]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/i386/kvmvapic.c
Move QOM typedefs and add missing includes
[thirdparty/qemu.git] / hw / i386 / kvmvapic.c
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3 *
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
6 *
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/module.h"
14 #include "cpu.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/runstate.h"
20 #include "hw/i386/apic_internal.h"
21 #include "hw/sysbus.h"
22 #include "hw/boards.h"
23 #include "migration/vmstate.h"
24 #include "tcg/tcg.h"
25 #include "qom/object.h"
26
27 #define VAPIC_IO_PORT 0x7e
28
29 #define VAPIC_CPU_SHIFT 7
30
31 #define ROM_BLOCK_SIZE 512
32 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
33
34 typedef enum VAPICMode {
35 VAPIC_INACTIVE = 0,
36 VAPIC_ACTIVE = 1,
37 VAPIC_STANDBY = 2,
38 } VAPICMode;
39
40 typedef struct VAPICHandlers {
41 uint32_t set_tpr;
42 uint32_t set_tpr_eax;
43 uint32_t get_tpr[8];
44 uint32_t get_tpr_stack;
45 } QEMU_PACKED VAPICHandlers;
46
47 typedef struct GuestROMState {
48 char signature[8];
49 uint32_t vaddr;
50 uint32_t fixup_start;
51 uint32_t fixup_end;
52 uint32_t vapic_vaddr;
53 uint32_t vapic_size;
54 uint32_t vcpu_shift;
55 uint32_t real_tpr_addr;
56 VAPICHandlers up;
57 VAPICHandlers mp;
58 } QEMU_PACKED GuestROMState;
59
60 struct VAPICROMState {
61 SysBusDevice busdev;
62 MemoryRegion io;
63 MemoryRegion rom;
64 uint32_t state;
65 uint32_t rom_state_paddr;
66 uint32_t rom_state_vaddr;
67 uint32_t vapic_paddr;
68 uint32_t real_tpr_addr;
69 GuestROMState rom_state;
70 size_t rom_size;
71 bool rom_mapped_writable;
72 VMChangeStateEntry *vmsentry;
73 };
74 typedef struct VAPICROMState VAPICROMState;
75
76 #define TYPE_VAPIC "kvmvapic"
77 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
78
79 #define TPR_INSTR_ABS_MODRM 0x1
80 #define TPR_INSTR_MATCH_MODRM_REG 0x2
81
82 typedef struct TPRInstruction {
83 uint8_t opcode;
84 uint8_t modrm_reg;
85 unsigned int flags;
86 TPRAccess access;
87 size_t length;
88 off_t addr_offset;
89 } TPRInstruction;
90
91 /* must be sorted by length, shortest first */
92 static const TPRInstruction tpr_instr[] = {
93 { /* mov abs to eax */
94 .opcode = 0xa1,
95 .access = TPR_ACCESS_READ,
96 .length = 5,
97 .addr_offset = 1,
98 },
99 { /* mov eax to abs */
100 .opcode = 0xa3,
101 .access = TPR_ACCESS_WRITE,
102 .length = 5,
103 .addr_offset = 1,
104 },
105 { /* mov r32 to r/m32 */
106 .opcode = 0x89,
107 .flags = TPR_INSTR_ABS_MODRM,
108 .access = TPR_ACCESS_WRITE,
109 .length = 6,
110 .addr_offset = 2,
111 },
112 { /* mov r/m32 to r32 */
113 .opcode = 0x8b,
114 .flags = TPR_INSTR_ABS_MODRM,
115 .access = TPR_ACCESS_READ,
116 .length = 6,
117 .addr_offset = 2,
118 },
119 { /* push r/m32 */
120 .opcode = 0xff,
121 .modrm_reg = 6,
122 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
123 .access = TPR_ACCESS_READ,
124 .length = 6,
125 .addr_offset = 2,
126 },
127 { /* mov imm32, r/m32 (c7/0) */
128 .opcode = 0xc7,
129 .modrm_reg = 0,
130 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
131 .access = TPR_ACCESS_WRITE,
132 .length = 10,
133 .addr_offset = 2,
134 },
135 };
136
137 static void read_guest_rom_state(VAPICROMState *s)
138 {
139 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
140 sizeof(GuestROMState));
141 }
142
143 static void write_guest_rom_state(VAPICROMState *s)
144 {
145 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
146 sizeof(GuestROMState));
147 }
148
149 static void update_guest_rom_state(VAPICROMState *s)
150 {
151 read_guest_rom_state(s);
152
153 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
154 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
155
156 write_guest_rom_state(s);
157 }
158
159 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
160 {
161 CPUState *cs = env_cpu(env);
162 hwaddr paddr;
163 target_ulong addr;
164
165 if (s->state == VAPIC_ACTIVE) {
166 return 0;
167 }
168 /*
169 * If there is no prior TPR access instruction we could analyze (which is
170 * the case after resume from hibernation), we need to scan the possible
171 * virtual address space for the APIC mapping.
172 */
173 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
174 paddr = cpu_get_phys_page_debug(cs, addr);
175 if (paddr != APIC_DEFAULT_ADDRESS) {
176 continue;
177 }
178 s->real_tpr_addr = addr + 0x80;
179 update_guest_rom_state(s);
180 return 0;
181 }
182 return -1;
183 }
184
185 static uint8_t modrm_reg(uint8_t modrm)
186 {
187 return (modrm >> 3) & 7;
188 }
189
190 static bool is_abs_modrm(uint8_t modrm)
191 {
192 return (modrm & 0xc7) == 0x05;
193 }
194
195 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
196 {
197 return opcode[0] == instr->opcode &&
198 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
199 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
200 modrm_reg(opcode[1]) == instr->modrm_reg);
201 }
202
203 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
204 target_ulong *pip, TPRAccess access)
205 {
206 CPUState *cs = CPU(cpu);
207 const TPRInstruction *instr;
208 target_ulong ip = *pip;
209 uint8_t opcode[2];
210 uint32_t real_tpr_addr;
211 int i;
212
213 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
214 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
215 return -1;
216 }
217
218 /*
219 * Early Windows 2003 SMP initialization contains a
220 *
221 * mov imm32, r/m32
222 *
223 * instruction that is patched by TPR optimization. The problem is that
224 * RSP, used by the patched instruction, is zero, so the guest gets a
225 * double fault and dies.
226 */
227 if (cpu->env.regs[R_ESP] == 0) {
228 return -1;
229 }
230
231 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
232 /*
233 * KVM without kernel-based TPR access reporting will pass an IP that
234 * points after the accessing instruction. So we need to look backward
235 * to find the reason.
236 */
237 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
238 instr = &tpr_instr[i];
239 if (instr->access != access) {
240 continue;
241 }
242 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
243 sizeof(opcode), 0) < 0) {
244 return -1;
245 }
246 if (opcode_matches(opcode, instr)) {
247 ip -= instr->length;
248 goto instruction_ok;
249 }
250 }
251 return -1;
252 } else {
253 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
254 return -1;
255 }
256 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
257 instr = &tpr_instr[i];
258 if (opcode_matches(opcode, instr)) {
259 goto instruction_ok;
260 }
261 }
262 return -1;
263 }
264
265 instruction_ok:
266 /*
267 * Grab the virtual TPR address from the instruction
268 * and update the cached values.
269 */
270 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
271 (void *)&real_tpr_addr,
272 sizeof(real_tpr_addr), 0) < 0) {
273 return -1;
274 }
275 real_tpr_addr = le32_to_cpu(real_tpr_addr);
276 if ((real_tpr_addr & 0xfff) != 0x80) {
277 return -1;
278 }
279 s->real_tpr_addr = real_tpr_addr;
280 update_guest_rom_state(s);
281
282 *pip = ip;
283 return 0;
284 }
285
286 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
287 {
288 CPUState *cs = env_cpu(env);
289 hwaddr paddr;
290 uint32_t rom_state_vaddr;
291 uint32_t pos, patch, offset;
292
293 /* nothing to do if already activated */
294 if (s->state == VAPIC_ACTIVE) {
295 return 0;
296 }
297
298 /* bail out if ROM init code was not executed (missing ROM?) */
299 if (s->state == VAPIC_INACTIVE) {
300 return -1;
301 }
302
303 /* find out virtual address of the ROM */
304 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
305 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
306 if (paddr == -1) {
307 return -1;
308 }
309 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
310 if (paddr != s->rom_state_paddr) {
311 return -1;
312 }
313 read_guest_rom_state(s);
314 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
315 return -1;
316 }
317 s->rom_state_vaddr = rom_state_vaddr;
318
319 /* fixup addresses in ROM if needed */
320 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
321 return 0;
322 }
323 for (pos = le32_to_cpu(s->rom_state.fixup_start);
324 pos < le32_to_cpu(s->rom_state.fixup_end);
325 pos += 4) {
326 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
327 &offset, sizeof(offset));
328 offset = le32_to_cpu(offset);
329 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
330 patch = le32_to_cpu(patch);
331 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
332 patch = cpu_to_le32(patch);
333 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
334 }
335 read_guest_rom_state(s);
336 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
337 le32_to_cpu(s->rom_state.vaddr);
338
339 return 0;
340 }
341
342 /*
343 * Tries to read the unique processor number from the Kernel Processor Control
344 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
345 * cannot be accessed or is considered invalid. This also ensures that we are
346 * not patching the wrong guest.
347 */
348 static int get_kpcr_number(X86CPU *cpu)
349 {
350 CPUX86State *env = &cpu->env;
351 struct kpcr {
352 uint8_t fill1[0x1c];
353 uint32_t self;
354 uint8_t fill2[0x31];
355 uint8_t number;
356 } QEMU_PACKED kpcr;
357
358 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
359 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
360 kpcr.self != env->segs[R_FS].base) {
361 return -1;
362 }
363 return kpcr.number;
364 }
365
366 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
367 {
368 int cpu_number = get_kpcr_number(cpu);
369 hwaddr vapic_paddr;
370 static const uint8_t enabled = 1;
371
372 if (cpu_number < 0) {
373 return -1;
374 }
375 vapic_paddr = s->vapic_paddr +
376 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
377 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
378 &enabled, sizeof(enabled));
379 apic_enable_vapic(cpu->apic_state, vapic_paddr);
380
381 s->state = VAPIC_ACTIVE;
382
383 return 0;
384 }
385
386 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
387 {
388 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
389 }
390
391 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
392 {
393 uint32_t offset;
394
395 offset = cpu_to_le32(target - ip - 5);
396 patch_byte(cpu, ip, 0xe8); /* call near */
397 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
398 }
399
400 typedef struct PatchInfo {
401 VAPICHandlers *handler;
402 target_ulong ip;
403 } PatchInfo;
404
405 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
406 {
407 X86CPU *x86_cpu = X86_CPU(cs);
408 PatchInfo *info = (PatchInfo *) data.host_ptr;
409 VAPICHandlers *handlers = info->handler;
410 target_ulong ip = info->ip;
411 uint8_t opcode[2];
412 uint32_t imm32 = 0;
413
414 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
415
416 switch (opcode[0]) {
417 case 0x89: /* mov r32 to r/m32 */
418 patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
419 patch_call(x86_cpu, ip + 1, handlers->set_tpr);
420 break;
421 case 0x8b: /* mov r/m32 to r32 */
422 patch_byte(x86_cpu, ip, 0x90);
423 patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
424 break;
425 case 0xa1: /* mov abs to eax */
426 patch_call(x86_cpu, ip, handlers->get_tpr[0]);
427 break;
428 case 0xa3: /* mov eax to abs */
429 patch_call(x86_cpu, ip, handlers->set_tpr_eax);
430 break;
431 case 0xc7: /* mov imm32, r/m32 (c7/0) */
432 patch_byte(x86_cpu, ip, 0x68); /* push imm32 */
433 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
434 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
435 patch_call(x86_cpu, ip + 5, handlers->set_tpr);
436 break;
437 case 0xff: /* push r/m32 */
438 patch_byte(x86_cpu, ip, 0x50); /* push eax */
439 patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
440 break;
441 default:
442 abort();
443 }
444
445 g_free(info);
446 }
447
448 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
449 {
450 MachineState *ms = MACHINE(qdev_get_machine());
451 CPUState *cs = CPU(cpu);
452 VAPICHandlers *handlers;
453 PatchInfo *info;
454
455 if (ms->smp.cpus == 1) {
456 handlers = &s->rom_state.up;
457 } else {
458 handlers = &s->rom_state.mp;
459 }
460
461 info = g_new(PatchInfo, 1);
462 info->handler = handlers;
463 info->ip = ip;
464
465 async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
466 }
467
468 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
469 TPRAccess access)
470 {
471 VAPICROMState *s = VAPIC(dev);
472 X86CPU *cpu = X86_CPU(cs);
473 CPUX86State *env = &cpu->env;
474
475 cpu_synchronize_state(cs);
476
477 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
478 if (s->state == VAPIC_ACTIVE) {
479 vapic_enable(s, cpu);
480 }
481 return;
482 }
483 if (update_rom_mapping(s, env, ip) < 0) {
484 return;
485 }
486 if (vapic_enable(s, cpu) < 0) {
487 return;
488 }
489 patch_instruction(s, cpu, ip);
490 }
491
492 typedef struct VAPICEnableTPRReporting {
493 DeviceState *apic;
494 bool enable;
495 } VAPICEnableTPRReporting;
496
497 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
498 {
499 VAPICEnableTPRReporting *info = data.host_ptr;
500 apic_enable_tpr_access_reporting(info->apic, info->enable);
501 }
502
503 static void vapic_enable_tpr_reporting(bool enable)
504 {
505 VAPICEnableTPRReporting info = {
506 .enable = enable,
507 };
508 CPUState *cs;
509 X86CPU *cpu;
510
511 CPU_FOREACH(cs) {
512 cpu = X86_CPU(cs);
513 info.apic = cpu->apic_state;
514 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
515 }
516 }
517
518 static void vapic_reset(DeviceState *dev)
519 {
520 VAPICROMState *s = VAPIC(dev);
521
522 s->state = VAPIC_INACTIVE;
523 s->rom_state_paddr = 0;
524 vapic_enable_tpr_reporting(false);
525 }
526
527 /*
528 * Set the IRQ polling hypercalls to the supported variant:
529 * - vmcall if using KVM in-kernel irqchip
530 * - 32-bit VAPIC port write otherwise
531 */
532 static int patch_hypercalls(VAPICROMState *s)
533 {
534 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
535 static const uint8_t vmcall_pattern[] = { /* vmcall */
536 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
537 };
538 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
539 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
540 };
541 uint8_t alternates[2];
542 const uint8_t *pattern;
543 const uint8_t *patch;
544 off_t pos;
545 uint8_t *rom;
546
547 rom = g_malloc(s->rom_size);
548 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
549
550 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
551 if (kvm_irqchip_in_kernel()) {
552 pattern = outl_pattern;
553 alternates[0] = outl_pattern[7];
554 alternates[1] = outl_pattern[7];
555 patch = &vmcall_pattern[5];
556 } else {
557 pattern = vmcall_pattern;
558 alternates[0] = vmcall_pattern[7];
559 alternates[1] = 0xd9; /* AMD's VMMCALL */
560 patch = &outl_pattern[5];
561 }
562 if (memcmp(rom + pos, pattern, 7) == 0 &&
563 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
564 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
565 /*
566 * Don't flush the tb here. Under ordinary conditions, the patched
567 * calls are miles away from the current IP. Under malicious
568 * conditions, the guest could trick us to crash.
569 */
570 }
571 }
572
573 g_free(rom);
574 return 0;
575 }
576
577 /*
578 * For TCG mode or the time KVM honors read-only memory regions, we need to
579 * enable write access to the option ROM so that variables can be updated by
580 * the guest.
581 */
582 static int vapic_map_rom_writable(VAPICROMState *s)
583 {
584 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
585 MemoryRegionSection section;
586 MemoryRegion *as;
587 size_t rom_size;
588 uint8_t *ram;
589
590 as = sysbus_address_space(&s->busdev);
591
592 if (s->rom_mapped_writable) {
593 memory_region_del_subregion(as, &s->rom);
594 object_unparent(OBJECT(&s->rom));
595 }
596
597 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
598 section = memory_region_find(as, 0, 1);
599
600 /* read ROM size from RAM region */
601 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
602 return -1;
603 }
604 ram = memory_region_get_ram_ptr(section.mr);
605 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
606 if (rom_size == 0) {
607 return -1;
608 }
609 s->rom_size = rom_size;
610
611 /* We need to round to avoid creating subpages
612 * from which we cannot run code. */
613 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
614 rom_paddr &= TARGET_PAGE_MASK;
615 rom_size = TARGET_PAGE_ALIGN(rom_size);
616
617 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
618 rom_paddr, rom_size);
619 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
620 s->rom_mapped_writable = true;
621 memory_region_unref(section.mr);
622
623 return 0;
624 }
625
626 static int vapic_prepare(VAPICROMState *s)
627 {
628 if (vapic_map_rom_writable(s) < 0) {
629 return -1;
630 }
631
632 if (patch_hypercalls(s) < 0) {
633 return -1;
634 }
635
636 vapic_enable_tpr_reporting(true);
637
638 return 0;
639 }
640
641 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
642 unsigned int size)
643 {
644 VAPICROMState *s = opaque;
645 X86CPU *cpu;
646 CPUX86State *env;
647 hwaddr rom_paddr;
648
649 if (!current_cpu) {
650 return;
651 }
652
653 cpu_synchronize_state(current_cpu);
654 cpu = X86_CPU(current_cpu);
655 env = &cpu->env;
656
657 /*
658 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
659 * o 16-bit write access:
660 * Reports the option ROM initialization to the hypervisor. Written
661 * value is the offset of the state structure in the ROM.
662 * o 8-bit write access:
663 * Reactivates the VAPIC after a guest hibernation, i.e. after the
664 * option ROM content has been re-initialized by a guest power cycle.
665 * o 32-bit write access:
666 * Poll for pending IRQs, considering the current VAPIC state.
667 */
668 switch (size) {
669 case 2:
670 if (s->state == VAPIC_INACTIVE) {
671 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
672 s->rom_state_paddr = rom_paddr + data;
673
674 s->state = VAPIC_STANDBY;
675 }
676 if (vapic_prepare(s) < 0) {
677 s->state = VAPIC_INACTIVE;
678 s->rom_state_paddr = 0;
679 break;
680 }
681 break;
682 case 1:
683 if (kvm_enabled()) {
684 /*
685 * Disable triggering instruction in ROM by writing a NOP.
686 *
687 * We cannot do this in TCG mode as the reported IP is not
688 * accurate.
689 */
690 pause_all_vcpus();
691 patch_byte(cpu, env->eip - 2, 0x66);
692 patch_byte(cpu, env->eip - 1, 0x90);
693 resume_all_vcpus();
694 }
695
696 if (s->state == VAPIC_ACTIVE) {
697 break;
698 }
699 if (update_rom_mapping(s, env, env->eip) < 0) {
700 break;
701 }
702 if (find_real_tpr_addr(s, env) < 0) {
703 break;
704 }
705 vapic_enable(s, cpu);
706 break;
707 default:
708 case 4:
709 if (!kvm_irqchip_in_kernel()) {
710 apic_poll_irq(cpu->apic_state);
711 }
712 break;
713 }
714 }
715
716 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
717 {
718 return 0xffffffff;
719 }
720
721 static const MemoryRegionOps vapic_ops = {
722 .write = vapic_write,
723 .read = vapic_read,
724 .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726
727 static void vapic_realize(DeviceState *dev, Error **errp)
728 {
729 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
730 VAPICROMState *s = VAPIC(dev);
731
732 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
733 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
734 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
735
736 option_rom[nb_option_roms].name = "kvmvapic.bin";
737 option_rom[nb_option_roms].bootindex = -1;
738 nb_option_roms++;
739 }
740
741 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
742 {
743 VAPICROMState *s = data.host_ptr;
744 X86CPU *cpu = X86_CPU(cs);
745
746 static const uint8_t enabled = 1;
747 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
748 &enabled, sizeof(enabled));
749 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
750 s->state = VAPIC_ACTIVE;
751 }
752
753 static void kvmvapic_vm_state_change(void *opaque, int running,
754 RunState state)
755 {
756 MachineState *ms = MACHINE(qdev_get_machine());
757 VAPICROMState *s = opaque;
758 uint8_t *zero;
759
760 if (!running) {
761 return;
762 }
763
764 if (s->state == VAPIC_ACTIVE) {
765 if (ms->smp.cpus == 1) {
766 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
767 } else {
768 zero = g_malloc0(s->rom_state.vapic_size);
769 cpu_physical_memory_write(s->vapic_paddr, zero,
770 s->rom_state.vapic_size);
771 g_free(zero);
772 }
773 }
774
775 qemu_del_vm_change_state_handler(s->vmsentry);
776 s->vmsentry = NULL;
777 }
778
779 static int vapic_post_load(void *opaque, int version_id)
780 {
781 VAPICROMState *s = opaque;
782
783 /*
784 * The old implementation of qemu-kvm did not provide the state
785 * VAPIC_STANDBY. Reconstruct it.
786 */
787 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
788 s->state = VAPIC_STANDBY;
789 }
790
791 if (s->state != VAPIC_INACTIVE) {
792 if (vapic_prepare(s) < 0) {
793 return -1;
794 }
795 }
796
797 if (!s->vmsentry) {
798 s->vmsentry =
799 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
800 }
801 return 0;
802 }
803
804 static const VMStateDescription vmstate_handlers = {
805 .name = "kvmvapic-handlers",
806 .version_id = 1,
807 .minimum_version_id = 1,
808 .fields = (VMStateField[]) {
809 VMSTATE_UINT32(set_tpr, VAPICHandlers),
810 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
811 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
812 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
813 VMSTATE_END_OF_LIST()
814 }
815 };
816
817 static const VMStateDescription vmstate_guest_rom = {
818 .name = "kvmvapic-guest-rom",
819 .version_id = 1,
820 .minimum_version_id = 1,
821 .fields = (VMStateField[]) {
822 VMSTATE_UNUSED(8), /* signature */
823 VMSTATE_UINT32(vaddr, GuestROMState),
824 VMSTATE_UINT32(fixup_start, GuestROMState),
825 VMSTATE_UINT32(fixup_end, GuestROMState),
826 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
827 VMSTATE_UINT32(vapic_size, GuestROMState),
828 VMSTATE_UINT32(vcpu_shift, GuestROMState),
829 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
830 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
831 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
832 VMSTATE_END_OF_LIST()
833 }
834 };
835
836 static const VMStateDescription vmstate_vapic = {
837 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
838 .version_id = 1,
839 .minimum_version_id = 1,
840 .post_load = vapic_post_load,
841 .fields = (VMStateField[]) {
842 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
843 GuestROMState),
844 VMSTATE_UINT32(state, VAPICROMState),
845 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
846 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
847 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
848 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
849 VMSTATE_END_OF_LIST()
850 }
851 };
852
853 static void vapic_class_init(ObjectClass *klass, void *data)
854 {
855 DeviceClass *dc = DEVICE_CLASS(klass);
856
857 dc->reset = vapic_reset;
858 dc->vmsd = &vmstate_vapic;
859 dc->realize = vapic_realize;
860 }
861
862 static const TypeInfo vapic_type = {
863 .name = TYPE_VAPIC,
864 .parent = TYPE_SYS_BUS_DEVICE,
865 .instance_size = sizeof(VAPICROMState),
866 .class_init = vapic_class_init,
867 };
868
869 static void vapic_register(void)
870 {
871 type_register_static(&vapic_type);
872 }
873
874 type_init(vapic_register);