_r_offset();
8147 if (size == 64
8148 && target->abiversion() < 2
8149 && data_shndx == ppc_object->opd_shndx()
8150 && ppc_object->get_opd_discard(off - 8))
8151 break;
8152
8153 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8154 Address got_off = got->g_o_t();
8155 rela_dyn->add_output_section_relative(got->output_section(),
8156 elfcpp::R_POWERPC_RELATIVE,
8157 output_section,
8158 object, data_shndx, off,
8159 got_off);
8160 }
8161 }
8162 break;
8163
8164 case elfcpp::R_PPC64_ADDR64:
8165 case elfcpp::R_PPC64_UADDR64:
8166 case elfcpp::R_POWERPC_ADDR32:
8167 case elfcpp::R_POWERPC_UADDR32:
8168 case elfcpp::R_POWERPC_ADDR24:
8169 case elfcpp::R_POWERPC_ADDR16:
8170 case elfcpp::R_POWERPC_ADDR16_LO:
8171 case elfcpp::R_POWERPC_ADDR16_HI:
8172 case elfcpp::R_POWERPC_ADDR16_HA:
8173 case elfcpp::R_POWERPC_UADDR16:
8174 case elfcpp::R_PPC64_ADDR16_HIGH:
8175 case elfcpp::R_PPC64_ADDR16_HIGHA:
8176 case elfcpp::R_PPC64_ADDR16_HIGHER:
8177 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8178 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8179 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8180 case elfcpp::R_PPC64_ADDR16_DS:
8181 case elfcpp::R_PPC64_ADDR16_LO_DS:
8182 case elfcpp::R_POWERPC_ADDR14:
8183 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8184 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8185 // If building a shared library (or a position-independent
8186 // executable), we need to create a dynamic relocation for
8187 // this location.
8188 if (parameters->options().output_is_position_independent()
8189 || (size == 64 && is_ifunc && target->abiversion() < 2))
8190 {
8191 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
8192 is_ifunc);
8193 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8194 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
8195 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
8196 {
8197 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
8198 : elfcpp::R_POWERPC_RELATIVE);
8199 rela_dyn->add_local_relative(object, r_sym, dynrel,
8200 output_section, data_shndx,
8201 reloc.get_r_offset(),
8202 reloc.get_r_addend(), false);
8203 }
8204 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
8205 {
8206 check_non_pic(object, r_type);
8207 rela_dyn->add_local(object, r_sym, r_type, output_section,
8208 data_shndx, reloc.get_r_offset(),
8209 reloc.get_r_addend());
8210 }
8211 else
8212 {
8213 gold_assert(lsym.get_st_value() == 0);
8214 unsigned int shndx = lsym.get_st_shndx();
8215 bool is_ordinary;
8216 shndx = object->adjust_sym_shndx(r_sym, shndx,
8217 &is_ordinary);
8218 if (!is_ordinary)
8219 object->error(_("section symbol %u has bad shndx %u"),
8220 r_sym, shndx);
8221 else
8222 rela_dyn->add_local_section(object, shndx, r_type,
8223 output_section, data_shndx,
8224 reloc.get_r_offset());
8225 }
8226 }
8227 break;
8228
8229 case elfcpp::R_PPC64_PLT_PCREL34:
8230 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
8231 case elfcpp::R_POWERPC_PLT16_LO:
8232 case elfcpp::R_POWERPC_PLT16_HI:
8233 case elfcpp::R_POWERPC_PLT16_HA:
8234 case elfcpp::R_PPC64_PLT16_LO_DS:
8235 if (!is_ifunc)
8236 {
8237 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8238 target->make_local_plt_entry(symtab, layout, object, r_sym);
8239 }
8240 break;
8241
8242 case elfcpp::R_PPC64_REL24_NOTOC:
8243 if (size == 32)
8244 break;
8245 // Fall through.
8246 case elfcpp::R_PPC64_REL24_P9NOTOC:
8247 case elfcpp::R_POWERPC_REL24:
8248 case elfcpp::R_PPC_PLTREL24:
8249 case elfcpp::R_PPC_LOCAL24PC:
8250 case elfcpp::R_POWERPC_REL14:
8251 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8252 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8253 if (!is_ifunc)
8254 {
8255 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8256 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8257 r_type, r_sym, reloc.get_r_addend());
8258 }
8259 break;
8260
8261 case elfcpp::R_PPC64_TOCSAVE:
8262 // R_PPC64_TOCSAVE follows a call instruction to indicate the
8263 // caller has already saved r2 and thus a plt call stub need not
8264 // save r2.
8265 if (size == 64
8266 && target->mark_pltcall(ppc_object, data_shndx,
8267 reloc.get_r_offset() - 4, symtab))
8268 {
8269 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8270 unsigned int shndx = lsym.get_st_shndx();
8271 bool is_ordinary;
8272 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8273 if (!is_ordinary)
8274 object->error(_("tocsave symbol %u has bad shndx %u"),
8275 r_sym, shndx);
8276 else
8277 target->add_tocsave(ppc_object, shndx,
8278 lsym.get_st_value() + reloc.get_r_addend());
8279 }
8280 break;
8281
8282 case elfcpp::R_PPC64_REL64:
8283 case elfcpp::R_POWERPC_REL32:
8284 case elfcpp::R_POWERPC_REL16:
8285 case elfcpp::R_POWERPC_REL16_LO:
8286 case elfcpp::R_POWERPC_REL16_HI:
8287 case elfcpp::R_POWERPC_REL16_HA:
8288 case elfcpp::R_POWERPC_REL16DX_HA:
8289 case elfcpp::R_PPC64_REL16_HIGH:
8290 case elfcpp::R_PPC64_REL16_HIGHA:
8291 case elfcpp::R_PPC64_REL16_HIGHER:
8292 case elfcpp::R_PPC64_REL16_HIGHERA:
8293 case elfcpp::R_PPC64_REL16_HIGHEST:
8294 case elfcpp::R_PPC64_REL16_HIGHESTA:
8295 case elfcpp::R_POWERPC_SECTOFF:
8296 case elfcpp::R_POWERPC_SECTOFF_LO:
8297 case elfcpp::R_POWERPC_SECTOFF_HI:
8298 case elfcpp::R_POWERPC_SECTOFF_HA:
8299 case elfcpp::R_PPC64_SECTOFF_DS:
8300 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8301 case elfcpp::R_POWERPC_TPREL16:
8302 case elfcpp::R_POWERPC_TPREL16_LO:
8303 case elfcpp::R_POWERPC_TPREL16_HI:
8304 case elfcpp::R_POWERPC_TPREL16_HA:
8305 case elfcpp::R_PPC64_TPREL16_DS:
8306 case elfcpp::R_PPC64_TPREL16_LO_DS:
8307 case elfcpp::R_PPC64_TPREL16_HIGH:
8308 case elfcpp::R_PPC64_TPREL16_HIGHA:
8309 case elfcpp::R_PPC64_TPREL16_HIGHER:
8310 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8311 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8312 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8313 case elfcpp::R_POWERPC_DTPREL16:
8314 case elfcpp::R_POWERPC_DTPREL16_LO:
8315 case elfcpp::R_POWERPC_DTPREL16_HI:
8316 case elfcpp::R_POWERPC_DTPREL16_HA:
8317 case elfcpp::R_PPC64_DTPREL16_DS:
8318 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8319 case elfcpp::R_PPC64_DTPREL16_HIGH:
8320 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8321 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8322 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8323 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8324 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8325 case elfcpp::R_PPC64_TLSGD:
8326 case elfcpp::R_PPC64_TLSLD:
8327 case elfcpp::R_PPC64_ADDR64_LOCAL:
8328 break;
8329
8330 case elfcpp::R_PPC64_GOT_PCREL34:
8331 case elfcpp::R_POWERPC_GOT16:
8332 case elfcpp::R_POWERPC_GOT16_LO:
8333 case elfcpp::R_POWERPC_GOT16_HI:
8334 case elfcpp::R_POWERPC_GOT16_HA:
8335 case elfcpp::R_PPC64_GOT16_DS:
8336 case elfcpp::R_PPC64_GOT16_LO_DS:
8337 {
8338 // The symbol requires a GOT entry.
8339 Got_type got_type = ((size == 32
8340 || r_type == elfcpp::R_POWERPC_GOT16
8341 || r_type == elfcpp::R_PPC64_GOT16_DS)
8342 ? GOT_TYPE_SMALL : GOT_TYPE_STANDARD);
8343 Output_data_got_powerpc<size, big_endian>* got
8344 = target->got_section(symtab, layout, got_type);
8345 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8346 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
8347
8348 if (!parameters->options().output_is_position_independent())
8349 {
8350 if (is_ifunc
8351 && (size == 32 || target->abiversion() >= 2))
8352 got->add_local_plt(object, r_sym, got_type, addend);
8353 else
8354 got->add_local(object, r_sym, got_type, addend);
8355 }
8356 else if (!object->local_has_got_offset(r_sym, got_type, addend))
8357 {
8358 // If we are generating a shared object or a pie, this
8359 // symbol's GOT entry will be set by a dynamic relocation.
8360 unsigned int off;
8361 off = got->add_constant(0);
8362 object->set_local_got_offset(r_sym, got_type, off, addend);
8363
8364 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
8365 is_ifunc);
8366 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
8367 : elfcpp::R_POWERPC_RELATIVE);
8368 rela_dyn->add_local_relative(object, r_sym, dynrel,
8369 got, off, addend, false);
8370 }
8371 }
8372 break;
8373
8374 case elfcpp::R_PPC64_TOC16:
8375 case elfcpp::R_PPC64_TOC16_LO:
8376 case elfcpp::R_PPC64_TOC16_HI:
8377 case elfcpp::R_PPC64_TOC16_HA:
8378 case elfcpp::R_PPC64_TOC16_DS:
8379 case elfcpp::R_PPC64_TOC16_LO_DS:
8380 // We need a GOT section.
8381 target->got_section(symtab, layout, GOT_TYPE_SMALL);
8382 break;
8383
8384 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
8385 case elfcpp::R_POWERPC_GOT_TLSGD16:
8386 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8387 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8388 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8389 {
8390 tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
8391 if (tls_type == tls::TLSOPT_NONE)
8392 {
8393 Got_type got_type = ((size == 32
8394 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16)
8395 ? GOT_TYPE_SMALL_TLSGD : GOT_TYPE_TLSGD);
8396 Output_data_got_powerpc<size, big_endian>* got
8397 = target->got_section(symtab, layout, got_type);
8398 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8399 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
8400 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8401 got->add_local_tls_pair(object, r_sym, got_type,
8402 rela_dyn, elfcpp::R_POWERPC_DTPMOD,
8403 addend);
8404 }
8405 else if (tls_type == tls::TLSOPT_TO_LE)
8406 {
8407 // no GOT relocs needed for Local Exec.
8408 }
8409 else
8410 gold_unreachable();
8411 }
8412 break;
8413
8414 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
8415 case elfcpp::R_POWERPC_GOT_TLSLD16:
8416 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8417 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8418 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8419 {
8420 tls::Tls_optimization tls_type = target->optimize_tls_ld();
8421 if (tls_type == tls::TLSOPT_NONE)
8422 target->tlsld_got_offset(symtab, layout, object);
8423 else if (tls_type == tls::TLSOPT_TO_LE)
8424 {
8425 // no GOT relocs needed for Local Exec.
8426 if (parameters->options().emit_relocs())
8427 {
8428 Output_section* os = layout->tls_segment()->first_section();
8429 gold_assert(os != NULL);
8430 os->set_needs_symtab_index();
8431 }
8432 }
8433 else
8434 gold_unreachable();
8435 }
8436 break;
8437
8438 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
8439 case elfcpp::R_POWERPC_GOT_DTPREL16:
8440 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8441 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8442 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8443 {
8444 Got_type got_type = ((size == 32
8445 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16)
8446 ? GOT_TYPE_SMALL_DTPREL : GOT_TYPE_DTPREL);
8447 Output_data_got_powerpc<size, big_endian>* got
8448 = target->got_section(symtab, layout, got_type);
8449 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8450 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
8451 got->add_local_tls(object, r_sym, got_type, addend);
8452 }
8453 break;
8454
8455 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
8456 case elfcpp::R_POWERPC_GOT_TPREL16:
8457 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8458 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8459 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8460 {
8461 tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
8462 if (tls_type == tls::TLSOPT_NONE)
8463 {
8464 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8465 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
8466 Got_type got_type = ((size == 32
8467 || r_type == elfcpp::R_POWERPC_GOT_TPREL16)
8468 ? GOT_TYPE_SMALL_TPREL : GOT_TYPE_TPREL);
8469 if (!object->local_has_got_offset(r_sym, got_type, addend))
8470 {
8471 Output_data_got_powerpc<size, big_endian>* got
8472 = target->got_section(symtab, layout, got_type);
8473 unsigned int off = got->add_constant(0);
8474 object->set_local_got_offset(r_sym, got_type, off, addend);
8475
8476 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8477 rela_dyn->add_symbolless_local_addend(object, r_sym,
8478 elfcpp::R_POWERPC_TPREL,
8479 got, off, addend);
8480 }
8481 }
8482 else if (tls_type == tls::TLSOPT_TO_LE)
8483 {
8484 // no GOT relocs needed for Local Exec.
8485 }
8486 else
8487 gold_unreachable();
8488 }
8489 break;
8490
8491 default:
8492 unsupported_reloc_local(object, r_type);
8493 break;
8494 }
8495
8496 if (size == 64
8497 && parameters->options().toc_optimize())
8498 {
8499 if (data_shndx == ppc_object->toc_shndx())
8500 {
8501 bool ok = true;
8502 if (r_type != elfcpp::R_PPC64_ADDR64
8503 || (is_ifunc && target->abiversion() < 2))
8504 ok = false;
8505 else if (parameters->options().output_is_position_independent())
8506 {
8507 if (is_ifunc)
8508 ok = false;
8509 else
8510 {
8511 unsigned int shndx = lsym.get_st_shndx();
8512 if (shndx >= elfcpp::SHN_LORESERVE
8513 && shndx != elfcpp::SHN_XINDEX)
8514 ok = false;
8515 }
8516 }
8517 if (!ok)
8518 ppc_object->set_no_toc_opt(reloc.get_r_offset());
8519 }
8520
8521 enum {no_check, check_lo, check_ha} insn_check;
8522 switch (r_type)
8523 {
8524 default:
8525 insn_check = no_check;
8526 break;
8527
8528 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8529 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8530 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8531 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8532 case elfcpp::R_POWERPC_GOT16_HA:
8533 case elfcpp::R_PPC64_TOC16_HA:
8534 insn_check = check_ha;
8535 break;
8536
8537 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8538 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8539 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8540 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8541 case elfcpp::R_POWERPC_GOT16_LO:
8542 case elfcpp::R_PPC64_GOT16_LO_DS:
8543 case elfcpp::R_PPC64_TOC16_LO:
8544 case elfcpp::R_PPC64_TOC16_LO_DS:
8545 insn_check = check_lo;
8546 break;
8547 }
8548
8549 section_size_type slen;
8550 const unsigned char* view = NULL;
8551 if (insn_check != no_check)
8552 {
8553 view = ppc_object->section_contents(data_shndx, &slen, false);
8554 section_size_type off =
8555 convert_to_section_size_type(reloc.get_r_offset()) & -4;
8556 if (off < slen)
8557 {
8558 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
8559 if (insn_check == check_lo
8560 ? !ok_lo_toc_insn(insn, r_type)
8561 : ((insn & ((0x3f << 26) | 0x1f << 16))
8562 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8563 {
8564 ppc_object->set_no_toc_opt();
8565 gold_warning(_("%s: toc optimization is not supported "
8566 "for %#08x instruction"),
8567 ppc_object->name().c_str(), insn);
8568 }
8569 }
8570 }
8571
8572 switch (r_type)
8573 {
8574 default:
8575 break;
8576 case elfcpp::R_PPC64_TOC16:
8577 case elfcpp::R_PPC64_TOC16_LO:
8578 case elfcpp::R_PPC64_TOC16_HI:
8579 case elfcpp::R_PPC64_TOC16_HA:
8580 case elfcpp::R_PPC64_TOC16_DS:
8581 case elfcpp::R_PPC64_TOC16_LO_DS:
8582 unsigned int shndx = lsym.get_st_shndx();
8583 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8584 bool is_ordinary;
8585 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8586 if (is_ordinary && shndx == ppc_object->toc_shndx())
8587 {
8588 Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
8589 if (dst_off < ppc_object->section_size(shndx))
8590 {
8591 bool ok = false;
8592 if (r_type == elfcpp::R_PPC64_TOC16_HA)
8593 ok = true;
8594 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
8595 {
8596 // Need to check that the insn is a ld
8597 if (!view)
8598 view = ppc_object->section_contents(data_shndx,
8599 &slen,
8600 false);
8601 section_size_type off =
8602 (convert_to_section_size_type(reloc.get_r_offset())
8603 + (big_endian ? -2 : 3));
8604 if (off < slen
8605 && (view[off] & (0x3f << 2)) == 58u << 2)
8606 ok = true;
8607 }
8608 if (!ok)
8609 ppc_object->set_no_toc_opt(dst_off);
8610 }
8611 }
8612 break;
8613 }
8614 }
8615
8616 if (size == 32)
8617 {
8618 switch (r_type)
8619 {
8620 case elfcpp::R_POWERPC_REL32:
8621 if (ppc_object->got2_shndx() != 0
8622 && parameters->options().output_is_position_independent())
8623 {
8624 unsigned int shndx = lsym.get_st_shndx();
8625 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8626 bool is_ordinary;
8627 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8628 if (is_ordinary && shndx == ppc_object->got2_shndx()
8629 && (ppc_object->section_flags(data_shndx)
8630 & elfcpp::SHF_EXECINSTR) != 0)
8631 gold_error(_("%s: unsupported -mbss-plt code"),
8632 ppc_object->name().c_str());
8633 }
8634 break;
8635 default:
8636 break;
8637 }
8638 }
8639
8640 switch (r_type)
8641 {
8642 case elfcpp::R_POWERPC_GOT_TLSLD16:
8643 case elfcpp::R_POWERPC_GOT_TLSGD16:
8644 case elfcpp::R_POWERPC_GOT_TPREL16:
8645 case elfcpp::R_POWERPC_GOT_DTPREL16:
8646 case elfcpp::R_POWERPC_GOT16:
8647 case elfcpp::R_PPC64_GOT16_DS:
8648 case elfcpp::R_PPC64_TOC16:
8649 case elfcpp::R_PPC64_TOC16_DS:
8650 ppc_object->set_has_small_toc_reloc();
8651 break;
8652 default:
8653 break;
8654 }
8655
8656 switch (r_type)
8657 {
8658 case elfcpp::R_PPC64_TPREL16_DS:
8659 case elfcpp::R_PPC64_TPREL16_LO_DS:
8660 case elfcpp::R_PPC64_TPREL16_HIGH:
8661 case elfcpp::R_PPC64_TPREL16_HIGHA:
8662 case elfcpp::R_PPC64_TPREL16_HIGHER:
8663 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8664 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8665 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8666 case elfcpp::R_PPC64_TPREL34:
8667 if (size != 64)
8668 break;
8669 // Fall through.
8670 case elfcpp::R_POWERPC_TPREL16:
8671 case elfcpp::R_POWERPC_TPREL16_LO:
8672 case elfcpp::R_POWERPC_TPREL16_HI:
8673 case elfcpp::R_POWERPC_TPREL16_HA:
8674 layout->set_has_static_tls();
8675 break;
8676 default:
8677 break;
8678 }
8679
8680 switch (r_type)
8681 {
8682 case elfcpp::R_POWERPC_TPREL16_HA:
8683 if (target->tprel_opt())
8684 {
8685 section_size_type slen;
8686 const unsigned char* view = NULL;
8687 view = ppc_object->section_contents(data_shndx, &slen, false);
8688 section_size_type off
8689 = convert_to_section_size_type(reloc.get_r_offset()) & -4;
8690 if (off < slen)
8691 {
8692 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
8693 if ((insn & ((0x3fu << 26) | 0x1f << 16))
8694 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
8695 target->set_no_tprel_opt();
8696 }
8697 }
8698 break;
8699
8700 case elfcpp::R_PPC64_TPREL16_HIGH:
8701 case elfcpp::R_PPC64_TPREL16_HIGHA:
8702 case elfcpp::R_PPC64_TPREL16_HIGHER:
8703 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8704 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8705 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8706 if (size != 64)
8707 break;
8708 // Fall through.
8709 case elfcpp::R_POWERPC_TPREL16_HI:
8710 target->set_no_tprel_opt();
8711 break;
8712 default:
8713 break;
8714 }
8715
8716 switch (r_type)
8717 {
8718 case elfcpp::R_PPC64_D34:
8719 case elfcpp::R_PPC64_D34_LO:
8720 case elfcpp::R_PPC64_D34_HI30:
8721 case elfcpp::R_PPC64_D34_HA30:
8722 case elfcpp::R_PPC64_D28:
8723 case elfcpp::R_PPC64_PCREL34:
8724 case elfcpp::R_PPC64_PCREL28:
8725 case elfcpp::R_PPC64_TPREL34:
8726 case elfcpp::R_PPC64_DTPREL34:
8727 case elfcpp::R_PPC64_PLT_PCREL34:
8728 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
8729 case elfcpp::R_PPC64_GOT_PCREL34:
8730 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
8731 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
8732 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
8733 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
8734 target->set_power10_relocs();
8735 break;
8736 default:
8737 break;
8738 }
8739 }
8740
8741 // Report an unsupported relocation against a global symbol.
8742
8743 template<int size, bool big_endian>
8744 void
8745 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
8746 Sized_relobj_file<size, big_endian>* object,
8747 unsigned int r_type,
8748 Symbol* gsym)
8749 {
8750 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8751 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8752 }
8753
8754 // Scan a relocation for a global symbol.
8755
8756 template<int size, bool big_endian>
8757 inline void
8758 Target_powerpc<size, big_endian>::Scan::global(
8759 Symbol_table* symtab,
8760 Layout* layout,
8761 Target_powerpc<size, big_endian>* target,
8762 Sized_relobj_file<size, big_endian>* object,
8763 unsigned int data_shndx,
8764 Output_section* output_section,
8765 const elfcpp::Rela<size, big_endian>& reloc,
8766 unsigned int r_type,
8767 Symbol* gsym)
8768 {
8769 Powerpc_relobj<size, big_endian>* ppc_object
8770 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8771
8772 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8773 {
8774 case Track_tls::SKIP:
8775 return;
8776 default:
8777 break;
8778 }
8779
8780 if (target->replace_tls_get_addr(gsym))
8781 // Change a __tls_get_addr reference to __tls_get_addr_opt
8782 // so dynamic relocs are emitted against the latter symbol.
8783 gsym = target->tls_get_addr_opt();
8784
8785 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8786 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8787 {
8788 this->expect_tls_get_addr_call();
8789 bool final = gsym->final_value_is_known();
8790 tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8791 if (tls_type != tls::TLSOPT_NONE)
8792 this->skip_next_tls_get_addr_call();
8793 }
8794 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8795 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8796 {
8797 this->expect_tls_get_addr_call();
8798 tls::Tls_optimization tls_type = target->optimize_tls_ld();
8799 if (tls_type != tls::TLSOPT_NONE)
8800 this->skip_next_tls_get_addr_call();
8801 }
8802
8803 // A STT_GNU_IFUNC symbol may require a PLT entry.
8804 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
8805 bool pushed_ifunc = false;
8806 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
8807 {
8808 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8809 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8810 r_type, r_sym, reloc.get_r_addend());
8811 target->make_plt_entry(symtab, layout, gsym);
8812 pushed_ifunc = true;
8813 }
8814
8815 switch (r_type)
8816 {
8817 case elfcpp::R_POWERPC_NONE:
8818 case elfcpp::R_POWERPC_GNU_VTINHERIT:
8819 case elfcpp::R_POWERPC_GNU_VTENTRY:
8820 case elfcpp::R_PPC_LOCAL24PC:
8821 case elfcpp::R_POWERPC_TLS:
8822 case elfcpp::R_PPC64_ENTRY:
8823 case elfcpp::R_POWERPC_PLTSEQ:
8824 case elfcpp::R_POWERPC_PLTCALL:
8825 case elfcpp::R_PPC64_PLTSEQ_NOTOC:
8826 case elfcpp::R_PPC64_PLTCALL_NOTOC:
8827 case elfcpp::R_PPC64_PCREL_OPT:
8828 case elfcpp::R_PPC64_ADDR16_HIGHER34:
8829 case elfcpp::R_PPC64_ADDR16_HIGHERA34:
8830 case elfcpp::R_PPC64_ADDR16_HIGHEST34:
8831 case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
8832 case elfcpp::R_PPC64_REL16_HIGHER34:
8833 case elfcpp::R_PPC64_REL16_HIGHERA34:
8834 case elfcpp::R_PPC64_REL16_HIGHEST34:
8835 case elfcpp::R_PPC64_REL16_HIGHESTA34:
8836 case elfcpp::R_PPC64_D34:
8837 case elfcpp::R_PPC64_D34_LO:
8838 case elfcpp::R_PPC64_D34_HI30:
8839 case elfcpp::R_PPC64_D34_HA30:
8840 case elfcpp::R_PPC64_D28:
8841 case elfcpp::R_PPC64_PCREL34:
8842 case elfcpp::R_PPC64_PCREL28:
8843 case elfcpp::R_PPC64_TPREL34:
8844 case elfcpp::R_PPC64_DTPREL34:
8845 break;
8846
8847 case elfcpp::R_PPC64_TOC:
8848 {
8849 Output_data_got_powerpc<size, big_endian>* got
8850 = target->got_section(symtab, layout, GOT_TYPE_SMALL);
8851 if (parameters->options().output_is_position_independent())
8852 {
8853 Address off = reloc.get_r_offset();
8854 if (size == 64
8855 && data_shndx == ppc_object->opd_shndx()
8856 && ppc_object->get_opd_discard(off - 8))
8857 break;
8858
8859 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8860 Address got_off = got->g_o_t();
8861 rela_dyn->add_output_section_relative(got->output_section(),
8862 elfcpp::R_POWERPC_RELATIVE,
8863 output_section,
8864 object, data_shndx, off,
8865 got_off);
8866 }
8867 }
8868 break;
8869
8870 case elfcpp::R_PPC64_ADDR64:
8871 if (size == 64
8872 && target->abiversion() < 2
8873 && data_shndx == ppc_object->opd_shndx()
8874 && (gsym->is_defined_in_discarded_section()
8875 || gsym->object() != object))
8876 {
8877 ppc_object->set_opd_discard(reloc.get_r_offset());
8878 break;
8879 }
8880 // Fall through.
8881 case elfcpp::R_PPC64_UADDR64:
8882 case elfcpp::R_POWERPC_ADDR32:
8883 case elfcpp::R_POWERPC_UADDR32:
8884 case elfcpp::R_POWERPC_ADDR24:
8885 case elfcpp::R_POWERPC_ADDR16:
8886 case elfcpp::R_POWERPC_ADDR16_LO:
8887 case elfcpp::R_POWERPC_ADDR16_HI:
8888 case elfcpp::R_POWERPC_ADDR16_HA:
8889 case elfcpp::R_POWERPC_UADDR16:
8890 case elfcpp::R_PPC64_ADDR16_HIGH:
8891 case elfcpp::R_PPC64_ADDR16_HIGHA:
8892 case elfcpp::R_PPC64_ADDR16_HIGHER:
8893 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8894 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8895 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8896 case elfcpp::R_PPC64_ADDR16_DS:
8897 case elfcpp::R_PPC64_ADDR16_LO_DS:
8898 case elfcpp::R_POWERPC_ADDR14:
8899 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8900 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8901 {
8902 // Make a PLT entry if necessary.
8903 if (gsym->needs_plt_entry())
8904 {
8905 // Since this is not a PC-relative relocation, we may be
8906 // taking the address of a function. In that case we need to
8907 // set the entry in the dynamic symbol table to the address of
8908 // the PLT call stub.
8909 bool need_ifunc_plt = false;
8910 if ((size == 32 || target->abiversion() >= 2)
8911 && gsym->is_from_dynobj()
8912 && !parameters->options().output_is_position_independent())
8913 {
8914 gsym->set_needs_dynsym_value();
8915 need_ifunc_plt = true;
8916 }
8917 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
8918 {
8919 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8920 target->push_branch(ppc_object, data_shndx,
8921 reloc.get_r_offset(), r_type, r_sym,
8922 reloc.get_r_addend());
8923 target->make_plt_entry(symtab, layout, gsym);
8924 }
8925 }
8926 // Make a dynamic relocation if necessary.
8927 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
8928 || (size == 64 && is_ifunc && target->abiversion() < 2))
8929 {
8930 if (!parameters->options().output_is_position_independent()
8931 && gsym->may_need_copy_reloc())
8932 {
8933 target->copy_reloc(symtab, layout, object,
8934 data_shndx, output_section, gsym, reloc);
8935 }
8936 else if ((((size == 32
8937 && r_type == elfcpp::R_POWERPC_ADDR32)
8938 || (size == 64
8939 && r_type == elfcpp::R_PPC64_ADDR64
8940 && target->abiversion() >= 2))
8941 && gsym->can_use_relative_reloc(false)
8942 && !(gsym->visibility() == elfcpp::STV_PROTECTED
8943 && parameters->options().shared()))
8944 || (size == 64
8945 && r_type == elfcpp::R_PPC64_ADDR64
8946 && target->abiversion() < 2
8947 && (gsym->can_use_relative_reloc(false)
8948 || data_shndx == ppc_object->opd_shndx())))
8949 {
8950 Reloc_section* rela_dyn
8951 = target->rela_dyn_section(symtab, layout, is_ifunc);
8952 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
8953 : elfcpp::R_POWERPC_RELATIVE);
8954 rela_dyn->add_symbolless_global_addend(
8955 gsym, dynrel, output_section, object, data_shndx,
8956 reloc.get_r_offset(), reloc.get_r_addend());
8957 }
8958 else
8959 {
8960 Reloc_section* rela_dyn
8961 = target->rela_dyn_section(symtab, layout, is_ifunc);
8962 check_non_pic(object, r_type);
8963 rela_dyn->add_global(gsym, r_type, output_section,
8964 object, data_shndx,
8965 reloc.get_r_offset(),
8966 reloc.get_r_addend());
8967
8968 if (size == 64
8969 && parameters->options().toc_optimize()
8970 && data_shndx == ppc_object->toc_shndx())
8971 ppc_object->set_no_toc_opt(reloc.get_r_offset());
8972 }
8973 }
8974 }
8975 break;
8976
8977 case elfcpp::R_PPC64_PLT_PCREL34:
8978 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
8979 case elfcpp::R_POWERPC_PLT16_LO:
8980 case elfcpp::R_POWERPC_PLT16_HI:
8981 case elfcpp::R_POWERPC_PLT16_HA:
8982 case elfcpp::R_PPC64_PLT16_LO_DS:
8983 if (!pushed_ifunc)
8984 {
8985 if (!parameters->doing_static_link())
8986 target->make_plt_entry(symtab, layout, gsym);
8987 else
8988 target->make_local_plt_entry(symtab, layout, gsym);
8989 }
8990 break;
8991
8992 case elfcpp::R_PPC64_REL24_NOTOC:
8993 if (size == 32)
8994 break;
8995 // Fall through.
8996 case elfcpp::R_PPC64_REL24_P9NOTOC:
8997 case elfcpp::R_PPC_PLTREL24:
8998 case elfcpp::R_POWERPC_REL24:
8999 if (!is_ifunc)
9000 {
9001 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
9002 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
9003 r_type, r_sym, reloc.get_r_addend());
9004 if (gsym->needs_plt_entry()
9005 || (!gsym->final_value_is_known()
9006 && (gsym->is_undefined()
9007 || gsym->is_from_dynobj()
9008 || gsym->is_preemptible())))
9009 target->make_plt_entry(symtab, layout, gsym);
9010 }
9011 // Fall through.
9012
9013 case elfcpp::R_PPC64_REL64:
9014 case elfcpp::R_POWERPC_REL32:
9015 // Make a dynamic relocation if necessary.
9016 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
9017 {
9018 if (!parameters->options().output_is_position_independent()
9019 && gsym->may_need_copy_reloc())
9020 {
9021 target->copy_reloc(symtab, layout, object,
9022 data_shndx, output_section, gsym,
9023 reloc);
9024 }
9025 else
9026 {
9027 Reloc_section* rela_dyn
9028 = target->rela_dyn_section(symtab, layout, is_ifunc);
9029 check_non_pic(object, r_type);
9030 rela_dyn->add_global(gsym, r_type, output_section, object,
9031 data_shndx, reloc.get_r_offset(),
9032 reloc.get_r_addend());
9033 }
9034 }
9035 break;
9036
9037 case elfcpp::R_POWERPC_REL14:
9038 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9039 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9040 if (!is_ifunc)
9041 {
9042 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
9043 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
9044 r_type, r_sym, reloc.get_r_addend());
9045 }
9046 break;
9047
9048 case elfcpp::R_PPC64_TOCSAVE:
9049 // R_PPC64_TOCSAVE follows a call instruction to indicate the
9050 // caller has already saved r2 and thus a plt call stub need not
9051 // save r2.
9052 if (size == 64
9053 && target->mark_pltcall(ppc_object, data_shndx,
9054 reloc.get_r_offset() - 4, symtab))
9055 {
9056 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
9057 bool is_ordinary;
9058 unsigned int shndx = gsym->shndx(&is_ordinary);
9059 if (!is_ordinary)
9060 object->error(_("tocsave symbol %u has bad shndx %u"),
9061 r_sym, shndx);
9062 else
9063 {
9064 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
9065 target->add_tocsave(ppc_object, shndx,
9066 sym->value() + reloc.get_r_addend());
9067 }
9068 }
9069 break;
9070
9071 case elfcpp::R_POWERPC_REL16:
9072 case elfcpp::R_POWERPC_REL16_LO:
9073 case elfcpp::R_POWERPC_REL16_HI:
9074 case elfcpp::R_POWERPC_REL16_HA:
9075 case elfcpp::R_POWERPC_REL16DX_HA:
9076 case elfcpp::R_PPC64_REL16_HIGH:
9077 case elfcpp::R_PPC64_REL16_HIGHA:
9078 case elfcpp::R_PPC64_REL16_HIGHER:
9079 case elfcpp::R_PPC64_REL16_HIGHERA:
9080 case elfcpp::R_PPC64_REL16_HIGHEST:
9081 case elfcpp::R_PPC64_REL16_HIGHESTA:
9082 case elfcpp::R_POWERPC_SECTOFF:
9083 case elfcpp::R_POWERPC_SECTOFF_LO:
9084 case elfcpp::R_POWERPC_SECTOFF_HI:
9085 case elfcpp::R_POWERPC_SECTOFF_HA:
9086 case elfcpp::R_PPC64_SECTOFF_DS:
9087 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9088 case elfcpp::R_POWERPC_TPREL16:
9089 case elfcpp::R_POWERPC_TPREL16_LO:
9090 case elfcpp::R_POWERPC_TPREL16_HI:
9091 case elfcpp::R_POWERPC_TPREL16_HA:
9092 case elfcpp::R_PPC64_TPREL16_DS:
9093 case elfcpp::R_PPC64_TPREL16_LO_DS:
9094 case elfcpp::R_PPC64_TPREL16_HIGH:
9095 case elfcpp::R_PPC64_TPREL16_HIGHA:
9096 case elfcpp::R_PPC64_TPREL16_HIGHER:
9097 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9098 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9099 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9100 case elfcpp::R_POWERPC_DTPREL16:
9101 case elfcpp::R_POWERPC_DTPREL16_LO:
9102 case elfcpp::R_POWERPC_DTPREL16_HI:
9103 case elfcpp::R_POWERPC_DTPREL16_HA:
9104 case elfcpp::R_PPC64_DTPREL16_DS:
9105 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9106 case elfcpp::R_PPC64_DTPREL16_HIGH:
9107 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9108 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9109 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9110 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9111 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9112 case elfcpp::R_PPC64_TLSGD:
9113 case elfcpp::R_PPC64_TLSLD:
9114 case elfcpp::R_PPC64_ADDR64_LOCAL:
9115 break;
9116
9117 case elfcpp::R_PPC64_GOT_PCREL34:
9118 case elfcpp::R_POWERPC_GOT16:
9119 case elfcpp::R_POWERPC_GOT16_LO:
9120 case elfcpp::R_POWERPC_GOT16_HI:
9121 case elfcpp::R_POWERPC_GOT16_HA:
9122 case elfcpp::R_PPC64_GOT16_DS:
9123 case elfcpp::R_PPC64_GOT16_LO_DS:
9124 {
9125 // The symbol requires a GOT entry.
9126 Output_data_got_powerpc<size, big_endian>* got;
9127 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
9128 Got_type got_type = ((size == 32
9129 || r_type == elfcpp::R_POWERPC_GOT16
9130 || r_type == elfcpp::R_PPC64_GOT16_DS)
9131 ? GOT_TYPE_SMALL : GOT_TYPE_STANDARD);
9132
9133 got = target->got_section(symtab, layout, got_type);
9134 if (gsym->final_value_is_known())
9135 {
9136 if (is_ifunc
9137 && (size == 32 || target->abiversion() >= 2))
9138 got->add_global_plt(gsym, got_type, addend);
9139 else
9140 got->add_global(gsym, got_type, addend);
9141 }
9142 else if (!gsym->has_got_offset(got_type, addend))
9143 {
9144 // If we are generating a shared object or a pie, this
9145 // symbol's GOT entry will be set by a dynamic relocation.
9146 unsigned int off = got->add_constant(0);
9147 gsym->set_got_offset(got_type, off, addend);
9148
9149 Reloc_section* rela_dyn
9150 = target->rela_dyn_section(symtab, layout, is_ifunc);
9151
9152 if (gsym->can_use_relative_reloc(false)
9153 && !((size == 32
9154 || target->abiversion() >= 2)
9155 && gsym->visibility() == elfcpp::STV_PROTECTED
9156 && parameters->options().shared()))
9157 {
9158 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
9159 : elfcpp::R_POWERPC_RELATIVE);
9160 rela_dyn->add_global_relative(gsym, dynrel, got, off,
9161 addend, false);
9162 }
9163 else
9164 {
9165 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
9166 rela_dyn->add_global(gsym, dynrel, got, off, addend);
9167 }
9168 }
9169 }
9170 break;
9171
9172 case elfcpp::R_PPC64_TOC16:
9173 case elfcpp::R_PPC64_TOC16_LO:
9174 case elfcpp::R_PPC64_TOC16_HI:
9175 case elfcpp::R_PPC64_TOC16_HA:
9176 case elfcpp::R_PPC64_TOC16_DS:
9177 case elfcpp::R_PPC64_TOC16_LO_DS:
9178 // We need a GOT section.
9179 target->got_section(symtab, layout, GOT_TYPE_SMALL);
9180 break;
9181
9182 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
9183 case elfcpp::R_POWERPC_GOT_TLSGD16:
9184 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9185 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9186 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9187 {
9188 bool final = gsym->final_value_is_known();
9189 tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
9190 if (tls_type == tls::TLSOPT_NONE)
9191 {
9192 Got_type got_type = ((size == 32
9193 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16)
9194 ? GOT_TYPE_SMALL_TLSGD : GOT_TYPE_TLSGD);
9195 Output_data_got_powerpc<size, big_endian>* got
9196 = target->got_section(symtab, layout, got_type);
9197 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9198 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
9199 got->add_global_pair_with_rel(gsym, got_type, rela_dyn,
9200 elfcpp::R_POWERPC_DTPMOD,
9201 elfcpp::R_POWERPC_DTPREL,
9202 addend);
9203 }
9204 else if (tls_type == tls::TLSOPT_TO_IE)
9205 {
9206 Got_type got_type = ((size == 32
9207 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16)
9208 ? GOT_TYPE_SMALL_TPREL : GOT_TYPE_TPREL);
9209 if (!gsym->has_got_offset(got_type))
9210 {
9211 Output_data_got_powerpc<size, big_endian>* got
9212 = target->got_section(symtab, layout, got_type);
9213 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9214 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
9215 if (gsym->is_undefined()
9216 || gsym->is_from_dynobj())
9217 {
9218 got->add_global_with_rel(gsym, got_type, rela_dyn,
9219 elfcpp::R_POWERPC_TPREL, addend);
9220 }
9221 else
9222 {
9223 unsigned int off = got->add_constant(0);
9224 gsym->set_got_offset(got_type, off);
9225 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
9226 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
9227 got, off, addend);
9228 }
9229 }
9230 }
9231 else if (tls_type == tls::TLSOPT_TO_LE)
9232 {
9233 // no GOT relocs needed for Local Exec.
9234 }
9235 else
9236 gold_unreachable();
9237 }
9238 break;
9239
9240 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
9241 case elfcpp::R_POWERPC_GOT_TLSLD16:
9242 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9243 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9244 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9245 {
9246 tls::Tls_optimization tls_type = target->optimize_tls_ld();
9247 if (tls_type == tls::TLSOPT_NONE)
9248 target->tlsld_got_offset(symtab, layout, object);
9249 else if (tls_type == tls::TLSOPT_TO_LE)
9250 {
9251 // no GOT relocs needed for Local Exec.
9252 if (parameters->options().emit_relocs())
9253 {
9254 Output_section* os = layout->tls_segment()->first_section();
9255 gold_assert(os != NULL);
9256 os->set_needs_symtab_index();
9257 }
9258 }
9259 else
9260 gold_unreachable();
9261 }
9262 break;
9263
9264 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
9265 case elfcpp::R_POWERPC_GOT_DTPREL16:
9266 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9267 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9268 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9269 {
9270 Got_type got_type = ((size == 32
9271 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16)
9272 ? GOT_TYPE_SMALL_DTPREL : GOT_TYPE_DTPREL);
9273 Output_data_got_powerpc<size, big_endian>* got
9274 = target->got_section(symtab, layout, got_type);
9275 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
9276 if (!gsym->final_value_is_known()
9277 && (gsym->is_from_dynobj()
9278 || gsym->is_undefined()
9279 || gsym->is_preemptible()))
9280 got->add_global_with_rel(gsym, got_type,
9281 target->rela_dyn_section(layout),
9282 elfcpp::R_POWERPC_DTPREL, addend);
9283 else
9284 got->add_global_tls(gsym, got_type, addend);
9285 }
9286 break;
9287
9288 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
9289 case elfcpp::R_POWERPC_GOT_TPREL16:
9290 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9291 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9292 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9293 {
9294 bool final = gsym->final_value_is_known();
9295 tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
9296 if (tls_type == tls::TLSOPT_NONE)
9297 {
9298 Got_type got_type = ((size == 32
9299 || r_type == elfcpp::R_POWERPC_GOT_TPREL16)
9300 ? GOT_TYPE_SMALL_TPREL : GOT_TYPE_TPREL);
9301 if (!gsym->has_got_offset(got_type))
9302 {
9303 Output_data_got_powerpc<size, big_endian>* got
9304 = target->got_section(symtab, layout, got_type);
9305 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9306 uint64_t addend = size == 32 ? 0 : reloc.get_r_addend();
9307 if (gsym->is_undefined()
9308 || gsym->is_from_dynobj())
9309 {
9310 got->add_global_with_rel(gsym, got_type, rela_dyn,
9311 elfcpp::R_POWERPC_TPREL, addend);
9312 }
9313 else
9314 {
9315 unsigned int off = got->add_constant(0);
9316 gsym->set_got_offset(got_type, off);
9317 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
9318 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
9319 got, off, addend);
9320 }
9321 }
9322 }
9323 else if (tls_type == tls::TLSOPT_TO_LE)
9324 {
9325 // no GOT relocs needed for Local Exec.
9326 }
9327 else
9328 gold_unreachable();
9329 }
9330 break;
9331
9332 default:
9333 unsupported_reloc_global(object, r_type, gsym);
9334 break;
9335 }
9336
9337 if (size == 64
9338 && parameters->options().toc_optimize())
9339 {
9340 if (data_shndx == ppc_object->toc_shndx())
9341 {
9342 bool ok = true;
9343 if (r_type != elfcpp::R_PPC64_ADDR64
9344 || (is_ifunc && target->abiversion() < 2))
9345 ok = false;
9346 else if (parameters->options().output_is_position_independent()
9347 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
9348 ok = false;
9349 if (!ok)
9350 ppc_object->set_no_toc_opt(reloc.get_r_offset());
9351 }
9352
9353 enum {no_check, check_lo, check_ha} insn_check;
9354 switch (r_type)
9355 {
9356 default:
9357 insn_check = no_check;
9358 break;
9359
9360 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9361 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9362 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9363 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9364 case elfcpp::R_POWERPC_GOT16_HA:
9365 case elfcpp::R_PPC64_TOC16_HA:
9366 insn_check = check_ha;
9367 break;
9368
9369 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9370 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9371 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9372 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9373 case elfcpp::R_POWERPC_GOT16_LO:
9374 case elfcpp::R_PPC64_GOT16_LO_DS:
9375 case elfcpp::R_PPC64_TOC16_LO:
9376 case elfcpp::R_PPC64_TOC16_LO_DS:
9377 insn_check = check_lo;
9378 break;
9379 }
9380
9381 section_size_type slen;
9382 const unsigned char* view = NULL;
9383 if (insn_check != no_check)
9384 {
9385 view = ppc_object->section_contents(data_shndx, &slen, false);
9386 section_size_type off =
9387 convert_to_section_size_type(reloc.get_r_offset()) & -4;
9388 if (off < slen)
9389 {
9390 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
9391 if (insn_check == check_lo
9392 ? !ok_lo_toc_insn(insn, r_type)
9393 : ((insn & ((0x3f << 26) | 0x1f << 16))
9394 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9395 {
9396 ppc_object->set_no_toc_opt();
9397 gold_warning(_("%s: toc optimization is not supported "
9398 "for %#08x instruction"),
9399 ppc_object->name().c_str(), insn);
9400 }
9401 }
9402 }
9403
9404 switch (r_type)
9405 {
9406 default:
9407 break;
9408 case elfcpp::R_PPC64_TOC16:
9409 case elfcpp::R_PPC64_TOC16_LO:
9410 case elfcpp::R_PPC64_TOC16_HI:
9411 case elfcpp::R_PPC64_TOC16_HA:
9412 case elfcpp::R_PPC64_TOC16_DS:
9413 case elfcpp::R_PPC64_TOC16_LO_DS:
9414 if (gsym->source() == Symbol::FROM_OBJECT
9415 && !gsym->object()->is_dynamic())
9416 {
9417 Powerpc_relobj<size, big_endian>* sym_object
9418 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
9419 bool is_ordinary;
9420 unsigned int shndx = gsym->shndx(&is_ordinary);
9421 if (shndx == sym_object->toc_shndx())
9422 {
9423 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
9424 Address dst_off = sym->value() + reloc.get_r_addend();
9425 if (dst_off < sym_object->section_size(shndx))
9426 {
9427 bool ok = false;
9428 if (r_type == elfcpp::R_PPC64_TOC16_HA)
9429 ok = true;
9430 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
9431 {
9432 // Need to check that the insn is a ld
9433 if (!view)
9434 view = ppc_object->section_contents(data_shndx,
9435 &slen,
9436 false);
9437 section_size_type off =
9438 (convert_to_section_size_type(reloc.get_r_offset())
9439 + (big_endian ? -2 : 3));
9440 if (off < slen
9441 && (view[off] & (0x3f << 2)) == (58u << 2))
9442 ok = true;
9443 }
9444 if (!ok)
9445 sym_object->set_no_toc_opt(dst_off);
9446 }
9447 }
9448 }
9449 break;
9450 }
9451 }
9452
9453 if (size == 32)
9454 {
9455 switch (r_type)
9456 {
9457 case elfcpp::R_PPC_LOCAL24PC:
9458 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9459 gold_error(_("%s: unsupported -mbss-plt code"),
9460 ppc_object->name().c_str());
9461 break;
9462 default:
9463 break;
9464 }
9465 }
9466
9467 switch (r_type)
9468 {
9469 case elfcpp::R_POWERPC_GOT_TLSLD16:
9470 case elfcpp::R_POWERPC_GOT_TLSGD16:
9471 case elfcpp::R_POWERPC_GOT_TPREL16:
9472 case elfcpp::R_POWERPC_GOT_DTPREL16:
9473 case elfcpp::R_POWERPC_GOT16:
9474 case elfcpp::R_PPC64_GOT16_DS:
9475 case elfcpp::R_PPC64_TOC16:
9476 case elfcpp::R_PPC64_TOC16_DS:
9477 ppc_object->set_has_small_toc_reloc();
9478 break;
9479 default:
9480 break;
9481 }
9482
9483 switch (r_type)
9484 {
9485 case elfcpp::R_PPC64_TPREL16_DS:
9486 case elfcpp::R_PPC64_TPREL16_LO_DS:
9487 case elfcpp::R_PPC64_TPREL16_HIGH:
9488 case elfcpp::R_PPC64_TPREL16_HIGHA:
9489 case elfcpp::R_PPC64_TPREL16_HIGHER:
9490 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9491 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9492 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9493 case elfcpp::R_PPC64_TPREL34:
9494 if (size != 64)
9495 break;
9496 // Fall through.
9497 case elfcpp::R_POWERPC_TPREL16:
9498 case elfcpp::R_POWERPC_TPREL16_LO:
9499 case elfcpp::R_POWERPC_TPREL16_HI:
9500 case elfcpp::R_POWERPC_TPREL16_HA:
9501 layout->set_has_static_tls();
9502 break;
9503 default:
9504 break;
9505 }
9506
9507 switch (r_type)
9508 {
9509 case elfcpp::R_POWERPC_TPREL16_HA:
9510 if (target->tprel_opt())
9511 {
9512 section_size_type slen;
9513 const unsigned char* view = NULL;
9514 view = ppc_object->section_contents(data_shndx, &slen, false);
9515 section_size_type off
9516 = convert_to_section_size_type(reloc.get_r_offset()) & -4;
9517 if (off < slen)
9518 {
9519 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
9520 if ((insn & ((0x3fu << 26) | 0x1f << 16))
9521 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9522 target->set_no_tprel_opt();
9523 }
9524 }
9525 break;
9526
9527 case elfcpp::R_PPC64_TPREL16_HIGH:
9528 case elfcpp::R_PPC64_TPREL16_HIGHA:
9529 case elfcpp::R_PPC64_TPREL16_HIGHER:
9530 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9531 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9532 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9533 if (size != 64)
9534 break;
9535 // Fall through.
9536 case elfcpp::R_POWERPC_TPREL16_HI:
9537 target->set_no_tprel_opt();
9538 break;
9539 default:
9540 break;
9541 }
9542
9543 switch (r_type)
9544 {
9545 case elfcpp::R_PPC64_D34:
9546 case elfcpp::R_PPC64_D34_LO:
9547 case elfcpp::R_PPC64_D34_HI30:
9548 case elfcpp::R_PPC64_D34_HA30:
9549 case elfcpp::R_PPC64_D28:
9550 case elfcpp::R_PPC64_PCREL34:
9551 case elfcpp::R_PPC64_PCREL28:
9552 case elfcpp::R_PPC64_TPREL34:
9553 case elfcpp::R_PPC64_DTPREL34:
9554 case elfcpp::R_PPC64_PLT_PCREL34:
9555 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
9556 case elfcpp::R_PPC64_GOT_PCREL34:
9557 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
9558 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
9559 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
9560 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
9561 target->set_power10_relocs();
9562 break;
9563 default:
9564 break;
9565 }
9566 }
9567
9568 // Process relocations for gc.
9569
9570 template<int size, bool big_endian>
9571 void
9572 Target_powerpc<size, big_endian>::gc_process_relocs(
9573 Symbol_table* symtab,
9574 Layout* layout,
9575 Sized_relobj_file<size, big_endian>* object,
9576 unsigned int data_shndx,
9577 unsigned int,
9578 const unsigned char* prelocs,
9579 size_t reloc_count,
9580 Output_section* output_section,
9581 bool needs_special_offset_handling,
9582 size_t local_symbol_count,
9583 const unsigned char* plocal_symbols)
9584 {
9585 typedef Target_powerpc<size, big_endian> Powerpc;
9586 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9587 Classify_reloc;
9588
9589 Powerpc_relobj<size, big_endian>* ppc_object
9590 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
9591 if (size == 64)
9592 ppc_object->set_opd_valid();
9593 if (size == 64 && data_shndx == ppc_object->opd_shndx())
9594 {
9595 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
9596 for (p = ppc_object->access_from_map()->begin();
9597 p != ppc_object->access_from_map()->end();
9598 ++p)
9599 {
9600 Address dst_off = p->first;
9601 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
9602 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
9603 for (s = p->second.begin(); s != p->second.end(); ++s)
9604 {
9605 Relobj* src_obj = s->first;
9606 unsigned int src_indx = s->second;
9607 symtab->gc()->add_reference(src_obj, src_indx,
9608 ppc_object, dst_indx);
9609 }
9610 p->second.clear();
9611 }
9612 ppc_object->access_from_map()->clear();
9613 ppc_object->process_gc_mark(symtab);
9614 // Don't look at .opd relocs as .opd will reference everything.
9615 return;
9616 }
9617
9618 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
9619 symtab,
9620 layout,
9621 this,
9622 object,
9623 data_shndx,
9624 prelocs,
9625 reloc_count,
9626 output_section,
9627 needs_special_offset_handling,
9628 local_symbol_count,
9629 plocal_symbols);
9630 }
9631
9632 // Handle target specific gc actions when adding a gc reference from
9633 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
9634 // and DST_OFF. For powerpc64, this adds a referenc to the code
9635 // section of a function descriptor.
9636
9637 template<int size, bool big_endian>
9638 void
9639 Target_powerpc<size, big_endian>::do_gc_add_reference(
9640 Symbol_table* symtab,
9641 Relobj* src_obj,
9642 unsigned int src_shndx,
9643 Relobj* dst_obj,
9644 unsigned int dst_shndx,
9645 Address dst_off) const
9646 {
9647 if (size != 64 || dst_obj->is_dynamic())
9648 return;
9649
9650 Powerpc_relobj<size, big_endian>* ppc_object
9651 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
9652 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
9653 {
9654 if (ppc_object->opd_valid())
9655 {
9656 dst_shndx = ppc_object->get_opd_ent(dst_off);
9657 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
9658 }
9659 else
9660 {
9661 // If we haven't run scan_opd_relocs, we must delay
9662 // processing this function descriptor reference.
9663 ppc_object->add_reference(src_obj, src_shndx, dst_off);
9664 }
9665 }
9666 }
9667
9668 // Add any special sections for this symbol to the gc work list.
9669 // For powerpc64, this adds the code section of a function
9670 // descriptor.
9671
9672 template<int size, bool big_endian>
9673 void
9674 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
9675 Symbol_table* symtab,
9676 Symbol* sym) const
9677 {
9678 if (size == 64 && sym->object()->pluginobj() == NULL)
9679 {
9680 Powerpc_relobj<size, big_endian>* ppc_object
9681 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
9682 bool is_ordinary;
9683 unsigned int shndx = sym->shndx(&is_ordinary);
9684 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
9685 {
9686 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
9687 Address dst_off = gsym->value();
9688 if (ppc_object->opd_valid())
9689 {
9690 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
9691 symtab->gc()->worklist().push_back(Section_id(ppc_object,
9692 dst_indx));
9693 }
9694 else
9695 ppc_object->add_gc_mark(dst_off);
9696 }
9697 }
9698 }
9699
9700 // For a symbol location in .opd, set LOC to the location of the
9701 // function entry.
9702
9703 template<int size, bool big_endian>
9704 void
9705 Target_powerpc<size, big_endian>::do_function_location(
9706 Symbol_location* loc) const
9707 {
9708 if (size == 64 && loc->shndx != 0)
9709 {
9710 if (loc->object->is_dynamic())
9711 {
9712 Powerpc_dynobj<size, big_endian>* ppc_object
9713 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
9714 if (loc->shndx == ppc_object->opd_shndx())
9715 {
9716 Address dest_off;
9717 Address off = loc->offset - ppc_object->opd_address();
9718 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
9719 loc->offset = dest_off;
9720 }
9721 }
9722 else
9723 {
9724 const Powerpc_relobj<size, big_endian>* ppc_object
9725 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
9726 if (loc->shndx == ppc_object->opd_shndx())
9727 {
9728 Address dest_off;
9729 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
9730 loc->offset = dest_off;
9731 }
9732 }
9733 }
9734 }
9735
9736 // FNOFFSET in section SHNDX in OBJECT is the start of a function
9737 // compiled with -fsplit-stack. The function calls non-split-stack
9738 // code. Change the function to ensure it has enough stack space to
9739 // call some random function.
9740
9741 template<int size, bool big_endian>
9742 void
9743 Target_powerpc<size, big_endian>::do_calls_non_split(
9744 Relobj* object,
9745 unsigned int shndx,
9746 section_offset_type fnoffset,
9747 section_size_type fnsize,
9748 const unsigned char* prelocs,
9749 size_t reloc_count,
9750 unsigned char* view,
9751 section_size_type view_size,
9752 std::string* from,
9753 std::string* to) const
9754 {
9755 // 32-bit not supported.
9756 if (size == 32)
9757 {
9758 // warn
9759 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
9760 prelocs, reloc_count, view, view_size,
9761 from, to);
9762 return;
9763 }
9764
9765 // The function always starts with
9766 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
9767 // addis %r12,%r1,-allocate@ha
9768 // addi %r12,%r12,-allocate@l
9769 // cmpld %r12,%r0
9770 // but note that the addis or addi may be replaced with a nop
9771
9772 unsigned char *entry = view + fnoffset;
9773 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
9774
9775 if ((insn & 0xffff0000) == addis_2_12)
9776 {
9777 /* Skip ELFv2 global entry code. */
9778 entry += 8;
9779 insn = elfcpp::Swap<32, big_endian>::readval(entry);
9780 }
9781
9782 unsigned char *pinsn = entry;
9783 bool ok = false;
9784 const uint32_t ld_private_ss = 0xe80d8fc0;
9785 if (insn == ld_private_ss)
9786 {
9787 int32_t allocate = 0;
9788 while (1)
9789 {
9790 pinsn += 4;
9791 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
9792 if ((insn & 0xffff0000) == addis_12_1)
9793 allocate += (insn & 0xffff) << 16;
9794 else if ((insn & 0xffff0000) == addi_12_1
9795 || (insn & 0xffff0000) == addi_12_12)
9796 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
9797 else if (insn != nop)
9798 break;
9799 }
9800 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
9801 {
9802 int extra = parameters->options().split_stack_adjust_size();
9803 allocate -= extra;
9804 if (allocate >= 0 || extra < 0)
9805 {
9806 object->error(_("split-stack stack size overflow at "
9807 "section %u offset %0zx"),
9808 shndx, static_cast<size_t>(fnoffset));
9809 return;
9810 }
9811 pinsn = entry + 4;
9812 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
9813 if (insn != addis_12_1)
9814 {
9815 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9816 pinsn += 4;
9817 insn = addi_12_12 | (allocate & 0xffff);
9818 if (insn != addi_12_12)
9819 {
9820 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9821 pinsn += 4;
9822 }
9823 }
9824 else
9825 {
9826 insn = addi_12_1 | (allocate & 0xffff);
9827 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9828 pinsn += 4;
9829 }
9830 if (pinsn != entry + 12)
9831 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
9832
9833 ok = true;
9834 }
9835 }
9836
9837 if (!ok)
9838 {
9839 if (!object->has_no_split_stack())
9840 object->error(_("failed to match split-stack sequence at "
9841 "section %u offset %0zx"),
9842 shndx, static_cast<size_t>(fnoffset));
9843 }
9844 }
9845
9846 // Scan relocations for a section.
9847
9848 template<int size, bool big_endian>
9849 void
9850 Target_powerpc<size, big_endian>::scan_relocs(
9851 Symbol_table* symtab,
9852 Layout* layout,
9853 Sized_relobj_file<size, big_endian>* object,
9854 unsigned int data_shndx,
9855 unsigned int sh_type,
9856 const unsigned char* prelocs,
9857 size_t reloc_count,
9858 Output_section* output_section,
9859 bool needs_special_offset_handling,
9860 size_t local_symbol_count,
9861 const unsigned char* plocal_symbols)
9862 {
9863 typedef Target_powerpc<size, big_endian> Powerpc;
9864 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9865 Classify_reloc;
9866
9867 if (!this->plt_localentry0_init_)
9868 {
9869 bool plt_localentry0 = false;
9870 if (size == 64
9871 && this->abiversion() >= 2)
9872 {
9873 if (parameters->options().user_set_plt_localentry())
9874 plt_localentry0 = parameters->options().plt_localentry();
9875 if (plt_localentry0
9876 && symtab->lookup("GLIBC_2.26", NULL) == NULL)
9877 gold_warning(_("--plt-localentry is especially dangerous without "
9878 "ld.so support to detect ABI violations"));
9879 }
9880 this->plt_localentry0_ = plt_localentry0;
9881 this->plt_localentry0_init_ = true;
9882 }
9883
9884 if (sh_type == elfcpp::SHT_REL)
9885 {
9886 gold_error(_("%s: unsupported REL reloc section"),
9887 object->name().c_str());
9888 return;
9889 }
9890
9891 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
9892 symtab,
9893 layout,
9894 this,
9895 object,
9896 data_shndx,
9897 prelocs,
9898 reloc_count,
9899 output_section,
9900 needs_special_offset_handling,
9901 local_symbol_count,
9902 plocal_symbols);
9903
9904 if (this->plt_localentry0_ && this->power10_relocs_)
9905 {
9906 gold_warning(_("--plt-localentry is incompatible with "
9907 "power10 pc-relative code"));
9908 this->plt_localentry0_ = false;
9909 }
9910 }
9911
9912 // Functor class for processing the global symbol table.
9913 // Removes symbols defined on discarded opd entries.
9914
9915 template<bool big_endian>
9916 class Global_symbol_visitor_opd
9917 {
9918 public:
9919 Global_symbol_visitor_opd()
9920 { }
9921
9922 void
9923 operator()(Sized_symbol<64>* sym)
9924 {
9925 if (sym->has_symtab_index()
9926 || sym->source() != Symbol::FROM_OBJECT
9927 || !sym->in_real_elf())
9928 return;
9929
9930 if (sym->object()->is_dynamic())
9931 return;
9932
9933 Powerpc_relobj<64, big_endian>* symobj
9934 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
9935 if (symobj->opd_shndx() == 0)
9936 return;
9937
9938 bool is_ordinary;
9939 unsigned int shndx = sym->shndx(&is_ordinary);
9940 if (shndx == symobj->opd_shndx()
9941 && symobj->get_opd_discard(sym->value()))
9942 {
9943 sym->set_undefined();
9944 sym->set_visibility(elfcpp::STV_DEFAULT);
9945 sym->set_is_defined_in_discarded_section();
9946 sym->set_symtab_index(-1U);
9947 }
9948 }
9949 };
9950
9951 template<int size, bool big_endian>
9952 void
9953 Target_powerpc<size, big_endian>::define_save_restore_funcs(
9954 Layout* layout,
9955 Symbol_table* symtab)
9956 {
9957 if (size == 64)
9958 {
9959 Output_data_save_res<size, big_endian>* savres
9960 = new Output_data_save_res<size, big_endian>(symtab);
9961 this->savres_section_ = savres;
9962 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
9963 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
9964 savres, ORDER_TEXT, false);
9965 }
9966 }
9967
9968 // Sort linker created .got section first (for the header), then input
9969 // sections belonging to files using small model code.
9970
9971 template<bool big_endian>
9972 class Sort_toc_sections
9973 {
9974 const Output_section_data*
9975 small_got_section() const
9976 {
9977 return (static_cast<Target_powerpc<64, big_endian>*>(
9978 parameters->sized_target<64, big_endian>())
9979 ->got_section(GOT_TYPE_SMALL));
9980 }
9981
9982 int
9983 rank(const Output_section::Input_section& isec) const
9984 {
9985 if (!isec.is_input_section())
9986 {
9987 if (isec.output_section_data() == this->small_got_section())
9988 return 0;
9989 return 2;
9990 }
9991 if (static_cast<const Powerpc_relobj<64, big_endian>*>(isec.relobj())
9992 ->has_small_toc_reloc())
9993 return 1;
9994 return 3;
9995 }
9996
9997 public:
9998 bool
9999 operator()(const Output_section::Input_section& is1,
10000 const Output_section::Input_section& is2) const
10001 {
10002 return rank(is1) < rank(is2);
10003 }
10004 };
10005
10006 // Finalize the sections.
10007
10008 template<int size, bool big_endian>
10009 void
10010 Target_powerpc<size, big_endian>::do_finalize_sections(
10011 Layout* layout,
10012 const Input_objects* input_objects,
10013 Symbol_table* symtab)
10014 {
10015 if (parameters->doing_static_link())
10016 {
10017 // At least some versions of glibc elf-init.o have a strong
10018 // reference to __rela_iplt marker syms. A weak ref would be
10019 // better..
10020 if (this->iplt_ != NULL)
10021 {
10022 Reloc_section* rel = this->iplt_->rel_plt();
10023 symtab->define_in_output_data("__rela_iplt_start", NULL,
10024 Symbol_table::PREDEFINED, rel, 0, 0,
10025 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
10026 elfcpp::STV_HIDDEN, 0, false, true);
10027 symtab->define_in_output_data("__rela_iplt_end", NULL,
10028 Symbol_table::PREDEFINED, rel, 0, 0,
10029 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
10030 elfcpp::STV_HIDDEN, 0, true, true);
10031 }
10032 else
10033 {
10034 symtab->define_as_constant("__rela_iplt_start", NULL,
10035 Symbol_table::PREDEFINED, 0, 0,
10036 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
10037 elfcpp::STV_HIDDEN, 0, true, false);
10038 symtab->define_as_constant("__rela_iplt_end", NULL,
10039 Symbol_table::PREDEFINED, 0, 0,
10040 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
10041 elfcpp::STV_HIDDEN, 0, true, false);
10042 }
10043 }
10044
10045 if (size == 64)
10046 {
10047 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
10048 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
10049
10050 if (!parameters->options().relocatable())
10051 {
10052 this->define_save_restore_funcs(layout, symtab);
10053
10054 // Annoyingly, we need to make these sections now whether or
10055 // not we need them. If we delay until do_relax then we
10056 // need to mess with the relaxation machinery checkpointing.
10057 this->got_section(symtab, layout, GOT_TYPE_STANDARD);
10058 this->make_brlt_section(layout);
10059
10060 // FIXME, maybe. Here we could run through all the got
10061 // entries in the small got section, removing any duplicates
10062 // found in the big got section and renumbering offsets.
10063
10064 if (parameters->options().toc_sort())
10065 {
10066 Output_section* os = this->got_->output_section();
10067 if (os != NULL && os->input_sections().size() > 1)
10068 std::stable_sort(os->input_sections().begin(),
10069 os->input_sections().end(),
10070 Sort_toc_sections<big_endian>());
10071 }
10072 }
10073 }
10074
10075 // Fill in some more dynamic tags.
10076 Output_data_dynamic* odyn = layout->dynamic_data();
10077 if (odyn != NULL)
10078 {
10079 const Reloc_section* rel_plt = (this->plt_ == NULL
10080 ? NULL
10081 : this->plt_->rel_plt());
10082 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
10083 this->rela_dyn_, true, size == 32);
10084
10085 if (size == 32)
10086 {
10087 if (this->got_ != NULL)
10088 {
10089 this->got_->finalize_data_size();
10090 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
10091 this->got_, this->got_->g_o_t());
10092 }
10093 if (this->has_tls_get_addr_opt_)
10094 odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
10095 }
10096 else
10097 {
10098 if (this->glink_ != NULL)
10099 {
10100 this->glink_->finalize_data_size();
10101 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
10102 this->glink_,
10103 (this->glink_->pltresolve_size()
10104 - 32));
10105 }
10106 if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
10107 odyn->add_constant(elfcpp::DT_PPC64_OPT,
10108 ((this->has_localentry0_
10109 ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
10110 | (this->has_tls_get_addr_opt_
10111 ? elfcpp::PPC64_OPT_TLS : 0)));
10112 }
10113 }
10114
10115 // Emit any relocs we saved in an attempt to avoid generating COPY
10116 // relocs.
10117 if (this->copy_relocs_.any_saved_relocs())
10118 this->copy_relocs_.emit(this->rela_dyn_section(layout));
10119
10120 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
10121 p != input_objects->relobj_end();
10122 ++p)
10123 {
10124 Powerpc_relobj<size, big_endian>* ppc_relobj
10125 = static_cast<Powerpc_relobj<size, big_endian>*>(*p);
10126 if (ppc_relobj->attributes_section_data())
10127 this->merge_object_attributes(ppc_relobj,
10128 ppc_relobj->attributes_section_data());
10129 }
10130 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
10131 p != input_objects->dynobj_end();
10132 ++p)
10133 {
10134 Powerpc_dynobj<size, big_endian>* ppc_dynobj
10135 = static_cast<Powerpc_dynobj<size, big_endian>*>(*p);
10136 if (ppc_dynobj->attributes_section_data())
10137 this->merge_object_attributes(ppc_dynobj,
10138 ppc_dynobj->attributes_section_data());
10139 }
10140
10141 // Create a .gnu.attributes section if we have merged any attributes
10142 // from inputs.
10143 if (this->attributes_section_data_ != NULL
10144 && this->attributes_section_data_->size() != 0)
10145 {
10146 Output_attributes_section_data* attributes_section
10147 = new Output_attributes_section_data(*this->attributes_section_data_);
10148 layout->add_output_section_data(".gnu.attributes",
10149 elfcpp::SHT_GNU_ATTRIBUTES, 0,
10150 attributes_section, ORDER_INVALID, false);
10151 }
10152 }
10153
10154 // Merge object attributes from input file called NAME with those of the
10155 // output. The input object attributes are in the object pointed by PASD.
10156
10157 template<int size, bool big_endian>
10158 void
10159 Target_powerpc<size, big_endian>::merge_object_attributes(
10160 const Object* obj,
10161 const Attributes_section_data* pasd)
10162 {
10163 // Return if there is no attributes section data.
10164 if (pasd == NULL)
10165 return;
10166
10167 // Create output object attributes.
10168 if (this->attributes_section_data_ == NULL)
10169 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
10170
10171 const int vendor = Object_attribute::OBJ_ATTR_GNU;
10172 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10173 Object_attribute* out_attr
10174 = this->attributes_section_data_->known_attributes(vendor);
10175
10176 const char* name = obj->name().c_str();
10177 const char* err;
10178 const char* first;
10179 const char* second;
10180 int tag = elfcpp::Tag_GNU_Power_ABI_FP;
10181 int in_fp = in_attr[tag].int_value() & 0xf;
10182 int out_fp = out_attr[tag].int_value() & 0xf;
10183 bool warn_only = obj->is_dynamic();
10184 if (in_fp != out_fp)
10185 {
10186 err = NULL;
10187 if ((in_fp & 3) == 0)
10188 ;
10189 else if ((out_fp & 3) == 0)
10190 {
10191 if (!warn_only)
10192 {
10193 out_fp |= in_fp & 3;
10194 out_attr[tag].set_int_value(out_fp);
10195 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10196 this->last_fp_ = name;
10197 }
10198 }
10199 else if ((out_fp & 3) != 2 && (in_fp & 3) == 2)
10200 {
10201 err = N_("%s uses hard float, %s uses soft float");
10202 first = this->last_fp_;
10203 second = name;
10204 }
10205 else if ((out_fp & 3) == 2 && (in_fp & 3) != 2)
10206 {
10207 err = N_("%s uses hard float, %s uses soft float");
10208 first = name;
10209 second = this->last_fp_;
10210 }
10211 else if ((out_fp & 3) == 1 && (in_fp & 3) == 3)
10212 {
10213 err = N_("%s uses double-precision hard float, "
10214 "%s uses single-precision hard float");
10215 first = this->last_fp_;
10216 second = name;
10217 }
10218 else if ((out_fp & 3) == 3 && (in_fp & 3) == 1)
10219 {
10220 err = N_("%s uses double-precision hard float, "
10221 "%s uses single-precision hard float");
10222 first = name;
10223 second = this->last_fp_;
10224 }
10225
10226 if (err || (in_fp & 0xc) == 0)
10227 ;
10228 else if ((out_fp & 0xc) == 0)
10229 {
10230 if (!warn_only)
10231 {
10232 out_fp |= in_fp & 0xc;
10233 out_attr[tag].set_int_value(out_fp);
10234 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10235 this->last_ld_ = name;
10236 }
10237 }
10238 else if ((out_fp & 0xc) != 2 * 4 && (in_fp & 0xc) == 2 * 4)
10239 {
10240 err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
10241 first = name;
10242 second = this->last_ld_;
10243 }
10244 else if ((in_fp & 0xc) != 2 * 4 && (out_fp & 0xc) == 2 * 4)
10245 {
10246 err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
10247 first = this->last_ld_;
10248 second = name;
10249 }
10250 else if ((out_fp & 0xc) == 1 * 4 && (in_fp & 0xc) == 3 * 4)
10251 {
10252 err = N_("%s uses IBM long double, %s uses IEEE long double");
10253 first = this->last_ld_;
10254 second = name;
10255 }
10256 else if ((out_fp & 0xc) == 3 * 4 && (in_fp & 0xc) == 1 * 4)
10257 {
10258 err = N_("%s uses IBM long double, %s uses IEEE long double");
10259 first = name;
10260 second = this->last_ld_;
10261 }
10262
10263 if (err)
10264 {
10265 if (parameters->options().warn_mismatch())
10266 {
10267 if (warn_only)
10268 gold_warning(_(err), first, second);
10269 else
10270 gold_error(_(err), first, second);
10271 }
10272 // Arrange for this attribute to be deleted. It's better to
10273 // say "don't know" about a file than to wrongly claim compliance.
10274 if (!warn_only)
10275 out_attr[tag].set_type(0);
10276 }
10277 }
10278
10279 if (size == 32)
10280 {
10281 tag = elfcpp::Tag_GNU_Power_ABI_Vector;
10282 int in_vec = in_attr[tag].int_value() & 3;
10283 int out_vec = out_attr[tag].int_value() & 3;
10284 if (in_vec != out_vec)
10285 {
10286 err = NULL;
10287 if (in_vec == 0)
10288 ;
10289 else if (out_vec == 0)
10290 {
10291 out_vec = in_vec;
10292 out_attr[tag].set_int_value(out_vec);
10293 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10294 this->last_vec_ = name;
10295 }
10296 // For now, allow generic to transition to AltiVec or SPE
10297 // without a warning. If GCC marked files with their stack
10298 // alignment and used don't-care markings for files which are
10299 // not affected by the vector ABI, we could warn about this
10300 // case too. */
10301 else if (in_vec == 1)
10302 ;
10303 else if (out_vec == 1)
10304 {
10305 out_vec = in_vec;
10306 out_attr[tag].set_int_value(out_vec);
10307 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10308 this->last_vec_ = name;
10309 }
10310 else if (out_vec < in_vec)
10311 {
10312 err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
10313 first = this->last_vec_;
10314 second = name;
10315 }
10316 else if (out_vec > in_vec)
10317 {
10318 err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
10319 first = name;
10320 second = this->last_vec_;
10321 }
10322 if (err)
10323 {
10324 if (parameters->options().warn_mismatch())
10325 gold_error(_(err), first, second);
10326 out_attr[tag].set_type(0);
10327 }
10328 }
10329
10330 tag = elfcpp::Tag_GNU_Power_ABI_Struct_Return;
10331 int in_struct = in_attr[tag].int_value() & 3;
10332 int out_struct = out_attr[tag].int_value() & 3;
10333 if (in_struct != out_struct)
10334 {
10335 err = NULL;
10336 if (in_struct == 0 || in_struct == 3)
10337 ;
10338 else if (out_struct == 0)
10339 {
10340 out_struct = in_struct;
10341 out_attr[tag].set_int_value(out_struct);
10342 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10343 this->last_struct_ = name;
10344 }
10345 else if (out_struct < in_struct)
10346 {
10347 err = N_("%s uses r3/r4 for small structure returns, "
10348 "%s uses memory");
10349 first = this->last_struct_;
10350 second = name;
10351 }
10352 else if (out_struct > in_struct)
10353 {
10354 err = N_("%s uses r3/r4 for small structure returns, "
10355 "%s uses memory");
10356 first = name;
10357 second = this->last_struct_;
10358 }
10359 if (err)
10360 {
10361 if (parameters->options().warn_mismatch())
10362 gold_error(_(err), first, second);
10363 out_attr[tag].set_type(0);
10364 }
10365 }
10366 }
10367
10368 // Merge Tag_compatibility attributes and any common GNU ones.
10369 this->attributes_section_data_->merge(name, pasd);
10370 }
10371
10372 // Emit any saved relocs, and mark toc entries using any of these
10373 // relocs as not optimizable.
10374
10375 template<int sh_type, int size, bool big_endian>
10376 void
10377 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
10378 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
10379 {
10380 if (size == 64
10381 && parameters->options().toc_optimize())
10382 {
10383 for (typename Copy_relocs<sh_type, size, big_endian>::
10384 Copy_reloc_entries::iterator p = this->entries_.begin();
10385 p != this->entries_.end();
10386 ++p)
10387 {
10388 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
10389 entry = *p;
10390
10391 // If the symbol is no longer defined in a dynamic object,
10392 // then we emitted a COPY relocation. If it is still
10393 // dynamic then we'll need dynamic relocations and thus
10394 // can't optimize toc entries.
10395 if (entry.sym_->is_from_dynobj())
10396 {
10397 Powerpc_relobj<size, big_endian>* ppc_object
10398 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
10399 if (entry.shndx_ == ppc_object->toc_shndx())
10400 ppc_object->set_no_toc_opt(entry.address_);
10401 }
10402 }
10403 }
10404
10405 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
10406 }
10407
10408 // Return the value to use for a branch relocation.
10409
10410 template<int size, bool big_endian>
10411 bool
10412 Target_powerpc<size, big_endian>::symval_for_branch(
10413 const Symbol_table* symtab,
10414 const Sized_symbol<size>* gsym,
10415 Powerpc_relobj<size, big_endian>* object,
10416 Address *value,
10417 unsigned int *dest_shndx)
10418 {
10419 if (size == 32 || this->abiversion() >= 2)
10420 gold_unreachable();
10421 *dest_shndx = 0;
10422
10423 // If the symbol is defined in an opd section, ie. is a function
10424 // descriptor, use the function descriptor code entry address
10425 Powerpc_relobj<size, big_endian>* symobj = object;
10426 if (gsym != NULL
10427 && (gsym->source() != Symbol::FROM_OBJECT
10428 || gsym->object()->is_dynamic()))
10429 return true;
10430 if (gsym != NULL)
10431 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
10432 unsigned int shndx = symobj->opd_shndx();
10433 if (shndx == 0)
10434 return true;
10435 Address opd_addr = symobj->get_output_section_offset(shndx);
10436 if (opd_addr == invalid_address)
10437 return true;
10438 opd_addr += symobj->output_section_address(shndx);
10439 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
10440 {
10441 Address sec_off;
10442 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
10443 if (symtab->is_section_folded(symobj, *dest_shndx))
10444 {
10445 Section_id folded
10446 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
10447 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
10448 *dest_shndx = folded.second;
10449 }
10450 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
10451 if (sec_addr == invalid_address)
10452 return false;
10453
10454 sec_addr += symobj->output_section(*dest_shndx)->address();
10455 *value = sec_addr + sec_off;
10456 }
10457 return true;
10458 }
10459
10460 template<int size>
10461 static bool
10462 relative_value_is_known(const Sized_symbol<size>* gsym)
10463 {
10464 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
10465 return false;
10466
10467 if (gsym->is_from_dynobj()
10468 || gsym->is_undefined()
10469 || gsym->is_preemptible())
10470 return false;
10471
10472 if (gsym->is_absolute())
10473 return !parameters->options().output_is_position_independent();
10474
10475 return true;
10476 }
10477
10478 template<int size>
10479 static bool
10480 relative_value_is_known(const Symbol_value<size>* psymval)
10481 {
10482 if (psymval->is_ifunc_symbol())
10483 return false;
10484
10485 bool is_ordinary;
10486 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10487
10488 return is_ordinary && shndx != elfcpp::SHN_UNDEF;
10489 }
10490
10491 // PCREL_OPT in one instance flags to the linker that a pair of insns:
10492 // pld ra,symbol@got@pcrel
10493 // load/store rt,0(ra)
10494 // or
10495 // pla ra,symbol@pcrel
10496 // load/store rt,0(ra)
10497 // may be translated to
10498 // pload/pstore rt,symbol@pcrel
10499 // nop.
10500 // This function returns true if the optimization is possible, placing
10501 // the prefix insn in *PINSN1 and a NOP in *PINSN2.
10502 //
10503 // On entry to this function, the linker has already determined that
10504 // the pld can be replaced with pla: *PINSN1 is that pla insn,
10505 // while *PINSN2 is the second instruction.
10506
10507 inline bool
10508 xlate_pcrel_opt(uint64_t *pinsn1, uint64_t *pinsn2)
10509 {
10510 uint32_t insn2 = *pinsn2 >> 32;
10511 uint64_t i1new;
10512
10513 // Check that regs match.
10514 if (((insn2 >> 16) & 31) != ((*pinsn1 >> 21) & 31))
10515 return false;
10516
10517 switch ((insn2 >> 26) & 63)
10518 {
10519 default:
10520 return false;
10521
10522 case 32: // lwz
10523 case 34: // lbz
10524 case 36: // stw
10525 case 38: // stb
10526 case 40: // lhz
10527 case 42: // lha
10528 case 44: // sth
10529 case 48: // lfs
10530 case 50: // lfd
10531 case 52: // stfs
10532 case 54: // stfd
10533 // These are the PMLS cases, where we just need to tack a prefix
10534 // on the insn. Check that the D field is zero.
10535 if ((insn2 & 0xffff) != 0)
10536 return false;
10537 i1new = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
10538 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
10539 break;
10540
10541 case 58: // lwa, ld
10542 if ((insn2 & 0xfffd) != 0)
10543 return false;
10544 i1new = ((1ULL << 58) | (1ULL << 52)
10545 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
10546 | (insn2 & (31ULL << 21)));
10547 break;
10548
10549 case 57: // lxsd, lxssp
10550 if ((insn2 & 0xfffc) != 0 || (insn2 & 3) < 2)
10551 return false;
10552 i1new = ((1ULL << 58) | (1ULL << 52)
10553 | ((40ULL | (insn2 & 3)) << 26)
10554 | (insn2 & (31ULL << 21)));
10555 break;
10556
10557 case 61: // stxsd, stxssp, lxv, stxv
10558 if ((insn2 & 3) == 0)
10559 return false;
10560 else if ((insn2 & 3) >= 2)
10561 {
10562 if ((insn2 & 0xfffc) != 0)
10563 return false;
10564 i1new = ((1ULL << 58) | (1ULL << 52)
10565 | ((44ULL | (insn2 & 3)) << 26)
10566 | (insn2 & (31ULL << 21)));
10567 }
10568 else
10569 {
10570 if ((insn2 & 0xfff0) != 0)
10571 return false;
10572 i1new = ((1ULL << 58) | (1ULL << 52)
10573 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
10574 | (insn2 & (31ULL << 21)));
10575 }
10576 break;
10577
10578 case 56: // lq
10579 if ((insn2 & 0xffff) != 0)
10580 return false;
10581 i1new = ((1ULL << 58) | (1ULL << 52)
10582 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
10583 break;
10584
10585 case 62: // std, stq
10586 if ((insn2 & 0xfffd) != 0)
10587 return false;
10588 i1new = ((1ULL << 58) | (1ULL << 52)
10589 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
10590 | (insn2 & (31ULL << 21)));
10591 break;
10592 }
10593
10594 *pinsn1 = i1new;
10595 *pinsn2 = (uint64_t) nop << 32;
10596 return true;
10597 }
10598
10599 // Perform a relocation.
10600
10601 template<int size, bool big_endian>
10602 inline bool
10603 Target_powerpc<size, big_endian>::Relocate::relocate(
10604 const Relocate_info<size, big_endian>* relinfo,
10605 unsigned int,
10606 Target_powerpc* target,
10607 Output_section* os,
10608 size_t relnum,
10609 const unsigned char* preloc,
10610 const Sized_symbol<size>* gsym,
10611 const Symbol_value<size>* psymval,
10612 unsigned char* view,
10613 Address address,
10614 section_size_type view_size)
10615 {
10616 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
10617 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
10618 typedef typename elfcpp::Rela<size, big_endian> Reltype;
10619
10620 if (view == NULL)
10621 return true;
10622
10623 if (target->replace_tls_get_addr(gsym))
10624 gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
10625
10626 const elfcpp::Rela<size, big_endian> rela(preloc);
10627 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
10628 Powerpc_relobj<size, big_endian>* const object
10629 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
10630 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
10631 {
10632 case Track_tls::NOT_EXPECTED:
10633 // No warning. This will result in really old code without tls
10634 // marker relocs being mis-optimised, but there shouldn't be too
10635 // much of that code around. The problem with warning is that
10636 // glibc and libphobos both construct direct calls to
10637 // __tls_get_addr in a way that is harmless.
10638 break;
10639 case Track_tls::EXPECTED:
10640 // We have already complained.
10641 break;
10642 case Track_tls::SKIP:
10643 if (is_plt16_reloc<size>(r_type)
10644 || r_type == elfcpp::R_POWERPC_PLTSEQ
10645 || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC)
10646 {
10647 Insn* iview = reinterpret_cast<Insn*>(view);
10648 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
10649 }
10650 else if (size == 64 && r_type == elfcpp::R_POWERPC_PLTCALL)
10651 {
10652 Insn* iview = reinterpret_cast<Insn*>(view);
10653 elfcpp::Swap<32, big_endian>::writeval(iview + 1, nop);
10654 }
10655 else if (size == 64 && (r_type == elfcpp::R_PPC64_PLT_PCREL34
10656 || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
10657 {
10658 Insn* iview = reinterpret_cast<Insn*>(view);
10659 elfcpp::Swap<32, big_endian>::writeval(iview, pnop >> 32);
10660 elfcpp::Swap<32, big_endian>::writeval(iview + 1, pnop & 0xffffffff);
10661 }
10662 return true;
10663 case Track_tls::NORMAL:
10664 break;
10665 }
10666
10667 // Offset from start of insn to d-field reloc.
10668 const int d_offset = big_endian ? 2 : 0;
10669
10670 Address value = 0;
10671 bool has_stub_value = false;
10672 bool localentry0 = false;
10673 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
10674 bool use_plt_offset
10675 = (gsym != NULL
10676 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
10677 : object->local_has_plt_offset(r_sym));
10678 if (is_plt16_reloc<size>(r_type)
10679 || r_type == elfcpp::R_PPC64_PLT_PCREL34
10680 || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC
10681 || r_type == elfcpp::R_POWERPC_PLTSEQ
10682 || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC
10683 || r_type == elfcpp::R_POWERPC_PLTCALL
10684 || r_type == elfcpp::R_PPC64_PLTCALL_NOTOC)
10685 {
10686 // It would be possible to replace inline plt calls with direct
10687 // calls if the PLTCALL is in range. The only difficulty is
10688 // that the decision depends on the PLTCALL reloc, and we don't
10689 // know the address of that instruction when processing others
10690 // in the sequence. So the decision needs to be made in
10691 // do_relax(). For now, don't optimise inline plt calls.
10692 if (gsym)
10693 use_plt_offset = gsym->has_plt_offset();
10694 }
10695 if (use_plt_offset
10696 && !is_got_reloc(r_type)
10697 && !is_plt16_reloc<size>(r_type)
10698 && r_type != elfcpp::R_PPC64_PLT_PCREL34
10699 && r_type != elfcpp::R_PPC64_PLT_PCREL34_NOTOC
10700 && r_type != elfcpp::R_POWERPC_PLTSEQ
10701 && r_type != elfcpp::R_POWERPC_PLTCALL
10702 && r_type != elfcpp::R_PPC64_PLTSEQ_NOTOC
10703 && r_type != elfcpp::R_PPC64_PLTCALL_NOTOC
10704 && (!psymval->is_ifunc_symbol()
10705 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
10706 {
10707 if (size == 64
10708 && gsym != NULL
10709 && target->abiversion() >= 2
10710 && !parameters->options().output_is_position_independent()
10711 && !is_branch_reloc<size>(r_type))
10712 {
10713 Address off = target->glink_section()->find_global_entry(gsym);
10714 if (off != invalid_address)
10715 {
10716 value = target->glink_section()->global_entry_address() + off;
10717 has_stub_value = true;
10718 }
10719 }
10720 else
10721 {
10722 Stub_table<size, big_endian>* stub_table = NULL;
10723 if (target->stub_tables().size() == 1)
10724 stub_table = target->stub_tables()[0];
10725 if (stub_table == NULL
10726 && !(size == 32
10727 && gsym != NULL
10728 && !parameters->options().output_is_position_independent()
10729 && !is_branch_reloc<size>(r_type)))
10730 stub_table = object->stub_table(relinfo->data_shndx);
10731 if (stub_table == NULL)
10732 {
10733 // This is a ref from a data section to an ifunc symbol,
10734 // or a non-branch reloc for which we always want to use
10735 // one set of stubs for resolving function addresses.
10736 if (target->stub_tables().size() != 0)
10737 stub_table = target->stub_tables()[0];
10738 }
10739 if (stub_table != NULL)
10740 {
10741 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
10742 if (gsym != NULL)
10743 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
10744 rela.get_r_addend());
10745 else
10746 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
10747 rela.get_r_addend());
10748 if (ent != NULL)
10749 {
10750 value = stub_table->stub_address() + ent->off_;
10751 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10752 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
10753 size_t reloc_count = shdr.get_sh_size() / reloc_size;
10754 if (size == 64)
10755 {
10756 if (r_type == elfcpp::R_PPC64_REL24_NOTOC)
10757 {
10758 if (!ent->notoc_)
10759 value += ent->p9off_;
10760 }
10761 else if (r_type == elfcpp::R_PPC64_REL24_P9NOTOC)
10762 value += ent->p9off_;
10763 else
10764 value += ent->tocoff_;
10765 }
10766 if (size == 64
10767 && ent->r2save_
10768 && !(gsym != NULL
10769 && target->is_tls_get_addr_opt(gsym)))
10770 {
10771 if (r_type == elfcpp::R_PPC64_REL24_NOTOC
10772 || r_type == elfcpp::R_PPC64_REL24_P9NOTOC)
10773 {
10774 if (!(target->power10_stubs()
10775 && target->power10_stubs_auto()))
10776 value += 4;
10777 }
10778 else if (relnum < reloc_count - 1)
10779 {
10780 Reltype next_rela(preloc + reloc_size);
10781 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
10782 == elfcpp::R_PPC64_TOCSAVE
10783 && (next_rela.get_r_offset()
10784 == rela.get_r_offset() + 4))
10785 value += 4;
10786 }
10787 }
10788 localentry0 = ent->localentry0_;
10789 has_stub_value = true;
10790 }
10791 }
10792 }
10793 // We don't care too much about bogus debug references to
10794 // non-local functions, but otherwise there had better be a plt
10795 // call stub or global entry stub as appropriate.
10796 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
10797 }
10798
10799 if (use_plt_offset && (is_plt16_reloc<size>(r_type)
10800 || r_type == elfcpp::R_PPC64_PLT_PCREL34
10801 || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
10802 {
10803 const Output_data_plt_powerpc<size, big_endian>* plt;
10804 if (gsym)
10805 value = target->plt_off(gsym, &plt);
10806 else
10807 value = target->plt_off(object, r_sym, &plt);
10808 value += plt->address();
10809
10810 if (size == 64)
10811 {
10812 if (r_type != elfcpp::R_PPC64_PLT_PCREL34
10813 && r_type != elfcpp::R_PPC64_PLT_PCREL34_NOTOC)
10814 value -= target->toc_pointer();
10815 }
10816 else if (parameters->options().output_is_position_independent())
10817 {
10818 if (rela.get_r_addend() >= 32768)
10819 {
10820 unsigned int got2 = object->got2_shndx();
10821 value -= (object->get_output_section_offset(got2)
10822 + object->output_section(got2)->address()
10823 + rela.get_r_addend());
10824 }
10825 else
10826 value -= target->toc_pointer();
10827 }
10828 }
10829 else if (!use_plt_offset
10830 && (is_plt16_reloc<size>(r_type)
10831 || r_type == elfcpp::R_POWERPC_PLTSEQ
10832 || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC))
10833 {
10834 Insn* iview = reinterpret_cast<Insn*>(view);
10835 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
10836 r_type = elfcpp::R_POWERPC_NONE;
10837 }
10838 else if (!use_plt_offset
10839 && (r_type == elfcpp::R_PPC64_PLT_PCREL34
10840 || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
10841 {
10842 Insn* iview = reinterpret_cast<Insn*>(view);
10843 elfcpp::Swap<32, big_endian>::writeval(iview, pnop >> 32);
10844 elfcpp::Swap<32, big_endian>::writeval(iview + 1, pnop & 0xffffffff);
10845 r_type = elfcpp::R_POWERPC_NONE;
10846 }
10847 else if (is_got_reloc(r_type))
10848 {
10849 uint64_t addend = size == 32 ? 0 : rela.get_r_addend();
10850 Got_type got_type = ((size == 32
10851 || r_type == elfcpp::R_POWERPC_GOT16
10852 || r_type == elfcpp::R_PPC64_GOT16_DS)
10853 ? GOT_TYPE_SMALL : GOT_TYPE_STANDARD);
10854 if (gsym != NULL)
10855 value = gsym->got_offset(got_type, addend);
10856 else
10857 value = object->local_got_offset(r_sym, got_type, addend);
10858 if (r_type == elfcpp::R_PPC64_GOT_PCREL34)
10859 value += target->got_section(got_type)->address();
10860 else
10861 value -= target->got_base_offset(got_type);
10862 }
10863 else if (r_type == elfcpp::R_PPC64_TOC)
10864 {
10865 value = target->toc_pointer();
10866 }
10867 else if (gsym != NULL
10868 && (r_type == elfcpp::R_POWERPC_REL24
10869 || r_type == elfcpp::R_PPC_PLTREL24)
10870 && has_stub_value)
10871 {
10872 if (size == 64)
10873 {
10874 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10875 Valtype* wv = reinterpret_cast<Valtype*>(view);
10876 bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
10877 if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
10878 {
10879 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
10880 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
10881 if ((insn & 1) != 0
10882 && (insn2 == nop
10883 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
10884 {
10885 elfcpp::Swap<32, big_endian>::
10886 writeval(wv + 1, ld_2_1 + target->stk_toc());
10887 can_plt_call = true;
10888 }
10889 }
10890 if (!can_plt_call)
10891 {
10892 // If we don't have a branch and link followed by a nop,
10893 // we can't go via the plt because there is no place to
10894 // put a toc restoring instruction.
10895 // Unless we know we won't be returning.
10896 if (strcmp(gsym->name(), "__libc_start_main") == 0)
10897 can_plt_call = true;
10898 }
10899 if (!can_plt_call)
10900 {
10901 // g++ as of 20130507 emits self-calls without a
10902 // following nop. This is arguably wrong since we have
10903 // conflicting information. On the one hand a global
10904 // symbol and on the other a local call sequence, but
10905 // don't error for this special case.
10906 // It isn't possible to cheaply verify we have exactly
10907 // such a call. Allow all calls to the same section.
10908 bool ok = false;
10909 Address code = value;
10910 if (gsym->source() == Symbol::FROM_OBJECT
10911 && gsym->object() == object)
10912 {
10913 unsigned int dest_shndx = 0;
10914 if (target->abiversion() < 2)
10915 {
10916 Address addend = rela.get_r_addend();
10917 code = psymval->value(object, addend);
10918 target->symval_for_branch(relinfo->symtab, gsym, object,
10919 &code, &dest_shndx);
10920 }
10921 bool is_ordinary;
10922 if (dest_shndx == 0)
10923 dest_shndx = gsym->shndx(&is_ordinary);
10924 ok = dest_shndx == relinfo->data_shndx;
10925 }
10926 if (!ok)
10927 {
10928 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10929 _("call lacks nop, can't restore toc; "
10930 "recompile with -fPIC"));
10931 value = code;
10932 }
10933 }
10934 }
10935 }
10936 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10937 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
10938 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
10939 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA
10940 || r_type == elfcpp::R_PPC64_GOT_TLSGD_PCREL34)
10941 {
10942 // First instruction of a global dynamic sequence, arg setup insn.
10943 bool final = gsym == NULL || gsym->final_value_is_known();
10944 tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
10945 Got_type got_type = ((size == 32
10946 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16)
10947 ? GOT_TYPE_SMALL : GOT_TYPE_STANDARD);
10948 if (tls_type == tls::TLSOPT_NONE)
10949 got_type = Got_type(got_type | GOT_TYPE_TLSGD);
10950 else if (tls_type == tls::TLSOPT_TO_IE)
10951 got_type = Got_type(got_type | GOT_TYPE_TPREL);
10952 if ((got_type & ~GOT_TYPE_SMALL) != GOT_TYPE_STANDARD)
10953 {
10954 uint64_t addend = size == 32 ? 0 : rela.get_r_addend();
10955 if (gsym != NULL)
10956 value = gsym->got_offset(got_type, addend);
10957 else
10958 value = object->local_got_offset(r_sym, got_type, addend);
10959 if (r_type == elfcpp::R_PPC64_GOT_TLSGD_PCREL34)
10960 value += target->got_section(got_type)->address();
10961 else
10962 value -= target->got_base_offset(got_type);
10963 }
10964 if (tls_type == tls::TLSOPT_TO_IE)
10965 {
10966 if (r_type == elfcpp::R_PPC64_GOT_TLSGD_PCREL34)
10967 {
10968 Insn* iview = reinterpret_cast<Insn*>(view);
10969 uint64_t pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
10970 pinsn <<= 32;
10971 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
10972 // pla -> pld
10973 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
10974 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
10975 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
10976 pinsn & 0xffffffff);
10977 r_type = elfcpp::R_PPC64_GOT_TPREL_PCREL34;
10978 }
10979 else
10980 {
10981 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10982 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10983 {
10984 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10985 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10986 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
10987 if (size == 32)
10988 insn |= 32 << 26; // lwz
10989 else
10990 insn |= 58 << 26; // ld
10991 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10992 }
10993 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
10994 - elfcpp::R_POWERPC_GOT_TLSGD16);
10995 }
10996 }
10997 else if (tls_type == tls::TLSOPT_TO_LE)
10998 {
10999 if (r_type == elfcpp::R_PPC64_GOT_TLSGD_PCREL34)
11000 {
11001 Insn* iview = reinterpret_cast<Insn*>(view);
11002 uint64_t pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
11003 pinsn <<= 32;
11004 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
11005 // pla pcrel -> paddi r13
11006 pinsn += (-1ULL << 52) + (13ULL << 16);
11007 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
11008 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
11009 pinsn & 0xffffffff);
11010 r_type = elfcpp::R_PPC64_TPREL34;
11011 value = psymval->value(object, rela.get_r_addend());
11012 }
11013 else
11014 {
11015 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
11016 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
11017 {
11018 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11019 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11020 insn &= (1 << 26) - (1 << 21); // extract rt
11021 if (size == 32)
11022 insn |= addis_0_2;
11023 else
11024 insn |= addis_0_13;
11025 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11026 r_type = elfcpp::R_POWERPC_TPREL16_HA;
11027 value = psymval->value(object, rela.get_r_addend());
11028 }
11029 else
11030 {
11031 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11032 Insn insn = nop;
11033 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11034 r_type = elfcpp::R_POWERPC_NONE;
11035 }
11036 }
11037 }
11038 }
11039 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
11040 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
11041 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
11042 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA
11043 || r_type == elfcpp::R_PPC64_GOT_TLSLD_PCREL34)
11044 {
11045 // First instruction of a local dynamic sequence, arg setup insn.
11046 tls::Tls_optimization tls_type = target->optimize_tls_ld();
11047 if (tls_type == tls::TLSOPT_NONE)
11048 {
11049 value = target->tlsld_got_offset();
11050 if (r_type == elfcpp::R_PPC64_GOT_TLSLD_PCREL34)
11051 value += target->got_section(GOT_TYPE_SMALL)->address();
11052 else
11053 value -= target->got_base_offset(GOT_TYPE_SMALL);
11054 }
11055 else
11056 {
11057 gold_assert(tls_type == tls::TLSOPT_TO_LE);
11058 if (r_type == elfcpp::R_PPC64_GOT_TLSLD_PCREL34)
11059 {
11060 Insn* iview = reinterpret_cast<Insn*>(view);
11061 uint64_t pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
11062 pinsn <<= 32;
11063 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
11064 // pla pcrel -> paddi r13
11065 pinsn += (-1ULL << 52) + (13ULL << 16);
11066 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
11067 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
11068 pinsn & 0xffffffff);
11069 r_type = elfcpp::R_PPC64_TPREL34;
11070 value = dtp_offset;
11071 }
11072 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
11073 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
11074 {
11075 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11076 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11077 insn &= (1 << 26) - (1 << 21); // extract rt
11078 if (size == 32)
11079 insn |= addis_0_2;
11080 else
11081 insn |= addis_0_13;
11082 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11083 r_type = elfcpp::R_POWERPC_TPREL16_HA;
11084 value = dtp_offset;
11085 }
11086 else
11087 {
11088 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11089 Insn insn = nop;
11090 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11091 r_type = elfcpp::R_POWERPC_NONE;
11092 }
11093 }
11094 }
11095 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
11096 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
11097 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
11098 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA
11099 || r_type == elfcpp::R_PPC64_GOT_DTPREL_PCREL34)
11100 {
11101 // Accesses relative to a local dynamic sequence address,
11102 // no optimisation here.
11103 uint64_t addend = size == 32 ? 0 : rela.get_r_addend();
11104 Got_type got_type = ((size == 32
11105 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16)
11106 ? GOT_TYPE_SMALL_DTPREL : GOT_TYPE_DTPREL);
11107 if (gsym != NULL)
11108 value = gsym->got_offset(got_type, addend);
11109 else
11110 value = object->local_got_offset(r_sym, got_type, addend);
11111 if (r_type == elfcpp::R_PPC64_GOT_DTPREL_PCREL34)
11112 value += target->got_section(got_type)->address();
11113 else
11114 value -= target->got_base_offset(got_type);
11115 }
11116 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
11117 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
11118 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
11119 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA
11120 || r_type == elfcpp::R_PPC64_GOT_TPREL_PCREL34)
11121 {
11122 // First instruction of initial exec sequence.
11123 bool final = gsym == NULL || gsym->final_value_is_known();
11124 tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
11125 if (tls_type == tls::TLSOPT_NONE)
11126 {
11127 uint64_t addend = size == 32 ? 0 : rela.get_r_addend();
11128 Got_type got_type = ((size == 32
11129 || r_type == elfcpp::R_POWERPC_GOT_TPREL16)
11130 ? GOT_TYPE_SMALL_TPREL : GOT_TYPE_TPREL);
11131 if (gsym != NULL)
11132 value = gsym->got_offset(got_type, addend);
11133 else
11134 value = object->local_got_offset(r_sym, got_type, addend);
11135 if (r_type == elfcpp::R_PPC64_GOT_TPREL_PCREL34)
11136 value += target->got_section(got_type)->address();
11137 else
11138 value -= target->got_base_offset(got_type);
11139 }
11140 else
11141 {
11142 gold_assert(tls_type == tls::TLSOPT_TO_LE);
11143 if (r_type == elfcpp::R_PPC64_GOT_TPREL_PCREL34)
11144 {
11145 Insn* iview = reinterpret_cast<Insn*>(view);
11146 uint64_t pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
11147 pinsn <<= 32;
11148 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
11149 // pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel
11150 pinsn += ((2ULL << 56) + (-1ULL << 52)
11151 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
11152 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
11153 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
11154 pinsn & 0xffffffff);
11155 r_type = elfcpp::R_PPC64_TPREL34;
11156 value = psymval->value(object, rela.get_r_addend());
11157 }
11158 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
11159 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
11160 {
11161 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11162 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11163 insn &= (1 << 26) - (1 << 21); // extract rt from ld
11164 if (size == 32)
11165 insn |= addis_0_2;
11166 else
11167 insn |= addis_0_13;
11168 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11169 r_type = elfcpp::R_POWERPC_TPREL16_HA;
11170 value = psymval->value(object, rela.get_r_addend());
11171 }
11172 else
11173 {
11174 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11175 Insn insn = nop;
11176 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11177 r_type = elfcpp::R_POWERPC_NONE;
11178 }
11179 }
11180 }
11181 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
11182 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
11183 {
11184 // Second instruction of a global dynamic sequence,
11185 // the __tls_get_addr call
11186 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
11187 bool final = gsym == NULL || gsym->final_value_is_known();
11188 tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
11189 if (tls_type != tls::TLSOPT_NONE)
11190 {
11191 if (tls_type == tls::TLSOPT_TO_IE)
11192 {
11193 Insn* iview = reinterpret_cast<Insn*>(view);
11194 Insn insn = add_3_3_13;
11195 if (size == 32)
11196 insn = add_3_3_2;
11197 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11198 r_type = elfcpp::R_POWERPC_NONE;
11199 }
11200 else
11201 {
11202 bool is_pcrel = false;
11203 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11204 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11205 size_t reloc_count = shdr.get_sh_size() / reloc_size;
11206 if (relnum < reloc_count - 1)
11207 {
11208 Reltype next_rela(preloc + reloc_size);
11209 unsigned int r_type2
11210 = elfcpp::elf_r_type<size>(next_rela.get_r_info());
11211 if ((r_type2 == elfcpp::R_PPC64_REL24_NOTOC
11212 || r_type2 == elfcpp::R_PPC64_REL24_P9NOTOC
11213 || r_type2 == elfcpp::R_PPC64_PLTCALL_NOTOC)
11214 && next_rela.get_r_offset() == rela.get_r_offset())
11215 is_pcrel = true;
11216 }
11217 Insn* iview = reinterpret_cast<Insn*>(view);
11218 if (is_pcrel)
11219 {
11220 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
11221 r_type = elfcpp::R_POWERPC_NONE;
11222 }
11223 else
11224 {
11225 elfcpp::Swap<32, big_endian>::writeval(iview, addi_3_3);
11226 r_type = elfcpp::R_POWERPC_TPREL16_LO;
11227 view += d_offset;
11228 value = psymval->value(object, rela.get_r_addend());
11229 }
11230 }
11231 this->skip_next_tls_get_addr_call();
11232 }
11233 }
11234 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
11235 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
11236 {
11237 // Second instruction of a local dynamic sequence,
11238 // the __tls_get_addr call
11239 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
11240 tls::Tls_optimization tls_type = target->optimize_tls_ld();
11241 if (tls_type == tls::TLSOPT_TO_LE)
11242 {
11243 bool is_pcrel = false;
11244 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11245 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11246 size_t reloc_count = shdr.get_sh_size() / reloc_size;
11247 if (relnum < reloc_count - 1)
11248 {
11249 Reltype next_rela(preloc + reloc_size);
11250 unsigned int r_type2
11251 = elfcpp::elf_r_type<size>(next_rela.get_r_info());
11252 if ((r_type2 == elfcpp::R_PPC64_REL24_NOTOC
11253 || r_type2 == elfcpp::R_PPC64_REL24_P9NOTOC
11254 || r_type2 == elfcpp::R_PPC64_PLTCALL_NOTOC)
11255 && next_rela.get_r_offset() == rela.get_r_offset())
11256 is_pcrel = true;
11257 }
11258 Insn* iview = reinterpret_cast<Insn*>(view);
11259 if (is_pcrel)
11260 {
11261 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
11262 r_type = elfcpp::R_POWERPC_NONE;
11263 }
11264 else
11265 {
11266 elfcpp::Swap<32, big_endian>::writeval(iview, addi_3_3);
11267 r_type = elfcpp::R_POWERPC_TPREL16_LO;
11268 view += d_offset;
11269 value = dtp_offset;
11270 }
11271 this->skip_next_tls_get_addr_call();
11272 }
11273 }
11274 else if (r_type == elfcpp::R_POWERPC_TLS)
11275 {
11276 // Second instruction of an initial exec sequence
11277 bool final = gsym == NULL || gsym->final_value_is_known();
11278 tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
11279 if (tls_type == tls::TLSOPT_TO_LE)
11280 {
11281 Address roff = rela.get_r_offset() & 3;
11282 Insn* iview = reinterpret_cast<Insn*>(view - roff);
11283 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11284 unsigned int reg = size == 32 ? 2 : 13;
11285 insn = at_tls_transform(insn, reg);
11286 gold_assert(insn != 0);
11287 if (roff == 0)
11288 {
11289 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11290 r_type = elfcpp::R_POWERPC_TPREL16_LO;
11291 view += d_offset;
11292 value = psymval->value(object, rela.get_r_addend());
11293 }
11294 else if (roff == 1)
11295 {
11296 // For pcrel IE to LE we already have the full offset
11297 // and thus don't need an addi here. A nop or mr will do.
11298 if ((insn & (0x3f << 26)) == 14 << 26)
11299 {
11300 // Extract regs from addi rt,ra,si.
11301 unsigned int rt = (insn >> 21) & 0x1f;
11302 unsigned int ra = (insn >> 16) & 0x1f;
11303 if (rt == ra)
11304 insn = nop;
11305 else
11306 {
11307 // Build or ra,rs,rb with rb==rs, ie. mr ra,rs.
11308 insn = (rt << 16) | (ra << 21) | (ra << 11);
11309 insn |= (31u << 26) | (444u << 1);
11310 }
11311 }
11312 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11313 r_type = elfcpp::R_POWERPC_NONE;
11314 }
11315 }
11316 }
11317 else if (!has_stub_value)
11318 {
11319 if (!use_plt_offset && (r_type == elfcpp::R_POWERPC_PLTCALL
11320 || r_type == elfcpp::R_PPC64_PLTCALL_NOTOC))
11321 {
11322 // PLTCALL without plt entry => convert to direct call
11323 Insn* iview = reinterpret_cast<Insn*>(view);
11324 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11325 insn = (insn & 1) | b;
11326 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11327 if (size == 32)
11328 r_type = elfcpp::R_PPC_PLTREL24;
11329 else if (r_type == elfcpp::R_PPC64_PLTCALL_NOTOC)
11330 r_type = elfcpp::R_PPC64_REL24_NOTOC;
11331 else
11332 r_type = elfcpp::R_POWERPC_REL24;
11333 }
11334 Address addend = 0;
11335 if (!(size == 32
11336 && (r_type == elfcpp::R_PPC_PLTREL24
11337 || r_type == elfcpp::R_POWERPC_PLT16_LO
11338 || r_type == elfcpp::R_POWERPC_PLT16_HI
11339 || r_type == elfcpp::R_POWERPC_PLT16_HA)))
11340 addend = rela.get_r_addend();
11341 value = psymval->value(object, addend);
11342 unsigned int local_ent = 0;
11343 if (size == 64 && is_branch_reloc<size>(r_type))
11344 {
11345 if (target->abiversion() >= 2)
11346 {
11347 if (gsym != NULL)
11348 local_ent = object->ppc64_local_entry_offset(gsym);
11349 else
11350 local_ent = object->ppc64_local_entry_offset(r_sym);
11351 }
11352 else
11353 {
11354 unsigned int dest_shndx;
11355 target->symval_for_branch(relinfo->symtab, gsym, object,
11356 &value, &dest_shndx);
11357 }
11358 }
11359 Address max_branch = max_branch_delta<size>(r_type);
11360 if (max_branch != 0
11361 && (value + local_ent - address + max_branch >= 2 * max_branch
11362 || (size == 64
11363 && (r_type == elfcpp::R_PPC64_REL24_NOTOC
11364 || r_type == elfcpp::R_PPC64_REL24_NOTOC)
11365 && (gsym != NULL
11366 ? object->ppc64_needs_toc(gsym)
11367 : object->ppc64_needs_toc(r_sym)))))
11368 {
11369 Stub_table<size, big_endian>* stub_table
11370 = object->stub_table(relinfo->data_shndx);
11371 if (stub_table != NULL)
11372 {
11373 const typename Stub_table<size, big_endian>::Branch_stub_ent* ent
11374 = stub_table->find_long_branch_entry(value);
11375 if (ent != NULL)
11376 {
11377 if (ent->save_res_)
11378 value = (value - target->savres_section()->address()
11379 + stub_table->stub_address()
11380 + stub_table->plt_size()
11381 + stub_table->branch_size());
11382 else
11383 {
11384 value = (stub_table->stub_address()
11385 + stub_table->plt_size()
11386 + ent->off_);
11387 if (size == 64)
11388 {
11389 if (r_type == elfcpp::R_PPC64_REL24_NOTOC)
11390 {
11391 if (!ent->notoc_)
11392 value += ent->p9off_;
11393 }
11394 else if (r_type == elfcpp::R_PPC64_REL24_P9NOTOC)
11395 value += ent->p9off_;
11396 else
11397 value += ent->tocoff_;
11398 }
11399 }
11400 has_stub_value = true;
11401 }
11402 }
11403 }
11404 if (!has_stub_value)
11405 value += local_ent;
11406 }
11407
11408 switch (r_type)
11409 {
11410 case elfcpp::R_PPC64_REL24_NOTOC:
11411 if (size == 32)
11412 break;
11413 // Fall through.
11414 case elfcpp::R_PPC64_REL24_P9NOTOC:
11415 case elfcpp::R_PPC64_REL64:
11416 case elfcpp::R_POWERPC_REL32:
11417 case elfcpp::R_POWERPC_REL24:
11418 case elfcpp::R_PPC_PLTREL24:
11419 case elfcpp::R_PPC_LOCAL24PC:
11420 case elfcpp::R_POWERPC_REL16:
11421 case elfcpp::R_POWERPC_REL16_LO:
11422 case elfcpp::R_POWERPC_REL16_HI:
11423 case elfcpp::R_POWERPC_REL16_HA:
11424 case elfcpp::R_POWERPC_REL16DX_HA:
11425 case elfcpp::R_PPC64_REL16_HIGH:
11426 case elfcpp::R_PPC64_REL16_HIGHA:
11427 case elfcpp::R_PPC64_REL16_HIGHER:
11428 case elfcpp::R_PPC64_REL16_HIGHERA:
11429 case elfcpp::R_PPC64_REL16_HIGHEST:
11430 case elfcpp::R_PPC64_REL16_HIGHESTA:
11431 case elfcpp::R_POWERPC_REL14:
11432 case elfcpp::R_POWERPC_REL14_BRTAKEN:
11433 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
11434 case elfcpp::R_PPC64_PCREL34:
11435 case elfcpp::R_PPC64_GOT_PCREL34:
11436 case elfcpp::R_PPC64_PLT_PCREL34:
11437 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
11438 case elfcpp::R_PPC64_PCREL28:
11439 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
11440 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
11441 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
11442 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
11443 case elfcpp::R_PPC64_REL16_HIGHER34:
11444 case elfcpp::R_PPC64_REL16_HIGHERA34:
11445 case elfcpp::R_PPC64_REL16_HIGHEST34:
11446 case elfcpp::R_PPC64_REL16_HIGHESTA34:
11447 value -= address;
11448 break;
11449
11450 case elfcpp::R_PPC64_TOC16:
11451 case elfcpp::R_PPC64_TOC16_LO:
11452 case elfcpp::R_PPC64_TOC16_HI:
11453 case elfcpp::R_PPC64_TOC16_HA:
11454 case elfcpp::R_PPC64_TOC16_DS:
11455 case elfcpp::R_PPC64_TOC16_LO_DS:
11456 // Subtract the TOC base address.
11457 value -= target->toc_pointer();
11458 break;
11459
11460 case elfcpp::R_POWERPC_SECTOFF:
11461 case elfcpp::R_POWERPC_SECTOFF_LO:
11462 case elfcpp::R_POWERPC_SECTOFF_HI:
11463 case elfcpp::R_POWERPC_SECTOFF_HA:
11464 case elfcpp::R_PPC64_SECTOFF_DS:
11465 case elfcpp::R_PPC64_SECTOFF_LO_DS:
11466 if (os != NULL)
11467 value -= os->address();
11468 break;
11469
11470 case elfcpp::R_PPC64_TPREL16_DS:
11471 case elfcpp::R_PPC64_TPREL16_LO_DS:
11472 case elfcpp::R_PPC64_TPREL16_HIGH:
11473 case elfcpp::R_PPC64_TPREL16_HIGHA:
11474 if (size != 64)
11475 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
11476 break;
11477 // Fall through.
11478 case elfcpp::R_POWERPC_TPREL16:
11479 case elfcpp::R_POWERPC_TPREL16_LO:
11480 case elfcpp::R_POWERPC_TPREL16_HI:
11481 case elfcpp::R_POWERPC_TPREL16_HA:
11482 case elfcpp::R_POWERPC_TPREL:
11483 case elfcpp::R_PPC64_TPREL16_HIGHER:
11484 case elfcpp::R_PPC64_TPREL16_HIGHERA:
11485 case elfcpp::R_PPC64_TPREL16_HIGHEST:
11486 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
11487 case elfcpp::R_PPC64_TPREL34:
11488 // tls symbol values are relative to tls_segment()->vaddr()
11489 value -= tp_offset;
11490 break;
11491
11492 case elfcpp::R_PPC64_DTPREL16_DS:
11493 case elfcpp::R_PPC64_DTPREL16_LO_DS:
11494 case elfcpp::R_PPC64_DTPREL16_HIGHER:
11495 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
11496 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
11497 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
11498 if (size != 64)
11499 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
11500 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
11501 break;
11502 // Fall through.
11503 case elfcpp::R_POWERPC_DTPREL16:
11504 case elfcpp::R_POWERPC_DTPREL16_LO:
11505 case elfcpp::R_POWERPC_DTPREL16_HI:
11506 case elfcpp::R_POWERPC_DTPREL16_HA:
11507 case elfcpp::R_POWERPC_DTPREL:
11508 case elfcpp::R_PPC64_DTPREL16_HIGH:
11509 case elfcpp::R_PPC64_DTPREL16_HIGHA:
11510 case elfcpp::R_PPC64_DTPREL34:
11511 // tls symbol values are relative to tls_segment()->vaddr()
11512 value -= dtp_offset;
11513 break;
11514
11515 case elfcpp::R_PPC64_ADDR64_LOCAL:
11516 if (gsym != NULL)
11517 value += object->ppc64_local_entry_offset(gsym);
11518 else
11519 value += object->ppc64_local_entry_offset(r_sym);
11520 break;
11521
11522 default:
11523 break;
11524 }
11525
11526 Insn branch_bit = 0;
11527 switch (r_type)
11528 {
11529 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
11530 case elfcpp::R_POWERPC_REL14_BRTAKEN:
11531 branch_bit = 1 << 21;
11532 // Fall through.
11533 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
11534 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
11535 {
11536 Insn* iview = reinterpret_cast<Insn*>(view);
11537 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11538 insn &= ~(1 << 21);
11539 insn |= branch_bit;
11540 if (this->is_isa_v2)
11541 {
11542 // Set 'a' bit. This is 0b00010 in BO field for branch
11543 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
11544 // for branch on CTR insns (BO == 1a00t or 1a01t).
11545 if ((insn & (0x14 << 21)) == (0x04 << 21))
11546 insn |= 0x02 << 21;
11547 else if ((insn & (0x14 << 21)) == (0x10 << 21))
11548 insn |= 0x08 << 21;
11549 else
11550 break;
11551 }
11552 else
11553 {
11554 // Invert 'y' bit if not the default.
11555 if (static_cast<Signed_address>(value) < 0)
11556 insn ^= 1 << 21;
11557 }
11558 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11559 }
11560 break;
11561
11562 case elfcpp::R_POWERPC_PLT16_HA:
11563 if (size == 32
11564 && !parameters->options().output_is_position_independent())
11565 {
11566 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11567 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11568
11569 // Convert addis to lis.
11570 if ((insn & (0x3f << 26)) == 15u << 26
11571 && (insn & (0x1f << 16)) != 0)
11572 {
11573 insn &= ~(0x1f << 16);
11574 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11575 }
11576 }
11577 break;
11578
11579 default:
11580 break;
11581 }
11582
11583 if (gsym
11584 ? relative_value_is_known(gsym)
11585 : relative_value_is_known(psymval))
11586 {
11587 Insn* iview;
11588 Insn* iview2;
11589 Insn insn;
11590 uint64_t pinsn, pinsn2;
11591
11592 switch (r_type)
11593 {
11594 default:
11595 break;
11596
11597 // Multi-instruction sequences that access the GOT/TOC can
11598 // be optimized, eg.
11599 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
11600 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
11601 // and
11602 // addis ra,r2,0; addi rb,ra,x@toc@l;
11603 // to nop; addi rb,r2,x@toc;
11604 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
11605 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
11606 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
11607 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
11608 case elfcpp::R_POWERPC_GOT16_HA:
11609 case elfcpp::R_PPC64_TOC16_HA:
11610 if (size == 64 && parameters->options().toc_optimize())
11611 {
11612 iview = reinterpret_cast<Insn*>(view - d_offset);
11613 insn = elfcpp::Swap<32, big_endian>::readval(iview);
11614 if ((r_type == elfcpp::R_PPC64_TOC16_HA
11615 && object->make_toc_relative(target, &value))
11616 || (r_type == elfcpp::R_POWERPC_GOT16_HA
11617 && object->make_got_relative(target, psymval,
11618 rela.get_r_addend(),
11619 &value)))
11620 {
11621 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
11622 == ((15u << 26) | (2 << 16)));
11623 }
11624 if (((insn & ((0x3f << 26) | 0x1f << 16))
11625 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
11626 && value + 0x8000 < 0x10000)
11627 {
11628 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
11629 return true;
11630 }
11631 }
11632 break;
11633
11634 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
11635 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
11636 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
11637 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
11638 case elfcpp::R_POWERPC_GOT16_LO:
11639 case elfcpp::R_PPC64_GOT16_LO_DS:
11640 case elfcpp::R_PPC64_TOC16_LO:
11641 case elfcpp::R_PPC64_TOC16_LO_DS:
11642 if (size == 64 && parameters->options().toc_optimize())
11643 {
11644 iview = reinterpret_cast<Insn*>(view - d_offset);
11645 insn = elfcpp::Swap<32, big_endian>::readval(iview);
11646 bool changed = false;
11647 if ((r_type == elfcpp::R_PPC64_TOC16_LO_DS
11648 && object->make_toc_relative(target, &value))
11649 || (r_type == elfcpp::R_PPC64_GOT16_LO_DS
11650 && object->make_got_relative(target, psymval,
11651 rela.get_r_addend(),
11652 &value)))
11653 {
11654 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
11655 insn ^= (14u << 26) ^ (58u << 26);
11656 r_type = elfcpp::R_PPC64_TOC16_LO;
11657 changed = true;
11658 }
11659 if (ok_lo_toc_insn(insn, r_type)
11660 && value + 0x8000 < 0x10000)
11661 {
11662 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
11663 {
11664 // Transform addic to addi when we change reg.
11665 insn &= ~((0x3f << 26) | (0x1f << 16));
11666 insn |= (14u << 26) | (2 << 16);
11667 }
11668 else
11669 {
11670 insn &= ~(0x1f << 16);
11671 insn |= 2 << 16;
11672 }
11673 changed = true;
11674 }
11675 if (changed)
11676 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11677 }
11678 break;
11679
11680 case elfcpp::R_PPC64_GOT_PCREL34:
11681 if (size == 64 && parameters->options().toc_optimize())
11682 {
11683 iview = reinterpret_cast<Insn*>(view);
11684 pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
11685 pinsn <<= 32;
11686 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
11687 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
11688 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
11689 break;
11690
11691 Address relval = psymval->value(object, rela.get_r_addend());
11692 relval -= address;
11693 if (relval + (1ULL << 33) < 1ULL << 34)
11694 {
11695 value = relval;
11696 // Replace with paddi
11697 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
11698 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
11699 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
11700 pinsn & 0xffffffff);
11701 goto pcrelopt;
11702 }
11703 }
11704 break;
11705
11706 case elfcpp::R_PPC64_PCREL34:
11707 if (size == 64)
11708 {
11709 iview = reinterpret_cast<Insn*>(view);
11710 pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
11711 pinsn <<= 32;
11712 pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
11713 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
11714 != ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
11715 | (14ULL << 26) /* paddi */))
11716 break;
11717
11718 pcrelopt:
11719 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11720 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11721 size_t reloc_count = shdr.get_sh_size() / reloc_size;
11722 if (relnum >= reloc_count - 1)
11723 break;
11724
11725 Reltype next_rela(preloc + reloc_size);
11726 if ((elfcpp::elf_r_type<size>(next_rela.get_r_info())
11727 != elfcpp::R_PPC64_PCREL_OPT)
11728 || next_rela.get_r_offset() != rela.get_r_offset())
11729 break;
11730
11731 Address off = next_rela.get_r_addend();
11732 if (off == 0)
11733 off = 8; // zero means next insn.
11734 if (off + rela.get_r_offset() + 4 > view_size)
11735 break;
11736
11737 iview2 = reinterpret_cast<Insn*>(view + off);
11738 pinsn2 = elfcpp::Swap<32, big_endian>::readval(iview2);
11739 pinsn2 <<= 32;
11740 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
11741 break;
11742 if (xlate_pcrel_opt(&pinsn, &pinsn2))
11743 {
11744 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
11745 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
11746 pinsn & 0xffffffff);
11747 elfcpp::Swap<32, big_endian>::writeval(iview2, pinsn2 >> 32);
11748 }
11749 }
11750 break;
11751
11752 case elfcpp::R_POWERPC_TPREL16_HA:
11753 if (target->tprel_opt() && value + 0x8000 < 0x10000)
11754 {
11755 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11756 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
11757 return true;
11758 }
11759 break;
11760
11761 case elfcpp::R_PPC64_TPREL16_LO_DS:
11762 if (size == 32)
11763 // R_PPC_TLSGD, R_PPC_TLSLD
11764 break;
11765 // Fall through.
11766 case elfcpp::R_POWERPC_TPREL16_LO:
11767 if (target->tprel_opt() && value + 0x8000 < 0x10000)
11768 {
11769 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11770 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
11771 insn &= ~(0x1f << 16);
11772 insn |= (size == 32 ? 2 : 13) << 16;
11773 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
11774 }
11775 break;
11776
11777 case elfcpp::R_PPC64_ENTRY:
11778 if (size == 64)
11779 {
11780 value = target->toc_pointer();
11781 if (value + 0x80008000 <= 0xffffffff
11782 && !parameters->options().output_is_position_independent())
11783 {
11784 Insn* iview = reinterpret_cast<Insn*>(view);
11785 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
11786 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
11787
11788 if ((insn1 & ~0xfffc) == ld_2_12
11789 && insn2 == add_2_2_12)
11790 {
11791 insn1 = lis_2 + ha(value);
11792 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
11793 insn2 = addi_2_2 + l(value);
11794 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
11795 return true;
11796 }
11797 }
11798 else
11799 {
11800 value -= address;
11801 if (value + 0x80008000 <= 0xffffffff)
11802 {
11803 Insn* iview = reinterpret_cast<Insn*>(view);
11804 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
11805 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
11806
11807 if ((insn1 & ~0xfffc) == ld_2_12
11808 && insn2 == add_2_2_12)
11809 {
11810 insn1 = addis_2_12 + ha(value);
11811 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
11812 insn2 = addi_2_2 + l(value);
11813 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
11814 return true;
11815 }
11816 }
11817 }
11818 }
11819 break;
11820
11821 case elfcpp::R_POWERPC_REL16_LO:
11822 // If we are generating a non-PIC executable, edit
11823 // 0: addis 2,12,.TOC.-0b@ha
11824 // addi 2,2,.TOC.-0b@l
11825 // used by ELFv2 global entry points to set up r2, to
11826 // lis 2,.TOC.@ha
11827 // addi 2,2,.TOC.@l
11828 // if .TOC. is in range. */
11829 if (size == 64
11830 && value + address - 4 + 0x80008000 <= 0xffffffff
11831 && relnum + 1 > 1
11832 && preloc != NULL
11833 && target->abiversion() >= 2
11834 && !parameters->options().output_is_position_independent()
11835 && rela.get_r_addend() == d_offset + 4
11836 && gsym != NULL
11837 && strcmp(gsym->name(), ".TOC.") == 0)
11838 {
11839 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11840 Reltype prev_rela(preloc - reloc_size);
11841 if ((prev_rela.get_r_info()
11842 == elfcpp::elf_r_info<size>(r_sym,
11843 elfcpp::R_POWERPC_REL16_HA))
11844 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
11845 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
11846 {
11847 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11848 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
11849 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
11850
11851 if ((insn1 & 0xffff0000) == addis_2_12
11852 && (insn2 & 0xffff0000) == addi_2_2)
11853 {
11854 insn1 = lis_2 + ha(value + address - 4);
11855 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
11856 insn2 = addi_2_2 + l(value + address - 4);
11857 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
11858 if (relinfo->rr)
11859 {
11860 relinfo->rr->set_strategy(relnum - 1,
11861 Relocatable_relocs::RELOC_SPECIAL);
11862 relinfo->rr->set_strategy(relnum,
11863 Relocatable_relocs::RELOC_SPECIAL);
11864 }
11865 return true;
11866 }
11867 }
11868 }
11869 break;
11870 }
11871 }
11872
11873 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
11874 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
11875 switch (r_type)
11876 {
11877 case elfcpp::R_POWERPC_ADDR32:
11878 case elfcpp::R_POWERPC_UADDR32:
11879 if (size == 64)
11880 overflow = Reloc::CHECK_BITFIELD;
11881 break;
11882
11883 case elfcpp::R_POWERPC_REL32:
11884 case elfcpp::R_POWERPC_REL16DX_HA:
11885 if (size == 64)
11886 overflow = Reloc::CHECK_SIGNED;
11887 break;
11888
11889 case elfcpp::R_POWERPC_UADDR16:
11890 overflow = Reloc::CHECK_BITFIELD;
11891 break;
11892
11893 case elfcpp::R_POWERPC_ADDR16:
11894 // We really should have three separate relocations,
11895 // one for 16-bit data, one for insns with 16-bit signed fields,
11896 // and one for insns with 16-bit unsigned fields.
11897 overflow = Reloc::CHECK_BITFIELD;
11898 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
11899 overflow = Reloc::CHECK_LOW_INSN;
11900 break;
11901
11902 case elfcpp::R_POWERPC_ADDR16_HI:
11903 case elfcpp::R_POWERPC_ADDR16_HA:
11904 case elfcpp::R_POWERPC_GOT16_HI:
11905 case elfcpp::R_POWERPC_GOT16_HA:
11906 case elfcpp::R_POWERPC_PLT16_HI:
11907 case elfcpp::R_POWERPC_PLT16_HA:
11908 case elfcpp::R_POWERPC_SECTOFF_HI:
11909 case elfcpp::R_POWERPC_SECTOFF_HA:
11910 case elfcpp::R_PPC64_TOC16_HI:
11911 case elfcpp::R_PPC64_TOC16_HA:
11912 case elfcpp::R_PPC64_PLTGOT16_HI:
11913 case elfcpp::R_PPC64_PLTGOT16_HA:
11914 case elfcpp::R_POWERPC_TPREL16_HI:
11915 case elfcpp::R_POWERPC_TPREL16_HA:
11916 case elfcpp::R_POWERPC_DTPREL16_HI:
11917 case elfcpp::R_POWERPC_DTPREL16_HA:
11918 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
11919 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
11920 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
11921 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
11922 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
11923 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
11924 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
11925 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
11926 case elfcpp::R_POWERPC_REL16_HI:
11927 case elfcpp::R_POWERPC_REL16_HA:
11928 if (size != 32)
11929 overflow = Reloc::CHECK_HIGH_INSN;
11930 break;
11931
11932 case elfcpp::R_POWERPC_REL16:
11933 case elfcpp::R_PPC64_TOC16:
11934 case elfcpp::R_POWERPC_GOT16:
11935 case elfcpp::R_POWERPC_SECTOFF:
11936 case elfcpp::R_POWERPC_TPREL16:
11937 case elfcpp::R_POWERPC_DTPREL16:
11938 case elfcpp::R_POWERPC_GOT_TLSGD16:
11939 case elfcpp::R_POWERPC_GOT_TLSLD16:
11940 case elfcpp::R_POWERPC_GOT_TPREL16:
11941 case elfcpp::R_POWERPC_GOT_DTPREL16:
11942 overflow = Reloc::CHECK_LOW_INSN;
11943 break;
11944
11945 case elfcpp::R_PPC64_REL24_NOTOC:
11946 if (size == 32)
11947 break;
11948 // Fall through.
11949 case elfcpp::R_PPC64_REL24_P9NOTOC:
11950 case elfcpp::R_POWERPC_ADDR24:
11951 case elfcpp::R_POWERPC_ADDR14:
11952 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
11953 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
11954 case elfcpp::R_PPC64_ADDR16_DS:
11955 case elfcpp::R_POWERPC_REL24:
11956 case elfcpp::R_PPC_PLTREL24:
11957 case elfcpp::R_PPC_LOCAL24PC:
11958 case elfcpp::R_PPC64_TPREL16_DS:
11959 case elfcpp::R_PPC64_DTPREL16_DS:
11960 case elfcpp::R_PPC64_TOC16_DS:
11961 case elfcpp::R_PPC64_GOT16_DS:
11962 case elfcpp::R_PPC64_SECTOFF_DS:
11963 case elfcpp::R_POWERPC_REL14:
11964 case elfcpp::R_POWERPC_REL14_BRTAKEN:
11965 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
11966 case elfcpp::R_PPC64_D34:
11967 case elfcpp::R_PPC64_PCREL34:
11968 case elfcpp::R_PPC64_GOT_PCREL34:
11969 case elfcpp::R_PPC64_PLT_PCREL34:
11970 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
11971 case elfcpp::R_PPC64_D28:
11972 case elfcpp::R_PPC64_PCREL28:
11973 case elfcpp::R_PPC64_TPREL34:
11974 case elfcpp::R_PPC64_DTPREL34:
11975 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
11976 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
11977 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
11978 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
11979 overflow = Reloc::CHECK_SIGNED;
11980 break;
11981 }
11982
11983 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11984 Insn insn = 0;
11985
11986 if (overflow == Reloc::CHECK_LOW_INSN
11987 || overflow == Reloc::CHECK_HIGH_INSN)
11988 {
11989 insn = elfcpp::Swap<32, big_endian>::readval(iview);
11990
11991 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
11992 overflow = Reloc::CHECK_BITFIELD;
11993 else if (overflow == Reloc::CHECK_LOW_INSN
11994 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
11995 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
11996 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
11997 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
11998 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
11999 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
12000 overflow = Reloc::CHECK_UNSIGNED;
12001 else
12002 overflow = Reloc::CHECK_SIGNED;
12003 }
12004
12005 bool maybe_dq_reloc = false;
12006 typename Powerpc_relocate_functions<size, big_endian>::Status status
12007 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
12008 switch (r_type)
12009 {
12010 case elfcpp::R_POWERPC_NONE:
12011 case elfcpp::R_POWERPC_TLS:
12012 case elfcpp::R_POWERPC_GNU_VTINHERIT:
12013 case elfcpp::R_POWERPC_GNU_VTENTRY:
12014 case elfcpp::R_POWERPC_PLTSEQ:
12015 case elfcpp::R_POWERPC_PLTCALL:
12016 case elfcpp::R_PPC64_PLTSEQ_NOTOC:
12017 case elfcpp::R_PPC64_PLTCALL_NOTOC:
12018 case elfcpp::R_PPC64_PCREL_OPT:
12019 break;
12020
12021 case elfcpp::R_PPC64_ADDR64:
12022 case elfcpp::R_PPC64_REL64:
12023 case elfcpp::R_PPC64_TOC:
12024 case elfcpp::R_PPC64_ADDR64_LOCAL:
12025 Reloc::addr64(view, value);
12026 break;
12027
12028 case elfcpp::R_POWERPC_TPREL:
12029 case elfcpp::R_POWERPC_DTPREL:
12030 if (size == 64)
12031 Reloc::addr64(view, value);
12032 else
12033 status = Reloc::addr32(view, value, overflow);
12034 break;
12035
12036 case elfcpp::R_PPC64_UADDR64:
12037 Reloc::addr64_u(view, value);
12038 break;
12039
12040 case elfcpp::R_POWERPC_ADDR32:
12041 status = Reloc::addr32(view, value, overflow);
12042 break;
12043
12044 case elfcpp::R_POWERPC_REL32:
12045 case elfcpp::R_POWERPC_UADDR32:
12046 status = Reloc::addr32_u(view, value, overflow);
12047 break;
12048
12049 case elfcpp::R_PPC64_REL24_NOTOC:
12050 if (size == 32)
12051 goto unsupp; // R_PPC_EMB_RELSDA
12052 // Fall through.
12053 case elfcpp::R_PPC64_REL24_P9NOTOC:
12054 case elfcpp::R_POWERPC_ADDR24:
12055 case elfcpp::R_POWERPC_REL24:
12056 case elfcpp::R_PPC_PLTREL24:
12057 case elfcpp::R_PPC_LOCAL24PC:
12058 status = Reloc::addr24(view, value, overflow);
12059 break;
12060
12061 case elfcpp::R_POWERPC_GOT_DTPREL16:
12062 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
12063 case elfcpp::R_POWERPC_GOT_TPREL16:
12064 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
12065 if (size == 64)
12066 {
12067 // On ppc64 these are all ds form
12068 maybe_dq_reloc = true;
12069 break;
12070 }
12071 // Fall through.
12072 case elfcpp::R_POWERPC_ADDR16:
12073 case elfcpp::R_POWERPC_REL16:
12074 case elfcpp::R_PPC64_TOC16:
12075 case elfcpp::R_POWERPC_GOT16:
12076 case elfcpp::R_POWERPC_SECTOFF:
12077 case elfcpp::R_POWERPC_TPREL16:
12078 case elfcpp::R_POWERPC_DTPREL16:
12079 case elfcpp::R_POWERPC_GOT_TLSGD16:
12080 case elfcpp::R_POWERPC_GOT_TLSLD16:
12081 case elfcpp::R_POWERPC_ADDR16_LO:
12082 case elfcpp::R_POWERPC_REL16_LO:
12083 case elfcpp::R_PPC64_TOC16_LO:
12084 case elfcpp::R_POWERPC_GOT16_LO:
12085 case elfcpp::R_POWERPC_PLT16_LO:
12086 case elfcpp::R_POWERPC_SECTOFF_LO:
12087 case elfcpp::R_POWERPC_TPREL16_LO:
12088 case elfcpp::R_POWERPC_DTPREL16_LO:
12089 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
12090 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
12091 if (size == 64)
12092 status = Reloc::addr16(view, value, overflow);
12093 else
12094 maybe_dq_reloc = true;
12095 break;
12096
12097 case elfcpp::R_POWERPC_UADDR16:
12098 status = Reloc::addr16_u(view, value, overflow);
12099 break;
12100
12101 case elfcpp::R_PPC64_ADDR16_HIGH:
12102 case elfcpp::R_PPC64_TPREL16_HIGH:
12103 case elfcpp::R_PPC64_DTPREL16_HIGH:
12104 if (size == 32)
12105 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
12106 goto unsupp;
12107 // Fall through.
12108 case elfcpp::R_POWERPC_ADDR16_HI:
12109 case elfcpp::R_POWERPC_REL16_HI:
12110 case elfcpp::R_PPC64_REL16_HIGH:
12111 case elfcpp::R_PPC64_TOC16_HI:
12112 case elfcpp::R_POWERPC_GOT16_HI:
12113 case elfcpp::R_POWERPC_PLT16_HI:
12114 case elfcpp::R_POWERPC_SECTOFF_HI:
12115 case elfcpp::R_POWERPC_TPREL16_HI:
12116 case elfcpp::R_POWERPC_DTPREL16_HI:
12117 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
12118 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
12119 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
12120 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
12121 Reloc::addr16_hi(view, value);
12122 break;
12123
12124 case elfcpp::R_PPC64_ADDR16_HIGHA:
12125 case elfcpp::R_PPC64_TPREL16_HIGHA:
12126 case elfcpp::R_PPC64_DTPREL16_HIGHA:
12127 if (size == 32)
12128 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
12129 goto unsupp;
12130 // Fall through.
12131 case elfcpp::R_POWERPC_ADDR16_HA:
12132 case elfcpp::R_POWERPC_REL16_HA:
12133 case elfcpp::R_PPC64_REL16_HIGHA:
12134 case elfcpp::R_PPC64_TOC16_HA:
12135 case elfcpp::R_POWERPC_GOT16_HA:
12136 case elfcpp::R_POWERPC_PLT16_HA:
12137 case elfcpp::R_POWERPC_SECTOFF_HA:
12138 case elfcpp::R_POWERPC_TPREL16_HA:
12139 case elfcpp::R_POWERPC_DTPREL16_HA:
12140 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
12141 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
12142 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
12143 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
12144 Reloc::addr16_ha(view, value);
12145 break;
12146
12147 case elfcpp::R_POWERPC_REL16DX_HA:
12148 status = Reloc::addr16dx_ha(view, value, overflow);
12149 break;
12150
12151 case elfcpp::R_PPC64_DTPREL16_HIGHER:
12152 if (size == 32)
12153 // R_PPC_EMB_NADDR16_LO
12154 goto unsupp;
12155 // Fall through.
12156 case elfcpp::R_PPC64_ADDR16_HIGHER:
12157 case elfcpp::R_PPC64_REL16_HIGHER:
12158 case elfcpp::R_PPC64_TPREL16_HIGHER:
12159 Reloc::addr16_hi2(view, value);
12160 break;
12161
12162 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
12163 if (size == 32)
12164 // R_PPC_EMB_NADDR16_HI
12165 goto unsupp;
12166 // Fall through.
12167 case elfcpp::R_PPC64_ADDR16_HIGHERA:
12168 case elfcpp::R_PPC64_REL16_HIGHERA:
12169 case elfcpp::R_PPC64_TPREL16_HIGHERA:
12170 Reloc::addr16_ha2(view, value);
12171 break;
12172
12173 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
12174 if (size == 32)
12175 // R_PPC_EMB_NADDR16_HA
12176 goto unsupp;
12177 // Fall through.
12178 case elfcpp::R_PPC64_ADDR16_HIGHEST:
12179 case elfcpp::R_PPC64_REL16_HIGHEST:
12180 case elfcpp::R_PPC64_TPREL16_HIGHEST:
12181 Reloc::addr16_hi3(view, value);
12182 break;
12183
12184 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
12185 if (size == 32)
12186 // R_PPC_EMB_SDAI16
12187 goto unsupp;
12188 // Fall through.
12189 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
12190 case elfcpp::R_PPC64_REL16_HIGHESTA:
12191 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
12192 Reloc::addr16_ha3(view, value);
12193 break;
12194
12195 case elfcpp::R_PPC64_DTPREL16_DS:
12196 case elfcpp::R_PPC64_DTPREL16_LO_DS:
12197 if (size == 32)
12198 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
12199 goto unsupp;
12200 // Fall through.
12201 case elfcpp::R_PPC64_TPREL16_DS:
12202 case elfcpp::R_PPC64_TPREL16_LO_DS:
12203 if (size == 32)
12204 // R_PPC_TLSGD, R_PPC_TLSLD
12205 break;
12206 // Fall through.
12207 case elfcpp::R_PPC64_ADDR16_DS:
12208 case elfcpp::R_PPC64_ADDR16_LO_DS:
12209 case elfcpp::R_PPC64_TOC16_DS:
12210 case elfcpp::R_PPC64_TOC16_LO_DS:
12211 case elfcpp::R_PPC64_GOT16_DS:
12212 case elfcpp::R_PPC64_GOT16_LO_DS:
12213 case elfcpp::R_PPC64_PLT16_LO_DS:
12214 case elfcpp::R_PPC64_SECTOFF_DS:
12215 case elfcpp::R_PPC64_SECTOFF_LO_DS:
12216 maybe_dq_reloc = true;
12217 break;
12218
12219 case elfcpp::R_POWERPC_ADDR14:
12220 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
12221 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
12222 case elfcpp::R_POWERPC_REL14:
12223 case elfcpp::R_POWERPC_REL14_BRTAKEN:
12224 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
12225 status = Reloc::addr14(view, value, overflow);
12226 break;
12227
12228 case elfcpp::R_POWERPC_COPY:
12229 case elfcpp::R_POWERPC_GLOB_DAT:
12230 case elfcpp::R_POWERPC_JMP_SLOT:
12231 case elfcpp::R_POWERPC_RELATIVE:
12232 case elfcpp::R_POWERPC_DTPMOD:
12233 case elfcpp::R_PPC64_JMP_IREL:
12234 case elfcpp::R_POWERPC_IRELATIVE:
12235 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
12236 _("unexpected reloc %u in object file"),
12237 r_type);
12238 break;
12239
12240 case elfcpp::R_PPC64_TOCSAVE:
12241 if (size == 32)
12242 // R_PPC_EMB_SDA21
12243 goto unsupp;
12244 else
12245 {
12246 Symbol_location loc;
12247 loc.object = relinfo->object;
12248 loc.shndx = relinfo->data_shndx;
12249 loc.offset = rela.get_r_offset();
12250 const Tocsave_loc *tocsave = target->tocsave_loc();
12251 if (tocsave->find(loc) != tocsave->end())
12252 {
12253 // If we've generated plt calls using this tocsave, then
12254 // the nop needs to be changed to save r2.
12255 Insn* iview = reinterpret_cast<Insn*>(view);
12256 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
12257 elfcpp::Swap<32, big_endian>::
12258 writeval(iview, std_2_1 + target->stk_toc());
12259 }
12260 }
12261 break;
12262
12263 case elfcpp::R_PPC_EMB_SDA2I16:
12264 case elfcpp::R_PPC_EMB_SDA2REL:
12265 if (size == 32)
12266 goto unsupp;
12267 // R_PPC64_TLSGD, R_PPC64_TLSLD
12268 break;
12269
12270 case elfcpp::R_PPC64_D34:
12271 case elfcpp::R_PPC64_D34_LO:
12272 case elfcpp::R_PPC64_PCREL34:
12273 case elfcpp::R_PPC64_GOT_PCREL34:
12274 case elfcpp::R_PPC64_PLT_PCREL34:
12275 case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
12276 case elfcpp::R_PPC64_TPREL34:
12277 case elfcpp::R_PPC64_DTPREL34:
12278 case elfcpp::R_PPC64_GOT_TLSGD_PCREL34:
12279 case elfcpp::R_PPC64_GOT_TLSLD_PCREL34:
12280 case elfcpp::R_PPC64_GOT_TPREL_PCREL34:
12281 case elfcpp::R_PPC64_GOT_DTPREL_PCREL34:
12282 if (size == 32)
12283 goto unsupp;
12284 status = Reloc::addr34(view, value, overflow);
12285 break;
12286
12287 case elfcpp::R_PPC64_D34_HI30:
12288 if (size == 32)
12289 goto unsupp;
12290 Reloc::addr34_hi(view, value);
12291 break;
12292
12293 case elfcpp::R_PPC64_D34_HA30:
12294 if (size == 32)
12295 goto unsupp;
12296 Reloc::addr34_ha(view, value);
12297 break;
12298
12299 case elfcpp::R_PPC64_D28:
12300 case elfcpp::R_PPC64_PCREL28:
12301 if (size == 32)
12302 goto unsupp;
12303 status = Reloc::addr28(view, value, overflow);
12304 break;
12305
12306 case elfcpp::R_PPC64_ADDR16_HIGHER34:
12307 case elfcpp::R_PPC64_REL16_HIGHER34:
12308 if (size == 32)
12309 goto unsupp;
12310 Reloc::addr16_higher34(view, value);
12311 break;
12312
12313 case elfcpp::R_PPC64_ADDR16_HIGHERA34:
12314 case elfcpp::R_PPC64_REL16_HIGHERA34:
12315 if (size == 32)
12316 goto unsupp;
12317 Reloc::addr16_highera34(view, value);
12318 break;
12319
12320 case elfcpp::R_PPC64_ADDR16_HIGHEST34:
12321 case elfcpp::R_PPC64_REL16_HIGHEST34:
12322 if (size == 32)
12323 goto unsupp;
12324 Reloc::addr16_highest34(view, value);
12325 break;
12326
12327 case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
12328 case elfcpp::R_PPC64_REL16_HIGHESTA34:
12329 if (size == 32)
12330 goto unsupp;
12331 Reloc::addr16_highesta34(view, value);
12332 break;
12333
12334 case elfcpp::R_POWERPC_PLT32:
12335 case elfcpp::R_POWERPC_PLTREL32:
12336 case elfcpp::R_PPC_SDAREL16:
12337 case elfcpp::R_POWERPC_ADDR30:
12338 case elfcpp::R_PPC64_PLT64:
12339 case elfcpp::R_PPC64_PLTREL64:
12340 case elfcpp::R_PPC64_PLTGOT16:
12341 case elfcpp::R_PPC64_PLTGOT16_LO:
12342 case elfcpp::R_PPC64_PLTGOT16_HI:
12343 case elfcpp::R_PPC64_PLTGOT16_HA:
12344 case elfcpp::R_PPC64_PLTGOT16_DS:
12345 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
12346 case elfcpp::R_PPC_TOC16:
12347 default:
12348 unsupp:
12349 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
12350 _("unsupported reloc %u"),
12351 r_type);
12352 break;
12353 }
12354
12355 if (maybe_dq_reloc)
12356 {
12357 if (insn == 0)
12358 insn = elfcpp::Swap<32, big_endian>::readval(iview);
12359
12360 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
12361 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
12362 && (insn & 3) == 1))
12363 status = Reloc::addr16_dq(view, value, overflow);
12364 else if (size == 64
12365 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
12366 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
12367 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
12368 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
12369 status = Reloc::addr16_ds(view, value, overflow);
12370 else
12371 status = Reloc::addr16(view, value, overflow);
12372 }
12373
12374 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
12375 && (has_stub_value
12376 || !(gsym != NULL
12377 && gsym->is_undefined()
12378 && is_branch_reloc<size>(r_type))))
12379 {
12380 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
12381 _("relocation overflow"));
12382 if (has_stub_value)
12383 gold_info(_("try relinking with a smaller --stub-group-size"));
12384 }
12385
12386 return true;
12387 }
12388
12389 // Relocate section data.
12390
12391 template<int size, bool big_endian>
12392 void
12393 Target_powerpc<size, big_endian>::relocate_section(
12394 const Relocate_info<size, big_endian>* relinfo,
12395 unsigned int sh_type,
12396 const unsigned char* prelocs,
12397 size_t reloc_count,
12398 Output_section* output_section,
12399 bool needs_special_offset_handling,
12400 unsigned char* view,
12401 Address address,
12402 section_size_type view_size,
12403 const Reloc_symbol_changes* reloc_symbol_changes)
12404 {
12405 typedef Target_powerpc<size, big_endian> Powerpc;
12406 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
12407 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
12408 Powerpc_comdat_behavior;
12409 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
12410 Classify_reloc;
12411
12412 gold_assert(sh_type == elfcpp::SHT_RELA);
12413
12414 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
12415 Powerpc_comdat_behavior, Classify_reloc>(
12416 relinfo,
12417 this,
12418 prelocs,
12419 reloc_count,
12420 output_section,
12421 needs_special_offset_handling,
12422 view,
12423 address,
12424 view_size,
12425 reloc_symbol_changes);
12426 }
12427
12428 template<int size, bool big_endian>
12429 class Powerpc_scan_relocatable_reloc
12430 {
12431 public:
12432 typedef typename elfcpp::Rela<size, big_endian> Reltype;
12433 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
12434 static const int sh_type = elfcpp::SHT_RELA;
12435
12436 // Return the symbol referred to by the relocation.
12437 static inline unsigned int
12438 get_r_sym(const Reltype* reloc)
12439 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
12440
12441 // Return the type of the relocation.
12442 static inline unsigned int
12443 get_r_type(const Reltype* reloc)
12444 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
12445
12446 // Return the strategy to use for a local symbol which is not a
12447 // section symbol, given the relocation type.
12448 inline Relocatable_relocs::Reloc_strategy
12449 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
12450 {
12451 if (r_type == 0 && r_sym == 0)
12452 return Relocatable_relocs::RELOC_DISCARD;
12453 return Relocatable_relocs::RELOC_COPY;
12454 }
12455
12456 // Return the strategy to use for a local symbol which is a section
12457 // symbol, given the relocation type.
12458 inline Relocatable_relocs::Reloc_strategy
12459 local_section_strategy(unsigned int, Relobj*)
12460 {
12461 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
12462 }
12463
12464 // Return the strategy to use for a global symbol, given the
12465 // relocation type, the object, and the symbol index.
12466 inline Relocatable_relocs::Reloc_strategy
12467 global_strategy(unsigned int r_type, Relobj*, unsigned int)
12468 {
12469 if (size == 32
12470 && (r_type == elfcpp::R_PPC_PLTREL24
12471 || r_type == elfcpp::R_POWERPC_PLT16_LO
12472 || r_type == elfcpp::R_POWERPC_PLT16_HI
12473 || r_type == elfcpp::R_POWERPC_PLT16_HA))
12474 return Relocatable_relocs::RELOC_SPECIAL;
12475 return Relocatable_relocs::RELOC_COPY;
12476 }
12477 };
12478
12479 // Scan the relocs during a relocatable link.
12480
12481 template<int size, bool big_endian>
12482 void
12483 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
12484 Symbol_table* symtab,
12485 Layout* layout,
12486 Sized_relobj_file<size, big_endian>* object,
12487 unsigned int data_shndx,
12488 unsigned int sh_type,
12489 const unsigned char* prelocs,
12490 size_t reloc_count,
12491 Output_section* output_section,
12492 bool needs_special_offset_handling,
12493 size_t local_symbol_count,
12494 const unsigned char* plocal_symbols,
12495 Relocatable_relocs* rr)
12496 {
12497 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
12498
12499 gold_assert(sh_type == elfcpp::SHT_RELA);
12500
12501 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
12502 symtab,
12503 layout,
12504 object,
12505 data_shndx,
12506 prelocs,
12507 reloc_count,
12508 output_section,
12509 needs_special_offset_handling,
12510 local_symbol_count,
12511 plocal_symbols,
12512 rr);
12513 }
12514
12515 // Scan the relocs for --emit-relocs.
12516
12517 template<int size, bool big_endian>
12518 void
12519 Target_powerpc<size, big_endian>::emit_relocs_scan(
12520 Symbol_table* symtab,
12521 Layout* layout,
12522 Sized_relobj_file<size, big_endian>* object,
12523 unsigned int data_shndx,
12524 unsigned int sh_type,
12525 const unsigned char* prelocs,
12526 size_t reloc_count,
12527 Output_section* output_section,
12528 bool needs_special_offset_handling,
12529 size_t local_symbol_count,
12530 const unsigned char* plocal_syms,
12531 Relocatable_relocs* rr)
12532 {
12533 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
12534 Classify_reloc;
12535 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
12536 Emit_relocs_strategy;
12537
12538 gold_assert(sh_type == elfcpp::SHT_RELA);
12539
12540 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
12541 symtab,
12542 layout,
12543 object,
12544 data_shndx,
12545 prelocs,
12546 reloc_count,
12547 output_section,
12548 needs_special_offset_handling,
12549 local_symbol_count,
12550 plocal_syms,
12551 rr);
12552 }
12553
12554 // Emit relocations for a section.
12555 // This is a modified version of the function by the same name in
12556 // target-reloc.h. Using relocate_special_relocatable for
12557 // R_PPC_PLTREL24 would require duplication of the entire body of the
12558 // loop, so we may as well duplicate the whole thing.
12559
12560 template<int size, bool big_endian>
12561 void
12562 Target_powerpc<size, big_endian>::relocate_relocs(
12563 const Relocate_info<size, big_endian>* relinfo,
12564 unsigned int sh_type,
12565 const unsigned char* prelocs,
12566 size_t reloc_count,
12567 Output_section* output_section,
12568 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
12569 unsigned char*,
12570 Address view_address,
12571 section_size_type,
12572 unsigned char* reloc_view,
12573 section_size_type reloc_view_size)
12574 {
12575 gold_assert(sh_type == elfcpp::SHT_RELA);
12576
12577 typedef typename elfcpp::Rela<size, big_endian> Reltype;
12578 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
12579 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
12580 // Offset from start of insn to d-field reloc.
12581 const int d_offset = big_endian ? 2 : 0;
12582
12583 Powerpc_relobj<size, big_endian>* const object
12584 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
12585 const unsigned int local_count = object->local_symbol_count();
12586 unsigned int got2_shndx = object->got2_shndx();
12587 Address got2_addend = 0;
12588 if (got2_shndx != 0)
12589 {
12590 got2_addend = object->get_output_section_offset(got2_shndx);
12591 gold_assert(got2_addend != invalid_address);
12592 }
12593
12594 const bool relocatable = parameters->options().relocatable();
12595
12596 unsigned char* pwrite = reloc_view;
12597 bool zap_next = false;
12598 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
12599 {
12600 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
12601 if (strategy == Relocatable_relocs::RELOC_DISCARD)
12602 continue;
12603
12604 Reltype reloc(prelocs);
12605 Reltype_write reloc_write(pwrite);
12606
12607 Address offset = reloc.get_r_offset();
12608 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
12609 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
12610 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
12611 const unsigned int orig_r_sym = r_sym;
12612 typename elfcpp::Elf_types<size>::Elf_Swxword addend
12613 = reloc.get_r_addend();
12614 const Symbol* gsym = NULL;
12615
12616 if (zap_next)
12617 {
12618 // We could arrange to discard these and other relocs for
12619 // tls optimised sequences in the strategy methods, but for
12620 // now do as BFD ld does.
12621 r_type = elfcpp::R_POWERPC_NONE;
12622 zap_next = false;
12623 }
12624
12625 // Get the new symbol index.
12626 Output_section* os = NULL;
12627 if (r_sym < local_count)
12628 {
12629 switch (strategy)
12630 {
12631 case Relocatable_relocs::RELOC_COPY:
12632 case Relocatable_relocs::RELOC_SPECIAL:
12633 if (r_sym != 0)
12634 {
12635 r_sym = object->symtab_index(r_sym);
12636 gold_assert(r_sym != -1U);
12637 }
12638 break;
12639
12640 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
12641 {
12642 // We are adjusting a section symbol. We need to find
12643 // the symbol table index of the section symbol for
12644 // the output section corresponding to input section
12645 // in which this symbol is defined.
12646 gold_assert(r_sym < local_count);
12647 bool is_ordinary;
12648 unsigned int shndx =
12649 object->local_symbol_input_shndx(r_sym, &is_ordinary);
12650 gold_assert(is_ordinary);
12651 os = object->output_section(shndx);
12652 gold_assert(os != NULL);
12653 gold_assert(os->needs_symtab_index());
12654 r_sym = os->symtab_index();
12655 }
12656 break;
12657
12658 default:
12659 gold_unreachable();
12660 }
12661 }
12662 else
12663 {
12664 gsym = object->global_symbol(r_sym);
12665 gold_assert(gsym != NULL);
12666 if (gsym->is_forwarder())
12667 gsym = relinfo->symtab->resolve_forwards(gsym);
12668
12669 gold_assert(gsym->has_symtab_index());
12670 r_sym = gsym->symtab_index();
12671 }
12672
12673 // Get the new offset--the location in the output section where
12674 // this relocation should be applied.
12675 if (static_cast<Address>(offset_in_output_section) != invalid_address)
12676 offset += offset_in_output_section;
12677 else
12678 {
12679 section_offset_type sot_offset =
12680 convert_types<section_offset_type, Address>(offset);
12681 section_offset_type new_sot_offset =
12682 output_section->output_offset(object, relinfo->data_shndx,
12683 sot_offset);
12684 gold_assert(new_sot_offset != -1);
12685 offset = new_sot_offset;
12686 }
12687
12688 // In an object file, r_offset is an offset within the section.
12689 // In an executable or dynamic object, generated by
12690 // --emit-relocs, r_offset is an absolute address.
12691 if (!relocatable)
12692 {
12693 offset += view_address;
12694 if (static_cast<Address>(offset_in_output_section) != invalid_address)
12695 offset -= offset_in_output_section;
12696 }
12697
12698 // Handle the reloc addend based on the strategy.
12699 if (strategy == Relocatable_relocs::RELOC_COPY)
12700 ;
12701 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
12702 {
12703 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
12704 addend = psymval->value(object, addend);
12705 // In a relocatable link, the symbol value is relative to
12706 // the start of the output section. For a non-relocatable
12707 // link, we need to adjust the addend.
12708 if (!relocatable)
12709 {
12710 gold_assert(os != NULL);
12711 addend -= os->address();
12712 }
12713 }
12714 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
12715 {
12716 if (size == 32)
12717 {
12718 if (addend >= 32768)
12719 addend += got2_addend;
12720 }
12721 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
12722 {
12723 r_type = elfcpp::R_POWERPC_ADDR16_HA;
12724 addend -= d_offset;
12725 }
12726 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
12727 {
12728 r_type = elfcpp::R_POWERPC_ADDR16_LO;
12729 addend -= d_offset + 4;
12730 }
12731 }
12732 else
12733 gold_unreachable();
12734
12735 if (!relocatable)
12736 {
12737 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
12738 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
12739 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
12740 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
12741 {
12742 // First instruction of a global dynamic sequence,
12743 // arg setup insn.
12744 bool final = gsym == NULL || gsym->final_value_is_known();
12745 tls::Tls_optimization tls_type = this->optimize_tls_gd(final);
12746 switch (tls_type)
12747 {
12748 case tls::TLSOPT_TO_IE:
12749 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
12750 - elfcpp::R_POWERPC_GOT_TLSGD16);
12751 break;
12752 case tls::TLSOPT_TO_LE:
12753 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
12754 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
12755 r_type = elfcpp::R_POWERPC_TPREL16_HA;
12756 else
12757 {
12758 r_type = elfcpp::R_POWERPC_NONE;
12759 offset -= d_offset;
12760 }
12761 break;
12762 default:
12763 break;
12764 }
12765 }
12766 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
12767 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
12768 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
12769 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
12770 {
12771 // First instruction of a local dynamic sequence,
12772 // arg setup insn.
12773 tls::Tls_optimization tls_type = this->optimize_tls_ld();
12774 if (tls_type == tls::TLSOPT_TO_LE)
12775 {
12776 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
12777 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
12778 {
12779 r_type = elfcpp::R_POWERPC_TPREL16_HA;
12780 const Output_section* os = relinfo->layout->tls_segment()
12781 ->first_section();
12782 gold_assert(os != NULL);
12783 gold_assert(os->needs_symtab_index());
12784 r_sym = os->symtab_index();
12785 addend = dtp_offset;
12786 }
12787 else
12788 {
12789 r_type = elfcpp::R_POWERPC_NONE;
12790 offset -= d_offset;
12791 }
12792 }
12793 }
12794 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
12795 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
12796 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
12797 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
12798 {
12799 // First instruction of initial exec sequence.
12800 bool final = gsym == NULL || gsym->final_value_is_known();
12801 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
12802 {
12803 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
12804 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
12805 r_type = elfcpp::R_POWERPC_TPREL16_HA;
12806 else
12807 {
12808 r_type = elfcpp::R_POWERPC_NONE;
12809 offset -= d_offset;
12810 }
12811 }
12812 }
12813 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
12814 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
12815 {
12816 // Second instruction of a global dynamic sequence,
12817 // the __tls_get_addr call
12818 bool final = gsym == NULL || gsym->final_value_is_known();
12819 tls::Tls_optimization tls_type = this->optimize_tls_gd(final);
12820 switch (tls_type)
12821 {
12822 case tls::TLSOPT_TO_IE:
12823 r_type = elfcpp::R_POWERPC_NONE;
12824 zap_next = true;
12825 break;
12826 case tls::TLSOPT_TO_LE:
12827 r_type = elfcpp::R_POWERPC_TPREL16_LO;
12828 offset += d_offset;
12829 zap_next = true;
12830 break;
12831 default:
12832 break;
12833 }
12834 }
12835 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
12836 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
12837 {
12838 // Second instruction of a local dynamic sequence,
12839 // the __tls_get_addr call
12840 tls::Tls_optimization tls_type = this->optimize_tls_ld();
12841 if (tls_type == tls::TLSOPT_TO_LE)
12842 {
12843 const Output_section* os = relinfo->layout->tls_segment()
12844 ->first_section();
12845 gold_assert(os != NULL);
12846 gold_assert(os->needs_symtab_index());
12847 r_sym = os->symtab_index();
12848 addend = dtp_offset;
12849 r_type = elfcpp::R_POWERPC_TPREL16_LO;
12850 offset += d_offset;
12851 zap_next = true;
12852 }
12853 }
12854 else if (r_type == elfcpp::R_POWERPC_TLS)
12855 {
12856 // Second instruction of an initial exec sequence
12857 bool final = gsym == NULL || gsym->final_value_is_known();
12858 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
12859 {
12860 r_type = elfcpp::R_POWERPC_TPREL16_LO;
12861 offset += d_offset;
12862 }
12863 }
12864 }
12865
12866 reloc_write.put_r_offset(offset);
12867 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
12868 reloc_write.put_r_addend(addend);
12869
12870 pwrite += reloc_size;
12871 }
12872
12873 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
12874 == reloc_view_size);
12875 }
12876
12877 // Return the value to use for a dynamic symbol which requires special
12878 // treatment. This is how we support equality comparisons of function
12879 // pointers across shared library boundaries, as described in the
12880 // processor specific ABI supplement.
12881
12882 template<int size, bool big_endian>
12883 uint64_t
12884 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
12885 {
12886 if (size == 32)
12887 {
12888 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
12889 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
12890 p != this->stub_tables_.end();
12891 ++p)
12892 {
12893 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
12894 = (*p)->find_plt_call_entry(gsym);
12895 if (ent != NULL)
12896 return (*p)->stub_address() + ent->off_;
12897 }
12898 }
12899 else if (this->abiversion() >= 2)
12900 {
12901 Address off = this->glink_section()->find_global_entry(gsym);
12902 if (off != invalid_address)
12903 return this->glink_section()->global_entry_address() + off;
12904 }
12905 gold_unreachable();
12906 }
12907
12908 // Return the PLT address to use for a local symbol.
12909 template<int size, bool big_endian>
12910 uint64_t
12911 Target_powerpc<size, big_endian>::do_plt_address_for_local(
12912 const Relobj* object,
12913 unsigned int symndx) const
12914 {
12915 if (size == 32)
12916 {
12917 const Sized_relobj<size, big_endian>* relobj
12918 = static_cast<const Sized_relobj<size, big_endian>*>(object);
12919 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
12920 p != this->stub_tables_.end();
12921 ++p)
12922 {
12923 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
12924 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
12925 if (ent != NULL)
12926 return (*p)->stub_address() + ent->off_;
12927 }
12928 }
12929 gold_unreachable();
12930 }
12931
12932 // Return the PLT address to use for a global symbol.
12933 template<int size, bool big_endian>
12934 uint64_t
12935 Target_powerpc<size, big_endian>::do_plt_address_for_global(
12936 const Symbol* gsym) const
12937 {
12938 if (size == 32)
12939 {
12940 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
12941 p != this->stub_tables_.end();
12942 ++p)
12943 {
12944 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
12945 = (*p)->find_plt_call_entry(gsym);
12946 if (ent != NULL)
12947 return (*p)->stub_address() + ent->off_;
12948 }
12949 }
12950 else if (this->abiversion() >= 2)
12951 {
12952 Address off = this->glink_section()->find_global_entry(gsym);
12953 if (off != invalid_address)
12954 return this->glink_section()->global_entry_address() + off;
12955 }
12956 gold_unreachable();
12957 }
12958
12959 // Return the offset to use for the GOT_INDX'th got entry which is
12960 // for a local tls symbol specified by OBJECT, SYMNDX.
12961 template<int size, bool big_endian>
12962 int64_t
12963 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
12964 const Relobj* object,
12965 unsigned int symndx,
12966 Output_data_got_base* got,
12967 unsigned int got_indx,
12968 uint64_t addend) const
12969 {
12970 const Powerpc_relobj<size, big_endian>* ppc_object
12971 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
12972 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
12973 {
12974 for (Got_type got_type = (size == 32
12975 ? GOT_TYPE_SMALL_TLSGD : GOT_TYPE_TLSGD);
12976 got_type <= GOT_TYPE_SMALL_TPREL;
12977 got_type = Got_type(got_type + 1))
12978 if (got_type != GOT_TYPE_SMALL
12979 && ppc_object->local_has_got_offset(symndx, got_type, addend))
12980 {
12981 unsigned int off
12982 = ppc_object->local_got_offset(symndx, got_type, addend);
12983 if ((got_type & ~GOT_TYPE_SMALL) == GOT_TYPE_TLSGD)
12984 off += size / 8;
12985 if (off == got_indx * (size / 8)
12986 && (size == 32 || got == this->got_section(got_type)))
12987 {
12988 if ((got_type & ~GOT_TYPE_SMALL) == GOT_TYPE_TPREL)
12989 return -tp_offset;
12990 else
12991 return -dtp_offset;
12992 }
12993 }
12994 }
12995 gold_unreachable();
12996 }
12997
12998 // Return the offset to use for the GOT_INDX'th got entry which is
12999 // for global tls symbol GSYM.
13000 template<int size, bool big_endian>
13001 int64_t
13002 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
13003 Symbol* gsym,
13004 Output_data_got_base* got,
13005 unsigned int got_indx,
13006 uint64_t addend) const
13007 {
13008 if (gsym->type() == elfcpp::STT_TLS)
13009 {
13010 for (Got_type got_type = (size == 32
13011 ? GOT_TYPE_SMALL_TLSGD : GOT_TYPE_TLSGD);
13012 got_type <= GOT_TYPE_SMALL_TPREL;
13013 got_type = Got_type(got_type + 1))
13014 if (got_type != GOT_TYPE_SMALL
13015 && gsym->has_got_offset(got_type, addend))
13016 {
13017 unsigned int off = gsym->got_offset(got_type, addend);
13018 if ((got_type & ~GOT_TYPE_SMALL) == GOT_TYPE_TLSGD)
13019 off += size / 8;
13020 if (off == got_indx * (size / 8)
13021 && (size == 32 || got == this->got_section(got_type)))
13022 {
13023 if ((got_type & ~GOT_TYPE_SMALL) == GOT_TYPE_TPREL)
13024 return -tp_offset;
13025 else
13026 return -dtp_offset;
13027 }
13028 }
13029 }
13030 gold_unreachable();
13031 }
13032
13033 // The selector for powerpc object files.
13034
13035 template<int size, bool big_endian>
13036 class Target_selector_powerpc : public Target_selector
13037 {
13038 public:
13039 Target_selector_powerpc()
13040 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
13041 size, big_endian,
13042 (size == 64
13043 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
13044 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
13045 (size == 64
13046 ? (big_endian ? "elf64ppc" : "elf64lppc")
13047 : (big_endian ? "elf32ppc" : "elf32lppc")))
13048 { }
13049
13050 virtual Target*
13051 do_instantiate_target()
13052 { return new Target_powerpc<size, big_endian>(); }
13053 };
13054
13055 Target_selector_powerpc<32, true> target_selector_ppc32;
13056 Target_selector_powerpc<32, false> target_selector_ppc32le;
13057 Target_selector_powerpc<64, true> target_selector_ppc64;
13058 Target_selector_powerpc<64, false> target_selector_ppc64le;
13059
13060 // Instantiate these constants for -O0
13061 template<int size, bool big_endian>
13062 const typename Output_data_glink<size, big_endian>::Address
13063 Output_data_glink<size, big_endian>::invalid_address;
13064 template<int size, bool big_endian>
13065 const typename Stub_table<size, big_endian>::Address
13066 Stub_table<size, big_endian>::invalid_address;
13067 template<int size, bool big_endian>
13068 const typename Target_powerpc<size, big_endian>::Address
13069 Target_powerpc<size, big_endian>::invalid_address;
13070
13071 } // End anonymous namespace.