]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/target-reloc.h
Fix symbol values and relocation addends for relocatable links.
[thirdparty/binutils-gdb.git] / gold / target-reloc.h
1 // target-reloc.h -- target specific relocation support -*- C++ -*-
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_TARGET_RELOC_H
24 #define GOLD_TARGET_RELOC_H
25
26 #include "elfcpp.h"
27 #include "symtab.h"
28 #include "object.h"
29 #include "reloc.h"
30 #include "reloc-types.h"
31
32 namespace gold
33 {
34
35 // This function implements the generic part of reloc scanning. The
36 // template parameter Scan must be a class type which provides two
37 // functions: local() and global(). Those functions implement the
38 // machine specific part of scanning. We do it this way to
39 // avoid making a function call for each relocation, and to avoid
40 // repeating the generic code for each target.
41
42 template<int size, bool big_endian, typename Target_type,
43 typename Scan, typename Classify_reloc>
44 inline void
45 scan_relocs(
46 Symbol_table* symtab,
47 Layout* layout,
48 Target_type* target,
49 Sized_relobj_file<size, big_endian>* object,
50 unsigned int data_shndx,
51 const unsigned char* prelocs,
52 size_t reloc_count,
53 Output_section* output_section,
54 bool needs_special_offset_handling,
55 size_t local_count,
56 const unsigned char* plocal_syms)
57 {
58 typedef typename Classify_reloc::Reltype Reltype;
59 const int reloc_size = Classify_reloc::reloc_size;
60 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
61 Scan scan;
62
63 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
64 {
65 Reltype reloc(prelocs);
66
67 if (needs_special_offset_handling
68 && !output_section->is_input_address_mapped(object, data_shndx,
69 reloc.get_r_offset()))
70 continue;
71
72 unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
73 unsigned int r_type = Classify_reloc::get_r_type(&reloc);
74
75 if (r_sym < local_count)
76 {
77 gold_assert(plocal_syms != NULL);
78 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
79 + r_sym * sym_size);
80 unsigned int shndx = lsym.get_st_shndx();
81 bool is_ordinary;
82 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
83 // If RELOC is a relocation against a local symbol in a
84 // section we are discarding then we can ignore it. It will
85 // eventually become a reloc against the value zero.
86 //
87 // FIXME: We should issue a warning if this is an
88 // allocated section; is this the best place to do it?
89 //
90 // FIXME: The old GNU linker would in some cases look
91 // for the linkonce section which caused this section to
92 // be discarded, and, if the other section was the same
93 // size, change the reloc to refer to the other section.
94 // That seems risky and weird to me, and I don't know of
95 // any case where it is actually required.
96 bool is_discarded = (is_ordinary
97 && shndx != elfcpp::SHN_UNDEF
98 && !object->is_section_included(shndx)
99 && !symtab->is_section_folded(object, shndx));
100 scan.local(symtab, layout, target, object, data_shndx,
101 output_section, reloc, r_type, lsym, is_discarded);
102 }
103 else
104 {
105 Symbol* gsym = object->global_symbol(r_sym);
106 gold_assert(gsym != NULL);
107 if (gsym->is_forwarder())
108 gsym = symtab->resolve_forwards(gsym);
109
110 scan.global(symtab, layout, target, object, data_shndx,
111 output_section, reloc, r_type, gsym);
112 }
113 }
114 }
115
116 // Behavior for relocations to discarded comdat sections.
117
118 enum Comdat_behavior
119 {
120 CB_UNDETERMINED, // Not yet determined -- need to look at section name.
121 CB_PRETEND, // Attempt to map to the corresponding kept section.
122 CB_IGNORE, // Ignore the relocation.
123 CB_WARNING // Print a warning.
124 };
125
126 class Default_comdat_behavior
127 {
128 public:
129 // Decide what the linker should do for relocations that refer to
130 // discarded comdat sections. This decision is based on the name of
131 // the section being relocated.
132
133 inline Comdat_behavior
134 get(const char* name)
135 {
136 if (Layout::is_debug_info_section(name))
137 return CB_PRETEND;
138 if (strcmp(name, ".eh_frame") == 0
139 || strcmp(name, ".gcc_except_table") == 0)
140 return CB_IGNORE;
141 return CB_WARNING;
142 }
143 };
144
145 // Give an error for a symbol with non-default visibility which is not
146 // defined locally.
147
148 inline void
149 visibility_error(const Symbol* sym)
150 {
151 const char* v;
152 switch (sym->visibility())
153 {
154 case elfcpp::STV_INTERNAL:
155 v = _("internal");
156 break;
157 case elfcpp::STV_HIDDEN:
158 v = _("hidden");
159 break;
160 case elfcpp::STV_PROTECTED:
161 v = _("protected");
162 break;
163 default:
164 gold_unreachable();
165 }
166 gold_error(_("%s symbol '%s' is not defined locally"),
167 v, sym->name());
168 }
169
170 // Return true if we are should issue an error saying that SYM is an
171 // undefined symbol. This is called if there is a relocation against
172 // SYM.
173
174 inline bool
175 issue_undefined_symbol_error(const Symbol* sym)
176 {
177 // We only report global symbols.
178 if (sym == NULL)
179 return false;
180
181 // We only report undefined symbols.
182 if (!sym->is_undefined() && !sym->is_placeholder())
183 return false;
184
185 // We don't report weak symbols.
186 if (sym->is_weak_undefined())
187 return false;
188
189 // We don't report symbols defined in discarded sections,
190 // unless they're placeholder symbols that should have been
191 // provided by a plugin.
192 if (sym->is_defined_in_discarded_section() && !sym->is_placeholder())
193 return false;
194
195 // If the target defines this symbol, don't report it here.
196 if (parameters->target().is_defined_by_abi(sym))
197 return false;
198
199 // See if we've been told to ignore whether this symbol is
200 // undefined.
201 const char* const u = parameters->options().unresolved_symbols();
202 if (u != NULL)
203 {
204 if (strcmp(u, "ignore-all") == 0)
205 return false;
206 if (strcmp(u, "report-all") == 0)
207 return true;
208 if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
209 return false;
210 if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
211 return false;
212 }
213
214 // If the symbol is hidden, report it.
215 if (sym->visibility() == elfcpp::STV_HIDDEN)
216 return true;
217
218 // When creating a shared library, only report unresolved symbols if
219 // -z defs was used.
220 if (parameters->options().shared() && !parameters->options().defs())
221 return false;
222
223 // Otherwise issue a warning.
224 return true;
225 }
226
227 // This function implements the generic part of relocation processing.
228 // The template parameter Relocate must be a class type which provides
229 // a single function, relocate(), which implements the machine
230 // specific part of a relocation.
231
232 // The template parameter Relocate_comdat_behavior is a class type
233 // which provides a single function, get(), which determines what the
234 // linker should do for relocations that refer to discarded comdat
235 // sections.
236
237 // SIZE is the ELF size: 32 or 64. BIG_ENDIAN is the endianness of
238 // the data. SH_TYPE is the section type: SHT_REL or SHT_RELA.
239 // RELOCATE implements operator() to do a relocation.
240
241 // PRELOCS points to the relocation data. RELOC_COUNT is the number
242 // of relocs. OUTPUT_SECTION is the output section.
243 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
244 // mapped to output offsets.
245
246 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
247 // VIEW_SIZE is the size. These refer to the input section, unless
248 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
249 // the output section.
250
251 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support. If it is
252 // not NULL, it is a vector indexed by relocation index. If that
253 // entry is not NULL, it points to a global symbol which used as the
254 // symbol for the relocation, ignoring the symbol index in the
255 // relocation.
256
257 template<int size, bool big_endian, typename Target_type,
258 typename Relocate,
259 typename Relocate_comdat_behavior,
260 typename Classify_reloc>
261 inline void
262 relocate_section(
263 const Relocate_info<size, big_endian>* relinfo,
264 Target_type* target,
265 const unsigned char* prelocs,
266 size_t reloc_count,
267 Output_section* output_section,
268 bool needs_special_offset_handling,
269 unsigned char* view,
270 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
271 section_size_type view_size,
272 const Reloc_symbol_changes* reloc_symbol_changes)
273 {
274 typedef typename Classify_reloc::Reltype Reltype;
275 const int reloc_size = Classify_reloc::reloc_size;
276 Relocate relocate;
277 Relocate_comdat_behavior relocate_comdat_behavior;
278
279 Sized_relobj_file<size, big_endian>* object = relinfo->object;
280 unsigned int local_count = object->local_symbol_count();
281
282 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
283
284 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
285 {
286 Reltype reloc(prelocs);
287
288 section_offset_type offset =
289 convert_to_section_size_type(reloc.get_r_offset());
290
291 if (needs_special_offset_handling)
292 {
293 offset = output_section->output_offset(relinfo->object,
294 relinfo->data_shndx,
295 offset);
296 if (offset == -1)
297 continue;
298 }
299
300 unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
301
302 const Sized_symbol<size>* sym;
303
304 Symbol_value<size> symval;
305 const Symbol_value<size> *psymval;
306 bool is_defined_in_discarded_section;
307 unsigned int shndx;
308 if (r_sym < local_count
309 && (reloc_symbol_changes == NULL
310 || (*reloc_symbol_changes)[i] == NULL))
311 {
312 sym = NULL;
313 psymval = object->local_symbol(r_sym);
314
315 // If the local symbol belongs to a section we are discarding,
316 // and that section is a debug section, try to find the
317 // corresponding kept section and map this symbol to its
318 // counterpart in the kept section. The symbol must not
319 // correspond to a section we are folding.
320 bool is_ordinary;
321 shndx = psymval->input_shndx(&is_ordinary);
322 is_defined_in_discarded_section =
323 (is_ordinary
324 && shndx != elfcpp::SHN_UNDEF
325 && !object->is_section_included(shndx)
326 && !relinfo->symtab->is_section_folded(object, shndx));
327 }
328 else
329 {
330 const Symbol* gsym;
331 if (reloc_symbol_changes != NULL
332 && (*reloc_symbol_changes)[i] != NULL)
333 gsym = (*reloc_symbol_changes)[i];
334 else
335 {
336 gsym = object->global_symbol(r_sym);
337 gold_assert(gsym != NULL);
338 if (gsym->is_forwarder())
339 gsym = relinfo->symtab->resolve_forwards(gsym);
340 }
341
342 sym = static_cast<const Sized_symbol<size>*>(gsym);
343 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
344 symval.set_output_symtab_index(sym->symtab_index());
345 else
346 symval.set_no_output_symtab_entry();
347 symval.set_output_value(sym->value());
348 if (gsym->type() == elfcpp::STT_TLS)
349 symval.set_is_tls_symbol();
350 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
351 symval.set_is_ifunc_symbol();
352 psymval = &symval;
353
354 is_defined_in_discarded_section =
355 (gsym->is_defined_in_discarded_section()
356 && gsym->is_undefined());
357 shndx = 0;
358 }
359
360 Symbol_value<size> symval2;
361 if (is_defined_in_discarded_section)
362 {
363 if (comdat_behavior == CB_UNDETERMINED)
364 {
365 std::string name = object->section_name(relinfo->data_shndx);
366 comdat_behavior = relocate_comdat_behavior.get(name.c_str());
367 }
368 if (comdat_behavior == CB_PRETEND)
369 {
370 // FIXME: This case does not work for global symbols.
371 // We have no place to store the original section index.
372 // Fortunately this does not matter for comdat sections,
373 // only for sections explicitly discarded by a linker
374 // script.
375 bool found;
376 typename elfcpp::Elf_types<size>::Elf_Addr value =
377 object->map_to_kept_section(shndx, &found);
378 if (found)
379 symval2.set_output_value(value + psymval->input_value());
380 else
381 symval2.set_output_value(0);
382 }
383 else
384 {
385 if (comdat_behavior == CB_WARNING)
386 gold_warning_at_location(relinfo, i, offset,
387 _("relocation refers to discarded "
388 "section"));
389 symval2.set_output_value(0);
390 }
391 symval2.set_no_output_symtab_entry();
392 psymval = &symval2;
393 }
394
395 // If OFFSET is out of range, still let the target decide to
396 // ignore the relocation. Pass in NULL as the VIEW argument so
397 // that it can return quickly without trashing an invalid memory
398 // address.
399 unsigned char *v = view + offset;
400 if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
401 v = NULL;
402
403 if (!relocate.relocate(relinfo, Classify_reloc::sh_type, target,
404 output_section, i, prelocs, sym, psymval,
405 v, view_address + offset, view_size))
406 continue;
407
408 if (v == NULL)
409 {
410 gold_error_at_location(relinfo, i, offset,
411 _("reloc has bad offset %zu"),
412 static_cast<size_t>(offset));
413 continue;
414 }
415
416 if (issue_undefined_symbol_error(sym))
417 gold_undefined_symbol_at_location(sym, relinfo, i, offset);
418 else if (sym != NULL
419 && sym->visibility() != elfcpp::STV_DEFAULT
420 && (sym->is_strong_undefined() || sym->is_from_dynobj()))
421 visibility_error(sym);
422
423 if (sym != NULL && sym->has_warning())
424 relinfo->symtab->issue_warning(sym, relinfo, i, offset);
425 }
426 }
427
428 // Apply an incremental relocation.
429
430 template<int size, bool big_endian, typename Target_type,
431 typename Relocate>
432 void
433 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
434 Target_type* target,
435 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
436 unsigned int r_type,
437 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
438 const Symbol* gsym,
439 unsigned char* view,
440 typename elfcpp::Elf_types<size>::Elf_Addr address,
441 section_size_type view_size)
442 {
443 // Construct the ELF relocation in a temporary buffer.
444 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
445 unsigned char relbuf[reloc_size];
446 elfcpp::Rela_write<size, big_endian> orel(relbuf);
447 orel.put_r_offset(r_offset);
448 orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
449 orel.put_r_addend(r_addend);
450
451 // Setup a Symbol_value for the global symbol.
452 const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
453 Symbol_value<size> symval;
454 gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
455 symval.set_output_symtab_index(sym->symtab_index());
456 symval.set_output_value(sym->value());
457 if (gsym->type() == elfcpp::STT_TLS)
458 symval.set_is_tls_symbol();
459 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
460 symval.set_is_ifunc_symbol();
461
462 Relocate relocate;
463 relocate.relocate(relinfo, elfcpp::SHT_RELA, target, NULL,
464 -1U, relbuf, sym, &symval,
465 view + r_offset, address + r_offset, view_size);
466 }
467
468 // A class for inquiring about properties of a relocation,
469 // used while scanning relocs during a relocatable link and
470 // garbage collection. This class may be used as the default
471 // for SHT_RELA targets, but SHT_REL targets must implement
472 // a derived class that overrides get_size_for_reloc.
473 // The MIPS-64 target also needs to override the methods
474 // for accessing the r_sym and r_type fields of a relocation,
475 // due to its non-standard use of the r_info field.
476
477 template<int sh_type_, int size, bool big_endian>
478 class Default_classify_reloc
479 {
480 public:
481 typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc
482 Reltype;
483 typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc_write
484 Reltype_write;
485 static const int reloc_size =
486 Reloc_types<sh_type_, size, big_endian>::reloc_size;
487 static const int sh_type = sh_type_;
488
489 // Return the symbol referred to by the relocation.
490 static inline unsigned int
491 get_r_sym(const Reltype* reloc)
492 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
493
494 // Return the type of the relocation.
495 static inline unsigned int
496 get_r_type(const Reltype* reloc)
497 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
498
499 // Return the explicit addend of the relocation (return 0 for SHT_REL).
500 static inline typename elfcpp::Elf_types<size>::Elf_Swxword
501 get_r_addend(const Reltype* reloc)
502 { return Reloc_types<sh_type_, size, big_endian>::get_reloc_addend(reloc); }
503
504 // Write the r_info field to a new reloc, using the r_info field from
505 // the original reloc, replacing the r_sym field with R_SYM.
506 static inline void
507 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
508 {
509 unsigned int r_type = elfcpp::elf_r_type<size>(reloc->get_r_info());
510 new_reloc->put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
511 }
512
513 // Write the r_addend field to a new reloc.
514 static inline void
515 put_r_addend(Reltype_write* to,
516 typename elfcpp::Elf_types<size>::Elf_Swxword addend)
517 { Reloc_types<sh_type_, size, big_endian>::set_reloc_addend(to, addend); }
518
519 // Return the size of the addend of the relocation (only used for SHT_REL).
520 static unsigned int
521 get_size_for_reloc(unsigned int, Relobj*)
522 {
523 gold_unreachable();
524 return 0;
525 }
526 };
527
528 // This class may be used as a typical class for the
529 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.
530 // This class is intended to capture the most typical target behaviour,
531 // while still permitting targets to define their own independent class
532 // for Scan_relocatable_reloc.
533
534 template<typename Classify_reloc>
535 class Default_scan_relocatable_relocs
536 {
537 public:
538 typedef typename Classify_reloc::Reltype Reltype;
539 static const int reloc_size = Classify_reloc::reloc_size;
540 static const int sh_type = Classify_reloc::sh_type;
541
542 // Return the symbol referred to by the relocation.
543 static inline unsigned int
544 get_r_sym(const Reltype* reloc)
545 { return Classify_reloc::get_r_sym(reloc); }
546
547 // Return the type of the relocation.
548 static inline unsigned int
549 get_r_type(const Reltype* reloc)
550 { return Classify_reloc::get_r_type(reloc); }
551
552 // Return the strategy to use for a local symbol which is not a
553 // section symbol, given the relocation type.
554 inline Relocatable_relocs::Reloc_strategy
555 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
556 {
557 // We assume that relocation type 0 is NONE. Targets which are
558 // different must override.
559 if (r_type == 0 && r_sym == 0)
560 return Relocatable_relocs::RELOC_DISCARD;
561 return Relocatable_relocs::RELOC_COPY;
562 }
563
564 // Return the strategy to use for a local symbol which is a section
565 // symbol, given the relocation type.
566 inline Relocatable_relocs::Reloc_strategy
567 local_section_strategy(unsigned int r_type, Relobj* object)
568 {
569 if (sh_type == elfcpp::SHT_RELA)
570 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
571 else
572 {
573 switch (Classify_reloc::get_size_for_reloc(r_type, object))
574 {
575 case 0:
576 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
577 case 1:
578 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
579 case 2:
580 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
581 case 4:
582 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
583 case 8:
584 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
585 default:
586 gold_unreachable();
587 }
588 }
589 }
590
591 // Return the strategy to use for a global symbol, given the
592 // relocation type, the object, and the symbol index.
593 inline Relocatable_relocs::Reloc_strategy
594 global_strategy(unsigned int, Relobj*, unsigned int)
595 { return Relocatable_relocs::RELOC_COPY; }
596 };
597
598 // This is a strategy class used with scan_relocatable_relocs
599 // and --emit-relocs.
600
601 template<typename Classify_reloc>
602 class Default_emit_relocs_strategy
603 {
604 public:
605 typedef typename Classify_reloc::Reltype Reltype;
606 static const int reloc_size = Classify_reloc::reloc_size;
607 static const int sh_type = Classify_reloc::sh_type;
608
609 // Return the symbol referred to by the relocation.
610 static inline unsigned int
611 get_r_sym(const Reltype* reloc)
612 { return Classify_reloc::get_r_sym(reloc); }
613
614 // Return the type of the relocation.
615 static inline unsigned int
616 get_r_type(const Reltype* reloc)
617 { return Classify_reloc::get_r_type(reloc); }
618
619 // A local non-section symbol.
620 inline Relocatable_relocs::Reloc_strategy
621 local_non_section_strategy(unsigned int, Relobj*, unsigned int)
622 { return Relocatable_relocs::RELOC_COPY; }
623
624 // A local section symbol.
625 inline Relocatable_relocs::Reloc_strategy
626 local_section_strategy(unsigned int, Relobj*)
627 {
628 if (sh_type == elfcpp::SHT_RELA)
629 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
630 else
631 {
632 // The addend is stored in the section contents. Since this
633 // is not a relocatable link, we are going to apply the
634 // relocation contents to the section as usual. This means
635 // that we have no way to record the original addend. If the
636 // original addend is not zero, there is basically no way for
637 // the user to handle this correctly. Caveat emptor.
638 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
639 }
640 }
641
642 // A global symbol.
643 inline Relocatable_relocs::Reloc_strategy
644 global_strategy(unsigned int, Relobj*, unsigned int)
645 { return Relocatable_relocs::RELOC_COPY; }
646 };
647
648 // Scan relocs during a relocatable link. This is a default
649 // definition which should work for most targets.
650 // Scan_relocatable_reloc must name a class type which provides three
651 // functions which return a Relocatable_relocs::Reloc_strategy code:
652 // global_strategy, local_non_section_strategy, and
653 // local_section_strategy. Most targets should be able to use
654 // Default_scan_relocatable_relocs as this class.
655
656 template<int size, bool big_endian, typename Scan_relocatable_reloc>
657 void
658 scan_relocatable_relocs(
659 Symbol_table*,
660 Layout*,
661 Sized_relobj_file<size, big_endian>* object,
662 unsigned int data_shndx,
663 const unsigned char* prelocs,
664 size_t reloc_count,
665 Output_section* output_section,
666 bool needs_special_offset_handling,
667 size_t local_symbol_count,
668 const unsigned char* plocal_syms,
669 Relocatable_relocs* rr)
670 {
671 typedef typename Scan_relocatable_reloc::Reltype Reltype;
672 const int reloc_size = Scan_relocatable_reloc::reloc_size;
673 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
674 Scan_relocatable_reloc scan;
675
676 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
677 {
678 Reltype reloc(prelocs);
679
680 Relocatable_relocs::Reloc_strategy strategy;
681
682 if (needs_special_offset_handling
683 && !output_section->is_input_address_mapped(object, data_shndx,
684 reloc.get_r_offset()))
685 strategy = Relocatable_relocs::RELOC_DISCARD;
686 else
687 {
688 const unsigned int r_sym = Scan_relocatable_reloc::get_r_sym(&reloc);
689 const unsigned int r_type =
690 Scan_relocatable_reloc::get_r_type(&reloc);
691
692 if (r_sym >= local_symbol_count)
693 strategy = scan.global_strategy(r_type, object, r_sym);
694 else
695 {
696 gold_assert(plocal_syms != NULL);
697 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
698 + r_sym * sym_size);
699 unsigned int shndx = lsym.get_st_shndx();
700 bool is_ordinary;
701 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
702 if (is_ordinary
703 && shndx != elfcpp::SHN_UNDEF
704 && !object->is_section_included(shndx))
705 {
706 // RELOC is a relocation against a local symbol
707 // defined in a section we are discarding. Discard
708 // the reloc. FIXME: Should we issue a warning?
709 strategy = Relocatable_relocs::RELOC_DISCARD;
710 }
711 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
712 strategy = scan.local_non_section_strategy(r_type, object,
713 r_sym);
714 else
715 {
716 strategy = scan.local_section_strategy(r_type, object);
717 if (strategy != Relocatable_relocs::RELOC_DISCARD)
718 object->output_section(shndx)->set_needs_symtab_index();
719 }
720
721 if (strategy == Relocatable_relocs::RELOC_COPY)
722 object->set_must_have_output_symtab_entry(r_sym);
723 }
724 }
725
726 rr->set_next_reloc_strategy(strategy);
727 }
728 }
729
730 // Relocate relocs. Called for a relocatable link, and for --emit-relocs.
731 // This is a default definition which should work for most targets.
732
733 template<int size, bool big_endian, typename Classify_reloc>
734 void
735 relocate_relocs(
736 const Relocate_info<size, big_endian>* relinfo,
737 const unsigned char* prelocs,
738 size_t reloc_count,
739 Output_section* output_section,
740 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
741 unsigned char* view,
742 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
743 section_size_type view_size,
744 unsigned char* reloc_view,
745 section_size_type reloc_view_size)
746 {
747 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
748 typedef typename Classify_reloc::Reltype Reltype;
749 typedef typename Classify_reloc::Reltype_write Reltype_write;
750 const int reloc_size = Classify_reloc::reloc_size;
751 const Address invalid_address = static_cast<Address>(0) - 1;
752
753 Sized_relobj_file<size, big_endian>* const object = relinfo->object;
754 const unsigned int local_count = object->local_symbol_count();
755
756 unsigned char* pwrite = reloc_view;
757
758 const bool relocatable = parameters->options().relocatable();
759
760 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
761 {
762 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
763 if (strategy == Relocatable_relocs::RELOC_DISCARD)
764 continue;
765
766 if (strategy == Relocatable_relocs::RELOC_SPECIAL)
767 {
768 // Target wants to handle this relocation.
769 Sized_target<size, big_endian>* target =
770 parameters->sized_target<size, big_endian>();
771 target->relocate_special_relocatable(relinfo, Classify_reloc::sh_type,
772 prelocs, i, output_section,
773 offset_in_output_section,
774 view, view_address,
775 view_size, pwrite);
776 pwrite += reloc_size;
777 continue;
778 }
779 Reltype reloc(prelocs);
780 Reltype_write reloc_write(pwrite);
781
782 const unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
783
784 // Get the new symbol index.
785
786 Output_section* os = NULL;
787 unsigned int new_symndx;
788 if (r_sym < local_count)
789 {
790 switch (strategy)
791 {
792 case Relocatable_relocs::RELOC_COPY:
793 if (r_sym == 0)
794 new_symndx = 0;
795 else
796 {
797 new_symndx = object->symtab_index(r_sym);
798 gold_assert(new_symndx != -1U);
799 }
800 break;
801
802 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
803 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
804 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
805 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
806 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
807 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
808 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
809 {
810 // We are adjusting a section symbol. We need to find
811 // the symbol table index of the section symbol for
812 // the output section corresponding to input section
813 // in which this symbol is defined.
814 gold_assert(r_sym < local_count);
815 bool is_ordinary;
816 unsigned int shndx =
817 object->local_symbol_input_shndx(r_sym, &is_ordinary);
818 gold_assert(is_ordinary);
819 os = object->output_section(shndx);
820 gold_assert(os != NULL);
821 gold_assert(os->needs_symtab_index());
822 new_symndx = os->symtab_index();
823 }
824 break;
825
826 default:
827 gold_unreachable();
828 }
829 }
830 else
831 {
832 const Symbol* gsym = object->global_symbol(r_sym);
833 gold_assert(gsym != NULL);
834 if (gsym->is_forwarder())
835 gsym = relinfo->symtab->resolve_forwards(gsym);
836
837 gold_assert(gsym->has_symtab_index());
838 new_symndx = gsym->symtab_index();
839 }
840
841 // Get the new offset--the location in the output section where
842 // this relocation should be applied.
843
844 Address offset = reloc.get_r_offset();
845 Address new_offset;
846 if (offset_in_output_section != invalid_address)
847 new_offset = offset + offset_in_output_section;
848 else
849 {
850 section_offset_type sot_offset =
851 convert_types<section_offset_type, Address>(offset);
852 section_offset_type new_sot_offset =
853 output_section->output_offset(object, relinfo->data_shndx,
854 sot_offset);
855 gold_assert(new_sot_offset != -1);
856 new_offset = new_sot_offset;
857 }
858
859 // In an object file, r_offset is an offset within the section.
860 // In an executable or dynamic object, generated by
861 // --emit-relocs, r_offset is an absolute address.
862 if (!relocatable)
863 {
864 new_offset += view_address;
865 if (offset_in_output_section != invalid_address)
866 new_offset -= offset_in_output_section;
867 }
868
869 reloc_write.put_r_offset(new_offset);
870 Classify_reloc::put_r_info(&reloc_write, &reloc, new_symndx);
871
872 // Handle the reloc addend based on the strategy.
873
874 if (strategy == Relocatable_relocs::RELOC_COPY)
875 {
876 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
877 Classify_reloc::put_r_addend(&reloc_write,
878 Classify_reloc::get_r_addend(&reloc));
879 }
880 else
881 {
882 // The relocation uses a section symbol in the input file.
883 // We are adjusting it to use a section symbol in the output
884 // file. The input section symbol refers to some address in
885 // the input section. We need the relocation in the output
886 // file to refer to that same address. This adjustment to
887 // the addend is the same calculation we use for a simple
888 // absolute relocation for the input section symbol.
889
890 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
891
892 unsigned char* padd = view + offset;
893 switch (strategy)
894 {
895 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
896 {
897 typename elfcpp::Elf_types<size>::Elf_Swxword addend
898 = Classify_reloc::get_r_addend(&reloc);
899 addend = psymval->value(object, addend);
900 // In a relocatable link, the symbol value is relative to
901 // the start of the output section. For a non-relocatable
902 // link, we need to adjust the addend.
903 if (!relocatable)
904 {
905 gold_assert(os != NULL);
906 addend -= os->address();
907 }
908 Classify_reloc::put_r_addend(&reloc_write, addend);
909 }
910 break;
911
912 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
913 break;
914
915 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
916 Relocate_functions<size, big_endian>::rel8(padd, object,
917 psymval);
918 break;
919
920 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
921 Relocate_functions<size, big_endian>::rel16(padd, object,
922 psymval);
923 break;
924
925 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
926 Relocate_functions<size, big_endian>::rel32(padd, object,
927 psymval);
928 break;
929
930 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
931 Relocate_functions<size, big_endian>::rel64(padd, object,
932 psymval);
933 break;
934
935 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
936 Relocate_functions<size, big_endian>::rel32_unaligned(padd,
937 object,
938 psymval);
939 break;
940
941 default:
942 gold_unreachable();
943 }
944 }
945
946 pwrite += reloc_size;
947 }
948
949 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
950 == reloc_view_size);
951 }
952
953 } // End namespace gold.
954
955 #endif // !defined(GOLD_TARGET_RELOC_H)