]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/arm/omap1.c
beaddaf11fb209b4f1b5af7260c127457b22755f
[thirdparty/qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "hw/boards.h"
26 #include "hw/hw.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/omap.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/arm/soc_dma.h"
31 #include "sysemu/qtest.h"
32 #include "sysemu/reset.h"
33 #include "qemu/range.h"
34 #include "hw/sysbus.h"
35 #include "qemu/cutils.h"
36 #include "qemu/bcd.h"
37
38 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
39 {
40 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
41 funcname, 8 * sz, addr);
42 }
43
44 /* Should signal the TCMI/GPMC */
45 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
46 {
47 uint8_t ret;
48
49 omap_log_badwidth(__func__, addr, 1);
50 cpu_physical_memory_read(addr, &ret, 1);
51 return ret;
52 }
53
54 void omap_badwidth_write8(void *opaque, hwaddr addr,
55 uint32_t value)
56 {
57 uint8_t val8 = value;
58
59 omap_log_badwidth(__func__, addr, 1);
60 cpu_physical_memory_write(addr, &val8, 1);
61 }
62
63 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
64 {
65 uint16_t ret;
66
67 omap_log_badwidth(__func__, addr, 2);
68 cpu_physical_memory_read(addr, &ret, 2);
69 return ret;
70 }
71
72 void omap_badwidth_write16(void *opaque, hwaddr addr,
73 uint32_t value)
74 {
75 uint16_t val16 = value;
76
77 omap_log_badwidth(__func__, addr, 2);
78 cpu_physical_memory_write(addr, &val16, 2);
79 }
80
81 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
82 {
83 uint32_t ret;
84
85 omap_log_badwidth(__func__, addr, 4);
86 cpu_physical_memory_read(addr, &ret, 4);
87 return ret;
88 }
89
90 void omap_badwidth_write32(void *opaque, hwaddr addr,
91 uint32_t value)
92 {
93 omap_log_badwidth(__func__, addr, 4);
94 cpu_physical_memory_write(addr, &value, 4);
95 }
96
97 /* MPU OS timers */
98 struct omap_mpu_timer_s {
99 MemoryRegion iomem;
100 qemu_irq irq;
101 omap_clk clk;
102 uint32_t val;
103 int64_t time;
104 QEMUTimer *timer;
105 QEMUBH *tick;
106 int64_t rate;
107 int it_ena;
108
109 int enable;
110 int ptv;
111 int ar;
112 int st;
113 uint32_t reset_val;
114 };
115
116 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
117 {
118 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
119
120 if (timer->st && timer->enable && timer->rate)
121 return timer->val - muldiv64(distance >> (timer->ptv + 1),
122 timer->rate, NANOSECONDS_PER_SECOND);
123 else
124 return timer->val;
125 }
126
127 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
128 {
129 timer->val = omap_timer_read(timer);
130 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
131 }
132
133 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
134 {
135 int64_t expires;
136
137 if (timer->enable && timer->st && timer->rate) {
138 timer->val = timer->reset_val; /* Should skip this on clk enable */
139 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
140 NANOSECONDS_PER_SECOND, timer->rate);
141
142 /* If timer expiry would be sooner than in about 1 ms and
143 * auto-reload isn't set, then fire immediately. This is a hack
144 * to make systems like PalmOS run in acceptable time. PalmOS
145 * sets the interval to a very low value and polls the status bit
146 * in a busy loop when it wants to sleep just a couple of CPU
147 * ticks. */
148 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
149 timer_mod(timer->timer, timer->time + expires);
150 } else {
151 qemu_bh_schedule(timer->tick);
152 }
153 } else
154 timer_del(timer->timer);
155 }
156
157 static void omap_timer_fire(void *opaque)
158 {
159 struct omap_mpu_timer_s *timer = opaque;
160
161 if (!timer->ar) {
162 timer->val = 0;
163 timer->st = 0;
164 }
165
166 if (timer->it_ena)
167 /* Edge-triggered irq */
168 qemu_irq_pulse(timer->irq);
169 }
170
171 static void omap_timer_tick(void *opaque)
172 {
173 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
174
175 omap_timer_sync(timer);
176 omap_timer_fire(timer);
177 omap_timer_update(timer);
178 }
179
180 static void omap_timer_clk_update(void *opaque, int line, int on)
181 {
182 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
183
184 omap_timer_sync(timer);
185 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
186 omap_timer_update(timer);
187 }
188
189 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
190 {
191 omap_clk_adduser(timer->clk,
192 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
193 timer->rate = omap_clk_getrate(timer->clk);
194 }
195
196 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
197 unsigned size)
198 {
199 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
200
201 if (size != 4) {
202 return omap_badwidth_read32(opaque, addr);
203 }
204
205 switch (addr) {
206 case 0x00: /* CNTL_TIMER */
207 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
208
209 case 0x04: /* LOAD_TIM */
210 break;
211
212 case 0x08: /* READ_TIM */
213 return omap_timer_read(s);
214 }
215
216 OMAP_BAD_REG(addr);
217 return 0;
218 }
219
220 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
221 uint64_t value, unsigned size)
222 {
223 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
224
225 if (size != 4) {
226 omap_badwidth_write32(opaque, addr, value);
227 return;
228 }
229
230 switch (addr) {
231 case 0x00: /* CNTL_TIMER */
232 omap_timer_sync(s);
233 s->enable = (value >> 5) & 1;
234 s->ptv = (value >> 2) & 7;
235 s->ar = (value >> 1) & 1;
236 s->st = value & 1;
237 omap_timer_update(s);
238 return;
239
240 case 0x04: /* LOAD_TIM */
241 s->reset_val = value;
242 return;
243
244 case 0x08: /* READ_TIM */
245 OMAP_RO_REG(addr);
246 break;
247
248 default:
249 OMAP_BAD_REG(addr);
250 }
251 }
252
253 static const MemoryRegionOps omap_mpu_timer_ops = {
254 .read = omap_mpu_timer_read,
255 .write = omap_mpu_timer_write,
256 .endianness = DEVICE_LITTLE_ENDIAN,
257 };
258
259 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
260 {
261 timer_del(s->timer);
262 s->enable = 0;
263 s->reset_val = 31337;
264 s->val = 0;
265 s->ptv = 0;
266 s->ar = 0;
267 s->st = 0;
268 s->it_ena = 1;
269 }
270
271 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
272 hwaddr base,
273 qemu_irq irq, omap_clk clk)
274 {
275 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
276
277 s->irq = irq;
278 s->clk = clk;
279 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
280 s->tick = qemu_bh_new(omap_timer_fire, s);
281 omap_mpu_timer_reset(s);
282 omap_timer_clk_setup(s);
283
284 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
285 "omap-mpu-timer", 0x100);
286
287 memory_region_add_subregion(system_memory, base, &s->iomem);
288
289 return s;
290 }
291
292 /* Watchdog timer */
293 struct omap_watchdog_timer_s {
294 struct omap_mpu_timer_s timer;
295 MemoryRegion iomem;
296 uint8_t last_wr;
297 int mode;
298 int free;
299 int reset;
300 };
301
302 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
303 unsigned size)
304 {
305 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
306
307 if (size != 2) {
308 return omap_badwidth_read16(opaque, addr);
309 }
310
311 switch (addr) {
312 case 0x00: /* CNTL_TIMER */
313 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
314 (s->timer.st << 7) | (s->free << 1);
315
316 case 0x04: /* READ_TIMER */
317 return omap_timer_read(&s->timer);
318
319 case 0x08: /* TIMER_MODE */
320 return s->mode << 15;
321 }
322
323 OMAP_BAD_REG(addr);
324 return 0;
325 }
326
327 static void omap_wd_timer_write(void *opaque, hwaddr addr,
328 uint64_t value, unsigned size)
329 {
330 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
331
332 if (size != 2) {
333 omap_badwidth_write16(opaque, addr, value);
334 return;
335 }
336
337 switch (addr) {
338 case 0x00: /* CNTL_TIMER */
339 omap_timer_sync(&s->timer);
340 s->timer.ptv = (value >> 9) & 7;
341 s->timer.ar = (value >> 8) & 1;
342 s->timer.st = (value >> 7) & 1;
343 s->free = (value >> 1) & 1;
344 omap_timer_update(&s->timer);
345 break;
346
347 case 0x04: /* LOAD_TIMER */
348 s->timer.reset_val = value & 0xffff;
349 break;
350
351 case 0x08: /* TIMER_MODE */
352 if (!s->mode && ((value >> 15) & 1))
353 omap_clk_get(s->timer.clk);
354 s->mode |= (value >> 15) & 1;
355 if (s->last_wr == 0xf5) {
356 if ((value & 0xff) == 0xa0) {
357 if (s->mode) {
358 s->mode = 0;
359 omap_clk_put(s->timer.clk);
360 }
361 } else {
362 /* XXX: on T|E hardware somehow this has no effect,
363 * on Zire 71 it works as specified. */
364 s->reset = 1;
365 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
366 }
367 }
368 s->last_wr = value & 0xff;
369 break;
370
371 default:
372 OMAP_BAD_REG(addr);
373 }
374 }
375
376 static const MemoryRegionOps omap_wd_timer_ops = {
377 .read = omap_wd_timer_read,
378 .write = omap_wd_timer_write,
379 .endianness = DEVICE_NATIVE_ENDIAN,
380 };
381
382 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
383 {
384 timer_del(s->timer.timer);
385 if (!s->mode)
386 omap_clk_get(s->timer.clk);
387 s->mode = 1;
388 s->free = 1;
389 s->reset = 0;
390 s->timer.enable = 1;
391 s->timer.it_ena = 1;
392 s->timer.reset_val = 0xffff;
393 s->timer.val = 0;
394 s->timer.st = 0;
395 s->timer.ptv = 0;
396 s->timer.ar = 0;
397 omap_timer_update(&s->timer);
398 }
399
400 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
401 hwaddr base,
402 qemu_irq irq, omap_clk clk)
403 {
404 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
405
406 s->timer.irq = irq;
407 s->timer.clk = clk;
408 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
409 omap_wd_timer_reset(s);
410 omap_timer_clk_setup(&s->timer);
411
412 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
413 "omap-wd-timer", 0x100);
414 memory_region_add_subregion(memory, base, &s->iomem);
415
416 return s;
417 }
418
419 /* 32-kHz timer */
420 struct omap_32khz_timer_s {
421 struct omap_mpu_timer_s timer;
422 MemoryRegion iomem;
423 };
424
425 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
426 unsigned size)
427 {
428 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
429 int offset = addr & OMAP_MPUI_REG_MASK;
430
431 if (size != 4) {
432 return omap_badwidth_read32(opaque, addr);
433 }
434
435 switch (offset) {
436 case 0x00: /* TVR */
437 return s->timer.reset_val;
438
439 case 0x04: /* TCR */
440 return omap_timer_read(&s->timer);
441
442 case 0x08: /* CR */
443 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
444
445 default:
446 break;
447 }
448 OMAP_BAD_REG(addr);
449 return 0;
450 }
451
452 static void omap_os_timer_write(void *opaque, hwaddr addr,
453 uint64_t value, unsigned size)
454 {
455 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
456 int offset = addr & OMAP_MPUI_REG_MASK;
457
458 if (size != 4) {
459 omap_badwidth_write32(opaque, addr, value);
460 return;
461 }
462
463 switch (offset) {
464 case 0x00: /* TVR */
465 s->timer.reset_val = value & 0x00ffffff;
466 break;
467
468 case 0x04: /* TCR */
469 OMAP_RO_REG(addr);
470 break;
471
472 case 0x08: /* CR */
473 s->timer.ar = (value >> 3) & 1;
474 s->timer.it_ena = (value >> 2) & 1;
475 if (s->timer.st != (value & 1) || (value & 2)) {
476 omap_timer_sync(&s->timer);
477 s->timer.enable = value & 1;
478 s->timer.st = value & 1;
479 omap_timer_update(&s->timer);
480 }
481 break;
482
483 default:
484 OMAP_BAD_REG(addr);
485 }
486 }
487
488 static const MemoryRegionOps omap_os_timer_ops = {
489 .read = omap_os_timer_read,
490 .write = omap_os_timer_write,
491 .endianness = DEVICE_NATIVE_ENDIAN,
492 };
493
494 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
495 {
496 timer_del(s->timer.timer);
497 s->timer.enable = 0;
498 s->timer.it_ena = 0;
499 s->timer.reset_val = 0x00ffffff;
500 s->timer.val = 0;
501 s->timer.st = 0;
502 s->timer.ptv = 0;
503 s->timer.ar = 1;
504 }
505
506 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
507 hwaddr base,
508 qemu_irq irq, omap_clk clk)
509 {
510 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
511
512 s->timer.irq = irq;
513 s->timer.clk = clk;
514 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
515 omap_os_timer_reset(s);
516 omap_timer_clk_setup(&s->timer);
517
518 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
519 "omap-os-timer", 0x800);
520 memory_region_add_subregion(memory, base, &s->iomem);
521
522 return s;
523 }
524
525 /* Ultra Low-Power Device Module */
526 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
527 unsigned size)
528 {
529 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
530 uint16_t ret;
531
532 if (size != 2) {
533 return omap_badwidth_read16(opaque, addr);
534 }
535
536 switch (addr) {
537 case 0x14: /* IT_STATUS */
538 ret = s->ulpd_pm_regs[addr >> 2];
539 s->ulpd_pm_regs[addr >> 2] = 0;
540 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
541 return ret;
542
543 case 0x18: /* Reserved */
544 case 0x1c: /* Reserved */
545 case 0x20: /* Reserved */
546 case 0x28: /* Reserved */
547 case 0x2c: /* Reserved */
548 OMAP_BAD_REG(addr);
549 /* fall through */
550 case 0x00: /* COUNTER_32_LSB */
551 case 0x04: /* COUNTER_32_MSB */
552 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
553 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
554 case 0x10: /* GAUGING_CTRL */
555 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
556 case 0x30: /* CLOCK_CTRL */
557 case 0x34: /* SOFT_REQ */
558 case 0x38: /* COUNTER_32_FIQ */
559 case 0x3c: /* DPLL_CTRL */
560 case 0x40: /* STATUS_REQ */
561 /* XXX: check clk::usecount state for every clock */
562 case 0x48: /* LOCL_TIME */
563 case 0x4c: /* APLL_CTRL */
564 case 0x50: /* POWER_CTRL */
565 return s->ulpd_pm_regs[addr >> 2];
566 }
567
568 OMAP_BAD_REG(addr);
569 return 0;
570 }
571
572 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
573 uint16_t diff, uint16_t value)
574 {
575 if (diff & (1 << 4)) /* USB_MCLK_EN */
576 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
577 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
578 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
579 }
580
581 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
582 uint16_t diff, uint16_t value)
583 {
584 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
585 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
586 if (diff & (1 << 1)) /* SOFT_COM_REQ */
587 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
588 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
589 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
590 if (diff & (1 << 3)) /* SOFT_USB_REQ */
591 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
592 }
593
594 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
595 uint64_t value, unsigned size)
596 {
597 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
598 int64_t now, ticks;
599 int div, mult;
600 static const int bypass_div[4] = { 1, 2, 4, 4 };
601 uint16_t diff;
602
603 if (size != 2) {
604 omap_badwidth_write16(opaque, addr, value);
605 return;
606 }
607
608 switch (addr) {
609 case 0x00: /* COUNTER_32_LSB */
610 case 0x04: /* COUNTER_32_MSB */
611 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
612 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
613 case 0x14: /* IT_STATUS */
614 case 0x40: /* STATUS_REQ */
615 OMAP_RO_REG(addr);
616 break;
617
618 case 0x10: /* GAUGING_CTRL */
619 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
620 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
621 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
622
623 if (value & 1)
624 s->ulpd_gauge_start = now;
625 else {
626 now -= s->ulpd_gauge_start;
627
628 /* 32-kHz ticks */
629 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
630 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
631 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
632 if (ticks >> 32) /* OVERFLOW_32K */
633 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
634
635 /* High frequency ticks */
636 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
637 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
638 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
639 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
640 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
641
642 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
643 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
644 }
645 }
646 s->ulpd_pm_regs[addr >> 2] = value;
647 break;
648
649 case 0x18: /* Reserved */
650 case 0x1c: /* Reserved */
651 case 0x20: /* Reserved */
652 case 0x28: /* Reserved */
653 case 0x2c: /* Reserved */
654 OMAP_BAD_REG(addr);
655 /* fall through */
656 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
657 case 0x38: /* COUNTER_32_FIQ */
658 case 0x48: /* LOCL_TIME */
659 case 0x50: /* POWER_CTRL */
660 s->ulpd_pm_regs[addr >> 2] = value;
661 break;
662
663 case 0x30: /* CLOCK_CTRL */
664 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
665 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
666 omap_ulpd_clk_update(s, diff, value);
667 break;
668
669 case 0x34: /* SOFT_REQ */
670 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
671 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
672 omap_ulpd_req_update(s, diff, value);
673 break;
674
675 case 0x3c: /* DPLL_CTRL */
676 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
677 * omitted altogether, probably a typo. */
678 /* This register has identical semantics with DPLL(1:3) control
679 * registers, see omap_dpll_write() */
680 diff = s->ulpd_pm_regs[addr >> 2] & value;
681 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
682 if (diff & (0x3ff << 2)) {
683 if (value & (1 << 4)) { /* PLL_ENABLE */
684 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
685 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
686 } else {
687 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
688 mult = 1;
689 }
690 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
691 }
692
693 /* Enter the desired mode. */
694 s->ulpd_pm_regs[addr >> 2] =
695 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
696 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
697
698 /* Act as if the lock is restored. */
699 s->ulpd_pm_regs[addr >> 2] |= 2;
700 break;
701
702 case 0x4c: /* APLL_CTRL */
703 diff = s->ulpd_pm_regs[addr >> 2] & value;
704 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
705 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
706 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
707 (value & (1 << 0)) ? "apll" : "dpll4"));
708 break;
709
710 default:
711 OMAP_BAD_REG(addr);
712 }
713 }
714
715 static const MemoryRegionOps omap_ulpd_pm_ops = {
716 .read = omap_ulpd_pm_read,
717 .write = omap_ulpd_pm_write,
718 .endianness = DEVICE_NATIVE_ENDIAN,
719 };
720
721 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
722 {
723 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
724 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
725 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
726 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
727 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
728 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
729 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
730 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
731 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
732 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
733 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
734 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
735 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
736 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
737 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
738 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
739 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
740 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
741 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
742 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
743 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
744 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
745 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
746 }
747
748 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
749 hwaddr base,
750 struct omap_mpu_state_s *mpu)
751 {
752 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
753 "omap-ulpd-pm", 0x800);
754 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
755 omap_ulpd_pm_reset(mpu);
756 }
757
758 /* OMAP Pin Configuration */
759 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
760 unsigned size)
761 {
762 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
763
764 if (size != 4) {
765 return omap_badwidth_read32(opaque, addr);
766 }
767
768 switch (addr) {
769 case 0x00: /* FUNC_MUX_CTRL_0 */
770 case 0x04: /* FUNC_MUX_CTRL_1 */
771 case 0x08: /* FUNC_MUX_CTRL_2 */
772 return s->func_mux_ctrl[addr >> 2];
773
774 case 0x0c: /* COMP_MODE_CTRL_0 */
775 return s->comp_mode_ctrl[0];
776
777 case 0x10: /* FUNC_MUX_CTRL_3 */
778 case 0x14: /* FUNC_MUX_CTRL_4 */
779 case 0x18: /* FUNC_MUX_CTRL_5 */
780 case 0x1c: /* FUNC_MUX_CTRL_6 */
781 case 0x20: /* FUNC_MUX_CTRL_7 */
782 case 0x24: /* FUNC_MUX_CTRL_8 */
783 case 0x28: /* FUNC_MUX_CTRL_9 */
784 case 0x2c: /* FUNC_MUX_CTRL_A */
785 case 0x30: /* FUNC_MUX_CTRL_B */
786 case 0x34: /* FUNC_MUX_CTRL_C */
787 case 0x38: /* FUNC_MUX_CTRL_D */
788 return s->func_mux_ctrl[(addr >> 2) - 1];
789
790 case 0x40: /* PULL_DWN_CTRL_0 */
791 case 0x44: /* PULL_DWN_CTRL_1 */
792 case 0x48: /* PULL_DWN_CTRL_2 */
793 case 0x4c: /* PULL_DWN_CTRL_3 */
794 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
795
796 case 0x50: /* GATE_INH_CTRL_0 */
797 return s->gate_inh_ctrl[0];
798
799 case 0x60: /* VOLTAGE_CTRL_0 */
800 return s->voltage_ctrl[0];
801
802 case 0x70: /* TEST_DBG_CTRL_0 */
803 return s->test_dbg_ctrl[0];
804
805 case 0x80: /* MOD_CONF_CTRL_0 */
806 return s->mod_conf_ctrl[0];
807 }
808
809 OMAP_BAD_REG(addr);
810 return 0;
811 }
812
813 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
814 uint32_t diff, uint32_t value)
815 {
816 if (s->compat1509) {
817 if (diff & (1 << 9)) /* BLUETOOTH */
818 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
819 (~value >> 9) & 1);
820 if (diff & (1 << 7)) /* USB.CLKO */
821 omap_clk_onoff(omap_findclk(s, "usb.clko"),
822 (value >> 7) & 1);
823 }
824 }
825
826 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
827 uint32_t diff, uint32_t value)
828 {
829 if (s->compat1509) {
830 if (diff & (1U << 31)) {
831 /* MCBSP3_CLK_HIZ_DI */
832 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
833 }
834 if (diff & (1 << 1)) {
835 /* CLK32K */
836 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
837 }
838 }
839 }
840
841 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
842 uint32_t diff, uint32_t value)
843 {
844 if (diff & (1U << 31)) {
845 /* CONF_MOD_UART3_CLK_MODE_R */
846 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
847 omap_findclk(s, ((value >> 31) & 1) ?
848 "ck_48m" : "armper_ck"));
849 }
850 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
851 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
852 omap_findclk(s, ((value >> 30) & 1) ?
853 "ck_48m" : "armper_ck"));
854 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
855 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
856 omap_findclk(s, ((value >> 29) & 1) ?
857 "ck_48m" : "armper_ck"));
858 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
859 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
860 omap_findclk(s, ((value >> 23) & 1) ?
861 "ck_48m" : "armper_ck"));
862 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
863 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
864 omap_findclk(s, ((value >> 12) & 1) ?
865 "ck_48m" : "armper_ck"));
866 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
867 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
868 }
869
870 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
871 uint64_t value, unsigned size)
872 {
873 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
874 uint32_t diff;
875
876 if (size != 4) {
877 omap_badwidth_write32(opaque, addr, value);
878 return;
879 }
880
881 switch (addr) {
882 case 0x00: /* FUNC_MUX_CTRL_0 */
883 diff = s->func_mux_ctrl[addr >> 2] ^ value;
884 s->func_mux_ctrl[addr >> 2] = value;
885 omap_pin_funcmux0_update(s, diff, value);
886 return;
887
888 case 0x04: /* FUNC_MUX_CTRL_1 */
889 diff = s->func_mux_ctrl[addr >> 2] ^ value;
890 s->func_mux_ctrl[addr >> 2] = value;
891 omap_pin_funcmux1_update(s, diff, value);
892 return;
893
894 case 0x08: /* FUNC_MUX_CTRL_2 */
895 s->func_mux_ctrl[addr >> 2] = value;
896 return;
897
898 case 0x0c: /* COMP_MODE_CTRL_0 */
899 s->comp_mode_ctrl[0] = value;
900 s->compat1509 = (value != 0x0000eaef);
901 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
902 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
903 return;
904
905 case 0x10: /* FUNC_MUX_CTRL_3 */
906 case 0x14: /* FUNC_MUX_CTRL_4 */
907 case 0x18: /* FUNC_MUX_CTRL_5 */
908 case 0x1c: /* FUNC_MUX_CTRL_6 */
909 case 0x20: /* FUNC_MUX_CTRL_7 */
910 case 0x24: /* FUNC_MUX_CTRL_8 */
911 case 0x28: /* FUNC_MUX_CTRL_9 */
912 case 0x2c: /* FUNC_MUX_CTRL_A */
913 case 0x30: /* FUNC_MUX_CTRL_B */
914 case 0x34: /* FUNC_MUX_CTRL_C */
915 case 0x38: /* FUNC_MUX_CTRL_D */
916 s->func_mux_ctrl[(addr >> 2) - 1] = value;
917 return;
918
919 case 0x40: /* PULL_DWN_CTRL_0 */
920 case 0x44: /* PULL_DWN_CTRL_1 */
921 case 0x48: /* PULL_DWN_CTRL_2 */
922 case 0x4c: /* PULL_DWN_CTRL_3 */
923 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
924 return;
925
926 case 0x50: /* GATE_INH_CTRL_0 */
927 s->gate_inh_ctrl[0] = value;
928 return;
929
930 case 0x60: /* VOLTAGE_CTRL_0 */
931 s->voltage_ctrl[0] = value;
932 return;
933
934 case 0x70: /* TEST_DBG_CTRL_0 */
935 s->test_dbg_ctrl[0] = value;
936 return;
937
938 case 0x80: /* MOD_CONF_CTRL_0 */
939 diff = s->mod_conf_ctrl[0] ^ value;
940 s->mod_conf_ctrl[0] = value;
941 omap_pin_modconf1_update(s, diff, value);
942 return;
943
944 default:
945 OMAP_BAD_REG(addr);
946 }
947 }
948
949 static const MemoryRegionOps omap_pin_cfg_ops = {
950 .read = omap_pin_cfg_read,
951 .write = omap_pin_cfg_write,
952 .endianness = DEVICE_NATIVE_ENDIAN,
953 };
954
955 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
956 {
957 /* Start in Compatibility Mode. */
958 mpu->compat1509 = 1;
959 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
960 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
961 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
962 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
963 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
964 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
965 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
966 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
967 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
968 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
969 }
970
971 static void omap_pin_cfg_init(MemoryRegion *system_memory,
972 hwaddr base,
973 struct omap_mpu_state_s *mpu)
974 {
975 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
976 "omap-pin-cfg", 0x800);
977 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
978 omap_pin_cfg_reset(mpu);
979 }
980
981 /* Device Identification, Die Identification */
982 static uint64_t omap_id_read(void *opaque, hwaddr addr,
983 unsigned size)
984 {
985 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
986
987 if (size != 4) {
988 return omap_badwidth_read32(opaque, addr);
989 }
990
991 switch (addr) {
992 case 0xfffe1800: /* DIE_ID_LSB */
993 return 0xc9581f0e;
994 case 0xfffe1804: /* DIE_ID_MSB */
995 return 0xa8858bfa;
996
997 case 0xfffe2000: /* PRODUCT_ID_LSB */
998 return 0x00aaaafc;
999 case 0xfffe2004: /* PRODUCT_ID_MSB */
1000 return 0xcafeb574;
1001
1002 case 0xfffed400: /* JTAG_ID_LSB */
1003 switch (s->mpu_model) {
1004 case omap310:
1005 return 0x03310315;
1006 case omap1510:
1007 return 0x03310115;
1008 default:
1009 hw_error("%s: bad mpu model\n", __func__);
1010 }
1011 break;
1012
1013 case 0xfffed404: /* JTAG_ID_MSB */
1014 switch (s->mpu_model) {
1015 case omap310:
1016 return 0xfb57402f;
1017 case omap1510:
1018 return 0xfb47002f;
1019 default:
1020 hw_error("%s: bad mpu model\n", __func__);
1021 }
1022 break;
1023 }
1024
1025 OMAP_BAD_REG(addr);
1026 return 0;
1027 }
1028
1029 static void omap_id_write(void *opaque, hwaddr addr,
1030 uint64_t value, unsigned size)
1031 {
1032 if (size != 4) {
1033 omap_badwidth_write32(opaque, addr, value);
1034 return;
1035 }
1036
1037 OMAP_BAD_REG(addr);
1038 }
1039
1040 static const MemoryRegionOps omap_id_ops = {
1041 .read = omap_id_read,
1042 .write = omap_id_write,
1043 .endianness = DEVICE_NATIVE_ENDIAN,
1044 };
1045
1046 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1047 {
1048 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1049 "omap-id", 0x100000000ULL);
1050 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1051 0xfffe1800, 0x800);
1052 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1053 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1054 0xfffed400, 0x100);
1055 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1056 if (!cpu_is_omap15xx(mpu)) {
1057 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1058 &mpu->id_iomem, 0xfffe2000, 0x800);
1059 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1060 }
1061 }
1062
1063 /* MPUI Control (Dummy) */
1064 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1065 unsigned size)
1066 {
1067 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1068
1069 if (size != 4) {
1070 return omap_badwidth_read32(opaque, addr);
1071 }
1072
1073 switch (addr) {
1074 case 0x00: /* CTRL */
1075 return s->mpui_ctrl;
1076 case 0x04: /* DEBUG_ADDR */
1077 return 0x01ffffff;
1078 case 0x08: /* DEBUG_DATA */
1079 return 0xffffffff;
1080 case 0x0c: /* DEBUG_FLAG */
1081 return 0x00000800;
1082 case 0x10: /* STATUS */
1083 return 0x00000000;
1084
1085 /* Not in OMAP310 */
1086 case 0x14: /* DSP_STATUS */
1087 case 0x18: /* DSP_BOOT_CONFIG */
1088 return 0x00000000;
1089 case 0x1c: /* DSP_MPUI_CONFIG */
1090 return 0x0000ffff;
1091 }
1092
1093 OMAP_BAD_REG(addr);
1094 return 0;
1095 }
1096
1097 static void omap_mpui_write(void *opaque, hwaddr addr,
1098 uint64_t value, unsigned size)
1099 {
1100 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1101
1102 if (size != 4) {
1103 omap_badwidth_write32(opaque, addr, value);
1104 return;
1105 }
1106
1107 switch (addr) {
1108 case 0x00: /* CTRL */
1109 s->mpui_ctrl = value & 0x007fffff;
1110 break;
1111
1112 case 0x04: /* DEBUG_ADDR */
1113 case 0x08: /* DEBUG_DATA */
1114 case 0x0c: /* DEBUG_FLAG */
1115 case 0x10: /* STATUS */
1116 /* Not in OMAP310 */
1117 case 0x14: /* DSP_STATUS */
1118 OMAP_RO_REG(addr);
1119 break;
1120 case 0x18: /* DSP_BOOT_CONFIG */
1121 case 0x1c: /* DSP_MPUI_CONFIG */
1122 break;
1123
1124 default:
1125 OMAP_BAD_REG(addr);
1126 }
1127 }
1128
1129 static const MemoryRegionOps omap_mpui_ops = {
1130 .read = omap_mpui_read,
1131 .write = omap_mpui_write,
1132 .endianness = DEVICE_NATIVE_ENDIAN,
1133 };
1134
1135 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1136 {
1137 s->mpui_ctrl = 0x0003ff1b;
1138 }
1139
1140 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1141 struct omap_mpu_state_s *mpu)
1142 {
1143 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1144 "omap-mpui", 0x100);
1145 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1146
1147 omap_mpui_reset(mpu);
1148 }
1149
1150 /* TIPB Bridges */
1151 struct omap_tipb_bridge_s {
1152 qemu_irq abort;
1153 MemoryRegion iomem;
1154
1155 int width_intr;
1156 uint16_t control;
1157 uint16_t alloc;
1158 uint16_t buffer;
1159 uint16_t enh_control;
1160 };
1161
1162 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1163 unsigned size)
1164 {
1165 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1166
1167 if (size < 2) {
1168 return omap_badwidth_read16(opaque, addr);
1169 }
1170
1171 switch (addr) {
1172 case 0x00: /* TIPB_CNTL */
1173 return s->control;
1174 case 0x04: /* TIPB_BUS_ALLOC */
1175 return s->alloc;
1176 case 0x08: /* MPU_TIPB_CNTL */
1177 return s->buffer;
1178 case 0x0c: /* ENHANCED_TIPB_CNTL */
1179 return s->enh_control;
1180 case 0x10: /* ADDRESS_DBG */
1181 case 0x14: /* DATA_DEBUG_LOW */
1182 case 0x18: /* DATA_DEBUG_HIGH */
1183 return 0xffff;
1184 case 0x1c: /* DEBUG_CNTR_SIG */
1185 return 0x00f8;
1186 }
1187
1188 OMAP_BAD_REG(addr);
1189 return 0;
1190 }
1191
1192 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1193 uint64_t value, unsigned size)
1194 {
1195 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1196
1197 if (size < 2) {
1198 omap_badwidth_write16(opaque, addr, value);
1199 return;
1200 }
1201
1202 switch (addr) {
1203 case 0x00: /* TIPB_CNTL */
1204 s->control = value & 0xffff;
1205 break;
1206
1207 case 0x04: /* TIPB_BUS_ALLOC */
1208 s->alloc = value & 0x003f;
1209 break;
1210
1211 case 0x08: /* MPU_TIPB_CNTL */
1212 s->buffer = value & 0x0003;
1213 break;
1214
1215 case 0x0c: /* ENHANCED_TIPB_CNTL */
1216 s->width_intr = !(value & 2);
1217 s->enh_control = value & 0x000f;
1218 break;
1219
1220 case 0x10: /* ADDRESS_DBG */
1221 case 0x14: /* DATA_DEBUG_LOW */
1222 case 0x18: /* DATA_DEBUG_HIGH */
1223 case 0x1c: /* DEBUG_CNTR_SIG */
1224 OMAP_RO_REG(addr);
1225 break;
1226
1227 default:
1228 OMAP_BAD_REG(addr);
1229 }
1230 }
1231
1232 static const MemoryRegionOps omap_tipb_bridge_ops = {
1233 .read = omap_tipb_bridge_read,
1234 .write = omap_tipb_bridge_write,
1235 .endianness = DEVICE_NATIVE_ENDIAN,
1236 };
1237
1238 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1239 {
1240 s->control = 0xffff;
1241 s->alloc = 0x0009;
1242 s->buffer = 0x0000;
1243 s->enh_control = 0x000f;
1244 }
1245
1246 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1247 MemoryRegion *memory, hwaddr base,
1248 qemu_irq abort_irq, omap_clk clk)
1249 {
1250 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1251
1252 s->abort = abort_irq;
1253 omap_tipb_bridge_reset(s);
1254
1255 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1256 "omap-tipb-bridge", 0x100);
1257 memory_region_add_subregion(memory, base, &s->iomem);
1258
1259 return s;
1260 }
1261
1262 /* Dummy Traffic Controller's Memory Interface */
1263 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1264 unsigned size)
1265 {
1266 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1267 uint32_t ret;
1268
1269 if (size != 4) {
1270 return omap_badwidth_read32(opaque, addr);
1271 }
1272
1273 switch (addr) {
1274 case 0x00: /* IMIF_PRIO */
1275 case 0x04: /* EMIFS_PRIO */
1276 case 0x08: /* EMIFF_PRIO */
1277 case 0x0c: /* EMIFS_CONFIG */
1278 case 0x10: /* EMIFS_CS0_CONFIG */
1279 case 0x14: /* EMIFS_CS1_CONFIG */
1280 case 0x18: /* EMIFS_CS2_CONFIG */
1281 case 0x1c: /* EMIFS_CS3_CONFIG */
1282 case 0x24: /* EMIFF_MRS */
1283 case 0x28: /* TIMEOUT1 */
1284 case 0x2c: /* TIMEOUT2 */
1285 case 0x30: /* TIMEOUT3 */
1286 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1287 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1288 return s->tcmi_regs[addr >> 2];
1289
1290 case 0x20: /* EMIFF_SDRAM_CONFIG */
1291 ret = s->tcmi_regs[addr >> 2];
1292 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1293 /* XXX: We can try using the VGA_DIRTY flag for this */
1294 return ret;
1295 }
1296
1297 OMAP_BAD_REG(addr);
1298 return 0;
1299 }
1300
1301 static void omap_tcmi_write(void *opaque, hwaddr addr,
1302 uint64_t value, unsigned size)
1303 {
1304 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1305
1306 if (size != 4) {
1307 omap_badwidth_write32(opaque, addr, value);
1308 return;
1309 }
1310
1311 switch (addr) {
1312 case 0x00: /* IMIF_PRIO */
1313 case 0x04: /* EMIFS_PRIO */
1314 case 0x08: /* EMIFF_PRIO */
1315 case 0x10: /* EMIFS_CS0_CONFIG */
1316 case 0x14: /* EMIFS_CS1_CONFIG */
1317 case 0x18: /* EMIFS_CS2_CONFIG */
1318 case 0x1c: /* EMIFS_CS3_CONFIG */
1319 case 0x20: /* EMIFF_SDRAM_CONFIG */
1320 case 0x24: /* EMIFF_MRS */
1321 case 0x28: /* TIMEOUT1 */
1322 case 0x2c: /* TIMEOUT2 */
1323 case 0x30: /* TIMEOUT3 */
1324 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1325 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1326 s->tcmi_regs[addr >> 2] = value;
1327 break;
1328 case 0x0c: /* EMIFS_CONFIG */
1329 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1330 break;
1331
1332 default:
1333 OMAP_BAD_REG(addr);
1334 }
1335 }
1336
1337 static const MemoryRegionOps omap_tcmi_ops = {
1338 .read = omap_tcmi_read,
1339 .write = omap_tcmi_write,
1340 .endianness = DEVICE_NATIVE_ENDIAN,
1341 };
1342
1343 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1344 {
1345 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1347 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1348 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1349 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1350 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1351 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1352 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1353 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1354 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1355 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1356 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1357 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1358 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1359 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1360 }
1361
1362 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1363 struct omap_mpu_state_s *mpu)
1364 {
1365 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1366 "omap-tcmi", 0x100);
1367 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1368 omap_tcmi_reset(mpu);
1369 }
1370
1371 /* Digital phase-locked loops control */
1372 struct dpll_ctl_s {
1373 MemoryRegion iomem;
1374 uint16_t mode;
1375 omap_clk dpll;
1376 };
1377
1378 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1379 unsigned size)
1380 {
1381 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1382
1383 if (size != 2) {
1384 return omap_badwidth_read16(opaque, addr);
1385 }
1386
1387 if (addr == 0x00) /* CTL_REG */
1388 return s->mode;
1389
1390 OMAP_BAD_REG(addr);
1391 return 0;
1392 }
1393
1394 static void omap_dpll_write(void *opaque, hwaddr addr,
1395 uint64_t value, unsigned size)
1396 {
1397 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1398 uint16_t diff;
1399 static const int bypass_div[4] = { 1, 2, 4, 4 };
1400 int div, mult;
1401
1402 if (size != 2) {
1403 omap_badwidth_write16(opaque, addr, value);
1404 return;
1405 }
1406
1407 if (addr == 0x00) { /* CTL_REG */
1408 /* See omap_ulpd_pm_write() too */
1409 diff = s->mode & value;
1410 s->mode = value & 0x2fff;
1411 if (diff & (0x3ff << 2)) {
1412 if (value & (1 << 4)) { /* PLL_ENABLE */
1413 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1414 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1415 } else {
1416 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1417 mult = 1;
1418 }
1419 omap_clk_setrate(s->dpll, div, mult);
1420 }
1421
1422 /* Enter the desired mode. */
1423 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1424
1425 /* Act as if the lock is restored. */
1426 s->mode |= 2;
1427 } else {
1428 OMAP_BAD_REG(addr);
1429 }
1430 }
1431
1432 static const MemoryRegionOps omap_dpll_ops = {
1433 .read = omap_dpll_read,
1434 .write = omap_dpll_write,
1435 .endianness = DEVICE_NATIVE_ENDIAN,
1436 };
1437
1438 static void omap_dpll_reset(struct dpll_ctl_s *s)
1439 {
1440 s->mode = 0x2002;
1441 omap_clk_setrate(s->dpll, 1, 1);
1442 }
1443
1444 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1445 hwaddr base, omap_clk clk)
1446 {
1447 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1448 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1449
1450 s->dpll = clk;
1451 omap_dpll_reset(s);
1452
1453 memory_region_add_subregion(memory, base, &s->iomem);
1454 return s;
1455 }
1456
1457 /* MPU Clock/Reset/Power Mode Control */
1458 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1459 unsigned size)
1460 {
1461 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1462
1463 if (size != 2) {
1464 return omap_badwidth_read16(opaque, addr);
1465 }
1466
1467 switch (addr) {
1468 case 0x00: /* ARM_CKCTL */
1469 return s->clkm.arm_ckctl;
1470
1471 case 0x04: /* ARM_IDLECT1 */
1472 return s->clkm.arm_idlect1;
1473
1474 case 0x08: /* ARM_IDLECT2 */
1475 return s->clkm.arm_idlect2;
1476
1477 case 0x0c: /* ARM_EWUPCT */
1478 return s->clkm.arm_ewupct;
1479
1480 case 0x10: /* ARM_RSTCT1 */
1481 return s->clkm.arm_rstct1;
1482
1483 case 0x14: /* ARM_RSTCT2 */
1484 return s->clkm.arm_rstct2;
1485
1486 case 0x18: /* ARM_SYSST */
1487 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1488
1489 case 0x1c: /* ARM_CKOUT1 */
1490 return s->clkm.arm_ckout1;
1491
1492 case 0x20: /* ARM_CKOUT2 */
1493 break;
1494 }
1495
1496 OMAP_BAD_REG(addr);
1497 return 0;
1498 }
1499
1500 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1501 uint16_t diff, uint16_t value)
1502 {
1503 omap_clk clk;
1504
1505 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1506 if (value & (1 << 14))
1507 /* Reserved */;
1508 else {
1509 clk = omap_findclk(s, "arminth_ck");
1510 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1511 }
1512 }
1513 if (diff & (1 << 12)) { /* ARM_TIMXO */
1514 clk = omap_findclk(s, "armtim_ck");
1515 if (value & (1 << 12))
1516 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1517 else
1518 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1519 }
1520 /* XXX: en_dspck */
1521 if (diff & (3 << 10)) { /* DSPMMUDIV */
1522 clk = omap_findclk(s, "dspmmu_ck");
1523 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1524 }
1525 if (diff & (3 << 8)) { /* TCDIV */
1526 clk = omap_findclk(s, "tc_ck");
1527 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1528 }
1529 if (diff & (3 << 6)) { /* DSPDIV */
1530 clk = omap_findclk(s, "dsp_ck");
1531 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1532 }
1533 if (diff & (3 << 4)) { /* ARMDIV */
1534 clk = omap_findclk(s, "arm_ck");
1535 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1536 }
1537 if (diff & (3 << 2)) { /* LCDDIV */
1538 clk = omap_findclk(s, "lcd_ck");
1539 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1540 }
1541 if (diff & (3 << 0)) { /* PERDIV */
1542 clk = omap_findclk(s, "armper_ck");
1543 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1544 }
1545 }
1546
1547 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1548 uint16_t diff, uint16_t value)
1549 {
1550 omap_clk clk;
1551
1552 if (value & (1 << 11)) { /* SETARM_IDLE */
1553 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1554 }
1555 if (!(value & (1 << 10))) { /* WKUP_MODE */
1556 /* XXX: disable wakeup from IRQ */
1557 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1558 }
1559
1560 #define SET_CANIDLE(clock, bit) \
1561 if (diff & (1 << bit)) { \
1562 clk = omap_findclk(s, clock); \
1563 omap_clk_canidle(clk, (value >> bit) & 1); \
1564 }
1565 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1566 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1567 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1568 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1569 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1570 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1571 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1572 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1573 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1574 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1575 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1576 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1577 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1578 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1579 }
1580
1581 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1582 uint16_t diff, uint16_t value)
1583 {
1584 omap_clk clk;
1585
1586 #define SET_ONOFF(clock, bit) \
1587 if (diff & (1 << bit)) { \
1588 clk = omap_findclk(s, clock); \
1589 omap_clk_onoff(clk, (value >> bit) & 1); \
1590 }
1591 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1592 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1593 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1594 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1595 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1596 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1597 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1598 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1599 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1600 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1601 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1602 }
1603
1604 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1605 uint16_t diff, uint16_t value)
1606 {
1607 omap_clk clk;
1608
1609 if (diff & (3 << 4)) { /* TCLKOUT */
1610 clk = omap_findclk(s, "tclk_out");
1611 switch ((value >> 4) & 3) {
1612 case 1:
1613 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1614 omap_clk_onoff(clk, 1);
1615 break;
1616 case 2:
1617 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1618 omap_clk_onoff(clk, 1);
1619 break;
1620 default:
1621 omap_clk_onoff(clk, 0);
1622 }
1623 }
1624 if (diff & (3 << 2)) { /* DCLKOUT */
1625 clk = omap_findclk(s, "dclk_out");
1626 switch ((value >> 2) & 3) {
1627 case 0:
1628 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1629 break;
1630 case 1:
1631 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1632 break;
1633 case 2:
1634 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1635 break;
1636 case 3:
1637 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1638 break;
1639 }
1640 }
1641 if (diff & (3 << 0)) { /* ACLKOUT */
1642 clk = omap_findclk(s, "aclk_out");
1643 switch ((value >> 0) & 3) {
1644 case 1:
1645 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1646 omap_clk_onoff(clk, 1);
1647 break;
1648 case 2:
1649 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1650 omap_clk_onoff(clk, 1);
1651 break;
1652 case 3:
1653 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1654 omap_clk_onoff(clk, 1);
1655 break;
1656 default:
1657 omap_clk_onoff(clk, 0);
1658 }
1659 }
1660 }
1661
1662 static void omap_clkm_write(void *opaque, hwaddr addr,
1663 uint64_t value, unsigned size)
1664 {
1665 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1666 uint16_t diff;
1667 omap_clk clk;
1668 static const char *clkschemename[8] = {
1669 "fully synchronous", "fully asynchronous", "synchronous scalable",
1670 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1671 };
1672
1673 if (size != 2) {
1674 omap_badwidth_write16(opaque, addr, value);
1675 return;
1676 }
1677
1678 switch (addr) {
1679 case 0x00: /* ARM_CKCTL */
1680 diff = s->clkm.arm_ckctl ^ value;
1681 s->clkm.arm_ckctl = value & 0x7fff;
1682 omap_clkm_ckctl_update(s, diff, value);
1683 return;
1684
1685 case 0x04: /* ARM_IDLECT1 */
1686 diff = s->clkm.arm_idlect1 ^ value;
1687 s->clkm.arm_idlect1 = value & 0x0fff;
1688 omap_clkm_idlect1_update(s, diff, value);
1689 return;
1690
1691 case 0x08: /* ARM_IDLECT2 */
1692 diff = s->clkm.arm_idlect2 ^ value;
1693 s->clkm.arm_idlect2 = value & 0x07ff;
1694 omap_clkm_idlect2_update(s, diff, value);
1695 return;
1696
1697 case 0x0c: /* ARM_EWUPCT */
1698 s->clkm.arm_ewupct = value & 0x003f;
1699 return;
1700
1701 case 0x10: /* ARM_RSTCT1 */
1702 diff = s->clkm.arm_rstct1 ^ value;
1703 s->clkm.arm_rstct1 = value & 0x0007;
1704 if (value & 9) {
1705 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1706 s->clkm.cold_start = 0xa;
1707 }
1708 if (diff & ~value & 4) { /* DSP_RST */
1709 omap_mpui_reset(s);
1710 omap_tipb_bridge_reset(s->private_tipb);
1711 omap_tipb_bridge_reset(s->public_tipb);
1712 }
1713 if (diff & 2) { /* DSP_EN */
1714 clk = omap_findclk(s, "dsp_ck");
1715 omap_clk_canidle(clk, (~value >> 1) & 1);
1716 }
1717 return;
1718
1719 case 0x14: /* ARM_RSTCT2 */
1720 s->clkm.arm_rstct2 = value & 0x0001;
1721 return;
1722
1723 case 0x18: /* ARM_SYSST */
1724 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1725 s->clkm.clocking_scheme = (value >> 11) & 7;
1726 printf("%s: clocking scheme set to %s\n", __func__,
1727 clkschemename[s->clkm.clocking_scheme]);
1728 }
1729 s->clkm.cold_start &= value & 0x3f;
1730 return;
1731
1732 case 0x1c: /* ARM_CKOUT1 */
1733 diff = s->clkm.arm_ckout1 ^ value;
1734 s->clkm.arm_ckout1 = value & 0x003f;
1735 omap_clkm_ckout1_update(s, diff, value);
1736 return;
1737
1738 case 0x20: /* ARM_CKOUT2 */
1739 default:
1740 OMAP_BAD_REG(addr);
1741 }
1742 }
1743
1744 static const MemoryRegionOps omap_clkm_ops = {
1745 .read = omap_clkm_read,
1746 .write = omap_clkm_write,
1747 .endianness = DEVICE_NATIVE_ENDIAN,
1748 };
1749
1750 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1751 unsigned size)
1752 {
1753 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1754 CPUState *cpu = CPU(s->cpu);
1755
1756 if (size != 2) {
1757 return omap_badwidth_read16(opaque, addr);
1758 }
1759
1760 switch (addr) {
1761 case 0x04: /* DSP_IDLECT1 */
1762 return s->clkm.dsp_idlect1;
1763
1764 case 0x08: /* DSP_IDLECT2 */
1765 return s->clkm.dsp_idlect2;
1766
1767 case 0x14: /* DSP_RSTCT2 */
1768 return s->clkm.dsp_rstct2;
1769
1770 case 0x18: /* DSP_SYSST */
1771 cpu = CPU(s->cpu);
1772 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1773 (cpu->halted << 6); /* Quite useless... */
1774 }
1775
1776 OMAP_BAD_REG(addr);
1777 return 0;
1778 }
1779
1780 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1781 uint16_t diff, uint16_t value)
1782 {
1783 omap_clk clk;
1784
1785 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1786 }
1787
1788 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1789 uint16_t diff, uint16_t value)
1790 {
1791 omap_clk clk;
1792
1793 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1794 }
1795
1796 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1797 uint64_t value, unsigned size)
1798 {
1799 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1800 uint16_t diff;
1801
1802 if (size != 2) {
1803 omap_badwidth_write16(opaque, addr, value);
1804 return;
1805 }
1806
1807 switch (addr) {
1808 case 0x04: /* DSP_IDLECT1 */
1809 diff = s->clkm.dsp_idlect1 ^ value;
1810 s->clkm.dsp_idlect1 = value & 0x01f7;
1811 omap_clkdsp_idlect1_update(s, diff, value);
1812 break;
1813
1814 case 0x08: /* DSP_IDLECT2 */
1815 s->clkm.dsp_idlect2 = value & 0x0037;
1816 diff = s->clkm.dsp_idlect1 ^ value;
1817 omap_clkdsp_idlect2_update(s, diff, value);
1818 break;
1819
1820 case 0x14: /* DSP_RSTCT2 */
1821 s->clkm.dsp_rstct2 = value & 0x0001;
1822 break;
1823
1824 case 0x18: /* DSP_SYSST */
1825 s->clkm.cold_start &= value & 0x3f;
1826 break;
1827
1828 default:
1829 OMAP_BAD_REG(addr);
1830 }
1831 }
1832
1833 static const MemoryRegionOps omap_clkdsp_ops = {
1834 .read = omap_clkdsp_read,
1835 .write = omap_clkdsp_write,
1836 .endianness = DEVICE_NATIVE_ENDIAN,
1837 };
1838
1839 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1840 {
1841 if (s->wdt && s->wdt->reset)
1842 s->clkm.cold_start = 0x6;
1843 s->clkm.clocking_scheme = 0;
1844 omap_clkm_ckctl_update(s, ~0, 0x3000);
1845 s->clkm.arm_ckctl = 0x3000;
1846 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1847 s->clkm.arm_idlect1 = 0x0400;
1848 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1849 s->clkm.arm_idlect2 = 0x0100;
1850 s->clkm.arm_ewupct = 0x003f;
1851 s->clkm.arm_rstct1 = 0x0000;
1852 s->clkm.arm_rstct2 = 0x0000;
1853 s->clkm.arm_ckout1 = 0x0015;
1854 s->clkm.dpll1_mode = 0x2002;
1855 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1856 s->clkm.dsp_idlect1 = 0x0040;
1857 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1858 s->clkm.dsp_idlect2 = 0x0000;
1859 s->clkm.dsp_rstct2 = 0x0000;
1860 }
1861
1862 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1863 hwaddr dsp_base, struct omap_mpu_state_s *s)
1864 {
1865 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1866 "omap-clkm", 0x100);
1867 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1868 "omap-clkdsp", 0x1000);
1869
1870 s->clkm.arm_idlect1 = 0x03ff;
1871 s->clkm.arm_idlect2 = 0x0100;
1872 s->clkm.dsp_idlect1 = 0x0002;
1873 omap_clkm_reset(s);
1874 s->clkm.cold_start = 0x3a;
1875
1876 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1877 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1878 }
1879
1880 /* MPU I/O */
1881 struct omap_mpuio_s {
1882 qemu_irq irq;
1883 qemu_irq kbd_irq;
1884 qemu_irq *in;
1885 qemu_irq handler[16];
1886 qemu_irq wakeup;
1887 MemoryRegion iomem;
1888
1889 uint16_t inputs;
1890 uint16_t outputs;
1891 uint16_t dir;
1892 uint16_t edge;
1893 uint16_t mask;
1894 uint16_t ints;
1895
1896 uint16_t debounce;
1897 uint16_t latch;
1898 uint8_t event;
1899
1900 uint8_t buttons[5];
1901 uint8_t row_latch;
1902 uint8_t cols;
1903 int kbd_mask;
1904 int clk;
1905 };
1906
1907 static void omap_mpuio_set(void *opaque, int line, int level)
1908 {
1909 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1910 uint16_t prev = s->inputs;
1911
1912 if (level)
1913 s->inputs |= 1 << line;
1914 else
1915 s->inputs &= ~(1 << line);
1916
1917 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1918 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1919 s->ints |= 1 << line;
1920 qemu_irq_raise(s->irq);
1921 /* TODO: wakeup */
1922 }
1923 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1924 (s->event >> 1) == line) /* PIN_SELECT */
1925 s->latch = s->inputs;
1926 }
1927 }
1928
1929 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1930 {
1931 int i;
1932 uint8_t *row, rows = 0, cols = ~s->cols;
1933
1934 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1935 if (*row & cols)
1936 rows |= i;
1937
1938 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1939 s->row_latch = ~rows;
1940 }
1941
1942 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1943 unsigned size)
1944 {
1945 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1946 int offset = addr & OMAP_MPUI_REG_MASK;
1947 uint16_t ret;
1948
1949 if (size != 2) {
1950 return omap_badwidth_read16(opaque, addr);
1951 }
1952
1953 switch (offset) {
1954 case 0x00: /* INPUT_LATCH */
1955 return s->inputs;
1956
1957 case 0x04: /* OUTPUT_REG */
1958 return s->outputs;
1959
1960 case 0x08: /* IO_CNTL */
1961 return s->dir;
1962
1963 case 0x10: /* KBR_LATCH */
1964 return s->row_latch;
1965
1966 case 0x14: /* KBC_REG */
1967 return s->cols;
1968
1969 case 0x18: /* GPIO_EVENT_MODE_REG */
1970 return s->event;
1971
1972 case 0x1c: /* GPIO_INT_EDGE_REG */
1973 return s->edge;
1974
1975 case 0x20: /* KBD_INT */
1976 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1977
1978 case 0x24: /* GPIO_INT */
1979 ret = s->ints;
1980 s->ints &= s->mask;
1981 if (ret)
1982 qemu_irq_lower(s->irq);
1983 return ret;
1984
1985 case 0x28: /* KBD_MASKIT */
1986 return s->kbd_mask;
1987
1988 case 0x2c: /* GPIO_MASKIT */
1989 return s->mask;
1990
1991 case 0x30: /* GPIO_DEBOUNCING_REG */
1992 return s->debounce;
1993
1994 case 0x34: /* GPIO_LATCH_REG */
1995 return s->latch;
1996 }
1997
1998 OMAP_BAD_REG(addr);
1999 return 0;
2000 }
2001
2002 static void omap_mpuio_write(void *opaque, hwaddr addr,
2003 uint64_t value, unsigned size)
2004 {
2005 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2006 int offset = addr & OMAP_MPUI_REG_MASK;
2007 uint16_t diff;
2008 int ln;
2009
2010 if (size != 2) {
2011 omap_badwidth_write16(opaque, addr, value);
2012 return;
2013 }
2014
2015 switch (offset) {
2016 case 0x04: /* OUTPUT_REG */
2017 diff = (s->outputs ^ value) & ~s->dir;
2018 s->outputs = value;
2019 while ((ln = ctz32(diff)) != 32) {
2020 if (s->handler[ln])
2021 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2022 diff &= ~(1 << ln);
2023 }
2024 break;
2025
2026 case 0x08: /* IO_CNTL */
2027 diff = s->outputs & (s->dir ^ value);
2028 s->dir = value;
2029
2030 value = s->outputs & ~s->dir;
2031 while ((ln = ctz32(diff)) != 32) {
2032 if (s->handler[ln])
2033 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2034 diff &= ~(1 << ln);
2035 }
2036 break;
2037
2038 case 0x14: /* KBC_REG */
2039 s->cols = value;
2040 omap_mpuio_kbd_update(s);
2041 break;
2042
2043 case 0x18: /* GPIO_EVENT_MODE_REG */
2044 s->event = value & 0x1f;
2045 break;
2046
2047 case 0x1c: /* GPIO_INT_EDGE_REG */
2048 s->edge = value;
2049 break;
2050
2051 case 0x28: /* KBD_MASKIT */
2052 s->kbd_mask = value & 1;
2053 omap_mpuio_kbd_update(s);
2054 break;
2055
2056 case 0x2c: /* GPIO_MASKIT */
2057 s->mask = value;
2058 break;
2059
2060 case 0x30: /* GPIO_DEBOUNCING_REG */
2061 s->debounce = value & 0x1ff;
2062 break;
2063
2064 case 0x00: /* INPUT_LATCH */
2065 case 0x10: /* KBR_LATCH */
2066 case 0x20: /* KBD_INT */
2067 case 0x24: /* GPIO_INT */
2068 case 0x34: /* GPIO_LATCH_REG */
2069 OMAP_RO_REG(addr);
2070 return;
2071
2072 default:
2073 OMAP_BAD_REG(addr);
2074 return;
2075 }
2076 }
2077
2078 static const MemoryRegionOps omap_mpuio_ops = {
2079 .read = omap_mpuio_read,
2080 .write = omap_mpuio_write,
2081 .endianness = DEVICE_NATIVE_ENDIAN,
2082 };
2083
2084 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2085 {
2086 s->inputs = 0;
2087 s->outputs = 0;
2088 s->dir = ~0;
2089 s->event = 0;
2090 s->edge = 0;
2091 s->kbd_mask = 0;
2092 s->mask = 0;
2093 s->debounce = 0;
2094 s->latch = 0;
2095 s->ints = 0;
2096 s->row_latch = 0x1f;
2097 s->clk = 1;
2098 }
2099
2100 static void omap_mpuio_onoff(void *opaque, int line, int on)
2101 {
2102 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2103
2104 s->clk = on;
2105 if (on)
2106 omap_mpuio_kbd_update(s);
2107 }
2108
2109 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2110 hwaddr base,
2111 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2112 omap_clk clk)
2113 {
2114 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2115
2116 s->irq = gpio_int;
2117 s->kbd_irq = kbd_int;
2118 s->wakeup = wakeup;
2119 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2120 omap_mpuio_reset(s);
2121
2122 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2123 "omap-mpuio", 0x800);
2124 memory_region_add_subregion(memory, base, &s->iomem);
2125
2126 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2127
2128 return s;
2129 }
2130
2131 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2132 {
2133 return s->in;
2134 }
2135
2136 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2137 {
2138 if (line >= 16 || line < 0)
2139 hw_error("%s: No GPIO line %i\n", __func__, line);
2140 s->handler[line] = handler;
2141 }
2142
2143 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2144 {
2145 if (row >= 5 || row < 0)
2146 hw_error("%s: No key %i-%i\n", __func__, col, row);
2147
2148 if (down)
2149 s->buttons[row] |= 1 << col;
2150 else
2151 s->buttons[row] &= ~(1 << col);
2152
2153 omap_mpuio_kbd_update(s);
2154 }
2155
2156 /* MicroWire Interface */
2157 struct omap_uwire_s {
2158 MemoryRegion iomem;
2159 qemu_irq txirq;
2160 qemu_irq rxirq;
2161 qemu_irq txdrq;
2162
2163 uint16_t txbuf;
2164 uint16_t rxbuf;
2165 uint16_t control;
2166 uint16_t setup[5];
2167
2168 uWireSlave *chip[4];
2169 };
2170
2171 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2172 {
2173 int chipselect = (s->control >> 10) & 3; /* INDEX */
2174 uWireSlave *slave = s->chip[chipselect];
2175
2176 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2177 if (s->control & (1 << 12)) /* CS_CMD */
2178 if (slave && slave->send)
2179 slave->send(slave->opaque,
2180 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2181 s->control &= ~(1 << 14); /* CSRB */
2182 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183 * a DRQ. When is the level IRQ supposed to be reset? */
2184 }
2185
2186 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2187 if (s->control & (1 << 12)) /* CS_CMD */
2188 if (slave && slave->receive)
2189 s->rxbuf = slave->receive(slave->opaque);
2190 s->control |= 1 << 15; /* RDRB */
2191 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2192 * a DRQ. When is the level IRQ supposed to be reset? */
2193 }
2194 }
2195
2196 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2197 unsigned size)
2198 {
2199 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2200 int offset = addr & OMAP_MPUI_REG_MASK;
2201
2202 if (size != 2) {
2203 return omap_badwidth_read16(opaque, addr);
2204 }
2205
2206 switch (offset) {
2207 case 0x00: /* RDR */
2208 s->control &= ~(1 << 15); /* RDRB */
2209 return s->rxbuf;
2210
2211 case 0x04: /* CSR */
2212 return s->control;
2213
2214 case 0x08: /* SR1 */
2215 return s->setup[0];
2216 case 0x0c: /* SR2 */
2217 return s->setup[1];
2218 case 0x10: /* SR3 */
2219 return s->setup[2];
2220 case 0x14: /* SR4 */
2221 return s->setup[3];
2222 case 0x18: /* SR5 */
2223 return s->setup[4];
2224 }
2225
2226 OMAP_BAD_REG(addr);
2227 return 0;
2228 }
2229
2230 static void omap_uwire_write(void *opaque, hwaddr addr,
2231 uint64_t value, unsigned size)
2232 {
2233 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2234 int offset = addr & OMAP_MPUI_REG_MASK;
2235
2236 if (size != 2) {
2237 omap_badwidth_write16(opaque, addr, value);
2238 return;
2239 }
2240
2241 switch (offset) {
2242 case 0x00: /* TDR */
2243 s->txbuf = value; /* TD */
2244 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2245 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2246 (s->control & (1 << 12)))) { /* CS_CMD */
2247 s->control |= 1 << 14; /* CSRB */
2248 omap_uwire_transfer_start(s);
2249 }
2250 break;
2251
2252 case 0x04: /* CSR */
2253 s->control = value & 0x1fff;
2254 if (value & (1 << 13)) /* START */
2255 omap_uwire_transfer_start(s);
2256 break;
2257
2258 case 0x08: /* SR1 */
2259 s->setup[0] = value & 0x003f;
2260 break;
2261
2262 case 0x0c: /* SR2 */
2263 s->setup[1] = value & 0x0fc0;
2264 break;
2265
2266 case 0x10: /* SR3 */
2267 s->setup[2] = value & 0x0003;
2268 break;
2269
2270 case 0x14: /* SR4 */
2271 s->setup[3] = value & 0x0001;
2272 break;
2273
2274 case 0x18: /* SR5 */
2275 s->setup[4] = value & 0x000f;
2276 break;
2277
2278 default:
2279 OMAP_BAD_REG(addr);
2280 return;
2281 }
2282 }
2283
2284 static const MemoryRegionOps omap_uwire_ops = {
2285 .read = omap_uwire_read,
2286 .write = omap_uwire_write,
2287 .endianness = DEVICE_NATIVE_ENDIAN,
2288 };
2289
2290 static void omap_uwire_reset(struct omap_uwire_s *s)
2291 {
2292 s->control = 0;
2293 s->setup[0] = 0;
2294 s->setup[1] = 0;
2295 s->setup[2] = 0;
2296 s->setup[3] = 0;
2297 s->setup[4] = 0;
2298 }
2299
2300 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2301 hwaddr base,
2302 qemu_irq txirq, qemu_irq rxirq,
2303 qemu_irq dma,
2304 omap_clk clk)
2305 {
2306 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2307
2308 s->txirq = txirq;
2309 s->rxirq = rxirq;
2310 s->txdrq = dma;
2311 omap_uwire_reset(s);
2312
2313 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2314 memory_region_add_subregion(system_memory, base, &s->iomem);
2315
2316 return s;
2317 }
2318
2319 void omap_uwire_attach(struct omap_uwire_s *s,
2320 uWireSlave *slave, int chipselect)
2321 {
2322 if (chipselect < 0 || chipselect > 3) {
2323 error_report("%s: Bad chipselect %i", __func__, chipselect);
2324 exit(-1);
2325 }
2326
2327 s->chip[chipselect] = slave;
2328 }
2329
2330 /* Pseudonoise Pulse-Width Light Modulator */
2331 struct omap_pwl_s {
2332 MemoryRegion iomem;
2333 uint8_t output;
2334 uint8_t level;
2335 uint8_t enable;
2336 int clk;
2337 };
2338
2339 static void omap_pwl_update(struct omap_pwl_s *s)
2340 {
2341 int output = (s->clk && s->enable) ? s->level : 0;
2342
2343 if (output != s->output) {
2344 s->output = output;
2345 printf("%s: Backlight now at %i/256\n", __func__, output);
2346 }
2347 }
2348
2349 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2350 unsigned size)
2351 {
2352 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2353 int offset = addr & OMAP_MPUI_REG_MASK;
2354
2355 if (size != 1) {
2356 return omap_badwidth_read8(opaque, addr);
2357 }
2358
2359 switch (offset) {
2360 case 0x00: /* PWL_LEVEL */
2361 return s->level;
2362 case 0x04: /* PWL_CTRL */
2363 return s->enable;
2364 }
2365 OMAP_BAD_REG(addr);
2366 return 0;
2367 }
2368
2369 static void omap_pwl_write(void *opaque, hwaddr addr,
2370 uint64_t value, unsigned size)
2371 {
2372 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2373 int offset = addr & OMAP_MPUI_REG_MASK;
2374
2375 if (size != 1) {
2376 omap_badwidth_write8(opaque, addr, value);
2377 return;
2378 }
2379
2380 switch (offset) {
2381 case 0x00: /* PWL_LEVEL */
2382 s->level = value;
2383 omap_pwl_update(s);
2384 break;
2385 case 0x04: /* PWL_CTRL */
2386 s->enable = value & 1;
2387 omap_pwl_update(s);
2388 break;
2389 default:
2390 OMAP_BAD_REG(addr);
2391 return;
2392 }
2393 }
2394
2395 static const MemoryRegionOps omap_pwl_ops = {
2396 .read = omap_pwl_read,
2397 .write = omap_pwl_write,
2398 .endianness = DEVICE_NATIVE_ENDIAN,
2399 };
2400
2401 static void omap_pwl_reset(struct omap_pwl_s *s)
2402 {
2403 s->output = 0;
2404 s->level = 0;
2405 s->enable = 0;
2406 s->clk = 1;
2407 omap_pwl_update(s);
2408 }
2409
2410 static void omap_pwl_clk_update(void *opaque, int line, int on)
2411 {
2412 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2413
2414 s->clk = on;
2415 omap_pwl_update(s);
2416 }
2417
2418 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2419 hwaddr base,
2420 omap_clk clk)
2421 {
2422 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2423
2424 omap_pwl_reset(s);
2425
2426 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2427 "omap-pwl", 0x800);
2428 memory_region_add_subregion(system_memory, base, &s->iomem);
2429
2430 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2431 return s;
2432 }
2433
2434 /* Pulse-Width Tone module */
2435 struct omap_pwt_s {
2436 MemoryRegion iomem;
2437 uint8_t frc;
2438 uint8_t vrc;
2439 uint8_t gcr;
2440 omap_clk clk;
2441 };
2442
2443 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2444 unsigned size)
2445 {
2446 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2447 int offset = addr & OMAP_MPUI_REG_MASK;
2448
2449 if (size != 1) {
2450 return omap_badwidth_read8(opaque, addr);
2451 }
2452
2453 switch (offset) {
2454 case 0x00: /* FRC */
2455 return s->frc;
2456 case 0x04: /* VCR */
2457 return s->vrc;
2458 case 0x08: /* GCR */
2459 return s->gcr;
2460 }
2461 OMAP_BAD_REG(addr);
2462 return 0;
2463 }
2464
2465 static void omap_pwt_write(void *opaque, hwaddr addr,
2466 uint64_t value, unsigned size)
2467 {
2468 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2469 int offset = addr & OMAP_MPUI_REG_MASK;
2470
2471 if (size != 1) {
2472 omap_badwidth_write8(opaque, addr, value);
2473 return;
2474 }
2475
2476 switch (offset) {
2477 case 0x00: /* FRC */
2478 s->frc = value & 0x3f;
2479 break;
2480 case 0x04: /* VRC */
2481 if ((value ^ s->vrc) & 1) {
2482 if (value & 1)
2483 printf("%s: %iHz buzz on\n", __func__, (int)
2484 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2485 ((omap_clk_getrate(s->clk) >> 3) /
2486 /* Pre-multiplexer divider */
2487 ((s->gcr & 2) ? 1 : 154) /
2488 /* Octave multiplexer */
2489 (2 << (value & 3)) *
2490 /* 101/107 divider */
2491 ((value & (1 << 2)) ? 101 : 107) *
2492 /* 49/55 divider */
2493 ((value & (1 << 3)) ? 49 : 55) *
2494 /* 50/63 divider */
2495 ((value & (1 << 4)) ? 50 : 63) *
2496 /* 80/127 divider */
2497 ((value & (1 << 5)) ? 80 : 127) /
2498 (107 * 55 * 63 * 127)));
2499 else
2500 printf("%s: silence!\n", __func__);
2501 }
2502 s->vrc = value & 0x7f;
2503 break;
2504 case 0x08: /* GCR */
2505 s->gcr = value & 3;
2506 break;
2507 default:
2508 OMAP_BAD_REG(addr);
2509 return;
2510 }
2511 }
2512
2513 static const MemoryRegionOps omap_pwt_ops = {
2514 .read =omap_pwt_read,
2515 .write = omap_pwt_write,
2516 .endianness = DEVICE_NATIVE_ENDIAN,
2517 };
2518
2519 static void omap_pwt_reset(struct omap_pwt_s *s)
2520 {
2521 s->frc = 0;
2522 s->vrc = 0;
2523 s->gcr = 0;
2524 }
2525
2526 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2527 hwaddr base,
2528 omap_clk clk)
2529 {
2530 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2531 s->clk = clk;
2532 omap_pwt_reset(s);
2533
2534 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2535 "omap-pwt", 0x800);
2536 memory_region_add_subregion(system_memory, base, &s->iomem);
2537 return s;
2538 }
2539
2540 /* Real-time Clock module */
2541 struct omap_rtc_s {
2542 MemoryRegion iomem;
2543 qemu_irq irq;
2544 qemu_irq alarm;
2545 QEMUTimer *clk;
2546
2547 uint8_t interrupts;
2548 uint8_t status;
2549 int16_t comp_reg;
2550 int running;
2551 int pm_am;
2552 int auto_comp;
2553 int round;
2554 struct tm alarm_tm;
2555 time_t alarm_ti;
2556
2557 struct tm current_tm;
2558 time_t ti;
2559 uint64_t tick;
2560 };
2561
2562 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2563 {
2564 /* s->alarm is level-triggered */
2565 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2566 }
2567
2568 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2569 {
2570 s->alarm_ti = mktimegm(&s->alarm_tm);
2571 if (s->alarm_ti == -1)
2572 printf("%s: conversion failed\n", __func__);
2573 }
2574
2575 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2576 unsigned size)
2577 {
2578 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2579 int offset = addr & OMAP_MPUI_REG_MASK;
2580 uint8_t i;
2581
2582 if (size != 1) {
2583 return omap_badwidth_read8(opaque, addr);
2584 }
2585
2586 switch (offset) {
2587 case 0x00: /* SECONDS_REG */
2588 return to_bcd(s->current_tm.tm_sec);
2589
2590 case 0x04: /* MINUTES_REG */
2591 return to_bcd(s->current_tm.tm_min);
2592
2593 case 0x08: /* HOURS_REG */
2594 if (s->pm_am)
2595 return ((s->current_tm.tm_hour > 11) << 7) |
2596 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2597 else
2598 return to_bcd(s->current_tm.tm_hour);
2599
2600 case 0x0c: /* DAYS_REG */
2601 return to_bcd(s->current_tm.tm_mday);
2602
2603 case 0x10: /* MONTHS_REG */
2604 return to_bcd(s->current_tm.tm_mon + 1);
2605
2606 case 0x14: /* YEARS_REG */
2607 return to_bcd(s->current_tm.tm_year % 100);
2608
2609 case 0x18: /* WEEK_REG */
2610 return s->current_tm.tm_wday;
2611
2612 case 0x20: /* ALARM_SECONDS_REG */
2613 return to_bcd(s->alarm_tm.tm_sec);
2614
2615 case 0x24: /* ALARM_MINUTES_REG */
2616 return to_bcd(s->alarm_tm.tm_min);
2617
2618 case 0x28: /* ALARM_HOURS_REG */
2619 if (s->pm_am)
2620 return ((s->alarm_tm.tm_hour > 11) << 7) |
2621 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2622 else
2623 return to_bcd(s->alarm_tm.tm_hour);
2624
2625 case 0x2c: /* ALARM_DAYS_REG */
2626 return to_bcd(s->alarm_tm.tm_mday);
2627
2628 case 0x30: /* ALARM_MONTHS_REG */
2629 return to_bcd(s->alarm_tm.tm_mon + 1);
2630
2631 case 0x34: /* ALARM_YEARS_REG */
2632 return to_bcd(s->alarm_tm.tm_year % 100);
2633
2634 case 0x40: /* RTC_CTRL_REG */
2635 return (s->pm_am << 3) | (s->auto_comp << 2) |
2636 (s->round << 1) | s->running;
2637
2638 case 0x44: /* RTC_STATUS_REG */
2639 i = s->status;
2640 s->status &= ~0x3d;
2641 return i;
2642
2643 case 0x48: /* RTC_INTERRUPTS_REG */
2644 return s->interrupts;
2645
2646 case 0x4c: /* RTC_COMP_LSB_REG */
2647 return ((uint16_t) s->comp_reg) & 0xff;
2648
2649 case 0x50: /* RTC_COMP_MSB_REG */
2650 return ((uint16_t) s->comp_reg) >> 8;
2651 }
2652
2653 OMAP_BAD_REG(addr);
2654 return 0;
2655 }
2656
2657 static void omap_rtc_write(void *opaque, hwaddr addr,
2658 uint64_t value, unsigned size)
2659 {
2660 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2661 int offset = addr & OMAP_MPUI_REG_MASK;
2662 struct tm new_tm;
2663 time_t ti[2];
2664
2665 if (size != 1) {
2666 omap_badwidth_write8(opaque, addr, value);
2667 return;
2668 }
2669
2670 switch (offset) {
2671 case 0x00: /* SECONDS_REG */
2672 #ifdef ALMDEBUG
2673 printf("RTC SEC_REG <-- %02x\n", value);
2674 #endif
2675 s->ti -= s->current_tm.tm_sec;
2676 s->ti += from_bcd(value);
2677 return;
2678
2679 case 0x04: /* MINUTES_REG */
2680 #ifdef ALMDEBUG
2681 printf("RTC MIN_REG <-- %02x\n", value);
2682 #endif
2683 s->ti -= s->current_tm.tm_min * 60;
2684 s->ti += from_bcd(value) * 60;
2685 return;
2686
2687 case 0x08: /* HOURS_REG */
2688 #ifdef ALMDEBUG
2689 printf("RTC HRS_REG <-- %02x\n", value);
2690 #endif
2691 s->ti -= s->current_tm.tm_hour * 3600;
2692 if (s->pm_am) {
2693 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2694 s->ti += ((value >> 7) & 1) * 43200;
2695 } else
2696 s->ti += from_bcd(value & 0x3f) * 3600;
2697 return;
2698
2699 case 0x0c: /* DAYS_REG */
2700 #ifdef ALMDEBUG
2701 printf("RTC DAY_REG <-- %02x\n", value);
2702 #endif
2703 s->ti -= s->current_tm.tm_mday * 86400;
2704 s->ti += from_bcd(value) * 86400;
2705 return;
2706
2707 case 0x10: /* MONTHS_REG */
2708 #ifdef ALMDEBUG
2709 printf("RTC MTH_REG <-- %02x\n", value);
2710 #endif
2711 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2712 new_tm.tm_mon = from_bcd(value);
2713 ti[0] = mktimegm(&s->current_tm);
2714 ti[1] = mktimegm(&new_tm);
2715
2716 if (ti[0] != -1 && ti[1] != -1) {
2717 s->ti -= ti[0];
2718 s->ti += ti[1];
2719 } else {
2720 /* A less accurate version */
2721 s->ti -= s->current_tm.tm_mon * 2592000;
2722 s->ti += from_bcd(value) * 2592000;
2723 }
2724 return;
2725
2726 case 0x14: /* YEARS_REG */
2727 #ifdef ALMDEBUG
2728 printf("RTC YRS_REG <-- %02x\n", value);
2729 #endif
2730 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2731 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2732 ti[0] = mktimegm(&s->current_tm);
2733 ti[1] = mktimegm(&new_tm);
2734
2735 if (ti[0] != -1 && ti[1] != -1) {
2736 s->ti -= ti[0];
2737 s->ti += ti[1];
2738 } else {
2739 /* A less accurate version */
2740 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2741 s->ti += (time_t)from_bcd(value) * 31536000;
2742 }
2743 return;
2744
2745 case 0x18: /* WEEK_REG */
2746 return; /* Ignored */
2747
2748 case 0x20: /* ALARM_SECONDS_REG */
2749 #ifdef ALMDEBUG
2750 printf("ALM SEC_REG <-- %02x\n", value);
2751 #endif
2752 s->alarm_tm.tm_sec = from_bcd(value);
2753 omap_rtc_alarm_update(s);
2754 return;
2755
2756 case 0x24: /* ALARM_MINUTES_REG */
2757 #ifdef ALMDEBUG
2758 printf("ALM MIN_REG <-- %02x\n", value);
2759 #endif
2760 s->alarm_tm.tm_min = from_bcd(value);
2761 omap_rtc_alarm_update(s);
2762 return;
2763
2764 case 0x28: /* ALARM_HOURS_REG */
2765 #ifdef ALMDEBUG
2766 printf("ALM HRS_REG <-- %02x\n", value);
2767 #endif
2768 if (s->pm_am)
2769 s->alarm_tm.tm_hour =
2770 ((from_bcd(value & 0x3f)) % 12) +
2771 ((value >> 7) & 1) * 12;
2772 else
2773 s->alarm_tm.tm_hour = from_bcd(value);
2774 omap_rtc_alarm_update(s);
2775 return;
2776
2777 case 0x2c: /* ALARM_DAYS_REG */
2778 #ifdef ALMDEBUG
2779 printf("ALM DAY_REG <-- %02x\n", value);
2780 #endif
2781 s->alarm_tm.tm_mday = from_bcd(value);
2782 omap_rtc_alarm_update(s);
2783 return;
2784
2785 case 0x30: /* ALARM_MONTHS_REG */
2786 #ifdef ALMDEBUG
2787 printf("ALM MON_REG <-- %02x\n", value);
2788 #endif
2789 s->alarm_tm.tm_mon = from_bcd(value);
2790 omap_rtc_alarm_update(s);
2791 return;
2792
2793 case 0x34: /* ALARM_YEARS_REG */
2794 #ifdef ALMDEBUG
2795 printf("ALM YRS_REG <-- %02x\n", value);
2796 #endif
2797 s->alarm_tm.tm_year = from_bcd(value);
2798 omap_rtc_alarm_update(s);
2799 return;
2800
2801 case 0x40: /* RTC_CTRL_REG */
2802 #ifdef ALMDEBUG
2803 printf("RTC CONTROL <-- %02x\n", value);
2804 #endif
2805 s->pm_am = (value >> 3) & 1;
2806 s->auto_comp = (value >> 2) & 1;
2807 s->round = (value >> 1) & 1;
2808 s->running = value & 1;
2809 s->status &= 0xfd;
2810 s->status |= s->running << 1;
2811 return;
2812
2813 case 0x44: /* RTC_STATUS_REG */
2814 #ifdef ALMDEBUG
2815 printf("RTC STATUSL <-- %02x\n", value);
2816 #endif
2817 s->status &= ~((value & 0xc0) ^ 0x80);
2818 omap_rtc_interrupts_update(s);
2819 return;
2820
2821 case 0x48: /* RTC_INTERRUPTS_REG */
2822 #ifdef ALMDEBUG
2823 printf("RTC INTRS <-- %02x\n", value);
2824 #endif
2825 s->interrupts = value;
2826 return;
2827
2828 case 0x4c: /* RTC_COMP_LSB_REG */
2829 #ifdef ALMDEBUG
2830 printf("RTC COMPLSB <-- %02x\n", value);
2831 #endif
2832 s->comp_reg &= 0xff00;
2833 s->comp_reg |= 0x00ff & value;
2834 return;
2835
2836 case 0x50: /* RTC_COMP_MSB_REG */
2837 #ifdef ALMDEBUG
2838 printf("RTC COMPMSB <-- %02x\n", value);
2839 #endif
2840 s->comp_reg &= 0x00ff;
2841 s->comp_reg |= 0xff00 & (value << 8);
2842 return;
2843
2844 default:
2845 OMAP_BAD_REG(addr);
2846 return;
2847 }
2848 }
2849
2850 static const MemoryRegionOps omap_rtc_ops = {
2851 .read = omap_rtc_read,
2852 .write = omap_rtc_write,
2853 .endianness = DEVICE_NATIVE_ENDIAN,
2854 };
2855
2856 static void omap_rtc_tick(void *opaque)
2857 {
2858 struct omap_rtc_s *s = opaque;
2859
2860 if (s->round) {
2861 /* Round to nearest full minute. */
2862 if (s->current_tm.tm_sec < 30)
2863 s->ti -= s->current_tm.tm_sec;
2864 else
2865 s->ti += 60 - s->current_tm.tm_sec;
2866
2867 s->round = 0;
2868 }
2869
2870 localtime_r(&s->ti, &s->current_tm);
2871
2872 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2873 s->status |= 0x40;
2874 omap_rtc_interrupts_update(s);
2875 }
2876
2877 if (s->interrupts & 0x04)
2878 switch (s->interrupts & 3) {
2879 case 0:
2880 s->status |= 0x04;
2881 qemu_irq_pulse(s->irq);
2882 break;
2883 case 1:
2884 if (s->current_tm.tm_sec)
2885 break;
2886 s->status |= 0x08;
2887 qemu_irq_pulse(s->irq);
2888 break;
2889 case 2:
2890 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2891 break;
2892 s->status |= 0x10;
2893 qemu_irq_pulse(s->irq);
2894 break;
2895 case 3:
2896 if (s->current_tm.tm_sec ||
2897 s->current_tm.tm_min || s->current_tm.tm_hour)
2898 break;
2899 s->status |= 0x20;
2900 qemu_irq_pulse(s->irq);
2901 break;
2902 }
2903
2904 /* Move on */
2905 if (s->running)
2906 s->ti ++;
2907 s->tick += 1000;
2908
2909 /*
2910 * Every full hour add a rough approximation of the compensation
2911 * register to the 32kHz Timer (which drives the RTC) value.
2912 */
2913 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2914 s->tick += s->comp_reg * 1000 / 32768;
2915
2916 timer_mod(s->clk, s->tick);
2917 }
2918
2919 static void omap_rtc_reset(struct omap_rtc_s *s)
2920 {
2921 struct tm tm;
2922
2923 s->interrupts = 0;
2924 s->comp_reg = 0;
2925 s->running = 0;
2926 s->pm_am = 0;
2927 s->auto_comp = 0;
2928 s->round = 0;
2929 s->tick = qemu_clock_get_ms(rtc_clock);
2930 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2931 s->alarm_tm.tm_mday = 0x01;
2932 s->status = 1 << 7;
2933 qemu_get_timedate(&tm, 0);
2934 s->ti = mktimegm(&tm);
2935
2936 omap_rtc_alarm_update(s);
2937 omap_rtc_tick(s);
2938 }
2939
2940 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2941 hwaddr base,
2942 qemu_irq timerirq, qemu_irq alarmirq,
2943 omap_clk clk)
2944 {
2945 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2946
2947 s->irq = timerirq;
2948 s->alarm = alarmirq;
2949 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2950
2951 omap_rtc_reset(s);
2952
2953 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2954 "omap-rtc", 0x800);
2955 memory_region_add_subregion(system_memory, base, &s->iomem);
2956
2957 return s;
2958 }
2959
2960 /* Multi-channel Buffered Serial Port interfaces */
2961 struct omap_mcbsp_s {
2962 MemoryRegion iomem;
2963 qemu_irq txirq;
2964 qemu_irq rxirq;
2965 qemu_irq txdrq;
2966 qemu_irq rxdrq;
2967
2968 uint16_t spcr[2];
2969 uint16_t rcr[2];
2970 uint16_t xcr[2];
2971 uint16_t srgr[2];
2972 uint16_t mcr[2];
2973 uint16_t pcr;
2974 uint16_t rcer[8];
2975 uint16_t xcer[8];
2976 int tx_rate;
2977 int rx_rate;
2978 int tx_req;
2979 int rx_req;
2980
2981 I2SCodec *codec;
2982 QEMUTimer *source_timer;
2983 QEMUTimer *sink_timer;
2984 };
2985
2986 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2987 {
2988 int irq;
2989
2990 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2991 case 0:
2992 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2993 break;
2994 case 3:
2995 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2996 break;
2997 default:
2998 irq = 0;
2999 break;
3000 }
3001
3002 if (irq)
3003 qemu_irq_pulse(s->rxirq);
3004
3005 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3006 case 0:
3007 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3008 break;
3009 case 3:
3010 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3011 break;
3012 default:
3013 irq = 0;
3014 break;
3015 }
3016
3017 if (irq)
3018 qemu_irq_pulse(s->txirq);
3019 }
3020
3021 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3022 {
3023 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3024 s->spcr[0] |= 1 << 2; /* RFULL */
3025 s->spcr[0] |= 1 << 1; /* RRDY */
3026 qemu_irq_raise(s->rxdrq);
3027 omap_mcbsp_intr_update(s);
3028 }
3029
3030 static void omap_mcbsp_source_tick(void *opaque)
3031 {
3032 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3033 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3034
3035 if (!s->rx_rate)
3036 return;
3037 if (s->rx_req)
3038 printf("%s: Rx FIFO overrun\n", __func__);
3039
3040 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3041
3042 omap_mcbsp_rx_newdata(s);
3043 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3044 NANOSECONDS_PER_SECOND);
3045 }
3046
3047 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3048 {
3049 if (!s->codec || !s->codec->rts)
3050 omap_mcbsp_source_tick(s);
3051 else if (s->codec->in.len) {
3052 s->rx_req = s->codec->in.len;
3053 omap_mcbsp_rx_newdata(s);
3054 }
3055 }
3056
3057 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3058 {
3059 timer_del(s->source_timer);
3060 }
3061
3062 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3063 {
3064 s->spcr[0] &= ~(1 << 1); /* RRDY */
3065 qemu_irq_lower(s->rxdrq);
3066 omap_mcbsp_intr_update(s);
3067 }
3068
3069 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3070 {
3071 s->spcr[1] |= 1 << 1; /* XRDY */
3072 qemu_irq_raise(s->txdrq);
3073 omap_mcbsp_intr_update(s);
3074 }
3075
3076 static void omap_mcbsp_sink_tick(void *opaque)
3077 {
3078 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3079 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3080
3081 if (!s->tx_rate)
3082 return;
3083 if (s->tx_req)
3084 printf("%s: Tx FIFO underrun\n", __func__);
3085
3086 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3087
3088 omap_mcbsp_tx_newdata(s);
3089 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3090 NANOSECONDS_PER_SECOND);
3091 }
3092
3093 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3094 {
3095 if (!s->codec || !s->codec->cts)
3096 omap_mcbsp_sink_tick(s);
3097 else if (s->codec->out.size) {
3098 s->tx_req = s->codec->out.size;
3099 omap_mcbsp_tx_newdata(s);
3100 }
3101 }
3102
3103 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3104 {
3105 s->spcr[1] &= ~(1 << 1); /* XRDY */
3106 qemu_irq_lower(s->txdrq);
3107 omap_mcbsp_intr_update(s);
3108 if (s->codec && s->codec->cts)
3109 s->codec->tx_swallow(s->codec->opaque);
3110 }
3111
3112 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3113 {
3114 s->tx_req = 0;
3115 omap_mcbsp_tx_done(s);
3116 timer_del(s->sink_timer);
3117 }
3118
3119 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3120 {
3121 int prev_rx_rate, prev_tx_rate;
3122 int rx_rate = 0, tx_rate = 0;
3123 int cpu_rate = 1500000; /* XXX */
3124
3125 /* TODO: check CLKSTP bit */
3126 if (s->spcr[1] & (1 << 6)) { /* GRST */
3127 if (s->spcr[0] & (1 << 0)) { /* RRST */
3128 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3129 (s->pcr & (1 << 8))) { /* CLKRM */
3130 if (~s->pcr & (1 << 7)) /* SCLKME */
3131 rx_rate = cpu_rate /
3132 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3133 } else
3134 if (s->codec)
3135 rx_rate = s->codec->rx_rate;
3136 }
3137
3138 if (s->spcr[1] & (1 << 0)) { /* XRST */
3139 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3140 (s->pcr & (1 << 9))) { /* CLKXM */
3141 if (~s->pcr & (1 << 7)) /* SCLKME */
3142 tx_rate = cpu_rate /
3143 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3144 } else
3145 if (s->codec)
3146 tx_rate = s->codec->tx_rate;
3147 }
3148 }
3149 prev_tx_rate = s->tx_rate;
3150 prev_rx_rate = s->rx_rate;
3151 s->tx_rate = tx_rate;
3152 s->rx_rate = rx_rate;
3153
3154 if (s->codec)
3155 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3156
3157 if (!prev_tx_rate && tx_rate)
3158 omap_mcbsp_tx_start(s);
3159 else if (s->tx_rate && !tx_rate)
3160 omap_mcbsp_tx_stop(s);
3161
3162 if (!prev_rx_rate && rx_rate)
3163 omap_mcbsp_rx_start(s);
3164 else if (prev_tx_rate && !tx_rate)
3165 omap_mcbsp_rx_stop(s);
3166 }
3167
3168 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3169 unsigned size)
3170 {
3171 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3172 int offset = addr & OMAP_MPUI_REG_MASK;
3173 uint16_t ret;
3174
3175 if (size != 2) {
3176 return omap_badwidth_read16(opaque, addr);
3177 }
3178
3179 switch (offset) {
3180 case 0x00: /* DRR2 */
3181 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3182 return 0x0000;
3183 /* Fall through. */
3184 case 0x02: /* DRR1 */
3185 if (s->rx_req < 2) {
3186 printf("%s: Rx FIFO underrun\n", __func__);
3187 omap_mcbsp_rx_done(s);
3188 } else {
3189 s->tx_req -= 2;
3190 if (s->codec && s->codec->in.len >= 2) {
3191 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3192 ret |= s->codec->in.fifo[s->codec->in.start ++];
3193 s->codec->in.len -= 2;
3194 } else
3195 ret = 0x0000;
3196 if (!s->tx_req)
3197 omap_mcbsp_rx_done(s);
3198 return ret;
3199 }
3200 return 0x0000;
3201
3202 case 0x04: /* DXR2 */
3203 case 0x06: /* DXR1 */
3204 return 0x0000;
3205
3206 case 0x08: /* SPCR2 */
3207 return s->spcr[1];
3208 case 0x0a: /* SPCR1 */
3209 return s->spcr[0];
3210 case 0x0c: /* RCR2 */
3211 return s->rcr[1];
3212 case 0x0e: /* RCR1 */
3213 return s->rcr[0];
3214 case 0x10: /* XCR2 */
3215 return s->xcr[1];
3216 case 0x12: /* XCR1 */
3217 return s->xcr[0];
3218 case 0x14: /* SRGR2 */
3219 return s->srgr[1];
3220 case 0x16: /* SRGR1 */
3221 return s->srgr[0];
3222 case 0x18: /* MCR2 */
3223 return s->mcr[1];
3224 case 0x1a: /* MCR1 */
3225 return s->mcr[0];
3226 case 0x1c: /* RCERA */
3227 return s->rcer[0];
3228 case 0x1e: /* RCERB */
3229 return s->rcer[1];
3230 case 0x20: /* XCERA */
3231 return s->xcer[0];
3232 case 0x22: /* XCERB */
3233 return s->xcer[1];
3234 case 0x24: /* PCR0 */
3235 return s->pcr;
3236 case 0x26: /* RCERC */
3237 return s->rcer[2];
3238 case 0x28: /* RCERD */
3239 return s->rcer[3];
3240 case 0x2a: /* XCERC */
3241 return s->xcer[2];
3242 case 0x2c: /* XCERD */
3243 return s->xcer[3];
3244 case 0x2e: /* RCERE */
3245 return s->rcer[4];
3246 case 0x30: /* RCERF */
3247 return s->rcer[5];
3248 case 0x32: /* XCERE */
3249 return s->xcer[4];
3250 case 0x34: /* XCERF */
3251 return s->xcer[5];
3252 case 0x36: /* RCERG */
3253 return s->rcer[6];
3254 case 0x38: /* RCERH */
3255 return s->rcer[7];
3256 case 0x3a: /* XCERG */
3257 return s->xcer[6];
3258 case 0x3c: /* XCERH */
3259 return s->xcer[7];
3260 }
3261
3262 OMAP_BAD_REG(addr);
3263 return 0;
3264 }
3265
3266 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3267 uint32_t value)
3268 {
3269 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3270 int offset = addr & OMAP_MPUI_REG_MASK;
3271
3272 switch (offset) {
3273 case 0x00: /* DRR2 */
3274 case 0x02: /* DRR1 */
3275 OMAP_RO_REG(addr);
3276 return;
3277
3278 case 0x04: /* DXR2 */
3279 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3280 return;
3281 /* Fall through. */
3282 case 0x06: /* DXR1 */
3283 if (s->tx_req > 1) {
3284 s->tx_req -= 2;
3285 if (s->codec && s->codec->cts) {
3286 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3287 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3288 }
3289 if (s->tx_req < 2)
3290 omap_mcbsp_tx_done(s);
3291 } else
3292 printf("%s: Tx FIFO overrun\n", __func__);
3293 return;
3294
3295 case 0x08: /* SPCR2 */
3296 s->spcr[1] &= 0x0002;
3297 s->spcr[1] |= 0x03f9 & value;
3298 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3299 if (~value & 1) /* XRST */
3300 s->spcr[1] &= ~6;
3301 omap_mcbsp_req_update(s);
3302 return;
3303 case 0x0a: /* SPCR1 */
3304 s->spcr[0] &= 0x0006;
3305 s->spcr[0] |= 0xf8f9 & value;
3306 if (value & (1 << 15)) /* DLB */
3307 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3308 if (~value & 1) { /* RRST */
3309 s->spcr[0] &= ~6;
3310 s->rx_req = 0;
3311 omap_mcbsp_rx_done(s);
3312 }
3313 omap_mcbsp_req_update(s);
3314 return;
3315
3316 case 0x0c: /* RCR2 */
3317 s->rcr[1] = value & 0xffff;
3318 return;
3319 case 0x0e: /* RCR1 */
3320 s->rcr[0] = value & 0x7fe0;
3321 return;
3322 case 0x10: /* XCR2 */
3323 s->xcr[1] = value & 0xffff;
3324 return;
3325 case 0x12: /* XCR1 */
3326 s->xcr[0] = value & 0x7fe0;
3327 return;
3328 case 0x14: /* SRGR2 */
3329 s->srgr[1] = value & 0xffff;
3330 omap_mcbsp_req_update(s);
3331 return;
3332 case 0x16: /* SRGR1 */
3333 s->srgr[0] = value & 0xffff;
3334 omap_mcbsp_req_update(s);
3335 return;
3336 case 0x18: /* MCR2 */
3337 s->mcr[1] = value & 0x03e3;
3338 if (value & 3) /* XMCM */
3339 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3340 return;
3341 case 0x1a: /* MCR1 */
3342 s->mcr[0] = value & 0x03e1;
3343 if (value & 1) /* RMCM */
3344 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3345 return;
3346 case 0x1c: /* RCERA */
3347 s->rcer[0] = value & 0xffff;
3348 return;
3349 case 0x1e: /* RCERB */
3350 s->rcer[1] = value & 0xffff;
3351 return;
3352 case 0x20: /* XCERA */
3353 s->xcer[0] = value & 0xffff;
3354 return;
3355 case 0x22: /* XCERB */
3356 s->xcer[1] = value & 0xffff;
3357 return;
3358 case 0x24: /* PCR0 */
3359 s->pcr = value & 0x7faf;
3360 return;
3361 case 0x26: /* RCERC */
3362 s->rcer[2] = value & 0xffff;
3363 return;
3364 case 0x28: /* RCERD */
3365 s->rcer[3] = value & 0xffff;
3366 return;
3367 case 0x2a: /* XCERC */
3368 s->xcer[2] = value & 0xffff;
3369 return;
3370 case 0x2c: /* XCERD */
3371 s->xcer[3] = value & 0xffff;
3372 return;
3373 case 0x2e: /* RCERE */
3374 s->rcer[4] = value & 0xffff;
3375 return;
3376 case 0x30: /* RCERF */
3377 s->rcer[5] = value & 0xffff;
3378 return;
3379 case 0x32: /* XCERE */
3380 s->xcer[4] = value & 0xffff;
3381 return;
3382 case 0x34: /* XCERF */
3383 s->xcer[5] = value & 0xffff;
3384 return;
3385 case 0x36: /* RCERG */
3386 s->rcer[6] = value & 0xffff;
3387 return;
3388 case 0x38: /* RCERH */
3389 s->rcer[7] = value & 0xffff;
3390 return;
3391 case 0x3a: /* XCERG */
3392 s->xcer[6] = value & 0xffff;
3393 return;
3394 case 0x3c: /* XCERH */
3395 s->xcer[7] = value & 0xffff;
3396 return;
3397 }
3398
3399 OMAP_BAD_REG(addr);
3400 }
3401
3402 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3403 uint32_t value)
3404 {
3405 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3406 int offset = addr & OMAP_MPUI_REG_MASK;
3407
3408 if (offset == 0x04) { /* DXR */
3409 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3410 return;
3411 if (s->tx_req > 3) {
3412 s->tx_req -= 4;
3413 if (s->codec && s->codec->cts) {
3414 s->codec->out.fifo[s->codec->out.len ++] =
3415 (value >> 24) & 0xff;
3416 s->codec->out.fifo[s->codec->out.len ++] =
3417 (value >> 16) & 0xff;
3418 s->codec->out.fifo[s->codec->out.len ++] =
3419 (value >> 8) & 0xff;
3420 s->codec->out.fifo[s->codec->out.len ++] =
3421 (value >> 0) & 0xff;
3422 }
3423 if (s->tx_req < 4)
3424 omap_mcbsp_tx_done(s);
3425 } else
3426 printf("%s: Tx FIFO overrun\n", __func__);
3427 return;
3428 }
3429
3430 omap_badwidth_write16(opaque, addr, value);
3431 }
3432
3433 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3434 uint64_t value, unsigned size)
3435 {
3436 switch (size) {
3437 case 2:
3438 omap_mcbsp_writeh(opaque, addr, value);
3439 break;
3440 case 4:
3441 omap_mcbsp_writew(opaque, addr, value);
3442 break;
3443 default:
3444 omap_badwidth_write16(opaque, addr, value);
3445 }
3446 }
3447
3448 static const MemoryRegionOps omap_mcbsp_ops = {
3449 .read = omap_mcbsp_read,
3450 .write = omap_mcbsp_write,
3451 .endianness = DEVICE_NATIVE_ENDIAN,
3452 };
3453
3454 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3455 {
3456 memset(&s->spcr, 0, sizeof(s->spcr));
3457 memset(&s->rcr, 0, sizeof(s->rcr));
3458 memset(&s->xcr, 0, sizeof(s->xcr));
3459 s->srgr[0] = 0x0001;
3460 s->srgr[1] = 0x2000;
3461 memset(&s->mcr, 0, sizeof(s->mcr));
3462 memset(&s->pcr, 0, sizeof(s->pcr));
3463 memset(&s->rcer, 0, sizeof(s->rcer));
3464 memset(&s->xcer, 0, sizeof(s->xcer));
3465 s->tx_req = 0;
3466 s->rx_req = 0;
3467 s->tx_rate = 0;
3468 s->rx_rate = 0;
3469 timer_del(s->source_timer);
3470 timer_del(s->sink_timer);
3471 }
3472
3473 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3474 hwaddr base,
3475 qemu_irq txirq, qemu_irq rxirq,
3476 qemu_irq *dma, omap_clk clk)
3477 {
3478 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3479
3480 s->txirq = txirq;
3481 s->rxirq = rxirq;
3482 s->txdrq = dma[0];
3483 s->rxdrq = dma[1];
3484 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3485 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3486 omap_mcbsp_reset(s);
3487
3488 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3489 memory_region_add_subregion(system_memory, base, &s->iomem);
3490
3491 return s;
3492 }
3493
3494 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3495 {
3496 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3497
3498 if (s->rx_rate) {
3499 s->rx_req = s->codec->in.len;
3500 omap_mcbsp_rx_newdata(s);
3501 }
3502 }
3503
3504 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3505 {
3506 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3507
3508 if (s->tx_rate) {
3509 s->tx_req = s->codec->out.size;
3510 omap_mcbsp_tx_newdata(s);
3511 }
3512 }
3513
3514 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3515 {
3516 s->codec = slave;
3517 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3518 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3519 }
3520
3521 /* LED Pulse Generators */
3522 struct omap_lpg_s {
3523 MemoryRegion iomem;
3524 QEMUTimer *tm;
3525
3526 uint8_t control;
3527 uint8_t power;
3528 int64_t on;
3529 int64_t period;
3530 int clk;
3531 int cycle;
3532 };
3533
3534 static void omap_lpg_tick(void *opaque)
3535 {
3536 struct omap_lpg_s *s = opaque;
3537
3538 if (s->cycle)
3539 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3540 else
3541 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3542
3543 s->cycle = !s->cycle;
3544 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3545 }
3546
3547 static void omap_lpg_update(struct omap_lpg_s *s)
3548 {
3549 int64_t on, period = 1, ticks = 1000;
3550 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3551
3552 if (~s->control & (1 << 6)) /* LPGRES */
3553 on = 0;
3554 else if (s->control & (1 << 7)) /* PERM_ON */
3555 on = period;
3556 else {
3557 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3558 256 / 32);
3559 on = (s->clk && s->power) ? muldiv64(ticks,
3560 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3561 }
3562
3563 timer_del(s->tm);
3564 if (on == period && s->on < s->period)
3565 printf("%s: LED is on\n", __func__);
3566 else if (on == 0 && s->on)
3567 printf("%s: LED is off\n", __func__);
3568 else if (on && (on != s->on || period != s->period)) {
3569 s->cycle = 0;
3570 s->on = on;
3571 s->period = period;
3572 omap_lpg_tick(s);
3573 return;
3574 }
3575
3576 s->on = on;
3577 s->period = period;
3578 }
3579
3580 static void omap_lpg_reset(struct omap_lpg_s *s)
3581 {
3582 s->control = 0x00;
3583 s->power = 0x00;
3584 s->clk = 1;
3585 omap_lpg_update(s);
3586 }
3587
3588 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3589 unsigned size)
3590 {
3591 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3592 int offset = addr & OMAP_MPUI_REG_MASK;
3593
3594 if (size != 1) {
3595 return omap_badwidth_read8(opaque, addr);
3596 }
3597
3598 switch (offset) {
3599 case 0x00: /* LCR */
3600 return s->control;
3601
3602 case 0x04: /* PMR */
3603 return s->power;
3604 }
3605
3606 OMAP_BAD_REG(addr);
3607 return 0;
3608 }
3609
3610 static void omap_lpg_write(void *opaque, hwaddr addr,
3611 uint64_t value, unsigned size)
3612 {
3613 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3614 int offset = addr & OMAP_MPUI_REG_MASK;
3615
3616 if (size != 1) {
3617 omap_badwidth_write8(opaque, addr, value);
3618 return;
3619 }
3620
3621 switch (offset) {
3622 case 0x00: /* LCR */
3623 if (~value & (1 << 6)) /* LPGRES */
3624 omap_lpg_reset(s);
3625 s->control = value & 0xff;
3626 omap_lpg_update(s);
3627 return;
3628
3629 case 0x04: /* PMR */
3630 s->power = value & 0x01;
3631 omap_lpg_update(s);
3632 return;
3633
3634 default:
3635 OMAP_BAD_REG(addr);
3636 return;
3637 }
3638 }
3639
3640 static const MemoryRegionOps omap_lpg_ops = {
3641 .read = omap_lpg_read,
3642 .write = omap_lpg_write,
3643 .endianness = DEVICE_NATIVE_ENDIAN,
3644 };
3645
3646 static void omap_lpg_clk_update(void *opaque, int line, int on)
3647 {
3648 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3649
3650 s->clk = on;
3651 omap_lpg_update(s);
3652 }
3653
3654 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3655 hwaddr base, omap_clk clk)
3656 {
3657 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3658
3659 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3660
3661 omap_lpg_reset(s);
3662
3663 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3664 memory_region_add_subregion(system_memory, base, &s->iomem);
3665
3666 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3667
3668 return s;
3669 }
3670
3671 /* MPUI Peripheral Bridge configuration */
3672 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3673 unsigned size)
3674 {
3675 if (size != 2) {
3676 return omap_badwidth_read16(opaque, addr);
3677 }
3678
3679 if (addr == OMAP_MPUI_BASE) /* CMR */
3680 return 0xfe4d;
3681
3682 OMAP_BAD_REG(addr);
3683 return 0;
3684 }
3685
3686 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3687 uint64_t value, unsigned size)
3688 {
3689 /* FIXME: infinite loop */
3690 omap_badwidth_write16(opaque, addr, value);
3691 }
3692
3693 static const MemoryRegionOps omap_mpui_io_ops = {
3694 .read = omap_mpui_io_read,
3695 .write = omap_mpui_io_write,
3696 .endianness = DEVICE_NATIVE_ENDIAN,
3697 };
3698
3699 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3700 struct omap_mpu_state_s *mpu)
3701 {
3702 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3703 "omap-mpui-io", 0x7fff);
3704 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3705 &mpu->mpui_io_iomem);
3706 }
3707
3708 /* General chip reset */
3709 static void omap1_mpu_reset(void *opaque)
3710 {
3711 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3712
3713 omap_dma_reset(mpu->dma);
3714 omap_mpu_timer_reset(mpu->timer[0]);
3715 omap_mpu_timer_reset(mpu->timer[1]);
3716 omap_mpu_timer_reset(mpu->timer[2]);
3717 omap_wd_timer_reset(mpu->wdt);
3718 omap_os_timer_reset(mpu->os_timer);
3719 omap_lcdc_reset(mpu->lcd);
3720 omap_ulpd_pm_reset(mpu);
3721 omap_pin_cfg_reset(mpu);
3722 omap_mpui_reset(mpu);
3723 omap_tipb_bridge_reset(mpu->private_tipb);
3724 omap_tipb_bridge_reset(mpu->public_tipb);
3725 omap_dpll_reset(mpu->dpll[0]);
3726 omap_dpll_reset(mpu->dpll[1]);
3727 omap_dpll_reset(mpu->dpll[2]);
3728 omap_uart_reset(mpu->uart[0]);
3729 omap_uart_reset(mpu->uart[1]);
3730 omap_uart_reset(mpu->uart[2]);
3731 omap_mmc_reset(mpu->mmc);
3732 omap_mpuio_reset(mpu->mpuio);
3733 omap_uwire_reset(mpu->microwire);
3734 omap_pwl_reset(mpu->pwl);
3735 omap_pwt_reset(mpu->pwt);
3736 omap_rtc_reset(mpu->rtc);
3737 omap_mcbsp_reset(mpu->mcbsp1);
3738 omap_mcbsp_reset(mpu->mcbsp2);
3739 omap_mcbsp_reset(mpu->mcbsp3);
3740 omap_lpg_reset(mpu->led[0]);
3741 omap_lpg_reset(mpu->led[1]);
3742 omap_clkm_reset(mpu);
3743 cpu_reset(CPU(mpu->cpu));
3744 }
3745
3746 static const struct omap_map_s {
3747 hwaddr phys_dsp;
3748 hwaddr phys_mpu;
3749 uint32_t size;
3750 const char *name;
3751 } omap15xx_dsp_mm[] = {
3752 /* Strobe 0 */
3753 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3754 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3755 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3756 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3757 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3758 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3759 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3760 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3761 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3762 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3763 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3764 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3765 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3766 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3767 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3768 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3769 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3770 /* Strobe 1 */
3771 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3772
3773 { 0 }
3774 };
3775
3776 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3777 const struct omap_map_s *map)
3778 {
3779 MemoryRegion *io;
3780
3781 for (; map->phys_dsp; map ++) {
3782 io = g_new(MemoryRegion, 1);
3783 memory_region_init_alias(io, NULL, map->name,
3784 system_memory, map->phys_mpu, map->size);
3785 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3786 }
3787 }
3788
3789 void omap_mpu_wakeup(void *opaque, int irq, int req)
3790 {
3791 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3792 CPUState *cpu = CPU(mpu->cpu);
3793
3794 if (cpu->halted) {
3795 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3796 }
3797 }
3798
3799 static const struct dma_irq_map omap1_dma_irq_map[] = {
3800 { 0, OMAP_INT_DMA_CH0_6 },
3801 { 0, OMAP_INT_DMA_CH1_7 },
3802 { 0, OMAP_INT_DMA_CH2_8 },
3803 { 0, OMAP_INT_DMA_CH3 },
3804 { 0, OMAP_INT_DMA_CH4 },
3805 { 0, OMAP_INT_DMA_CH5 },
3806 { 1, OMAP_INT_1610_DMA_CH6 },
3807 { 1, OMAP_INT_1610_DMA_CH7 },
3808 { 1, OMAP_INT_1610_DMA_CH8 },
3809 { 1, OMAP_INT_1610_DMA_CH9 },
3810 { 1, OMAP_INT_1610_DMA_CH10 },
3811 { 1, OMAP_INT_1610_DMA_CH11 },
3812 { 1, OMAP_INT_1610_DMA_CH12 },
3813 { 1, OMAP_INT_1610_DMA_CH13 },
3814 { 1, OMAP_INT_1610_DMA_CH14 },
3815 { 1, OMAP_INT_1610_DMA_CH15 }
3816 };
3817
3818 /* DMA ports for OMAP1 */
3819 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3820 hwaddr addr)
3821 {
3822 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3823 }
3824
3825 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3826 hwaddr addr)
3827 {
3828 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3829 addr);
3830 }
3831
3832 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3833 hwaddr addr)
3834 {
3835 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3836 }
3837
3838 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3839 hwaddr addr)
3840 {
3841 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3842 }
3843
3844 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3845 hwaddr addr)
3846 {
3847 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3848 }
3849
3850 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3851 hwaddr addr)
3852 {
3853 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3854 }
3855
3856 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3857 unsigned long sdram_size,
3858 const char *cpu_type)
3859 {
3860 int i;
3861 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3862 qemu_irq dma_irqs[6];
3863 DriveInfo *dinfo;
3864 SysBusDevice *busdev;
3865
3866 /* Core */
3867 s->mpu_model = omap310;
3868 s->cpu = ARM_CPU(cpu_create(cpu_type));
3869 s->sdram_size = sdram_size;
3870 s->sram_size = OMAP15XX_SRAM_SIZE;
3871
3872 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873
3874 /* Clocks */
3875 omap_clk_init(s);
3876
3877 /* Memory-mapped stuff */
3878 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3879 s->sdram_size);
3880 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3881 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3882 &error_fatal);
3883 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3884
3885 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3886
3887 s->ih[0] = qdev_create(NULL, "omap-intc");
3888 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3889 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3890 qdev_init_nofail(s->ih[0]);
3891 busdev = SYS_BUS_DEVICE(s->ih[0]);
3892 sysbus_connect_irq(busdev, 0,
3893 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3894 sysbus_connect_irq(busdev, 1,
3895 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3896 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3897 s->ih[1] = qdev_create(NULL, "omap-intc");
3898 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3899 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3900 qdev_init_nofail(s->ih[1]);
3901 busdev = SYS_BUS_DEVICE(s->ih[1]);
3902 sysbus_connect_irq(busdev, 0,
3903 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3904 /* The second interrupt controller's FIQ output is not wired up */
3905 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3906
3907 for (i = 0; i < 6; i++) {
3908 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3909 omap1_dma_irq_map[i].intr);
3910 }
3911 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3912 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3913 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3914
3915 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3916 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3917 s->port[imif ].addr_valid = omap_validate_imif_addr;
3918 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3919 s->port[local ].addr_valid = omap_validate_local_addr;
3920 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3921
3922 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3923 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3924 OMAP_EMIFF_BASE, s->sdram_size);
3925 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3926 OMAP_IMIF_BASE, s->sram_size);
3927
3928 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3930 omap_findclk(s, "mputim_ck"));
3931 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3932 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3933 omap_findclk(s, "mputim_ck"));
3934 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3935 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3936 omap_findclk(s, "mputim_ck"));
3937
3938 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3939 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3940 omap_findclk(s, "armwdt_ck"));
3941
3942 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3943 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3944 omap_findclk(s, "clk32-kHz"));
3945
3946 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3947 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3948 omap_dma_get_lcdch(s->dma),
3949 omap_findclk(s, "lcd_ck"));
3950
3951 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3952 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3953 omap_id_init(system_memory, s);
3954
3955 omap_mpui_init(system_memory, 0xfffec900, s);
3956
3957 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3958 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3959 omap_findclk(s, "tipb_ck"));
3960 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3961 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3962 omap_findclk(s, "tipb_ck"));
3963
3964 omap_tcmi_init(system_memory, 0xfffecc00, s);
3965
3966 s->uart[0] = omap_uart_init(0xfffb0000,
3967 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3968 omap_findclk(s, "uart1_ck"),
3969 omap_findclk(s, "uart1_ck"),
3970 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3971 "uart1",
3972 serial_hd(0));
3973 s->uart[1] = omap_uart_init(0xfffb0800,
3974 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3975 omap_findclk(s, "uart2_ck"),
3976 omap_findclk(s, "uart2_ck"),
3977 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3978 "uart2",
3979 serial_hd(0) ? serial_hd(1) : NULL);
3980 s->uart[2] = omap_uart_init(0xfffb9800,
3981 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3982 omap_findclk(s, "uart3_ck"),
3983 omap_findclk(s, "uart3_ck"),
3984 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3985 "uart3",
3986 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3987
3988 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3989 omap_findclk(s, "dpll1"));
3990 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3991 omap_findclk(s, "dpll2"));
3992 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3993 omap_findclk(s, "dpll3"));
3994
3995 dinfo = drive_get(IF_SD, 0, 0);
3996 if (!dinfo && !qtest_enabled()) {
3997 warn_report("missing SecureDigital device");
3998 }
3999 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4000 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4001 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4002 &s->drq[OMAP_DMA_MMC_TX],
4003 omap_findclk(s, "mmc_ck"));
4004
4005 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4007 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4008 s->wakeup, omap_findclk(s, "clk32-kHz"));
4009
4010 s->gpio = qdev_create(NULL, "omap-gpio");
4011 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4012 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4013 qdev_init_nofail(s->gpio);
4014 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4015 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4016 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4017
4018 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4020 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4021 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4022
4023 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4024 omap_findclk(s, "armxor_ck"));
4025 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4026 omap_findclk(s, "armxor_ck"));
4027
4028 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4029 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4030 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4031 qdev_init_nofail(s->i2c[0]);
4032 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4033 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4034 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4035 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4036 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4037
4038 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4040 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4041 omap_findclk(s, "clk32-kHz"));
4042
4043 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4045 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4046 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4047 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4048 qdev_get_gpio_in(s->ih[0],
4049 OMAP_INT_310_McBSP2_TX),
4050 qdev_get_gpio_in(s->ih[0],
4051 OMAP_INT_310_McBSP2_RX),
4052 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4053 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4054 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4055 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4056 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4057
4058 s->led[0] = omap_lpg_init(system_memory,
4059 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4060 s->led[1] = omap_lpg_init(system_memory,
4061 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4062
4063 /* Register mappings not currenlty implemented:
4064 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4065 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4066 * USB W2FC fffb4000 - fffb47ff
4067 * Camera Interface fffb6800 - fffb6fff
4068 * USB Host fffba000 - fffba7ff
4069 * FAC fffba800 - fffbafff
4070 * HDQ/1-Wire fffbc000 - fffbc7ff
4071 * TIPB switches fffbc800 - fffbcfff
4072 * Mailbox fffcf000 - fffcf7ff
4073 * Local bus IF fffec100 - fffec1ff
4074 * Local bus MMU fffec200 - fffec2ff
4075 * DSP MMU fffed200 - fffed2ff
4076 */
4077
4078 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4079 omap_setup_mpui_io(system_memory, s);
4080
4081 qemu_register_reset(omap1_mpu_reset, s);
4082
4083 return s;
4084 }