]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/i2c/smbus_eeprom.c
Move QOM typedefs and add missing includes
[thirdparty/qemu.git] / hw / i2c / smbus_eeprom.c
1 /*
2 * QEMU SMBus EEPROM device
3 *
4 * Copyright (c) 2007 Arastra, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "hw/i2c/smbus_eeprom.h"
34 #include "qom/object.h"
35
36 //#define DEBUG
37
38 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
39
40 typedef struct SMBusEEPROMDevice SMBusEEPROMDevice;
41 #define SMBUS_EEPROM(obj) \
42 OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
43
44 #define SMBUS_EEPROM_SIZE 256
45
46 struct SMBusEEPROMDevice {
47 SMBusDevice smbusdev;
48 uint8_t data[SMBUS_EEPROM_SIZE];
49 uint8_t *init_data;
50 uint8_t offset;
51 bool accessed;
52 };
53
54 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
55 {
56 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
57 uint8_t *data = eeprom->data;
58 uint8_t val = data[eeprom->offset++];
59
60 eeprom->accessed = true;
61 #ifdef DEBUG
62 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
63 dev->i2c.address, val);
64 #endif
65 return val;
66 }
67
68 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
69 {
70 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
71 uint8_t *data = eeprom->data;
72
73 eeprom->accessed = true;
74 #ifdef DEBUG
75 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
76 dev->i2c.address, buf[0], buf[1]);
77 #endif
78 /* len is guaranteed to be > 0 */
79 eeprom->offset = buf[0];
80 buf++;
81 len--;
82
83 for (; len > 0; len--) {
84 data[eeprom->offset] = *buf++;
85 eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
86 }
87
88 return 0;
89 }
90
91 static bool smbus_eeprom_vmstate_needed(void *opaque)
92 {
93 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
94 SMBusEEPROMDevice *eeprom = opaque;
95
96 return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
97 !mc->smbus_no_migration_support;
98 }
99
100 static const VMStateDescription vmstate_smbus_eeprom = {
101 .name = "smbus-eeprom",
102 .version_id = 1,
103 .minimum_version_id = 1,
104 .needed = smbus_eeprom_vmstate_needed,
105 .fields = (VMStateField[]) {
106 VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
107 VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
108 VMSTATE_UINT8(offset, SMBusEEPROMDevice),
109 VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
110 VMSTATE_END_OF_LIST()
111 }
112 };
113
114 /*
115 * Reset the EEPROM contents to the initial state on a reset. This
116 * isn't really how an EEPROM works, of course, but the general
117 * principle of QEMU is to restore function on reset to what it would
118 * be if QEMU was stopped and started.
119 *
120 * The proper thing to do would be to have a backing blockdev to hold
121 * the contents and restore that on startup, and not do this on reset.
122 * But until that time, act as if we had been stopped and restarted.
123 */
124 static void smbus_eeprom_reset(DeviceState *dev)
125 {
126 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
127
128 memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
129 eeprom->offset = 0;
130 }
131
132 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
133 {
134 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
135
136 smbus_eeprom_reset(dev);
137 if (eeprom->init_data == NULL) {
138 error_setg(errp, "init_data cannot be NULL");
139 }
140 }
141
142 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
143 {
144 DeviceClass *dc = DEVICE_CLASS(klass);
145 SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
146
147 dc->realize = smbus_eeprom_realize;
148 dc->reset = smbus_eeprom_reset;
149 sc->receive_byte = eeprom_receive_byte;
150 sc->write_data = eeprom_write_data;
151 dc->vmsd = &vmstate_smbus_eeprom;
152 /* Reason: init_data */
153 dc->user_creatable = false;
154 }
155
156 static const TypeInfo smbus_eeprom_info = {
157 .name = TYPE_SMBUS_EEPROM,
158 .parent = TYPE_SMBUS_DEVICE,
159 .instance_size = sizeof(SMBusEEPROMDevice),
160 .class_init = smbus_eeprom_class_initfn,
161 };
162
163 static void smbus_eeprom_register_types(void)
164 {
165 type_register_static(&smbus_eeprom_info);
166 }
167
168 type_init(smbus_eeprom_register_types)
169
170 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
171 {
172 DeviceState *dev;
173
174 dev = qdev_new(TYPE_SMBUS_EEPROM);
175 qdev_prop_set_uint8(dev, "address", address);
176 /* FIXME: use an array of byte or block backend property? */
177 SMBUS_EEPROM(dev)->init_data = eeprom_buf;
178 qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
179 }
180
181 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
182 const uint8_t *eeprom_spd, int eeprom_spd_size)
183 {
184 int i;
185 /* XXX: make this persistent */
186
187 assert(nb_eeprom <= 8);
188 uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
189 if (eeprom_spd_size > 0) {
190 memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
191 }
192
193 for (i = 0; i < nb_eeprom; i++) {
194 smbus_eeprom_init_one(smbus, 0x50 + i,
195 eeprom_buf + (i * SMBUS_EEPROM_SIZE));
196 }
197 }
198
199 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
200 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
201 {
202 uint8_t *spd;
203 uint8_t nbanks;
204 uint16_t density;
205 uint32_t size;
206 int min_log2, max_log2, sz_log2;
207 int i;
208
209 switch (type) {
210 case SDR:
211 min_log2 = 2;
212 max_log2 = 9;
213 break;
214 case DDR:
215 min_log2 = 5;
216 max_log2 = 12;
217 break;
218 case DDR2:
219 min_log2 = 7;
220 max_log2 = 14;
221 break;
222 default:
223 g_assert_not_reached();
224 }
225 size = ram_size >> 20; /* work in terms of megabytes */
226 sz_log2 = 31 - clz32(size);
227 size = 1U << sz_log2;
228 assert(ram_size == size * MiB);
229 assert(sz_log2 >= min_log2);
230
231 nbanks = 1;
232 while (sz_log2 > max_log2 && nbanks < 8) {
233 sz_log2--;
234 nbanks *= 2;
235 }
236
237 assert(size == (1ULL << sz_log2) * nbanks);
238
239 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
240 if (nbanks == 1 && sz_log2 > min_log2) {
241 sz_log2--;
242 nbanks++;
243 }
244
245 density = 1ULL << (sz_log2 - 2);
246 switch (type) {
247 case DDR2:
248 density = (density & 0xe0) | (density >> 8 & 0x1f);
249 break;
250 case DDR:
251 density = (density & 0xf8) | (density >> 8 & 0x07);
252 break;
253 case SDR:
254 default:
255 density &= 0xff;
256 break;
257 }
258
259 spd = g_malloc0(256);
260 spd[0] = 128; /* data bytes in EEPROM */
261 spd[1] = 8; /* log2 size of EEPROM */
262 spd[2] = type;
263 spd[3] = 13; /* row address bits */
264 spd[4] = 10; /* column address bits */
265 spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
266 spd[6] = 64; /* module data width */
267 /* reserved / data width high */
268 spd[8] = 4; /* interface voltage level */
269 spd[9] = 0x25; /* highest CAS latency */
270 spd[10] = 1; /* access time */
271 /* DIMM configuration 0 = non-ECC */
272 spd[12] = 0x82; /* refresh requirements */
273 spd[13] = 8; /* primary SDRAM width */
274 /* ECC SDRAM width */
275 spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
276 spd[16] = 12; /* burst lengths supported */
277 spd[17] = 4; /* banks per SDRAM device */
278 spd[18] = 12; /* ~CAS latencies supported */
279 spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
280 spd[20] = 2; /* DIMM type / ~WE latencies */
281 /* module features */
282 /* memory chip features */
283 spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
284 /* data access time */
285 /* clock cycle time @ short CAS latency */
286 /* data access time */
287 spd[27] = 20; /* min. row precharge time */
288 spd[28] = 15; /* min. row active row delay */
289 spd[29] = 20; /* min. ~RAS to ~CAS delay */
290 spd[30] = 45; /* min. active to precharge time */
291 spd[31] = density;
292 spd[32] = 20; /* addr/cmd setup time */
293 spd[33] = 8; /* addr/cmd hold time */
294 spd[34] = 20; /* data input setup time */
295 spd[35] = 8; /* data input hold time */
296
297 /* checksum */
298 for (i = 0; i < 63; i++) {
299 spd[63] += spd[i];
300 }
301 return spd;
302 }