]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/arm/omap1.c
Include hw/qdev-properties.h less
[thirdparty/qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "hw/boards.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/arm/soc_dma.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "qemu/range.h"
37 #include "hw/sysbus.h"
38 #include "qemu/cutils.h"
39 #include "qemu/bcd.h"
40
41 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
42 {
43 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
44 funcname, 8 * sz, addr);
45 }
46
47 /* Should signal the TCMI/GPMC */
48 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
49 {
50 uint8_t ret;
51
52 omap_log_badwidth(__func__, addr, 1);
53 cpu_physical_memory_read(addr, &ret, 1);
54 return ret;
55 }
56
57 void omap_badwidth_write8(void *opaque, hwaddr addr,
58 uint32_t value)
59 {
60 uint8_t val8 = value;
61
62 omap_log_badwidth(__func__, addr, 1);
63 cpu_physical_memory_write(addr, &val8, 1);
64 }
65
66 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
67 {
68 uint16_t ret;
69
70 omap_log_badwidth(__func__, addr, 2);
71 cpu_physical_memory_read(addr, &ret, 2);
72 return ret;
73 }
74
75 void omap_badwidth_write16(void *opaque, hwaddr addr,
76 uint32_t value)
77 {
78 uint16_t val16 = value;
79
80 omap_log_badwidth(__func__, addr, 2);
81 cpu_physical_memory_write(addr, &val16, 2);
82 }
83
84 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
85 {
86 uint32_t ret;
87
88 omap_log_badwidth(__func__, addr, 4);
89 cpu_physical_memory_read(addr, &ret, 4);
90 return ret;
91 }
92
93 void omap_badwidth_write32(void *opaque, hwaddr addr,
94 uint32_t value)
95 {
96 omap_log_badwidth(__func__, addr, 4);
97 cpu_physical_memory_write(addr, &value, 4);
98 }
99
100 /* MPU OS timers */
101 struct omap_mpu_timer_s {
102 MemoryRegion iomem;
103 qemu_irq irq;
104 omap_clk clk;
105 uint32_t val;
106 int64_t time;
107 QEMUTimer *timer;
108 QEMUBH *tick;
109 int64_t rate;
110 int it_ena;
111
112 int enable;
113 int ptv;
114 int ar;
115 int st;
116 uint32_t reset_val;
117 };
118
119 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
120 {
121 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
122
123 if (timer->st && timer->enable && timer->rate)
124 return timer->val - muldiv64(distance >> (timer->ptv + 1),
125 timer->rate, NANOSECONDS_PER_SECOND);
126 else
127 return timer->val;
128 }
129
130 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
131 {
132 timer->val = omap_timer_read(timer);
133 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
134 }
135
136 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
137 {
138 int64_t expires;
139
140 if (timer->enable && timer->st && timer->rate) {
141 timer->val = timer->reset_val; /* Should skip this on clk enable */
142 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
143 NANOSECONDS_PER_SECOND, timer->rate);
144
145 /* If timer expiry would be sooner than in about 1 ms and
146 * auto-reload isn't set, then fire immediately. This is a hack
147 * to make systems like PalmOS run in acceptable time. PalmOS
148 * sets the interval to a very low value and polls the status bit
149 * in a busy loop when it wants to sleep just a couple of CPU
150 * ticks. */
151 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
152 timer_mod(timer->timer, timer->time + expires);
153 } else {
154 qemu_bh_schedule(timer->tick);
155 }
156 } else
157 timer_del(timer->timer);
158 }
159
160 static void omap_timer_fire(void *opaque)
161 {
162 struct omap_mpu_timer_s *timer = opaque;
163
164 if (!timer->ar) {
165 timer->val = 0;
166 timer->st = 0;
167 }
168
169 if (timer->it_ena)
170 /* Edge-triggered irq */
171 qemu_irq_pulse(timer->irq);
172 }
173
174 static void omap_timer_tick(void *opaque)
175 {
176 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
177
178 omap_timer_sync(timer);
179 omap_timer_fire(timer);
180 omap_timer_update(timer);
181 }
182
183 static void omap_timer_clk_update(void *opaque, int line, int on)
184 {
185 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
186
187 omap_timer_sync(timer);
188 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
189 omap_timer_update(timer);
190 }
191
192 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
193 {
194 omap_clk_adduser(timer->clk,
195 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
196 timer->rate = omap_clk_getrate(timer->clk);
197 }
198
199 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
200 unsigned size)
201 {
202 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
203
204 if (size != 4) {
205 return omap_badwidth_read32(opaque, addr);
206 }
207
208 switch (addr) {
209 case 0x00: /* CNTL_TIMER */
210 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
211
212 case 0x04: /* LOAD_TIM */
213 break;
214
215 case 0x08: /* READ_TIM */
216 return omap_timer_read(s);
217 }
218
219 OMAP_BAD_REG(addr);
220 return 0;
221 }
222
223 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
224 uint64_t value, unsigned size)
225 {
226 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
227
228 if (size != 4) {
229 omap_badwidth_write32(opaque, addr, value);
230 return;
231 }
232
233 switch (addr) {
234 case 0x00: /* CNTL_TIMER */
235 omap_timer_sync(s);
236 s->enable = (value >> 5) & 1;
237 s->ptv = (value >> 2) & 7;
238 s->ar = (value >> 1) & 1;
239 s->st = value & 1;
240 omap_timer_update(s);
241 return;
242
243 case 0x04: /* LOAD_TIM */
244 s->reset_val = value;
245 return;
246
247 case 0x08: /* READ_TIM */
248 OMAP_RO_REG(addr);
249 break;
250
251 default:
252 OMAP_BAD_REG(addr);
253 }
254 }
255
256 static const MemoryRegionOps omap_mpu_timer_ops = {
257 .read = omap_mpu_timer_read,
258 .write = omap_mpu_timer_write,
259 .endianness = DEVICE_LITTLE_ENDIAN,
260 };
261
262 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
263 {
264 timer_del(s->timer);
265 s->enable = 0;
266 s->reset_val = 31337;
267 s->val = 0;
268 s->ptv = 0;
269 s->ar = 0;
270 s->st = 0;
271 s->it_ena = 1;
272 }
273
274 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
275 hwaddr base,
276 qemu_irq irq, omap_clk clk)
277 {
278 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
279
280 s->irq = irq;
281 s->clk = clk;
282 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
283 s->tick = qemu_bh_new(omap_timer_fire, s);
284 omap_mpu_timer_reset(s);
285 omap_timer_clk_setup(s);
286
287 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
288 "omap-mpu-timer", 0x100);
289
290 memory_region_add_subregion(system_memory, base, &s->iomem);
291
292 return s;
293 }
294
295 /* Watchdog timer */
296 struct omap_watchdog_timer_s {
297 struct omap_mpu_timer_s timer;
298 MemoryRegion iomem;
299 uint8_t last_wr;
300 int mode;
301 int free;
302 int reset;
303 };
304
305 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
306 unsigned size)
307 {
308 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
309
310 if (size != 2) {
311 return omap_badwidth_read16(opaque, addr);
312 }
313
314 switch (addr) {
315 case 0x00: /* CNTL_TIMER */
316 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
317 (s->timer.st << 7) | (s->free << 1);
318
319 case 0x04: /* READ_TIMER */
320 return omap_timer_read(&s->timer);
321
322 case 0x08: /* TIMER_MODE */
323 return s->mode << 15;
324 }
325
326 OMAP_BAD_REG(addr);
327 return 0;
328 }
329
330 static void omap_wd_timer_write(void *opaque, hwaddr addr,
331 uint64_t value, unsigned size)
332 {
333 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
334
335 if (size != 2) {
336 omap_badwidth_write16(opaque, addr, value);
337 return;
338 }
339
340 switch (addr) {
341 case 0x00: /* CNTL_TIMER */
342 omap_timer_sync(&s->timer);
343 s->timer.ptv = (value >> 9) & 7;
344 s->timer.ar = (value >> 8) & 1;
345 s->timer.st = (value >> 7) & 1;
346 s->free = (value >> 1) & 1;
347 omap_timer_update(&s->timer);
348 break;
349
350 case 0x04: /* LOAD_TIMER */
351 s->timer.reset_val = value & 0xffff;
352 break;
353
354 case 0x08: /* TIMER_MODE */
355 if (!s->mode && ((value >> 15) & 1))
356 omap_clk_get(s->timer.clk);
357 s->mode |= (value >> 15) & 1;
358 if (s->last_wr == 0xf5) {
359 if ((value & 0xff) == 0xa0) {
360 if (s->mode) {
361 s->mode = 0;
362 omap_clk_put(s->timer.clk);
363 }
364 } else {
365 /* XXX: on T|E hardware somehow this has no effect,
366 * on Zire 71 it works as specified. */
367 s->reset = 1;
368 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
369 }
370 }
371 s->last_wr = value & 0xff;
372 break;
373
374 default:
375 OMAP_BAD_REG(addr);
376 }
377 }
378
379 static const MemoryRegionOps omap_wd_timer_ops = {
380 .read = omap_wd_timer_read,
381 .write = omap_wd_timer_write,
382 .endianness = DEVICE_NATIVE_ENDIAN,
383 };
384
385 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
386 {
387 timer_del(s->timer.timer);
388 if (!s->mode)
389 omap_clk_get(s->timer.clk);
390 s->mode = 1;
391 s->free = 1;
392 s->reset = 0;
393 s->timer.enable = 1;
394 s->timer.it_ena = 1;
395 s->timer.reset_val = 0xffff;
396 s->timer.val = 0;
397 s->timer.st = 0;
398 s->timer.ptv = 0;
399 s->timer.ar = 0;
400 omap_timer_update(&s->timer);
401 }
402
403 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
404 hwaddr base,
405 qemu_irq irq, omap_clk clk)
406 {
407 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
408
409 s->timer.irq = irq;
410 s->timer.clk = clk;
411 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
412 omap_wd_timer_reset(s);
413 omap_timer_clk_setup(&s->timer);
414
415 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
416 "omap-wd-timer", 0x100);
417 memory_region_add_subregion(memory, base, &s->iomem);
418
419 return s;
420 }
421
422 /* 32-kHz timer */
423 struct omap_32khz_timer_s {
424 struct omap_mpu_timer_s timer;
425 MemoryRegion iomem;
426 };
427
428 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
429 unsigned size)
430 {
431 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
432 int offset = addr & OMAP_MPUI_REG_MASK;
433
434 if (size != 4) {
435 return omap_badwidth_read32(opaque, addr);
436 }
437
438 switch (offset) {
439 case 0x00: /* TVR */
440 return s->timer.reset_val;
441
442 case 0x04: /* TCR */
443 return omap_timer_read(&s->timer);
444
445 case 0x08: /* CR */
446 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
447
448 default:
449 break;
450 }
451 OMAP_BAD_REG(addr);
452 return 0;
453 }
454
455 static void omap_os_timer_write(void *opaque, hwaddr addr,
456 uint64_t value, unsigned size)
457 {
458 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
459 int offset = addr & OMAP_MPUI_REG_MASK;
460
461 if (size != 4) {
462 omap_badwidth_write32(opaque, addr, value);
463 return;
464 }
465
466 switch (offset) {
467 case 0x00: /* TVR */
468 s->timer.reset_val = value & 0x00ffffff;
469 break;
470
471 case 0x04: /* TCR */
472 OMAP_RO_REG(addr);
473 break;
474
475 case 0x08: /* CR */
476 s->timer.ar = (value >> 3) & 1;
477 s->timer.it_ena = (value >> 2) & 1;
478 if (s->timer.st != (value & 1) || (value & 2)) {
479 omap_timer_sync(&s->timer);
480 s->timer.enable = value & 1;
481 s->timer.st = value & 1;
482 omap_timer_update(&s->timer);
483 }
484 break;
485
486 default:
487 OMAP_BAD_REG(addr);
488 }
489 }
490
491 static const MemoryRegionOps omap_os_timer_ops = {
492 .read = omap_os_timer_read,
493 .write = omap_os_timer_write,
494 .endianness = DEVICE_NATIVE_ENDIAN,
495 };
496
497 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
498 {
499 timer_del(s->timer.timer);
500 s->timer.enable = 0;
501 s->timer.it_ena = 0;
502 s->timer.reset_val = 0x00ffffff;
503 s->timer.val = 0;
504 s->timer.st = 0;
505 s->timer.ptv = 0;
506 s->timer.ar = 1;
507 }
508
509 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
510 hwaddr base,
511 qemu_irq irq, omap_clk clk)
512 {
513 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
514
515 s->timer.irq = irq;
516 s->timer.clk = clk;
517 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
518 omap_os_timer_reset(s);
519 omap_timer_clk_setup(&s->timer);
520
521 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
522 "omap-os-timer", 0x800);
523 memory_region_add_subregion(memory, base, &s->iomem);
524
525 return s;
526 }
527
528 /* Ultra Low-Power Device Module */
529 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
530 unsigned size)
531 {
532 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
533 uint16_t ret;
534
535 if (size != 2) {
536 return omap_badwidth_read16(opaque, addr);
537 }
538
539 switch (addr) {
540 case 0x14: /* IT_STATUS */
541 ret = s->ulpd_pm_regs[addr >> 2];
542 s->ulpd_pm_regs[addr >> 2] = 0;
543 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
544 return ret;
545
546 case 0x18: /* Reserved */
547 case 0x1c: /* Reserved */
548 case 0x20: /* Reserved */
549 case 0x28: /* Reserved */
550 case 0x2c: /* Reserved */
551 OMAP_BAD_REG(addr);
552 /* fall through */
553 case 0x00: /* COUNTER_32_LSB */
554 case 0x04: /* COUNTER_32_MSB */
555 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
556 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
557 case 0x10: /* GAUGING_CTRL */
558 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
559 case 0x30: /* CLOCK_CTRL */
560 case 0x34: /* SOFT_REQ */
561 case 0x38: /* COUNTER_32_FIQ */
562 case 0x3c: /* DPLL_CTRL */
563 case 0x40: /* STATUS_REQ */
564 /* XXX: check clk::usecount state for every clock */
565 case 0x48: /* LOCL_TIME */
566 case 0x4c: /* APLL_CTRL */
567 case 0x50: /* POWER_CTRL */
568 return s->ulpd_pm_regs[addr >> 2];
569 }
570
571 OMAP_BAD_REG(addr);
572 return 0;
573 }
574
575 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
576 uint16_t diff, uint16_t value)
577 {
578 if (diff & (1 << 4)) /* USB_MCLK_EN */
579 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
580 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
581 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
582 }
583
584 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
585 uint16_t diff, uint16_t value)
586 {
587 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
588 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
589 if (diff & (1 << 1)) /* SOFT_COM_REQ */
590 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
591 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
592 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
593 if (diff & (1 << 3)) /* SOFT_USB_REQ */
594 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
595 }
596
597 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
598 uint64_t value, unsigned size)
599 {
600 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
601 int64_t now, ticks;
602 int div, mult;
603 static const int bypass_div[4] = { 1, 2, 4, 4 };
604 uint16_t diff;
605
606 if (size != 2) {
607 omap_badwidth_write16(opaque, addr, value);
608 return;
609 }
610
611 switch (addr) {
612 case 0x00: /* COUNTER_32_LSB */
613 case 0x04: /* COUNTER_32_MSB */
614 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
615 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
616 case 0x14: /* IT_STATUS */
617 case 0x40: /* STATUS_REQ */
618 OMAP_RO_REG(addr);
619 break;
620
621 case 0x10: /* GAUGING_CTRL */
622 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
623 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
624 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
625
626 if (value & 1)
627 s->ulpd_gauge_start = now;
628 else {
629 now -= s->ulpd_gauge_start;
630
631 /* 32-kHz ticks */
632 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
633 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
634 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
635 if (ticks >> 32) /* OVERFLOW_32K */
636 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
637
638 /* High frequency ticks */
639 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
640 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
641 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
642 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
643 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
644
645 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
646 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
647 }
648 }
649 s->ulpd_pm_regs[addr >> 2] = value;
650 break;
651
652 case 0x18: /* Reserved */
653 case 0x1c: /* Reserved */
654 case 0x20: /* Reserved */
655 case 0x28: /* Reserved */
656 case 0x2c: /* Reserved */
657 OMAP_BAD_REG(addr);
658 /* fall through */
659 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
660 case 0x38: /* COUNTER_32_FIQ */
661 case 0x48: /* LOCL_TIME */
662 case 0x50: /* POWER_CTRL */
663 s->ulpd_pm_regs[addr >> 2] = value;
664 break;
665
666 case 0x30: /* CLOCK_CTRL */
667 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
668 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
669 omap_ulpd_clk_update(s, diff, value);
670 break;
671
672 case 0x34: /* SOFT_REQ */
673 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
674 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
675 omap_ulpd_req_update(s, diff, value);
676 break;
677
678 case 0x3c: /* DPLL_CTRL */
679 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
680 * omitted altogether, probably a typo. */
681 /* This register has identical semantics with DPLL(1:3) control
682 * registers, see omap_dpll_write() */
683 diff = s->ulpd_pm_regs[addr >> 2] & value;
684 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
685 if (diff & (0x3ff << 2)) {
686 if (value & (1 << 4)) { /* PLL_ENABLE */
687 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
688 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
689 } else {
690 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
691 mult = 1;
692 }
693 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
694 }
695
696 /* Enter the desired mode. */
697 s->ulpd_pm_regs[addr >> 2] =
698 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
699 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
700
701 /* Act as if the lock is restored. */
702 s->ulpd_pm_regs[addr >> 2] |= 2;
703 break;
704
705 case 0x4c: /* APLL_CTRL */
706 diff = s->ulpd_pm_regs[addr >> 2] & value;
707 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
708 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
709 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
710 (value & (1 << 0)) ? "apll" : "dpll4"));
711 break;
712
713 default:
714 OMAP_BAD_REG(addr);
715 }
716 }
717
718 static const MemoryRegionOps omap_ulpd_pm_ops = {
719 .read = omap_ulpd_pm_read,
720 .write = omap_ulpd_pm_write,
721 .endianness = DEVICE_NATIVE_ENDIAN,
722 };
723
724 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
725 {
726 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
727 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
728 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
729 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
730 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
732 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
733 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
734 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
735 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
737 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
738 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
739 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
740 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
741 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
742 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
743 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
744 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
745 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
746 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
747 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
748 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
749 }
750
751 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
752 hwaddr base,
753 struct omap_mpu_state_s *mpu)
754 {
755 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
756 "omap-ulpd-pm", 0x800);
757 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
758 omap_ulpd_pm_reset(mpu);
759 }
760
761 /* OMAP Pin Configuration */
762 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
763 unsigned size)
764 {
765 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
766
767 if (size != 4) {
768 return omap_badwidth_read32(opaque, addr);
769 }
770
771 switch (addr) {
772 case 0x00: /* FUNC_MUX_CTRL_0 */
773 case 0x04: /* FUNC_MUX_CTRL_1 */
774 case 0x08: /* FUNC_MUX_CTRL_2 */
775 return s->func_mux_ctrl[addr >> 2];
776
777 case 0x0c: /* COMP_MODE_CTRL_0 */
778 return s->comp_mode_ctrl[0];
779
780 case 0x10: /* FUNC_MUX_CTRL_3 */
781 case 0x14: /* FUNC_MUX_CTRL_4 */
782 case 0x18: /* FUNC_MUX_CTRL_5 */
783 case 0x1c: /* FUNC_MUX_CTRL_6 */
784 case 0x20: /* FUNC_MUX_CTRL_7 */
785 case 0x24: /* FUNC_MUX_CTRL_8 */
786 case 0x28: /* FUNC_MUX_CTRL_9 */
787 case 0x2c: /* FUNC_MUX_CTRL_A */
788 case 0x30: /* FUNC_MUX_CTRL_B */
789 case 0x34: /* FUNC_MUX_CTRL_C */
790 case 0x38: /* FUNC_MUX_CTRL_D */
791 return s->func_mux_ctrl[(addr >> 2) - 1];
792
793 case 0x40: /* PULL_DWN_CTRL_0 */
794 case 0x44: /* PULL_DWN_CTRL_1 */
795 case 0x48: /* PULL_DWN_CTRL_2 */
796 case 0x4c: /* PULL_DWN_CTRL_3 */
797 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
798
799 case 0x50: /* GATE_INH_CTRL_0 */
800 return s->gate_inh_ctrl[0];
801
802 case 0x60: /* VOLTAGE_CTRL_0 */
803 return s->voltage_ctrl[0];
804
805 case 0x70: /* TEST_DBG_CTRL_0 */
806 return s->test_dbg_ctrl[0];
807
808 case 0x80: /* MOD_CONF_CTRL_0 */
809 return s->mod_conf_ctrl[0];
810 }
811
812 OMAP_BAD_REG(addr);
813 return 0;
814 }
815
816 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
817 uint32_t diff, uint32_t value)
818 {
819 if (s->compat1509) {
820 if (diff & (1 << 9)) /* BLUETOOTH */
821 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
822 (~value >> 9) & 1);
823 if (diff & (1 << 7)) /* USB.CLKO */
824 omap_clk_onoff(omap_findclk(s, "usb.clko"),
825 (value >> 7) & 1);
826 }
827 }
828
829 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
830 uint32_t diff, uint32_t value)
831 {
832 if (s->compat1509) {
833 if (diff & (1U << 31)) {
834 /* MCBSP3_CLK_HIZ_DI */
835 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
836 }
837 if (diff & (1 << 1)) {
838 /* CLK32K */
839 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
840 }
841 }
842 }
843
844 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
845 uint32_t diff, uint32_t value)
846 {
847 if (diff & (1U << 31)) {
848 /* CONF_MOD_UART3_CLK_MODE_R */
849 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
850 omap_findclk(s, ((value >> 31) & 1) ?
851 "ck_48m" : "armper_ck"));
852 }
853 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
854 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
855 omap_findclk(s, ((value >> 30) & 1) ?
856 "ck_48m" : "armper_ck"));
857 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
858 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
859 omap_findclk(s, ((value >> 29) & 1) ?
860 "ck_48m" : "armper_ck"));
861 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
862 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
863 omap_findclk(s, ((value >> 23) & 1) ?
864 "ck_48m" : "armper_ck"));
865 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
866 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
867 omap_findclk(s, ((value >> 12) & 1) ?
868 "ck_48m" : "armper_ck"));
869 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
870 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
871 }
872
873 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
874 uint64_t value, unsigned size)
875 {
876 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
877 uint32_t diff;
878
879 if (size != 4) {
880 omap_badwidth_write32(opaque, addr, value);
881 return;
882 }
883
884 switch (addr) {
885 case 0x00: /* FUNC_MUX_CTRL_0 */
886 diff = s->func_mux_ctrl[addr >> 2] ^ value;
887 s->func_mux_ctrl[addr >> 2] = value;
888 omap_pin_funcmux0_update(s, diff, value);
889 return;
890
891 case 0x04: /* FUNC_MUX_CTRL_1 */
892 diff = s->func_mux_ctrl[addr >> 2] ^ value;
893 s->func_mux_ctrl[addr >> 2] = value;
894 omap_pin_funcmux1_update(s, diff, value);
895 return;
896
897 case 0x08: /* FUNC_MUX_CTRL_2 */
898 s->func_mux_ctrl[addr >> 2] = value;
899 return;
900
901 case 0x0c: /* COMP_MODE_CTRL_0 */
902 s->comp_mode_ctrl[0] = value;
903 s->compat1509 = (value != 0x0000eaef);
904 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
905 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
906 return;
907
908 case 0x10: /* FUNC_MUX_CTRL_3 */
909 case 0x14: /* FUNC_MUX_CTRL_4 */
910 case 0x18: /* FUNC_MUX_CTRL_5 */
911 case 0x1c: /* FUNC_MUX_CTRL_6 */
912 case 0x20: /* FUNC_MUX_CTRL_7 */
913 case 0x24: /* FUNC_MUX_CTRL_8 */
914 case 0x28: /* FUNC_MUX_CTRL_9 */
915 case 0x2c: /* FUNC_MUX_CTRL_A */
916 case 0x30: /* FUNC_MUX_CTRL_B */
917 case 0x34: /* FUNC_MUX_CTRL_C */
918 case 0x38: /* FUNC_MUX_CTRL_D */
919 s->func_mux_ctrl[(addr >> 2) - 1] = value;
920 return;
921
922 case 0x40: /* PULL_DWN_CTRL_0 */
923 case 0x44: /* PULL_DWN_CTRL_1 */
924 case 0x48: /* PULL_DWN_CTRL_2 */
925 case 0x4c: /* PULL_DWN_CTRL_3 */
926 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
927 return;
928
929 case 0x50: /* GATE_INH_CTRL_0 */
930 s->gate_inh_ctrl[0] = value;
931 return;
932
933 case 0x60: /* VOLTAGE_CTRL_0 */
934 s->voltage_ctrl[0] = value;
935 return;
936
937 case 0x70: /* TEST_DBG_CTRL_0 */
938 s->test_dbg_ctrl[0] = value;
939 return;
940
941 case 0x80: /* MOD_CONF_CTRL_0 */
942 diff = s->mod_conf_ctrl[0] ^ value;
943 s->mod_conf_ctrl[0] = value;
944 omap_pin_modconf1_update(s, diff, value);
945 return;
946
947 default:
948 OMAP_BAD_REG(addr);
949 }
950 }
951
952 static const MemoryRegionOps omap_pin_cfg_ops = {
953 .read = omap_pin_cfg_read,
954 .write = omap_pin_cfg_write,
955 .endianness = DEVICE_NATIVE_ENDIAN,
956 };
957
958 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
959 {
960 /* Start in Compatibility Mode. */
961 mpu->compat1509 = 1;
962 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
963 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
964 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
965 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
966 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
967 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
968 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
969 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
970 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
971 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
972 }
973
974 static void omap_pin_cfg_init(MemoryRegion *system_memory,
975 hwaddr base,
976 struct omap_mpu_state_s *mpu)
977 {
978 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
979 "omap-pin-cfg", 0x800);
980 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
981 omap_pin_cfg_reset(mpu);
982 }
983
984 /* Device Identification, Die Identification */
985 static uint64_t omap_id_read(void *opaque, hwaddr addr,
986 unsigned size)
987 {
988 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
989
990 if (size != 4) {
991 return omap_badwidth_read32(opaque, addr);
992 }
993
994 switch (addr) {
995 case 0xfffe1800: /* DIE_ID_LSB */
996 return 0xc9581f0e;
997 case 0xfffe1804: /* DIE_ID_MSB */
998 return 0xa8858bfa;
999
1000 case 0xfffe2000: /* PRODUCT_ID_LSB */
1001 return 0x00aaaafc;
1002 case 0xfffe2004: /* PRODUCT_ID_MSB */
1003 return 0xcafeb574;
1004
1005 case 0xfffed400: /* JTAG_ID_LSB */
1006 switch (s->mpu_model) {
1007 case omap310:
1008 return 0x03310315;
1009 case omap1510:
1010 return 0x03310115;
1011 default:
1012 hw_error("%s: bad mpu model\n", __func__);
1013 }
1014 break;
1015
1016 case 0xfffed404: /* JTAG_ID_MSB */
1017 switch (s->mpu_model) {
1018 case omap310:
1019 return 0xfb57402f;
1020 case omap1510:
1021 return 0xfb47002f;
1022 default:
1023 hw_error("%s: bad mpu model\n", __func__);
1024 }
1025 break;
1026 }
1027
1028 OMAP_BAD_REG(addr);
1029 return 0;
1030 }
1031
1032 static void omap_id_write(void *opaque, hwaddr addr,
1033 uint64_t value, unsigned size)
1034 {
1035 if (size != 4) {
1036 omap_badwidth_write32(opaque, addr, value);
1037 return;
1038 }
1039
1040 OMAP_BAD_REG(addr);
1041 }
1042
1043 static const MemoryRegionOps omap_id_ops = {
1044 .read = omap_id_read,
1045 .write = omap_id_write,
1046 .endianness = DEVICE_NATIVE_ENDIAN,
1047 };
1048
1049 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1050 {
1051 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1052 "omap-id", 0x100000000ULL);
1053 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1054 0xfffe1800, 0x800);
1055 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1056 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1057 0xfffed400, 0x100);
1058 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1059 if (!cpu_is_omap15xx(mpu)) {
1060 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1061 &mpu->id_iomem, 0xfffe2000, 0x800);
1062 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1063 }
1064 }
1065
1066 /* MPUI Control (Dummy) */
1067 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1068 unsigned size)
1069 {
1070 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1071
1072 if (size != 4) {
1073 return omap_badwidth_read32(opaque, addr);
1074 }
1075
1076 switch (addr) {
1077 case 0x00: /* CTRL */
1078 return s->mpui_ctrl;
1079 case 0x04: /* DEBUG_ADDR */
1080 return 0x01ffffff;
1081 case 0x08: /* DEBUG_DATA */
1082 return 0xffffffff;
1083 case 0x0c: /* DEBUG_FLAG */
1084 return 0x00000800;
1085 case 0x10: /* STATUS */
1086 return 0x00000000;
1087
1088 /* Not in OMAP310 */
1089 case 0x14: /* DSP_STATUS */
1090 case 0x18: /* DSP_BOOT_CONFIG */
1091 return 0x00000000;
1092 case 0x1c: /* DSP_MPUI_CONFIG */
1093 return 0x0000ffff;
1094 }
1095
1096 OMAP_BAD_REG(addr);
1097 return 0;
1098 }
1099
1100 static void omap_mpui_write(void *opaque, hwaddr addr,
1101 uint64_t value, unsigned size)
1102 {
1103 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1104
1105 if (size != 4) {
1106 omap_badwidth_write32(opaque, addr, value);
1107 return;
1108 }
1109
1110 switch (addr) {
1111 case 0x00: /* CTRL */
1112 s->mpui_ctrl = value & 0x007fffff;
1113 break;
1114
1115 case 0x04: /* DEBUG_ADDR */
1116 case 0x08: /* DEBUG_DATA */
1117 case 0x0c: /* DEBUG_FLAG */
1118 case 0x10: /* STATUS */
1119 /* Not in OMAP310 */
1120 case 0x14: /* DSP_STATUS */
1121 OMAP_RO_REG(addr);
1122 break;
1123 case 0x18: /* DSP_BOOT_CONFIG */
1124 case 0x1c: /* DSP_MPUI_CONFIG */
1125 break;
1126
1127 default:
1128 OMAP_BAD_REG(addr);
1129 }
1130 }
1131
1132 static const MemoryRegionOps omap_mpui_ops = {
1133 .read = omap_mpui_read,
1134 .write = omap_mpui_write,
1135 .endianness = DEVICE_NATIVE_ENDIAN,
1136 };
1137
1138 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1139 {
1140 s->mpui_ctrl = 0x0003ff1b;
1141 }
1142
1143 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1144 struct omap_mpu_state_s *mpu)
1145 {
1146 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1147 "omap-mpui", 0x100);
1148 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1149
1150 omap_mpui_reset(mpu);
1151 }
1152
1153 /* TIPB Bridges */
1154 struct omap_tipb_bridge_s {
1155 qemu_irq abort;
1156 MemoryRegion iomem;
1157
1158 int width_intr;
1159 uint16_t control;
1160 uint16_t alloc;
1161 uint16_t buffer;
1162 uint16_t enh_control;
1163 };
1164
1165 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1166 unsigned size)
1167 {
1168 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1169
1170 if (size < 2) {
1171 return omap_badwidth_read16(opaque, addr);
1172 }
1173
1174 switch (addr) {
1175 case 0x00: /* TIPB_CNTL */
1176 return s->control;
1177 case 0x04: /* TIPB_BUS_ALLOC */
1178 return s->alloc;
1179 case 0x08: /* MPU_TIPB_CNTL */
1180 return s->buffer;
1181 case 0x0c: /* ENHANCED_TIPB_CNTL */
1182 return s->enh_control;
1183 case 0x10: /* ADDRESS_DBG */
1184 case 0x14: /* DATA_DEBUG_LOW */
1185 case 0x18: /* DATA_DEBUG_HIGH */
1186 return 0xffff;
1187 case 0x1c: /* DEBUG_CNTR_SIG */
1188 return 0x00f8;
1189 }
1190
1191 OMAP_BAD_REG(addr);
1192 return 0;
1193 }
1194
1195 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1196 uint64_t value, unsigned size)
1197 {
1198 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1199
1200 if (size < 2) {
1201 omap_badwidth_write16(opaque, addr, value);
1202 return;
1203 }
1204
1205 switch (addr) {
1206 case 0x00: /* TIPB_CNTL */
1207 s->control = value & 0xffff;
1208 break;
1209
1210 case 0x04: /* TIPB_BUS_ALLOC */
1211 s->alloc = value & 0x003f;
1212 break;
1213
1214 case 0x08: /* MPU_TIPB_CNTL */
1215 s->buffer = value & 0x0003;
1216 break;
1217
1218 case 0x0c: /* ENHANCED_TIPB_CNTL */
1219 s->width_intr = !(value & 2);
1220 s->enh_control = value & 0x000f;
1221 break;
1222
1223 case 0x10: /* ADDRESS_DBG */
1224 case 0x14: /* DATA_DEBUG_LOW */
1225 case 0x18: /* DATA_DEBUG_HIGH */
1226 case 0x1c: /* DEBUG_CNTR_SIG */
1227 OMAP_RO_REG(addr);
1228 break;
1229
1230 default:
1231 OMAP_BAD_REG(addr);
1232 }
1233 }
1234
1235 static const MemoryRegionOps omap_tipb_bridge_ops = {
1236 .read = omap_tipb_bridge_read,
1237 .write = omap_tipb_bridge_write,
1238 .endianness = DEVICE_NATIVE_ENDIAN,
1239 };
1240
1241 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1242 {
1243 s->control = 0xffff;
1244 s->alloc = 0x0009;
1245 s->buffer = 0x0000;
1246 s->enh_control = 0x000f;
1247 }
1248
1249 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1250 MemoryRegion *memory, hwaddr base,
1251 qemu_irq abort_irq, omap_clk clk)
1252 {
1253 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1254
1255 s->abort = abort_irq;
1256 omap_tipb_bridge_reset(s);
1257
1258 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1259 "omap-tipb-bridge", 0x100);
1260 memory_region_add_subregion(memory, base, &s->iomem);
1261
1262 return s;
1263 }
1264
1265 /* Dummy Traffic Controller's Memory Interface */
1266 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1267 unsigned size)
1268 {
1269 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1270 uint32_t ret;
1271
1272 if (size != 4) {
1273 return omap_badwidth_read32(opaque, addr);
1274 }
1275
1276 switch (addr) {
1277 case 0x00: /* IMIF_PRIO */
1278 case 0x04: /* EMIFS_PRIO */
1279 case 0x08: /* EMIFF_PRIO */
1280 case 0x0c: /* EMIFS_CONFIG */
1281 case 0x10: /* EMIFS_CS0_CONFIG */
1282 case 0x14: /* EMIFS_CS1_CONFIG */
1283 case 0x18: /* EMIFS_CS2_CONFIG */
1284 case 0x1c: /* EMIFS_CS3_CONFIG */
1285 case 0x24: /* EMIFF_MRS */
1286 case 0x28: /* TIMEOUT1 */
1287 case 0x2c: /* TIMEOUT2 */
1288 case 0x30: /* TIMEOUT3 */
1289 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1290 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1291 return s->tcmi_regs[addr >> 2];
1292
1293 case 0x20: /* EMIFF_SDRAM_CONFIG */
1294 ret = s->tcmi_regs[addr >> 2];
1295 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1296 /* XXX: We can try using the VGA_DIRTY flag for this */
1297 return ret;
1298 }
1299
1300 OMAP_BAD_REG(addr);
1301 return 0;
1302 }
1303
1304 static void omap_tcmi_write(void *opaque, hwaddr addr,
1305 uint64_t value, unsigned size)
1306 {
1307 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1308
1309 if (size != 4) {
1310 omap_badwidth_write32(opaque, addr, value);
1311 return;
1312 }
1313
1314 switch (addr) {
1315 case 0x00: /* IMIF_PRIO */
1316 case 0x04: /* EMIFS_PRIO */
1317 case 0x08: /* EMIFF_PRIO */
1318 case 0x10: /* EMIFS_CS0_CONFIG */
1319 case 0x14: /* EMIFS_CS1_CONFIG */
1320 case 0x18: /* EMIFS_CS2_CONFIG */
1321 case 0x1c: /* EMIFS_CS3_CONFIG */
1322 case 0x20: /* EMIFF_SDRAM_CONFIG */
1323 case 0x24: /* EMIFF_MRS */
1324 case 0x28: /* TIMEOUT1 */
1325 case 0x2c: /* TIMEOUT2 */
1326 case 0x30: /* TIMEOUT3 */
1327 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1328 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1329 s->tcmi_regs[addr >> 2] = value;
1330 break;
1331 case 0x0c: /* EMIFS_CONFIG */
1332 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1333 break;
1334
1335 default:
1336 OMAP_BAD_REG(addr);
1337 }
1338 }
1339
1340 static const MemoryRegionOps omap_tcmi_ops = {
1341 .read = omap_tcmi_read,
1342 .write = omap_tcmi_write,
1343 .endianness = DEVICE_NATIVE_ENDIAN,
1344 };
1345
1346 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1347 {
1348 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1349 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1352 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1353 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1354 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1355 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1357 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1358 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1359 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1360 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1361 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1362 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1363 }
1364
1365 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1366 struct omap_mpu_state_s *mpu)
1367 {
1368 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1369 "omap-tcmi", 0x100);
1370 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1371 omap_tcmi_reset(mpu);
1372 }
1373
1374 /* Digital phase-locked loops control */
1375 struct dpll_ctl_s {
1376 MemoryRegion iomem;
1377 uint16_t mode;
1378 omap_clk dpll;
1379 };
1380
1381 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1382 unsigned size)
1383 {
1384 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1385
1386 if (size != 2) {
1387 return omap_badwidth_read16(opaque, addr);
1388 }
1389
1390 if (addr == 0x00) /* CTL_REG */
1391 return s->mode;
1392
1393 OMAP_BAD_REG(addr);
1394 return 0;
1395 }
1396
1397 static void omap_dpll_write(void *opaque, hwaddr addr,
1398 uint64_t value, unsigned size)
1399 {
1400 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1401 uint16_t diff;
1402 static const int bypass_div[4] = { 1, 2, 4, 4 };
1403 int div, mult;
1404
1405 if (size != 2) {
1406 omap_badwidth_write16(opaque, addr, value);
1407 return;
1408 }
1409
1410 if (addr == 0x00) { /* CTL_REG */
1411 /* See omap_ulpd_pm_write() too */
1412 diff = s->mode & value;
1413 s->mode = value & 0x2fff;
1414 if (diff & (0x3ff << 2)) {
1415 if (value & (1 << 4)) { /* PLL_ENABLE */
1416 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1417 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1418 } else {
1419 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1420 mult = 1;
1421 }
1422 omap_clk_setrate(s->dpll, div, mult);
1423 }
1424
1425 /* Enter the desired mode. */
1426 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1427
1428 /* Act as if the lock is restored. */
1429 s->mode |= 2;
1430 } else {
1431 OMAP_BAD_REG(addr);
1432 }
1433 }
1434
1435 static const MemoryRegionOps omap_dpll_ops = {
1436 .read = omap_dpll_read,
1437 .write = omap_dpll_write,
1438 .endianness = DEVICE_NATIVE_ENDIAN,
1439 };
1440
1441 static void omap_dpll_reset(struct dpll_ctl_s *s)
1442 {
1443 s->mode = 0x2002;
1444 omap_clk_setrate(s->dpll, 1, 1);
1445 }
1446
1447 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1448 hwaddr base, omap_clk clk)
1449 {
1450 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1451 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1452
1453 s->dpll = clk;
1454 omap_dpll_reset(s);
1455
1456 memory_region_add_subregion(memory, base, &s->iomem);
1457 return s;
1458 }
1459
1460 /* MPU Clock/Reset/Power Mode Control */
1461 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1462 unsigned size)
1463 {
1464 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1465
1466 if (size != 2) {
1467 return omap_badwidth_read16(opaque, addr);
1468 }
1469
1470 switch (addr) {
1471 case 0x00: /* ARM_CKCTL */
1472 return s->clkm.arm_ckctl;
1473
1474 case 0x04: /* ARM_IDLECT1 */
1475 return s->clkm.arm_idlect1;
1476
1477 case 0x08: /* ARM_IDLECT2 */
1478 return s->clkm.arm_idlect2;
1479
1480 case 0x0c: /* ARM_EWUPCT */
1481 return s->clkm.arm_ewupct;
1482
1483 case 0x10: /* ARM_RSTCT1 */
1484 return s->clkm.arm_rstct1;
1485
1486 case 0x14: /* ARM_RSTCT2 */
1487 return s->clkm.arm_rstct2;
1488
1489 case 0x18: /* ARM_SYSST */
1490 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1491
1492 case 0x1c: /* ARM_CKOUT1 */
1493 return s->clkm.arm_ckout1;
1494
1495 case 0x20: /* ARM_CKOUT2 */
1496 break;
1497 }
1498
1499 OMAP_BAD_REG(addr);
1500 return 0;
1501 }
1502
1503 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1504 uint16_t diff, uint16_t value)
1505 {
1506 omap_clk clk;
1507
1508 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1509 if (value & (1 << 14))
1510 /* Reserved */;
1511 else {
1512 clk = omap_findclk(s, "arminth_ck");
1513 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1514 }
1515 }
1516 if (diff & (1 << 12)) { /* ARM_TIMXO */
1517 clk = omap_findclk(s, "armtim_ck");
1518 if (value & (1 << 12))
1519 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1520 else
1521 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1522 }
1523 /* XXX: en_dspck */
1524 if (diff & (3 << 10)) { /* DSPMMUDIV */
1525 clk = omap_findclk(s, "dspmmu_ck");
1526 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1527 }
1528 if (diff & (3 << 8)) { /* TCDIV */
1529 clk = omap_findclk(s, "tc_ck");
1530 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1531 }
1532 if (diff & (3 << 6)) { /* DSPDIV */
1533 clk = omap_findclk(s, "dsp_ck");
1534 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1535 }
1536 if (diff & (3 << 4)) { /* ARMDIV */
1537 clk = omap_findclk(s, "arm_ck");
1538 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1539 }
1540 if (diff & (3 << 2)) { /* LCDDIV */
1541 clk = omap_findclk(s, "lcd_ck");
1542 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1543 }
1544 if (diff & (3 << 0)) { /* PERDIV */
1545 clk = omap_findclk(s, "armper_ck");
1546 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1547 }
1548 }
1549
1550 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1551 uint16_t diff, uint16_t value)
1552 {
1553 omap_clk clk;
1554
1555 if (value & (1 << 11)) { /* SETARM_IDLE */
1556 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1557 }
1558 if (!(value & (1 << 10))) { /* WKUP_MODE */
1559 /* XXX: disable wakeup from IRQ */
1560 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1561 }
1562
1563 #define SET_CANIDLE(clock, bit) \
1564 if (diff & (1 << bit)) { \
1565 clk = omap_findclk(s, clock); \
1566 omap_clk_canidle(clk, (value >> bit) & 1); \
1567 }
1568 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1569 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1570 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1571 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1572 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1573 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1574 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1575 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1576 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1577 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1578 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1579 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1580 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1581 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1582 }
1583
1584 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1585 uint16_t diff, uint16_t value)
1586 {
1587 omap_clk clk;
1588
1589 #define SET_ONOFF(clock, bit) \
1590 if (diff & (1 << bit)) { \
1591 clk = omap_findclk(s, clock); \
1592 omap_clk_onoff(clk, (value >> bit) & 1); \
1593 }
1594 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1595 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1596 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1597 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1598 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1599 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1600 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1601 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1602 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1603 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1604 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1605 }
1606
1607 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1608 uint16_t diff, uint16_t value)
1609 {
1610 omap_clk clk;
1611
1612 if (diff & (3 << 4)) { /* TCLKOUT */
1613 clk = omap_findclk(s, "tclk_out");
1614 switch ((value >> 4) & 3) {
1615 case 1:
1616 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1617 omap_clk_onoff(clk, 1);
1618 break;
1619 case 2:
1620 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1621 omap_clk_onoff(clk, 1);
1622 break;
1623 default:
1624 omap_clk_onoff(clk, 0);
1625 }
1626 }
1627 if (diff & (3 << 2)) { /* DCLKOUT */
1628 clk = omap_findclk(s, "dclk_out");
1629 switch ((value >> 2) & 3) {
1630 case 0:
1631 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1632 break;
1633 case 1:
1634 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1635 break;
1636 case 2:
1637 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1638 break;
1639 case 3:
1640 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1641 break;
1642 }
1643 }
1644 if (diff & (3 << 0)) { /* ACLKOUT */
1645 clk = omap_findclk(s, "aclk_out");
1646 switch ((value >> 0) & 3) {
1647 case 1:
1648 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1649 omap_clk_onoff(clk, 1);
1650 break;
1651 case 2:
1652 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1653 omap_clk_onoff(clk, 1);
1654 break;
1655 case 3:
1656 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1657 omap_clk_onoff(clk, 1);
1658 break;
1659 default:
1660 omap_clk_onoff(clk, 0);
1661 }
1662 }
1663 }
1664
1665 static void omap_clkm_write(void *opaque, hwaddr addr,
1666 uint64_t value, unsigned size)
1667 {
1668 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1669 uint16_t diff;
1670 omap_clk clk;
1671 static const char *clkschemename[8] = {
1672 "fully synchronous", "fully asynchronous", "synchronous scalable",
1673 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1674 };
1675
1676 if (size != 2) {
1677 omap_badwidth_write16(opaque, addr, value);
1678 return;
1679 }
1680
1681 switch (addr) {
1682 case 0x00: /* ARM_CKCTL */
1683 diff = s->clkm.arm_ckctl ^ value;
1684 s->clkm.arm_ckctl = value & 0x7fff;
1685 omap_clkm_ckctl_update(s, diff, value);
1686 return;
1687
1688 case 0x04: /* ARM_IDLECT1 */
1689 diff = s->clkm.arm_idlect1 ^ value;
1690 s->clkm.arm_idlect1 = value & 0x0fff;
1691 omap_clkm_idlect1_update(s, diff, value);
1692 return;
1693
1694 case 0x08: /* ARM_IDLECT2 */
1695 diff = s->clkm.arm_idlect2 ^ value;
1696 s->clkm.arm_idlect2 = value & 0x07ff;
1697 omap_clkm_idlect2_update(s, diff, value);
1698 return;
1699
1700 case 0x0c: /* ARM_EWUPCT */
1701 s->clkm.arm_ewupct = value & 0x003f;
1702 return;
1703
1704 case 0x10: /* ARM_RSTCT1 */
1705 diff = s->clkm.arm_rstct1 ^ value;
1706 s->clkm.arm_rstct1 = value & 0x0007;
1707 if (value & 9) {
1708 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1709 s->clkm.cold_start = 0xa;
1710 }
1711 if (diff & ~value & 4) { /* DSP_RST */
1712 omap_mpui_reset(s);
1713 omap_tipb_bridge_reset(s->private_tipb);
1714 omap_tipb_bridge_reset(s->public_tipb);
1715 }
1716 if (diff & 2) { /* DSP_EN */
1717 clk = omap_findclk(s, "dsp_ck");
1718 omap_clk_canidle(clk, (~value >> 1) & 1);
1719 }
1720 return;
1721
1722 case 0x14: /* ARM_RSTCT2 */
1723 s->clkm.arm_rstct2 = value & 0x0001;
1724 return;
1725
1726 case 0x18: /* ARM_SYSST */
1727 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1728 s->clkm.clocking_scheme = (value >> 11) & 7;
1729 printf("%s: clocking scheme set to %s\n", __func__,
1730 clkschemename[s->clkm.clocking_scheme]);
1731 }
1732 s->clkm.cold_start &= value & 0x3f;
1733 return;
1734
1735 case 0x1c: /* ARM_CKOUT1 */
1736 diff = s->clkm.arm_ckout1 ^ value;
1737 s->clkm.arm_ckout1 = value & 0x003f;
1738 omap_clkm_ckout1_update(s, diff, value);
1739 return;
1740
1741 case 0x20: /* ARM_CKOUT2 */
1742 default:
1743 OMAP_BAD_REG(addr);
1744 }
1745 }
1746
1747 static const MemoryRegionOps omap_clkm_ops = {
1748 .read = omap_clkm_read,
1749 .write = omap_clkm_write,
1750 .endianness = DEVICE_NATIVE_ENDIAN,
1751 };
1752
1753 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1754 unsigned size)
1755 {
1756 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1757 CPUState *cpu = CPU(s->cpu);
1758
1759 if (size != 2) {
1760 return omap_badwidth_read16(opaque, addr);
1761 }
1762
1763 switch (addr) {
1764 case 0x04: /* DSP_IDLECT1 */
1765 return s->clkm.dsp_idlect1;
1766
1767 case 0x08: /* DSP_IDLECT2 */
1768 return s->clkm.dsp_idlect2;
1769
1770 case 0x14: /* DSP_RSTCT2 */
1771 return s->clkm.dsp_rstct2;
1772
1773 case 0x18: /* DSP_SYSST */
1774 cpu = CPU(s->cpu);
1775 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1776 (cpu->halted << 6); /* Quite useless... */
1777 }
1778
1779 OMAP_BAD_REG(addr);
1780 return 0;
1781 }
1782
1783 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1784 uint16_t diff, uint16_t value)
1785 {
1786 omap_clk clk;
1787
1788 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1789 }
1790
1791 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1792 uint16_t diff, uint16_t value)
1793 {
1794 omap_clk clk;
1795
1796 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1797 }
1798
1799 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1800 uint64_t value, unsigned size)
1801 {
1802 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1803 uint16_t diff;
1804
1805 if (size != 2) {
1806 omap_badwidth_write16(opaque, addr, value);
1807 return;
1808 }
1809
1810 switch (addr) {
1811 case 0x04: /* DSP_IDLECT1 */
1812 diff = s->clkm.dsp_idlect1 ^ value;
1813 s->clkm.dsp_idlect1 = value & 0x01f7;
1814 omap_clkdsp_idlect1_update(s, diff, value);
1815 break;
1816
1817 case 0x08: /* DSP_IDLECT2 */
1818 s->clkm.dsp_idlect2 = value & 0x0037;
1819 diff = s->clkm.dsp_idlect1 ^ value;
1820 omap_clkdsp_idlect2_update(s, diff, value);
1821 break;
1822
1823 case 0x14: /* DSP_RSTCT2 */
1824 s->clkm.dsp_rstct2 = value & 0x0001;
1825 break;
1826
1827 case 0x18: /* DSP_SYSST */
1828 s->clkm.cold_start &= value & 0x3f;
1829 break;
1830
1831 default:
1832 OMAP_BAD_REG(addr);
1833 }
1834 }
1835
1836 static const MemoryRegionOps omap_clkdsp_ops = {
1837 .read = omap_clkdsp_read,
1838 .write = omap_clkdsp_write,
1839 .endianness = DEVICE_NATIVE_ENDIAN,
1840 };
1841
1842 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1843 {
1844 if (s->wdt && s->wdt->reset)
1845 s->clkm.cold_start = 0x6;
1846 s->clkm.clocking_scheme = 0;
1847 omap_clkm_ckctl_update(s, ~0, 0x3000);
1848 s->clkm.arm_ckctl = 0x3000;
1849 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1850 s->clkm.arm_idlect1 = 0x0400;
1851 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1852 s->clkm.arm_idlect2 = 0x0100;
1853 s->clkm.arm_ewupct = 0x003f;
1854 s->clkm.arm_rstct1 = 0x0000;
1855 s->clkm.arm_rstct2 = 0x0000;
1856 s->clkm.arm_ckout1 = 0x0015;
1857 s->clkm.dpll1_mode = 0x2002;
1858 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1859 s->clkm.dsp_idlect1 = 0x0040;
1860 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1861 s->clkm.dsp_idlect2 = 0x0000;
1862 s->clkm.dsp_rstct2 = 0x0000;
1863 }
1864
1865 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1866 hwaddr dsp_base, struct omap_mpu_state_s *s)
1867 {
1868 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1869 "omap-clkm", 0x100);
1870 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1871 "omap-clkdsp", 0x1000);
1872
1873 s->clkm.arm_idlect1 = 0x03ff;
1874 s->clkm.arm_idlect2 = 0x0100;
1875 s->clkm.dsp_idlect1 = 0x0002;
1876 omap_clkm_reset(s);
1877 s->clkm.cold_start = 0x3a;
1878
1879 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1880 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1881 }
1882
1883 /* MPU I/O */
1884 struct omap_mpuio_s {
1885 qemu_irq irq;
1886 qemu_irq kbd_irq;
1887 qemu_irq *in;
1888 qemu_irq handler[16];
1889 qemu_irq wakeup;
1890 MemoryRegion iomem;
1891
1892 uint16_t inputs;
1893 uint16_t outputs;
1894 uint16_t dir;
1895 uint16_t edge;
1896 uint16_t mask;
1897 uint16_t ints;
1898
1899 uint16_t debounce;
1900 uint16_t latch;
1901 uint8_t event;
1902
1903 uint8_t buttons[5];
1904 uint8_t row_latch;
1905 uint8_t cols;
1906 int kbd_mask;
1907 int clk;
1908 };
1909
1910 static void omap_mpuio_set(void *opaque, int line, int level)
1911 {
1912 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1913 uint16_t prev = s->inputs;
1914
1915 if (level)
1916 s->inputs |= 1 << line;
1917 else
1918 s->inputs &= ~(1 << line);
1919
1920 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1921 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1922 s->ints |= 1 << line;
1923 qemu_irq_raise(s->irq);
1924 /* TODO: wakeup */
1925 }
1926 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1927 (s->event >> 1) == line) /* PIN_SELECT */
1928 s->latch = s->inputs;
1929 }
1930 }
1931
1932 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1933 {
1934 int i;
1935 uint8_t *row, rows = 0, cols = ~s->cols;
1936
1937 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1938 if (*row & cols)
1939 rows |= i;
1940
1941 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1942 s->row_latch = ~rows;
1943 }
1944
1945 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1946 unsigned size)
1947 {
1948 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1949 int offset = addr & OMAP_MPUI_REG_MASK;
1950 uint16_t ret;
1951
1952 if (size != 2) {
1953 return omap_badwidth_read16(opaque, addr);
1954 }
1955
1956 switch (offset) {
1957 case 0x00: /* INPUT_LATCH */
1958 return s->inputs;
1959
1960 case 0x04: /* OUTPUT_REG */
1961 return s->outputs;
1962
1963 case 0x08: /* IO_CNTL */
1964 return s->dir;
1965
1966 case 0x10: /* KBR_LATCH */
1967 return s->row_latch;
1968
1969 case 0x14: /* KBC_REG */
1970 return s->cols;
1971
1972 case 0x18: /* GPIO_EVENT_MODE_REG */
1973 return s->event;
1974
1975 case 0x1c: /* GPIO_INT_EDGE_REG */
1976 return s->edge;
1977
1978 case 0x20: /* KBD_INT */
1979 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1980
1981 case 0x24: /* GPIO_INT */
1982 ret = s->ints;
1983 s->ints &= s->mask;
1984 if (ret)
1985 qemu_irq_lower(s->irq);
1986 return ret;
1987
1988 case 0x28: /* KBD_MASKIT */
1989 return s->kbd_mask;
1990
1991 case 0x2c: /* GPIO_MASKIT */
1992 return s->mask;
1993
1994 case 0x30: /* GPIO_DEBOUNCING_REG */
1995 return s->debounce;
1996
1997 case 0x34: /* GPIO_LATCH_REG */
1998 return s->latch;
1999 }
2000
2001 OMAP_BAD_REG(addr);
2002 return 0;
2003 }
2004
2005 static void omap_mpuio_write(void *opaque, hwaddr addr,
2006 uint64_t value, unsigned size)
2007 {
2008 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2009 int offset = addr & OMAP_MPUI_REG_MASK;
2010 uint16_t diff;
2011 int ln;
2012
2013 if (size != 2) {
2014 omap_badwidth_write16(opaque, addr, value);
2015 return;
2016 }
2017
2018 switch (offset) {
2019 case 0x04: /* OUTPUT_REG */
2020 diff = (s->outputs ^ value) & ~s->dir;
2021 s->outputs = value;
2022 while ((ln = ctz32(diff)) != 32) {
2023 if (s->handler[ln])
2024 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2025 diff &= ~(1 << ln);
2026 }
2027 break;
2028
2029 case 0x08: /* IO_CNTL */
2030 diff = s->outputs & (s->dir ^ value);
2031 s->dir = value;
2032
2033 value = s->outputs & ~s->dir;
2034 while ((ln = ctz32(diff)) != 32) {
2035 if (s->handler[ln])
2036 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2037 diff &= ~(1 << ln);
2038 }
2039 break;
2040
2041 case 0x14: /* KBC_REG */
2042 s->cols = value;
2043 omap_mpuio_kbd_update(s);
2044 break;
2045
2046 case 0x18: /* GPIO_EVENT_MODE_REG */
2047 s->event = value & 0x1f;
2048 break;
2049
2050 case 0x1c: /* GPIO_INT_EDGE_REG */
2051 s->edge = value;
2052 break;
2053
2054 case 0x28: /* KBD_MASKIT */
2055 s->kbd_mask = value & 1;
2056 omap_mpuio_kbd_update(s);
2057 break;
2058
2059 case 0x2c: /* GPIO_MASKIT */
2060 s->mask = value;
2061 break;
2062
2063 case 0x30: /* GPIO_DEBOUNCING_REG */
2064 s->debounce = value & 0x1ff;
2065 break;
2066
2067 case 0x00: /* INPUT_LATCH */
2068 case 0x10: /* KBR_LATCH */
2069 case 0x20: /* KBD_INT */
2070 case 0x24: /* GPIO_INT */
2071 case 0x34: /* GPIO_LATCH_REG */
2072 OMAP_RO_REG(addr);
2073 return;
2074
2075 default:
2076 OMAP_BAD_REG(addr);
2077 return;
2078 }
2079 }
2080
2081 static const MemoryRegionOps omap_mpuio_ops = {
2082 .read = omap_mpuio_read,
2083 .write = omap_mpuio_write,
2084 .endianness = DEVICE_NATIVE_ENDIAN,
2085 };
2086
2087 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2088 {
2089 s->inputs = 0;
2090 s->outputs = 0;
2091 s->dir = ~0;
2092 s->event = 0;
2093 s->edge = 0;
2094 s->kbd_mask = 0;
2095 s->mask = 0;
2096 s->debounce = 0;
2097 s->latch = 0;
2098 s->ints = 0;
2099 s->row_latch = 0x1f;
2100 s->clk = 1;
2101 }
2102
2103 static void omap_mpuio_onoff(void *opaque, int line, int on)
2104 {
2105 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2106
2107 s->clk = on;
2108 if (on)
2109 omap_mpuio_kbd_update(s);
2110 }
2111
2112 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2113 hwaddr base,
2114 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2115 omap_clk clk)
2116 {
2117 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2118
2119 s->irq = gpio_int;
2120 s->kbd_irq = kbd_int;
2121 s->wakeup = wakeup;
2122 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2123 omap_mpuio_reset(s);
2124
2125 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2126 "omap-mpuio", 0x800);
2127 memory_region_add_subregion(memory, base, &s->iomem);
2128
2129 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2130
2131 return s;
2132 }
2133
2134 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2135 {
2136 return s->in;
2137 }
2138
2139 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2140 {
2141 if (line >= 16 || line < 0)
2142 hw_error("%s: No GPIO line %i\n", __func__, line);
2143 s->handler[line] = handler;
2144 }
2145
2146 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2147 {
2148 if (row >= 5 || row < 0)
2149 hw_error("%s: No key %i-%i\n", __func__, col, row);
2150
2151 if (down)
2152 s->buttons[row] |= 1 << col;
2153 else
2154 s->buttons[row] &= ~(1 << col);
2155
2156 omap_mpuio_kbd_update(s);
2157 }
2158
2159 /* MicroWire Interface */
2160 struct omap_uwire_s {
2161 MemoryRegion iomem;
2162 qemu_irq txirq;
2163 qemu_irq rxirq;
2164 qemu_irq txdrq;
2165
2166 uint16_t txbuf;
2167 uint16_t rxbuf;
2168 uint16_t control;
2169 uint16_t setup[5];
2170
2171 uWireSlave *chip[4];
2172 };
2173
2174 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2175 {
2176 int chipselect = (s->control >> 10) & 3; /* INDEX */
2177 uWireSlave *slave = s->chip[chipselect];
2178
2179 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2180 if (s->control & (1 << 12)) /* CS_CMD */
2181 if (slave && slave->send)
2182 slave->send(slave->opaque,
2183 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2184 s->control &= ~(1 << 14); /* CSRB */
2185 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2186 * a DRQ. When is the level IRQ supposed to be reset? */
2187 }
2188
2189 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2190 if (s->control & (1 << 12)) /* CS_CMD */
2191 if (slave && slave->receive)
2192 s->rxbuf = slave->receive(slave->opaque);
2193 s->control |= 1 << 15; /* RDRB */
2194 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2195 * a DRQ. When is the level IRQ supposed to be reset? */
2196 }
2197 }
2198
2199 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2200 unsigned size)
2201 {
2202 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2203 int offset = addr & OMAP_MPUI_REG_MASK;
2204
2205 if (size != 2) {
2206 return omap_badwidth_read16(opaque, addr);
2207 }
2208
2209 switch (offset) {
2210 case 0x00: /* RDR */
2211 s->control &= ~(1 << 15); /* RDRB */
2212 return s->rxbuf;
2213
2214 case 0x04: /* CSR */
2215 return s->control;
2216
2217 case 0x08: /* SR1 */
2218 return s->setup[0];
2219 case 0x0c: /* SR2 */
2220 return s->setup[1];
2221 case 0x10: /* SR3 */
2222 return s->setup[2];
2223 case 0x14: /* SR4 */
2224 return s->setup[3];
2225 case 0x18: /* SR5 */
2226 return s->setup[4];
2227 }
2228
2229 OMAP_BAD_REG(addr);
2230 return 0;
2231 }
2232
2233 static void omap_uwire_write(void *opaque, hwaddr addr,
2234 uint64_t value, unsigned size)
2235 {
2236 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2237 int offset = addr & OMAP_MPUI_REG_MASK;
2238
2239 if (size != 2) {
2240 omap_badwidth_write16(opaque, addr, value);
2241 return;
2242 }
2243
2244 switch (offset) {
2245 case 0x00: /* TDR */
2246 s->txbuf = value; /* TD */
2247 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2248 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2249 (s->control & (1 << 12)))) { /* CS_CMD */
2250 s->control |= 1 << 14; /* CSRB */
2251 omap_uwire_transfer_start(s);
2252 }
2253 break;
2254
2255 case 0x04: /* CSR */
2256 s->control = value & 0x1fff;
2257 if (value & (1 << 13)) /* START */
2258 omap_uwire_transfer_start(s);
2259 break;
2260
2261 case 0x08: /* SR1 */
2262 s->setup[0] = value & 0x003f;
2263 break;
2264
2265 case 0x0c: /* SR2 */
2266 s->setup[1] = value & 0x0fc0;
2267 break;
2268
2269 case 0x10: /* SR3 */
2270 s->setup[2] = value & 0x0003;
2271 break;
2272
2273 case 0x14: /* SR4 */
2274 s->setup[3] = value & 0x0001;
2275 break;
2276
2277 case 0x18: /* SR5 */
2278 s->setup[4] = value & 0x000f;
2279 break;
2280
2281 default:
2282 OMAP_BAD_REG(addr);
2283 return;
2284 }
2285 }
2286
2287 static const MemoryRegionOps omap_uwire_ops = {
2288 .read = omap_uwire_read,
2289 .write = omap_uwire_write,
2290 .endianness = DEVICE_NATIVE_ENDIAN,
2291 };
2292
2293 static void omap_uwire_reset(struct omap_uwire_s *s)
2294 {
2295 s->control = 0;
2296 s->setup[0] = 0;
2297 s->setup[1] = 0;
2298 s->setup[2] = 0;
2299 s->setup[3] = 0;
2300 s->setup[4] = 0;
2301 }
2302
2303 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2304 hwaddr base,
2305 qemu_irq txirq, qemu_irq rxirq,
2306 qemu_irq dma,
2307 omap_clk clk)
2308 {
2309 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2310
2311 s->txirq = txirq;
2312 s->rxirq = rxirq;
2313 s->txdrq = dma;
2314 omap_uwire_reset(s);
2315
2316 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2317 memory_region_add_subregion(system_memory, base, &s->iomem);
2318
2319 return s;
2320 }
2321
2322 void omap_uwire_attach(struct omap_uwire_s *s,
2323 uWireSlave *slave, int chipselect)
2324 {
2325 if (chipselect < 0 || chipselect > 3) {
2326 error_report("%s: Bad chipselect %i", __func__, chipselect);
2327 exit(-1);
2328 }
2329
2330 s->chip[chipselect] = slave;
2331 }
2332
2333 /* Pseudonoise Pulse-Width Light Modulator */
2334 struct omap_pwl_s {
2335 MemoryRegion iomem;
2336 uint8_t output;
2337 uint8_t level;
2338 uint8_t enable;
2339 int clk;
2340 };
2341
2342 static void omap_pwl_update(struct omap_pwl_s *s)
2343 {
2344 int output = (s->clk && s->enable) ? s->level : 0;
2345
2346 if (output != s->output) {
2347 s->output = output;
2348 printf("%s: Backlight now at %i/256\n", __func__, output);
2349 }
2350 }
2351
2352 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2353 unsigned size)
2354 {
2355 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2356 int offset = addr & OMAP_MPUI_REG_MASK;
2357
2358 if (size != 1) {
2359 return omap_badwidth_read8(opaque, addr);
2360 }
2361
2362 switch (offset) {
2363 case 0x00: /* PWL_LEVEL */
2364 return s->level;
2365 case 0x04: /* PWL_CTRL */
2366 return s->enable;
2367 }
2368 OMAP_BAD_REG(addr);
2369 return 0;
2370 }
2371
2372 static void omap_pwl_write(void *opaque, hwaddr addr,
2373 uint64_t value, unsigned size)
2374 {
2375 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2376 int offset = addr & OMAP_MPUI_REG_MASK;
2377
2378 if (size != 1) {
2379 omap_badwidth_write8(opaque, addr, value);
2380 return;
2381 }
2382
2383 switch (offset) {
2384 case 0x00: /* PWL_LEVEL */
2385 s->level = value;
2386 omap_pwl_update(s);
2387 break;
2388 case 0x04: /* PWL_CTRL */
2389 s->enable = value & 1;
2390 omap_pwl_update(s);
2391 break;
2392 default:
2393 OMAP_BAD_REG(addr);
2394 return;
2395 }
2396 }
2397
2398 static const MemoryRegionOps omap_pwl_ops = {
2399 .read = omap_pwl_read,
2400 .write = omap_pwl_write,
2401 .endianness = DEVICE_NATIVE_ENDIAN,
2402 };
2403
2404 static void omap_pwl_reset(struct omap_pwl_s *s)
2405 {
2406 s->output = 0;
2407 s->level = 0;
2408 s->enable = 0;
2409 s->clk = 1;
2410 omap_pwl_update(s);
2411 }
2412
2413 static void omap_pwl_clk_update(void *opaque, int line, int on)
2414 {
2415 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2416
2417 s->clk = on;
2418 omap_pwl_update(s);
2419 }
2420
2421 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2422 hwaddr base,
2423 omap_clk clk)
2424 {
2425 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2426
2427 omap_pwl_reset(s);
2428
2429 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2430 "omap-pwl", 0x800);
2431 memory_region_add_subregion(system_memory, base, &s->iomem);
2432
2433 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2434 return s;
2435 }
2436
2437 /* Pulse-Width Tone module */
2438 struct omap_pwt_s {
2439 MemoryRegion iomem;
2440 uint8_t frc;
2441 uint8_t vrc;
2442 uint8_t gcr;
2443 omap_clk clk;
2444 };
2445
2446 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2447 unsigned size)
2448 {
2449 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2450 int offset = addr & OMAP_MPUI_REG_MASK;
2451
2452 if (size != 1) {
2453 return omap_badwidth_read8(opaque, addr);
2454 }
2455
2456 switch (offset) {
2457 case 0x00: /* FRC */
2458 return s->frc;
2459 case 0x04: /* VCR */
2460 return s->vrc;
2461 case 0x08: /* GCR */
2462 return s->gcr;
2463 }
2464 OMAP_BAD_REG(addr);
2465 return 0;
2466 }
2467
2468 static void omap_pwt_write(void *opaque, hwaddr addr,
2469 uint64_t value, unsigned size)
2470 {
2471 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2472 int offset = addr & OMAP_MPUI_REG_MASK;
2473
2474 if (size != 1) {
2475 omap_badwidth_write8(opaque, addr, value);
2476 return;
2477 }
2478
2479 switch (offset) {
2480 case 0x00: /* FRC */
2481 s->frc = value & 0x3f;
2482 break;
2483 case 0x04: /* VRC */
2484 if ((value ^ s->vrc) & 1) {
2485 if (value & 1)
2486 printf("%s: %iHz buzz on\n", __func__, (int)
2487 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2488 ((omap_clk_getrate(s->clk) >> 3) /
2489 /* Pre-multiplexer divider */
2490 ((s->gcr & 2) ? 1 : 154) /
2491 /* Octave multiplexer */
2492 (2 << (value & 3)) *
2493 /* 101/107 divider */
2494 ((value & (1 << 2)) ? 101 : 107) *
2495 /* 49/55 divider */
2496 ((value & (1 << 3)) ? 49 : 55) *
2497 /* 50/63 divider */
2498 ((value & (1 << 4)) ? 50 : 63) *
2499 /* 80/127 divider */
2500 ((value & (1 << 5)) ? 80 : 127) /
2501 (107 * 55 * 63 * 127)));
2502 else
2503 printf("%s: silence!\n", __func__);
2504 }
2505 s->vrc = value & 0x7f;
2506 break;
2507 case 0x08: /* GCR */
2508 s->gcr = value & 3;
2509 break;
2510 default:
2511 OMAP_BAD_REG(addr);
2512 return;
2513 }
2514 }
2515
2516 static const MemoryRegionOps omap_pwt_ops = {
2517 .read =omap_pwt_read,
2518 .write = omap_pwt_write,
2519 .endianness = DEVICE_NATIVE_ENDIAN,
2520 };
2521
2522 static void omap_pwt_reset(struct omap_pwt_s *s)
2523 {
2524 s->frc = 0;
2525 s->vrc = 0;
2526 s->gcr = 0;
2527 }
2528
2529 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2530 hwaddr base,
2531 omap_clk clk)
2532 {
2533 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2534 s->clk = clk;
2535 omap_pwt_reset(s);
2536
2537 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2538 "omap-pwt", 0x800);
2539 memory_region_add_subregion(system_memory, base, &s->iomem);
2540 return s;
2541 }
2542
2543 /* Real-time Clock module */
2544 struct omap_rtc_s {
2545 MemoryRegion iomem;
2546 qemu_irq irq;
2547 qemu_irq alarm;
2548 QEMUTimer *clk;
2549
2550 uint8_t interrupts;
2551 uint8_t status;
2552 int16_t comp_reg;
2553 int running;
2554 int pm_am;
2555 int auto_comp;
2556 int round;
2557 struct tm alarm_tm;
2558 time_t alarm_ti;
2559
2560 struct tm current_tm;
2561 time_t ti;
2562 uint64_t tick;
2563 };
2564
2565 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2566 {
2567 /* s->alarm is level-triggered */
2568 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2569 }
2570
2571 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2572 {
2573 s->alarm_ti = mktimegm(&s->alarm_tm);
2574 if (s->alarm_ti == -1)
2575 printf("%s: conversion failed\n", __func__);
2576 }
2577
2578 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2579 unsigned size)
2580 {
2581 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2582 int offset = addr & OMAP_MPUI_REG_MASK;
2583 uint8_t i;
2584
2585 if (size != 1) {
2586 return omap_badwidth_read8(opaque, addr);
2587 }
2588
2589 switch (offset) {
2590 case 0x00: /* SECONDS_REG */
2591 return to_bcd(s->current_tm.tm_sec);
2592
2593 case 0x04: /* MINUTES_REG */
2594 return to_bcd(s->current_tm.tm_min);
2595
2596 case 0x08: /* HOURS_REG */
2597 if (s->pm_am)
2598 return ((s->current_tm.tm_hour > 11) << 7) |
2599 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2600 else
2601 return to_bcd(s->current_tm.tm_hour);
2602
2603 case 0x0c: /* DAYS_REG */
2604 return to_bcd(s->current_tm.tm_mday);
2605
2606 case 0x10: /* MONTHS_REG */
2607 return to_bcd(s->current_tm.tm_mon + 1);
2608
2609 case 0x14: /* YEARS_REG */
2610 return to_bcd(s->current_tm.tm_year % 100);
2611
2612 case 0x18: /* WEEK_REG */
2613 return s->current_tm.tm_wday;
2614
2615 case 0x20: /* ALARM_SECONDS_REG */
2616 return to_bcd(s->alarm_tm.tm_sec);
2617
2618 case 0x24: /* ALARM_MINUTES_REG */
2619 return to_bcd(s->alarm_tm.tm_min);
2620
2621 case 0x28: /* ALARM_HOURS_REG */
2622 if (s->pm_am)
2623 return ((s->alarm_tm.tm_hour > 11) << 7) |
2624 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2625 else
2626 return to_bcd(s->alarm_tm.tm_hour);
2627
2628 case 0x2c: /* ALARM_DAYS_REG */
2629 return to_bcd(s->alarm_tm.tm_mday);
2630
2631 case 0x30: /* ALARM_MONTHS_REG */
2632 return to_bcd(s->alarm_tm.tm_mon + 1);
2633
2634 case 0x34: /* ALARM_YEARS_REG */
2635 return to_bcd(s->alarm_tm.tm_year % 100);
2636
2637 case 0x40: /* RTC_CTRL_REG */
2638 return (s->pm_am << 3) | (s->auto_comp << 2) |
2639 (s->round << 1) | s->running;
2640
2641 case 0x44: /* RTC_STATUS_REG */
2642 i = s->status;
2643 s->status &= ~0x3d;
2644 return i;
2645
2646 case 0x48: /* RTC_INTERRUPTS_REG */
2647 return s->interrupts;
2648
2649 case 0x4c: /* RTC_COMP_LSB_REG */
2650 return ((uint16_t) s->comp_reg) & 0xff;
2651
2652 case 0x50: /* RTC_COMP_MSB_REG */
2653 return ((uint16_t) s->comp_reg) >> 8;
2654 }
2655
2656 OMAP_BAD_REG(addr);
2657 return 0;
2658 }
2659
2660 static void omap_rtc_write(void *opaque, hwaddr addr,
2661 uint64_t value, unsigned size)
2662 {
2663 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2664 int offset = addr & OMAP_MPUI_REG_MASK;
2665 struct tm new_tm;
2666 time_t ti[2];
2667
2668 if (size != 1) {
2669 omap_badwidth_write8(opaque, addr, value);
2670 return;
2671 }
2672
2673 switch (offset) {
2674 case 0x00: /* SECONDS_REG */
2675 #ifdef ALMDEBUG
2676 printf("RTC SEC_REG <-- %02x\n", value);
2677 #endif
2678 s->ti -= s->current_tm.tm_sec;
2679 s->ti += from_bcd(value);
2680 return;
2681
2682 case 0x04: /* MINUTES_REG */
2683 #ifdef ALMDEBUG
2684 printf("RTC MIN_REG <-- %02x\n", value);
2685 #endif
2686 s->ti -= s->current_tm.tm_min * 60;
2687 s->ti += from_bcd(value) * 60;
2688 return;
2689
2690 case 0x08: /* HOURS_REG */
2691 #ifdef ALMDEBUG
2692 printf("RTC HRS_REG <-- %02x\n", value);
2693 #endif
2694 s->ti -= s->current_tm.tm_hour * 3600;
2695 if (s->pm_am) {
2696 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2697 s->ti += ((value >> 7) & 1) * 43200;
2698 } else
2699 s->ti += from_bcd(value & 0x3f) * 3600;
2700 return;
2701
2702 case 0x0c: /* DAYS_REG */
2703 #ifdef ALMDEBUG
2704 printf("RTC DAY_REG <-- %02x\n", value);
2705 #endif
2706 s->ti -= s->current_tm.tm_mday * 86400;
2707 s->ti += from_bcd(value) * 86400;
2708 return;
2709
2710 case 0x10: /* MONTHS_REG */
2711 #ifdef ALMDEBUG
2712 printf("RTC MTH_REG <-- %02x\n", value);
2713 #endif
2714 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2715 new_tm.tm_mon = from_bcd(value);
2716 ti[0] = mktimegm(&s->current_tm);
2717 ti[1] = mktimegm(&new_tm);
2718
2719 if (ti[0] != -1 && ti[1] != -1) {
2720 s->ti -= ti[0];
2721 s->ti += ti[1];
2722 } else {
2723 /* A less accurate version */
2724 s->ti -= s->current_tm.tm_mon * 2592000;
2725 s->ti += from_bcd(value) * 2592000;
2726 }
2727 return;
2728
2729 case 0x14: /* YEARS_REG */
2730 #ifdef ALMDEBUG
2731 printf("RTC YRS_REG <-- %02x\n", value);
2732 #endif
2733 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2734 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2735 ti[0] = mktimegm(&s->current_tm);
2736 ti[1] = mktimegm(&new_tm);
2737
2738 if (ti[0] != -1 && ti[1] != -1) {
2739 s->ti -= ti[0];
2740 s->ti += ti[1];
2741 } else {
2742 /* A less accurate version */
2743 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2744 s->ti += (time_t)from_bcd(value) * 31536000;
2745 }
2746 return;
2747
2748 case 0x18: /* WEEK_REG */
2749 return; /* Ignored */
2750
2751 case 0x20: /* ALARM_SECONDS_REG */
2752 #ifdef ALMDEBUG
2753 printf("ALM SEC_REG <-- %02x\n", value);
2754 #endif
2755 s->alarm_tm.tm_sec = from_bcd(value);
2756 omap_rtc_alarm_update(s);
2757 return;
2758
2759 case 0x24: /* ALARM_MINUTES_REG */
2760 #ifdef ALMDEBUG
2761 printf("ALM MIN_REG <-- %02x\n", value);
2762 #endif
2763 s->alarm_tm.tm_min = from_bcd(value);
2764 omap_rtc_alarm_update(s);
2765 return;
2766
2767 case 0x28: /* ALARM_HOURS_REG */
2768 #ifdef ALMDEBUG
2769 printf("ALM HRS_REG <-- %02x\n", value);
2770 #endif
2771 if (s->pm_am)
2772 s->alarm_tm.tm_hour =
2773 ((from_bcd(value & 0x3f)) % 12) +
2774 ((value >> 7) & 1) * 12;
2775 else
2776 s->alarm_tm.tm_hour = from_bcd(value);
2777 omap_rtc_alarm_update(s);
2778 return;
2779
2780 case 0x2c: /* ALARM_DAYS_REG */
2781 #ifdef ALMDEBUG
2782 printf("ALM DAY_REG <-- %02x\n", value);
2783 #endif
2784 s->alarm_tm.tm_mday = from_bcd(value);
2785 omap_rtc_alarm_update(s);
2786 return;
2787
2788 case 0x30: /* ALARM_MONTHS_REG */
2789 #ifdef ALMDEBUG
2790 printf("ALM MON_REG <-- %02x\n", value);
2791 #endif
2792 s->alarm_tm.tm_mon = from_bcd(value);
2793 omap_rtc_alarm_update(s);
2794 return;
2795
2796 case 0x34: /* ALARM_YEARS_REG */
2797 #ifdef ALMDEBUG
2798 printf("ALM YRS_REG <-- %02x\n", value);
2799 #endif
2800 s->alarm_tm.tm_year = from_bcd(value);
2801 omap_rtc_alarm_update(s);
2802 return;
2803
2804 case 0x40: /* RTC_CTRL_REG */
2805 #ifdef ALMDEBUG
2806 printf("RTC CONTROL <-- %02x\n", value);
2807 #endif
2808 s->pm_am = (value >> 3) & 1;
2809 s->auto_comp = (value >> 2) & 1;
2810 s->round = (value >> 1) & 1;
2811 s->running = value & 1;
2812 s->status &= 0xfd;
2813 s->status |= s->running << 1;
2814 return;
2815
2816 case 0x44: /* RTC_STATUS_REG */
2817 #ifdef ALMDEBUG
2818 printf("RTC STATUSL <-- %02x\n", value);
2819 #endif
2820 s->status &= ~((value & 0xc0) ^ 0x80);
2821 omap_rtc_interrupts_update(s);
2822 return;
2823
2824 case 0x48: /* RTC_INTERRUPTS_REG */
2825 #ifdef ALMDEBUG
2826 printf("RTC INTRS <-- %02x\n", value);
2827 #endif
2828 s->interrupts = value;
2829 return;
2830
2831 case 0x4c: /* RTC_COMP_LSB_REG */
2832 #ifdef ALMDEBUG
2833 printf("RTC COMPLSB <-- %02x\n", value);
2834 #endif
2835 s->comp_reg &= 0xff00;
2836 s->comp_reg |= 0x00ff & value;
2837 return;
2838
2839 case 0x50: /* RTC_COMP_MSB_REG */
2840 #ifdef ALMDEBUG
2841 printf("RTC COMPMSB <-- %02x\n", value);
2842 #endif
2843 s->comp_reg &= 0x00ff;
2844 s->comp_reg |= 0xff00 & (value << 8);
2845 return;
2846
2847 default:
2848 OMAP_BAD_REG(addr);
2849 return;
2850 }
2851 }
2852
2853 static const MemoryRegionOps omap_rtc_ops = {
2854 .read = omap_rtc_read,
2855 .write = omap_rtc_write,
2856 .endianness = DEVICE_NATIVE_ENDIAN,
2857 };
2858
2859 static void omap_rtc_tick(void *opaque)
2860 {
2861 struct omap_rtc_s *s = opaque;
2862
2863 if (s->round) {
2864 /* Round to nearest full minute. */
2865 if (s->current_tm.tm_sec < 30)
2866 s->ti -= s->current_tm.tm_sec;
2867 else
2868 s->ti += 60 - s->current_tm.tm_sec;
2869
2870 s->round = 0;
2871 }
2872
2873 localtime_r(&s->ti, &s->current_tm);
2874
2875 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2876 s->status |= 0x40;
2877 omap_rtc_interrupts_update(s);
2878 }
2879
2880 if (s->interrupts & 0x04)
2881 switch (s->interrupts & 3) {
2882 case 0:
2883 s->status |= 0x04;
2884 qemu_irq_pulse(s->irq);
2885 break;
2886 case 1:
2887 if (s->current_tm.tm_sec)
2888 break;
2889 s->status |= 0x08;
2890 qemu_irq_pulse(s->irq);
2891 break;
2892 case 2:
2893 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2894 break;
2895 s->status |= 0x10;
2896 qemu_irq_pulse(s->irq);
2897 break;
2898 case 3:
2899 if (s->current_tm.tm_sec ||
2900 s->current_tm.tm_min || s->current_tm.tm_hour)
2901 break;
2902 s->status |= 0x20;
2903 qemu_irq_pulse(s->irq);
2904 break;
2905 }
2906
2907 /* Move on */
2908 if (s->running)
2909 s->ti ++;
2910 s->tick += 1000;
2911
2912 /*
2913 * Every full hour add a rough approximation of the compensation
2914 * register to the 32kHz Timer (which drives the RTC) value.
2915 */
2916 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2917 s->tick += s->comp_reg * 1000 / 32768;
2918
2919 timer_mod(s->clk, s->tick);
2920 }
2921
2922 static void omap_rtc_reset(struct omap_rtc_s *s)
2923 {
2924 struct tm tm;
2925
2926 s->interrupts = 0;
2927 s->comp_reg = 0;
2928 s->running = 0;
2929 s->pm_am = 0;
2930 s->auto_comp = 0;
2931 s->round = 0;
2932 s->tick = qemu_clock_get_ms(rtc_clock);
2933 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2934 s->alarm_tm.tm_mday = 0x01;
2935 s->status = 1 << 7;
2936 qemu_get_timedate(&tm, 0);
2937 s->ti = mktimegm(&tm);
2938
2939 omap_rtc_alarm_update(s);
2940 omap_rtc_tick(s);
2941 }
2942
2943 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2944 hwaddr base,
2945 qemu_irq timerirq, qemu_irq alarmirq,
2946 omap_clk clk)
2947 {
2948 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2949
2950 s->irq = timerirq;
2951 s->alarm = alarmirq;
2952 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2953
2954 omap_rtc_reset(s);
2955
2956 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2957 "omap-rtc", 0x800);
2958 memory_region_add_subregion(system_memory, base, &s->iomem);
2959
2960 return s;
2961 }
2962
2963 /* Multi-channel Buffered Serial Port interfaces */
2964 struct omap_mcbsp_s {
2965 MemoryRegion iomem;
2966 qemu_irq txirq;
2967 qemu_irq rxirq;
2968 qemu_irq txdrq;
2969 qemu_irq rxdrq;
2970
2971 uint16_t spcr[2];
2972 uint16_t rcr[2];
2973 uint16_t xcr[2];
2974 uint16_t srgr[2];
2975 uint16_t mcr[2];
2976 uint16_t pcr;
2977 uint16_t rcer[8];
2978 uint16_t xcer[8];
2979 int tx_rate;
2980 int rx_rate;
2981 int tx_req;
2982 int rx_req;
2983
2984 I2SCodec *codec;
2985 QEMUTimer *source_timer;
2986 QEMUTimer *sink_timer;
2987 };
2988
2989 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2990 {
2991 int irq;
2992
2993 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2994 case 0:
2995 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2996 break;
2997 case 3:
2998 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2999 break;
3000 default:
3001 irq = 0;
3002 break;
3003 }
3004
3005 if (irq)
3006 qemu_irq_pulse(s->rxirq);
3007
3008 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3009 case 0:
3010 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3011 break;
3012 case 3:
3013 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3014 break;
3015 default:
3016 irq = 0;
3017 break;
3018 }
3019
3020 if (irq)
3021 qemu_irq_pulse(s->txirq);
3022 }
3023
3024 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3025 {
3026 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3027 s->spcr[0] |= 1 << 2; /* RFULL */
3028 s->spcr[0] |= 1 << 1; /* RRDY */
3029 qemu_irq_raise(s->rxdrq);
3030 omap_mcbsp_intr_update(s);
3031 }
3032
3033 static void omap_mcbsp_source_tick(void *opaque)
3034 {
3035 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3036 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3037
3038 if (!s->rx_rate)
3039 return;
3040 if (s->rx_req)
3041 printf("%s: Rx FIFO overrun\n", __func__);
3042
3043 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3044
3045 omap_mcbsp_rx_newdata(s);
3046 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3047 NANOSECONDS_PER_SECOND);
3048 }
3049
3050 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3051 {
3052 if (!s->codec || !s->codec->rts)
3053 omap_mcbsp_source_tick(s);
3054 else if (s->codec->in.len) {
3055 s->rx_req = s->codec->in.len;
3056 omap_mcbsp_rx_newdata(s);
3057 }
3058 }
3059
3060 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3061 {
3062 timer_del(s->source_timer);
3063 }
3064
3065 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3066 {
3067 s->spcr[0] &= ~(1 << 1); /* RRDY */
3068 qemu_irq_lower(s->rxdrq);
3069 omap_mcbsp_intr_update(s);
3070 }
3071
3072 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3073 {
3074 s->spcr[1] |= 1 << 1; /* XRDY */
3075 qemu_irq_raise(s->txdrq);
3076 omap_mcbsp_intr_update(s);
3077 }
3078
3079 static void omap_mcbsp_sink_tick(void *opaque)
3080 {
3081 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3082 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3083
3084 if (!s->tx_rate)
3085 return;
3086 if (s->tx_req)
3087 printf("%s: Tx FIFO underrun\n", __func__);
3088
3089 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3090
3091 omap_mcbsp_tx_newdata(s);
3092 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3093 NANOSECONDS_PER_SECOND);
3094 }
3095
3096 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3097 {
3098 if (!s->codec || !s->codec->cts)
3099 omap_mcbsp_sink_tick(s);
3100 else if (s->codec->out.size) {
3101 s->tx_req = s->codec->out.size;
3102 omap_mcbsp_tx_newdata(s);
3103 }
3104 }
3105
3106 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3107 {
3108 s->spcr[1] &= ~(1 << 1); /* XRDY */
3109 qemu_irq_lower(s->txdrq);
3110 omap_mcbsp_intr_update(s);
3111 if (s->codec && s->codec->cts)
3112 s->codec->tx_swallow(s->codec->opaque);
3113 }
3114
3115 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3116 {
3117 s->tx_req = 0;
3118 omap_mcbsp_tx_done(s);
3119 timer_del(s->sink_timer);
3120 }
3121
3122 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3123 {
3124 int prev_rx_rate, prev_tx_rate;
3125 int rx_rate = 0, tx_rate = 0;
3126 int cpu_rate = 1500000; /* XXX */
3127
3128 /* TODO: check CLKSTP bit */
3129 if (s->spcr[1] & (1 << 6)) { /* GRST */
3130 if (s->spcr[0] & (1 << 0)) { /* RRST */
3131 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3132 (s->pcr & (1 << 8))) { /* CLKRM */
3133 if (~s->pcr & (1 << 7)) /* SCLKME */
3134 rx_rate = cpu_rate /
3135 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3136 } else
3137 if (s->codec)
3138 rx_rate = s->codec->rx_rate;
3139 }
3140
3141 if (s->spcr[1] & (1 << 0)) { /* XRST */
3142 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3143 (s->pcr & (1 << 9))) { /* CLKXM */
3144 if (~s->pcr & (1 << 7)) /* SCLKME */
3145 tx_rate = cpu_rate /
3146 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3147 } else
3148 if (s->codec)
3149 tx_rate = s->codec->tx_rate;
3150 }
3151 }
3152 prev_tx_rate = s->tx_rate;
3153 prev_rx_rate = s->rx_rate;
3154 s->tx_rate = tx_rate;
3155 s->rx_rate = rx_rate;
3156
3157 if (s->codec)
3158 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3159
3160 if (!prev_tx_rate && tx_rate)
3161 omap_mcbsp_tx_start(s);
3162 else if (s->tx_rate && !tx_rate)
3163 omap_mcbsp_tx_stop(s);
3164
3165 if (!prev_rx_rate && rx_rate)
3166 omap_mcbsp_rx_start(s);
3167 else if (prev_tx_rate && !tx_rate)
3168 omap_mcbsp_rx_stop(s);
3169 }
3170
3171 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3172 unsigned size)
3173 {
3174 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3175 int offset = addr & OMAP_MPUI_REG_MASK;
3176 uint16_t ret;
3177
3178 if (size != 2) {
3179 return omap_badwidth_read16(opaque, addr);
3180 }
3181
3182 switch (offset) {
3183 case 0x00: /* DRR2 */
3184 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3185 return 0x0000;
3186 /* Fall through. */
3187 case 0x02: /* DRR1 */
3188 if (s->rx_req < 2) {
3189 printf("%s: Rx FIFO underrun\n", __func__);
3190 omap_mcbsp_rx_done(s);
3191 } else {
3192 s->tx_req -= 2;
3193 if (s->codec && s->codec->in.len >= 2) {
3194 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3195 ret |= s->codec->in.fifo[s->codec->in.start ++];
3196 s->codec->in.len -= 2;
3197 } else
3198 ret = 0x0000;
3199 if (!s->tx_req)
3200 omap_mcbsp_rx_done(s);
3201 return ret;
3202 }
3203 return 0x0000;
3204
3205 case 0x04: /* DXR2 */
3206 case 0x06: /* DXR1 */
3207 return 0x0000;
3208
3209 case 0x08: /* SPCR2 */
3210 return s->spcr[1];
3211 case 0x0a: /* SPCR1 */
3212 return s->spcr[0];
3213 case 0x0c: /* RCR2 */
3214 return s->rcr[1];
3215 case 0x0e: /* RCR1 */
3216 return s->rcr[0];
3217 case 0x10: /* XCR2 */
3218 return s->xcr[1];
3219 case 0x12: /* XCR1 */
3220 return s->xcr[0];
3221 case 0x14: /* SRGR2 */
3222 return s->srgr[1];
3223 case 0x16: /* SRGR1 */
3224 return s->srgr[0];
3225 case 0x18: /* MCR2 */
3226 return s->mcr[1];
3227 case 0x1a: /* MCR1 */
3228 return s->mcr[0];
3229 case 0x1c: /* RCERA */
3230 return s->rcer[0];
3231 case 0x1e: /* RCERB */
3232 return s->rcer[1];
3233 case 0x20: /* XCERA */
3234 return s->xcer[0];
3235 case 0x22: /* XCERB */
3236 return s->xcer[1];
3237 case 0x24: /* PCR0 */
3238 return s->pcr;
3239 case 0x26: /* RCERC */
3240 return s->rcer[2];
3241 case 0x28: /* RCERD */
3242 return s->rcer[3];
3243 case 0x2a: /* XCERC */
3244 return s->xcer[2];
3245 case 0x2c: /* XCERD */
3246 return s->xcer[3];
3247 case 0x2e: /* RCERE */
3248 return s->rcer[4];
3249 case 0x30: /* RCERF */
3250 return s->rcer[5];
3251 case 0x32: /* XCERE */
3252 return s->xcer[4];
3253 case 0x34: /* XCERF */
3254 return s->xcer[5];
3255 case 0x36: /* RCERG */
3256 return s->rcer[6];
3257 case 0x38: /* RCERH */
3258 return s->rcer[7];
3259 case 0x3a: /* XCERG */
3260 return s->xcer[6];
3261 case 0x3c: /* XCERH */
3262 return s->xcer[7];
3263 }
3264
3265 OMAP_BAD_REG(addr);
3266 return 0;
3267 }
3268
3269 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3270 uint32_t value)
3271 {
3272 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3273 int offset = addr & OMAP_MPUI_REG_MASK;
3274
3275 switch (offset) {
3276 case 0x00: /* DRR2 */
3277 case 0x02: /* DRR1 */
3278 OMAP_RO_REG(addr);
3279 return;
3280
3281 case 0x04: /* DXR2 */
3282 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3283 return;
3284 /* Fall through. */
3285 case 0x06: /* DXR1 */
3286 if (s->tx_req > 1) {
3287 s->tx_req -= 2;
3288 if (s->codec && s->codec->cts) {
3289 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3290 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3291 }
3292 if (s->tx_req < 2)
3293 omap_mcbsp_tx_done(s);
3294 } else
3295 printf("%s: Tx FIFO overrun\n", __func__);
3296 return;
3297
3298 case 0x08: /* SPCR2 */
3299 s->spcr[1] &= 0x0002;
3300 s->spcr[1] |= 0x03f9 & value;
3301 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3302 if (~value & 1) /* XRST */
3303 s->spcr[1] &= ~6;
3304 omap_mcbsp_req_update(s);
3305 return;
3306 case 0x0a: /* SPCR1 */
3307 s->spcr[0] &= 0x0006;
3308 s->spcr[0] |= 0xf8f9 & value;
3309 if (value & (1 << 15)) /* DLB */
3310 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3311 if (~value & 1) { /* RRST */
3312 s->spcr[0] &= ~6;
3313 s->rx_req = 0;
3314 omap_mcbsp_rx_done(s);
3315 }
3316 omap_mcbsp_req_update(s);
3317 return;
3318
3319 case 0x0c: /* RCR2 */
3320 s->rcr[1] = value & 0xffff;
3321 return;
3322 case 0x0e: /* RCR1 */
3323 s->rcr[0] = value & 0x7fe0;
3324 return;
3325 case 0x10: /* XCR2 */
3326 s->xcr[1] = value & 0xffff;
3327 return;
3328 case 0x12: /* XCR1 */
3329 s->xcr[0] = value & 0x7fe0;
3330 return;
3331 case 0x14: /* SRGR2 */
3332 s->srgr[1] = value & 0xffff;
3333 omap_mcbsp_req_update(s);
3334 return;
3335 case 0x16: /* SRGR1 */
3336 s->srgr[0] = value & 0xffff;
3337 omap_mcbsp_req_update(s);
3338 return;
3339 case 0x18: /* MCR2 */
3340 s->mcr[1] = value & 0x03e3;
3341 if (value & 3) /* XMCM */
3342 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3343 return;
3344 case 0x1a: /* MCR1 */
3345 s->mcr[0] = value & 0x03e1;
3346 if (value & 1) /* RMCM */
3347 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3348 return;
3349 case 0x1c: /* RCERA */
3350 s->rcer[0] = value & 0xffff;
3351 return;
3352 case 0x1e: /* RCERB */
3353 s->rcer[1] = value & 0xffff;
3354 return;
3355 case 0x20: /* XCERA */
3356 s->xcer[0] = value & 0xffff;
3357 return;
3358 case 0x22: /* XCERB */
3359 s->xcer[1] = value & 0xffff;
3360 return;
3361 case 0x24: /* PCR0 */
3362 s->pcr = value & 0x7faf;
3363 return;
3364 case 0x26: /* RCERC */
3365 s->rcer[2] = value & 0xffff;
3366 return;
3367 case 0x28: /* RCERD */
3368 s->rcer[3] = value & 0xffff;
3369 return;
3370 case 0x2a: /* XCERC */
3371 s->xcer[2] = value & 0xffff;
3372 return;
3373 case 0x2c: /* XCERD */
3374 s->xcer[3] = value & 0xffff;
3375 return;
3376 case 0x2e: /* RCERE */
3377 s->rcer[4] = value & 0xffff;
3378 return;
3379 case 0x30: /* RCERF */
3380 s->rcer[5] = value & 0xffff;
3381 return;
3382 case 0x32: /* XCERE */
3383 s->xcer[4] = value & 0xffff;
3384 return;
3385 case 0x34: /* XCERF */
3386 s->xcer[5] = value & 0xffff;
3387 return;
3388 case 0x36: /* RCERG */
3389 s->rcer[6] = value & 0xffff;
3390 return;
3391 case 0x38: /* RCERH */
3392 s->rcer[7] = value & 0xffff;
3393 return;
3394 case 0x3a: /* XCERG */
3395 s->xcer[6] = value & 0xffff;
3396 return;
3397 case 0x3c: /* XCERH */
3398 s->xcer[7] = value & 0xffff;
3399 return;
3400 }
3401
3402 OMAP_BAD_REG(addr);
3403 }
3404
3405 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3406 uint32_t value)
3407 {
3408 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3409 int offset = addr & OMAP_MPUI_REG_MASK;
3410
3411 if (offset == 0x04) { /* DXR */
3412 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3413 return;
3414 if (s->tx_req > 3) {
3415 s->tx_req -= 4;
3416 if (s->codec && s->codec->cts) {
3417 s->codec->out.fifo[s->codec->out.len ++] =
3418 (value >> 24) & 0xff;
3419 s->codec->out.fifo[s->codec->out.len ++] =
3420 (value >> 16) & 0xff;
3421 s->codec->out.fifo[s->codec->out.len ++] =
3422 (value >> 8) & 0xff;
3423 s->codec->out.fifo[s->codec->out.len ++] =
3424 (value >> 0) & 0xff;
3425 }
3426 if (s->tx_req < 4)
3427 omap_mcbsp_tx_done(s);
3428 } else
3429 printf("%s: Tx FIFO overrun\n", __func__);
3430 return;
3431 }
3432
3433 omap_badwidth_write16(opaque, addr, value);
3434 }
3435
3436 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3437 uint64_t value, unsigned size)
3438 {
3439 switch (size) {
3440 case 2:
3441 omap_mcbsp_writeh(opaque, addr, value);
3442 break;
3443 case 4:
3444 omap_mcbsp_writew(opaque, addr, value);
3445 break;
3446 default:
3447 omap_badwidth_write16(opaque, addr, value);
3448 }
3449 }
3450
3451 static const MemoryRegionOps omap_mcbsp_ops = {
3452 .read = omap_mcbsp_read,
3453 .write = omap_mcbsp_write,
3454 .endianness = DEVICE_NATIVE_ENDIAN,
3455 };
3456
3457 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3458 {
3459 memset(&s->spcr, 0, sizeof(s->spcr));
3460 memset(&s->rcr, 0, sizeof(s->rcr));
3461 memset(&s->xcr, 0, sizeof(s->xcr));
3462 s->srgr[0] = 0x0001;
3463 s->srgr[1] = 0x2000;
3464 memset(&s->mcr, 0, sizeof(s->mcr));
3465 memset(&s->pcr, 0, sizeof(s->pcr));
3466 memset(&s->rcer, 0, sizeof(s->rcer));
3467 memset(&s->xcer, 0, sizeof(s->xcer));
3468 s->tx_req = 0;
3469 s->rx_req = 0;
3470 s->tx_rate = 0;
3471 s->rx_rate = 0;
3472 timer_del(s->source_timer);
3473 timer_del(s->sink_timer);
3474 }
3475
3476 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3477 hwaddr base,
3478 qemu_irq txirq, qemu_irq rxirq,
3479 qemu_irq *dma, omap_clk clk)
3480 {
3481 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3482
3483 s->txirq = txirq;
3484 s->rxirq = rxirq;
3485 s->txdrq = dma[0];
3486 s->rxdrq = dma[1];
3487 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3488 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3489 omap_mcbsp_reset(s);
3490
3491 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3492 memory_region_add_subregion(system_memory, base, &s->iomem);
3493
3494 return s;
3495 }
3496
3497 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3498 {
3499 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3500
3501 if (s->rx_rate) {
3502 s->rx_req = s->codec->in.len;
3503 omap_mcbsp_rx_newdata(s);
3504 }
3505 }
3506
3507 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3508 {
3509 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3510
3511 if (s->tx_rate) {
3512 s->tx_req = s->codec->out.size;
3513 omap_mcbsp_tx_newdata(s);
3514 }
3515 }
3516
3517 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3518 {
3519 s->codec = slave;
3520 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3521 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3522 }
3523
3524 /* LED Pulse Generators */
3525 struct omap_lpg_s {
3526 MemoryRegion iomem;
3527 QEMUTimer *tm;
3528
3529 uint8_t control;
3530 uint8_t power;
3531 int64_t on;
3532 int64_t period;
3533 int clk;
3534 int cycle;
3535 };
3536
3537 static void omap_lpg_tick(void *opaque)
3538 {
3539 struct omap_lpg_s *s = opaque;
3540
3541 if (s->cycle)
3542 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3543 else
3544 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3545
3546 s->cycle = !s->cycle;
3547 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3548 }
3549
3550 static void omap_lpg_update(struct omap_lpg_s *s)
3551 {
3552 int64_t on, period = 1, ticks = 1000;
3553 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3554
3555 if (~s->control & (1 << 6)) /* LPGRES */
3556 on = 0;
3557 else if (s->control & (1 << 7)) /* PERM_ON */
3558 on = period;
3559 else {
3560 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3561 256 / 32);
3562 on = (s->clk && s->power) ? muldiv64(ticks,
3563 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3564 }
3565
3566 timer_del(s->tm);
3567 if (on == period && s->on < s->period)
3568 printf("%s: LED is on\n", __func__);
3569 else if (on == 0 && s->on)
3570 printf("%s: LED is off\n", __func__);
3571 else if (on && (on != s->on || period != s->period)) {
3572 s->cycle = 0;
3573 s->on = on;
3574 s->period = period;
3575 omap_lpg_tick(s);
3576 return;
3577 }
3578
3579 s->on = on;
3580 s->period = period;
3581 }
3582
3583 static void omap_lpg_reset(struct omap_lpg_s *s)
3584 {
3585 s->control = 0x00;
3586 s->power = 0x00;
3587 s->clk = 1;
3588 omap_lpg_update(s);
3589 }
3590
3591 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3592 unsigned size)
3593 {
3594 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3595 int offset = addr & OMAP_MPUI_REG_MASK;
3596
3597 if (size != 1) {
3598 return omap_badwidth_read8(opaque, addr);
3599 }
3600
3601 switch (offset) {
3602 case 0x00: /* LCR */
3603 return s->control;
3604
3605 case 0x04: /* PMR */
3606 return s->power;
3607 }
3608
3609 OMAP_BAD_REG(addr);
3610 return 0;
3611 }
3612
3613 static void omap_lpg_write(void *opaque, hwaddr addr,
3614 uint64_t value, unsigned size)
3615 {
3616 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3617 int offset = addr & OMAP_MPUI_REG_MASK;
3618
3619 if (size != 1) {
3620 omap_badwidth_write8(opaque, addr, value);
3621 return;
3622 }
3623
3624 switch (offset) {
3625 case 0x00: /* LCR */
3626 if (~value & (1 << 6)) /* LPGRES */
3627 omap_lpg_reset(s);
3628 s->control = value & 0xff;
3629 omap_lpg_update(s);
3630 return;
3631
3632 case 0x04: /* PMR */
3633 s->power = value & 0x01;
3634 omap_lpg_update(s);
3635 return;
3636
3637 default:
3638 OMAP_BAD_REG(addr);
3639 return;
3640 }
3641 }
3642
3643 static const MemoryRegionOps omap_lpg_ops = {
3644 .read = omap_lpg_read,
3645 .write = omap_lpg_write,
3646 .endianness = DEVICE_NATIVE_ENDIAN,
3647 };
3648
3649 static void omap_lpg_clk_update(void *opaque, int line, int on)
3650 {
3651 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3652
3653 s->clk = on;
3654 omap_lpg_update(s);
3655 }
3656
3657 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3658 hwaddr base, omap_clk clk)
3659 {
3660 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3661
3662 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3663
3664 omap_lpg_reset(s);
3665
3666 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3667 memory_region_add_subregion(system_memory, base, &s->iomem);
3668
3669 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3670
3671 return s;
3672 }
3673
3674 /* MPUI Peripheral Bridge configuration */
3675 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3676 unsigned size)
3677 {
3678 if (size != 2) {
3679 return omap_badwidth_read16(opaque, addr);
3680 }
3681
3682 if (addr == OMAP_MPUI_BASE) /* CMR */
3683 return 0xfe4d;
3684
3685 OMAP_BAD_REG(addr);
3686 return 0;
3687 }
3688
3689 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3690 uint64_t value, unsigned size)
3691 {
3692 /* FIXME: infinite loop */
3693 omap_badwidth_write16(opaque, addr, value);
3694 }
3695
3696 static const MemoryRegionOps omap_mpui_io_ops = {
3697 .read = omap_mpui_io_read,
3698 .write = omap_mpui_io_write,
3699 .endianness = DEVICE_NATIVE_ENDIAN,
3700 };
3701
3702 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3703 struct omap_mpu_state_s *mpu)
3704 {
3705 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3706 "omap-mpui-io", 0x7fff);
3707 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3708 &mpu->mpui_io_iomem);
3709 }
3710
3711 /* General chip reset */
3712 static void omap1_mpu_reset(void *opaque)
3713 {
3714 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3715
3716 omap_dma_reset(mpu->dma);
3717 omap_mpu_timer_reset(mpu->timer[0]);
3718 omap_mpu_timer_reset(mpu->timer[1]);
3719 omap_mpu_timer_reset(mpu->timer[2]);
3720 omap_wd_timer_reset(mpu->wdt);
3721 omap_os_timer_reset(mpu->os_timer);
3722 omap_lcdc_reset(mpu->lcd);
3723 omap_ulpd_pm_reset(mpu);
3724 omap_pin_cfg_reset(mpu);
3725 omap_mpui_reset(mpu);
3726 omap_tipb_bridge_reset(mpu->private_tipb);
3727 omap_tipb_bridge_reset(mpu->public_tipb);
3728 omap_dpll_reset(mpu->dpll[0]);
3729 omap_dpll_reset(mpu->dpll[1]);
3730 omap_dpll_reset(mpu->dpll[2]);
3731 omap_uart_reset(mpu->uart[0]);
3732 omap_uart_reset(mpu->uart[1]);
3733 omap_uart_reset(mpu->uart[2]);
3734 omap_mmc_reset(mpu->mmc);
3735 omap_mpuio_reset(mpu->mpuio);
3736 omap_uwire_reset(mpu->microwire);
3737 omap_pwl_reset(mpu->pwl);
3738 omap_pwt_reset(mpu->pwt);
3739 omap_rtc_reset(mpu->rtc);
3740 omap_mcbsp_reset(mpu->mcbsp1);
3741 omap_mcbsp_reset(mpu->mcbsp2);
3742 omap_mcbsp_reset(mpu->mcbsp3);
3743 omap_lpg_reset(mpu->led[0]);
3744 omap_lpg_reset(mpu->led[1]);
3745 omap_clkm_reset(mpu);
3746 cpu_reset(CPU(mpu->cpu));
3747 }
3748
3749 static const struct omap_map_s {
3750 hwaddr phys_dsp;
3751 hwaddr phys_mpu;
3752 uint32_t size;
3753 const char *name;
3754 } omap15xx_dsp_mm[] = {
3755 /* Strobe 0 */
3756 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3757 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3758 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3759 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3760 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3761 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3762 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3763 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3764 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3765 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3766 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3767 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3768 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3769 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3770 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3771 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3772 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3773 /* Strobe 1 */
3774 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3775
3776 { 0 }
3777 };
3778
3779 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3780 const struct omap_map_s *map)
3781 {
3782 MemoryRegion *io;
3783
3784 for (; map->phys_dsp; map ++) {
3785 io = g_new(MemoryRegion, 1);
3786 memory_region_init_alias(io, NULL, map->name,
3787 system_memory, map->phys_mpu, map->size);
3788 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3789 }
3790 }
3791
3792 void omap_mpu_wakeup(void *opaque, int irq, int req)
3793 {
3794 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3795 CPUState *cpu = CPU(mpu->cpu);
3796
3797 if (cpu->halted) {
3798 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3799 }
3800 }
3801
3802 static const struct dma_irq_map omap1_dma_irq_map[] = {
3803 { 0, OMAP_INT_DMA_CH0_6 },
3804 { 0, OMAP_INT_DMA_CH1_7 },
3805 { 0, OMAP_INT_DMA_CH2_8 },
3806 { 0, OMAP_INT_DMA_CH3 },
3807 { 0, OMAP_INT_DMA_CH4 },
3808 { 0, OMAP_INT_DMA_CH5 },
3809 { 1, OMAP_INT_1610_DMA_CH6 },
3810 { 1, OMAP_INT_1610_DMA_CH7 },
3811 { 1, OMAP_INT_1610_DMA_CH8 },
3812 { 1, OMAP_INT_1610_DMA_CH9 },
3813 { 1, OMAP_INT_1610_DMA_CH10 },
3814 { 1, OMAP_INT_1610_DMA_CH11 },
3815 { 1, OMAP_INT_1610_DMA_CH12 },
3816 { 1, OMAP_INT_1610_DMA_CH13 },
3817 { 1, OMAP_INT_1610_DMA_CH14 },
3818 { 1, OMAP_INT_1610_DMA_CH15 }
3819 };
3820
3821 /* DMA ports for OMAP1 */
3822 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3823 hwaddr addr)
3824 {
3825 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3826 }
3827
3828 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3829 hwaddr addr)
3830 {
3831 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3832 addr);
3833 }
3834
3835 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3836 hwaddr addr)
3837 {
3838 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3839 }
3840
3841 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3842 hwaddr addr)
3843 {
3844 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3845 }
3846
3847 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3848 hwaddr addr)
3849 {
3850 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3851 }
3852
3853 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3854 hwaddr addr)
3855 {
3856 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3857 }
3858
3859 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3860 unsigned long sdram_size,
3861 const char *cpu_type)
3862 {
3863 int i;
3864 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3865 qemu_irq dma_irqs[6];
3866 DriveInfo *dinfo;
3867 SysBusDevice *busdev;
3868
3869 /* Core */
3870 s->mpu_model = omap310;
3871 s->cpu = ARM_CPU(cpu_create(cpu_type));
3872 s->sdram_size = sdram_size;
3873 s->sram_size = OMAP15XX_SRAM_SIZE;
3874
3875 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3876
3877 /* Clocks */
3878 omap_clk_init(s);
3879
3880 /* Memory-mapped stuff */
3881 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3882 s->sdram_size);
3883 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3884 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3885 &error_fatal);
3886 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3887
3888 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3889
3890 s->ih[0] = qdev_create(NULL, "omap-intc");
3891 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3892 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3893 qdev_init_nofail(s->ih[0]);
3894 busdev = SYS_BUS_DEVICE(s->ih[0]);
3895 sysbus_connect_irq(busdev, 0,
3896 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3897 sysbus_connect_irq(busdev, 1,
3898 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3899 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3900 s->ih[1] = qdev_create(NULL, "omap-intc");
3901 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3902 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3903 qdev_init_nofail(s->ih[1]);
3904 busdev = SYS_BUS_DEVICE(s->ih[1]);
3905 sysbus_connect_irq(busdev, 0,
3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3907 /* The second interrupt controller's FIQ output is not wired up */
3908 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3909
3910 for (i = 0; i < 6; i++) {
3911 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3912 omap1_dma_irq_map[i].intr);
3913 }
3914 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3915 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3916 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3917
3918 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3919 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3920 s->port[imif ].addr_valid = omap_validate_imif_addr;
3921 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3922 s->port[local ].addr_valid = omap_validate_local_addr;
3923 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3924
3925 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3926 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3927 OMAP_EMIFF_BASE, s->sdram_size);
3928 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3929 OMAP_IMIF_BASE, s->sram_size);
3930
3931 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3932 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3933 omap_findclk(s, "mputim_ck"));
3934 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3935 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3936 omap_findclk(s, "mputim_ck"));
3937 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3939 omap_findclk(s, "mputim_ck"));
3940
3941 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3942 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3943 omap_findclk(s, "armwdt_ck"));
3944
3945 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3946 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3947 omap_findclk(s, "clk32-kHz"));
3948
3949 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3950 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3951 omap_dma_get_lcdch(s->dma),
3952 omap_findclk(s, "lcd_ck"));
3953
3954 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3955 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3956 omap_id_init(system_memory, s);
3957
3958 omap_mpui_init(system_memory, 0xfffec900, s);
3959
3960 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3961 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3962 omap_findclk(s, "tipb_ck"));
3963 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3964 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3965 omap_findclk(s, "tipb_ck"));
3966
3967 omap_tcmi_init(system_memory, 0xfffecc00, s);
3968
3969 s->uart[0] = omap_uart_init(0xfffb0000,
3970 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3971 omap_findclk(s, "uart1_ck"),
3972 omap_findclk(s, "uart1_ck"),
3973 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3974 "uart1",
3975 serial_hd(0));
3976 s->uart[1] = omap_uart_init(0xfffb0800,
3977 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3978 omap_findclk(s, "uart2_ck"),
3979 omap_findclk(s, "uart2_ck"),
3980 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3981 "uart2",
3982 serial_hd(0) ? serial_hd(1) : NULL);
3983 s->uart[2] = omap_uart_init(0xfffb9800,
3984 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3985 omap_findclk(s, "uart3_ck"),
3986 omap_findclk(s, "uart3_ck"),
3987 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3988 "uart3",
3989 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3990
3991 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3992 omap_findclk(s, "dpll1"));
3993 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3994 omap_findclk(s, "dpll2"));
3995 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3996 omap_findclk(s, "dpll3"));
3997
3998 dinfo = drive_get(IF_SD, 0, 0);
3999 if (!dinfo && !qtest_enabled()) {
4000 warn_report("missing SecureDigital device");
4001 }
4002 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4003 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4004 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4005 &s->drq[OMAP_DMA_MMC_TX],
4006 omap_findclk(s, "mmc_ck"));
4007
4008 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4009 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4010 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4011 s->wakeup, omap_findclk(s, "clk32-kHz"));
4012
4013 s->gpio = qdev_create(NULL, "omap-gpio");
4014 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4015 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4016 qdev_init_nofail(s->gpio);
4017 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4018 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4019 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4020
4021 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4022 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4024 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4025
4026 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4027 omap_findclk(s, "armxor_ck"));
4028 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4029 omap_findclk(s, "armxor_ck"));
4030
4031 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4032 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4033 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4034 qdev_init_nofail(s->i2c[0]);
4035 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4036 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4037 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4038 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4039 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4040
4041 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4044 omap_findclk(s, "clk32-kHz"));
4045
4046 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4047 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4048 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4049 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4050 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4051 qdev_get_gpio_in(s->ih[0],
4052 OMAP_INT_310_McBSP2_TX),
4053 qdev_get_gpio_in(s->ih[0],
4054 OMAP_INT_310_McBSP2_RX),
4055 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4056 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4057 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4058 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4059 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4060
4061 s->led[0] = omap_lpg_init(system_memory,
4062 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4063 s->led[1] = omap_lpg_init(system_memory,
4064 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4065
4066 /* Register mappings not currenlty implemented:
4067 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4068 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4069 * USB W2FC fffb4000 - fffb47ff
4070 * Camera Interface fffb6800 - fffb6fff
4071 * USB Host fffba000 - fffba7ff
4072 * FAC fffba800 - fffbafff
4073 * HDQ/1-Wire fffbc000 - fffbc7ff
4074 * TIPB switches fffbc800 - fffbcfff
4075 * Mailbox fffcf000 - fffcf7ff
4076 * Local bus IF fffec100 - fffec1ff
4077 * Local bus MMU fffec200 - fffec2ff
4078 * DSP MMU fffed200 - fffed2ff
4079 */
4080
4081 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4082 omap_setup_mpui_io(system_memory, s);
4083
4084 qemu_register_reset(omap1_mpu_reset, s);
4085
4086 return s;
4087 }