]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/mips/boston.c
Move QOM typedefs and add missing includes
[thirdparty/qemu.git] / hw / mips / boston.c
1 /*
2 * MIPS Boston development board emulation.
3 *
4 * Copyright (c) 2016 Imagination Technologies
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/mips/cpudevs.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 #include "sysemu/runstate.h"
42
43 #include <libfdt.h>
44 #include "qom/object.h"
45
46 #define TYPE_MIPS_BOSTON "mips-boston"
47 typedef struct BostonState BostonState;
48 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
49
50 struct BostonState {
51 SysBusDevice parent_obj;
52
53 MachineState *mach;
54 MIPSCPSState cps;
55 SerialMM *uart;
56
57 CharBackend lcd_display;
58 char lcd_content[8];
59 bool lcd_inited;
60
61 hwaddr kernel_entry;
62 hwaddr fdt_base;
63 };
64
65 enum boston_plat_reg {
66 PLAT_FPGA_BUILD = 0x00,
67 PLAT_CORE_CL = 0x04,
68 PLAT_WRAPPER_CL = 0x08,
69 PLAT_SYSCLK_STATUS = 0x0c,
70 PLAT_SOFTRST_CTL = 0x10,
71 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
72 PLAT_DDR3_STATUS = 0x14,
73 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
74 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
75 PLAT_PCIE_STATUS = 0x18,
76 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
77 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
78 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
79 PLAT_FLASH_CTL = 0x1c,
80 PLAT_SPARE0 = 0x20,
81 PLAT_SPARE1 = 0x24,
82 PLAT_SPARE2 = 0x28,
83 PLAT_SPARE3 = 0x2c,
84 PLAT_MMCM_DIV = 0x30,
85 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
86 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
87 #define PLAT_MMCM_DIV_MUL_SHIFT 16
88 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
89 PLAT_BUILD_CFG = 0x34,
90 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
91 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
92 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
93 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
94 PLAT_DDR_CFG = 0x38,
95 #define PLAT_DDR_CFG_SIZE (0xf << 0)
96 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
97 PLAT_NOC_PCIE0_ADDR = 0x3c,
98 PLAT_NOC_PCIE1_ADDR = 0x40,
99 PLAT_NOC_PCIE2_ADDR = 0x44,
100 PLAT_SYS_CTL = 0x48,
101 };
102
103 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
104 {
105 BostonState *s = opaque;
106 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
107 qemu_chr_fe_printf(&s->lcd_display, " ");
108 s->lcd_inited = true;
109 }
110 }
111
112 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
113 unsigned size)
114 {
115 BostonState *s = opaque;
116 uint64_t val = 0;
117
118 switch (size) {
119 case 8:
120 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
121 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
122 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
123 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
124 /* fall through */
125 case 4:
126 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
127 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
128 /* fall through */
129 case 2:
130 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
131 /* fall through */
132 case 1:
133 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
134 break;
135 }
136
137 return val;
138 }
139
140 static void boston_lcd_write(void *opaque, hwaddr addr,
141 uint64_t val, unsigned size)
142 {
143 BostonState *s = opaque;
144
145 switch (size) {
146 case 8:
147 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
148 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
149 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
150 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
151 /* fall through */
152 case 4:
153 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
154 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
155 /* fall through */
156 case 2:
157 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
158 /* fall through */
159 case 1:
160 s->lcd_content[(addr + 0) & 0x7] = val;
161 break;
162 }
163
164 qemu_chr_fe_printf(&s->lcd_display,
165 "\r%-8.8s", s->lcd_content);
166 }
167
168 static const MemoryRegionOps boston_lcd_ops = {
169 .read = boston_lcd_read,
170 .write = boston_lcd_write,
171 .endianness = DEVICE_NATIVE_ENDIAN,
172 };
173
174 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
175 unsigned size)
176 {
177 BostonState *s = opaque;
178 uint32_t gic_freq, val;
179
180 if (size != 4) {
181 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
182 return 0;
183 }
184
185 switch (addr & 0xffff) {
186 case PLAT_FPGA_BUILD:
187 case PLAT_CORE_CL:
188 case PLAT_WRAPPER_CL:
189 return 0;
190 case PLAT_DDR3_STATUS:
191 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
192 case PLAT_MMCM_DIV:
193 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
194 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
195 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
196 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
197 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
198 return val;
199 case PLAT_BUILD_CFG:
200 val = PLAT_BUILD_CFG_PCIE0_EN;
201 val |= PLAT_BUILD_CFG_PCIE1_EN;
202 val |= PLAT_BUILD_CFG_PCIE2_EN;
203 return val;
204 case PLAT_DDR_CFG:
205 val = s->mach->ram_size / GiB;
206 assert(!(val & ~PLAT_DDR_CFG_SIZE));
207 val |= PLAT_DDR_CFG_MHZ;
208 return val;
209 default:
210 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
211 addr & 0xffff);
212 return 0;
213 }
214 }
215
216 static void boston_platreg_write(void *opaque, hwaddr addr,
217 uint64_t val, unsigned size)
218 {
219 if (size != 4) {
220 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
221 return;
222 }
223
224 switch (addr & 0xffff) {
225 case PLAT_FPGA_BUILD:
226 case PLAT_CORE_CL:
227 case PLAT_WRAPPER_CL:
228 case PLAT_DDR3_STATUS:
229 case PLAT_PCIE_STATUS:
230 case PLAT_MMCM_DIV:
231 case PLAT_BUILD_CFG:
232 case PLAT_DDR_CFG:
233 /* read only */
234 break;
235 case PLAT_SOFTRST_CTL:
236 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
237 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
238 }
239 break;
240 default:
241 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
242 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
243 break;
244 }
245 }
246
247 static const MemoryRegionOps boston_platreg_ops = {
248 .read = boston_platreg_read,
249 .write = boston_platreg_write,
250 .endianness = DEVICE_NATIVE_ENDIAN,
251 };
252
253 static const TypeInfo boston_device = {
254 .name = TYPE_MIPS_BOSTON,
255 .parent = TYPE_SYS_BUS_DEVICE,
256 .instance_size = sizeof(BostonState),
257 };
258
259 static void boston_register_types(void)
260 {
261 type_register_static(&boston_device);
262 }
263 type_init(boston_register_types)
264
265 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
266 bool is_64b)
267 {
268 const uint32_t cm_base = 0x16100000;
269 const uint32_t gic_base = 0x16120000;
270 const uint32_t cpc_base = 0x16200000;
271
272 /* Move CM GCRs */
273 if (is_64b) {
274 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
275 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
276 } else {
277 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
278 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
279 }
280 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
281 stl_p(p++, 0x01094025); /* or $8, $9 */
282 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
283 if (is_64b) {
284 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
285 } else {
286 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
287 }
288 stl_p(p++, 0x012a4025); /* or $8, $10 */
289
290 /* Move & enable GIC GCRs */
291 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
292 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
293 if (is_64b) {
294 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
295 } else {
296 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
297 }
298
299 /* Move & enable CPC GCRs */
300 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
301 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
302 if (is_64b) {
303 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
304 } else {
305 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
306 }
307
308 /*
309 * Setup argument registers to follow the UHI boot protocol:
310 *
311 * a0/$4 = -2
312 * a1/$5 = virtual address of FDT
313 * a2/$6 = 0
314 * a3/$7 = 0
315 */
316 stl_p(p++, 0x2404fffe); /* li $4, -2 */
317 /* lui $5, hi(fdt_addr) */
318 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
319 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
320 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
321 }
322 stl_p(p++, 0x34060000); /* li $6, 0 */
323 stl_p(p++, 0x34070000); /* li $7, 0 */
324
325 /* Load kernel entry address & jump to it */
326 /* lui $25, hi(kernel_entry) */
327 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
328 /* ori $25, lo(kernel_entry) */
329 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
330 stl_p(p++, 0x03200009); /* jr $25 */
331 }
332
333 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
334 const void *match_data, hwaddr *load_addr)
335 {
336 BostonState *s = BOSTON(opaque);
337 MachineState *machine = s->mach;
338 const char *cmdline;
339 int err;
340 void *fdt;
341 size_t fdt_sz, ram_low_sz, ram_high_sz;
342
343 fdt_sz = fdt_totalsize(fdt_orig) * 2;
344 fdt = g_malloc0(fdt_sz);
345
346 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
347 if (err) {
348 fprintf(stderr, "unable to open FDT\n");
349 return NULL;
350 }
351
352 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
353 ? machine->kernel_cmdline : " ";
354 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
355 if (err < 0) {
356 fprintf(stderr, "couldn't set /chosen/bootargs\n");
357 return NULL;
358 }
359
360 ram_low_sz = MIN(256 * MiB, machine->ram_size);
361 ram_high_sz = machine->ram_size - ram_low_sz;
362 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
363 1, 0x00000000, 1, ram_low_sz,
364 1, 0x90000000, 1, ram_high_sz);
365
366 fdt = g_realloc(fdt, fdt_totalsize(fdt));
367 qemu_fdt_dumpdtb(fdt, fdt_sz);
368
369 s->fdt_base = *load_addr;
370
371 return fdt;
372 }
373
374 static const void *boston_kernel_filter(void *opaque, const void *kernel,
375 hwaddr *load_addr, hwaddr *entry_addr)
376 {
377 BostonState *s = BOSTON(opaque);
378
379 s->kernel_entry = *entry_addr;
380
381 return kernel;
382 }
383
384 static const struct fit_loader_match boston_matches[] = {
385 { "img,boston" },
386 { NULL },
387 };
388
389 static const struct fit_loader boston_fit_loader = {
390 .matches = boston_matches,
391 .addr_to_phys = cpu_mips_kseg0_to_phys,
392 .fdt_filter = boston_fdt_filter,
393 .kernel_filter = boston_kernel_filter,
394 };
395
396 static inline XilinxPCIEHost *
397 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
398 hwaddr cfg_base, uint64_t cfg_size,
399 hwaddr mmio_base, uint64_t mmio_size,
400 qemu_irq irq, bool link_up)
401 {
402 DeviceState *dev;
403 MemoryRegion *cfg, *mmio;
404
405 dev = qdev_new(TYPE_XILINX_PCIE_HOST);
406
407 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
408 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
409 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
410 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
411 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
412 qdev_prop_set_bit(dev, "link_up", link_up);
413
414 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
415
416 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
417 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
418
419 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
420 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
421
422 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
423
424 return XILINX_PCIE_HOST(dev);
425 }
426
427 static void boston_mach_init(MachineState *machine)
428 {
429 DeviceState *dev;
430 BostonState *s;
431 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
432 MemoryRegion *sys_mem = get_system_memory();
433 XilinxPCIEHost *pcie2;
434 PCIDevice *ahci;
435 DriveInfo *hd[6];
436 Chardev *chr;
437 int fw_size, fit_err;
438 bool is_64b;
439
440 if ((machine->ram_size % GiB) ||
441 (machine->ram_size > (2 * GiB))) {
442 error_report("Memory size must be 1GB or 2GB");
443 exit(1);
444 }
445
446 dev = qdev_new(TYPE_MIPS_BOSTON);
447 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
448
449 s = BOSTON(dev);
450 s->mach = machine;
451
452 if (!cpu_supports_cps_smp(machine->cpu_type)) {
453 error_report("Boston requires CPUs which support CPS");
454 exit(1);
455 }
456
457 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
458
459 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
460 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
461 &error_fatal);
462 object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
463 &error_fatal);
464 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
465
466 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
467
468 flash = g_new(MemoryRegion, 1);
469 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
470 &error_fatal);
471 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
472
473 memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
474
475 ddr_low_alias = g_new(MemoryRegion, 1);
476 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
477 machine->ram, 0,
478 MIN(machine->ram_size, (256 * MiB)));
479 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
480
481 xilinx_pcie_init(sys_mem, 0,
482 0x10000000, 32 * MiB,
483 0x40000000, 1 * GiB,
484 get_cps_irq(&s->cps, 2), false);
485
486 xilinx_pcie_init(sys_mem, 1,
487 0x12000000, 32 * MiB,
488 0x20000000, 512 * MiB,
489 get_cps_irq(&s->cps, 1), false);
490
491 pcie2 = xilinx_pcie_init(sys_mem, 2,
492 0x14000000, 32 * MiB,
493 0x16000000, 1 * MiB,
494 get_cps_irq(&s->cps, 0), true);
495
496 platreg = g_new(MemoryRegion, 1);
497 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
498 "boston-platregs", 0x1000);
499 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
500
501 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
502 get_cps_irq(&s->cps, 3), 10000000,
503 serial_hd(0), DEVICE_NATIVE_ENDIAN);
504
505 lcd = g_new(MemoryRegion, 1);
506 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
507 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
508
509 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
510 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
511 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
512 boston_lcd_event, NULL, s, NULL, true);
513
514 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
515 PCI_DEVFN(0, 0),
516 true, TYPE_ICH9_AHCI);
517 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
518 ide_drive_get(hd, ahci_get_num_ports(ahci));
519 ahci_ide_create_devs(ahci, hd);
520
521 if (machine->firmware) {
522 fw_size = load_image_targphys(machine->firmware,
523 0x1fc00000, 4 * MiB);
524 if (fw_size == -1) {
525 error_report("unable to load firmware image '%s'",
526 machine->firmware);
527 exit(1);
528 }
529 } else if (machine->kernel_filename) {
530 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
531 if (fit_err) {
532 error_report("unable to load FIT image");
533 exit(1);
534 }
535
536 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
537 s->kernel_entry, s->fdt_base, is_64b);
538 } else if (!qtest_enabled()) {
539 error_report("Please provide either a -kernel or -bios argument");
540 exit(1);
541 }
542 }
543
544 static void boston_mach_class_init(MachineClass *mc)
545 {
546 mc->desc = "MIPS Boston";
547 mc->init = boston_mach_init;
548 mc->block_default_type = IF_IDE;
549 mc->default_ram_size = 1 * GiB;
550 mc->default_ram_id = "boston.ddr";
551 mc->max_cpus = 16;
552 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
553 }
554
555 DEFINE_MACHINE("boston", boston_mach_class_init)