]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/i386/intel_iommu.c
a523ef0e658512d729bac698c5f7b1dfb2e4a879
[thirdparty/qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
40 #include "kvm_i386.h"
41 #include "migration/vmstate.h"
42 #include "trace.h"
43
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49
50 /* pe operations */
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (ret_fr) { \
55 ret_fr = -ret_fr; \
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
58 } else { \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
60 } \
61 goto error; \
62 } \
63 }
64
65 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
66 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67
68 static void vtd_panic_require_caching_mode(void)
69 {
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
72 exit(1);
73 }
74
75 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76 uint64_t wmask, uint64_t w1cmask)
77 {
78 stq_le_p(&s->csr[addr], val);
79 stq_le_p(&s->wmask[addr], wmask);
80 stq_le_p(&s->w1cmask[addr], w1cmask);
81 }
82
83 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 {
85 stq_le_p(&s->womask[addr], mask);
86 }
87
88 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89 uint32_t wmask, uint32_t w1cmask)
90 {
91 stl_le_p(&s->csr[addr], val);
92 stl_le_p(&s->wmask[addr], wmask);
93 stl_le_p(&s->w1cmask[addr], w1cmask);
94 }
95
96 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 {
98 stl_le_p(&s->womask[addr], mask);
99 }
100
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 {
104 uint64_t oldval = ldq_le_p(&s->csr[addr]);
105 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107 stq_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
109 }
110
111 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 {
113 uint32_t oldval = ldl_le_p(&s->csr[addr]);
114 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116 stl_le_p(&s->csr[addr],
117 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
118 }
119
120 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 {
122 uint64_t val = ldq_le_p(&s->csr[addr]);
123 uint64_t womask = ldq_le_p(&s->womask[addr]);
124 return val & ~womask;
125 }
126
127 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 {
129 uint32_t val = ldl_le_p(&s->csr[addr]);
130 uint32_t womask = ldl_le_p(&s->womask[addr]);
131 return val & ~womask;
132 }
133
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 {
137 return ldq_le_p(&s->csr[addr]);
138 }
139
140 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 {
142 return ldl_le_p(&s->csr[addr]);
143 }
144
145 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 {
147 stq_le_p(&s->csr[addr], val);
148 }
149
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151 uint32_t clear, uint32_t mask)
152 {
153 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154 stl_le_p(&s->csr[addr], new_val);
155 return new_val;
156 }
157
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159 uint64_t clear, uint64_t mask)
160 {
161 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162 stq_le_p(&s->csr[addr], new_val);
163 return new_val;
164 }
165
166 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 {
168 qemu_mutex_lock(&s->iommu_lock);
169 }
170
171 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 {
173 qemu_mutex_unlock(&s->iommu_lock);
174 }
175
176 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 {
178 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179
180 if (s->scalable_mode) {
181 s->root_scalable = val & VTD_RTADDR_SMT;
182 }
183 }
184
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187 {
188 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
189 }
190
191 /* GHashTable functions */
192 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193 {
194 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
195 }
196
197 static guint vtd_uint64_hash(gconstpointer v)
198 {
199 return (guint)*(const uint64_t *)v;
200 }
201
202 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203 gpointer user_data)
204 {
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 uint16_t domain_id = *(uint16_t *)user_data;
207 return entry->domain_id == domain_id;
208 }
209
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212 {
213 assert(level != 0);
214 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
215 }
216
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218 {
219 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
220 }
221
222 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223 gpointer user_data)
224 {
225 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
227 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
229 return (entry->domain_id == info->domain_id) &&
230 (((entry->gfn & info->mask) == gfn) ||
231 (entry->gfn == gfn_tlb));
232 }
233
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 */
237 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
238 {
239 VTDAddressSpace *vtd_as;
240 VTDBus *vtd_bus;
241 GHashTableIter bus_it;
242 uint32_t devfn_it;
243
244 trace_vtd_context_cache_reset();
245
246 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247
248 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
249 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
250 vtd_as = vtd_bus->dev_as[devfn_it];
251 if (!vtd_as) {
252 continue;
253 }
254 vtd_as->context_cache_entry.context_cache_gen = 0;
255 }
256 }
257 s->context_cache_gen = 1;
258 }
259
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
262 {
263 assert(s->iotlb);
264 g_hash_table_remove_all(s->iotlb);
265 }
266
267 static void vtd_reset_iotlb(IntelIOMMUState *s)
268 {
269 vtd_iommu_lock(s);
270 vtd_reset_iotlb_locked(s);
271 vtd_iommu_unlock(s);
272 }
273
274 static void vtd_reset_caches(IntelIOMMUState *s)
275 {
276 vtd_iommu_lock(s);
277 vtd_reset_iotlb_locked(s);
278 vtd_reset_context_cache_locked(s);
279 vtd_iommu_unlock(s);
280 }
281
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
283 uint32_t level)
284 {
285 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
287 }
288
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290 {
291 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
292 }
293
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296 hwaddr addr)
297 {
298 VTDIOTLBEntry *entry;
299 uint64_t key;
300 int level;
301
302 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304 source_id, level);
305 entry = g_hash_table_lookup(s->iotlb, &key);
306 if (entry) {
307 goto out;
308 }
309 }
310
311 out:
312 return entry;
313 }
314
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317 uint16_t domain_id, hwaddr addr, uint64_t slpte,
318 uint8_t access_flags, uint32_t level)
319 {
320 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321 uint64_t *key = g_malloc(sizeof(*key));
322 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
323
324 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
325 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
327 vtd_reset_iotlb_locked(s);
328 }
329
330 entry->gfn = gfn;
331 entry->domain_id = domain_id;
332 entry->slpte = slpte;
333 entry->access_flags = access_flags;
334 entry->mask = vtd_slpt_level_page_mask(level);
335 *key = vtd_get_iotlb_key(gfn, source_id, level);
336 g_hash_table_replace(s->iotlb, key, entry);
337 }
338
339 /* Given the reg addr of both the message data and address, generate an
340 * interrupt via MSI.
341 */
342 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343 hwaddr mesg_data_reg)
344 {
345 MSIMessage msi;
346
347 assert(mesg_data_reg < DMAR_REG_SIZE);
348 assert(mesg_addr_reg < DMAR_REG_SIZE);
349
350 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351 msi.data = vtd_get_long_raw(s, mesg_data_reg);
352
353 trace_vtd_irq_generate(msi.address, msi.data);
354
355 apic_get_class()->send_msi(&msi);
356 }
357
358 /* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
360 * before any update.
361 */
362 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363 {
364 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365 pre_fsts & VTD_FSTS_IQE) {
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
368 "is not generated");
369 return;
370 }
371 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
373 error_report_once("Interrupt Mask set, irq is not generated");
374 } else {
375 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
377 }
378 }
379
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
381 * @index is Set.
382 */
383 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384 {
385 /* Each reg is 128-bit */
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387 addr += 8; /* Access the high 64-bit half */
388
389 assert(index < DMAR_FRCD_REG_NR);
390
391 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
392 }
393
394 /* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
396 * registers.
397 */
398 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399 {
400 uint32_t i;
401 uint32_t ppf_mask = 0;
402
403 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404 if (vtd_is_frcd_set(s, i)) {
405 ppf_mask = VTD_FSTS_PPF;
406 break;
407 }
408 }
409 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
410 trace_vtd_fsts_ppf(!!ppf_mask);
411 }
412
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414 {
415 /* Each reg is 128-bit */
416 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417 addr += 8; /* Access the high 64-bit half */
418
419 assert(index < DMAR_FRCD_REG_NR);
420
421 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422 vtd_update_fsts_ppf(s);
423 }
424
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427 uint16_t source_id, hwaddr addr,
428 VTDFaultReason fault, bool is_write)
429 {
430 uint64_t hi = 0, lo;
431 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432
433 assert(index < DMAR_FRCD_REG_NR);
434
435 lo = VTD_FRCD_FI(addr);
436 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437 if (!is_write) {
438 hi |= VTD_FRCD_T;
439 }
440 vtd_set_quad_raw(s, frcd_reg_addr, lo);
441 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
442
443 trace_vtd_frr_new(index, hi, lo);
444 }
445
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448 {
449 uint32_t i;
450 uint64_t frcd_reg;
451 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452
453 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454 frcd_reg = vtd_get_quad_raw(s, addr);
455 if ((frcd_reg & VTD_FRCD_F) &&
456 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457 return true;
458 }
459 addr += 16; /* 128-bit for each */
460 }
461 return false;
462 }
463
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466 hwaddr addr, VTDFaultReason fault,
467 bool is_write)
468 {
469 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470
471 assert(fault < VTD_FR_MAX);
472
473 if (fault == VTD_FR_RESERVED_ERR) {
474 /* This is not a normal fault reason case. Drop it. */
475 return;
476 }
477
478 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479
480 if (fsts_reg & VTD_FSTS_PFO) {
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
483 return;
484 }
485
486 if (vtd_try_collapse_fault(s, source_id)) {
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
489 return;
490 }
491
492 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
495 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496 return;
497 }
498
499 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500
501 if (fsts_reg & VTD_FSTS_PPF) {
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
504 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505 s->next_frcd_reg++;
506 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507 s->next_frcd_reg = 0;
508 }
509 } else {
510 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511 VTD_FSTS_FRI(s->next_frcd_reg));
512 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513 s->next_frcd_reg++;
514 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515 s->next_frcd_reg = 0;
516 }
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
519 */
520 vtd_generate_fault_event(s, fsts_reg);
521 }
522 }
523
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
525 * conditions.
526 */
527 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528 {
529 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530
531 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532 vtd_generate_fault_event(s, fsts_reg);
533 }
534
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState *s)
537 {
538 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
540 return;
541 }
542 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
547 return;
548 } else {
549 /* Generate the interrupt event */
550 trace_vtd_inv_desc_wait_irq("Generating complete event");
551 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
553 }
554 }
555
556 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557 VTDRootEntry *re,
558 uint8_t devfn)
559 {
560 if (s->root_scalable && devfn > UINT8_MAX / 2) {
561 return re->hi & VTD_ROOT_ENTRY_P;
562 }
563
564 return re->lo & VTD_ROOT_ENTRY_P;
565 }
566
567 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568 VTDRootEntry *re)
569 {
570 dma_addr_t addr;
571
572 addr = s->root + index * sizeof(*re);
573 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
574 re->lo = 0;
575 return -VTD_FR_ROOT_TABLE_INV;
576 }
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
579 return 0;
580 }
581
582 static inline bool vtd_ce_present(VTDContextEntry *context)
583 {
584 return context->lo & VTD_CONTEXT_ENTRY_P;
585 }
586
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
590 VTDContextEntry *ce)
591 {
592 dma_addr_t addr, ce_size;
593
594 /* we have checked that root entry is present */
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
597
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
603 }
604
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
607 return -VTD_FR_CONTEXT_TABLE_INV;
608 }
609
610 ce->lo = le64_to_cpu(ce->lo);
611 ce->hi = le64_to_cpu(ce->hi);
612 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613 ce->val[2] = le64_to_cpu(ce->val[2]);
614 ce->val[3] = le64_to_cpu(ce->val[3]);
615 }
616 return 0;
617 }
618
619 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
620 {
621 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
622 }
623
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
625 {
626 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
627 }
628
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
631 {
632 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
633 }
634
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
637 {
638 uint64_t slpte;
639
640 assert(index < VTD_SL_PT_ENTRY_NR);
641
642 if (dma_memory_read(&address_space_memory,
643 base_addr + index * sizeof(slpte), &slpte,
644 sizeof(slpte))) {
645 slpte = (uint64_t)-1;
646 return slpte;
647 }
648 slpte = le64_to_cpu(slpte);
649 return slpte;
650 }
651
652 /* Given an iova and the level of paging structure, return the offset
653 * of current level.
654 */
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
656 {
657 return (iova >> vtd_slpt_level_shift(level)) &
658 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
659 }
660
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
663 {
664 return VTD_CAP_SAGAW_MASK & s->cap &
665 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
666 }
667
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670 VTDPASIDEntry *pe)
671 {
672 switch (VTD_PE_GET_TYPE(pe)) {
673 case VTD_SM_PASID_ENTRY_FLT:
674 case VTD_SM_PASID_ENTRY_SLT:
675 case VTD_SM_PASID_ENTRY_NESTED:
676 break;
677 case VTD_SM_PASID_ENTRY_PT:
678 if (!x86_iommu->pt_supported) {
679 return false;
680 }
681 break;
682 default:
683 /* Unknwon type */
684 return false;
685 }
686 return true;
687 }
688
689 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
690 {
691 return pdire->val & 1;
692 }
693
694 /**
695 * Caller of this function should check present bit if wants
696 * to use pdir entry for futher usage except for fpd bit check.
697 */
698 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
699 uint32_t pasid,
700 VTDPASIDDirEntry *pdire)
701 {
702 uint32_t index;
703 dma_addr_t addr, entry_size;
704
705 index = VTD_PASID_DIR_INDEX(pasid);
706 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
707 addr = pasid_dir_base + index * entry_size;
708 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
709 return -VTD_FR_PASID_TABLE_INV;
710 }
711
712 return 0;
713 }
714
715 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
716 {
717 return pe->val[0] & VTD_PASID_ENTRY_P;
718 }
719
720 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
721 uint32_t pasid,
722 dma_addr_t addr,
723 VTDPASIDEntry *pe)
724 {
725 uint32_t index;
726 dma_addr_t entry_size;
727 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
728
729 index = VTD_PASID_TABLE_INDEX(pasid);
730 entry_size = VTD_PASID_ENTRY_SIZE;
731 addr = addr + index * entry_size;
732 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
733 return -VTD_FR_PASID_TABLE_INV;
734 }
735
736 /* Do translation type check */
737 if (!vtd_pe_type_check(x86_iommu, pe)) {
738 return -VTD_FR_PASID_TABLE_INV;
739 }
740
741 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
742 return -VTD_FR_PASID_TABLE_INV;
743 }
744
745 return 0;
746 }
747
748 /**
749 * Caller of this function should check present bit if wants
750 * to use pasid entry for futher usage except for fpd bit check.
751 */
752 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
753 uint32_t pasid,
754 VTDPASIDDirEntry *pdire,
755 VTDPASIDEntry *pe)
756 {
757 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
758
759 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
760 }
761
762 /**
763 * This function gets a pasid entry from a specified pasid
764 * table (includes dir and leaf table) with a specified pasid.
765 * Sanity check should be done to ensure return a present
766 * pasid entry to caller.
767 */
768 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
769 dma_addr_t pasid_dir_base,
770 uint32_t pasid,
771 VTDPASIDEntry *pe)
772 {
773 int ret;
774 VTDPASIDDirEntry pdire;
775
776 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
777 pasid, &pdire);
778 if (ret) {
779 return ret;
780 }
781
782 if (!vtd_pdire_present(&pdire)) {
783 return -VTD_FR_PASID_TABLE_INV;
784 }
785
786 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
787 if (ret) {
788 return ret;
789 }
790
791 if (!vtd_pe_present(pe)) {
792 return -VTD_FR_PASID_TABLE_INV;
793 }
794
795 return 0;
796 }
797
798 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
799 VTDContextEntry *ce,
800 VTDPASIDEntry *pe)
801 {
802 uint32_t pasid;
803 dma_addr_t pasid_dir_base;
804 int ret = 0;
805
806 pasid = VTD_CE_GET_RID2PASID(ce);
807 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
808 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
809
810 return ret;
811 }
812
813 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
814 VTDContextEntry *ce,
815 bool *pe_fpd_set)
816 {
817 int ret;
818 uint32_t pasid;
819 dma_addr_t pasid_dir_base;
820 VTDPASIDDirEntry pdire;
821 VTDPASIDEntry pe;
822
823 pasid = VTD_CE_GET_RID2PASID(ce);
824 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
825
826 /*
827 * No present bit check since fpd is meaningful even
828 * if the present bit is clear.
829 */
830 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
831 if (ret) {
832 return ret;
833 }
834
835 if (pdire.val & VTD_PASID_DIR_FPD) {
836 *pe_fpd_set = true;
837 return 0;
838 }
839
840 if (!vtd_pdire_present(&pdire)) {
841 return -VTD_FR_PASID_TABLE_INV;
842 }
843
844 /*
845 * No present bit check since fpd is meaningful even
846 * if the present bit is clear.
847 */
848 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
849 if (ret) {
850 return ret;
851 }
852
853 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
854 *pe_fpd_set = true;
855 }
856
857 return 0;
858 }
859
860 /* Get the page-table level that hardware should use for the second-level
861 * page-table walk from the Address Width field of context-entry.
862 */
863 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
864 {
865 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
866 }
867
868 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
869 VTDContextEntry *ce)
870 {
871 VTDPASIDEntry pe;
872
873 if (s->root_scalable) {
874 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
875 return VTD_PE_GET_LEVEL(&pe);
876 }
877
878 return vtd_ce_get_level(ce);
879 }
880
881 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
882 {
883 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
884 }
885
886 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
887 VTDContextEntry *ce)
888 {
889 VTDPASIDEntry pe;
890
891 if (s->root_scalable) {
892 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
893 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
894 }
895
896 return vtd_ce_get_agaw(ce);
897 }
898
899 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
900 {
901 return ce->lo & VTD_CONTEXT_ENTRY_TT;
902 }
903
904 /* Only for Legacy Mode. Return true if check passed, otherwise false */
905 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
906 VTDContextEntry *ce)
907 {
908 switch (vtd_ce_get_type(ce)) {
909 case VTD_CONTEXT_TT_MULTI_LEVEL:
910 /* Always supported */
911 break;
912 case VTD_CONTEXT_TT_DEV_IOTLB:
913 if (!x86_iommu->dt_supported) {
914 error_report_once("%s: DT specified but not supported", __func__);
915 return false;
916 }
917 break;
918 case VTD_CONTEXT_TT_PASS_THROUGH:
919 if (!x86_iommu->pt_supported) {
920 error_report_once("%s: PT specified but not supported", __func__);
921 return false;
922 }
923 break;
924 default:
925 /* Unknown type */
926 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
927 vtd_ce_get_type(ce));
928 return false;
929 }
930 return true;
931 }
932
933 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
934 VTDContextEntry *ce, uint8_t aw)
935 {
936 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
937 return 1ULL << MIN(ce_agaw, aw);
938 }
939
940 /* Return true if IOVA passes range check, otherwise false. */
941 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
942 uint64_t iova, VTDContextEntry *ce,
943 uint8_t aw)
944 {
945 /*
946 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
947 * in CAP_REG and AW in context-entry.
948 */
949 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
950 }
951
952 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
953 VTDContextEntry *ce)
954 {
955 VTDPASIDEntry pe;
956
957 if (s->root_scalable) {
958 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
959 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
960 }
961
962 return vtd_ce_get_slpt_base(ce);
963 }
964
965 /*
966 * Rsvd field masks for spte:
967 * vtd_spte_rsvd 4k pages
968 * vtd_spte_rsvd_large large pages
969 */
970 static uint64_t vtd_spte_rsvd[5];
971 static uint64_t vtd_spte_rsvd_large[5];
972
973 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
974 {
975 uint64_t rsvd_mask = vtd_spte_rsvd[level];
976
977 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
978 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
979 /* large page */
980 rsvd_mask = vtd_spte_rsvd_large[level];
981 }
982
983 return slpte & rsvd_mask;
984 }
985
986 /* Find the VTD address space associated with a given bus number */
987 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
988 {
989 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
990 if (!vtd_bus) {
991 /*
992 * Iterate over the registered buses to find the one which
993 * currently hold this bus number, and update the bus_num
994 * lookup table:
995 */
996 GHashTableIter iter;
997
998 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
999 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1000 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1001 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1002 return vtd_bus;
1003 }
1004 }
1005 vtd_bus = NULL;
1006 }
1007 return vtd_bus;
1008 }
1009
1010 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1011 * of the translation, can be used for deciding the size of large page.
1012 */
1013 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1014 uint64_t iova, bool is_write,
1015 uint64_t *slptep, uint32_t *slpte_level,
1016 bool *reads, bool *writes, uint8_t aw_bits)
1017 {
1018 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1019 uint32_t level = vtd_get_iova_level(s, ce);
1020 uint32_t offset;
1021 uint64_t slpte;
1022 uint64_t access_right_check;
1023
1024 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1025 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1026 __func__, iova);
1027 return -VTD_FR_ADDR_BEYOND_MGAW;
1028 }
1029
1030 /* FIXME: what is the Atomics request here? */
1031 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1032
1033 while (true) {
1034 offset = vtd_iova_level_offset(iova, level);
1035 slpte = vtd_get_slpte(addr, offset);
1036
1037 if (slpte == (uint64_t)-1) {
1038 error_report_once("%s: detected read error on DMAR slpte "
1039 "(iova=0x%" PRIx64 ")", __func__, iova);
1040 if (level == vtd_get_iova_level(s, ce)) {
1041 /* Invalid programming of context-entry */
1042 return -VTD_FR_CONTEXT_ENTRY_INV;
1043 } else {
1044 return -VTD_FR_PAGING_ENTRY_INV;
1045 }
1046 }
1047 *reads = (*reads) && (slpte & VTD_SL_R);
1048 *writes = (*writes) && (slpte & VTD_SL_W);
1049 if (!(slpte & access_right_check)) {
1050 error_report_once("%s: detected slpte permission error "
1051 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1052 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1053 iova, level, slpte, is_write);
1054 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1055 }
1056 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1057 error_report_once("%s: detected splte reserve non-zero "
1058 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1059 "slpte=0x%" PRIx64 ")", __func__, iova,
1060 level, slpte);
1061 return -VTD_FR_PAGING_ENTRY_RSVD;
1062 }
1063
1064 if (vtd_is_last_slpte(slpte, level)) {
1065 *slptep = slpte;
1066 *slpte_level = level;
1067 return 0;
1068 }
1069 addr = vtd_get_slpte_addr(slpte, aw_bits);
1070 level--;
1071 }
1072 }
1073
1074 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1075
1076 /**
1077 * Constant information used during page walking
1078 *
1079 * @hook_fn: hook func to be called when detected page
1080 * @private: private data to be passed into hook func
1081 * @notify_unmap: whether we should notify invalid entries
1082 * @as: VT-d address space of the device
1083 * @aw: maximum address width
1084 * @domain: domain ID of the page walk
1085 */
1086 typedef struct {
1087 VTDAddressSpace *as;
1088 vtd_page_walk_hook hook_fn;
1089 void *private;
1090 bool notify_unmap;
1091 uint8_t aw;
1092 uint16_t domain_id;
1093 } vtd_page_walk_info;
1094
1095 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1096 {
1097 VTDAddressSpace *as = info->as;
1098 vtd_page_walk_hook hook_fn = info->hook_fn;
1099 void *private = info->private;
1100 DMAMap target = {
1101 .iova = entry->iova,
1102 .size = entry->addr_mask,
1103 .translated_addr = entry->translated_addr,
1104 .perm = entry->perm,
1105 };
1106 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1107
1108 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1109 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1110 return 0;
1111 }
1112
1113 assert(hook_fn);
1114
1115 /* Update local IOVA mapped ranges */
1116 if (entry->perm) {
1117 if (mapped) {
1118 /* If it's exactly the same translation, skip */
1119 if (!memcmp(mapped, &target, sizeof(target))) {
1120 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1121 entry->translated_addr);
1122 return 0;
1123 } else {
1124 /*
1125 * Translation changed. Normally this should not
1126 * happen, but it can happen when with buggy guest
1127 * OSes. Note that there will be a small window that
1128 * we don't have map at all. But that's the best
1129 * effort we can do. The ideal way to emulate this is
1130 * atomically modify the PTE to follow what has
1131 * changed, but we can't. One example is that vfio
1132 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1133 * interface to modify a mapping (meanwhile it seems
1134 * meaningless to even provide one). Anyway, let's
1135 * mark this as a TODO in case one day we'll have
1136 * a better solution.
1137 */
1138 IOMMUAccessFlags cache_perm = entry->perm;
1139 int ret;
1140
1141 /* Emulate an UNMAP */
1142 entry->perm = IOMMU_NONE;
1143 trace_vtd_page_walk_one(info->domain_id,
1144 entry->iova,
1145 entry->translated_addr,
1146 entry->addr_mask,
1147 entry->perm);
1148 ret = hook_fn(entry, private);
1149 if (ret) {
1150 return ret;
1151 }
1152 /* Drop any existing mapping */
1153 iova_tree_remove(as->iova_tree, &target);
1154 /* Recover the correct permission */
1155 entry->perm = cache_perm;
1156 }
1157 }
1158 iova_tree_insert(as->iova_tree, &target);
1159 } else {
1160 if (!mapped) {
1161 /* Skip since we didn't map this range at all */
1162 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1163 return 0;
1164 }
1165 iova_tree_remove(as->iova_tree, &target);
1166 }
1167
1168 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1169 entry->translated_addr, entry->addr_mask,
1170 entry->perm);
1171 return hook_fn(entry, private);
1172 }
1173
1174 /**
1175 * vtd_page_walk_level - walk over specific level for IOVA range
1176 *
1177 * @addr: base GPA addr to start the walk
1178 * @start: IOVA range start address
1179 * @end: IOVA range end address (start <= addr < end)
1180 * @read: whether parent level has read permission
1181 * @write: whether parent level has write permission
1182 * @info: constant information for the page walk
1183 */
1184 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1185 uint64_t end, uint32_t level, bool read,
1186 bool write, vtd_page_walk_info *info)
1187 {
1188 bool read_cur, write_cur, entry_valid;
1189 uint32_t offset;
1190 uint64_t slpte;
1191 uint64_t subpage_size, subpage_mask;
1192 IOMMUTLBEntry entry;
1193 uint64_t iova = start;
1194 uint64_t iova_next;
1195 int ret = 0;
1196
1197 trace_vtd_page_walk_level(addr, level, start, end);
1198
1199 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1200 subpage_mask = vtd_slpt_level_page_mask(level);
1201
1202 while (iova < end) {
1203 iova_next = (iova & subpage_mask) + subpage_size;
1204
1205 offset = vtd_iova_level_offset(iova, level);
1206 slpte = vtd_get_slpte(addr, offset);
1207
1208 if (slpte == (uint64_t)-1) {
1209 trace_vtd_page_walk_skip_read(iova, iova_next);
1210 goto next;
1211 }
1212
1213 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1214 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1215 goto next;
1216 }
1217
1218 /* Permissions are stacked with parents' */
1219 read_cur = read && (slpte & VTD_SL_R);
1220 write_cur = write && (slpte & VTD_SL_W);
1221
1222 /*
1223 * As long as we have either read/write permission, this is a
1224 * valid entry. The rule works for both page entries and page
1225 * table entries.
1226 */
1227 entry_valid = read_cur | write_cur;
1228
1229 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1230 /*
1231 * This is a valid PDE (or even bigger than PDE). We need
1232 * to walk one further level.
1233 */
1234 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1235 iova, MIN(iova_next, end), level - 1,
1236 read_cur, write_cur, info);
1237 } else {
1238 /*
1239 * This means we are either:
1240 *
1241 * (1) the real page entry (either 4K page, or huge page)
1242 * (2) the whole range is invalid
1243 *
1244 * In either case, we send an IOTLB notification down.
1245 */
1246 entry.target_as = &address_space_memory;
1247 entry.iova = iova & subpage_mask;
1248 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1249 entry.addr_mask = ~subpage_mask;
1250 /* NOTE: this is only meaningful if entry_valid == true */
1251 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1252 ret = vtd_page_walk_one(&entry, info);
1253 }
1254
1255 if (ret < 0) {
1256 return ret;
1257 }
1258
1259 next:
1260 iova = iova_next;
1261 }
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * vtd_page_walk - walk specific IOVA range, and call the hook
1268 *
1269 * @s: intel iommu state
1270 * @ce: context entry to walk upon
1271 * @start: IOVA address to start the walk
1272 * @end: IOVA range end address (start <= addr < end)
1273 * @info: page walking information struct
1274 */
1275 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1276 uint64_t start, uint64_t end,
1277 vtd_page_walk_info *info)
1278 {
1279 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1280 uint32_t level = vtd_get_iova_level(s, ce);
1281
1282 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1283 return -VTD_FR_ADDR_BEYOND_MGAW;
1284 }
1285
1286 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1287 /* Fix end so that it reaches the maximum */
1288 end = vtd_iova_limit(s, ce, info->aw);
1289 }
1290
1291 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1292 }
1293
1294 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1295 VTDRootEntry *re)
1296 {
1297 /* Legacy Mode reserved bits check */
1298 if (!s->root_scalable &&
1299 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1300 goto rsvd_err;
1301
1302 /* Scalable Mode reserved bits check */
1303 if (s->root_scalable &&
1304 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1305 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1306 goto rsvd_err;
1307
1308 return 0;
1309
1310 rsvd_err:
1311 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1312 ", lo=0x%"PRIx64,
1313 __func__, re->hi, re->lo);
1314 return -VTD_FR_ROOT_ENTRY_RSVD;
1315 }
1316
1317 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1318 VTDContextEntry *ce)
1319 {
1320 if (!s->root_scalable &&
1321 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1322 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1323 error_report_once("%s: invalid context entry: hi=%"PRIx64
1324 ", lo=%"PRIx64" (reserved nonzero)",
1325 __func__, ce->hi, ce->lo);
1326 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1327 }
1328
1329 if (s->root_scalable &&
1330 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1331 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1332 ce->val[2] ||
1333 ce->val[3])) {
1334 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1335 ", val[2]=%"PRIx64
1336 ", val[1]=%"PRIx64
1337 ", val[0]=%"PRIx64" (reserved nonzero)",
1338 __func__, ce->val[3], ce->val[2],
1339 ce->val[1], ce->val[0]);
1340 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1347 VTDContextEntry *ce)
1348 {
1349 VTDPASIDEntry pe;
1350
1351 /*
1352 * Make sure in Scalable Mode, a present context entry
1353 * has valid rid2pasid setting, which includes valid
1354 * rid2pasid field and corresponding pasid entry setting
1355 */
1356 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1357 }
1358
1359 /* Map a device to its corresponding domain (context-entry) */
1360 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1361 uint8_t devfn, VTDContextEntry *ce)
1362 {
1363 VTDRootEntry re;
1364 int ret_fr;
1365 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1366
1367 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1368 if (ret_fr) {
1369 return ret_fr;
1370 }
1371
1372 if (!vtd_root_entry_present(s, &re, devfn)) {
1373 /* Not error - it's okay we don't have root entry. */
1374 trace_vtd_re_not_present(bus_num);
1375 return -VTD_FR_ROOT_ENTRY_P;
1376 }
1377
1378 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1379 if (ret_fr) {
1380 return ret_fr;
1381 }
1382
1383 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1384 if (ret_fr) {
1385 return ret_fr;
1386 }
1387
1388 if (!vtd_ce_present(ce)) {
1389 /* Not error - it's okay we don't have context entry. */
1390 trace_vtd_ce_not_present(bus_num, devfn);
1391 return -VTD_FR_CONTEXT_ENTRY_P;
1392 }
1393
1394 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1395 if (ret_fr) {
1396 return ret_fr;
1397 }
1398
1399 /* Check if the programming of context-entry is valid */
1400 if (!s->root_scalable &&
1401 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1402 error_report_once("%s: invalid context entry: hi=%"PRIx64
1403 ", lo=%"PRIx64" (level %d not supported)",
1404 __func__, ce->hi, ce->lo,
1405 vtd_ce_get_level(ce));
1406 return -VTD_FR_CONTEXT_ENTRY_INV;
1407 }
1408
1409 if (!s->root_scalable) {
1410 /* Do translation type check */
1411 if (!vtd_ce_type_check(x86_iommu, ce)) {
1412 /* Errors dumped in vtd_ce_type_check() */
1413 return -VTD_FR_CONTEXT_ENTRY_INV;
1414 }
1415 } else {
1416 /*
1417 * Check if the programming of context-entry.rid2pasid
1418 * and corresponding pasid setting is valid, and thus
1419 * avoids to check pasid entry fetching result in future
1420 * helper function calling.
1421 */
1422 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1423 if (ret_fr) {
1424 return ret_fr;
1425 }
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1432 void *private)
1433 {
1434 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1435 return 0;
1436 }
1437
1438 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1439 VTDContextEntry *ce)
1440 {
1441 VTDPASIDEntry pe;
1442
1443 if (s->root_scalable) {
1444 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1445 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1446 }
1447
1448 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1449 }
1450
1451 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1452 VTDContextEntry *ce,
1453 hwaddr addr, hwaddr size)
1454 {
1455 IntelIOMMUState *s = vtd_as->iommu_state;
1456 vtd_page_walk_info info = {
1457 .hook_fn = vtd_sync_shadow_page_hook,
1458 .private = (void *)&vtd_as->iommu,
1459 .notify_unmap = true,
1460 .aw = s->aw_bits,
1461 .as = vtd_as,
1462 .domain_id = vtd_get_domain_id(s, ce),
1463 };
1464
1465 return vtd_page_walk(s, ce, addr, addr + size, &info);
1466 }
1467
1468 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1469 {
1470 int ret;
1471 VTDContextEntry ce;
1472 IOMMUNotifier *n;
1473
1474 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1475 pci_bus_num(vtd_as->bus),
1476 vtd_as->devfn, &ce);
1477 if (ret) {
1478 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1479 /*
1480 * It's a valid scenario to have a context entry that is
1481 * not present. For example, when a device is removed
1482 * from an existing domain then the context entry will be
1483 * zeroed by the guest before it was put into another
1484 * domain. When this happens, instead of synchronizing
1485 * the shadow pages we should invalidate all existing
1486 * mappings and notify the backends.
1487 */
1488 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1489 vtd_address_space_unmap(vtd_as, n);
1490 }
1491 ret = 0;
1492 }
1493 return ret;
1494 }
1495
1496 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1497 }
1498
1499 /*
1500 * Check if specific device is configed to bypass address
1501 * translation for DMA requests. In Scalable Mode, bypass
1502 * 1st-level translation or 2nd-level translation, it depends
1503 * on PGTT setting.
1504 */
1505 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1506 {
1507 IntelIOMMUState *s;
1508 VTDContextEntry ce;
1509 VTDPASIDEntry pe;
1510 int ret;
1511
1512 assert(as);
1513
1514 s = as->iommu_state;
1515 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1516 as->devfn, &ce);
1517 if (ret) {
1518 /*
1519 * Possibly failed to parse the context entry for some reason
1520 * (e.g., during init, or any guest configuration errors on
1521 * context entries). We should assume PT not enabled for
1522 * safety.
1523 */
1524 return false;
1525 }
1526
1527 if (s->root_scalable) {
1528 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1529 if (ret) {
1530 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1531 __func__, ret);
1532 return false;
1533 }
1534 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1535 }
1536
1537 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1538 }
1539
1540 /* Return whether the device is using IOMMU translation. */
1541 static bool vtd_switch_address_space(VTDAddressSpace *as)
1542 {
1543 bool use_iommu;
1544 /* Whether we need to take the BQL on our own */
1545 bool take_bql = !qemu_mutex_iothread_locked();
1546
1547 assert(as);
1548
1549 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1550
1551 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1552 VTD_PCI_SLOT(as->devfn),
1553 VTD_PCI_FUNC(as->devfn),
1554 use_iommu);
1555
1556 /*
1557 * It's possible that we reach here without BQL, e.g., when called
1558 * from vtd_pt_enable_fast_path(). However the memory APIs need
1559 * it. We'd better make sure we have had it already, or, take it.
1560 */
1561 if (take_bql) {
1562 qemu_mutex_lock_iothread();
1563 }
1564
1565 /* Turn off first then on the other */
1566 if (use_iommu) {
1567 memory_region_set_enabled(&as->nodmar, false);
1568 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1569 } else {
1570 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1571 memory_region_set_enabled(&as->nodmar, true);
1572 }
1573
1574 if (take_bql) {
1575 qemu_mutex_unlock_iothread();
1576 }
1577
1578 return use_iommu;
1579 }
1580
1581 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1582 {
1583 GHashTableIter iter;
1584 VTDBus *vtd_bus;
1585 int i;
1586
1587 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1588 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1589 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1590 if (!vtd_bus->dev_as[i]) {
1591 continue;
1592 }
1593 vtd_switch_address_space(vtd_bus->dev_as[i]);
1594 }
1595 }
1596 }
1597
1598 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1599 {
1600 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1601 }
1602
1603 static const bool vtd_qualified_faults[] = {
1604 [VTD_FR_RESERVED] = false,
1605 [VTD_FR_ROOT_ENTRY_P] = false,
1606 [VTD_FR_CONTEXT_ENTRY_P] = true,
1607 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1608 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1609 [VTD_FR_WRITE] = true,
1610 [VTD_FR_READ] = true,
1611 [VTD_FR_PAGING_ENTRY_INV] = true,
1612 [VTD_FR_ROOT_TABLE_INV] = false,
1613 [VTD_FR_CONTEXT_TABLE_INV] = false,
1614 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1615 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1616 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1617 [VTD_FR_PASID_TABLE_INV] = false,
1618 [VTD_FR_RESERVED_ERR] = false,
1619 [VTD_FR_MAX] = false,
1620 };
1621
1622 /* To see if a fault condition is "qualified", which is reported to software
1623 * only if the FPD field in the context-entry used to process the faulting
1624 * request is 0.
1625 */
1626 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1627 {
1628 return vtd_qualified_faults[fault];
1629 }
1630
1631 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1632 {
1633 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1634 }
1635
1636 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1637 {
1638 VTDBus *vtd_bus;
1639 VTDAddressSpace *vtd_as;
1640 bool success = false;
1641
1642 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1643 if (!vtd_bus) {
1644 goto out;
1645 }
1646
1647 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1648 if (!vtd_as) {
1649 goto out;
1650 }
1651
1652 if (vtd_switch_address_space(vtd_as) == false) {
1653 /* We switched off IOMMU region successfully. */
1654 success = true;
1655 }
1656
1657 out:
1658 trace_vtd_pt_enable_fast_path(source_id, success);
1659 }
1660
1661 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1662 * translation.
1663 *
1664 * Called from RCU critical section.
1665 *
1666 * @bus_num: The bus number
1667 * @devfn: The devfn, which is the combined of device and function number
1668 * @is_write: The access is a write operation
1669 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1670 *
1671 * Returns true if translation is successful, otherwise false.
1672 */
1673 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1674 uint8_t devfn, hwaddr addr, bool is_write,
1675 IOMMUTLBEntry *entry)
1676 {
1677 IntelIOMMUState *s = vtd_as->iommu_state;
1678 VTDContextEntry ce;
1679 uint8_t bus_num = pci_bus_num(bus);
1680 VTDContextCacheEntry *cc_entry;
1681 uint64_t slpte, page_mask;
1682 uint32_t level;
1683 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1684 int ret_fr;
1685 bool is_fpd_set = false;
1686 bool reads = true;
1687 bool writes = true;
1688 uint8_t access_flags;
1689 VTDIOTLBEntry *iotlb_entry;
1690
1691 /*
1692 * We have standalone memory region for interrupt addresses, we
1693 * should never receive translation requests in this region.
1694 */
1695 assert(!vtd_is_interrupt_addr(addr));
1696
1697 vtd_iommu_lock(s);
1698
1699 cc_entry = &vtd_as->context_cache_entry;
1700
1701 /* Try to fetch slpte form IOTLB */
1702 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1703 if (iotlb_entry) {
1704 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1705 iotlb_entry->domain_id);
1706 slpte = iotlb_entry->slpte;
1707 access_flags = iotlb_entry->access_flags;
1708 page_mask = iotlb_entry->mask;
1709 goto out;
1710 }
1711
1712 /* Try to fetch context-entry from cache first */
1713 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1714 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1715 cc_entry->context_entry.lo,
1716 cc_entry->context_cache_gen);
1717 ce = cc_entry->context_entry;
1718 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1719 if (!is_fpd_set && s->root_scalable) {
1720 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1721 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1722 }
1723 } else {
1724 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1725 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1726 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1727 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1728 }
1729 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1730 /* Update context-cache */
1731 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1732 cc_entry->context_cache_gen,
1733 s->context_cache_gen);
1734 cc_entry->context_entry = ce;
1735 cc_entry->context_cache_gen = s->context_cache_gen;
1736 }
1737
1738 /*
1739 * We don't need to translate for pass-through context entries.
1740 * Also, let's ignore IOTLB caching as well for PT devices.
1741 */
1742 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1743 entry->iova = addr & VTD_PAGE_MASK_4K;
1744 entry->translated_addr = entry->iova;
1745 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1746 entry->perm = IOMMU_RW;
1747 trace_vtd_translate_pt(source_id, entry->iova);
1748
1749 /*
1750 * When this happens, it means firstly caching-mode is not
1751 * enabled, and this is the first passthrough translation for
1752 * the device. Let's enable the fast path for passthrough.
1753 *
1754 * When passthrough is disabled again for the device, we can
1755 * capture it via the context entry invalidation, then the
1756 * IOMMU region can be swapped back.
1757 */
1758 vtd_pt_enable_fast_path(s, source_id);
1759 vtd_iommu_unlock(s);
1760 return true;
1761 }
1762
1763 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1764 &reads, &writes, s->aw_bits);
1765 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1766
1767 page_mask = vtd_slpt_level_page_mask(level);
1768 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1769 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1770 access_flags, level);
1771 out:
1772 vtd_iommu_unlock(s);
1773 entry->iova = addr & page_mask;
1774 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1775 entry->addr_mask = ~page_mask;
1776 entry->perm = access_flags;
1777 return true;
1778
1779 error:
1780 vtd_iommu_unlock(s);
1781 entry->iova = 0;
1782 entry->translated_addr = 0;
1783 entry->addr_mask = 0;
1784 entry->perm = IOMMU_NONE;
1785 return false;
1786 }
1787
1788 static void vtd_root_table_setup(IntelIOMMUState *s)
1789 {
1790 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1791 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1792
1793 vtd_update_scalable_state(s);
1794
1795 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1796 }
1797
1798 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1799 uint32_t index, uint32_t mask)
1800 {
1801 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1802 }
1803
1804 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1805 {
1806 uint64_t value = 0;
1807 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1808 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1809 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1810 s->intr_eime = value & VTD_IRTA_EIME;
1811
1812 /* Notify global invalidation */
1813 vtd_iec_notify_all(s, true, 0, 0);
1814
1815 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1816 }
1817
1818 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1819 {
1820 VTDAddressSpace *vtd_as;
1821
1822 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1823 vtd_sync_shadow_page_table(vtd_as);
1824 }
1825 }
1826
1827 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1828 {
1829 trace_vtd_inv_desc_cc_global();
1830 /* Protects context cache */
1831 vtd_iommu_lock(s);
1832 s->context_cache_gen++;
1833 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1834 vtd_reset_context_cache_locked(s);
1835 }
1836 vtd_iommu_unlock(s);
1837 vtd_address_space_refresh_all(s);
1838 /*
1839 * From VT-d spec 6.5.2.1, a global context entry invalidation
1840 * should be followed by a IOTLB global invalidation, so we should
1841 * be safe even without this. Hoewever, let's replay the region as
1842 * well to be safer, and go back here when we need finer tunes for
1843 * VT-d emulation codes.
1844 */
1845 vtd_iommu_replay_all(s);
1846 }
1847
1848 /* Do a context-cache device-selective invalidation.
1849 * @func_mask: FM field after shifting
1850 */
1851 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1852 uint16_t source_id,
1853 uint16_t func_mask)
1854 {
1855 uint16_t mask;
1856 VTDBus *vtd_bus;
1857 VTDAddressSpace *vtd_as;
1858 uint8_t bus_n, devfn;
1859 uint16_t devfn_it;
1860
1861 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1862
1863 switch (func_mask & 3) {
1864 case 0:
1865 mask = 0; /* No bits in the SID field masked */
1866 break;
1867 case 1:
1868 mask = 4; /* Mask bit 2 in the SID field */
1869 break;
1870 case 2:
1871 mask = 6; /* Mask bit 2:1 in the SID field */
1872 break;
1873 case 3:
1874 mask = 7; /* Mask bit 2:0 in the SID field */
1875 break;
1876 }
1877 mask = ~mask;
1878
1879 bus_n = VTD_SID_TO_BUS(source_id);
1880 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1881 if (vtd_bus) {
1882 devfn = VTD_SID_TO_DEVFN(source_id);
1883 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1884 vtd_as = vtd_bus->dev_as[devfn_it];
1885 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1886 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1887 VTD_PCI_FUNC(devfn_it));
1888 vtd_iommu_lock(s);
1889 vtd_as->context_cache_entry.context_cache_gen = 0;
1890 vtd_iommu_unlock(s);
1891 /*
1892 * Do switch address space when needed, in case if the
1893 * device passthrough bit is switched.
1894 */
1895 vtd_switch_address_space(vtd_as);
1896 /*
1897 * So a device is moving out of (or moving into) a
1898 * domain, resync the shadow page table.
1899 * This won't bring bad even if we have no such
1900 * notifier registered - the IOMMU notification
1901 * framework will skip MAP notifications if that
1902 * happened.
1903 */
1904 vtd_sync_shadow_page_table(vtd_as);
1905 }
1906 }
1907 }
1908 }
1909
1910 /* Context-cache invalidation
1911 * Returns the Context Actual Invalidation Granularity.
1912 * @val: the content of the CCMD_REG
1913 */
1914 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1915 {
1916 uint64_t caig;
1917 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1918
1919 switch (type) {
1920 case VTD_CCMD_DOMAIN_INVL:
1921 /* Fall through */
1922 case VTD_CCMD_GLOBAL_INVL:
1923 caig = VTD_CCMD_GLOBAL_INVL_A;
1924 vtd_context_global_invalidate(s);
1925 break;
1926
1927 case VTD_CCMD_DEVICE_INVL:
1928 caig = VTD_CCMD_DEVICE_INVL_A;
1929 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1930 break;
1931
1932 default:
1933 error_report_once("%s: invalid context: 0x%" PRIx64,
1934 __func__, val);
1935 caig = 0;
1936 }
1937 return caig;
1938 }
1939
1940 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1941 {
1942 trace_vtd_inv_desc_iotlb_global();
1943 vtd_reset_iotlb(s);
1944 vtd_iommu_replay_all(s);
1945 }
1946
1947 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1948 {
1949 VTDContextEntry ce;
1950 VTDAddressSpace *vtd_as;
1951
1952 trace_vtd_inv_desc_iotlb_domain(domain_id);
1953
1954 vtd_iommu_lock(s);
1955 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1956 &domain_id);
1957 vtd_iommu_unlock(s);
1958
1959 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1960 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1961 vtd_as->devfn, &ce) &&
1962 domain_id == vtd_get_domain_id(s, &ce)) {
1963 vtd_sync_shadow_page_table(vtd_as);
1964 }
1965 }
1966 }
1967
1968 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1969 uint16_t domain_id, hwaddr addr,
1970 uint8_t am)
1971 {
1972 VTDAddressSpace *vtd_as;
1973 VTDContextEntry ce;
1974 int ret;
1975 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1976
1977 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1978 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1979 vtd_as->devfn, &ce);
1980 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1981 if (vtd_as_has_map_notifier(vtd_as)) {
1982 /*
1983 * As long as we have MAP notifications registered in
1984 * any of our IOMMU notifiers, we need to sync the
1985 * shadow page table.
1986 */
1987 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1988 } else {
1989 /*
1990 * For UNMAP-only notifiers, we don't need to walk the
1991 * page tables. We just deliver the PSI down to
1992 * invalidate caches.
1993 */
1994 IOMMUTLBEntry entry = {
1995 .target_as = &address_space_memory,
1996 .iova = addr,
1997 .translated_addr = 0,
1998 .addr_mask = size - 1,
1999 .perm = IOMMU_NONE,
2000 };
2001 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
2002 }
2003 }
2004 }
2005 }
2006
2007 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2008 hwaddr addr, uint8_t am)
2009 {
2010 VTDIOTLBPageInvInfo info;
2011
2012 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2013
2014 assert(am <= VTD_MAMV);
2015 info.domain_id = domain_id;
2016 info.addr = addr;
2017 info.mask = ~((1 << am) - 1);
2018 vtd_iommu_lock(s);
2019 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2020 vtd_iommu_unlock(s);
2021 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2022 }
2023
2024 /* Flush IOTLB
2025 * Returns the IOTLB Actual Invalidation Granularity.
2026 * @val: the content of the IOTLB_REG
2027 */
2028 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2029 {
2030 uint64_t iaig;
2031 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2032 uint16_t domain_id;
2033 hwaddr addr;
2034 uint8_t am;
2035
2036 switch (type) {
2037 case VTD_TLB_GLOBAL_FLUSH:
2038 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2039 vtd_iotlb_global_invalidate(s);
2040 break;
2041
2042 case VTD_TLB_DSI_FLUSH:
2043 domain_id = VTD_TLB_DID(val);
2044 iaig = VTD_TLB_DSI_FLUSH_A;
2045 vtd_iotlb_domain_invalidate(s, domain_id);
2046 break;
2047
2048 case VTD_TLB_PSI_FLUSH:
2049 domain_id = VTD_TLB_DID(val);
2050 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2051 am = VTD_IVA_AM(addr);
2052 addr = VTD_IVA_ADDR(addr);
2053 if (am > VTD_MAMV) {
2054 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2055 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2056 iaig = 0;
2057 break;
2058 }
2059 iaig = VTD_TLB_PSI_FLUSH_A;
2060 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2061 break;
2062
2063 default:
2064 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2065 __func__, val);
2066 iaig = 0;
2067 }
2068 return iaig;
2069 }
2070
2071 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2072
2073 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2074 {
2075 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2076 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2077 }
2078
2079 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2080 {
2081 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2082
2083 trace_vtd_inv_qi_enable(en);
2084
2085 if (en) {
2086 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2087 /* 2^(x+8) entries */
2088 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2089 s->qi_enabled = true;
2090 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2091 /* Ok - report back to driver */
2092 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2093
2094 if (s->iq_tail != 0) {
2095 /*
2096 * This is a spec violation but Windows guests are known to set up
2097 * Queued Invalidation this way so we allow the write and process
2098 * Invalidation Descriptors right away.
2099 */
2100 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2101 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2102 vtd_fetch_inv_desc(s);
2103 }
2104 }
2105 } else {
2106 if (vtd_queued_inv_disable_check(s)) {
2107 /* disable Queued Invalidation */
2108 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2109 s->iq_head = 0;
2110 s->qi_enabled = false;
2111 /* Ok - report back to driver */
2112 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2113 } else {
2114 error_report_once("%s: detected improper state when disable QI "
2115 "(head=0x%x, tail=0x%x, last_type=%d)",
2116 __func__,
2117 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2118 }
2119 }
2120 }
2121
2122 /* Set Root Table Pointer */
2123 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2124 {
2125 vtd_root_table_setup(s);
2126 /* Ok - report back to driver */
2127 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2128 vtd_reset_caches(s);
2129 vtd_address_space_refresh_all(s);
2130 }
2131
2132 /* Set Interrupt Remap Table Pointer */
2133 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2134 {
2135 vtd_interrupt_remap_table_setup(s);
2136 /* Ok - report back to driver */
2137 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2138 }
2139
2140 /* Handle Translation Enable/Disable */
2141 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2142 {
2143 if (s->dmar_enabled == en) {
2144 return;
2145 }
2146
2147 trace_vtd_dmar_enable(en);
2148
2149 if (en) {
2150 s->dmar_enabled = true;
2151 /* Ok - report back to driver */
2152 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2153 } else {
2154 s->dmar_enabled = false;
2155
2156 /* Clear the index of Fault Recording Register */
2157 s->next_frcd_reg = 0;
2158 /* Ok - report back to driver */
2159 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2160 }
2161
2162 vtd_reset_caches(s);
2163 vtd_address_space_refresh_all(s);
2164 }
2165
2166 /* Handle Interrupt Remap Enable/Disable */
2167 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2168 {
2169 trace_vtd_ir_enable(en);
2170
2171 if (en) {
2172 s->intr_enabled = true;
2173 /* Ok - report back to driver */
2174 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2175 } else {
2176 s->intr_enabled = false;
2177 /* Ok - report back to driver */
2178 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2179 }
2180 }
2181
2182 /* Handle write to Global Command Register */
2183 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2184 {
2185 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2186 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2187 uint32_t changed = status ^ val;
2188
2189 trace_vtd_reg_write_gcmd(status, val);
2190 if (changed & VTD_GCMD_TE) {
2191 /* Translation enable/disable */
2192 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2193 }
2194 if (val & VTD_GCMD_SRTP) {
2195 /* Set/update the root-table pointer */
2196 vtd_handle_gcmd_srtp(s);
2197 }
2198 if (changed & VTD_GCMD_QIE) {
2199 /* Queued Invalidation Enable */
2200 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2201 }
2202 if (val & VTD_GCMD_SIRTP) {
2203 /* Set/update the interrupt remapping root-table pointer */
2204 vtd_handle_gcmd_sirtp(s);
2205 }
2206 if (changed & VTD_GCMD_IRE) {
2207 /* Interrupt remap enable/disable */
2208 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2209 }
2210 }
2211
2212 /* Handle write to Context Command Register */
2213 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2214 {
2215 uint64_t ret;
2216 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2217
2218 /* Context-cache invalidation request */
2219 if (val & VTD_CCMD_ICC) {
2220 if (s->qi_enabled) {
2221 error_report_once("Queued Invalidation enabled, "
2222 "should not use register-based invalidation");
2223 return;
2224 }
2225 ret = vtd_context_cache_invalidate(s, val);
2226 /* Invalidation completed. Change something to show */
2227 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2228 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2229 ret);
2230 }
2231 }
2232
2233 /* Handle write to IOTLB Invalidation Register */
2234 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2235 {
2236 uint64_t ret;
2237 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2238
2239 /* IOTLB invalidation request */
2240 if (val & VTD_TLB_IVT) {
2241 if (s->qi_enabled) {
2242 error_report_once("Queued Invalidation enabled, "
2243 "should not use register-based invalidation");
2244 return;
2245 }
2246 ret = vtd_iotlb_flush(s, val);
2247 /* Invalidation completed. Change something to show */
2248 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2249 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2250 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2251 }
2252 }
2253
2254 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2255 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2256 VTDInvDesc *inv_desc)
2257 {
2258 dma_addr_t base_addr = s->iq;
2259 uint32_t offset = s->iq_head;
2260 uint32_t dw = s->iq_dw ? 32 : 16;
2261 dma_addr_t addr = base_addr + offset * dw;
2262
2263 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2264 error_report_once("Read INV DESC failed.");
2265 return false;
2266 }
2267 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2268 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2269 if (dw == 32) {
2270 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2271 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2272 }
2273 return true;
2274 }
2275
2276 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2277 {
2278 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2279 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2280 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2281 " (reserved nonzero)", __func__, inv_desc->hi,
2282 inv_desc->lo);
2283 return false;
2284 }
2285 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2286 /* Status Write */
2287 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2288 VTD_INV_DESC_WAIT_DATA_SHIFT);
2289
2290 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2291
2292 /* FIXME: need to be masked with HAW? */
2293 dma_addr_t status_addr = inv_desc->hi;
2294 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2295 status_data = cpu_to_le32(status_data);
2296 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2297 sizeof(status_data))) {
2298 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2299 return false;
2300 }
2301 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2302 /* Interrupt flag */
2303 vtd_generate_completion_event(s);
2304 } else {
2305 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2306 " (unknown type)", __func__, inv_desc->hi,
2307 inv_desc->lo);
2308 return false;
2309 }
2310 return true;
2311 }
2312
2313 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2314 VTDInvDesc *inv_desc)
2315 {
2316 uint16_t sid, fmask;
2317
2318 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2319 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2320 " (reserved nonzero)", __func__, inv_desc->hi,
2321 inv_desc->lo);
2322 return false;
2323 }
2324 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2325 case VTD_INV_DESC_CC_DOMAIN:
2326 trace_vtd_inv_desc_cc_domain(
2327 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2328 /* Fall through */
2329 case VTD_INV_DESC_CC_GLOBAL:
2330 vtd_context_global_invalidate(s);
2331 break;
2332
2333 case VTD_INV_DESC_CC_DEVICE:
2334 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2335 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2336 vtd_context_device_invalidate(s, sid, fmask);
2337 break;
2338
2339 default:
2340 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2341 " (invalid type)", __func__, inv_desc->hi,
2342 inv_desc->lo);
2343 return false;
2344 }
2345 return true;
2346 }
2347
2348 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2349 {
2350 uint16_t domain_id;
2351 uint8_t am;
2352 hwaddr addr;
2353
2354 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2355 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2356 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2357 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2358 __func__, inv_desc->hi, inv_desc->lo);
2359 return false;
2360 }
2361
2362 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2363 case VTD_INV_DESC_IOTLB_GLOBAL:
2364 vtd_iotlb_global_invalidate(s);
2365 break;
2366
2367 case VTD_INV_DESC_IOTLB_DOMAIN:
2368 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2369 vtd_iotlb_domain_invalidate(s, domain_id);
2370 break;
2371
2372 case VTD_INV_DESC_IOTLB_PAGE:
2373 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2374 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2375 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2376 if (am > VTD_MAMV) {
2377 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2378 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2379 __func__, inv_desc->hi, inv_desc->lo,
2380 am, (unsigned)VTD_MAMV);
2381 return false;
2382 }
2383 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2384 break;
2385
2386 default:
2387 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2388 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2389 __func__, inv_desc->hi, inv_desc->lo,
2390 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2391 return false;
2392 }
2393 return true;
2394 }
2395
2396 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2397 VTDInvDesc *inv_desc)
2398 {
2399 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2400 inv_desc->iec.index,
2401 inv_desc->iec.index_mask);
2402
2403 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2404 inv_desc->iec.index,
2405 inv_desc->iec.index_mask);
2406 return true;
2407 }
2408
2409 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2410 VTDInvDesc *inv_desc)
2411 {
2412 VTDAddressSpace *vtd_dev_as;
2413 IOMMUTLBEntry entry;
2414 struct VTDBus *vtd_bus;
2415 hwaddr addr;
2416 uint64_t sz;
2417 uint16_t sid;
2418 uint8_t devfn;
2419 bool size;
2420 uint8_t bus_num;
2421
2422 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2423 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2424 devfn = sid & 0xff;
2425 bus_num = sid >> 8;
2426 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2427
2428 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2429 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2430 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2431 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2432 inv_desc->hi, inv_desc->lo);
2433 return false;
2434 }
2435
2436 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2437 if (!vtd_bus) {
2438 goto done;
2439 }
2440
2441 vtd_dev_as = vtd_bus->dev_as[devfn];
2442 if (!vtd_dev_as) {
2443 goto done;
2444 }
2445
2446 /* According to ATS spec table 2.4:
2447 * S = 0, bits 15:12 = xxxx range size: 4K
2448 * S = 1, bits 15:12 = xxx0 range size: 8K
2449 * S = 1, bits 15:12 = xx01 range size: 16K
2450 * S = 1, bits 15:12 = x011 range size: 32K
2451 * S = 1, bits 15:12 = 0111 range size: 64K
2452 * ...
2453 */
2454 if (size) {
2455 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2456 addr &= ~(sz - 1);
2457 } else {
2458 sz = VTD_PAGE_SIZE;
2459 }
2460
2461 entry.target_as = &vtd_dev_as->as;
2462 entry.addr_mask = sz - 1;
2463 entry.iova = addr;
2464 entry.perm = IOMMU_NONE;
2465 entry.translated_addr = 0;
2466 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2467
2468 done:
2469 return true;
2470 }
2471
2472 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2473 {
2474 VTDInvDesc inv_desc;
2475 uint8_t desc_type;
2476
2477 trace_vtd_inv_qi_head(s->iq_head);
2478 if (!vtd_get_inv_desc(s, &inv_desc)) {
2479 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2480 return false;
2481 }
2482
2483 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2484 /* FIXME: should update at first or at last? */
2485 s->iq_last_desc_type = desc_type;
2486
2487 switch (desc_type) {
2488 case VTD_INV_DESC_CC:
2489 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2490 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2491 return false;
2492 }
2493 break;
2494
2495 case VTD_INV_DESC_IOTLB:
2496 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2497 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2498 return false;
2499 }
2500 break;
2501
2502 /*
2503 * TODO: the entity of below two cases will be implemented in future series.
2504 * To make guest (which integrates scalable mode support patch set in
2505 * iommu driver) work, just return true is enough so far.
2506 */
2507 case VTD_INV_DESC_PC:
2508 break;
2509
2510 case VTD_INV_DESC_PIOTLB:
2511 break;
2512
2513 case VTD_INV_DESC_WAIT:
2514 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2515 if (!vtd_process_wait_desc(s, &inv_desc)) {
2516 return false;
2517 }
2518 break;
2519
2520 case VTD_INV_DESC_IEC:
2521 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2522 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2523 return false;
2524 }
2525 break;
2526
2527 case VTD_INV_DESC_DEVICE:
2528 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2529 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2530 return false;
2531 }
2532 break;
2533
2534 default:
2535 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2536 " (unknown type)", __func__, inv_desc.hi,
2537 inv_desc.lo);
2538 return false;
2539 }
2540 s->iq_head++;
2541 if (s->iq_head == s->iq_size) {
2542 s->iq_head = 0;
2543 }
2544 return true;
2545 }
2546
2547 /* Try to fetch and process more Invalidation Descriptors */
2548 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2549 {
2550 trace_vtd_inv_qi_fetch();
2551
2552 if (s->iq_tail >= s->iq_size) {
2553 /* Detects an invalid Tail pointer */
2554 error_report_once("%s: detected invalid QI tail "
2555 "(tail=0x%x, size=0x%x)",
2556 __func__, s->iq_tail, s->iq_size);
2557 vtd_handle_inv_queue_error(s);
2558 return;
2559 }
2560 while (s->iq_head != s->iq_tail) {
2561 if (!vtd_process_inv_desc(s)) {
2562 /* Invalidation Queue Errors */
2563 vtd_handle_inv_queue_error(s);
2564 break;
2565 }
2566 /* Must update the IQH_REG in time */
2567 vtd_set_quad_raw(s, DMAR_IQH_REG,
2568 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2569 VTD_IQH_QH_MASK);
2570 }
2571 }
2572
2573 /* Handle write to Invalidation Queue Tail Register */
2574 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2575 {
2576 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2577
2578 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2579 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2580 __func__, val);
2581 return;
2582 }
2583 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2584 trace_vtd_inv_qi_tail(s->iq_tail);
2585
2586 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2587 /* Process Invalidation Queue here */
2588 vtd_fetch_inv_desc(s);
2589 }
2590 }
2591
2592 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2593 {
2594 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2595 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2596 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2597
2598 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2599 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2600 trace_vtd_fsts_clear_ip();
2601 }
2602 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2603 * Descriptors if there are any when Queued Invalidation is enabled?
2604 */
2605 }
2606
2607 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2608 {
2609 uint32_t fectl_reg;
2610 /* FIXME: when software clears the IM field, check the IP field. But do we
2611 * need to compare the old value and the new value to conclude that
2612 * software clears the IM field? Or just check if the IM field is zero?
2613 */
2614 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2615
2616 trace_vtd_reg_write_fectl(fectl_reg);
2617
2618 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2619 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2620 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2621 }
2622 }
2623
2624 static void vtd_handle_ics_write(IntelIOMMUState *s)
2625 {
2626 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2627 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2628
2629 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2630 trace_vtd_reg_ics_clear_ip();
2631 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2632 }
2633 }
2634
2635 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2636 {
2637 uint32_t iectl_reg;
2638 /* FIXME: when software clears the IM field, check the IP field. But do we
2639 * need to compare the old value and the new value to conclude that
2640 * software clears the IM field? Or just check if the IM field is zero?
2641 */
2642 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2643
2644 trace_vtd_reg_write_iectl(iectl_reg);
2645
2646 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2647 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2648 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2649 }
2650 }
2651
2652 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2653 {
2654 IntelIOMMUState *s = opaque;
2655 uint64_t val;
2656
2657 trace_vtd_reg_read(addr, size);
2658
2659 if (addr + size > DMAR_REG_SIZE) {
2660 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2661 " size=0x%u", __func__, addr, size);
2662 return (uint64_t)-1;
2663 }
2664
2665 switch (addr) {
2666 /* Root Table Address Register, 64-bit */
2667 case DMAR_RTADDR_REG:
2668 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2669 if (size == 4) {
2670 val = val & ((1ULL << 32) - 1);
2671 }
2672 break;
2673
2674 case DMAR_RTADDR_REG_HI:
2675 assert(size == 4);
2676 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2677 break;
2678
2679 /* Invalidation Queue Address Register, 64-bit */
2680 case DMAR_IQA_REG:
2681 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2682 if (size == 4) {
2683 val = val & ((1ULL << 32) - 1);
2684 }
2685 break;
2686
2687 case DMAR_IQA_REG_HI:
2688 assert(size == 4);
2689 val = s->iq >> 32;
2690 break;
2691
2692 default:
2693 if (size == 4) {
2694 val = vtd_get_long(s, addr);
2695 } else {
2696 val = vtd_get_quad(s, addr);
2697 }
2698 }
2699
2700 return val;
2701 }
2702
2703 static void vtd_mem_write(void *opaque, hwaddr addr,
2704 uint64_t val, unsigned size)
2705 {
2706 IntelIOMMUState *s = opaque;
2707
2708 trace_vtd_reg_write(addr, size, val);
2709
2710 if (addr + size > DMAR_REG_SIZE) {
2711 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2712 " size=0x%u", __func__, addr, size);
2713 return;
2714 }
2715
2716 switch (addr) {
2717 /* Global Command Register, 32-bit */
2718 case DMAR_GCMD_REG:
2719 vtd_set_long(s, addr, val);
2720 vtd_handle_gcmd_write(s);
2721 break;
2722
2723 /* Context Command Register, 64-bit */
2724 case DMAR_CCMD_REG:
2725 if (size == 4) {
2726 vtd_set_long(s, addr, val);
2727 } else {
2728 vtd_set_quad(s, addr, val);
2729 vtd_handle_ccmd_write(s);
2730 }
2731 break;
2732
2733 case DMAR_CCMD_REG_HI:
2734 assert(size == 4);
2735 vtd_set_long(s, addr, val);
2736 vtd_handle_ccmd_write(s);
2737 break;
2738
2739 /* IOTLB Invalidation Register, 64-bit */
2740 case DMAR_IOTLB_REG:
2741 if (size == 4) {
2742 vtd_set_long(s, addr, val);
2743 } else {
2744 vtd_set_quad(s, addr, val);
2745 vtd_handle_iotlb_write(s);
2746 }
2747 break;
2748
2749 case DMAR_IOTLB_REG_HI:
2750 assert(size == 4);
2751 vtd_set_long(s, addr, val);
2752 vtd_handle_iotlb_write(s);
2753 break;
2754
2755 /* Invalidate Address Register, 64-bit */
2756 case DMAR_IVA_REG:
2757 if (size == 4) {
2758 vtd_set_long(s, addr, val);
2759 } else {
2760 vtd_set_quad(s, addr, val);
2761 }
2762 break;
2763
2764 case DMAR_IVA_REG_HI:
2765 assert(size == 4);
2766 vtd_set_long(s, addr, val);
2767 break;
2768
2769 /* Fault Status Register, 32-bit */
2770 case DMAR_FSTS_REG:
2771 assert(size == 4);
2772 vtd_set_long(s, addr, val);
2773 vtd_handle_fsts_write(s);
2774 break;
2775
2776 /* Fault Event Control Register, 32-bit */
2777 case DMAR_FECTL_REG:
2778 assert(size == 4);
2779 vtd_set_long(s, addr, val);
2780 vtd_handle_fectl_write(s);
2781 break;
2782
2783 /* Fault Event Data Register, 32-bit */
2784 case DMAR_FEDATA_REG:
2785 assert(size == 4);
2786 vtd_set_long(s, addr, val);
2787 break;
2788
2789 /* Fault Event Address Register, 32-bit */
2790 case DMAR_FEADDR_REG:
2791 if (size == 4) {
2792 vtd_set_long(s, addr, val);
2793 } else {
2794 /*
2795 * While the register is 32-bit only, some guests (Xen...) write to
2796 * it with 64-bit.
2797 */
2798 vtd_set_quad(s, addr, val);
2799 }
2800 break;
2801
2802 /* Fault Event Upper Address Register, 32-bit */
2803 case DMAR_FEUADDR_REG:
2804 assert(size == 4);
2805 vtd_set_long(s, addr, val);
2806 break;
2807
2808 /* Protected Memory Enable Register, 32-bit */
2809 case DMAR_PMEN_REG:
2810 assert(size == 4);
2811 vtd_set_long(s, addr, val);
2812 break;
2813
2814 /* Root Table Address Register, 64-bit */
2815 case DMAR_RTADDR_REG:
2816 if (size == 4) {
2817 vtd_set_long(s, addr, val);
2818 } else {
2819 vtd_set_quad(s, addr, val);
2820 }
2821 break;
2822
2823 case DMAR_RTADDR_REG_HI:
2824 assert(size == 4);
2825 vtd_set_long(s, addr, val);
2826 break;
2827
2828 /* Invalidation Queue Tail Register, 64-bit */
2829 case DMAR_IQT_REG:
2830 if (size == 4) {
2831 vtd_set_long(s, addr, val);
2832 } else {
2833 vtd_set_quad(s, addr, val);
2834 }
2835 vtd_handle_iqt_write(s);
2836 break;
2837
2838 case DMAR_IQT_REG_HI:
2839 assert(size == 4);
2840 vtd_set_long(s, addr, val);
2841 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2842 break;
2843
2844 /* Invalidation Queue Address Register, 64-bit */
2845 case DMAR_IQA_REG:
2846 if (size == 4) {
2847 vtd_set_long(s, addr, val);
2848 } else {
2849 vtd_set_quad(s, addr, val);
2850 }
2851 if (s->ecap & VTD_ECAP_SMTS &&
2852 val & VTD_IQA_DW_MASK) {
2853 s->iq_dw = true;
2854 } else {
2855 s->iq_dw = false;
2856 }
2857 break;
2858
2859 case DMAR_IQA_REG_HI:
2860 assert(size == 4);
2861 vtd_set_long(s, addr, val);
2862 break;
2863
2864 /* Invalidation Completion Status Register, 32-bit */
2865 case DMAR_ICS_REG:
2866 assert(size == 4);
2867 vtd_set_long(s, addr, val);
2868 vtd_handle_ics_write(s);
2869 break;
2870
2871 /* Invalidation Event Control Register, 32-bit */
2872 case DMAR_IECTL_REG:
2873 assert(size == 4);
2874 vtd_set_long(s, addr, val);
2875 vtd_handle_iectl_write(s);
2876 break;
2877
2878 /* Invalidation Event Data Register, 32-bit */
2879 case DMAR_IEDATA_REG:
2880 assert(size == 4);
2881 vtd_set_long(s, addr, val);
2882 break;
2883
2884 /* Invalidation Event Address Register, 32-bit */
2885 case DMAR_IEADDR_REG:
2886 assert(size == 4);
2887 vtd_set_long(s, addr, val);
2888 break;
2889
2890 /* Invalidation Event Upper Address Register, 32-bit */
2891 case DMAR_IEUADDR_REG:
2892 assert(size == 4);
2893 vtd_set_long(s, addr, val);
2894 break;
2895
2896 /* Fault Recording Registers, 128-bit */
2897 case DMAR_FRCD_REG_0_0:
2898 if (size == 4) {
2899 vtd_set_long(s, addr, val);
2900 } else {
2901 vtd_set_quad(s, addr, val);
2902 }
2903 break;
2904
2905 case DMAR_FRCD_REG_0_1:
2906 assert(size == 4);
2907 vtd_set_long(s, addr, val);
2908 break;
2909
2910 case DMAR_FRCD_REG_0_2:
2911 if (size == 4) {
2912 vtd_set_long(s, addr, val);
2913 } else {
2914 vtd_set_quad(s, addr, val);
2915 /* May clear bit 127 (Fault), update PPF */
2916 vtd_update_fsts_ppf(s);
2917 }
2918 break;
2919
2920 case DMAR_FRCD_REG_0_3:
2921 assert(size == 4);
2922 vtd_set_long(s, addr, val);
2923 /* May clear bit 127 (Fault), update PPF */
2924 vtd_update_fsts_ppf(s);
2925 break;
2926
2927 case DMAR_IRTA_REG:
2928 if (size == 4) {
2929 vtd_set_long(s, addr, val);
2930 } else {
2931 vtd_set_quad(s, addr, val);
2932 }
2933 break;
2934
2935 case DMAR_IRTA_REG_HI:
2936 assert(size == 4);
2937 vtd_set_long(s, addr, val);
2938 break;
2939
2940 default:
2941 if (size == 4) {
2942 vtd_set_long(s, addr, val);
2943 } else {
2944 vtd_set_quad(s, addr, val);
2945 }
2946 }
2947 }
2948
2949 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2950 IOMMUAccessFlags flag, int iommu_idx)
2951 {
2952 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2953 IntelIOMMUState *s = vtd_as->iommu_state;
2954 IOMMUTLBEntry iotlb = {
2955 /* We'll fill in the rest later. */
2956 .target_as = &address_space_memory,
2957 };
2958 bool success;
2959
2960 if (likely(s->dmar_enabled)) {
2961 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2962 addr, flag & IOMMU_WO, &iotlb);
2963 } else {
2964 /* DMAR disabled, passthrough, use 4k-page*/
2965 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2966 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2967 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2968 iotlb.perm = IOMMU_RW;
2969 success = true;
2970 }
2971
2972 if (likely(success)) {
2973 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2974 VTD_PCI_SLOT(vtd_as->devfn),
2975 VTD_PCI_FUNC(vtd_as->devfn),
2976 iotlb.iova, iotlb.translated_addr,
2977 iotlb.addr_mask);
2978 } else {
2979 error_report_once("%s: detected translation failure "
2980 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2981 __func__, pci_bus_num(vtd_as->bus),
2982 VTD_PCI_SLOT(vtd_as->devfn),
2983 VTD_PCI_FUNC(vtd_as->devfn),
2984 addr);
2985 }
2986
2987 return iotlb;
2988 }
2989
2990 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2991 IOMMUNotifierFlag old,
2992 IOMMUNotifierFlag new,
2993 Error **errp)
2994 {
2995 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2996 IntelIOMMUState *s = vtd_as->iommu_state;
2997
2998 /* Update per-address-space notifier flags */
2999 vtd_as->notifier_flags = new;
3000
3001 if (old == IOMMU_NOTIFIER_NONE) {
3002 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3003 } else if (new == IOMMU_NOTIFIER_NONE) {
3004 QLIST_REMOVE(vtd_as, next);
3005 }
3006 return 0;
3007 }
3008
3009 static int vtd_post_load(void *opaque, int version_id)
3010 {
3011 IntelIOMMUState *iommu = opaque;
3012
3013 /*
3014 * Memory regions are dynamically turned on/off depending on
3015 * context entry configurations from the guest. After migration,
3016 * we need to make sure the memory regions are still correct.
3017 */
3018 vtd_switch_address_space_all(iommu);
3019
3020 /*
3021 * We don't need to migrate the root_scalable because we can
3022 * simply do the calculation after the loading is complete. We
3023 * can actually do similar things with root, dmar_enabled, etc.
3024 * however since we've had them already so we'd better keep them
3025 * for compatibility of migration.
3026 */
3027 vtd_update_scalable_state(iommu);
3028
3029 return 0;
3030 }
3031
3032 static const VMStateDescription vtd_vmstate = {
3033 .name = "iommu-intel",
3034 .version_id = 1,
3035 .minimum_version_id = 1,
3036 .priority = MIG_PRI_IOMMU,
3037 .post_load = vtd_post_load,
3038 .fields = (VMStateField[]) {
3039 VMSTATE_UINT64(root, IntelIOMMUState),
3040 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3041 VMSTATE_UINT64(iq, IntelIOMMUState),
3042 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3043 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3044 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3045 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3046 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3047 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3048 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3049 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3050 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3051 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3052 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3053 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3054 VMSTATE_END_OF_LIST()
3055 }
3056 };
3057
3058 static const MemoryRegionOps vtd_mem_ops = {
3059 .read = vtd_mem_read,
3060 .write = vtd_mem_write,
3061 .endianness = DEVICE_LITTLE_ENDIAN,
3062 .impl = {
3063 .min_access_size = 4,
3064 .max_access_size = 8,
3065 },
3066 .valid = {
3067 .min_access_size = 4,
3068 .max_access_size = 8,
3069 },
3070 };
3071
3072 static Property vtd_properties[] = {
3073 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3074 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3075 ON_OFF_AUTO_AUTO),
3076 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3077 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3078 VTD_HOST_ADDRESS_WIDTH),
3079 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3080 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3081 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3082 DEFINE_PROP_END_OF_LIST(),
3083 };
3084
3085 /* Read IRTE entry with specific index */
3086 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3087 VTD_IR_TableEntry *entry, uint16_t sid)
3088 {
3089 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3090 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3091 dma_addr_t addr = 0x00;
3092 uint16_t mask, source_id;
3093 uint8_t bus, bus_max, bus_min;
3094
3095 addr = iommu->intr_root + index * sizeof(*entry);
3096 if (dma_memory_read(&address_space_memory, addr, entry,
3097 sizeof(*entry))) {
3098 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3099 __func__, index, addr);
3100 return -VTD_FR_IR_ROOT_INVAL;
3101 }
3102
3103 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3104 le64_to_cpu(entry->data[0]));
3105
3106 if (!entry->irte.present) {
3107 error_report_once("%s: detected non-present IRTE "
3108 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3109 __func__, index, le64_to_cpu(entry->data[1]),
3110 le64_to_cpu(entry->data[0]));
3111 return -VTD_FR_IR_ENTRY_P;
3112 }
3113
3114 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3115 entry->irte.__reserved_2) {
3116 error_report_once("%s: detected non-zero reserved IRTE "
3117 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3118 __func__, index, le64_to_cpu(entry->data[1]),
3119 le64_to_cpu(entry->data[0]));
3120 return -VTD_FR_IR_IRTE_RSVD;
3121 }
3122
3123 if (sid != X86_IOMMU_SID_INVALID) {
3124 /* Validate IRTE SID */
3125 source_id = le32_to_cpu(entry->irte.source_id);
3126 switch (entry->irte.sid_vtype) {
3127 case VTD_SVT_NONE:
3128 break;
3129
3130 case VTD_SVT_ALL:
3131 mask = vtd_svt_mask[entry->irte.sid_q];
3132 if ((source_id & mask) != (sid & mask)) {
3133 error_report_once("%s: invalid IRTE SID "
3134 "(index=%u, sid=%u, source_id=%u)",
3135 __func__, index, sid, source_id);
3136 return -VTD_FR_IR_SID_ERR;
3137 }
3138 break;
3139
3140 case VTD_SVT_BUS:
3141 bus_max = source_id >> 8;
3142 bus_min = source_id & 0xff;
3143 bus = sid >> 8;
3144 if (bus > bus_max || bus < bus_min) {
3145 error_report_once("%s: invalid SVT_BUS "
3146 "(index=%u, bus=%u, min=%u, max=%u)",
3147 __func__, index, bus, bus_min, bus_max);
3148 return -VTD_FR_IR_SID_ERR;
3149 }
3150 break;
3151
3152 default:
3153 error_report_once("%s: detected invalid IRTE SVT "
3154 "(index=%u, type=%d)", __func__,
3155 index, entry->irte.sid_vtype);
3156 /* Take this as verification failure. */
3157 return -VTD_FR_IR_SID_ERR;
3158 break;
3159 }
3160 }
3161
3162 return 0;
3163 }
3164
3165 /* Fetch IRQ information of specific IR index */
3166 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3167 X86IOMMUIrq *irq, uint16_t sid)
3168 {
3169 VTD_IR_TableEntry irte = {};
3170 int ret = 0;
3171
3172 ret = vtd_irte_get(iommu, index, &irte, sid);
3173 if (ret) {
3174 return ret;
3175 }
3176
3177 irq->trigger_mode = irte.irte.trigger_mode;
3178 irq->vector = irte.irte.vector;
3179 irq->delivery_mode = irte.irte.delivery_mode;
3180 irq->dest = le32_to_cpu(irte.irte.dest_id);
3181 if (!iommu->intr_eime) {
3182 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3183 #define VTD_IR_APIC_DEST_SHIFT (8)
3184 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3185 VTD_IR_APIC_DEST_SHIFT;
3186 }
3187 irq->dest_mode = irte.irte.dest_mode;
3188 irq->redir_hint = irte.irte.redir_hint;
3189
3190 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3191 irq->delivery_mode, irq->dest, irq->dest_mode);
3192
3193 return 0;
3194 }
3195
3196 /* Interrupt remapping for MSI/MSI-X entry */
3197 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3198 MSIMessage *origin,
3199 MSIMessage *translated,
3200 uint16_t sid)
3201 {
3202 int ret = 0;
3203 VTD_IR_MSIAddress addr;
3204 uint16_t index;
3205 X86IOMMUIrq irq = {};
3206
3207 assert(origin && translated);
3208
3209 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3210
3211 if (!iommu || !iommu->intr_enabled) {
3212 memcpy(translated, origin, sizeof(*origin));
3213 goto out;
3214 }
3215
3216 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3217 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3218 "address=0x%" PRIx64, __func__, origin->address);
3219 return -VTD_FR_IR_REQ_RSVD;
3220 }
3221
3222 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3223 if (addr.addr.__head != 0xfee) {
3224 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3225 __func__, addr.data);
3226 return -VTD_FR_IR_REQ_RSVD;
3227 }
3228
3229 /* This is compatible mode. */
3230 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3231 memcpy(translated, origin, sizeof(*origin));
3232 goto out;
3233 }
3234
3235 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3236
3237 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3238 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3239
3240 if (addr.addr.sub_valid) {
3241 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3242 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3243 }
3244
3245 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3246 if (ret) {
3247 return ret;
3248 }
3249
3250 if (addr.addr.sub_valid) {
3251 trace_vtd_ir_remap_type("MSI");
3252 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3253 error_report_once("%s: invalid IR MSI "
3254 "(sid=%u, address=0x%" PRIx64
3255 ", data=0x%" PRIx32 ")",
3256 __func__, sid, origin->address, origin->data);
3257 return -VTD_FR_IR_REQ_RSVD;
3258 }
3259 } else {
3260 uint8_t vector = origin->data & 0xff;
3261 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3262
3263 trace_vtd_ir_remap_type("IOAPIC");
3264 /* IOAPIC entry vector should be aligned with IRTE vector
3265 * (see vt-d spec 5.1.5.1). */
3266 if (vector != irq.vector) {
3267 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3268 }
3269
3270 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3271 * (see vt-d spec 5.1.5.1). */
3272 if (trigger_mode != irq.trigger_mode) {
3273 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3274 irq.trigger_mode);
3275 }
3276 }
3277
3278 /*
3279 * We'd better keep the last two bits, assuming that guest OS
3280 * might modify it. Keep it does not hurt after all.
3281 */
3282 irq.msi_addr_last_bits = addr.addr.__not_care;
3283
3284 /* Translate X86IOMMUIrq to MSI message */
3285 x86_iommu_irq_to_msi_message(&irq, translated);
3286
3287 out:
3288 trace_vtd_ir_remap_msi(origin->address, origin->data,
3289 translated->address, translated->data);
3290 return 0;
3291 }
3292
3293 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3294 MSIMessage *dst, uint16_t sid)
3295 {
3296 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3297 src, dst, sid);
3298 }
3299
3300 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3301 uint64_t *data, unsigned size,
3302 MemTxAttrs attrs)
3303 {
3304 return MEMTX_OK;
3305 }
3306
3307 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3308 uint64_t value, unsigned size,
3309 MemTxAttrs attrs)
3310 {
3311 int ret = 0;
3312 MSIMessage from = {}, to = {};
3313 uint16_t sid = X86_IOMMU_SID_INVALID;
3314
3315 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3316 from.data = (uint32_t) value;
3317
3318 if (!attrs.unspecified) {
3319 /* We have explicit Source ID */
3320 sid = attrs.requester_id;
3321 }
3322
3323 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3324 if (ret) {
3325 /* TODO: report error */
3326 /* Drop this interrupt */
3327 return MEMTX_ERROR;
3328 }
3329
3330 apic_get_class()->send_msi(&to);
3331
3332 return MEMTX_OK;
3333 }
3334
3335 static const MemoryRegionOps vtd_mem_ir_ops = {
3336 .read_with_attrs = vtd_mem_ir_read,
3337 .write_with_attrs = vtd_mem_ir_write,
3338 .endianness = DEVICE_LITTLE_ENDIAN,
3339 .impl = {
3340 .min_access_size = 4,
3341 .max_access_size = 4,
3342 },
3343 .valid = {
3344 .min_access_size = 4,
3345 .max_access_size = 4,
3346 },
3347 };
3348
3349 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3350 {
3351 uintptr_t key = (uintptr_t)bus;
3352 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3353 VTDAddressSpace *vtd_dev_as;
3354 char name[128];
3355
3356 if (!vtd_bus) {
3357 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3358 *new_key = (uintptr_t)bus;
3359 /* No corresponding free() */
3360 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3361 PCI_DEVFN_MAX);
3362 vtd_bus->bus = bus;
3363 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3364 }
3365
3366 vtd_dev_as = vtd_bus->dev_as[devfn];
3367
3368 if (!vtd_dev_as) {
3369 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3370 PCI_FUNC(devfn));
3371 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3372
3373 vtd_dev_as->bus = bus;
3374 vtd_dev_as->devfn = (uint8_t)devfn;
3375 vtd_dev_as->iommu_state = s;
3376 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3377 vtd_dev_as->iova_tree = iova_tree_new();
3378
3379 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3380 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3381
3382 /*
3383 * Build the DMAR-disabled container with aliases to the
3384 * shared MRs. Note that aliasing to a shared memory region
3385 * could help the memory API to detect same FlatViews so we
3386 * can have devices to share the same FlatView when DMAR is
3387 * disabled (either by not providing "intel_iommu=on" or with
3388 * "iommu=pt"). It will greatly reduce the total number of
3389 * FlatViews of the system hence VM runs faster.
3390 */
3391 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3392 "vtd-nodmar", &s->mr_nodmar, 0,
3393 memory_region_size(&s->mr_nodmar));
3394
3395 /*
3396 * Build the per-device DMAR-enabled container.
3397 *
3398 * TODO: currently we have per-device IOMMU memory region only
3399 * because we have per-device IOMMU notifiers for devices. If
3400 * one day we can abstract the IOMMU notifiers out of the
3401 * memory regions then we can also share the same memory
3402 * region here just like what we've done above with the nodmar
3403 * region.
3404 */
3405 strcat(name, "-dmar");
3406 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3407 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3408 name, UINT64_MAX);
3409 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3410 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3411 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3412 VTD_INTERRUPT_ADDR_FIRST,
3413 &vtd_dev_as->iommu_ir, 1);
3414
3415 /*
3416 * Hook both the containers under the root container, we
3417 * switch between DMAR & noDMAR by enable/disable
3418 * corresponding sub-containers
3419 */
3420 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3421 MEMORY_REGION(&vtd_dev_as->iommu),
3422 0);
3423 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3424 &vtd_dev_as->nodmar, 0);
3425
3426 vtd_switch_address_space(vtd_dev_as);
3427 }
3428 return vtd_dev_as;
3429 }
3430
3431 static uint64_t get_naturally_aligned_size(uint64_t start,
3432 uint64_t size, int gaw)
3433 {
3434 uint64_t max_mask = 1ULL << gaw;
3435 uint64_t alignment = start ? start & -start : max_mask;
3436
3437 alignment = MIN(alignment, max_mask);
3438 size = MIN(size, max_mask);
3439
3440 if (alignment <= size) {
3441 /* Increase the alignment of start */
3442 return alignment;
3443 } else {
3444 /* Find the largest page mask from size */
3445 return 1ULL << (63 - clz64(size));
3446 }
3447 }
3448
3449 /* Unmap the whole range in the notifier's scope. */
3450 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3451 {
3452 hwaddr size, remain;
3453 hwaddr start = n->start;
3454 hwaddr end = n->end;
3455 IntelIOMMUState *s = as->iommu_state;
3456 DMAMap map;
3457
3458 /*
3459 * Note: all the codes in this function has a assumption that IOVA
3460 * bits are no more than VTD_MGAW bits (which is restricted by
3461 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3462 */
3463
3464 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3465 /*
3466 * Don't need to unmap regions that is bigger than the whole
3467 * VT-d supported address space size
3468 */
3469 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3470 }
3471
3472 assert(start <= end);
3473 size = remain = end - start + 1;
3474
3475 while (remain >= VTD_PAGE_SIZE) {
3476 IOMMUTLBEntry entry;
3477 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3478
3479 assert(mask);
3480
3481 entry.iova = start;
3482 entry.addr_mask = mask - 1;
3483 entry.target_as = &address_space_memory;
3484 entry.perm = IOMMU_NONE;
3485 /* This field is meaningless for unmap */
3486 entry.translated_addr = 0;
3487
3488 memory_region_notify_one(n, &entry);
3489
3490 start += mask;
3491 remain -= mask;
3492 }
3493
3494 assert(!remain);
3495
3496 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3497 VTD_PCI_SLOT(as->devfn),
3498 VTD_PCI_FUNC(as->devfn),
3499 n->start, size);
3500
3501 map.iova = n->start;
3502 map.size = size;
3503 iova_tree_remove(as->iova_tree, &map);
3504 }
3505
3506 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3507 {
3508 VTDAddressSpace *vtd_as;
3509 IOMMUNotifier *n;
3510
3511 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3512 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3513 vtd_address_space_unmap(vtd_as, n);
3514 }
3515 }
3516 }
3517
3518 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3519 {
3520 vtd_address_space_unmap_all(s);
3521 vtd_switch_address_space_all(s);
3522 }
3523
3524 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3525 {
3526 memory_region_notify_one((IOMMUNotifier *)private, entry);
3527 return 0;
3528 }
3529
3530 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3531 {
3532 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3533 IntelIOMMUState *s = vtd_as->iommu_state;
3534 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3535 VTDContextEntry ce;
3536
3537 /*
3538 * The replay can be triggered by either a invalidation or a newly
3539 * created entry. No matter what, we release existing mappings
3540 * (it means flushing caches for UNMAP-only registers).
3541 */
3542 vtd_address_space_unmap(vtd_as, n);
3543
3544 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3545 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3546 "legacy mode",
3547 bus_n, PCI_SLOT(vtd_as->devfn),
3548 PCI_FUNC(vtd_as->devfn),
3549 vtd_get_domain_id(s, &ce),
3550 ce.hi, ce.lo);
3551 if (vtd_as_has_map_notifier(vtd_as)) {
3552 /* This is required only for MAP typed notifiers */
3553 vtd_page_walk_info info = {
3554 .hook_fn = vtd_replay_hook,
3555 .private = (void *)n,
3556 .notify_unmap = false,
3557 .aw = s->aw_bits,
3558 .as = vtd_as,
3559 .domain_id = vtd_get_domain_id(s, &ce),
3560 };
3561
3562 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3563 }
3564 } else {
3565 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3566 PCI_FUNC(vtd_as->devfn));
3567 }
3568
3569 return;
3570 }
3571
3572 /* Do the initialization. It will also be called when reset, so pay
3573 * attention when adding new initialization stuff.
3574 */
3575 static void vtd_init(IntelIOMMUState *s)
3576 {
3577 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3578
3579 memset(s->csr, 0, DMAR_REG_SIZE);
3580 memset(s->wmask, 0, DMAR_REG_SIZE);
3581 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3582 memset(s->womask, 0, DMAR_REG_SIZE);
3583
3584 s->root = 0;
3585 s->root_scalable = false;
3586 s->dmar_enabled = false;
3587 s->intr_enabled = false;
3588 s->iq_head = 0;
3589 s->iq_tail = 0;
3590 s->iq = 0;
3591 s->iq_size = 0;
3592 s->qi_enabled = false;
3593 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3594 s->iq_dw = false;
3595 s->next_frcd_reg = 0;
3596 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3597 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3598 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3599 if (s->dma_drain) {
3600 s->cap |= VTD_CAP_DRAIN;
3601 }
3602 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3603 s->cap |= VTD_CAP_SAGAW_48bit;
3604 }
3605 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3606
3607 /*
3608 * Rsvd field masks for spte
3609 */
3610 vtd_spte_rsvd[0] = ~0ULL;
3611 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3612 x86_iommu->dt_supported);
3613 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3614 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3615 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3616
3617 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3618 x86_iommu->dt_supported);
3619 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3620 x86_iommu->dt_supported);
3621
3622 if (x86_iommu_ir_supported(x86_iommu)) {
3623 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3624 if (s->intr_eim == ON_OFF_AUTO_ON) {
3625 s->ecap |= VTD_ECAP_EIM;
3626 }
3627 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3628 }
3629
3630 if (x86_iommu->dt_supported) {
3631 s->ecap |= VTD_ECAP_DT;
3632 }
3633
3634 if (x86_iommu->pt_supported) {
3635 s->ecap |= VTD_ECAP_PT;
3636 }
3637
3638 if (s->caching_mode) {
3639 s->cap |= VTD_CAP_CM;
3640 }
3641
3642 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3643 if (s->scalable_mode) {
3644 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3645 }
3646
3647 vtd_reset_caches(s);
3648
3649 /* Define registers with default values and bit semantics */
3650 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3651 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3652 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3653 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3654 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3655 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3656 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3657 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3658 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3659
3660 /* Advanced Fault Logging not supported */
3661 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3662 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3663 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3664 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3665
3666 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3667 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3668 */
3669 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3670
3671 /* Treated as RO for implementations that PLMR and PHMR fields reported
3672 * as Clear in the CAP_REG.
3673 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3674 */
3675 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3676
3677 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3678 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3679 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3680 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3681 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3682 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3683 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3684 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3685 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3686
3687 /* IOTLB registers */
3688 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3689 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3690 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3691
3692 /* Fault Recording Registers, 128-bit */
3693 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3694 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3695
3696 /*
3697 * Interrupt remapping registers.
3698 */
3699 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3700 }
3701
3702 /* Should not reset address_spaces when reset because devices will still use
3703 * the address space they got at first (won't ask the bus again).
3704 */
3705 static void vtd_reset(DeviceState *dev)
3706 {
3707 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3708
3709 vtd_init(s);
3710 vtd_address_space_refresh_all(s);
3711 }
3712
3713 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3714 {
3715 IntelIOMMUState *s = opaque;
3716 VTDAddressSpace *vtd_as;
3717
3718 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3719
3720 vtd_as = vtd_find_add_as(s, bus, devfn);
3721 return &vtd_as->as;
3722 }
3723
3724 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3725 {
3726 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3727
3728 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3729 error_setg(errp, "eim=on cannot be selected without intremap=on");
3730 return false;
3731 }
3732
3733 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3734 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3735 && x86_iommu_ir_supported(x86_iommu) ?
3736 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3737 }
3738 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3739 if (!kvm_irqchip_in_kernel()) {
3740 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3741 return false;
3742 }
3743 if (!kvm_enable_x2apic()) {
3744 error_setg(errp, "eim=on requires support on the KVM side"
3745 "(X2APIC_API, first shipped in v4.7)");
3746 return false;
3747 }
3748 }
3749
3750 /* Currently only address widths supported are 39 and 48 bits */
3751 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3752 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3753 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3754 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3755 return false;
3756 }
3757
3758 if (s->scalable_mode && !s->dma_drain) {
3759 error_setg(errp, "Need to set dma_drain for scalable mode");
3760 return false;
3761 }
3762
3763 return true;
3764 }
3765
3766 static int vtd_machine_done_notify_one(Object *child, void *unused)
3767 {
3768 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3769
3770 /*
3771 * We hard-coded here because vfio-pci is the only special case
3772 * here. Let's be more elegant in the future when we can, but so
3773 * far there seems to be no better way.
3774 */
3775 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3776 vtd_panic_require_caching_mode();
3777 }
3778
3779 return 0;
3780 }
3781
3782 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3783 {
3784 object_child_foreach_recursive(object_get_root(),
3785 vtd_machine_done_notify_one, NULL);
3786 }
3787
3788 static Notifier vtd_machine_done_notify = {
3789 .notify = vtd_machine_done_hook,
3790 };
3791
3792 static void vtd_realize(DeviceState *dev, Error **errp)
3793 {
3794 MachineState *ms = MACHINE(qdev_get_machine());
3795 PCMachineState *pcms = PC_MACHINE(ms);
3796 X86MachineState *x86ms = X86_MACHINE(ms);
3797 PCIBus *bus = pcms->bus;
3798 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3799 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3800
3801 x86_iommu->type = TYPE_INTEL;
3802
3803 if (!vtd_decide_config(s, errp)) {
3804 return;
3805 }
3806
3807 QLIST_INIT(&s->vtd_as_with_notifiers);
3808 qemu_mutex_init(&s->iommu_lock);
3809 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3810 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3811 "intel_iommu", DMAR_REG_SIZE);
3812
3813 /* Create the shared memory regions by all devices */
3814 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3815 UINT64_MAX);
3816 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3817 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3818 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3819 "vtd-sys-alias", get_system_memory(), 0,
3820 memory_region_size(get_system_memory()));
3821 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3822 &s->mr_sys_alias, 0);
3823 memory_region_add_subregion_overlap(&s->mr_nodmar,
3824 VTD_INTERRUPT_ADDR_FIRST,
3825 &s->mr_ir, 1);
3826
3827 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3828 /* No corresponding destroy */
3829 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3830 g_free, g_free);
3831 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3832 g_free, g_free);
3833 vtd_init(s);
3834 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3835 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3836 /* Pseudo address space under root PCI bus. */
3837 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3838 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3839 }
3840
3841 static void vtd_class_init(ObjectClass *klass, void *data)
3842 {
3843 DeviceClass *dc = DEVICE_CLASS(klass);
3844 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3845
3846 dc->reset = vtd_reset;
3847 dc->vmsd = &vtd_vmstate;
3848 dc->props = vtd_properties;
3849 dc->hotpluggable = false;
3850 x86_class->realize = vtd_realize;
3851 x86_class->int_remap = vtd_int_remap;
3852 /* Supported by the pc-q35-* machine types */
3853 dc->user_creatable = true;
3854 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3855 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3856 }
3857
3858 static const TypeInfo vtd_info = {
3859 .name = TYPE_INTEL_IOMMU_DEVICE,
3860 .parent = TYPE_X86_IOMMU_DEVICE,
3861 .instance_size = sizeof(IntelIOMMUState),
3862 .class_init = vtd_class_init,
3863 };
3864
3865 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3866 void *data)
3867 {
3868 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3869
3870 imrc->translate = vtd_iommu_translate;
3871 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3872 imrc->replay = vtd_iommu_replay;
3873 }
3874
3875 static const TypeInfo vtd_iommu_memory_region_info = {
3876 .parent = TYPE_IOMMU_MEMORY_REGION,
3877 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3878 .class_init = vtd_iommu_memory_region_class_init,
3879 };
3880
3881 static void vtd_register_types(void)
3882 {
3883 type_register_static(&vtd_info);
3884 type_register_static(&vtd_iommu_memory_region_info);
3885 }
3886
3887 type_init(vtd_register_types)