]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/i386/xen/xen-hvm.c
Include hw/hw.h exactly where needed
[thirdparty/qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/pci/pci_host.h"
16 #include "hw/i386/pc.h"
17 #include "hw/irq.h"
18 #include "hw/hw.h"
19 #include "hw/i386/apic-msidef.h"
20 #include "hw/xen/xen_common.h"
21 #include "hw/xen/xen-legacy-backend.h"
22 #include "hw/xen/xen-bus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-misc.h"
25 #include "qemu/error-report.h"
26 #include "qemu/range.h"
27 #include "sysemu/xen-mapcache.h"
28 #include "trace.h"
29 #include "exec/address-spaces.h"
30
31 #include <xen/hvm/ioreq.h>
32 #include <xen/hvm/e820.h>
33
34 //#define DEBUG_XEN_HVM
35
36 #ifdef DEBUG_XEN_HVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
45 static MemoryRegion *framebuffer;
46 static bool xen_in_migration;
47
48 /* Compatibility with older version */
49
50 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
51 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
52 * needs to be included before this block and hw/xen/xen_common.h needs to
53 * be included before xen/hvm/ioreq.h
54 */
55 #ifndef IOREQ_TYPE_VMWARE_PORT
56 #define IOREQ_TYPE_VMWARE_PORT 3
57 struct vmware_regs {
58 uint32_t esi;
59 uint32_t edi;
60 uint32_t ebx;
61 uint32_t ecx;
62 uint32_t edx;
63 };
64 typedef struct vmware_regs vmware_regs_t;
65
66 struct shared_vmport_iopage {
67 struct vmware_regs vcpu_vmport_regs[1];
68 };
69 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
70 #endif
71
72 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
73 {
74 return shared_page->vcpu_ioreq[i].vp_eport;
75 }
76 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
77 {
78 return &shared_page->vcpu_ioreq[vcpu];
79 }
80
81 #define BUFFER_IO_MAX_DELAY 100
82
83 typedef struct XenPhysmap {
84 hwaddr start_addr;
85 ram_addr_t size;
86 const char *name;
87 hwaddr phys_offset;
88
89 QLIST_ENTRY(XenPhysmap) list;
90 } XenPhysmap;
91
92 static QLIST_HEAD(, XenPhysmap) xen_physmap;
93
94 typedef struct XenPciDevice {
95 PCIDevice *pci_dev;
96 uint32_t sbdf;
97 QLIST_ENTRY(XenPciDevice) entry;
98 } XenPciDevice;
99
100 typedef struct XenIOState {
101 ioservid_t ioservid;
102 shared_iopage_t *shared_page;
103 shared_vmport_iopage_t *shared_vmport_page;
104 buffered_iopage_t *buffered_io_page;
105 QEMUTimer *buffered_io_timer;
106 CPUState **cpu_by_vcpu_id;
107 /* the evtchn port for polling the notification, */
108 evtchn_port_t *ioreq_local_port;
109 /* evtchn remote and local ports for buffered io */
110 evtchn_port_t bufioreq_remote_port;
111 evtchn_port_t bufioreq_local_port;
112 /* the evtchn fd for polling */
113 xenevtchn_handle *xce_handle;
114 /* which vcpu we are serving */
115 int send_vcpu;
116
117 struct xs_handle *xenstore;
118 MemoryListener memory_listener;
119 MemoryListener io_listener;
120 QLIST_HEAD(, XenPciDevice) dev_list;
121 DeviceListener device_listener;
122 hwaddr free_phys_offset;
123 const XenPhysmap *log_for_dirtybit;
124 /* Buffer used by xen_sync_dirty_bitmap */
125 unsigned long *dirty_bitmap;
126
127 Notifier exit;
128 Notifier suspend;
129 Notifier wakeup;
130 } XenIOState;
131
132 /* Xen specific function for piix pci */
133
134 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
135 {
136 return irq_num + ((pci_dev->devfn >> 3) << 2);
137 }
138
139 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
140 {
141 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
142 irq_num & 3, level);
143 }
144
145 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
146 {
147 int i;
148
149 /* Scan for updates to PCI link routes (0x60-0x63). */
150 for (i = 0; i < len; i++) {
151 uint8_t v = (val >> (8 * i)) & 0xff;
152 if (v & 0x80) {
153 v = 0;
154 }
155 v &= 0xf;
156 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
157 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
158 }
159 }
160 }
161
162 int xen_is_pirq_msi(uint32_t msi_data)
163 {
164 /* If vector is 0, the msi is remapped into a pirq, passed as
165 * dest_id.
166 */
167 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
168 }
169
170 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
171 {
172 xen_inject_msi(xen_domid, addr, data);
173 }
174
175 static void xen_suspend_notifier(Notifier *notifier, void *data)
176 {
177 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
178 }
179
180 /* Xen Interrupt Controller */
181
182 static void xen_set_irq(void *opaque, int irq, int level)
183 {
184 xen_set_isa_irq_level(xen_domid, irq, level);
185 }
186
187 qemu_irq *xen_interrupt_controller_init(void)
188 {
189 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
190 }
191
192 /* Memory Ops */
193
194 static void xen_ram_init(PCMachineState *pcms,
195 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
196 {
197 MemoryRegion *sysmem = get_system_memory();
198 ram_addr_t block_len;
199 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
200 PC_MACHINE_MAX_RAM_BELOW_4G,
201 &error_abort);
202
203 /* Handle the machine opt max-ram-below-4g. It is basically doing
204 * min(xen limit, user limit).
205 */
206 if (!user_lowmem) {
207 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
208 }
209 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
210 user_lowmem = HVM_BELOW_4G_RAM_END;
211 }
212
213 if (ram_size >= user_lowmem) {
214 pcms->above_4g_mem_size = ram_size - user_lowmem;
215 pcms->below_4g_mem_size = user_lowmem;
216 } else {
217 pcms->above_4g_mem_size = 0;
218 pcms->below_4g_mem_size = ram_size;
219 }
220 if (!pcms->above_4g_mem_size) {
221 block_len = ram_size;
222 } else {
223 /*
224 * Xen does not allocate the memory continuously, it keeps a
225 * hole of the size computed above or passed in.
226 */
227 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
228 }
229 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
230 &error_fatal);
231 *ram_memory_p = &ram_memory;
232
233 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
234 &ram_memory, 0, 0xa0000);
235 memory_region_add_subregion(sysmem, 0, &ram_640k);
236 /* Skip of the VGA IO memory space, it will be registered later by the VGA
237 * emulated device.
238 *
239 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
240 * the Options ROM, so it is registered here as RAM.
241 */
242 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
243 &ram_memory, 0xc0000,
244 pcms->below_4g_mem_size - 0xc0000);
245 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
246 if (pcms->above_4g_mem_size > 0) {
247 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
248 &ram_memory, 0x100000000ULL,
249 pcms->above_4g_mem_size);
250 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
251 }
252 }
253
254 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
255 Error **errp)
256 {
257 unsigned long nr_pfn;
258 xen_pfn_t *pfn_list;
259 int i;
260
261 if (runstate_check(RUN_STATE_INMIGRATE)) {
262 /* RAM already populated in Xen */
263 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
264 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
265 __func__, size, ram_addr);
266 return;
267 }
268
269 if (mr == &ram_memory) {
270 return;
271 }
272
273 trace_xen_ram_alloc(ram_addr, size);
274
275 nr_pfn = size >> TARGET_PAGE_BITS;
276 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
277
278 for (i = 0; i < nr_pfn; i++) {
279 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
280 }
281
282 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
283 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
284 ram_addr);
285 }
286
287 g_free(pfn_list);
288 }
289
290 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
291 {
292 XenPhysmap *physmap = NULL;
293
294 start_addr &= TARGET_PAGE_MASK;
295
296 QLIST_FOREACH(physmap, &xen_physmap, list) {
297 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
298 return physmap;
299 }
300 }
301 return NULL;
302 }
303
304 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
305 {
306 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
307 XenPhysmap *physmap = NULL;
308
309 QLIST_FOREACH(physmap, &xen_physmap, list) {
310 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
311 return physmap->start_addr + (phys_offset - physmap->phys_offset);
312 }
313 }
314
315 return phys_offset;
316 }
317
318 #ifdef XEN_COMPAT_PHYSMAP
319 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
320 {
321 char path[80], value[17];
322
323 snprintf(path, sizeof(path),
324 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
325 xen_domid, (uint64_t)physmap->phys_offset);
326 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
327 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
328 return -1;
329 }
330 snprintf(path, sizeof(path),
331 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
332 xen_domid, (uint64_t)physmap->phys_offset);
333 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
334 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
335 return -1;
336 }
337 if (physmap->name) {
338 snprintf(path, sizeof(path),
339 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
340 xen_domid, (uint64_t)physmap->phys_offset);
341 if (!xs_write(state->xenstore, 0, path,
342 physmap->name, strlen(physmap->name))) {
343 return -1;
344 }
345 }
346 return 0;
347 }
348 #else
349 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
350 {
351 return 0;
352 }
353 #endif
354
355 static int xen_add_to_physmap(XenIOState *state,
356 hwaddr start_addr,
357 ram_addr_t size,
358 MemoryRegion *mr,
359 hwaddr offset_within_region)
360 {
361 unsigned long nr_pages;
362 int rc = 0;
363 XenPhysmap *physmap = NULL;
364 hwaddr pfn, start_gpfn;
365 hwaddr phys_offset = memory_region_get_ram_addr(mr);
366 const char *mr_name;
367
368 if (get_physmapping(start_addr, size)) {
369 return 0;
370 }
371 if (size <= 0) {
372 return -1;
373 }
374
375 /* Xen can only handle a single dirty log region for now and we want
376 * the linear framebuffer to be that region.
377 * Avoid tracking any regions that is not videoram and avoid tracking
378 * the legacy vga region. */
379 if (mr == framebuffer && start_addr > 0xbffff) {
380 goto go_physmap;
381 }
382 return -1;
383
384 go_physmap:
385 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
386 start_addr, start_addr + size);
387
388 mr_name = memory_region_name(mr);
389
390 physmap = g_malloc(sizeof(XenPhysmap));
391
392 physmap->start_addr = start_addr;
393 physmap->size = size;
394 physmap->name = mr_name;
395 physmap->phys_offset = phys_offset;
396
397 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
398
399 if (runstate_check(RUN_STATE_INMIGRATE)) {
400 /* Now when we have a physmap entry we can replace a dummy mapping with
401 * a real one of guest foreign memory. */
402 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
403 assert(p && p == memory_region_get_ram_ptr(mr));
404
405 return 0;
406 }
407
408 pfn = phys_offset >> TARGET_PAGE_BITS;
409 start_gpfn = start_addr >> TARGET_PAGE_BITS;
410 nr_pages = size >> TARGET_PAGE_BITS;
411 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
412 start_gpfn);
413 if (rc) {
414 int saved_errno = errno;
415
416 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
417 " to GFN %"HWADDR_PRIx" failed: %s",
418 nr_pages, pfn, start_gpfn, strerror(saved_errno));
419 errno = saved_errno;
420 return -1;
421 }
422
423 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
424 start_addr >> TARGET_PAGE_BITS,
425 (start_addr + size - 1) >> TARGET_PAGE_BITS,
426 XEN_DOMCTL_MEM_CACHEATTR_WB);
427 if (rc) {
428 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
429 }
430 return xen_save_physmap(state, physmap);
431 }
432
433 static int xen_remove_from_physmap(XenIOState *state,
434 hwaddr start_addr,
435 ram_addr_t size)
436 {
437 int rc = 0;
438 XenPhysmap *physmap = NULL;
439 hwaddr phys_offset = 0;
440
441 physmap = get_physmapping(start_addr, size);
442 if (physmap == NULL) {
443 return -1;
444 }
445
446 phys_offset = physmap->phys_offset;
447 size = physmap->size;
448
449 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
450 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
451
452 size >>= TARGET_PAGE_BITS;
453 start_addr >>= TARGET_PAGE_BITS;
454 phys_offset >>= TARGET_PAGE_BITS;
455 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
456 phys_offset);
457 if (rc) {
458 int saved_errno = errno;
459
460 error_report("relocate_memory "RAM_ADDR_FMT" pages"
461 " from GFN %"HWADDR_PRIx
462 " to GFN %"HWADDR_PRIx" failed: %s",
463 size, start_addr, phys_offset, strerror(saved_errno));
464 errno = saved_errno;
465 return -1;
466 }
467
468 QLIST_REMOVE(physmap, list);
469 if (state->log_for_dirtybit == physmap) {
470 state->log_for_dirtybit = NULL;
471 g_free(state->dirty_bitmap);
472 state->dirty_bitmap = NULL;
473 }
474 g_free(physmap);
475
476 return 0;
477 }
478
479 static void xen_set_memory(struct MemoryListener *listener,
480 MemoryRegionSection *section,
481 bool add)
482 {
483 XenIOState *state = container_of(listener, XenIOState, memory_listener);
484 hwaddr start_addr = section->offset_within_address_space;
485 ram_addr_t size = int128_get64(section->size);
486 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
487 hvmmem_type_t mem_type;
488
489 if (section->mr == &ram_memory) {
490 return;
491 } else {
492 if (add) {
493 xen_map_memory_section(xen_domid, state->ioservid,
494 section);
495 } else {
496 xen_unmap_memory_section(xen_domid, state->ioservid,
497 section);
498 }
499 }
500
501 if (!memory_region_is_ram(section->mr)) {
502 return;
503 }
504
505 if (log_dirty != add) {
506 return;
507 }
508
509 trace_xen_client_set_memory(start_addr, size, log_dirty);
510
511 start_addr &= TARGET_PAGE_MASK;
512 size = TARGET_PAGE_ALIGN(size);
513
514 if (add) {
515 if (!memory_region_is_rom(section->mr)) {
516 xen_add_to_physmap(state, start_addr, size,
517 section->mr, section->offset_within_region);
518 } else {
519 mem_type = HVMMEM_ram_ro;
520 if (xen_set_mem_type(xen_domid, mem_type,
521 start_addr >> TARGET_PAGE_BITS,
522 size >> TARGET_PAGE_BITS)) {
523 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
524 start_addr);
525 }
526 }
527 } else {
528 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
529 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
530 }
531 }
532 }
533
534 static void xen_region_add(MemoryListener *listener,
535 MemoryRegionSection *section)
536 {
537 memory_region_ref(section->mr);
538 xen_set_memory(listener, section, true);
539 }
540
541 static void xen_region_del(MemoryListener *listener,
542 MemoryRegionSection *section)
543 {
544 xen_set_memory(listener, section, false);
545 memory_region_unref(section->mr);
546 }
547
548 static void xen_io_add(MemoryListener *listener,
549 MemoryRegionSection *section)
550 {
551 XenIOState *state = container_of(listener, XenIOState, io_listener);
552 MemoryRegion *mr = section->mr;
553
554 if (mr->ops == &unassigned_io_ops) {
555 return;
556 }
557
558 memory_region_ref(mr);
559
560 xen_map_io_section(xen_domid, state->ioservid, section);
561 }
562
563 static void xen_io_del(MemoryListener *listener,
564 MemoryRegionSection *section)
565 {
566 XenIOState *state = container_of(listener, XenIOState, io_listener);
567 MemoryRegion *mr = section->mr;
568
569 if (mr->ops == &unassigned_io_ops) {
570 return;
571 }
572
573 xen_unmap_io_section(xen_domid, state->ioservid, section);
574
575 memory_region_unref(mr);
576 }
577
578 static void xen_device_realize(DeviceListener *listener,
579 DeviceState *dev)
580 {
581 XenIOState *state = container_of(listener, XenIOState, device_listener);
582
583 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
584 PCIDevice *pci_dev = PCI_DEVICE(dev);
585 XenPciDevice *xendev = g_new(XenPciDevice, 1);
586
587 xendev->pci_dev = pci_dev;
588 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
589 pci_dev->devfn);
590 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
591
592 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
593 }
594 }
595
596 static void xen_device_unrealize(DeviceListener *listener,
597 DeviceState *dev)
598 {
599 XenIOState *state = container_of(listener, XenIOState, device_listener);
600
601 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
602 PCIDevice *pci_dev = PCI_DEVICE(dev);
603 XenPciDevice *xendev, *next;
604
605 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
606
607 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
608 if (xendev->pci_dev == pci_dev) {
609 QLIST_REMOVE(xendev, entry);
610 g_free(xendev);
611 break;
612 }
613 }
614 }
615 }
616
617 static void xen_sync_dirty_bitmap(XenIOState *state,
618 hwaddr start_addr,
619 ram_addr_t size)
620 {
621 hwaddr npages = size >> TARGET_PAGE_BITS;
622 const int width = sizeof(unsigned long) * 8;
623 size_t bitmap_size = DIV_ROUND_UP(npages, width);
624 int rc, i, j;
625 const XenPhysmap *physmap = NULL;
626
627 physmap = get_physmapping(start_addr, size);
628 if (physmap == NULL) {
629 /* not handled */
630 return;
631 }
632
633 if (state->log_for_dirtybit == NULL) {
634 state->log_for_dirtybit = physmap;
635 state->dirty_bitmap = g_new(unsigned long, bitmap_size);
636 } else if (state->log_for_dirtybit != physmap) {
637 /* Only one range for dirty bitmap can be tracked. */
638 return;
639 }
640
641 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
642 npages, state->dirty_bitmap);
643 if (rc < 0) {
644 #ifndef ENODATA
645 #define ENODATA ENOENT
646 #endif
647 if (errno == ENODATA) {
648 memory_region_set_dirty(framebuffer, 0, size);
649 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
650 ", 0x" TARGET_FMT_plx "): %s\n",
651 start_addr, start_addr + size, strerror(errno));
652 }
653 return;
654 }
655
656 for (i = 0; i < bitmap_size; i++) {
657 unsigned long map = state->dirty_bitmap[i];
658 while (map != 0) {
659 j = ctzl(map);
660 map &= ~(1ul << j);
661 memory_region_set_dirty(framebuffer,
662 (i * width + j) * TARGET_PAGE_SIZE,
663 TARGET_PAGE_SIZE);
664 };
665 }
666 }
667
668 static void xen_log_start(MemoryListener *listener,
669 MemoryRegionSection *section,
670 int old, int new)
671 {
672 XenIOState *state = container_of(listener, XenIOState, memory_listener);
673
674 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
675 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
676 int128_get64(section->size));
677 }
678 }
679
680 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
681 int old, int new)
682 {
683 XenIOState *state = container_of(listener, XenIOState, memory_listener);
684
685 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
686 state->log_for_dirtybit = NULL;
687 g_free(state->dirty_bitmap);
688 state->dirty_bitmap = NULL;
689 /* Disable dirty bit tracking */
690 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
691 }
692 }
693
694 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
695 {
696 XenIOState *state = container_of(listener, XenIOState, memory_listener);
697
698 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
699 int128_get64(section->size));
700 }
701
702 static void xen_log_global_start(MemoryListener *listener)
703 {
704 if (xen_enabled()) {
705 xen_in_migration = true;
706 }
707 }
708
709 static void xen_log_global_stop(MemoryListener *listener)
710 {
711 xen_in_migration = false;
712 }
713
714 static MemoryListener xen_memory_listener = {
715 .region_add = xen_region_add,
716 .region_del = xen_region_del,
717 .log_start = xen_log_start,
718 .log_stop = xen_log_stop,
719 .log_sync = xen_log_sync,
720 .log_global_start = xen_log_global_start,
721 .log_global_stop = xen_log_global_stop,
722 .priority = 10,
723 };
724
725 static MemoryListener xen_io_listener = {
726 .region_add = xen_io_add,
727 .region_del = xen_io_del,
728 .priority = 10,
729 };
730
731 static DeviceListener xen_device_listener = {
732 .realize = xen_device_realize,
733 .unrealize = xen_device_unrealize,
734 };
735
736 /* get the ioreq packets from share mem */
737 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
738 {
739 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
740
741 if (req->state != STATE_IOREQ_READY) {
742 DPRINTF("I/O request not ready: "
743 "%x, ptr: %x, port: %"PRIx64", "
744 "data: %"PRIx64", count: %u, size: %u\n",
745 req->state, req->data_is_ptr, req->addr,
746 req->data, req->count, req->size);
747 return NULL;
748 }
749
750 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
751
752 req->state = STATE_IOREQ_INPROCESS;
753 return req;
754 }
755
756 /* use poll to get the port notification */
757 /* ioreq_vec--out,the */
758 /* retval--the number of ioreq packet */
759 static ioreq_t *cpu_get_ioreq(XenIOState *state)
760 {
761 MachineState *ms = MACHINE(qdev_get_machine());
762 unsigned int max_cpus = ms->smp.max_cpus;
763 int i;
764 evtchn_port_t port;
765
766 port = xenevtchn_pending(state->xce_handle);
767 if (port == state->bufioreq_local_port) {
768 timer_mod(state->buffered_io_timer,
769 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
770 return NULL;
771 }
772
773 if (port != -1) {
774 for (i = 0; i < max_cpus; i++) {
775 if (state->ioreq_local_port[i] == port) {
776 break;
777 }
778 }
779
780 if (i == max_cpus) {
781 hw_error("Fatal error while trying to get io event!\n");
782 }
783
784 /* unmask the wanted port again */
785 xenevtchn_unmask(state->xce_handle, port);
786
787 /* get the io packet from shared memory */
788 state->send_vcpu = i;
789 return cpu_get_ioreq_from_shared_memory(state, i);
790 }
791
792 /* read error or read nothing */
793 return NULL;
794 }
795
796 static uint32_t do_inp(uint32_t addr, unsigned long size)
797 {
798 switch (size) {
799 case 1:
800 return cpu_inb(addr);
801 case 2:
802 return cpu_inw(addr);
803 case 4:
804 return cpu_inl(addr);
805 default:
806 hw_error("inp: bad size: %04x %lx", addr, size);
807 }
808 }
809
810 static void do_outp(uint32_t addr,
811 unsigned long size, uint32_t val)
812 {
813 switch (size) {
814 case 1:
815 return cpu_outb(addr, val);
816 case 2:
817 return cpu_outw(addr, val);
818 case 4:
819 return cpu_outl(addr, val);
820 default:
821 hw_error("outp: bad size: %04x %lx", addr, size);
822 }
823 }
824
825 /*
826 * Helper functions which read/write an object from/to physical guest
827 * memory, as part of the implementation of an ioreq.
828 *
829 * Equivalent to
830 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
831 * val, req->size, 0/1)
832 * except without the integer overflow problems.
833 */
834 static void rw_phys_req_item(hwaddr addr,
835 ioreq_t *req, uint32_t i, void *val, int rw)
836 {
837 /* Do everything unsigned so overflow just results in a truncated result
838 * and accesses to undesired parts of guest memory, which is up
839 * to the guest */
840 hwaddr offset = (hwaddr)req->size * i;
841 if (req->df) {
842 addr -= offset;
843 } else {
844 addr += offset;
845 }
846 cpu_physical_memory_rw(addr, val, req->size, rw);
847 }
848
849 static inline void read_phys_req_item(hwaddr addr,
850 ioreq_t *req, uint32_t i, void *val)
851 {
852 rw_phys_req_item(addr, req, i, val, 0);
853 }
854 static inline void write_phys_req_item(hwaddr addr,
855 ioreq_t *req, uint32_t i, void *val)
856 {
857 rw_phys_req_item(addr, req, i, val, 1);
858 }
859
860
861 static void cpu_ioreq_pio(ioreq_t *req)
862 {
863 uint32_t i;
864
865 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
866 req->data, req->count, req->size);
867
868 if (req->size > sizeof(uint32_t)) {
869 hw_error("PIO: bad size (%u)", req->size);
870 }
871
872 if (req->dir == IOREQ_READ) {
873 if (!req->data_is_ptr) {
874 req->data = do_inp(req->addr, req->size);
875 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
876 req->size);
877 } else {
878 uint32_t tmp;
879
880 for (i = 0; i < req->count; i++) {
881 tmp = do_inp(req->addr, req->size);
882 write_phys_req_item(req->data, req, i, &tmp);
883 }
884 }
885 } else if (req->dir == IOREQ_WRITE) {
886 if (!req->data_is_ptr) {
887 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
888 req->size);
889 do_outp(req->addr, req->size, req->data);
890 } else {
891 for (i = 0; i < req->count; i++) {
892 uint32_t tmp = 0;
893
894 read_phys_req_item(req->data, req, i, &tmp);
895 do_outp(req->addr, req->size, tmp);
896 }
897 }
898 }
899 }
900
901 static void cpu_ioreq_move(ioreq_t *req)
902 {
903 uint32_t i;
904
905 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
906 req->data, req->count, req->size);
907
908 if (req->size > sizeof(req->data)) {
909 hw_error("MMIO: bad size (%u)", req->size);
910 }
911
912 if (!req->data_is_ptr) {
913 if (req->dir == IOREQ_READ) {
914 for (i = 0; i < req->count; i++) {
915 read_phys_req_item(req->addr, req, i, &req->data);
916 }
917 } else if (req->dir == IOREQ_WRITE) {
918 for (i = 0; i < req->count; i++) {
919 write_phys_req_item(req->addr, req, i, &req->data);
920 }
921 }
922 } else {
923 uint64_t tmp;
924
925 if (req->dir == IOREQ_READ) {
926 for (i = 0; i < req->count; i++) {
927 read_phys_req_item(req->addr, req, i, &tmp);
928 write_phys_req_item(req->data, req, i, &tmp);
929 }
930 } else if (req->dir == IOREQ_WRITE) {
931 for (i = 0; i < req->count; i++) {
932 read_phys_req_item(req->data, req, i, &tmp);
933 write_phys_req_item(req->addr, req, i, &tmp);
934 }
935 }
936 }
937 }
938
939 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
940 {
941 uint32_t sbdf = req->addr >> 32;
942 uint32_t reg = req->addr;
943 XenPciDevice *xendev;
944
945 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
946 req->size != sizeof(uint32_t)) {
947 hw_error("PCI config access: bad size (%u)", req->size);
948 }
949
950 if (req->count != 1) {
951 hw_error("PCI config access: bad count (%u)", req->count);
952 }
953
954 QLIST_FOREACH(xendev, &state->dev_list, entry) {
955 if (xendev->sbdf != sbdf) {
956 continue;
957 }
958
959 if (!req->data_is_ptr) {
960 if (req->dir == IOREQ_READ) {
961 req->data = pci_host_config_read_common(
962 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
963 req->size);
964 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
965 req->size, req->data);
966 } else if (req->dir == IOREQ_WRITE) {
967 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
968 req->size, req->data);
969 pci_host_config_write_common(
970 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
971 req->data, req->size);
972 }
973 } else {
974 uint32_t tmp;
975
976 if (req->dir == IOREQ_READ) {
977 tmp = pci_host_config_read_common(
978 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
979 req->size);
980 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
981 req->size, tmp);
982 write_phys_req_item(req->data, req, 0, &tmp);
983 } else if (req->dir == IOREQ_WRITE) {
984 read_phys_req_item(req->data, req, 0, &tmp);
985 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
986 req->size, tmp);
987 pci_host_config_write_common(
988 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
989 tmp, req->size);
990 }
991 }
992 }
993 }
994
995 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
996 {
997 X86CPU *cpu;
998 CPUX86State *env;
999
1000 cpu = X86_CPU(current_cpu);
1001 env = &cpu->env;
1002 env->regs[R_EAX] = req->data;
1003 env->regs[R_EBX] = vmport_regs->ebx;
1004 env->regs[R_ECX] = vmport_regs->ecx;
1005 env->regs[R_EDX] = vmport_regs->edx;
1006 env->regs[R_ESI] = vmport_regs->esi;
1007 env->regs[R_EDI] = vmport_regs->edi;
1008 }
1009
1010 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1011 {
1012 X86CPU *cpu = X86_CPU(current_cpu);
1013 CPUX86State *env = &cpu->env;
1014
1015 vmport_regs->ebx = env->regs[R_EBX];
1016 vmport_regs->ecx = env->regs[R_ECX];
1017 vmport_regs->edx = env->regs[R_EDX];
1018 vmport_regs->esi = env->regs[R_ESI];
1019 vmport_regs->edi = env->regs[R_EDI];
1020 }
1021
1022 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1023 {
1024 vmware_regs_t *vmport_regs;
1025
1026 assert(state->shared_vmport_page);
1027 vmport_regs =
1028 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1029 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1030
1031 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1032 regs_to_cpu(vmport_regs, req);
1033 cpu_ioreq_pio(req);
1034 regs_from_cpu(vmport_regs);
1035 current_cpu = NULL;
1036 }
1037
1038 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1039 {
1040 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1041 req->addr, req->data, req->count, req->size);
1042
1043 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1044 (req->size < sizeof (target_ulong))) {
1045 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1046 }
1047
1048 if (req->dir == IOREQ_WRITE)
1049 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1050 req->addr, req->data, req->count, req->size);
1051
1052 switch (req->type) {
1053 case IOREQ_TYPE_PIO:
1054 cpu_ioreq_pio(req);
1055 break;
1056 case IOREQ_TYPE_COPY:
1057 cpu_ioreq_move(req);
1058 break;
1059 case IOREQ_TYPE_VMWARE_PORT:
1060 handle_vmport_ioreq(state, req);
1061 break;
1062 case IOREQ_TYPE_TIMEOFFSET:
1063 break;
1064 case IOREQ_TYPE_INVALIDATE:
1065 xen_invalidate_map_cache();
1066 break;
1067 case IOREQ_TYPE_PCI_CONFIG:
1068 cpu_ioreq_config(state, req);
1069 break;
1070 default:
1071 hw_error("Invalid ioreq type 0x%x\n", req->type);
1072 }
1073 if (req->dir == IOREQ_READ) {
1074 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1075 req->addr, req->data, req->count, req->size);
1076 }
1077 }
1078
1079 static int handle_buffered_iopage(XenIOState *state)
1080 {
1081 buffered_iopage_t *buf_page = state->buffered_io_page;
1082 buf_ioreq_t *buf_req = NULL;
1083 ioreq_t req;
1084 int qw;
1085
1086 if (!buf_page) {
1087 return 0;
1088 }
1089
1090 memset(&req, 0x00, sizeof(req));
1091 req.state = STATE_IOREQ_READY;
1092 req.count = 1;
1093 req.dir = IOREQ_WRITE;
1094
1095 for (;;) {
1096 uint32_t rdptr = buf_page->read_pointer, wrptr;
1097
1098 xen_rmb();
1099 wrptr = buf_page->write_pointer;
1100 xen_rmb();
1101 if (rdptr != buf_page->read_pointer) {
1102 continue;
1103 }
1104 if (rdptr == wrptr) {
1105 break;
1106 }
1107 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1108 req.size = 1U << buf_req->size;
1109 req.addr = buf_req->addr;
1110 req.data = buf_req->data;
1111 req.type = buf_req->type;
1112 xen_rmb();
1113 qw = (req.size == 8);
1114 if (qw) {
1115 if (rdptr + 1 == wrptr) {
1116 hw_error("Incomplete quad word buffered ioreq");
1117 }
1118 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1119 IOREQ_BUFFER_SLOT_NUM];
1120 req.data |= ((uint64_t)buf_req->data) << 32;
1121 xen_rmb();
1122 }
1123
1124 handle_ioreq(state, &req);
1125
1126 /* Only req.data may get updated by handle_ioreq(), albeit even that
1127 * should not happen as such data would never make it to the guest (we
1128 * can only usefully see writes here after all).
1129 */
1130 assert(req.state == STATE_IOREQ_READY);
1131 assert(req.count == 1);
1132 assert(req.dir == IOREQ_WRITE);
1133 assert(!req.data_is_ptr);
1134
1135 atomic_add(&buf_page->read_pointer, qw + 1);
1136 }
1137
1138 return req.count;
1139 }
1140
1141 static void handle_buffered_io(void *opaque)
1142 {
1143 XenIOState *state = opaque;
1144
1145 if (handle_buffered_iopage(state)) {
1146 timer_mod(state->buffered_io_timer,
1147 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1148 } else {
1149 timer_del(state->buffered_io_timer);
1150 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1151 }
1152 }
1153
1154 static void cpu_handle_ioreq(void *opaque)
1155 {
1156 XenIOState *state = opaque;
1157 ioreq_t *req = cpu_get_ioreq(state);
1158
1159 handle_buffered_iopage(state);
1160 if (req) {
1161 ioreq_t copy = *req;
1162
1163 xen_rmb();
1164 handle_ioreq(state, &copy);
1165 req->data = copy.data;
1166
1167 if (req->state != STATE_IOREQ_INPROCESS) {
1168 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1169 "%x, ptr: %x, port: %"PRIx64", "
1170 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1171 req->state, req->data_is_ptr, req->addr,
1172 req->data, req->count, req->size, req->type);
1173 destroy_hvm_domain(false);
1174 return;
1175 }
1176
1177 xen_wmb(); /* Update ioreq contents /then/ update state. */
1178
1179 /*
1180 * We do this before we send the response so that the tools
1181 * have the opportunity to pick up on the reset before the
1182 * guest resumes and does a hlt with interrupts disabled which
1183 * causes Xen to powerdown the domain.
1184 */
1185 if (runstate_is_running()) {
1186 ShutdownCause request;
1187
1188 if (qemu_shutdown_requested_get()) {
1189 destroy_hvm_domain(false);
1190 }
1191 request = qemu_reset_requested_get();
1192 if (request) {
1193 qemu_system_reset(request);
1194 destroy_hvm_domain(true);
1195 }
1196 }
1197
1198 req->state = STATE_IORESP_READY;
1199 xenevtchn_notify(state->xce_handle,
1200 state->ioreq_local_port[state->send_vcpu]);
1201 }
1202 }
1203
1204 static void xen_main_loop_prepare(XenIOState *state)
1205 {
1206 int evtchn_fd = -1;
1207
1208 if (state->xce_handle != NULL) {
1209 evtchn_fd = xenevtchn_fd(state->xce_handle);
1210 }
1211
1212 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1213 state);
1214
1215 if (evtchn_fd != -1) {
1216 CPUState *cpu_state;
1217
1218 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1219 CPU_FOREACH(cpu_state) {
1220 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1221 __func__, cpu_state->cpu_index, cpu_state);
1222 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1223 }
1224 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1225 }
1226 }
1227
1228
1229 static void xen_hvm_change_state_handler(void *opaque, int running,
1230 RunState rstate)
1231 {
1232 XenIOState *state = opaque;
1233
1234 if (running) {
1235 xen_main_loop_prepare(state);
1236 }
1237
1238 xen_set_ioreq_server_state(xen_domid,
1239 state->ioservid,
1240 (rstate == RUN_STATE_RUNNING));
1241 }
1242
1243 static void xen_exit_notifier(Notifier *n, void *data)
1244 {
1245 XenIOState *state = container_of(n, XenIOState, exit);
1246
1247 xenevtchn_close(state->xce_handle);
1248 xs_daemon_close(state->xenstore);
1249 }
1250
1251 #ifdef XEN_COMPAT_PHYSMAP
1252 static void xen_read_physmap(XenIOState *state)
1253 {
1254 XenPhysmap *physmap = NULL;
1255 unsigned int len, num, i;
1256 char path[80], *value = NULL;
1257 char **entries = NULL;
1258
1259 snprintf(path, sizeof(path),
1260 "/local/domain/0/device-model/%d/physmap", xen_domid);
1261 entries = xs_directory(state->xenstore, 0, path, &num);
1262 if (entries == NULL)
1263 return;
1264
1265 for (i = 0; i < num; i++) {
1266 physmap = g_malloc(sizeof (XenPhysmap));
1267 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1268 snprintf(path, sizeof(path),
1269 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1270 xen_domid, entries[i]);
1271 value = xs_read(state->xenstore, 0, path, &len);
1272 if (value == NULL) {
1273 g_free(physmap);
1274 continue;
1275 }
1276 physmap->start_addr = strtoull(value, NULL, 16);
1277 free(value);
1278
1279 snprintf(path, sizeof(path),
1280 "/local/domain/0/device-model/%d/physmap/%s/size",
1281 xen_domid, entries[i]);
1282 value = xs_read(state->xenstore, 0, path, &len);
1283 if (value == NULL) {
1284 g_free(physmap);
1285 continue;
1286 }
1287 physmap->size = strtoull(value, NULL, 16);
1288 free(value);
1289
1290 snprintf(path, sizeof(path),
1291 "/local/domain/0/device-model/%d/physmap/%s/name",
1292 xen_domid, entries[i]);
1293 physmap->name = xs_read(state->xenstore, 0, path, &len);
1294
1295 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1296 }
1297 free(entries);
1298 }
1299 #else
1300 static void xen_read_physmap(XenIOState *state)
1301 {
1302 }
1303 #endif
1304
1305 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1306 {
1307 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1308 }
1309
1310 static int xen_map_ioreq_server(XenIOState *state)
1311 {
1312 void *addr = NULL;
1313 xenforeignmemory_resource_handle *fres;
1314 xen_pfn_t ioreq_pfn;
1315 xen_pfn_t bufioreq_pfn;
1316 evtchn_port_t bufioreq_evtchn;
1317 int rc;
1318
1319 /*
1320 * Attempt to map using the resource API and fall back to normal
1321 * foreign mapping if this is not supported.
1322 */
1323 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1324 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1325 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1326 XENMEM_resource_ioreq_server,
1327 state->ioservid, 0, 2,
1328 &addr,
1329 PROT_READ | PROT_WRITE, 0);
1330 if (fres != NULL) {
1331 trace_xen_map_resource_ioreq(state->ioservid, addr);
1332 state->buffered_io_page = addr;
1333 state->shared_page = addr + TARGET_PAGE_SIZE;
1334 } else if (errno != EOPNOTSUPP) {
1335 error_report("failed to map ioreq server resources: error %d handle=%p",
1336 errno, xen_xc);
1337 return -1;
1338 }
1339
1340 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1341 (state->shared_page == NULL) ?
1342 &ioreq_pfn : NULL,
1343 (state->buffered_io_page == NULL) ?
1344 &bufioreq_pfn : NULL,
1345 &bufioreq_evtchn);
1346 if (rc < 0) {
1347 error_report("failed to get ioreq server info: error %d handle=%p",
1348 errno, xen_xc);
1349 return rc;
1350 }
1351
1352 if (state->shared_page == NULL) {
1353 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1354
1355 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1356 PROT_READ | PROT_WRITE,
1357 1, &ioreq_pfn, NULL);
1358 if (state->shared_page == NULL) {
1359 error_report("map shared IO page returned error %d handle=%p",
1360 errno, xen_xc);
1361 }
1362 }
1363
1364 if (state->buffered_io_page == NULL) {
1365 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1366
1367 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1368 PROT_READ | PROT_WRITE,
1369 1, &bufioreq_pfn,
1370 NULL);
1371 if (state->buffered_io_page == NULL) {
1372 error_report("map buffered IO page returned error %d", errno);
1373 return -1;
1374 }
1375 }
1376
1377 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1378 return -1;
1379 }
1380
1381 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1382
1383 state->bufioreq_remote_port = bufioreq_evtchn;
1384
1385 return 0;
1386 }
1387
1388 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1389 {
1390 MachineState *ms = MACHINE(pcms);
1391 unsigned int max_cpus = ms->smp.max_cpus;
1392 int i, rc;
1393 xen_pfn_t ioreq_pfn;
1394 XenIOState *state;
1395
1396 state = g_malloc0(sizeof (XenIOState));
1397
1398 state->xce_handle = xenevtchn_open(NULL, 0);
1399 if (state->xce_handle == NULL) {
1400 perror("xen: event channel open");
1401 goto err;
1402 }
1403
1404 state->xenstore = xs_daemon_open();
1405 if (state->xenstore == NULL) {
1406 perror("xen: xenstore open");
1407 goto err;
1408 }
1409
1410 xen_create_ioreq_server(xen_domid, &state->ioservid);
1411
1412 state->exit.notify = xen_exit_notifier;
1413 qemu_add_exit_notifier(&state->exit);
1414
1415 state->suspend.notify = xen_suspend_notifier;
1416 qemu_register_suspend_notifier(&state->suspend);
1417
1418 state->wakeup.notify = xen_wakeup_notifier;
1419 qemu_register_wakeup_notifier(&state->wakeup);
1420
1421 /*
1422 * Register wake-up support in QMP query-current-machine API
1423 */
1424 qemu_register_wakeup_support();
1425
1426 rc = xen_map_ioreq_server(state);
1427 if (rc < 0) {
1428 goto err;
1429 }
1430
1431 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1432 if (!rc) {
1433 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1434 state->shared_vmport_page =
1435 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1436 1, &ioreq_pfn, NULL);
1437 if (state->shared_vmport_page == NULL) {
1438 error_report("map shared vmport IO page returned error %d handle=%p",
1439 errno, xen_xc);
1440 goto err;
1441 }
1442 } else if (rc != -ENOSYS) {
1443 error_report("get vmport regs pfn returned error %d, rc=%d",
1444 errno, rc);
1445 goto err;
1446 }
1447
1448 /* Note: cpus is empty at this point in init */
1449 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1450
1451 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1452 if (rc < 0) {
1453 error_report("failed to enable ioreq server info: error %d handle=%p",
1454 errno, xen_xc);
1455 goto err;
1456 }
1457
1458 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1459
1460 /* FIXME: how about if we overflow the page here? */
1461 for (i = 0; i < max_cpus; i++) {
1462 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1463 xen_vcpu_eport(state->shared_page, i));
1464 if (rc == -1) {
1465 error_report("shared evtchn %d bind error %d", i, errno);
1466 goto err;
1467 }
1468 state->ioreq_local_port[i] = rc;
1469 }
1470
1471 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1472 state->bufioreq_remote_port);
1473 if (rc == -1) {
1474 error_report("buffered evtchn bind error %d", errno);
1475 goto err;
1476 }
1477 state->bufioreq_local_port = rc;
1478
1479 /* Init RAM management */
1480 #ifdef XEN_COMPAT_PHYSMAP
1481 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1482 #else
1483 xen_map_cache_init(NULL, state);
1484 #endif
1485 xen_ram_init(pcms, ram_size, ram_memory);
1486
1487 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1488
1489 state->memory_listener = xen_memory_listener;
1490 memory_listener_register(&state->memory_listener, &address_space_memory);
1491 state->log_for_dirtybit = NULL;
1492
1493 state->io_listener = xen_io_listener;
1494 memory_listener_register(&state->io_listener, &address_space_io);
1495
1496 state->device_listener = xen_device_listener;
1497 QLIST_INIT(&state->dev_list);
1498 device_listener_register(&state->device_listener);
1499
1500 xen_bus_init();
1501
1502 /* Initialize backend core & drivers */
1503 if (xen_be_init() != 0) {
1504 error_report("xen backend core setup failed");
1505 goto err;
1506 }
1507 xen_be_register_common();
1508
1509 QLIST_INIT(&xen_physmap);
1510 xen_read_physmap(state);
1511
1512 /* Disable ACPI build because Xen handles it */
1513 pcms->acpi_build_enabled = false;
1514
1515 return;
1516
1517 err:
1518 error_report("xen hardware virtual machine initialisation failed");
1519 exit(1);
1520 }
1521
1522 void destroy_hvm_domain(bool reboot)
1523 {
1524 xc_interface *xc_handle;
1525 int sts;
1526 int rc;
1527
1528 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1529
1530 if (xen_dmod) {
1531 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1532 if (!rc) {
1533 return;
1534 }
1535 if (errno != ENOTTY /* old Xen */) {
1536 perror("xendevicemodel_shutdown failed");
1537 }
1538 /* well, try the old thing then */
1539 }
1540
1541 xc_handle = xc_interface_open(0, 0, 0);
1542 if (xc_handle == NULL) {
1543 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1544 } else {
1545 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1546 if (sts != 0) {
1547 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1548 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1549 sts, strerror(errno));
1550 } else {
1551 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1552 reboot ? "reboot" : "poweroff");
1553 }
1554 xc_interface_close(xc_handle);
1555 }
1556 }
1557
1558 void xen_register_framebuffer(MemoryRegion *mr)
1559 {
1560 framebuffer = mr;
1561 }
1562
1563 void xen_shutdown_fatal_error(const char *fmt, ...)
1564 {
1565 va_list ap;
1566
1567 va_start(ap, fmt);
1568 vfprintf(stderr, fmt, ap);
1569 va_end(ap);
1570 fprintf(stderr, "Will destroy the domain.\n");
1571 /* destroy the domain */
1572 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1573 }
1574
1575 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1576 {
1577 if (unlikely(xen_in_migration)) {
1578 int rc;
1579 ram_addr_t start_pfn, nb_pages;
1580
1581 start = xen_phys_offset_to_gaddr(start, length);
1582
1583 if (length == 0) {
1584 length = TARGET_PAGE_SIZE;
1585 }
1586 start_pfn = start >> TARGET_PAGE_BITS;
1587 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1588 - start_pfn;
1589 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1590 if (rc) {
1591 fprintf(stderr,
1592 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1593 __func__, start, nb_pages, errno, strerror(errno));
1594 }
1595 }
1596 }
1597
1598 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1599 {
1600 if (enable) {
1601 memory_global_dirty_log_start();
1602 } else {
1603 memory_global_dirty_log_stop();
1604 }
1605 }