]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/symtab.cc
* gold/incremental.cc (Sized_incremental_binary::do_process_got_plt):
[thirdparty/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
368 return false;
369
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
372 return true;
373
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
378 return true;
379
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
385 {
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
391 {
392 // Not a C++ symbol, so it can't satisfy these flags
393 }
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
397 {
398 free(demangled_name);
399 return true;
400 }
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
404 {
405 free(demangled_name);
406 return true;
407 }
408 else
409 free(demangled_name);
410 }
411
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
419 return true;
420
421 return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters->options().output_is_position_independent()
433 || parameters->options().relocatable())
434 return false;
435
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_ != FROM_OBJECT)
439 {
440 if (this->source_ != IS_UNDEFINED)
441 return true;
442 }
443 else
444 {
445 // If the symbol is from a dynamic object, then the final value
446 // is not known.
447 if (this->object()->is_dynamic())
448 return false;
449
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
453 return true;
454 }
455
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468 switch (this->source_)
469 {
470 case FROM_OBJECT:
471 {
472 unsigned int shndx = this->u_.from_object.shndx;
473 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474 {
475 gold_assert(!this->u_.from_object.object->is_dynamic());
476 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478 return relobj->output_section(shndx);
479 }
480 return NULL;
481 }
482
483 case IN_OUTPUT_DATA:
484 return this->u_.in_output_data.output_data->output_section();
485
486 case IN_OUTPUT_SEGMENT:
487 case IS_CONSTANT:
488 case IS_UNDEFINED:
489 return NULL;
490
491 default:
492 gold_unreachable();
493 }
494 }
495
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503 switch (this->source_)
504 {
505 case FROM_OBJECT:
506 case IN_OUTPUT_DATA:
507 gold_assert(this->output_section() == os);
508 break;
509 case IS_CONSTANT:
510 this->source_ = IN_OUTPUT_DATA;
511 this->u_.in_output_data.output_data = os;
512 this->u_.in_output_data.offset_is_from_end = false;
513 break;
514 case IN_OUTPUT_SEGMENT:
515 case IS_UNDEFINED:
516 default:
517 gold_unreachable();
518 }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524 const Version_script_info& version_script)
525 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530 namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function. This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542 const Symbol_table_key& k2) const
543 {
544 return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550 return (parameters->options().icf_enabled()
551 && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560 for (options::String_set::const_iterator p =
561 parameters->options().undefined_begin();
562 p != parameters->options().undefined_end();
563 ++p)
564 {
565 const char* name = p->c_str();
566 Symbol* sym = this->lookup(name);
567 gold_assert(sym != NULL);
568 if (sym->source() == Symbol::FROM_OBJECT
569 && !sym->object()->is_dynamic())
570 {
571 Relobj* obj = static_cast<Relobj*>(sym->object());
572 bool is_ordinary;
573 unsigned int shndx = sym->shndx(&is_ordinary);
574 if (is_ordinary)
575 {
576 gold_assert(this->gc_ != NULL);
577 this->gc_->worklist().push(Section_id(obj, shndx));
578 }
579 }
580 }
581
582 for (Script_options::referenced_const_iterator p =
583 layout->script_options()->referenced_begin();
584 p != layout->script_options()->referenced_end();
585 ++p)
586 {
587 Symbol* sym = this->lookup(p->c_str());
588 gold_assert(sym != NULL);
589 if (sym->source() == Symbol::FROM_OBJECT
590 && !sym->object()->is_dynamic())
591 {
592 Relobj* obj = static_cast<Relobj*>(sym->object());
593 bool is_ordinary;
594 unsigned int shndx = sym->shndx(&is_ordinary);
595 if (is_ordinary)
596 {
597 gold_assert(this->gc_ != NULL);
598 this->gc_->worklist().push(Section_id(obj, shndx));
599 }
600 }
601 }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607 if (!sym->is_from_dynobj()
608 && sym->is_externally_visible())
609 {
610 //Add the object and section to the work list.
611 Relobj* obj = static_cast<Relobj*>(sym->object());
612 bool is_ordinary;
613 unsigned int shndx = sym->shndx(&is_ordinary);
614 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615 {
616 gold_assert(this->gc_!= NULL);
617 this->gc_->worklist().push(Section_id(obj, shndx));
618 }
619 }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
629 {
630 Relobj* obj = static_cast<Relobj*>(sym->object());
631 bool is_ordinary;
632 unsigned int shndx = sym->shndx(&is_ordinary);
633 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634 {
635 gold_assert(this->gc_ != NULL);
636 this->gc_->worklist().push(Section_id(obj, shndx));
637 }
638 }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646 gold_assert(from != to);
647 gold_assert(!from->is_forwarder() && !to->is_forwarder());
648 this->forwarders_[from] = to;
649 from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657 gold_assert(from->is_forwarder());
658 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659 this->forwarders_.find(from);
660 gold_assert(p != this->forwarders_.end());
661 return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669 Stringpool::Key name_key;
670 name = this->namepool_.find(name, &name_key);
671 if (name == NULL)
672 return NULL;
673
674 Stringpool::Key version_key = 0;
675 if (version != NULL)
676 {
677 version = this->namepool_.find(version, &version_key);
678 if (version == NULL)
679 return NULL;
680 }
681
682 Symbol_table_key key(name_key, version_key);
683 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684 if (p == this->table_.end())
685 return NULL;
686 return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol. This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version. Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700 elfcpp::Sym_write<size, big_endian> esym(buf);
701 // We don't bother to set the st_name or the st_shndx field.
702 esym.put_st_value(from->value());
703 esym.put_st_size(from->symsize());
704 esym.put_st_info(from->binding(), from->type());
705 esym.put_st_other(from->visibility(), from->nonvis());
706 bool is_ordinary;
707 unsigned int shndx = from->shndx(&is_ordinary);
708 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709 from->version());
710 if (from->in_reg())
711 to->set_in_reg();
712 if (from->in_dyn())
713 to->set_in_dyn();
714 if (parameters->options().gc_sections())
715 this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724 if (!sym->is_defined() && !sym->is_common())
725 return;
726 if (sym->is_forced_local())
727 {
728 // We already got this one.
729 return;
730 }
731 sym->set_is_forced_local();
732 this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742 // For some targets, we need to ignore a specific character when
743 // wrapping, and add it back later.
744 char prefix = '\0';
745 if (name[0] == parameters->target().wrap_char())
746 {
747 prefix = name[0];
748 ++name;
749 }
750
751 if (parameters->options().is_wrap(name))
752 {
753 // Turn NAME into __wrap_NAME.
754 std::string s;
755 if (prefix != '\0')
756 s += prefix;
757 s += "__wrap_";
758 s += name;
759
760 // This will give us both the old and new name in NAMEPOOL_, but
761 // that is OK. Only the versions we need will wind up in the
762 // real string table in the output file.
763 return this->namepool_.add(s.c_str(), true, name_key);
764 }
765
766 const char* const real_prefix = "__real_";
767 const size_t real_prefix_length = strlen(real_prefix);
768 if (strncmp(name, real_prefix, real_prefix_length) == 0
769 && parameters->options().is_wrap(name + real_prefix_length))
770 {
771 // Turn __real_NAME into NAME.
772 std::string s;
773 if (prefix != '\0')
774 s += prefix;
775 s += name + real_prefix_length;
776 return this->namepool_.add(s.c_str(), true, name_key);
777 }
778
779 return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version. SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791 bool default_is_new,
792 Symbol_table_type::iterator pdef)
793 {
794 if (default_is_new)
795 {
796 // This is the first time we have seen NAME/NULL. Make
797 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798 // version.
799 pdef->second = sym;
800 sym->set_is_default();
801 }
802 else if (pdef->second == sym)
803 {
804 // NAME/NULL already points to NAME/VERSION. Don't mark the
805 // symbol as the default if it is not already the default.
806 }
807 else
808 {
809 // This is the unfortunate case where we already have entries
810 // for both NAME/VERSION and NAME/NULL. We now see a symbol
811 // NAME/VERSION where VERSION is the default version. We have
812 // already resolved this new symbol with the existing
813 // NAME/VERSION symbol.
814
815 // It's possible that NAME/NULL and NAME/VERSION are both
816 // defined in regular objects. This can only happen if one
817 // object file defines foo and another defines foo@@ver. This
818 // is somewhat obscure, but we call it a multiple definition
819 // error.
820
821 // It's possible that NAME/NULL actually has a version, in which
822 // case it won't be the same as VERSION. This happens with
823 // ver_test_7.so in the testsuite for the symbol t2_2. We see
824 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
825 // then see an unadorned t2_2 in an object file and give it
826 // version VER1 from the version script. This looks like a
827 // default definition for VER1, so it looks like we should merge
828 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
829 // not obvious that this is an error, either. So we just punt.
830
831 // If one of the symbols has non-default visibility, and the
832 // other is defined in a shared object, then they are different
833 // symbols.
834
835 // Otherwise, we just resolve the symbols as though they were
836 // the same.
837
838 if (pdef->second->version() != NULL)
839 gold_assert(pdef->second->version() != sym->version());
840 else if (sym->visibility() != elfcpp::STV_DEFAULT
841 && pdef->second->is_from_dynobj())
842 ;
843 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844 && sym->is_from_dynobj())
845 ;
846 else
847 {
848 const Sized_symbol<size>* symdef;
849 symdef = this->get_sized_symbol<size>(pdef->second);
850 Symbol_table::resolve<size, big_endian>(sym, symdef);
851 this->make_forwarder(pdef->second, sym);
852 pdef->second = sym;
853 sym->set_is_default();
854 }
855 }
856 }
857
858 // Add one symbol from OBJECT to the symbol table. NAME is symbol
859 // name and VERSION is the version; both are canonicalized. DEF is
860 // whether this is the default version. ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol. That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol. This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION. If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure. That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table. We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files. So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code. ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891 const char* name,
892 Stringpool::Key name_key,
893 const char* version,
894 Stringpool::Key version_key,
895 bool is_default_version,
896 const elfcpp::Sym<size, big_endian>& sym,
897 unsigned int st_shndx,
898 bool is_ordinary,
899 unsigned int orig_st_shndx)
900 {
901 // Print a message if this symbol is being traced.
902 if (parameters->options().is_trace_symbol(name))
903 {
904 if (orig_st_shndx == elfcpp::SHN_UNDEF)
905 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906 else
907 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908 }
909
910 // For an undefined symbol, we may need to adjust the name using
911 // --wrap.
912 if (orig_st_shndx == elfcpp::SHN_UNDEF
913 && parameters->options().any_wrap())
914 {
915 const char* wrap_name = this->wrap_symbol(name, &name_key);
916 if (wrap_name != name)
917 {
918 // If we see a reference to malloc with version GLIBC_2.0,
919 // and we turn it into a reference to __wrap_malloc, then we
920 // discard the version number. Otherwise the user would be
921 // required to specify the correct version for
922 // __wrap_malloc.
923 version = NULL;
924 version_key = 0;
925 name = wrap_name;
926 }
927 }
928
929 Symbol* const snull = NULL;
930 std::pair<typename Symbol_table_type::iterator, bool> ins =
931 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932 snull));
933
934 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935 std::make_pair(this->table_.end(), false);
936 if (is_default_version)
937 {
938 const Stringpool::Key vnull_key = 0;
939 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940 vnull_key),
941 snull));
942 }
943
944 // ins.first: an iterator, which is a pointer to a pair.
945 // ins.first->first: the key (a pair of name and version).
946 // ins.first->second: the value (Symbol*).
947 // ins.second: true if new entry was inserted, false if not.
948
949 Sized_symbol<size>* ret;
950 bool was_undefined;
951 bool was_common;
952 if (!ins.second)
953 {
954 // We already have an entry for NAME/VERSION.
955 ret = this->get_sized_symbol<size>(ins.first->second);
956 gold_assert(ret != NULL);
957
958 was_undefined = ret->is_undefined();
959 was_common = ret->is_common();
960
961 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962 version);
963 if (parameters->options().gc_sections())
964 this->gc_mark_dyn_syms(ret);
965
966 if (is_default_version)
967 this->define_default_version<size, big_endian>(ret, insdefault.second,
968 insdefault.first);
969 }
970 else
971 {
972 // This is the first time we have seen NAME/VERSION.
973 gold_assert(ins.first->second == NULL);
974
975 if (is_default_version && !insdefault.second)
976 {
977 // We already have an entry for NAME/NULL. If we override
978 // it, then change it to NAME/VERSION.
979 ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981 was_undefined = ret->is_undefined();
982 was_common = ret->is_common();
983
984 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985 version);
986 if (parameters->options().gc_sections())
987 this->gc_mark_dyn_syms(ret);
988 ins.first->second = ret;
989 }
990 else
991 {
992 was_undefined = false;
993 was_common = false;
994
995 Sized_target<size, big_endian>* target =
996 parameters->sized_target<size, big_endian>();
997 if (!target->has_make_symbol())
998 ret = new Sized_symbol<size>();
999 else
1000 {
1001 ret = target->make_symbol();
1002 if (ret == NULL)
1003 {
1004 // This means that we don't want a symbol table
1005 // entry after all.
1006 if (!is_default_version)
1007 this->table_.erase(ins.first);
1008 else
1009 {
1010 this->table_.erase(insdefault.first);
1011 // Inserting INSDEFAULT invalidated INS.
1012 this->table_.erase(std::make_pair(name_key,
1013 version_key));
1014 }
1015 return NULL;
1016 }
1017 }
1018
1019 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021 ins.first->second = ret;
1022 if (is_default_version)
1023 {
1024 // This is the first time we have seen NAME/NULL. Point
1025 // it at the new entry for NAME/VERSION.
1026 gold_assert(insdefault.second);
1027 insdefault.first->second = ret;
1028 }
1029 }
1030
1031 if (is_default_version)
1032 ret->set_is_default();
1033 }
1034
1035 // Record every time we see a new undefined symbol, to speed up
1036 // archive groups.
1037 if (!was_undefined && ret->is_undefined())
1038 {
1039 ++this->saw_undefined_;
1040 if (parameters->options().has_plugins())
1041 parameters->options().plugins()->new_undefined_symbol(ret);
1042 }
1043
1044 // Keep track of common symbols, to speed up common symbol
1045 // allocation.
1046 if (!was_common && ret->is_common())
1047 {
1048 if (ret->type() == elfcpp::STT_TLS)
1049 this->tls_commons_.push_back(ret);
1050 else if (!is_ordinary
1051 && st_shndx == parameters->target().small_common_shndx())
1052 this->small_commons_.push_back(ret);
1053 else if (!is_ordinary
1054 && st_shndx == parameters->target().large_common_shndx())
1055 this->large_commons_.push_back(ret);
1056 else
1057 this->commons_.push_back(ret);
1058 }
1059
1060 // If we're not doing a relocatable link, then any symbol with
1061 // hidden or internal visibility is local.
1062 if ((ret->visibility() == elfcpp::STV_HIDDEN
1063 || ret->visibility() == elfcpp::STV_INTERNAL)
1064 && (ret->binding() == elfcpp::STB_GLOBAL
1065 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066 || ret->binding() == elfcpp::STB_WEAK)
1067 && !parameters->options().relocatable())
1068 this->force_local(ret);
1069
1070 return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078 Sized_relobj_file<size, big_endian>* relobj,
1079 const unsigned char* syms,
1080 size_t count,
1081 size_t symndx_offset,
1082 const char* sym_names,
1083 size_t sym_name_size,
1084 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085 size_t* defined)
1086 {
1087 *defined = 0;
1088
1089 gold_assert(size == parameters->target().get_size());
1090
1091 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093 const bool just_symbols = relobj->just_symbols();
1094
1095 const unsigned char* p = syms;
1096 for (size_t i = 0; i < count; ++i, p += sym_size)
1097 {
1098 (*sympointers)[i] = NULL;
1099
1100 elfcpp::Sym<size, big_endian> sym(p);
1101
1102 unsigned int st_name = sym.get_st_name();
1103 if (st_name >= sym_name_size)
1104 {
1105 relobj->error(_("bad global symbol name offset %u at %zu"),
1106 st_name, i);
1107 continue;
1108 }
1109
1110 const char* name = sym_names + st_name;
1111
1112 bool is_ordinary;
1113 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114 sym.get_st_shndx(),
1115 &is_ordinary);
1116 unsigned int orig_st_shndx = st_shndx;
1117 if (!is_ordinary)
1118 orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120 if (st_shndx != elfcpp::SHN_UNDEF)
1121 ++*defined;
1122
1123 // A symbol defined in a section which we are not including must
1124 // be treated as an undefined symbol.
1125 bool is_defined_in_discarded_section = false;
1126 if (st_shndx != elfcpp::SHN_UNDEF
1127 && is_ordinary
1128 && !relobj->is_section_included(st_shndx)
1129 && !this->is_section_folded(relobj, st_shndx))
1130 {
1131 st_shndx = elfcpp::SHN_UNDEF;
1132 is_defined_in_discarded_section = true;
1133 }
1134
1135 // In an object file, an '@' in the name separates the symbol
1136 // name from the version name. If there are two '@' characters,
1137 // this is the default version.
1138 const char* ver = strchr(name, '@');
1139 Stringpool::Key ver_key = 0;
1140 int namelen = 0;
1141 // IS_DEFAULT_VERSION: is the version default?
1142 // IS_FORCED_LOCAL: is the symbol forced local?
1143 bool is_default_version = false;
1144 bool is_forced_local = false;
1145
1146 // FIXME: For incremental links, we don't store version information,
1147 // so we need to ignore version symbols for now.
1148 if (parameters->incremental_update() && ver != NULL)
1149 {
1150 namelen = ver - name;
1151 ver = NULL;
1152 }
1153
1154 if (ver != NULL)
1155 {
1156 // The symbol name is of the form foo@VERSION or foo@@VERSION
1157 namelen = ver - name;
1158 ++ver;
1159 if (*ver == '@')
1160 {
1161 is_default_version = true;
1162 ++ver;
1163 }
1164 ver = this->namepool_.add(ver, true, &ver_key);
1165 }
1166 // We don't want to assign a version to an undefined symbol,
1167 // even if it is listed in the version script. FIXME: What
1168 // about a common symbol?
1169 else
1170 {
1171 namelen = strlen(name);
1172 if (!this->version_script_.empty()
1173 && st_shndx != elfcpp::SHN_UNDEF)
1174 {
1175 // The symbol name did not have a version, but the
1176 // version script may assign a version anyway.
1177 std::string version;
1178 bool is_global;
1179 if (this->version_script_.get_symbol_version(name, &version,
1180 &is_global))
1181 {
1182 if (!is_global)
1183 is_forced_local = true;
1184 else if (!version.empty())
1185 {
1186 ver = this->namepool_.add_with_length(version.c_str(),
1187 version.length(),
1188 true,
1189 &ver_key);
1190 is_default_version = true;
1191 }
1192 }
1193 }
1194 }
1195
1196 elfcpp::Sym<size, big_endian>* psym = &sym;
1197 unsigned char symbuf[sym_size];
1198 elfcpp::Sym<size, big_endian> sym2(symbuf);
1199 if (just_symbols)
1200 {
1201 memcpy(symbuf, p, sym_size);
1202 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1203 if (orig_st_shndx != elfcpp::SHN_UNDEF
1204 && is_ordinary
1205 && relobj->e_type() == elfcpp::ET_REL)
1206 {
1207 // Symbol values in relocatable object files are section
1208 // relative. This is normally what we want, but since here
1209 // we are converting the symbol to absolute we need to add
1210 // the section address. The section address in an object
1211 // file is normally zero, but people can use a linker
1212 // script to change it.
1213 sw.put_st_value(sym.get_st_value()
1214 + relobj->section_address(orig_st_shndx));
1215 }
1216 st_shndx = elfcpp::SHN_ABS;
1217 is_ordinary = false;
1218 psym = &sym2;
1219 }
1220
1221 // Fix up visibility if object has no-export set.
1222 if (relobj->no_export()
1223 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1224 {
1225 // We may have copied symbol already above.
1226 if (psym != &sym2)
1227 {
1228 memcpy(symbuf, p, sym_size);
1229 psym = &sym2;
1230 }
1231
1232 elfcpp::STV visibility = sym2.get_st_visibility();
1233 if (visibility == elfcpp::STV_DEFAULT
1234 || visibility == elfcpp::STV_PROTECTED)
1235 {
1236 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1237 unsigned char nonvis = sym2.get_st_nonvis();
1238 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1239 }
1240 }
1241
1242 Stringpool::Key name_key;
1243 name = this->namepool_.add_with_length(name, namelen, true,
1244 &name_key);
1245
1246 Sized_symbol<size>* res;
1247 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1248 is_default_version, *psym, st_shndx,
1249 is_ordinary, orig_st_shndx);
1250
1251 if (is_forced_local)
1252 this->force_local(res);
1253
1254 // If building a shared library using garbage collection, do not
1255 // treat externally visible symbols as garbage.
1256 if (parameters->options().gc_sections()
1257 && parameters->options().shared())
1258 this->gc_mark_symbol_for_shlib(res);
1259
1260 if (is_defined_in_discarded_section)
1261 res->set_is_defined_in_discarded_section();
1262
1263 (*sympointers)[i] = res;
1264 }
1265 }
1266
1267 // Add a symbol from a plugin-claimed file.
1268
1269 template<int size, bool big_endian>
1270 Symbol*
1271 Symbol_table::add_from_pluginobj(
1272 Sized_pluginobj<size, big_endian>* obj,
1273 const char* name,
1274 const char* ver,
1275 elfcpp::Sym<size, big_endian>* sym)
1276 {
1277 unsigned int st_shndx = sym->get_st_shndx();
1278 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1279
1280 Stringpool::Key ver_key = 0;
1281 bool is_default_version = false;
1282 bool is_forced_local = false;
1283
1284 if (ver != NULL)
1285 {
1286 ver = this->namepool_.add(ver, true, &ver_key);
1287 }
1288 // We don't want to assign a version to an undefined symbol,
1289 // even if it is listed in the version script. FIXME: What
1290 // about a common symbol?
1291 else
1292 {
1293 if (!this->version_script_.empty()
1294 && st_shndx != elfcpp::SHN_UNDEF)
1295 {
1296 // The symbol name did not have a version, but the
1297 // version script may assign a version anyway.
1298 std::string version;
1299 bool is_global;
1300 if (this->version_script_.get_symbol_version(name, &version,
1301 &is_global))
1302 {
1303 if (!is_global)
1304 is_forced_local = true;
1305 else if (!version.empty())
1306 {
1307 ver = this->namepool_.add_with_length(version.c_str(),
1308 version.length(),
1309 true,
1310 &ver_key);
1311 is_default_version = true;
1312 }
1313 }
1314 }
1315 }
1316
1317 Stringpool::Key name_key;
1318 name = this->namepool_.add(name, true, &name_key);
1319
1320 Sized_symbol<size>* res;
1321 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1322 is_default_version, *sym, st_shndx,
1323 is_ordinary, st_shndx);
1324
1325 if (is_forced_local)
1326 this->force_local(res);
1327
1328 return res;
1329 }
1330
1331 // Add all the symbols in a dynamic object to the hash table.
1332
1333 template<int size, bool big_endian>
1334 void
1335 Symbol_table::add_from_dynobj(
1336 Sized_dynobj<size, big_endian>* dynobj,
1337 const unsigned char* syms,
1338 size_t count,
1339 const char* sym_names,
1340 size_t sym_name_size,
1341 const unsigned char* versym,
1342 size_t versym_size,
1343 const std::vector<const char*>* version_map,
1344 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1345 size_t* defined)
1346 {
1347 *defined = 0;
1348
1349 gold_assert(size == parameters->target().get_size());
1350
1351 if (dynobj->just_symbols())
1352 {
1353 gold_error(_("--just-symbols does not make sense with a shared object"));
1354 return;
1355 }
1356
1357 // FIXME: For incremental links, we don't store version information,
1358 // so we need to ignore version symbols for now.
1359 if (parameters->incremental_update())
1360 versym = NULL;
1361
1362 if (versym != NULL && versym_size / 2 < count)
1363 {
1364 dynobj->error(_("too few symbol versions"));
1365 return;
1366 }
1367
1368 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1369
1370 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1371 // weak aliases. This is necessary because if the dynamic object
1372 // provides the same variable under two names, one of which is a
1373 // weak definition, and the regular object refers to the weak
1374 // definition, we have to put both the weak definition and the
1375 // strong definition into the dynamic symbol table. Given a weak
1376 // definition, the only way that we can find the corresponding
1377 // strong definition, if any, is to search the symbol table.
1378 std::vector<Sized_symbol<size>*> object_symbols;
1379
1380 const unsigned char* p = syms;
1381 const unsigned char* vs = versym;
1382 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1383 {
1384 elfcpp::Sym<size, big_endian> sym(p);
1385
1386 if (sympointers != NULL)
1387 (*sympointers)[i] = NULL;
1388
1389 // Ignore symbols with local binding or that have
1390 // internal or hidden visibility.
1391 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1392 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1393 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1394 continue;
1395
1396 // A protected symbol in a shared library must be treated as a
1397 // normal symbol when viewed from outside the shared library.
1398 // Implement this by overriding the visibility here.
1399 elfcpp::Sym<size, big_endian>* psym = &sym;
1400 unsigned char symbuf[sym_size];
1401 elfcpp::Sym<size, big_endian> sym2(symbuf);
1402 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1403 {
1404 memcpy(symbuf, p, sym_size);
1405 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1406 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1407 psym = &sym2;
1408 }
1409
1410 unsigned int st_name = psym->get_st_name();
1411 if (st_name >= sym_name_size)
1412 {
1413 dynobj->error(_("bad symbol name offset %u at %zu"),
1414 st_name, i);
1415 continue;
1416 }
1417
1418 const char* name = sym_names + st_name;
1419
1420 bool is_ordinary;
1421 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1422 &is_ordinary);
1423
1424 if (st_shndx != elfcpp::SHN_UNDEF)
1425 ++*defined;
1426
1427 Sized_symbol<size>* res;
1428
1429 if (versym == NULL)
1430 {
1431 Stringpool::Key name_key;
1432 name = this->namepool_.add(name, true, &name_key);
1433 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1434 false, *psym, st_shndx, is_ordinary,
1435 st_shndx);
1436 }
1437 else
1438 {
1439 // Read the version information.
1440
1441 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1442
1443 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1444 v &= elfcpp::VERSYM_VERSION;
1445
1446 // The Sun documentation says that V can be VER_NDX_LOCAL,
1447 // or VER_NDX_GLOBAL, or a version index. The meaning of
1448 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1449 // The old GNU linker will happily generate VER_NDX_LOCAL
1450 // for an undefined symbol. I don't know what the Sun
1451 // linker will generate.
1452
1453 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1454 && st_shndx != elfcpp::SHN_UNDEF)
1455 {
1456 // This symbol should not be visible outside the object.
1457 continue;
1458 }
1459
1460 // At this point we are definitely going to add this symbol.
1461 Stringpool::Key name_key;
1462 name = this->namepool_.add(name, true, &name_key);
1463
1464 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1465 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1466 {
1467 // This symbol does not have a version.
1468 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1469 false, *psym, st_shndx, is_ordinary,
1470 st_shndx);
1471 }
1472 else
1473 {
1474 if (v >= version_map->size())
1475 {
1476 dynobj->error(_("versym for symbol %zu out of range: %u"),
1477 i, v);
1478 continue;
1479 }
1480
1481 const char* version = (*version_map)[v];
1482 if (version == NULL)
1483 {
1484 dynobj->error(_("versym for symbol %zu has no name: %u"),
1485 i, v);
1486 continue;
1487 }
1488
1489 Stringpool::Key version_key;
1490 version = this->namepool_.add(version, true, &version_key);
1491
1492 // If this is an absolute symbol, and the version name
1493 // and symbol name are the same, then this is the
1494 // version definition symbol. These symbols exist to
1495 // support using -u to pull in particular versions. We
1496 // do not want to record a version for them.
1497 if (st_shndx == elfcpp::SHN_ABS
1498 && !is_ordinary
1499 && name_key == version_key)
1500 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1501 false, *psym, st_shndx, is_ordinary,
1502 st_shndx);
1503 else
1504 {
1505 const bool is_default_version =
1506 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1507 res = this->add_from_object(dynobj, name, name_key, version,
1508 version_key, is_default_version,
1509 *psym, st_shndx,
1510 is_ordinary, st_shndx);
1511 }
1512 }
1513 }
1514
1515 // Note that it is possible that RES was overridden by an
1516 // earlier object, in which case it can't be aliased here.
1517 if (st_shndx != elfcpp::SHN_UNDEF
1518 && is_ordinary
1519 && psym->get_st_type() == elfcpp::STT_OBJECT
1520 && res->source() == Symbol::FROM_OBJECT
1521 && res->object() == dynobj)
1522 object_symbols.push_back(res);
1523
1524 if (sympointers != NULL)
1525 (*sympointers)[i] = res;
1526 }
1527
1528 this->record_weak_aliases(&object_symbols);
1529 }
1530
1531 // Add a symbol from a incremental object file.
1532
1533 template<int size, bool big_endian>
1534 Sized_symbol<size>*
1535 Symbol_table::add_from_incrobj(
1536 Object* obj,
1537 const char* name,
1538 const char* ver,
1539 elfcpp::Sym<size, big_endian>* sym)
1540 {
1541 unsigned int st_shndx = sym->get_st_shndx();
1542 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1543
1544 Stringpool::Key ver_key = 0;
1545 bool is_default_version = false;
1546 bool is_forced_local = false;
1547
1548 Stringpool::Key name_key;
1549 name = this->namepool_.add(name, true, &name_key);
1550
1551 Sized_symbol<size>* res;
1552 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1553 is_default_version, *sym, st_shndx,
1554 is_ordinary, st_shndx);
1555
1556 if (is_forced_local)
1557 this->force_local(res);
1558
1559 return res;
1560 }
1561
1562 // This is used to sort weak aliases. We sort them first by section
1563 // index, then by offset, then by weak ahead of strong.
1564
1565 template<int size>
1566 class Weak_alias_sorter
1567 {
1568 public:
1569 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1570 };
1571
1572 template<int size>
1573 bool
1574 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1575 const Sized_symbol<size>* s2) const
1576 {
1577 bool is_ordinary;
1578 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1579 gold_assert(is_ordinary);
1580 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1581 gold_assert(is_ordinary);
1582 if (s1_shndx != s2_shndx)
1583 return s1_shndx < s2_shndx;
1584
1585 if (s1->value() != s2->value())
1586 return s1->value() < s2->value();
1587 if (s1->binding() != s2->binding())
1588 {
1589 if (s1->binding() == elfcpp::STB_WEAK)
1590 return true;
1591 if (s2->binding() == elfcpp::STB_WEAK)
1592 return false;
1593 }
1594 return std::string(s1->name()) < std::string(s2->name());
1595 }
1596
1597 // SYMBOLS is a list of object symbols from a dynamic object. Look
1598 // for any weak aliases, and record them so that if we add the weak
1599 // alias to the dynamic symbol table, we also add the corresponding
1600 // strong symbol.
1601
1602 template<int size>
1603 void
1604 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1605 {
1606 // Sort the vector by section index, then by offset, then by weak
1607 // ahead of strong.
1608 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1609
1610 // Walk through the vector. For each weak definition, record
1611 // aliases.
1612 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1613 symbols->begin();
1614 p != symbols->end();
1615 ++p)
1616 {
1617 if ((*p)->binding() != elfcpp::STB_WEAK)
1618 continue;
1619
1620 // Build a circular list of weak aliases. Each symbol points to
1621 // the next one in the circular list.
1622
1623 Sized_symbol<size>* from_sym = *p;
1624 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1625 for (q = p + 1; q != symbols->end(); ++q)
1626 {
1627 bool dummy;
1628 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1629 || (*q)->value() != from_sym->value())
1630 break;
1631
1632 this->weak_aliases_[from_sym] = *q;
1633 from_sym->set_has_alias();
1634 from_sym = *q;
1635 }
1636
1637 if (from_sym != *p)
1638 {
1639 this->weak_aliases_[from_sym] = *p;
1640 from_sym->set_has_alias();
1641 }
1642
1643 p = q - 1;
1644 }
1645 }
1646
1647 // Create and return a specially defined symbol. If ONLY_IF_REF is
1648 // true, then only create the symbol if there is a reference to it.
1649 // If this does not return NULL, it sets *POLDSYM to the existing
1650 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1651 // resolve the newly created symbol to the old one. This
1652 // canonicalizes *PNAME and *PVERSION.
1653
1654 template<int size, bool big_endian>
1655 Sized_symbol<size>*
1656 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1657 bool only_if_ref,
1658 Sized_symbol<size>** poldsym,
1659 bool* resolve_oldsym)
1660 {
1661 *resolve_oldsym = false;
1662
1663 // If the caller didn't give us a version, see if we get one from
1664 // the version script.
1665 std::string v;
1666 bool is_default_version = false;
1667 if (*pversion == NULL)
1668 {
1669 bool is_global;
1670 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1671 {
1672 if (is_global && !v.empty())
1673 {
1674 *pversion = v.c_str();
1675 // If we get the version from a version script, then we
1676 // are also the default version.
1677 is_default_version = true;
1678 }
1679 }
1680 }
1681
1682 Symbol* oldsym;
1683 Sized_symbol<size>* sym;
1684
1685 bool add_to_table = false;
1686 typename Symbol_table_type::iterator add_loc = this->table_.end();
1687 bool add_def_to_table = false;
1688 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1689
1690 if (only_if_ref)
1691 {
1692 oldsym = this->lookup(*pname, *pversion);
1693 if (oldsym == NULL && is_default_version)
1694 oldsym = this->lookup(*pname, NULL);
1695 if (oldsym == NULL || !oldsym->is_undefined())
1696 return NULL;
1697
1698 *pname = oldsym->name();
1699 if (is_default_version)
1700 *pversion = this->namepool_.add(*pversion, true, NULL);
1701 else
1702 *pversion = oldsym->version();
1703 }
1704 else
1705 {
1706 // Canonicalize NAME and VERSION.
1707 Stringpool::Key name_key;
1708 *pname = this->namepool_.add(*pname, true, &name_key);
1709
1710 Stringpool::Key version_key = 0;
1711 if (*pversion != NULL)
1712 *pversion = this->namepool_.add(*pversion, true, &version_key);
1713
1714 Symbol* const snull = NULL;
1715 std::pair<typename Symbol_table_type::iterator, bool> ins =
1716 this->table_.insert(std::make_pair(std::make_pair(name_key,
1717 version_key),
1718 snull));
1719
1720 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1721 std::make_pair(this->table_.end(), false);
1722 if (is_default_version)
1723 {
1724 const Stringpool::Key vnull = 0;
1725 insdefault =
1726 this->table_.insert(std::make_pair(std::make_pair(name_key,
1727 vnull),
1728 snull));
1729 }
1730
1731 if (!ins.second)
1732 {
1733 // We already have a symbol table entry for NAME/VERSION.
1734 oldsym = ins.first->second;
1735 gold_assert(oldsym != NULL);
1736
1737 if (is_default_version)
1738 {
1739 Sized_symbol<size>* soldsym =
1740 this->get_sized_symbol<size>(oldsym);
1741 this->define_default_version<size, big_endian>(soldsym,
1742 insdefault.second,
1743 insdefault.first);
1744 }
1745 }
1746 else
1747 {
1748 // We haven't seen this symbol before.
1749 gold_assert(ins.first->second == NULL);
1750
1751 add_to_table = true;
1752 add_loc = ins.first;
1753
1754 if (is_default_version && !insdefault.second)
1755 {
1756 // We are adding NAME/VERSION, and it is the default
1757 // version. We already have an entry for NAME/NULL.
1758 oldsym = insdefault.first->second;
1759 *resolve_oldsym = true;
1760 }
1761 else
1762 {
1763 oldsym = NULL;
1764
1765 if (is_default_version)
1766 {
1767 add_def_to_table = true;
1768 add_def_loc = insdefault.first;
1769 }
1770 }
1771 }
1772 }
1773
1774 const Target& target = parameters->target();
1775 if (!target.has_make_symbol())
1776 sym = new Sized_symbol<size>();
1777 else
1778 {
1779 Sized_target<size, big_endian>* sized_target =
1780 parameters->sized_target<size, big_endian>();
1781 sym = sized_target->make_symbol();
1782 if (sym == NULL)
1783 return NULL;
1784 }
1785
1786 if (add_to_table)
1787 add_loc->second = sym;
1788 else
1789 gold_assert(oldsym != NULL);
1790
1791 if (add_def_to_table)
1792 add_def_loc->second = sym;
1793
1794 *poldsym = this->get_sized_symbol<size>(oldsym);
1795
1796 return sym;
1797 }
1798
1799 // Define a symbol based on an Output_data.
1800
1801 Symbol*
1802 Symbol_table::define_in_output_data(const char* name,
1803 const char* version,
1804 Defined defined,
1805 Output_data* od,
1806 uint64_t value,
1807 uint64_t symsize,
1808 elfcpp::STT type,
1809 elfcpp::STB binding,
1810 elfcpp::STV visibility,
1811 unsigned char nonvis,
1812 bool offset_is_from_end,
1813 bool only_if_ref)
1814 {
1815 if (parameters->target().get_size() == 32)
1816 {
1817 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1818 return this->do_define_in_output_data<32>(name, version, defined, od,
1819 value, symsize, type, binding,
1820 visibility, nonvis,
1821 offset_is_from_end,
1822 only_if_ref);
1823 #else
1824 gold_unreachable();
1825 #endif
1826 }
1827 else if (parameters->target().get_size() == 64)
1828 {
1829 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1830 return this->do_define_in_output_data<64>(name, version, defined, od,
1831 value, symsize, type, binding,
1832 visibility, nonvis,
1833 offset_is_from_end,
1834 only_if_ref);
1835 #else
1836 gold_unreachable();
1837 #endif
1838 }
1839 else
1840 gold_unreachable();
1841 }
1842
1843 // Define a symbol in an Output_data, sized version.
1844
1845 template<int size>
1846 Sized_symbol<size>*
1847 Symbol_table::do_define_in_output_data(
1848 const char* name,
1849 const char* version,
1850 Defined defined,
1851 Output_data* od,
1852 typename elfcpp::Elf_types<size>::Elf_Addr value,
1853 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1854 elfcpp::STT type,
1855 elfcpp::STB binding,
1856 elfcpp::STV visibility,
1857 unsigned char nonvis,
1858 bool offset_is_from_end,
1859 bool only_if_ref)
1860 {
1861 Sized_symbol<size>* sym;
1862 Sized_symbol<size>* oldsym;
1863 bool resolve_oldsym;
1864
1865 if (parameters->target().is_big_endian())
1866 {
1867 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1868 sym = this->define_special_symbol<size, true>(&name, &version,
1869 only_if_ref, &oldsym,
1870 &resolve_oldsym);
1871 #else
1872 gold_unreachable();
1873 #endif
1874 }
1875 else
1876 {
1877 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1878 sym = this->define_special_symbol<size, false>(&name, &version,
1879 only_if_ref, &oldsym,
1880 &resolve_oldsym);
1881 #else
1882 gold_unreachable();
1883 #endif
1884 }
1885
1886 if (sym == NULL)
1887 return NULL;
1888
1889 sym->init_output_data(name, version, od, value, symsize, type, binding,
1890 visibility, nonvis, offset_is_from_end,
1891 defined == PREDEFINED);
1892
1893 if (oldsym == NULL)
1894 {
1895 if (binding == elfcpp::STB_LOCAL
1896 || this->version_script_.symbol_is_local(name))
1897 this->force_local(sym);
1898 else if (version != NULL)
1899 sym->set_is_default();
1900 return sym;
1901 }
1902
1903 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1904 this->override_with_special(oldsym, sym);
1905
1906 if (resolve_oldsym)
1907 return sym;
1908 else
1909 {
1910 delete sym;
1911 return oldsym;
1912 }
1913 }
1914
1915 // Define a symbol based on an Output_segment.
1916
1917 Symbol*
1918 Symbol_table::define_in_output_segment(const char* name,
1919 const char* version,
1920 Defined defined,
1921 Output_segment* os,
1922 uint64_t value,
1923 uint64_t symsize,
1924 elfcpp::STT type,
1925 elfcpp::STB binding,
1926 elfcpp::STV visibility,
1927 unsigned char nonvis,
1928 Symbol::Segment_offset_base offset_base,
1929 bool only_if_ref)
1930 {
1931 if (parameters->target().get_size() == 32)
1932 {
1933 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1934 return this->do_define_in_output_segment<32>(name, version, defined, os,
1935 value, symsize, type,
1936 binding, visibility, nonvis,
1937 offset_base, only_if_ref);
1938 #else
1939 gold_unreachable();
1940 #endif
1941 }
1942 else if (parameters->target().get_size() == 64)
1943 {
1944 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1945 return this->do_define_in_output_segment<64>(name, version, defined, os,
1946 value, symsize, type,
1947 binding, visibility, nonvis,
1948 offset_base, only_if_ref);
1949 #else
1950 gold_unreachable();
1951 #endif
1952 }
1953 else
1954 gold_unreachable();
1955 }
1956
1957 // Define a symbol in an Output_segment, sized version.
1958
1959 template<int size>
1960 Sized_symbol<size>*
1961 Symbol_table::do_define_in_output_segment(
1962 const char* name,
1963 const char* version,
1964 Defined defined,
1965 Output_segment* os,
1966 typename elfcpp::Elf_types<size>::Elf_Addr value,
1967 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1968 elfcpp::STT type,
1969 elfcpp::STB binding,
1970 elfcpp::STV visibility,
1971 unsigned char nonvis,
1972 Symbol::Segment_offset_base offset_base,
1973 bool only_if_ref)
1974 {
1975 Sized_symbol<size>* sym;
1976 Sized_symbol<size>* oldsym;
1977 bool resolve_oldsym;
1978
1979 if (parameters->target().is_big_endian())
1980 {
1981 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1982 sym = this->define_special_symbol<size, true>(&name, &version,
1983 only_if_ref, &oldsym,
1984 &resolve_oldsym);
1985 #else
1986 gold_unreachable();
1987 #endif
1988 }
1989 else
1990 {
1991 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1992 sym = this->define_special_symbol<size, false>(&name, &version,
1993 only_if_ref, &oldsym,
1994 &resolve_oldsym);
1995 #else
1996 gold_unreachable();
1997 #endif
1998 }
1999
2000 if (sym == NULL)
2001 return NULL;
2002
2003 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2004 visibility, nonvis, offset_base,
2005 defined == PREDEFINED);
2006
2007 if (oldsym == NULL)
2008 {
2009 if (binding == elfcpp::STB_LOCAL
2010 || this->version_script_.symbol_is_local(name))
2011 this->force_local(sym);
2012 else if (version != NULL)
2013 sym->set_is_default();
2014 return sym;
2015 }
2016
2017 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2018 this->override_with_special(oldsym, sym);
2019
2020 if (resolve_oldsym)
2021 return sym;
2022 else
2023 {
2024 delete sym;
2025 return oldsym;
2026 }
2027 }
2028
2029 // Define a special symbol with a constant value. It is a multiple
2030 // definition error if this symbol is already defined.
2031
2032 Symbol*
2033 Symbol_table::define_as_constant(const char* name,
2034 const char* version,
2035 Defined defined,
2036 uint64_t value,
2037 uint64_t symsize,
2038 elfcpp::STT type,
2039 elfcpp::STB binding,
2040 elfcpp::STV visibility,
2041 unsigned char nonvis,
2042 bool only_if_ref,
2043 bool force_override)
2044 {
2045 if (parameters->target().get_size() == 32)
2046 {
2047 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2048 return this->do_define_as_constant<32>(name, version, defined, value,
2049 symsize, type, binding,
2050 visibility, nonvis, only_if_ref,
2051 force_override);
2052 #else
2053 gold_unreachable();
2054 #endif
2055 }
2056 else if (parameters->target().get_size() == 64)
2057 {
2058 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2059 return this->do_define_as_constant<64>(name, version, defined, value,
2060 symsize, type, binding,
2061 visibility, nonvis, only_if_ref,
2062 force_override);
2063 #else
2064 gold_unreachable();
2065 #endif
2066 }
2067 else
2068 gold_unreachable();
2069 }
2070
2071 // Define a symbol as a constant, sized version.
2072
2073 template<int size>
2074 Sized_symbol<size>*
2075 Symbol_table::do_define_as_constant(
2076 const char* name,
2077 const char* version,
2078 Defined defined,
2079 typename elfcpp::Elf_types<size>::Elf_Addr value,
2080 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2081 elfcpp::STT type,
2082 elfcpp::STB binding,
2083 elfcpp::STV visibility,
2084 unsigned char nonvis,
2085 bool only_if_ref,
2086 bool force_override)
2087 {
2088 Sized_symbol<size>* sym;
2089 Sized_symbol<size>* oldsym;
2090 bool resolve_oldsym;
2091
2092 if (parameters->target().is_big_endian())
2093 {
2094 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2095 sym = this->define_special_symbol<size, true>(&name, &version,
2096 only_if_ref, &oldsym,
2097 &resolve_oldsym);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102 else
2103 {
2104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2105 sym = this->define_special_symbol<size, false>(&name, &version,
2106 only_if_ref, &oldsym,
2107 &resolve_oldsym);
2108 #else
2109 gold_unreachable();
2110 #endif
2111 }
2112
2113 if (sym == NULL)
2114 return NULL;
2115
2116 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2117 nonvis, defined == PREDEFINED);
2118
2119 if (oldsym == NULL)
2120 {
2121 // Version symbols are absolute symbols with name == version.
2122 // We don't want to force them to be local.
2123 if ((version == NULL
2124 || name != version
2125 || value != 0)
2126 && (binding == elfcpp::STB_LOCAL
2127 || this->version_script_.symbol_is_local(name)))
2128 this->force_local(sym);
2129 else if (version != NULL
2130 && (name != version || value != 0))
2131 sym->set_is_default();
2132 return sym;
2133 }
2134
2135 if (force_override
2136 || Symbol_table::should_override_with_special(oldsym, type, defined))
2137 this->override_with_special(oldsym, sym);
2138
2139 if (resolve_oldsym)
2140 return sym;
2141 else
2142 {
2143 delete sym;
2144 return oldsym;
2145 }
2146 }
2147
2148 // Define a set of symbols in output sections.
2149
2150 void
2151 Symbol_table::define_symbols(const Layout* layout, int count,
2152 const Define_symbol_in_section* p,
2153 bool only_if_ref)
2154 {
2155 for (int i = 0; i < count; ++i, ++p)
2156 {
2157 Output_section* os = layout->find_output_section(p->output_section);
2158 if (os != NULL)
2159 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2160 p->size, p->type, p->binding,
2161 p->visibility, p->nonvis,
2162 p->offset_is_from_end,
2163 only_if_ref || p->only_if_ref);
2164 else
2165 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2166 p->type, p->binding, p->visibility, p->nonvis,
2167 only_if_ref || p->only_if_ref,
2168 false);
2169 }
2170 }
2171
2172 // Define a set of symbols in output segments.
2173
2174 void
2175 Symbol_table::define_symbols(const Layout* layout, int count,
2176 const Define_symbol_in_segment* p,
2177 bool only_if_ref)
2178 {
2179 for (int i = 0; i < count; ++i, ++p)
2180 {
2181 Output_segment* os = layout->find_output_segment(p->segment_type,
2182 p->segment_flags_set,
2183 p->segment_flags_clear);
2184 if (os != NULL)
2185 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2186 p->size, p->type, p->binding,
2187 p->visibility, p->nonvis,
2188 p->offset_base,
2189 only_if_ref || p->only_if_ref);
2190 else
2191 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2192 p->type, p->binding, p->visibility, p->nonvis,
2193 only_if_ref || p->only_if_ref,
2194 false);
2195 }
2196 }
2197
2198 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2199 // symbol should be defined--typically a .dyn.bss section. VALUE is
2200 // the offset within POSD.
2201
2202 template<int size>
2203 void
2204 Symbol_table::define_with_copy_reloc(
2205 Sized_symbol<size>* csym,
2206 Output_data* posd,
2207 typename elfcpp::Elf_types<size>::Elf_Addr value)
2208 {
2209 gold_assert(csym->is_from_dynobj());
2210 gold_assert(!csym->is_copied_from_dynobj());
2211 Object* object = csym->object();
2212 gold_assert(object->is_dynamic());
2213 Dynobj* dynobj = static_cast<Dynobj*>(object);
2214
2215 // Our copied variable has to override any variable in a shared
2216 // library.
2217 elfcpp::STB binding = csym->binding();
2218 if (binding == elfcpp::STB_WEAK)
2219 binding = elfcpp::STB_GLOBAL;
2220
2221 this->define_in_output_data(csym->name(), csym->version(), COPY,
2222 posd, value, csym->symsize(),
2223 csym->type(), binding,
2224 csym->visibility(), csym->nonvis(),
2225 false, false);
2226
2227 csym->set_is_copied_from_dynobj();
2228 csym->set_needs_dynsym_entry();
2229
2230 this->copied_symbol_dynobjs_[csym] = dynobj;
2231
2232 // We have now defined all aliases, but we have not entered them all
2233 // in the copied_symbol_dynobjs_ map.
2234 if (csym->has_alias())
2235 {
2236 Symbol* sym = csym;
2237 while (true)
2238 {
2239 sym = this->weak_aliases_[sym];
2240 if (sym == csym)
2241 break;
2242 gold_assert(sym->output_data() == posd);
2243
2244 sym->set_is_copied_from_dynobj();
2245 this->copied_symbol_dynobjs_[sym] = dynobj;
2246 }
2247 }
2248 }
2249
2250 // SYM is defined using a COPY reloc. Return the dynamic object where
2251 // the original definition was found.
2252
2253 Dynobj*
2254 Symbol_table::get_copy_source(const Symbol* sym) const
2255 {
2256 gold_assert(sym->is_copied_from_dynobj());
2257 Copied_symbol_dynobjs::const_iterator p =
2258 this->copied_symbol_dynobjs_.find(sym);
2259 gold_assert(p != this->copied_symbol_dynobjs_.end());
2260 return p->second;
2261 }
2262
2263 // Add any undefined symbols named on the command line.
2264
2265 void
2266 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2267 {
2268 if (parameters->options().any_undefined()
2269 || layout->script_options()->any_unreferenced())
2270 {
2271 if (parameters->target().get_size() == 32)
2272 {
2273 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2274 this->do_add_undefined_symbols_from_command_line<32>(layout);
2275 #else
2276 gold_unreachable();
2277 #endif
2278 }
2279 else if (parameters->target().get_size() == 64)
2280 {
2281 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2282 this->do_add_undefined_symbols_from_command_line<64>(layout);
2283 #else
2284 gold_unreachable();
2285 #endif
2286 }
2287 else
2288 gold_unreachable();
2289 }
2290 }
2291
2292 template<int size>
2293 void
2294 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2295 {
2296 for (options::String_set::const_iterator p =
2297 parameters->options().undefined_begin();
2298 p != parameters->options().undefined_end();
2299 ++p)
2300 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2301
2302 for (Script_options::referenced_const_iterator p =
2303 layout->script_options()->referenced_begin();
2304 p != layout->script_options()->referenced_end();
2305 ++p)
2306 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2307 }
2308
2309 template<int size>
2310 void
2311 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2312 {
2313 if (this->lookup(name) != NULL)
2314 return;
2315
2316 const char* version = NULL;
2317
2318 Sized_symbol<size>* sym;
2319 Sized_symbol<size>* oldsym;
2320 bool resolve_oldsym;
2321 if (parameters->target().is_big_endian())
2322 {
2323 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2324 sym = this->define_special_symbol<size, true>(&name, &version,
2325 false, &oldsym,
2326 &resolve_oldsym);
2327 #else
2328 gold_unreachable();
2329 #endif
2330 }
2331 else
2332 {
2333 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2334 sym = this->define_special_symbol<size, false>(&name, &version,
2335 false, &oldsym,
2336 &resolve_oldsym);
2337 #else
2338 gold_unreachable();
2339 #endif
2340 }
2341
2342 gold_assert(oldsym == NULL);
2343
2344 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2345 elfcpp::STV_DEFAULT, 0);
2346 ++this->saw_undefined_;
2347 }
2348
2349 // Set the dynamic symbol indexes. INDEX is the index of the first
2350 // global dynamic symbol. Pointers to the symbols are stored into the
2351 // vector SYMS. The names are added to DYNPOOL. This returns an
2352 // updated dynamic symbol index.
2353
2354 unsigned int
2355 Symbol_table::set_dynsym_indexes(unsigned int index,
2356 std::vector<Symbol*>* syms,
2357 Stringpool* dynpool,
2358 Versions* versions)
2359 {
2360 for (Symbol_table_type::iterator p = this->table_.begin();
2361 p != this->table_.end();
2362 ++p)
2363 {
2364 Symbol* sym = p->second;
2365
2366 // Note that SYM may already have a dynamic symbol index, since
2367 // some symbols appear more than once in the symbol table, with
2368 // and without a version.
2369
2370 if (!sym->should_add_dynsym_entry(this))
2371 sym->set_dynsym_index(-1U);
2372 else if (!sym->has_dynsym_index())
2373 {
2374 sym->set_dynsym_index(index);
2375 ++index;
2376 syms->push_back(sym);
2377 dynpool->add(sym->name(), false, NULL);
2378
2379 // Record any version information.
2380 if (sym->version() != NULL)
2381 versions->record_version(this, dynpool, sym);
2382
2383 // If the symbol is defined in a dynamic object and is
2384 // referenced in a regular object, then mark the dynamic
2385 // object as needed. This is used to implement --as-needed.
2386 if (sym->is_from_dynobj() && sym->in_reg())
2387 sym->object()->set_is_needed();
2388 }
2389 }
2390
2391 // Finish up the versions. In some cases this may add new dynamic
2392 // symbols.
2393 index = versions->finalize(this, index, syms);
2394
2395 return index;
2396 }
2397
2398 // Set the final values for all the symbols. The index of the first
2399 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2400 // file offset OFF. Add their names to POOL. Return the new file
2401 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2402
2403 off_t
2404 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2405 size_t dyncount, Stringpool* pool,
2406 unsigned int* plocal_symcount)
2407 {
2408 off_t ret;
2409
2410 gold_assert(*plocal_symcount != 0);
2411 this->first_global_index_ = *plocal_symcount;
2412
2413 this->dynamic_offset_ = dynoff;
2414 this->first_dynamic_global_index_ = dyn_global_index;
2415 this->dynamic_count_ = dyncount;
2416
2417 if (parameters->target().get_size() == 32)
2418 {
2419 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2420 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2421 #else
2422 gold_unreachable();
2423 #endif
2424 }
2425 else if (parameters->target().get_size() == 64)
2426 {
2427 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2428 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2429 #else
2430 gold_unreachable();
2431 #endif
2432 }
2433 else
2434 gold_unreachable();
2435
2436 // Now that we have the final symbol table, we can reliably note
2437 // which symbols should get warnings.
2438 this->warnings_.note_warnings(this);
2439
2440 return ret;
2441 }
2442
2443 // SYM is going into the symbol table at *PINDEX. Add the name to
2444 // POOL, update *PINDEX and *POFF.
2445
2446 template<int size>
2447 void
2448 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2449 unsigned int* pindex, off_t* poff)
2450 {
2451 sym->set_symtab_index(*pindex);
2452 if (sym->version() == NULL || !parameters->options().relocatable())
2453 pool->add(sym->name(), false, NULL);
2454 else
2455 pool->add(sym->versioned_name(), true, NULL);
2456 ++*pindex;
2457 *poff += elfcpp::Elf_sizes<size>::sym_size;
2458 }
2459
2460 // Set the final value for all the symbols. This is called after
2461 // Layout::finalize, so all the output sections have their final
2462 // address.
2463
2464 template<int size>
2465 off_t
2466 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2467 unsigned int* plocal_symcount)
2468 {
2469 off = align_address(off, size >> 3);
2470 this->offset_ = off;
2471
2472 unsigned int index = *plocal_symcount;
2473 const unsigned int orig_index = index;
2474
2475 // First do all the symbols which have been forced to be local, as
2476 // they must appear before all global symbols.
2477 for (Forced_locals::iterator p = this->forced_locals_.begin();
2478 p != this->forced_locals_.end();
2479 ++p)
2480 {
2481 Symbol* sym = *p;
2482 gold_assert(sym->is_forced_local());
2483 if (this->sized_finalize_symbol<size>(sym))
2484 {
2485 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2486 ++*plocal_symcount;
2487 }
2488 }
2489
2490 // Now do all the remaining symbols.
2491 for (Symbol_table_type::iterator p = this->table_.begin();
2492 p != this->table_.end();
2493 ++p)
2494 {
2495 Symbol* sym = p->second;
2496 if (this->sized_finalize_symbol<size>(sym))
2497 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2498 }
2499
2500 this->output_count_ = index - orig_index;
2501
2502 return off;
2503 }
2504
2505 // Compute the final value of SYM and store status in location PSTATUS.
2506 // During relaxation, this may be called multiple times for a symbol to
2507 // compute its would-be final value in each relaxation pass.
2508
2509 template<int size>
2510 typename Sized_symbol<size>::Value_type
2511 Symbol_table::compute_final_value(
2512 const Sized_symbol<size>* sym,
2513 Compute_final_value_status* pstatus) const
2514 {
2515 typedef typename Sized_symbol<size>::Value_type Value_type;
2516 Value_type value;
2517
2518 switch (sym->source())
2519 {
2520 case Symbol::FROM_OBJECT:
2521 {
2522 bool is_ordinary;
2523 unsigned int shndx = sym->shndx(&is_ordinary);
2524
2525 if (!is_ordinary
2526 && shndx != elfcpp::SHN_ABS
2527 && !Symbol::is_common_shndx(shndx))
2528 {
2529 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2530 return 0;
2531 }
2532
2533 Object* symobj = sym->object();
2534 if (symobj->is_dynamic())
2535 {
2536 value = 0;
2537 shndx = elfcpp::SHN_UNDEF;
2538 }
2539 else if (symobj->pluginobj() != NULL)
2540 {
2541 value = 0;
2542 shndx = elfcpp::SHN_UNDEF;
2543 }
2544 else if (shndx == elfcpp::SHN_UNDEF)
2545 value = 0;
2546 else if (!is_ordinary
2547 && (shndx == elfcpp::SHN_ABS
2548 || Symbol::is_common_shndx(shndx)))
2549 value = sym->value();
2550 else
2551 {
2552 Relobj* relobj = static_cast<Relobj*>(symobj);
2553 Output_section* os = relobj->output_section(shndx);
2554
2555 if (this->is_section_folded(relobj, shndx))
2556 {
2557 gold_assert(os == NULL);
2558 // Get the os of the section it is folded onto.
2559 Section_id folded = this->icf_->get_folded_section(relobj,
2560 shndx);
2561 gold_assert(folded.first != NULL);
2562 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2563 unsigned folded_shndx = folded.second;
2564
2565 os = folded_obj->output_section(folded_shndx);
2566 gold_assert(os != NULL);
2567
2568 // Replace (relobj, shndx) with canonical ICF input section.
2569 shndx = folded_shndx;
2570 relobj = folded_obj;
2571 }
2572
2573 uint64_t secoff64 = relobj->output_section_offset(shndx);
2574 if (os == NULL)
2575 {
2576 bool static_or_reloc = (parameters->doing_static_link() ||
2577 parameters->options().relocatable());
2578 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2579
2580 *pstatus = CFVS_NO_OUTPUT_SECTION;
2581 return 0;
2582 }
2583
2584 if (secoff64 == -1ULL)
2585 {
2586 // The section needs special handling (e.g., a merge section).
2587
2588 value = os->output_address(relobj, shndx, sym->value());
2589 }
2590 else
2591 {
2592 Value_type secoff =
2593 convert_types<Value_type, uint64_t>(secoff64);
2594 if (sym->type() == elfcpp::STT_TLS)
2595 value = sym->value() + os->tls_offset() + secoff;
2596 else
2597 value = sym->value() + os->address() + secoff;
2598 }
2599 }
2600 }
2601 break;
2602
2603 case Symbol::IN_OUTPUT_DATA:
2604 {
2605 Output_data* od = sym->output_data();
2606 value = sym->value();
2607 if (sym->type() != elfcpp::STT_TLS)
2608 value += od->address();
2609 else
2610 {
2611 Output_section* os = od->output_section();
2612 gold_assert(os != NULL);
2613 value += os->tls_offset() + (od->address() - os->address());
2614 }
2615 if (sym->offset_is_from_end())
2616 value += od->data_size();
2617 }
2618 break;
2619
2620 case Symbol::IN_OUTPUT_SEGMENT:
2621 {
2622 Output_segment* os = sym->output_segment();
2623 value = sym->value();
2624 if (sym->type() != elfcpp::STT_TLS)
2625 value += os->vaddr();
2626 switch (sym->offset_base())
2627 {
2628 case Symbol::SEGMENT_START:
2629 break;
2630 case Symbol::SEGMENT_END:
2631 value += os->memsz();
2632 break;
2633 case Symbol::SEGMENT_BSS:
2634 value += os->filesz();
2635 break;
2636 default:
2637 gold_unreachable();
2638 }
2639 }
2640 break;
2641
2642 case Symbol::IS_CONSTANT:
2643 value = sym->value();
2644 break;
2645
2646 case Symbol::IS_UNDEFINED:
2647 value = 0;
2648 break;
2649
2650 default:
2651 gold_unreachable();
2652 }
2653
2654 *pstatus = CFVS_OK;
2655 return value;
2656 }
2657
2658 // Finalize the symbol SYM. This returns true if the symbol should be
2659 // added to the symbol table, false otherwise.
2660
2661 template<int size>
2662 bool
2663 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2664 {
2665 typedef typename Sized_symbol<size>::Value_type Value_type;
2666
2667 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2668
2669 // The default version of a symbol may appear twice in the symbol
2670 // table. We only need to finalize it once.
2671 if (sym->has_symtab_index())
2672 return false;
2673
2674 if (!sym->in_reg())
2675 {
2676 gold_assert(!sym->has_symtab_index());
2677 sym->set_symtab_index(-1U);
2678 gold_assert(sym->dynsym_index() == -1U);
2679 return false;
2680 }
2681
2682 // If the symbol is only present on plugin files, the plugin decided we
2683 // don't need it.
2684 if (!sym->in_real_elf())
2685 {
2686 gold_assert(!sym->has_symtab_index());
2687 sym->set_symtab_index(-1U);
2688 return false;
2689 }
2690
2691 // Compute final symbol value.
2692 Compute_final_value_status status;
2693 Value_type value = this->compute_final_value(sym, &status);
2694
2695 switch (status)
2696 {
2697 case CFVS_OK:
2698 break;
2699 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2700 {
2701 bool is_ordinary;
2702 unsigned int shndx = sym->shndx(&is_ordinary);
2703 gold_error(_("%s: unsupported symbol section 0x%x"),
2704 sym->demangled_name().c_str(), shndx);
2705 }
2706 break;
2707 case CFVS_NO_OUTPUT_SECTION:
2708 sym->set_symtab_index(-1U);
2709 return false;
2710 default:
2711 gold_unreachable();
2712 }
2713
2714 sym->set_value(value);
2715
2716 if (parameters->options().strip_all()
2717 || !parameters->options().should_retain_symbol(sym->name()))
2718 {
2719 sym->set_symtab_index(-1U);
2720 return false;
2721 }
2722
2723 return true;
2724 }
2725
2726 // Write out the global symbols.
2727
2728 void
2729 Symbol_table::write_globals(const Stringpool* sympool,
2730 const Stringpool* dynpool,
2731 Output_symtab_xindex* symtab_xindex,
2732 Output_symtab_xindex* dynsym_xindex,
2733 Output_file* of) const
2734 {
2735 switch (parameters->size_and_endianness())
2736 {
2737 #ifdef HAVE_TARGET_32_LITTLE
2738 case Parameters::TARGET_32_LITTLE:
2739 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2740 dynsym_xindex, of);
2741 break;
2742 #endif
2743 #ifdef HAVE_TARGET_32_BIG
2744 case Parameters::TARGET_32_BIG:
2745 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2746 dynsym_xindex, of);
2747 break;
2748 #endif
2749 #ifdef HAVE_TARGET_64_LITTLE
2750 case Parameters::TARGET_64_LITTLE:
2751 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2752 dynsym_xindex, of);
2753 break;
2754 #endif
2755 #ifdef HAVE_TARGET_64_BIG
2756 case Parameters::TARGET_64_BIG:
2757 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2758 dynsym_xindex, of);
2759 break;
2760 #endif
2761 default:
2762 gold_unreachable();
2763 }
2764 }
2765
2766 // Write out the global symbols.
2767
2768 template<int size, bool big_endian>
2769 void
2770 Symbol_table::sized_write_globals(const Stringpool* sympool,
2771 const Stringpool* dynpool,
2772 Output_symtab_xindex* symtab_xindex,
2773 Output_symtab_xindex* dynsym_xindex,
2774 Output_file* of) const
2775 {
2776 const Target& target = parameters->target();
2777
2778 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2779
2780 const unsigned int output_count = this->output_count_;
2781 const section_size_type oview_size = output_count * sym_size;
2782 const unsigned int first_global_index = this->first_global_index_;
2783 unsigned char* psyms;
2784 if (this->offset_ == 0 || output_count == 0)
2785 psyms = NULL;
2786 else
2787 psyms = of->get_output_view(this->offset_, oview_size);
2788
2789 const unsigned int dynamic_count = this->dynamic_count_;
2790 const section_size_type dynamic_size = dynamic_count * sym_size;
2791 const unsigned int first_dynamic_global_index =
2792 this->first_dynamic_global_index_;
2793 unsigned char* dynamic_view;
2794 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2795 dynamic_view = NULL;
2796 else
2797 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2798
2799 for (Symbol_table_type::const_iterator p = this->table_.begin();
2800 p != this->table_.end();
2801 ++p)
2802 {
2803 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2804
2805 // Possibly warn about unresolved symbols in shared libraries.
2806 this->warn_about_undefined_dynobj_symbol(sym);
2807
2808 unsigned int sym_index = sym->symtab_index();
2809 unsigned int dynsym_index;
2810 if (dynamic_view == NULL)
2811 dynsym_index = -1U;
2812 else
2813 dynsym_index = sym->dynsym_index();
2814
2815 if (sym_index == -1U && dynsym_index == -1U)
2816 {
2817 // This symbol is not included in the output file.
2818 continue;
2819 }
2820
2821 unsigned int shndx;
2822 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2823 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2824 elfcpp::STB binding = sym->binding();
2825 switch (sym->source())
2826 {
2827 case Symbol::FROM_OBJECT:
2828 {
2829 bool is_ordinary;
2830 unsigned int in_shndx = sym->shndx(&is_ordinary);
2831
2832 if (!is_ordinary
2833 && in_shndx != elfcpp::SHN_ABS
2834 && !Symbol::is_common_shndx(in_shndx))
2835 {
2836 gold_error(_("%s: unsupported symbol section 0x%x"),
2837 sym->demangled_name().c_str(), in_shndx);
2838 shndx = in_shndx;
2839 }
2840 else
2841 {
2842 Object* symobj = sym->object();
2843 if (symobj->is_dynamic())
2844 {
2845 if (sym->needs_dynsym_value())
2846 dynsym_value = target.dynsym_value(sym);
2847 shndx = elfcpp::SHN_UNDEF;
2848 if (sym->is_undef_binding_weak())
2849 binding = elfcpp::STB_WEAK;
2850 else
2851 binding = elfcpp::STB_GLOBAL;
2852 }
2853 else if (symobj->pluginobj() != NULL)
2854 shndx = elfcpp::SHN_UNDEF;
2855 else if (in_shndx == elfcpp::SHN_UNDEF
2856 || (!is_ordinary
2857 && (in_shndx == elfcpp::SHN_ABS
2858 || Symbol::is_common_shndx(in_shndx))))
2859 shndx = in_shndx;
2860 else
2861 {
2862 Relobj* relobj = static_cast<Relobj*>(symobj);
2863 Output_section* os = relobj->output_section(in_shndx);
2864 if (this->is_section_folded(relobj, in_shndx))
2865 {
2866 // This global symbol must be written out even though
2867 // it is folded.
2868 // Get the os of the section it is folded onto.
2869 Section_id folded =
2870 this->icf_->get_folded_section(relobj, in_shndx);
2871 gold_assert(folded.first !=NULL);
2872 Relobj* folded_obj =
2873 reinterpret_cast<Relobj*>(folded.first);
2874 os = folded_obj->output_section(folded.second);
2875 gold_assert(os != NULL);
2876 }
2877 gold_assert(os != NULL);
2878 shndx = os->out_shndx();
2879
2880 if (shndx >= elfcpp::SHN_LORESERVE)
2881 {
2882 if (sym_index != -1U)
2883 symtab_xindex->add(sym_index, shndx);
2884 if (dynsym_index != -1U)
2885 dynsym_xindex->add(dynsym_index, shndx);
2886 shndx = elfcpp::SHN_XINDEX;
2887 }
2888
2889 // In object files symbol values are section
2890 // relative.
2891 if (parameters->options().relocatable())
2892 sym_value -= os->address();
2893 }
2894 }
2895 }
2896 break;
2897
2898 case Symbol::IN_OUTPUT_DATA:
2899 shndx = sym->output_data()->out_shndx();
2900 if (shndx >= elfcpp::SHN_LORESERVE)
2901 {
2902 if (sym_index != -1U)
2903 symtab_xindex->add(sym_index, shndx);
2904 if (dynsym_index != -1U)
2905 dynsym_xindex->add(dynsym_index, shndx);
2906 shndx = elfcpp::SHN_XINDEX;
2907 }
2908 break;
2909
2910 case Symbol::IN_OUTPUT_SEGMENT:
2911 shndx = elfcpp::SHN_ABS;
2912 break;
2913
2914 case Symbol::IS_CONSTANT:
2915 shndx = elfcpp::SHN_ABS;
2916 break;
2917
2918 case Symbol::IS_UNDEFINED:
2919 shndx = elfcpp::SHN_UNDEF;
2920 break;
2921
2922 default:
2923 gold_unreachable();
2924 }
2925
2926 if (sym_index != -1U)
2927 {
2928 sym_index -= first_global_index;
2929 gold_assert(sym_index < output_count);
2930 unsigned char* ps = psyms + (sym_index * sym_size);
2931 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2932 binding, sympool, ps);
2933 }
2934
2935 if (dynsym_index != -1U)
2936 {
2937 dynsym_index -= first_dynamic_global_index;
2938 gold_assert(dynsym_index < dynamic_count);
2939 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2940 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2941 binding, dynpool, pd);
2942 }
2943 }
2944
2945 of->write_output_view(this->offset_, oview_size, psyms);
2946 if (dynamic_view != NULL)
2947 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2948 }
2949
2950 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2951 // strtab holding the name.
2952
2953 template<int size, bool big_endian>
2954 void
2955 Symbol_table::sized_write_symbol(
2956 Sized_symbol<size>* sym,
2957 typename elfcpp::Elf_types<size>::Elf_Addr value,
2958 unsigned int shndx,
2959 elfcpp::STB binding,
2960 const Stringpool* pool,
2961 unsigned char* p) const
2962 {
2963 elfcpp::Sym_write<size, big_endian> osym(p);
2964 if (sym->version() == NULL || !parameters->options().relocatable())
2965 osym.put_st_name(pool->get_offset(sym->name()));
2966 else
2967 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2968 osym.put_st_value(value);
2969 // Use a symbol size of zero for undefined symbols from shared libraries.
2970 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2971 osym.put_st_size(0);
2972 else
2973 osym.put_st_size(sym->symsize());
2974 elfcpp::STT type = sym->type();
2975 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2976 if (type == elfcpp::STT_GNU_IFUNC
2977 && sym->is_from_dynobj())
2978 type = elfcpp::STT_FUNC;
2979 // A version script may have overridden the default binding.
2980 if (sym->is_forced_local())
2981 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2982 else
2983 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2984 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2985 osym.put_st_shndx(shndx);
2986 }
2987
2988 // Check for unresolved symbols in shared libraries. This is
2989 // controlled by the --allow-shlib-undefined option.
2990
2991 // We only warn about libraries for which we have seen all the
2992 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2993 // which were not seen in this link. If we didn't see a DT_NEEDED
2994 // entry, we aren't going to be able to reliably report whether the
2995 // symbol is undefined.
2996
2997 // We also don't warn about libraries found in a system library
2998 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2999 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3000 // can have undefined references satisfied by ld-linux.so.
3001
3002 inline void
3003 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3004 {
3005 bool dummy;
3006 if (sym->source() == Symbol::FROM_OBJECT
3007 && sym->object()->is_dynamic()
3008 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3009 && sym->binding() != elfcpp::STB_WEAK
3010 && !parameters->options().allow_shlib_undefined()
3011 && !parameters->target().is_defined_by_abi(sym)
3012 && !sym->object()->is_in_system_directory())
3013 {
3014 // A very ugly cast.
3015 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3016 if (!dynobj->has_unknown_needed_entries())
3017 gold_undefined_symbol(sym);
3018 }
3019 }
3020
3021 // Write out a section symbol. Return the update offset.
3022
3023 void
3024 Symbol_table::write_section_symbol(const Output_section* os,
3025 Output_symtab_xindex* symtab_xindex,
3026 Output_file* of,
3027 off_t offset) const
3028 {
3029 switch (parameters->size_and_endianness())
3030 {
3031 #ifdef HAVE_TARGET_32_LITTLE
3032 case Parameters::TARGET_32_LITTLE:
3033 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3034 offset);
3035 break;
3036 #endif
3037 #ifdef HAVE_TARGET_32_BIG
3038 case Parameters::TARGET_32_BIG:
3039 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3040 offset);
3041 break;
3042 #endif
3043 #ifdef HAVE_TARGET_64_LITTLE
3044 case Parameters::TARGET_64_LITTLE:
3045 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3046 offset);
3047 break;
3048 #endif
3049 #ifdef HAVE_TARGET_64_BIG
3050 case Parameters::TARGET_64_BIG:
3051 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3052 offset);
3053 break;
3054 #endif
3055 default:
3056 gold_unreachable();
3057 }
3058 }
3059
3060 // Write out a section symbol, specialized for size and endianness.
3061
3062 template<int size, bool big_endian>
3063 void
3064 Symbol_table::sized_write_section_symbol(const Output_section* os,
3065 Output_symtab_xindex* symtab_xindex,
3066 Output_file* of,
3067 off_t offset) const
3068 {
3069 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3070
3071 unsigned char* pov = of->get_output_view(offset, sym_size);
3072
3073 elfcpp::Sym_write<size, big_endian> osym(pov);
3074 osym.put_st_name(0);
3075 if (parameters->options().relocatable())
3076 osym.put_st_value(0);
3077 else
3078 osym.put_st_value(os->address());
3079 osym.put_st_size(0);
3080 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3081 elfcpp::STT_SECTION));
3082 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3083
3084 unsigned int shndx = os->out_shndx();
3085 if (shndx >= elfcpp::SHN_LORESERVE)
3086 {
3087 symtab_xindex->add(os->symtab_index(), shndx);
3088 shndx = elfcpp::SHN_XINDEX;
3089 }
3090 osym.put_st_shndx(shndx);
3091
3092 of->write_output_view(offset, sym_size, pov);
3093 }
3094
3095 // Print statistical information to stderr. This is used for --stats.
3096
3097 void
3098 Symbol_table::print_stats() const
3099 {
3100 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3101 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3102 program_name, this->table_.size(), this->table_.bucket_count());
3103 #else
3104 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3105 program_name, this->table_.size());
3106 #endif
3107 this->namepool_.print_stats("symbol table stringpool");
3108 }
3109
3110 // We check for ODR violations by looking for symbols with the same
3111 // name for which the debugging information reports that they were
3112 // defined in disjoint source locations. When comparing the source
3113 // location, we consider instances with the same base filename to be
3114 // the same. This is because different object files/shared libraries
3115 // can include the same header file using different paths, and
3116 // different optimization settings can make the line number appear to
3117 // be a couple lines off, and we don't want to report an ODR violation
3118 // in those cases.
3119
3120 // This struct is used to compare line information, as returned by
3121 // Dwarf_line_info::one_addr2line. It implements a < comparison
3122 // operator used with std::sort.
3123
3124 struct Odr_violation_compare
3125 {
3126 bool
3127 operator()(const std::string& s1, const std::string& s2) const
3128 {
3129 // Inputs should be of the form "dirname/filename:linenum" where
3130 // "dirname/" is optional. We want to compare just the filename:linenum.
3131
3132 // Find the last '/' in each string.
3133 std::string::size_type s1begin = s1.rfind('/');
3134 std::string::size_type s2begin = s2.rfind('/');
3135 // If there was no '/' in a string, start at the beginning.
3136 if (s1begin == std::string::npos)
3137 s1begin = 0;
3138 if (s2begin == std::string::npos)
3139 s2begin = 0;
3140 return s1.compare(s1begin, std::string::npos,
3141 s2, s2begin, std::string::npos) < 0;
3142 }
3143 };
3144
3145 // Returns all of the lines attached to LOC, not just the one the
3146 // instruction actually came from.
3147 std::vector<std::string>
3148 Symbol_table::linenos_from_loc(const Task* task,
3149 const Symbol_location& loc)
3150 {
3151 // We need to lock the object in order to read it. This
3152 // means that we have to run in a singleton Task. If we
3153 // want to run this in a general Task for better
3154 // performance, we will need one Task for object, plus
3155 // appropriate locking to ensure that we don't conflict with
3156 // other uses of the object. Also note, one_addr2line is not
3157 // currently thread-safe.
3158 Task_lock_obj<Object> tl(task, loc.object);
3159
3160 std::vector<std::string> result;
3161 // 16 is the size of the object-cache that one_addr2line should use.
3162 std::string canonical_result = Dwarf_line_info::one_addr2line(
3163 loc.object, loc.shndx, loc.offset, 16, &result);
3164 if (!canonical_result.empty())
3165 result.push_back(canonical_result);
3166 return result;
3167 }
3168
3169 // OutputIterator that records if it was ever assigned to. This
3170 // allows it to be used with std::set_intersection() to check for
3171 // intersection rather than computing the intersection.
3172 struct Check_intersection
3173 {
3174 Check_intersection()
3175 : value_(false)
3176 {}
3177
3178 bool had_intersection() const
3179 { return this->value_; }
3180
3181 Check_intersection& operator++()
3182 { return *this; }
3183
3184 Check_intersection& operator*()
3185 { return *this; }
3186
3187 template<typename T>
3188 Check_intersection& operator=(const T&)
3189 {
3190 this->value_ = true;
3191 return *this;
3192 }
3193
3194 private:
3195 bool value_;
3196 };
3197
3198 // Check candidate_odr_violations_ to find symbols with the same name
3199 // but apparently different definitions (different source-file/line-no
3200 // for each line assigned to the first instruction).
3201
3202 void
3203 Symbol_table::detect_odr_violations(const Task* task,
3204 const char* output_file_name) const
3205 {
3206 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3207 it != candidate_odr_violations_.end();
3208 ++it)
3209 {
3210 const char* const symbol_name = it->first;
3211
3212 std::string first_object_name;
3213 std::vector<std::string> first_object_linenos;
3214
3215 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3216 locs = it->second.begin();
3217 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3218 locs_end = it->second.end();
3219 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3220 {
3221 // Save the line numbers from the first definition to
3222 // compare to the other definitions. Ideally, we'd compare
3223 // every definition to every other, but we don't want to
3224 // take O(N^2) time to do this. This shortcut may cause
3225 // false negatives that appear or disappear depending on the
3226 // link order, but it won't cause false positives.
3227 first_object_name = locs->object->name();
3228 first_object_linenos = this->linenos_from_loc(task, *locs);
3229 }
3230
3231 // Sort by Odr_violation_compare to make std::set_intersection work.
3232 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3233 Odr_violation_compare());
3234
3235 for (; locs != locs_end; ++locs)
3236 {
3237 std::vector<std::string> linenos =
3238 this->linenos_from_loc(task, *locs);
3239 // linenos will be empty if we couldn't parse the debug info.
3240 if (linenos.empty())
3241 continue;
3242 // Sort by Odr_violation_compare to make std::set_intersection work.
3243 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3244
3245 Check_intersection intersection_result =
3246 std::set_intersection(first_object_linenos.begin(),
3247 first_object_linenos.end(),
3248 linenos.begin(),
3249 linenos.end(),
3250 Check_intersection(),
3251 Odr_violation_compare());
3252 if (!intersection_result.had_intersection())
3253 {
3254 gold_warning(_("while linking %s: symbol '%s' defined in "
3255 "multiple places (possible ODR violation):"),
3256 output_file_name, demangle(symbol_name).c_str());
3257 // This only prints one location from each definition,
3258 // which may not be the location we expect to intersect
3259 // with another definition. We could print the whole
3260 // set of locations, but that seems too verbose.
3261 gold_assert(!first_object_linenos.empty());
3262 gold_assert(!linenos.empty());
3263 fprintf(stderr, _(" %s from %s\n"),
3264 first_object_linenos[0].c_str(),
3265 first_object_name.c_str());
3266 fprintf(stderr, _(" %s from %s\n"),
3267 linenos[0].c_str(),
3268 locs->object->name().c_str());
3269 // Only print one broken pair, to avoid needing to
3270 // compare against a list of the disjoint definition
3271 // locations we've found so far. (If we kept comparing
3272 // against just the first one, we'd get a lot of
3273 // redundant complaints about the second definition
3274 // location.)
3275 break;
3276 }
3277 }
3278 }
3279 // We only call one_addr2line() in this function, so we can clear its cache.
3280 Dwarf_line_info::clear_addr2line_cache();
3281 }
3282
3283 // Warnings functions.
3284
3285 // Add a new warning.
3286
3287 void
3288 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3289 const std::string& warning)
3290 {
3291 name = symtab->canonicalize_name(name);
3292 this->warnings_[name].set(obj, warning);
3293 }
3294
3295 // Look through the warnings and mark the symbols for which we should
3296 // warn. This is called during Layout::finalize when we know the
3297 // sources for all the symbols.
3298
3299 void
3300 Warnings::note_warnings(Symbol_table* symtab)
3301 {
3302 for (Warning_table::iterator p = this->warnings_.begin();
3303 p != this->warnings_.end();
3304 ++p)
3305 {
3306 Symbol* sym = symtab->lookup(p->first, NULL);
3307 if (sym != NULL
3308 && sym->source() == Symbol::FROM_OBJECT
3309 && sym->object() == p->second.object)
3310 sym->set_has_warning();
3311 }
3312 }
3313
3314 // Issue a warning. This is called when we see a relocation against a
3315 // symbol for which has a warning.
3316
3317 template<int size, bool big_endian>
3318 void
3319 Warnings::issue_warning(const Symbol* sym,
3320 const Relocate_info<size, big_endian>* relinfo,
3321 size_t relnum, off_t reloffset) const
3322 {
3323 gold_assert(sym->has_warning());
3324
3325 // We don't want to issue a warning for a relocation against the
3326 // symbol in the same object file in which the symbol is defined.
3327 if (sym->object() == relinfo->object)
3328 return;
3329
3330 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3331 gold_assert(p != this->warnings_.end());
3332 gold_warning_at_location(relinfo, relnum, reloffset,
3333 "%s", p->second.text.c_str());
3334 }
3335
3336 // Instantiate the templates we need. We could use the configure
3337 // script to restrict this to only the ones needed for implemented
3338 // targets.
3339
3340 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3341 template
3342 void
3343 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3344 #endif
3345
3346 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3347 template
3348 void
3349 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3350 #endif
3351
3352 #ifdef HAVE_TARGET_32_LITTLE
3353 template
3354 void
3355 Symbol_table::add_from_relobj<32, false>(
3356 Sized_relobj_file<32, false>* relobj,
3357 const unsigned char* syms,
3358 size_t count,
3359 size_t symndx_offset,
3360 const char* sym_names,
3361 size_t sym_name_size,
3362 Sized_relobj_file<32, false>::Symbols* sympointers,
3363 size_t* defined);
3364 #endif
3365
3366 #ifdef HAVE_TARGET_32_BIG
3367 template
3368 void
3369 Symbol_table::add_from_relobj<32, true>(
3370 Sized_relobj_file<32, true>* relobj,
3371 const unsigned char* syms,
3372 size_t count,
3373 size_t symndx_offset,
3374 const char* sym_names,
3375 size_t sym_name_size,
3376 Sized_relobj_file<32, true>::Symbols* sympointers,
3377 size_t* defined);
3378 #endif
3379
3380 #ifdef HAVE_TARGET_64_LITTLE
3381 template
3382 void
3383 Symbol_table::add_from_relobj<64, false>(
3384 Sized_relobj_file<64, false>* relobj,
3385 const unsigned char* syms,
3386 size_t count,
3387 size_t symndx_offset,
3388 const char* sym_names,
3389 size_t sym_name_size,
3390 Sized_relobj_file<64, false>::Symbols* sympointers,
3391 size_t* defined);
3392 #endif
3393
3394 #ifdef HAVE_TARGET_64_BIG
3395 template
3396 void
3397 Symbol_table::add_from_relobj<64, true>(
3398 Sized_relobj_file<64, true>* relobj,
3399 const unsigned char* syms,
3400 size_t count,
3401 size_t symndx_offset,
3402 const char* sym_names,
3403 size_t sym_name_size,
3404 Sized_relobj_file<64, true>::Symbols* sympointers,
3405 size_t* defined);
3406 #endif
3407
3408 #ifdef HAVE_TARGET_32_LITTLE
3409 template
3410 Symbol*
3411 Symbol_table::add_from_pluginobj<32, false>(
3412 Sized_pluginobj<32, false>* obj,
3413 const char* name,
3414 const char* ver,
3415 elfcpp::Sym<32, false>* sym);
3416 #endif
3417
3418 #ifdef HAVE_TARGET_32_BIG
3419 template
3420 Symbol*
3421 Symbol_table::add_from_pluginobj<32, true>(
3422 Sized_pluginobj<32, true>* obj,
3423 const char* name,
3424 const char* ver,
3425 elfcpp::Sym<32, true>* sym);
3426 #endif
3427
3428 #ifdef HAVE_TARGET_64_LITTLE
3429 template
3430 Symbol*
3431 Symbol_table::add_from_pluginobj<64, false>(
3432 Sized_pluginobj<64, false>* obj,
3433 const char* name,
3434 const char* ver,
3435 elfcpp::Sym<64, false>* sym);
3436 #endif
3437
3438 #ifdef HAVE_TARGET_64_BIG
3439 template
3440 Symbol*
3441 Symbol_table::add_from_pluginobj<64, true>(
3442 Sized_pluginobj<64, true>* obj,
3443 const char* name,
3444 const char* ver,
3445 elfcpp::Sym<64, true>* sym);
3446 #endif
3447
3448 #ifdef HAVE_TARGET_32_LITTLE
3449 template
3450 void
3451 Symbol_table::add_from_dynobj<32, false>(
3452 Sized_dynobj<32, false>* dynobj,
3453 const unsigned char* syms,
3454 size_t count,
3455 const char* sym_names,
3456 size_t sym_name_size,
3457 const unsigned char* versym,
3458 size_t versym_size,
3459 const std::vector<const char*>* version_map,
3460 Sized_relobj_file<32, false>::Symbols* sympointers,
3461 size_t* defined);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 void
3467 Symbol_table::add_from_dynobj<32, true>(
3468 Sized_dynobj<32, true>* dynobj,
3469 const unsigned char* syms,
3470 size_t count,
3471 const char* sym_names,
3472 size_t sym_name_size,
3473 const unsigned char* versym,
3474 size_t versym_size,
3475 const std::vector<const char*>* version_map,
3476 Sized_relobj_file<32, true>::Symbols* sympointers,
3477 size_t* defined);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_64_LITTLE
3481 template
3482 void
3483 Symbol_table::add_from_dynobj<64, false>(
3484 Sized_dynobj<64, false>* dynobj,
3485 const unsigned char* syms,
3486 size_t count,
3487 const char* sym_names,
3488 size_t sym_name_size,
3489 const unsigned char* versym,
3490 size_t versym_size,
3491 const std::vector<const char*>* version_map,
3492 Sized_relobj_file<64, false>::Symbols* sympointers,
3493 size_t* defined);
3494 #endif
3495
3496 #ifdef HAVE_TARGET_64_BIG
3497 template
3498 void
3499 Symbol_table::add_from_dynobj<64, true>(
3500 Sized_dynobj<64, true>* dynobj,
3501 const unsigned char* syms,
3502 size_t count,
3503 const char* sym_names,
3504 size_t sym_name_size,
3505 const unsigned char* versym,
3506 size_t versym_size,
3507 const std::vector<const char*>* version_map,
3508 Sized_relobj_file<64, true>::Symbols* sympointers,
3509 size_t* defined);
3510 #endif
3511
3512 #ifdef HAVE_TARGET_32_LITTLE
3513 template
3514 Sized_symbol<32>*
3515 Symbol_table::add_from_incrobj(
3516 Object* obj,
3517 const char* name,
3518 const char* ver,
3519 elfcpp::Sym<32, false>* sym);
3520 #endif
3521
3522 #ifdef HAVE_TARGET_32_BIG
3523 template
3524 Sized_symbol<32>*
3525 Symbol_table::add_from_incrobj(
3526 Object* obj,
3527 const char* name,
3528 const char* ver,
3529 elfcpp::Sym<32, true>* sym);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_64_LITTLE
3533 template
3534 Sized_symbol<64>*
3535 Symbol_table::add_from_incrobj(
3536 Object* obj,
3537 const char* name,
3538 const char* ver,
3539 elfcpp::Sym<64, false>* sym);
3540 #endif
3541
3542 #ifdef HAVE_TARGET_64_BIG
3543 template
3544 Sized_symbol<64>*
3545 Symbol_table::add_from_incrobj(
3546 Object* obj,
3547 const char* name,
3548 const char* ver,
3549 elfcpp::Sym<64, true>* sym);
3550 #endif
3551
3552 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3553 template
3554 void
3555 Symbol_table::define_with_copy_reloc<32>(
3556 Sized_symbol<32>* sym,
3557 Output_data* posd,
3558 elfcpp::Elf_types<32>::Elf_Addr value);
3559 #endif
3560
3561 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3562 template
3563 void
3564 Symbol_table::define_with_copy_reloc<64>(
3565 Sized_symbol<64>* sym,
3566 Output_data* posd,
3567 elfcpp::Elf_types<64>::Elf_Addr value);
3568 #endif
3569
3570 #ifdef HAVE_TARGET_32_LITTLE
3571 template
3572 void
3573 Warnings::issue_warning<32, false>(const Symbol* sym,
3574 const Relocate_info<32, false>* relinfo,
3575 size_t relnum, off_t reloffset) const;
3576 #endif
3577
3578 #ifdef HAVE_TARGET_32_BIG
3579 template
3580 void
3581 Warnings::issue_warning<32, true>(const Symbol* sym,
3582 const Relocate_info<32, true>* relinfo,
3583 size_t relnum, off_t reloffset) const;
3584 #endif
3585
3586 #ifdef HAVE_TARGET_64_LITTLE
3587 template
3588 void
3589 Warnings::issue_warning<64, false>(const Symbol* sym,
3590 const Relocate_info<64, false>* relinfo,
3591 size_t relnum, off_t reloffset) const;
3592 #endif
3593
3594 #ifdef HAVE_TARGET_64_BIG
3595 template
3596 void
3597 Warnings::issue_warning<64, true>(const Symbol* sym,
3598 const Relocate_info<64, true>* relinfo,
3599 size_t relnum, off_t reloffset) const;
3600 #endif
3601
3602 } // End namespace gold.