]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/thuth-gitlab/tags/pull-request-2021-05-14'...
[thirdparty/qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "hw/loader.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/virtio/virtio-pci.h"
58 #include "hw/arm/sysbus-fdt.h"
59 #include "hw/platform-bus.h"
60 #include "hw/qdev-properties.h"
61 #include "hw/arm/fdt.h"
62 #include "hw/intc/arm_gic.h"
63 #include "hw/intc/arm_gicv3_common.h"
64 #include "hw/irq.h"
65 #include "kvm_arm.h"
66 #include "hw/firmware/smbios.h"
67 #include "qapi/visitor.h"
68 #include "qapi/qapi-visit-common.h"
69 #include "standard-headers/linux/input.h"
70 #include "hw/arm/smmuv3.h"
71 #include "hw/acpi/acpi.h"
72 #include "target/arm/internals.h"
73 #include "hw/mem/pc-dimm.h"
74 #include "hw/mem/nvdimm.h"
75 #include "hw/acpi/generic_event_device.h"
76 #include "hw/virtio/virtio-iommu.h"
77 #include "hw/char/pl011.h"
78 #include "qemu/guest-random.h"
79
80 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
81 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
82 void *data) \
83 { \
84 MachineClass *mc = MACHINE_CLASS(oc); \
85 virt_machine_##major##_##minor##_options(mc); \
86 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
87 if (latest) { \
88 mc->alias = "virt"; \
89 } \
90 } \
91 static const TypeInfo machvirt_##major##_##minor##_info = { \
92 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
93 .parent = TYPE_VIRT_MACHINE, \
94 .class_init = virt_##major##_##minor##_class_init, \
95 }; \
96 static void machvirt_machine_##major##_##minor##_init(void) \
97 { \
98 type_register_static(&machvirt_##major##_##minor##_info); \
99 } \
100 type_init(machvirt_machine_##major##_##minor##_init);
101
102 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
103 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
104 #define DEFINE_VIRT_MACHINE(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
106
107
108 /* Number of external interrupt lines to configure the GIC with */
109 #define NUM_IRQS 256
110
111 #define PLATFORM_BUS_NUM_IRQS 64
112
113 /* Legacy RAM limit in GB (< version 4.0) */
114 #define LEGACY_RAMLIMIT_GB 255
115 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
116
117 /* Addresses and sizes of our components.
118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
119 * 128MB..256MB is used for miscellaneous device I/O.
120 * 256MB..1GB is reserved for possible future PCI support (ie where the
121 * PCI memory window will go if we add a PCI host controller).
122 * 1GB and up is RAM (which may happily spill over into the
123 * high memory region beyond 4GB).
124 * This represents a compromise between how much RAM can be given to
125 * a 32 bit VM and leaving space for expansion and in particular for PCI.
126 * Note that devices should generally be placed at multiples of 0x10000,
127 * to accommodate guests using 64K pages.
128 */
129 static const MemMapEntry base_memmap[] = {
130 /* Space up to 0x8000000 is reserved for a boot ROM */
131 [VIRT_FLASH] = { 0, 0x08000000 },
132 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
134 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
135 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
136 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
137 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
138 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
139 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
140 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
141 /* This redistributor space allows up to 2*64kB*123 CPUs */
142 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
143 [VIRT_UART] = { 0x09000000, 0x00001000 },
144 [VIRT_RTC] = { 0x09010000, 0x00001000 },
145 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
146 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
147 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
148 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
149 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
150 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
151 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
152 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
153 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
154 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
156 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
157 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
158 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
159 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
160 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
161 /* Actual RAM size depends on initial RAM and device memory settings */
162 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
163 };
164
165 /*
166 * Highmem IO Regions: This memory map is floating, located after the RAM.
167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
168 * top of the RAM, so that its base get the same alignment as the size,
169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
171 * Note the extended_memmap is sized so that it eventually also includes the
172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
173 * index of base_memmap).
174 */
175 static MemMapEntry extended_memmap[] = {
176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
177 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
178 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
179 /* Second PCIe window */
180 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
181 };
182
183 static const int a15irqmap[] = {
184 [VIRT_UART] = 1,
185 [VIRT_RTC] = 2,
186 [VIRT_PCIE] = 3, /* ... to 6 */
187 [VIRT_GPIO] = 7,
188 [VIRT_SECURE_UART] = 8,
189 [VIRT_ACPI_GED] = 9,
190 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
191 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
192 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
193 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
194 };
195
196 static const char *valid_cpus[] = {
197 ARM_CPU_TYPE_NAME("cortex-a7"),
198 ARM_CPU_TYPE_NAME("cortex-a15"),
199 ARM_CPU_TYPE_NAME("cortex-a53"),
200 ARM_CPU_TYPE_NAME("cortex-a57"),
201 ARM_CPU_TYPE_NAME("cortex-a72"),
202 ARM_CPU_TYPE_NAME("host"),
203 ARM_CPU_TYPE_NAME("max"),
204 };
205
206 static bool cpu_type_valid(const char *cpu)
207 {
208 int i;
209
210 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
211 if (strcmp(cpu, valid_cpus[i]) == 0) {
212 return true;
213 }
214 }
215 return false;
216 }
217
218 static void create_kaslr_seed(MachineState *ms, const char *node)
219 {
220 uint64_t seed;
221
222 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
223 return;
224 }
225 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
226 }
227
228 static void create_fdt(VirtMachineState *vms)
229 {
230 MachineState *ms = MACHINE(vms);
231 int nb_numa_nodes = ms->numa_state->num_nodes;
232 void *fdt = create_device_tree(&vms->fdt_size);
233
234 if (!fdt) {
235 error_report("create_device_tree() failed");
236 exit(1);
237 }
238
239 ms->fdt = fdt;
240
241 /* Header */
242 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
243 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
244 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
245
246 /* /chosen must exist for load_dtb to fill in necessary properties later */
247 qemu_fdt_add_subnode(fdt, "/chosen");
248 create_kaslr_seed(ms, "/chosen");
249
250 if (vms->secure) {
251 qemu_fdt_add_subnode(fdt, "/secure-chosen");
252 create_kaslr_seed(ms, "/secure-chosen");
253 }
254
255 /* Clock node, for the benefit of the UART. The kernel device tree
256 * binding documentation claims the PL011 node clock properties are
257 * optional but in practice if you omit them the kernel refuses to
258 * probe for the device.
259 */
260 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
261 qemu_fdt_add_subnode(fdt, "/apb-pclk");
262 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
263 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
266 "clk24mhz");
267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
268
269 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
270 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
271 uint32_t *matrix = g_malloc0(size);
272 int idx, i, j;
273
274 for (i = 0; i < nb_numa_nodes; i++) {
275 for (j = 0; j < nb_numa_nodes; j++) {
276 idx = (i * nb_numa_nodes + j) * 3;
277 matrix[idx + 0] = cpu_to_be32(i);
278 matrix[idx + 1] = cpu_to_be32(j);
279 matrix[idx + 2] =
280 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
281 }
282 }
283
284 qemu_fdt_add_subnode(fdt, "/distance-map");
285 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
286 "numa-distance-map-v1");
287 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
288 matrix, size);
289 g_free(matrix);
290 }
291 }
292
293 static void fdt_add_timer_nodes(const VirtMachineState *vms)
294 {
295 /* On real hardware these interrupts are level-triggered.
296 * On KVM they were edge-triggered before host kernel version 4.4,
297 * and level-triggered afterwards.
298 * On emulated QEMU they are level-triggered.
299 *
300 * Getting the DTB info about them wrong is awkward for some
301 * guest kernels:
302 * pre-4.8 ignore the DT and leave the interrupt configured
303 * with whatever the GIC reset value (or the bootloader) left it at
304 * 4.8 before rc6 honour the incorrect data by programming it back
305 * into the GIC, causing problems
306 * 4.8rc6 and later ignore the DT and always write "level triggered"
307 * into the GIC
308 *
309 * For backwards-compatibility, virt-2.8 and earlier will continue
310 * to say these are edge-triggered, but later machines will report
311 * the correct information.
312 */
313 ARMCPU *armcpu;
314 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
315 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
316 MachineState *ms = MACHINE(vms);
317
318 if (vmc->claim_edge_triggered_timers) {
319 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
320 }
321
322 if (vms->gic_version == VIRT_GIC_VERSION_2) {
323 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
324 GIC_FDT_IRQ_PPI_CPU_WIDTH,
325 (1 << MACHINE(vms)->smp.cpus) - 1);
326 }
327
328 qemu_fdt_add_subnode(ms->fdt, "/timer");
329
330 armcpu = ARM_CPU(qemu_get_cpu(0));
331 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
332 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
333 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
334 compat, sizeof(compat));
335 } else {
336 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
337 "arm,armv7-timer");
338 }
339 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
340 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
345 }
346
347 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
348 {
349 int cpu;
350 int addr_cells = 1;
351 const MachineState *ms = MACHINE(vms);
352 int smp_cpus = ms->smp.cpus;
353
354 /*
355 * From Documentation/devicetree/bindings/arm/cpus.txt
356 * On ARM v8 64-bit systems value should be set to 2,
357 * that corresponds to the MPIDR_EL1 register size.
358 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
359 * in the system, #address-cells can be set to 1, since
360 * MPIDR_EL1[63:32] bits are not used for CPUs
361 * identification.
362 *
363 * Here we actually don't know whether our system is 32- or 64-bit one.
364 * The simplest way to go is to examine affinity IDs of all our CPUs. If
365 * at least one of them has Aff3 populated, we set #address-cells to 2.
366 */
367 for (cpu = 0; cpu < smp_cpus; cpu++) {
368 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
369
370 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
371 addr_cells = 2;
372 break;
373 }
374 }
375
376 qemu_fdt_add_subnode(ms->fdt, "/cpus");
377 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
378 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
379
380 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
381 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383 CPUState *cs = CPU(armcpu);
384
385 qemu_fdt_add_subnode(ms->fdt, nodename);
386 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
387 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
388 armcpu->dtb_compatible);
389
390 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
391 qemu_fdt_setprop_string(ms->fdt, nodename,
392 "enable-method", "psci");
393 }
394
395 if (addr_cells == 2) {
396 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
397 armcpu->mp_affinity);
398 } else {
399 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
400 armcpu->mp_affinity);
401 }
402
403 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
404 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
405 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
406 }
407
408 g_free(nodename);
409 }
410 }
411
412 static void fdt_add_its_gic_node(VirtMachineState *vms)
413 {
414 char *nodename;
415 MachineState *ms = MACHINE(vms);
416
417 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
418 nodename = g_strdup_printf("/intc/its@%" PRIx64,
419 vms->memmap[VIRT_GIC_ITS].base);
420 qemu_fdt_add_subnode(ms->fdt, nodename);
421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
422 "arm,gic-v3-its");
423 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
424 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
425 2, vms->memmap[VIRT_GIC_ITS].base,
426 2, vms->memmap[VIRT_GIC_ITS].size);
427 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
428 g_free(nodename);
429 }
430
431 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
432 {
433 MachineState *ms = MACHINE(vms);
434 char *nodename;
435
436 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
437 vms->memmap[VIRT_GIC_V2M].base);
438 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
439 qemu_fdt_add_subnode(ms->fdt, nodename);
440 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
443 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
444 2, vms->memmap[VIRT_GIC_V2M].base,
445 2, vms->memmap[VIRT_GIC_V2M].size);
446 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
447 g_free(nodename);
448 }
449
450 static void fdt_add_gic_node(VirtMachineState *vms)
451 {
452 MachineState *ms = MACHINE(vms);
453 char *nodename;
454
455 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
456 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
457
458 nodename = g_strdup_printf("/intc@%" PRIx64,
459 vms->memmap[VIRT_GIC_DIST].base);
460 qemu_fdt_add_subnode(ms->fdt, nodename);
461 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
462 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
463 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
464 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
465 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
466 if (vms->gic_version == VIRT_GIC_VERSION_3) {
467 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
468
469 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
470 "arm,gic-v3");
471
472 qemu_fdt_setprop_cell(ms->fdt, nodename,
473 "#redistributor-regions", nb_redist_regions);
474
475 if (nb_redist_regions == 1) {
476 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
477 2, vms->memmap[VIRT_GIC_DIST].base,
478 2, vms->memmap[VIRT_GIC_DIST].size,
479 2, vms->memmap[VIRT_GIC_REDIST].base,
480 2, vms->memmap[VIRT_GIC_REDIST].size);
481 } else {
482 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
483 2, vms->memmap[VIRT_GIC_DIST].base,
484 2, vms->memmap[VIRT_GIC_DIST].size,
485 2, vms->memmap[VIRT_GIC_REDIST].base,
486 2, vms->memmap[VIRT_GIC_REDIST].size,
487 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
488 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
489 }
490
491 if (vms->virt) {
492 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
493 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
494 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
495 }
496 } else {
497 /* 'cortex-a15-gic' means 'GIC v2' */
498 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
499 "arm,cortex-a15-gic");
500 if (!vms->virt) {
501 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
502 2, vms->memmap[VIRT_GIC_DIST].base,
503 2, vms->memmap[VIRT_GIC_DIST].size,
504 2, vms->memmap[VIRT_GIC_CPU].base,
505 2, vms->memmap[VIRT_GIC_CPU].size);
506 } else {
507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
508 2, vms->memmap[VIRT_GIC_DIST].base,
509 2, vms->memmap[VIRT_GIC_DIST].size,
510 2, vms->memmap[VIRT_GIC_CPU].base,
511 2, vms->memmap[VIRT_GIC_CPU].size,
512 2, vms->memmap[VIRT_GIC_HYP].base,
513 2, vms->memmap[VIRT_GIC_HYP].size,
514 2, vms->memmap[VIRT_GIC_VCPU].base,
515 2, vms->memmap[VIRT_GIC_VCPU].size);
516 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
517 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
518 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
519 }
520 }
521
522 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
523 g_free(nodename);
524 }
525
526 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
527 {
528 ARMCPU *armcpu = ARM_CPU(first_cpu);
529 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
530 MachineState *ms = MACHINE(vms);
531
532 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
533 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
534 return;
535 }
536
537 if (vms->gic_version == VIRT_GIC_VERSION_2) {
538 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
539 GIC_FDT_IRQ_PPI_CPU_WIDTH,
540 (1 << MACHINE(vms)->smp.cpus) - 1);
541 }
542
543 qemu_fdt_add_subnode(ms->fdt, "/pmu");
544 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
545 const char compat[] = "arm,armv8-pmuv3";
546 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
547 compat, sizeof(compat));
548 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
549 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
550 }
551 }
552
553 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
554 {
555 DeviceState *dev;
556 MachineState *ms = MACHINE(vms);
557 int irq = vms->irqmap[VIRT_ACPI_GED];
558 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
559
560 if (ms->ram_slots) {
561 event |= ACPI_GED_MEM_HOTPLUG_EVT;
562 }
563
564 if (ms->nvdimms_state->is_enabled) {
565 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
566 }
567
568 dev = qdev_new(TYPE_ACPI_GED);
569 qdev_prop_set_uint32(dev, "ged-event", event);
570
571 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
573 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
574
575 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
576
577 return dev;
578 }
579
580 static void create_its(VirtMachineState *vms)
581 {
582 const char *itsclass = its_class_name();
583 DeviceState *dev;
584
585 if (!itsclass) {
586 /* Do nothing if not supported */
587 return;
588 }
589
590 dev = qdev_new(itsclass);
591
592 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
593 &error_abort);
594 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
595 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
596
597 fdt_add_its_gic_node(vms);
598 vms->msi_controller = VIRT_MSI_CTRL_ITS;
599 }
600
601 static void create_v2m(VirtMachineState *vms)
602 {
603 int i;
604 int irq = vms->irqmap[VIRT_GIC_V2M];
605 DeviceState *dev;
606
607 dev = qdev_new("arm-gicv2m");
608 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
609 qdev_prop_set_uint32(dev, "base-spi", irq);
610 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
611 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
612
613 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
614 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
615 qdev_get_gpio_in(vms->gic, irq + i));
616 }
617
618 fdt_add_v2m_gic_node(vms);
619 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
620 }
621
622 static void create_gic(VirtMachineState *vms)
623 {
624 MachineState *ms = MACHINE(vms);
625 /* We create a standalone GIC */
626 SysBusDevice *gicbusdev;
627 const char *gictype;
628 int type = vms->gic_version, i;
629 unsigned int smp_cpus = ms->smp.cpus;
630 uint32_t nb_redist_regions = 0;
631
632 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
633
634 vms->gic = qdev_new(gictype);
635 qdev_prop_set_uint32(vms->gic, "revision", type);
636 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
637 /* Note that the num-irq property counts both internal and external
638 * interrupts; there are always 32 of the former (mandated by GIC spec).
639 */
640 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
641 if (!kvm_irqchip_in_kernel()) {
642 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
643 }
644
645 if (type == 3) {
646 uint32_t redist0_capacity =
647 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
648 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
649
650 nb_redist_regions = virt_gicv3_redist_region_count(vms);
651
652 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
653 nb_redist_regions);
654 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
655
656 if (nb_redist_regions == 2) {
657 uint32_t redist1_capacity =
658 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
659
660 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
661 MIN(smp_cpus - redist0_count, redist1_capacity));
662 }
663 } else {
664 if (!kvm_irqchip_in_kernel()) {
665 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
666 vms->virt);
667 }
668 }
669 gicbusdev = SYS_BUS_DEVICE(vms->gic);
670 sysbus_realize_and_unref(gicbusdev, &error_fatal);
671 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
672 if (type == 3) {
673 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
674 if (nb_redist_regions == 2) {
675 sysbus_mmio_map(gicbusdev, 2,
676 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
677 }
678 } else {
679 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
680 if (vms->virt) {
681 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
682 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
683 }
684 }
685
686 /* Wire the outputs from each CPU's generic timer and the GICv3
687 * maintenance interrupt signal to the appropriate GIC PPI inputs,
688 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
689 */
690 for (i = 0; i < smp_cpus; i++) {
691 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
692 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
693 int irq;
694 /* Mapping from the output timer irq lines from the CPU to the
695 * GIC PPI inputs we use for the virt board.
696 */
697 const int timer_irq[] = {
698 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
699 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
700 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
701 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
702 };
703
704 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
705 qdev_connect_gpio_out(cpudev, irq,
706 qdev_get_gpio_in(vms->gic,
707 ppibase + timer_irq[irq]));
708 }
709
710 if (type == 3) {
711 qemu_irq irq = qdev_get_gpio_in(vms->gic,
712 ppibase + ARCH_GIC_MAINT_IRQ);
713 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
714 0, irq);
715 } else if (vms->virt) {
716 qemu_irq irq = qdev_get_gpio_in(vms->gic,
717 ppibase + ARCH_GIC_MAINT_IRQ);
718 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
719 }
720
721 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
722 qdev_get_gpio_in(vms->gic, ppibase
723 + VIRTUAL_PMU_IRQ));
724
725 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
726 sysbus_connect_irq(gicbusdev, i + smp_cpus,
727 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
728 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
729 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
730 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
731 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
732 }
733
734 fdt_add_gic_node(vms);
735
736 if (type == 3 && vms->its) {
737 create_its(vms);
738 } else if (type == 2) {
739 create_v2m(vms);
740 }
741 }
742
743 static void create_uart(const VirtMachineState *vms, int uart,
744 MemoryRegion *mem, Chardev *chr)
745 {
746 char *nodename;
747 hwaddr base = vms->memmap[uart].base;
748 hwaddr size = vms->memmap[uart].size;
749 int irq = vms->irqmap[uart];
750 const char compat[] = "arm,pl011\0arm,primecell";
751 const char clocknames[] = "uartclk\0apb_pclk";
752 DeviceState *dev = qdev_new(TYPE_PL011);
753 SysBusDevice *s = SYS_BUS_DEVICE(dev);
754 MachineState *ms = MACHINE(vms);
755
756 qdev_prop_set_chr(dev, "chardev", chr);
757 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
758 memory_region_add_subregion(mem, base,
759 sysbus_mmio_get_region(s, 0));
760 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
761
762 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
763 qemu_fdt_add_subnode(ms->fdt, nodename);
764 /* Note that we can't use setprop_string because of the embedded NUL */
765 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
766 compat, sizeof(compat));
767 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
768 2, base, 2, size);
769 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
770 GIC_FDT_IRQ_TYPE_SPI, irq,
771 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
772 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
773 vms->clock_phandle, vms->clock_phandle);
774 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
775 clocknames, sizeof(clocknames));
776
777 if (uart == VIRT_UART) {
778 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
779 } else {
780 /* Mark as not usable by the normal world */
781 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
782 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
783
784 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
785 nodename);
786 }
787
788 g_free(nodename);
789 }
790
791 static void create_rtc(const VirtMachineState *vms)
792 {
793 char *nodename;
794 hwaddr base = vms->memmap[VIRT_RTC].base;
795 hwaddr size = vms->memmap[VIRT_RTC].size;
796 int irq = vms->irqmap[VIRT_RTC];
797 const char compat[] = "arm,pl031\0arm,primecell";
798 MachineState *ms = MACHINE(vms);
799
800 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
801
802 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
803 qemu_fdt_add_subnode(ms->fdt, nodename);
804 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
805 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
806 2, base, 2, size);
807 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
808 GIC_FDT_IRQ_TYPE_SPI, irq,
809 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
810 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
811 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
812 g_free(nodename);
813 }
814
815 static DeviceState *gpio_key_dev;
816 static void virt_powerdown_req(Notifier *n, void *opaque)
817 {
818 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
819
820 if (s->acpi_dev) {
821 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
822 } else {
823 /* use gpio Pin 3 for power button event */
824 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
825 }
826 }
827
828 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
829 uint32_t phandle)
830 {
831 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
832 qdev_get_gpio_in(pl061_dev, 3));
833
834 qemu_fdt_add_subnode(fdt, "/gpio-keys");
835 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
836 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
837 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
838
839 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
840 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
841 "label", "GPIO Key Poweroff");
842 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
843 KEY_POWER);
844 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
845 "gpios", phandle, 3, 0);
846 }
847
848 #define SECURE_GPIO_POWEROFF 0
849 #define SECURE_GPIO_RESET 1
850
851 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
852 uint32_t phandle)
853 {
854 DeviceState *gpio_pwr_dev;
855
856 /* gpio-pwr */
857 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
858
859 /* connect secure pl061 to gpio-pwr */
860 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
861 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
862 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
863 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
864
865 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
866 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
867 "gpio-poweroff");
868 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
869 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
870 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
871 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
872 "okay");
873
874 qemu_fdt_add_subnode(fdt, "/gpio-restart");
875 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
876 "gpio-restart");
877 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
878 "gpios", phandle, SECURE_GPIO_RESET, 0);
879 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
880 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
881 "okay");
882 }
883
884 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
885 MemoryRegion *mem)
886 {
887 char *nodename;
888 DeviceState *pl061_dev;
889 hwaddr base = vms->memmap[gpio].base;
890 hwaddr size = vms->memmap[gpio].size;
891 int irq = vms->irqmap[gpio];
892 const char compat[] = "arm,pl061\0arm,primecell";
893 SysBusDevice *s;
894 MachineState *ms = MACHINE(vms);
895
896 pl061_dev = qdev_new("pl061");
897 s = SYS_BUS_DEVICE(pl061_dev);
898 sysbus_realize_and_unref(s, &error_fatal);
899 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
900 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
901
902 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
903 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
904 qemu_fdt_add_subnode(ms->fdt, nodename);
905 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
906 2, base, 2, size);
907 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
908 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
909 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
910 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
911 GIC_FDT_IRQ_TYPE_SPI, irq,
912 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
913 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
914 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
915 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
916
917 if (gpio != VIRT_GPIO) {
918 /* Mark as not usable by the normal world */
919 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
920 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
921 }
922 g_free(nodename);
923
924 /* Child gpio devices */
925 if (gpio == VIRT_GPIO) {
926 create_gpio_keys(ms->fdt, pl061_dev, phandle);
927 } else {
928 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
929 }
930 }
931
932 static void create_virtio_devices(const VirtMachineState *vms)
933 {
934 int i;
935 hwaddr size = vms->memmap[VIRT_MMIO].size;
936 MachineState *ms = MACHINE(vms);
937
938 /* We create the transports in forwards order. Since qbus_realize()
939 * prepends (not appends) new child buses, the incrementing loop below will
940 * create a list of virtio-mmio buses with decreasing base addresses.
941 *
942 * When a -device option is processed from the command line,
943 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
944 * order. The upshot is that -device options in increasing command line
945 * order are mapped to virtio-mmio buses with decreasing base addresses.
946 *
947 * When this code was originally written, that arrangement ensured that the
948 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
949 * the first -device on the command line. (The end-to-end order is a
950 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
951 * guest kernel's name-to-address assignment strategy.)
952 *
953 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
954 * the message, if not necessarily the code, of commit 70161ff336.
955 * Therefore the loop now establishes the inverse of the original intent.
956 *
957 * Unfortunately, we can't counteract the kernel change by reversing the
958 * loop; it would break existing command lines.
959 *
960 * In any case, the kernel makes no guarantee about the stability of
961 * enumeration order of virtio devices (as demonstrated by it changing
962 * between kernel versions). For reliable and stable identification
963 * of disks users must use UUIDs or similar mechanisms.
964 */
965 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
966 int irq = vms->irqmap[VIRT_MMIO] + i;
967 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
968
969 sysbus_create_simple("virtio-mmio", base,
970 qdev_get_gpio_in(vms->gic, irq));
971 }
972
973 /* We add dtb nodes in reverse order so that they appear in the finished
974 * device tree lowest address first.
975 *
976 * Note that this mapping is independent of the loop above. The previous
977 * loop influences virtio device to virtio transport assignment, whereas
978 * this loop controls how virtio transports are laid out in the dtb.
979 */
980 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
981 char *nodename;
982 int irq = vms->irqmap[VIRT_MMIO] + i;
983 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
984
985 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
986 qemu_fdt_add_subnode(ms->fdt, nodename);
987 qemu_fdt_setprop_string(ms->fdt, nodename,
988 "compatible", "virtio,mmio");
989 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
990 2, base, 2, size);
991 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
992 GIC_FDT_IRQ_TYPE_SPI, irq,
993 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
994 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
995 g_free(nodename);
996 }
997 }
998
999 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1000
1001 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1002 const char *name,
1003 const char *alias_prop_name)
1004 {
1005 /*
1006 * Create a single flash device. We use the same parameters as
1007 * the flash devices on the Versatile Express board.
1008 */
1009 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1010
1011 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1012 qdev_prop_set_uint8(dev, "width", 4);
1013 qdev_prop_set_uint8(dev, "device-width", 2);
1014 qdev_prop_set_bit(dev, "big-endian", false);
1015 qdev_prop_set_uint16(dev, "id0", 0x89);
1016 qdev_prop_set_uint16(dev, "id1", 0x18);
1017 qdev_prop_set_uint16(dev, "id2", 0x00);
1018 qdev_prop_set_uint16(dev, "id3", 0x00);
1019 qdev_prop_set_string(dev, "name", name);
1020 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1021 object_property_add_alias(OBJECT(vms), alias_prop_name,
1022 OBJECT(dev), "drive");
1023 return PFLASH_CFI01(dev);
1024 }
1025
1026 static void virt_flash_create(VirtMachineState *vms)
1027 {
1028 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1029 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1030 }
1031
1032 static void virt_flash_map1(PFlashCFI01 *flash,
1033 hwaddr base, hwaddr size,
1034 MemoryRegion *sysmem)
1035 {
1036 DeviceState *dev = DEVICE(flash);
1037
1038 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1039 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1040 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1041 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1042
1043 memory_region_add_subregion(sysmem, base,
1044 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1045 0));
1046 }
1047
1048 static void virt_flash_map(VirtMachineState *vms,
1049 MemoryRegion *sysmem,
1050 MemoryRegion *secure_sysmem)
1051 {
1052 /*
1053 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1054 * sysmem is the system memory space. secure_sysmem is the secure view
1055 * of the system, and the first flash device should be made visible only
1056 * there. The second flash device is visible to both secure and nonsecure.
1057 * If sysmem == secure_sysmem this means there is no separate Secure
1058 * address space and both flash devices are generally visible.
1059 */
1060 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1061 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1062
1063 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1064 secure_sysmem);
1065 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1066 sysmem);
1067 }
1068
1069 static void virt_flash_fdt(VirtMachineState *vms,
1070 MemoryRegion *sysmem,
1071 MemoryRegion *secure_sysmem)
1072 {
1073 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1074 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1075 MachineState *ms = MACHINE(vms);
1076 char *nodename;
1077
1078 if (sysmem == secure_sysmem) {
1079 /* Report both flash devices as a single node in the DT */
1080 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1081 qemu_fdt_add_subnode(ms->fdt, nodename);
1082 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1083 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1084 2, flashbase, 2, flashsize,
1085 2, flashbase + flashsize, 2, flashsize);
1086 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1087 g_free(nodename);
1088 } else {
1089 /*
1090 * Report the devices as separate nodes so we can mark one as
1091 * only visible to the secure world.
1092 */
1093 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1094 qemu_fdt_add_subnode(ms->fdt, nodename);
1095 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1096 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1097 2, flashbase, 2, flashsize);
1098 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1099 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1100 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1101 g_free(nodename);
1102
1103 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1104 qemu_fdt_add_subnode(ms->fdt, nodename);
1105 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1106 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1107 2, flashbase + flashsize, 2, flashsize);
1108 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1109 g_free(nodename);
1110 }
1111 }
1112
1113 static bool virt_firmware_init(VirtMachineState *vms,
1114 MemoryRegion *sysmem,
1115 MemoryRegion *secure_sysmem)
1116 {
1117 int i;
1118 const char *bios_name;
1119 BlockBackend *pflash_blk0;
1120
1121 /* Map legacy -drive if=pflash to machine properties */
1122 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1123 pflash_cfi01_legacy_drive(vms->flash[i],
1124 drive_get(IF_PFLASH, 0, i));
1125 }
1126
1127 virt_flash_map(vms, sysmem, secure_sysmem);
1128
1129 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1130
1131 bios_name = MACHINE(vms)->firmware;
1132 if (bios_name) {
1133 char *fname;
1134 MemoryRegion *mr;
1135 int image_size;
1136
1137 if (pflash_blk0) {
1138 error_report("The contents of the first flash device may be "
1139 "specified with -bios or with -drive if=pflash... "
1140 "but you cannot use both options at once");
1141 exit(1);
1142 }
1143
1144 /* Fall back to -bios */
1145
1146 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1147 if (!fname) {
1148 error_report("Could not find ROM image '%s'", bios_name);
1149 exit(1);
1150 }
1151 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1152 image_size = load_image_mr(fname, mr);
1153 g_free(fname);
1154 if (image_size < 0) {
1155 error_report("Could not load ROM image '%s'", bios_name);
1156 exit(1);
1157 }
1158 }
1159
1160 return pflash_blk0 || bios_name;
1161 }
1162
1163 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1164 {
1165 MachineState *ms = MACHINE(vms);
1166 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1167 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1168 FWCfgState *fw_cfg;
1169 char *nodename;
1170
1171 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1172 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1173
1174 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1175 qemu_fdt_add_subnode(ms->fdt, nodename);
1176 qemu_fdt_setprop_string(ms->fdt, nodename,
1177 "compatible", "qemu,fw-cfg-mmio");
1178 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1179 2, base, 2, size);
1180 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1181 g_free(nodename);
1182 return fw_cfg;
1183 }
1184
1185 static void create_pcie_irq_map(const MachineState *ms,
1186 uint32_t gic_phandle,
1187 int first_irq, const char *nodename)
1188 {
1189 int devfn, pin;
1190 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1191 uint32_t *irq_map = full_irq_map;
1192
1193 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1194 for (pin = 0; pin < 4; pin++) {
1195 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1196 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1197 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1198 int i;
1199
1200 uint32_t map[] = {
1201 devfn << 8, 0, 0, /* devfn */
1202 pin + 1, /* PCI pin */
1203 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1204
1205 /* Convert map to big endian */
1206 for (i = 0; i < 10; i++) {
1207 irq_map[i] = cpu_to_be32(map[i]);
1208 }
1209 irq_map += 10;
1210 }
1211 }
1212
1213 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1214 full_irq_map, sizeof(full_irq_map));
1215
1216 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1217 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1218 0, 0,
1219 0x7 /* PCI irq */);
1220 }
1221
1222 static void create_smmu(const VirtMachineState *vms,
1223 PCIBus *bus)
1224 {
1225 char *node;
1226 const char compat[] = "arm,smmu-v3";
1227 int irq = vms->irqmap[VIRT_SMMU];
1228 int i;
1229 hwaddr base = vms->memmap[VIRT_SMMU].base;
1230 hwaddr size = vms->memmap[VIRT_SMMU].size;
1231 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1232 DeviceState *dev;
1233 MachineState *ms = MACHINE(vms);
1234
1235 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1236 return;
1237 }
1238
1239 dev = qdev_new("arm-smmuv3");
1240
1241 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1242 &error_abort);
1243 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1244 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1245 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1246 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1247 qdev_get_gpio_in(vms->gic, irq + i));
1248 }
1249
1250 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1251 qemu_fdt_add_subnode(ms->fdt, node);
1252 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1253 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1254
1255 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1256 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1257 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1258 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1259 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1260
1261 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1262 sizeof(irq_names));
1263
1264 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1265 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1266 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1267
1268 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1269
1270 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1271 g_free(node);
1272 }
1273
1274 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1275 {
1276 const char compat[] = "virtio,pci-iommu";
1277 uint16_t bdf = vms->virtio_iommu_bdf;
1278 MachineState *ms = MACHINE(vms);
1279 char *node;
1280
1281 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1282
1283 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1284 qemu_fdt_add_subnode(ms->fdt, node);
1285 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1286 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1287 1, bdf << 8, 1, 0, 1, 0,
1288 1, 0, 1, 0);
1289
1290 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1291 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1292 g_free(node);
1293
1294 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1295 0x0, vms->iommu_phandle, 0x0, bdf,
1296 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1297 }
1298
1299 static void create_pcie(VirtMachineState *vms)
1300 {
1301 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1302 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1303 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1304 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1305 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1306 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1307 hwaddr base_ecam, size_ecam;
1308 hwaddr base = base_mmio;
1309 int nr_pcie_buses;
1310 int irq = vms->irqmap[VIRT_PCIE];
1311 MemoryRegion *mmio_alias;
1312 MemoryRegion *mmio_reg;
1313 MemoryRegion *ecam_alias;
1314 MemoryRegion *ecam_reg;
1315 DeviceState *dev;
1316 char *nodename;
1317 int i, ecam_id;
1318 PCIHostState *pci;
1319 MachineState *ms = MACHINE(vms);
1320
1321 dev = qdev_new(TYPE_GPEX_HOST);
1322 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1323
1324 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1325 base_ecam = vms->memmap[ecam_id].base;
1326 size_ecam = vms->memmap[ecam_id].size;
1327 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1328 /* Map only the first size_ecam bytes of ECAM space */
1329 ecam_alias = g_new0(MemoryRegion, 1);
1330 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1331 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1332 ecam_reg, 0, size_ecam);
1333 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1334
1335 /* Map the MMIO window into system address space so as to expose
1336 * the section of PCI MMIO space which starts at the same base address
1337 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1338 * the window).
1339 */
1340 mmio_alias = g_new0(MemoryRegion, 1);
1341 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1342 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1343 mmio_reg, base_mmio, size_mmio);
1344 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1345
1346 if (vms->highmem) {
1347 /* Map high MMIO space */
1348 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1349
1350 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1351 mmio_reg, base_mmio_high, size_mmio_high);
1352 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1353 high_mmio_alias);
1354 }
1355
1356 /* Map IO port space */
1357 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1358
1359 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1360 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1361 qdev_get_gpio_in(vms->gic, irq + i));
1362 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1363 }
1364
1365 pci = PCI_HOST_BRIDGE(dev);
1366 vms->bus = pci->bus;
1367 if (vms->bus) {
1368 for (i = 0; i < nb_nics; i++) {
1369 NICInfo *nd = &nd_table[i];
1370
1371 if (!nd->model) {
1372 nd->model = g_strdup("virtio");
1373 }
1374
1375 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1376 }
1377 }
1378
1379 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1380 qemu_fdt_add_subnode(ms->fdt, nodename);
1381 qemu_fdt_setprop_string(ms->fdt, nodename,
1382 "compatible", "pci-host-ecam-generic");
1383 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1384 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1385 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1386 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1387 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1388 nr_pcie_buses - 1);
1389 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1390
1391 if (vms->msi_phandle) {
1392 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1393 vms->msi_phandle);
1394 }
1395
1396 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1397 2, base_ecam, 2, size_ecam);
1398
1399 if (vms->highmem) {
1400 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1401 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1402 2, base_pio, 2, size_pio,
1403 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1404 2, base_mmio, 2, size_mmio,
1405 1, FDT_PCI_RANGE_MMIO_64BIT,
1406 2, base_mmio_high,
1407 2, base_mmio_high, 2, size_mmio_high);
1408 } else {
1409 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1410 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1411 2, base_pio, 2, size_pio,
1412 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1413 2, base_mmio, 2, size_mmio);
1414 }
1415
1416 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1417 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1418
1419 if (vms->iommu) {
1420 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1421
1422 switch (vms->iommu) {
1423 case VIRT_IOMMU_SMMUV3:
1424 create_smmu(vms, vms->bus);
1425 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1426 0x0, vms->iommu_phandle, 0x0, 0x10000);
1427 break;
1428 default:
1429 g_assert_not_reached();
1430 }
1431 }
1432 }
1433
1434 static void create_platform_bus(VirtMachineState *vms)
1435 {
1436 DeviceState *dev;
1437 SysBusDevice *s;
1438 int i;
1439 MemoryRegion *sysmem = get_system_memory();
1440
1441 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1442 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1443 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1444 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1445 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1446 vms->platform_bus_dev = dev;
1447
1448 s = SYS_BUS_DEVICE(dev);
1449 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1450 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1451 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1452 }
1453
1454 memory_region_add_subregion(sysmem,
1455 vms->memmap[VIRT_PLATFORM_BUS].base,
1456 sysbus_mmio_get_region(s, 0));
1457 }
1458
1459 static void create_tag_ram(MemoryRegion *tag_sysmem,
1460 hwaddr base, hwaddr size,
1461 const char *name)
1462 {
1463 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1464
1465 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1466 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1467 }
1468
1469 static void create_secure_ram(VirtMachineState *vms,
1470 MemoryRegion *secure_sysmem,
1471 MemoryRegion *secure_tag_sysmem)
1472 {
1473 MemoryRegion *secram = g_new(MemoryRegion, 1);
1474 char *nodename;
1475 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1476 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1477 MachineState *ms = MACHINE(vms);
1478
1479 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1480 &error_fatal);
1481 memory_region_add_subregion(secure_sysmem, base, secram);
1482
1483 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1484 qemu_fdt_add_subnode(ms->fdt, nodename);
1485 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1486 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1487 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1488 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1489
1490 if (secure_tag_sysmem) {
1491 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1492 }
1493
1494 g_free(nodename);
1495 }
1496
1497 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1498 {
1499 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1500 bootinfo);
1501 MachineState *ms = MACHINE(board);
1502
1503
1504 *fdt_size = board->fdt_size;
1505 return ms->fdt;
1506 }
1507
1508 static void virt_build_smbios(VirtMachineState *vms)
1509 {
1510 MachineClass *mc = MACHINE_GET_CLASS(vms);
1511 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1512 uint8_t *smbios_tables, *smbios_anchor;
1513 size_t smbios_tables_len, smbios_anchor_len;
1514 const char *product = "QEMU Virtual Machine";
1515
1516 if (kvm_enabled()) {
1517 product = "KVM Virtual Machine";
1518 }
1519
1520 smbios_set_defaults("QEMU", product,
1521 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1522 true, SMBIOS_ENTRY_POINT_30);
1523
1524 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1525 &smbios_anchor, &smbios_anchor_len);
1526
1527 if (smbios_anchor) {
1528 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1529 smbios_tables, smbios_tables_len);
1530 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1531 smbios_anchor, smbios_anchor_len);
1532 }
1533 }
1534
1535 static
1536 void virt_machine_done(Notifier *notifier, void *data)
1537 {
1538 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1539 machine_done);
1540 MachineState *ms = MACHINE(vms);
1541 ARMCPU *cpu = ARM_CPU(first_cpu);
1542 struct arm_boot_info *info = &vms->bootinfo;
1543 AddressSpace *as = arm_boot_address_space(cpu, info);
1544
1545 /*
1546 * If the user provided a dtb, we assume the dynamic sysbus nodes
1547 * already are integrated there. This corresponds to a use case where
1548 * the dynamic sysbus nodes are complex and their generation is not yet
1549 * supported. In that case the user can take charge of the guest dt
1550 * while qemu takes charge of the qom stuff.
1551 */
1552 if (info->dtb_filename == NULL) {
1553 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1554 vms->memmap[VIRT_PLATFORM_BUS].base,
1555 vms->memmap[VIRT_PLATFORM_BUS].size,
1556 vms->irqmap[VIRT_PLATFORM_BUS]);
1557 }
1558 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1559 exit(1);
1560 }
1561
1562 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1563
1564 virt_acpi_setup(vms);
1565 virt_build_smbios(vms);
1566 }
1567
1568 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1569 {
1570 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1571 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1572
1573 if (!vmc->disallow_affinity_adjustment) {
1574 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1575 * GIC's target-list limitations. 32-bit KVM hosts currently
1576 * always create clusters of 4 CPUs, but that is expected to
1577 * change when they gain support for gicv3. When KVM is enabled
1578 * it will override the changes we make here, therefore our
1579 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1580 * and to improve SGI efficiency.
1581 */
1582 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1583 clustersz = GICV3_TARGETLIST_BITS;
1584 } else {
1585 clustersz = GIC_TARGETLIST_BITS;
1586 }
1587 }
1588 return arm_cpu_mp_affinity(idx, clustersz);
1589 }
1590
1591 static void virt_set_memmap(VirtMachineState *vms)
1592 {
1593 MachineState *ms = MACHINE(vms);
1594 hwaddr base, device_memory_base, device_memory_size;
1595 int i;
1596
1597 vms->memmap = extended_memmap;
1598
1599 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1600 vms->memmap[i] = base_memmap[i];
1601 }
1602
1603 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1604 error_report("unsupported number of memory slots: %"PRIu64,
1605 ms->ram_slots);
1606 exit(EXIT_FAILURE);
1607 }
1608
1609 /*
1610 * We compute the base of the high IO region depending on the
1611 * amount of initial and device memory. The device memory start/size
1612 * is aligned on 1GiB. We never put the high IO region below 256GiB
1613 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1614 * The device region size assumes 1GiB page max alignment per slot.
1615 */
1616 device_memory_base =
1617 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1618 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1619
1620 /* Base address of the high IO region */
1621 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1622 if (base < device_memory_base) {
1623 error_report("maxmem/slots too huge");
1624 exit(EXIT_FAILURE);
1625 }
1626 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1627 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1628 }
1629
1630 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1631 hwaddr size = extended_memmap[i].size;
1632
1633 base = ROUND_UP(base, size);
1634 vms->memmap[i].base = base;
1635 vms->memmap[i].size = size;
1636 base += size;
1637 }
1638 vms->highest_gpa = base - 1;
1639 if (device_memory_size > 0) {
1640 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1641 ms->device_memory->base = device_memory_base;
1642 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1643 "device-memory", device_memory_size);
1644 }
1645 }
1646
1647 /*
1648 * finalize_gic_version - Determines the final gic_version
1649 * according to the gic-version property
1650 *
1651 * Default GIC type is v2
1652 */
1653 static void finalize_gic_version(VirtMachineState *vms)
1654 {
1655 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1656
1657 if (kvm_enabled()) {
1658 int probe_bitmap;
1659
1660 if (!kvm_irqchip_in_kernel()) {
1661 switch (vms->gic_version) {
1662 case VIRT_GIC_VERSION_HOST:
1663 warn_report(
1664 "gic-version=host not relevant with kernel-irqchip=off "
1665 "as only userspace GICv2 is supported. Using v2 ...");
1666 return;
1667 case VIRT_GIC_VERSION_MAX:
1668 case VIRT_GIC_VERSION_NOSEL:
1669 vms->gic_version = VIRT_GIC_VERSION_2;
1670 return;
1671 case VIRT_GIC_VERSION_2:
1672 return;
1673 case VIRT_GIC_VERSION_3:
1674 error_report(
1675 "gic-version=3 is not supported with kernel-irqchip=off");
1676 exit(1);
1677 }
1678 }
1679
1680 probe_bitmap = kvm_arm_vgic_probe();
1681 if (!probe_bitmap) {
1682 error_report("Unable to determine GIC version supported by host");
1683 exit(1);
1684 }
1685
1686 switch (vms->gic_version) {
1687 case VIRT_GIC_VERSION_HOST:
1688 case VIRT_GIC_VERSION_MAX:
1689 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1690 vms->gic_version = VIRT_GIC_VERSION_3;
1691 } else {
1692 vms->gic_version = VIRT_GIC_VERSION_2;
1693 }
1694 return;
1695 case VIRT_GIC_VERSION_NOSEL:
1696 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1697 vms->gic_version = VIRT_GIC_VERSION_2;
1698 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1699 /*
1700 * in case the host does not support v2 in-kernel emulation or
1701 * the end-user requested more than 8 VCPUs we now default
1702 * to v3. In any case defaulting to v2 would be broken.
1703 */
1704 vms->gic_version = VIRT_GIC_VERSION_3;
1705 } else if (max_cpus > GIC_NCPU) {
1706 error_report("host only supports in-kernel GICv2 emulation "
1707 "but more than 8 vcpus are requested");
1708 exit(1);
1709 }
1710 break;
1711 case VIRT_GIC_VERSION_2:
1712 case VIRT_GIC_VERSION_3:
1713 break;
1714 }
1715
1716 /* Check chosen version is effectively supported by the host */
1717 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1718 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1719 error_report("host does not support in-kernel GICv2 emulation");
1720 exit(1);
1721 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1722 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1723 error_report("host does not support in-kernel GICv3 emulation");
1724 exit(1);
1725 }
1726 return;
1727 }
1728
1729 /* TCG mode */
1730 switch (vms->gic_version) {
1731 case VIRT_GIC_VERSION_NOSEL:
1732 vms->gic_version = VIRT_GIC_VERSION_2;
1733 break;
1734 case VIRT_GIC_VERSION_MAX:
1735 vms->gic_version = VIRT_GIC_VERSION_3;
1736 break;
1737 case VIRT_GIC_VERSION_HOST:
1738 error_report("gic-version=host requires KVM");
1739 exit(1);
1740 case VIRT_GIC_VERSION_2:
1741 case VIRT_GIC_VERSION_3:
1742 break;
1743 }
1744 }
1745
1746 /*
1747 * virt_cpu_post_init() must be called after the CPUs have
1748 * been realized and the GIC has been created.
1749 */
1750 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1751 {
1752 int max_cpus = MACHINE(vms)->smp.max_cpus;
1753 bool aarch64, pmu, steal_time;
1754 CPUState *cpu;
1755
1756 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1757 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1758 steal_time = object_property_get_bool(OBJECT(first_cpu),
1759 "kvm-steal-time", NULL);
1760
1761 if (kvm_enabled()) {
1762 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1763 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1764
1765 if (steal_time) {
1766 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1767 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1768
1769 /* The memory region size must be a multiple of host page size. */
1770 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1771
1772 if (pvtime_size > pvtime_reg_size) {
1773 error_report("pvtime requires a %" HWADDR_PRId
1774 " byte memory region for %d CPUs,"
1775 " but only %" HWADDR_PRId " has been reserved",
1776 pvtime_size, max_cpus, pvtime_reg_size);
1777 exit(1);
1778 }
1779
1780 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1781 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1782 }
1783
1784 CPU_FOREACH(cpu) {
1785 if (pmu) {
1786 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1787 if (kvm_irqchip_in_kernel()) {
1788 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1789 }
1790 kvm_arm_pmu_init(cpu);
1791 }
1792 if (steal_time) {
1793 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1794 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1795 }
1796 }
1797 } else {
1798 if (aarch64 && vms->highmem) {
1799 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1800 int pamax = arm_pamax(ARM_CPU(first_cpu));
1801
1802 if (pamax < requested_pa_size) {
1803 error_report("VCPU supports less PA bits (%d) than "
1804 "requested by the memory map (%d)",
1805 pamax, requested_pa_size);
1806 exit(1);
1807 }
1808 }
1809 }
1810 }
1811
1812 static void machvirt_init(MachineState *machine)
1813 {
1814 VirtMachineState *vms = VIRT_MACHINE(machine);
1815 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1816 MachineClass *mc = MACHINE_GET_CLASS(machine);
1817 const CPUArchIdList *possible_cpus;
1818 MemoryRegion *sysmem = get_system_memory();
1819 MemoryRegion *secure_sysmem = NULL;
1820 MemoryRegion *tag_sysmem = NULL;
1821 MemoryRegion *secure_tag_sysmem = NULL;
1822 int n, virt_max_cpus;
1823 bool firmware_loaded;
1824 bool aarch64 = true;
1825 bool has_ged = !vmc->no_ged;
1826 unsigned int smp_cpus = machine->smp.cpus;
1827 unsigned int max_cpus = machine->smp.max_cpus;
1828
1829 /*
1830 * In accelerated mode, the memory map is computed earlier in kvm_type()
1831 * to create a VM with the right number of IPA bits.
1832 */
1833 if (!vms->memmap) {
1834 virt_set_memmap(vms);
1835 }
1836
1837 /* We can probe only here because during property set
1838 * KVM is not available yet
1839 */
1840 finalize_gic_version(vms);
1841
1842 if (!cpu_type_valid(machine->cpu_type)) {
1843 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1844 exit(1);
1845 }
1846
1847 if (vms->secure) {
1848 if (kvm_enabled()) {
1849 error_report("mach-virt: KVM does not support Security extensions");
1850 exit(1);
1851 }
1852
1853 /*
1854 * The Secure view of the world is the same as the NonSecure,
1855 * but with a few extra devices. Create it as a container region
1856 * containing the system memory at low priority; any secure-only
1857 * devices go in at higher priority and take precedence.
1858 */
1859 secure_sysmem = g_new(MemoryRegion, 1);
1860 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1861 UINT64_MAX);
1862 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1863 }
1864
1865 firmware_loaded = virt_firmware_init(vms, sysmem,
1866 secure_sysmem ?: sysmem);
1867
1868 /* If we have an EL3 boot ROM then the assumption is that it will
1869 * implement PSCI itself, so disable QEMU's internal implementation
1870 * so it doesn't get in the way. Instead of starting secondary
1871 * CPUs in PSCI powerdown state we will start them all running and
1872 * let the boot ROM sort them out.
1873 * The usual case is that we do use QEMU's PSCI implementation;
1874 * if the guest has EL2 then we will use SMC as the conduit,
1875 * and otherwise we will use HVC (for backwards compatibility and
1876 * because if we're using KVM then we must use HVC).
1877 */
1878 if (vms->secure && firmware_loaded) {
1879 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1880 } else if (vms->virt) {
1881 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1882 } else {
1883 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1884 }
1885
1886 /* The maximum number of CPUs depends on the GIC version, or on how
1887 * many redistributors we can fit into the memory map.
1888 */
1889 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1890 virt_max_cpus =
1891 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1892 virt_max_cpus +=
1893 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1894 } else {
1895 virt_max_cpus = GIC_NCPU;
1896 }
1897
1898 if (max_cpus > virt_max_cpus) {
1899 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1900 "supported by machine 'mach-virt' (%d)",
1901 max_cpus, virt_max_cpus);
1902 exit(1);
1903 }
1904
1905 if (vms->virt && kvm_enabled()) {
1906 error_report("mach-virt: KVM does not support providing "
1907 "Virtualization extensions to the guest CPU");
1908 exit(1);
1909 }
1910
1911 if (vms->mte && kvm_enabled()) {
1912 error_report("mach-virt: KVM does not support providing "
1913 "MTE to the guest CPU");
1914 exit(1);
1915 }
1916
1917 create_fdt(vms);
1918
1919 possible_cpus = mc->possible_cpu_arch_ids(machine);
1920 assert(possible_cpus->len == max_cpus);
1921 for (n = 0; n < possible_cpus->len; n++) {
1922 Object *cpuobj;
1923 CPUState *cs;
1924
1925 if (n >= smp_cpus) {
1926 break;
1927 }
1928
1929 cpuobj = object_new(possible_cpus->cpus[n].type);
1930 object_property_set_int(cpuobj, "mp-affinity",
1931 possible_cpus->cpus[n].arch_id, NULL);
1932
1933 cs = CPU(cpuobj);
1934 cs->cpu_index = n;
1935
1936 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1937 &error_fatal);
1938
1939 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1940
1941 if (!vms->secure) {
1942 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1943 }
1944
1945 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1946 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1947 }
1948
1949 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1950 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1951 NULL);
1952
1953 /* Secondary CPUs start in PSCI powered-down state */
1954 if (n > 0) {
1955 object_property_set_bool(cpuobj, "start-powered-off", true,
1956 NULL);
1957 }
1958 }
1959
1960 if (vmc->kvm_no_adjvtime &&
1961 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1962 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1963 }
1964
1965 if (vmc->no_kvm_steal_time &&
1966 object_property_find(cpuobj, "kvm-steal-time")) {
1967 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1968 }
1969
1970 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1971 object_property_set_bool(cpuobj, "pmu", false, NULL);
1972 }
1973
1974 if (object_property_find(cpuobj, "reset-cbar")) {
1975 object_property_set_int(cpuobj, "reset-cbar",
1976 vms->memmap[VIRT_CPUPERIPHS].base,
1977 &error_abort);
1978 }
1979
1980 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1981 &error_abort);
1982 if (vms->secure) {
1983 object_property_set_link(cpuobj, "secure-memory",
1984 OBJECT(secure_sysmem), &error_abort);
1985 }
1986
1987 if (vms->mte) {
1988 /* Create the memory region only once, but link to all cpus. */
1989 if (!tag_sysmem) {
1990 /*
1991 * The property exists only if MemTag is supported.
1992 * If it is, we must allocate the ram to back that up.
1993 */
1994 if (!object_property_find(cpuobj, "tag-memory")) {
1995 error_report("MTE requested, but not supported "
1996 "by the guest CPU");
1997 exit(1);
1998 }
1999
2000 tag_sysmem = g_new(MemoryRegion, 1);
2001 memory_region_init(tag_sysmem, OBJECT(machine),
2002 "tag-memory", UINT64_MAX / 32);
2003
2004 if (vms->secure) {
2005 secure_tag_sysmem = g_new(MemoryRegion, 1);
2006 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2007 "secure-tag-memory", UINT64_MAX / 32);
2008
2009 /* As with ram, secure-tag takes precedence over tag. */
2010 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2011 tag_sysmem, -1);
2012 }
2013 }
2014
2015 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2016 &error_abort);
2017 if (vms->secure) {
2018 object_property_set_link(cpuobj, "secure-tag-memory",
2019 OBJECT(secure_tag_sysmem),
2020 &error_abort);
2021 }
2022 }
2023
2024 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2025 object_unref(cpuobj);
2026 }
2027 fdt_add_timer_nodes(vms);
2028 fdt_add_cpu_nodes(vms);
2029
2030 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2031 machine->ram);
2032 if (machine->device_memory) {
2033 memory_region_add_subregion(sysmem, machine->device_memory->base,
2034 &machine->device_memory->mr);
2035 }
2036
2037 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2038
2039 create_gic(vms);
2040
2041 virt_cpu_post_init(vms, sysmem);
2042
2043 fdt_add_pmu_nodes(vms);
2044
2045 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2046
2047 if (vms->secure) {
2048 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2049 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2050 }
2051
2052 if (tag_sysmem) {
2053 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2054 machine->ram_size, "mach-virt.tag");
2055 }
2056
2057 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2058
2059 create_rtc(vms);
2060
2061 create_pcie(vms);
2062
2063 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2064 vms->acpi_dev = create_acpi_ged(vms);
2065 } else {
2066 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2067 }
2068
2069 if (vms->secure && !vmc->no_secure_gpio) {
2070 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2071 }
2072
2073 /* connect powerdown request */
2074 vms->powerdown_notifier.notify = virt_powerdown_req;
2075 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2076
2077 /* Create mmio transports, so the user can create virtio backends
2078 * (which will be automatically plugged in to the transports). If
2079 * no backend is created the transport will just sit harmlessly idle.
2080 */
2081 create_virtio_devices(vms);
2082
2083 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2084 rom_set_fw(vms->fw_cfg);
2085
2086 create_platform_bus(vms);
2087
2088 if (machine->nvdimms_state->is_enabled) {
2089 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2090 .space_id = AML_AS_SYSTEM_MEMORY,
2091 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2092 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2093 };
2094
2095 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2096 arm_virt_nvdimm_acpi_dsmio,
2097 vms->fw_cfg, OBJECT(vms));
2098 }
2099
2100 vms->bootinfo.ram_size = machine->ram_size;
2101 vms->bootinfo.nb_cpus = smp_cpus;
2102 vms->bootinfo.board_id = -1;
2103 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2104 vms->bootinfo.get_dtb = machvirt_dtb;
2105 vms->bootinfo.skip_dtb_autoload = true;
2106 vms->bootinfo.firmware_loaded = firmware_loaded;
2107 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2108
2109 vms->machine_done.notify = virt_machine_done;
2110 qemu_add_machine_init_done_notifier(&vms->machine_done);
2111 }
2112
2113 static bool virt_get_secure(Object *obj, Error **errp)
2114 {
2115 VirtMachineState *vms = VIRT_MACHINE(obj);
2116
2117 return vms->secure;
2118 }
2119
2120 static void virt_set_secure(Object *obj, bool value, Error **errp)
2121 {
2122 VirtMachineState *vms = VIRT_MACHINE(obj);
2123
2124 vms->secure = value;
2125 }
2126
2127 static bool virt_get_virt(Object *obj, Error **errp)
2128 {
2129 VirtMachineState *vms = VIRT_MACHINE(obj);
2130
2131 return vms->virt;
2132 }
2133
2134 static void virt_set_virt(Object *obj, bool value, Error **errp)
2135 {
2136 VirtMachineState *vms = VIRT_MACHINE(obj);
2137
2138 vms->virt = value;
2139 }
2140
2141 static bool virt_get_highmem(Object *obj, Error **errp)
2142 {
2143 VirtMachineState *vms = VIRT_MACHINE(obj);
2144
2145 return vms->highmem;
2146 }
2147
2148 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2149 {
2150 VirtMachineState *vms = VIRT_MACHINE(obj);
2151
2152 vms->highmem = value;
2153 }
2154
2155 static bool virt_get_its(Object *obj, Error **errp)
2156 {
2157 VirtMachineState *vms = VIRT_MACHINE(obj);
2158
2159 return vms->its;
2160 }
2161
2162 static void virt_set_its(Object *obj, bool value, Error **errp)
2163 {
2164 VirtMachineState *vms = VIRT_MACHINE(obj);
2165
2166 vms->its = value;
2167 }
2168
2169 static char *virt_get_oem_id(Object *obj, Error **errp)
2170 {
2171 VirtMachineState *vms = VIRT_MACHINE(obj);
2172
2173 return g_strdup(vms->oem_id);
2174 }
2175
2176 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2177 {
2178 VirtMachineState *vms = VIRT_MACHINE(obj);
2179 size_t len = strlen(value);
2180
2181 if (len > 6) {
2182 error_setg(errp,
2183 "User specified oem-id value is bigger than 6 bytes in size");
2184 return;
2185 }
2186
2187 strncpy(vms->oem_id, value, 6);
2188 }
2189
2190 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2191 {
2192 VirtMachineState *vms = VIRT_MACHINE(obj);
2193
2194 return g_strdup(vms->oem_table_id);
2195 }
2196
2197 static void virt_set_oem_table_id(Object *obj, const char *value,
2198 Error **errp)
2199 {
2200 VirtMachineState *vms = VIRT_MACHINE(obj);
2201 size_t len = strlen(value);
2202
2203 if (len > 8) {
2204 error_setg(errp,
2205 "User specified oem-table-id value is bigger than 8 bytes in size");
2206 return;
2207 }
2208 strncpy(vms->oem_table_id, value, 8);
2209 }
2210
2211
2212 bool virt_is_acpi_enabled(VirtMachineState *vms)
2213 {
2214 if (vms->acpi == ON_OFF_AUTO_OFF) {
2215 return false;
2216 }
2217 return true;
2218 }
2219
2220 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2221 void *opaque, Error **errp)
2222 {
2223 VirtMachineState *vms = VIRT_MACHINE(obj);
2224 OnOffAuto acpi = vms->acpi;
2225
2226 visit_type_OnOffAuto(v, name, &acpi, errp);
2227 }
2228
2229 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2230 void *opaque, Error **errp)
2231 {
2232 VirtMachineState *vms = VIRT_MACHINE(obj);
2233
2234 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2235 }
2236
2237 static bool virt_get_ras(Object *obj, Error **errp)
2238 {
2239 VirtMachineState *vms = VIRT_MACHINE(obj);
2240
2241 return vms->ras;
2242 }
2243
2244 static void virt_set_ras(Object *obj, bool value, Error **errp)
2245 {
2246 VirtMachineState *vms = VIRT_MACHINE(obj);
2247
2248 vms->ras = value;
2249 }
2250
2251 static bool virt_get_mte(Object *obj, Error **errp)
2252 {
2253 VirtMachineState *vms = VIRT_MACHINE(obj);
2254
2255 return vms->mte;
2256 }
2257
2258 static void virt_set_mte(Object *obj, bool value, Error **errp)
2259 {
2260 VirtMachineState *vms = VIRT_MACHINE(obj);
2261
2262 vms->mte = value;
2263 }
2264
2265 static char *virt_get_gic_version(Object *obj, Error **errp)
2266 {
2267 VirtMachineState *vms = VIRT_MACHINE(obj);
2268 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2269
2270 return g_strdup(val);
2271 }
2272
2273 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2274 {
2275 VirtMachineState *vms = VIRT_MACHINE(obj);
2276
2277 if (!strcmp(value, "3")) {
2278 vms->gic_version = VIRT_GIC_VERSION_3;
2279 } else if (!strcmp(value, "2")) {
2280 vms->gic_version = VIRT_GIC_VERSION_2;
2281 } else if (!strcmp(value, "host")) {
2282 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2283 } else if (!strcmp(value, "max")) {
2284 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2285 } else {
2286 error_setg(errp, "Invalid gic-version value");
2287 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2288 }
2289 }
2290
2291 static char *virt_get_iommu(Object *obj, Error **errp)
2292 {
2293 VirtMachineState *vms = VIRT_MACHINE(obj);
2294
2295 switch (vms->iommu) {
2296 case VIRT_IOMMU_NONE:
2297 return g_strdup("none");
2298 case VIRT_IOMMU_SMMUV3:
2299 return g_strdup("smmuv3");
2300 default:
2301 g_assert_not_reached();
2302 }
2303 }
2304
2305 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2306 {
2307 VirtMachineState *vms = VIRT_MACHINE(obj);
2308
2309 if (!strcmp(value, "smmuv3")) {
2310 vms->iommu = VIRT_IOMMU_SMMUV3;
2311 } else if (!strcmp(value, "none")) {
2312 vms->iommu = VIRT_IOMMU_NONE;
2313 } else {
2314 error_setg(errp, "Invalid iommu value");
2315 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2316 }
2317 }
2318
2319 static CpuInstanceProperties
2320 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2321 {
2322 MachineClass *mc = MACHINE_GET_CLASS(ms);
2323 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2324
2325 assert(cpu_index < possible_cpus->len);
2326 return possible_cpus->cpus[cpu_index].props;
2327 }
2328
2329 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2330 {
2331 return idx % ms->numa_state->num_nodes;
2332 }
2333
2334 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2335 {
2336 int n;
2337 unsigned int max_cpus = ms->smp.max_cpus;
2338 VirtMachineState *vms = VIRT_MACHINE(ms);
2339
2340 if (ms->possible_cpus) {
2341 assert(ms->possible_cpus->len == max_cpus);
2342 return ms->possible_cpus;
2343 }
2344
2345 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2346 sizeof(CPUArchId) * max_cpus);
2347 ms->possible_cpus->len = max_cpus;
2348 for (n = 0; n < ms->possible_cpus->len; n++) {
2349 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2350 ms->possible_cpus->cpus[n].arch_id =
2351 virt_cpu_mp_affinity(vms, n);
2352 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2353 ms->possible_cpus->cpus[n].props.thread_id = n;
2354 }
2355 return ms->possible_cpus;
2356 }
2357
2358 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2359 Error **errp)
2360 {
2361 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2362 const MachineState *ms = MACHINE(hotplug_dev);
2363 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2364
2365 if (!vms->acpi_dev) {
2366 error_setg(errp,
2367 "memory hotplug is not enabled: missing acpi-ged device");
2368 return;
2369 }
2370
2371 if (vms->mte) {
2372 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2373 return;
2374 }
2375
2376 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2377 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2378 return;
2379 }
2380
2381 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2382 }
2383
2384 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2385 DeviceState *dev, Error **errp)
2386 {
2387 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2388 MachineState *ms = MACHINE(hotplug_dev);
2389 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2390
2391 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2392
2393 if (is_nvdimm) {
2394 nvdimm_plug(ms->nvdimms_state);
2395 }
2396
2397 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2398 dev, &error_abort);
2399 }
2400
2401 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2402 DeviceState *dev, Error **errp)
2403 {
2404 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2405
2406 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2407 virt_memory_pre_plug(hotplug_dev, dev, errp);
2408 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2409 hwaddr db_start = 0, db_end = 0;
2410 char *resv_prop_str;
2411
2412 switch (vms->msi_controller) {
2413 case VIRT_MSI_CTRL_NONE:
2414 return;
2415 case VIRT_MSI_CTRL_ITS:
2416 /* GITS_TRANSLATER page */
2417 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2418 db_end = base_memmap[VIRT_GIC_ITS].base +
2419 base_memmap[VIRT_GIC_ITS].size - 1;
2420 break;
2421 case VIRT_MSI_CTRL_GICV2M:
2422 /* MSI_SETSPI_NS page */
2423 db_start = base_memmap[VIRT_GIC_V2M].base;
2424 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2425 break;
2426 }
2427 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2428 db_start, db_end,
2429 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2430
2431 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2432 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2433 g_free(resv_prop_str);
2434 }
2435 }
2436
2437 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2438 DeviceState *dev, Error **errp)
2439 {
2440 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2441
2442 if (vms->platform_bus_dev) {
2443 MachineClass *mc = MACHINE_GET_CLASS(vms);
2444
2445 if (device_is_dynamic_sysbus(mc, dev)) {
2446 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2447 SYS_BUS_DEVICE(dev));
2448 }
2449 }
2450 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2451 virt_memory_plug(hotplug_dev, dev, errp);
2452 }
2453 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2454 PCIDevice *pdev = PCI_DEVICE(dev);
2455
2456 vms->iommu = VIRT_IOMMU_VIRTIO;
2457 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2458 create_virtio_iommu_dt_bindings(vms);
2459 }
2460 }
2461
2462 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2463 DeviceState *dev, Error **errp)
2464 {
2465 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2466 Error *local_err = NULL;
2467
2468 if (!vms->acpi_dev) {
2469 error_setg(&local_err,
2470 "memory hotplug is not enabled: missing acpi-ged device");
2471 goto out;
2472 }
2473
2474 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2475 error_setg(&local_err,
2476 "nvdimm device hot unplug is not supported yet.");
2477 goto out;
2478 }
2479
2480 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2481 &local_err);
2482 out:
2483 error_propagate(errp, local_err);
2484 }
2485
2486 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2487 DeviceState *dev, Error **errp)
2488 {
2489 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2490 Error *local_err = NULL;
2491
2492 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2493 if (local_err) {
2494 goto out;
2495 }
2496
2497 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2498 qdev_unrealize(dev);
2499
2500 out:
2501 error_propagate(errp, local_err);
2502 }
2503
2504 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2505 DeviceState *dev, Error **errp)
2506 {
2507 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2508 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2509 } else {
2510 error_setg(errp, "device unplug request for unsupported device"
2511 " type: %s", object_get_typename(OBJECT(dev)));
2512 }
2513 }
2514
2515 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2516 DeviceState *dev, Error **errp)
2517 {
2518 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2519 virt_dimm_unplug(hotplug_dev, dev, errp);
2520 } else {
2521 error_setg(errp, "virt: device unplug for unsupported device"
2522 " type: %s", object_get_typename(OBJECT(dev)));
2523 }
2524 }
2525
2526 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2527 DeviceState *dev)
2528 {
2529 MachineClass *mc = MACHINE_GET_CLASS(machine);
2530
2531 if (device_is_dynamic_sysbus(mc, dev) ||
2532 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2533 return HOTPLUG_HANDLER(machine);
2534 }
2535 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2536 VirtMachineState *vms = VIRT_MACHINE(machine);
2537
2538 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2539 return HOTPLUG_HANDLER(machine);
2540 }
2541 }
2542 return NULL;
2543 }
2544
2545 /*
2546 * for arm64 kvm_type [7-0] encodes the requested number of bits
2547 * in the IPA address space
2548 */
2549 static int virt_kvm_type(MachineState *ms, const char *type_str)
2550 {
2551 VirtMachineState *vms = VIRT_MACHINE(ms);
2552 int max_vm_pa_size, requested_pa_size;
2553 bool fixed_ipa;
2554
2555 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2556
2557 /* we freeze the memory map to compute the highest gpa */
2558 virt_set_memmap(vms);
2559
2560 requested_pa_size = 64 - clz64(vms->highest_gpa);
2561
2562 /*
2563 * KVM requires the IPA size to be at least 32 bits.
2564 */
2565 if (requested_pa_size < 32) {
2566 requested_pa_size = 32;
2567 }
2568
2569 if (requested_pa_size > max_vm_pa_size) {
2570 error_report("-m and ,maxmem option values "
2571 "require an IPA range (%d bits) larger than "
2572 "the one supported by the host (%d bits)",
2573 requested_pa_size, max_vm_pa_size);
2574 exit(1);
2575 }
2576 /*
2577 * We return the requested PA log size, unless KVM only supports
2578 * the implicit legacy 40b IPA setting, in which case the kvm_type
2579 * must be 0.
2580 */
2581 return fixed_ipa ? 0 : requested_pa_size;
2582 }
2583
2584 static void virt_machine_class_init(ObjectClass *oc, void *data)
2585 {
2586 MachineClass *mc = MACHINE_CLASS(oc);
2587 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2588
2589 mc->init = machvirt_init;
2590 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2591 * The value may be reduced later when we have more information about the
2592 * configuration of the particular instance.
2593 */
2594 mc->max_cpus = 512;
2595 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2596 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2597 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2598 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2599 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2600 mc->block_default_type = IF_VIRTIO;
2601 mc->no_cdrom = 1;
2602 mc->pci_allow_0_address = true;
2603 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2604 mc->minimum_page_bits = 12;
2605 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2606 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2607 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2608 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2609 mc->kvm_type = virt_kvm_type;
2610 assert(!mc->get_hotplug_handler);
2611 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2612 hc->pre_plug = virt_machine_device_pre_plug_cb;
2613 hc->plug = virt_machine_device_plug_cb;
2614 hc->unplug_request = virt_machine_device_unplug_request_cb;
2615 hc->unplug = virt_machine_device_unplug_cb;
2616 mc->nvdimm_supported = true;
2617 mc->auto_enable_numa_with_memhp = true;
2618 mc->auto_enable_numa_with_memdev = true;
2619 mc->default_ram_id = "mach-virt.ram";
2620
2621 object_class_property_add(oc, "acpi", "OnOffAuto",
2622 virt_get_acpi, virt_set_acpi,
2623 NULL, NULL);
2624 object_class_property_set_description(oc, "acpi",
2625 "Enable ACPI");
2626 object_class_property_add_bool(oc, "secure", virt_get_secure,
2627 virt_set_secure);
2628 object_class_property_set_description(oc, "secure",
2629 "Set on/off to enable/disable the ARM "
2630 "Security Extensions (TrustZone)");
2631
2632 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2633 virt_set_virt);
2634 object_class_property_set_description(oc, "virtualization",
2635 "Set on/off to enable/disable emulating a "
2636 "guest CPU which implements the ARM "
2637 "Virtualization Extensions");
2638
2639 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2640 virt_set_highmem);
2641 object_class_property_set_description(oc, "highmem",
2642 "Set on/off to enable/disable using "
2643 "physical address space above 32 bits");
2644
2645 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2646 virt_set_gic_version);
2647 object_class_property_set_description(oc, "gic-version",
2648 "Set GIC version. "
2649 "Valid values are 2, 3, host and max");
2650
2651 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2652 object_class_property_set_description(oc, "iommu",
2653 "Set the IOMMU type. "
2654 "Valid values are none and smmuv3");
2655
2656 object_class_property_add_bool(oc, "ras", virt_get_ras,
2657 virt_set_ras);
2658 object_class_property_set_description(oc, "ras",
2659 "Set on/off to enable/disable reporting host memory errors "
2660 "to a KVM guest using ACPI and guest external abort exceptions");
2661
2662 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2663 object_class_property_set_description(oc, "mte",
2664 "Set on/off to enable/disable emulating a "
2665 "guest CPU which implements the ARM "
2666 "Memory Tagging Extension");
2667
2668 object_class_property_add_bool(oc, "its", virt_get_its,
2669 virt_set_its);
2670 object_class_property_set_description(oc, "its",
2671 "Set on/off to enable/disable "
2672 "ITS instantiation");
2673
2674 object_class_property_add_str(oc, "x-oem-id",
2675 virt_get_oem_id,
2676 virt_set_oem_id);
2677 object_class_property_set_description(oc, "x-oem-id",
2678 "Override the default value of field OEMID "
2679 "in ACPI table header."
2680 "The string may be up to 6 bytes in size");
2681
2682
2683 object_class_property_add_str(oc, "x-oem-table-id",
2684 virt_get_oem_table_id,
2685 virt_set_oem_table_id);
2686 object_class_property_set_description(oc, "x-oem-table-id",
2687 "Override the default value of field OEM Table ID "
2688 "in ACPI table header."
2689 "The string may be up to 8 bytes in size");
2690
2691 }
2692
2693 static void virt_instance_init(Object *obj)
2694 {
2695 VirtMachineState *vms = VIRT_MACHINE(obj);
2696 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2697
2698 /* EL3 is disabled by default on virt: this makes us consistent
2699 * between KVM and TCG for this board, and it also allows us to
2700 * boot UEFI blobs which assume no TrustZone support.
2701 */
2702 vms->secure = false;
2703
2704 /* EL2 is also disabled by default, for similar reasons */
2705 vms->virt = false;
2706
2707 /* High memory is enabled by default */
2708 vms->highmem = true;
2709 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2710
2711 vms->highmem_ecam = !vmc->no_highmem_ecam;
2712
2713 if (vmc->no_its) {
2714 vms->its = false;
2715 } else {
2716 /* Default allows ITS instantiation */
2717 vms->its = true;
2718 }
2719
2720 /* Default disallows iommu instantiation */
2721 vms->iommu = VIRT_IOMMU_NONE;
2722
2723 /* Default disallows RAS instantiation */
2724 vms->ras = false;
2725
2726 /* MTE is disabled by default. */
2727 vms->mte = false;
2728
2729 vms->irqmap = a15irqmap;
2730
2731 virt_flash_create(vms);
2732
2733 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2734 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2735 }
2736
2737 static const TypeInfo virt_machine_info = {
2738 .name = TYPE_VIRT_MACHINE,
2739 .parent = TYPE_MACHINE,
2740 .abstract = true,
2741 .instance_size = sizeof(VirtMachineState),
2742 .class_size = sizeof(VirtMachineClass),
2743 .class_init = virt_machine_class_init,
2744 .instance_init = virt_instance_init,
2745 .interfaces = (InterfaceInfo[]) {
2746 { TYPE_HOTPLUG_HANDLER },
2747 { }
2748 },
2749 };
2750
2751 static void machvirt_machine_init(void)
2752 {
2753 type_register_static(&virt_machine_info);
2754 }
2755 type_init(machvirt_machine_init);
2756
2757 static void virt_machine_6_1_options(MachineClass *mc)
2758 {
2759 }
2760 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1)
2761
2762 static void virt_machine_6_0_options(MachineClass *mc)
2763 {
2764 }
2765 DEFINE_VIRT_MACHINE(6, 0)
2766
2767 static void virt_machine_5_2_options(MachineClass *mc)
2768 {
2769 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2770
2771 virt_machine_6_0_options(mc);
2772 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2773 vmc->no_secure_gpio = true;
2774 }
2775 DEFINE_VIRT_MACHINE(5, 2)
2776
2777 static void virt_machine_5_1_options(MachineClass *mc)
2778 {
2779 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2780
2781 virt_machine_5_2_options(mc);
2782 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2783 vmc->no_kvm_steal_time = true;
2784 }
2785 DEFINE_VIRT_MACHINE(5, 1)
2786
2787 static void virt_machine_5_0_options(MachineClass *mc)
2788 {
2789 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2790
2791 virt_machine_5_1_options(mc);
2792 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2793 mc->numa_mem_supported = true;
2794 vmc->acpi_expose_flash = true;
2795 mc->auto_enable_numa_with_memdev = false;
2796 }
2797 DEFINE_VIRT_MACHINE(5, 0)
2798
2799 static void virt_machine_4_2_options(MachineClass *mc)
2800 {
2801 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2802
2803 virt_machine_5_0_options(mc);
2804 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2805 vmc->kvm_no_adjvtime = true;
2806 }
2807 DEFINE_VIRT_MACHINE(4, 2)
2808
2809 static void virt_machine_4_1_options(MachineClass *mc)
2810 {
2811 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2812
2813 virt_machine_4_2_options(mc);
2814 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2815 vmc->no_ged = true;
2816 mc->auto_enable_numa_with_memhp = false;
2817 }
2818 DEFINE_VIRT_MACHINE(4, 1)
2819
2820 static void virt_machine_4_0_options(MachineClass *mc)
2821 {
2822 virt_machine_4_1_options(mc);
2823 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2824 }
2825 DEFINE_VIRT_MACHINE(4, 0)
2826
2827 static void virt_machine_3_1_options(MachineClass *mc)
2828 {
2829 virt_machine_4_0_options(mc);
2830 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2831 }
2832 DEFINE_VIRT_MACHINE(3, 1)
2833
2834 static void virt_machine_3_0_options(MachineClass *mc)
2835 {
2836 virt_machine_3_1_options(mc);
2837 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2838 }
2839 DEFINE_VIRT_MACHINE(3, 0)
2840
2841 static void virt_machine_2_12_options(MachineClass *mc)
2842 {
2843 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2844
2845 virt_machine_3_0_options(mc);
2846 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2847 vmc->no_highmem_ecam = true;
2848 mc->max_cpus = 255;
2849 }
2850 DEFINE_VIRT_MACHINE(2, 12)
2851
2852 static void virt_machine_2_11_options(MachineClass *mc)
2853 {
2854 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2855
2856 virt_machine_2_12_options(mc);
2857 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2858 vmc->smbios_old_sys_ver = true;
2859 }
2860 DEFINE_VIRT_MACHINE(2, 11)
2861
2862 static void virt_machine_2_10_options(MachineClass *mc)
2863 {
2864 virt_machine_2_11_options(mc);
2865 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2866 /* before 2.11 we never faulted accesses to bad addresses */
2867 mc->ignore_memory_transaction_failures = true;
2868 }
2869 DEFINE_VIRT_MACHINE(2, 10)
2870
2871 static void virt_machine_2_9_options(MachineClass *mc)
2872 {
2873 virt_machine_2_10_options(mc);
2874 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2875 }
2876 DEFINE_VIRT_MACHINE(2, 9)
2877
2878 static void virt_machine_2_8_options(MachineClass *mc)
2879 {
2880 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2881
2882 virt_machine_2_9_options(mc);
2883 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2884 /* For 2.8 and earlier we falsely claimed in the DT that
2885 * our timers were edge-triggered, not level-triggered.
2886 */
2887 vmc->claim_edge_triggered_timers = true;
2888 }
2889 DEFINE_VIRT_MACHINE(2, 8)
2890
2891 static void virt_machine_2_7_options(MachineClass *mc)
2892 {
2893 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2894
2895 virt_machine_2_8_options(mc);
2896 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2897 /* ITS was introduced with 2.8 */
2898 vmc->no_its = true;
2899 /* Stick with 1K pages for migration compatibility */
2900 mc->minimum_page_bits = 0;
2901 }
2902 DEFINE_VIRT_MACHINE(2, 7)
2903
2904 static void virt_machine_2_6_options(MachineClass *mc)
2905 {
2906 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2907
2908 virt_machine_2_7_options(mc);
2909 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2910 vmc->disallow_affinity_adjustment = true;
2911 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2912 vmc->no_pmu = true;
2913 }
2914 DEFINE_VIRT_MACHINE(2, 6)