]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/misc/imx6_ccm.c
Include qemu/module.h where needed, drop it from qemu-common.h
[thirdparty/qemu.git] / hw / misc / imx6_ccm.c
1 /*
2 * IMX6 Clock Control Module
3 *
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
11 */
12
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17
18 #ifndef DEBUG_IMX6_CCM
19 #define DEBUG_IMX6_CCM 0
20 #endif
21
22 #define DPRINTF(fmt, args...) \
23 do { \
24 if (DEBUG_IMX6_CCM) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
26 __func__, ##args); \
27 } \
28 } while (0)
29
30 static const char *imx6_ccm_reg_name(uint32_t reg)
31 {
32 static char unknown[20];
33
34 switch (reg) {
35 case CCM_CCR:
36 return "CCR";
37 case CCM_CCDR:
38 return "CCDR";
39 case CCM_CSR:
40 return "CSR";
41 case CCM_CCSR:
42 return "CCSR";
43 case CCM_CACRR:
44 return "CACRR";
45 case CCM_CBCDR:
46 return "CBCDR";
47 case CCM_CBCMR:
48 return "CBCMR";
49 case CCM_CSCMR1:
50 return "CSCMR1";
51 case CCM_CSCMR2:
52 return "CSCMR2";
53 case CCM_CSCDR1:
54 return "CSCDR1";
55 case CCM_CS1CDR:
56 return "CS1CDR";
57 case CCM_CS2CDR:
58 return "CS2CDR";
59 case CCM_CDCDR:
60 return "CDCDR";
61 case CCM_CHSCCDR:
62 return "CHSCCDR";
63 case CCM_CSCDR2:
64 return "CSCDR2";
65 case CCM_CSCDR3:
66 return "CSCDR3";
67 case CCM_CDHIPR:
68 return "CDHIPR";
69 case CCM_CTOR:
70 return "CTOR";
71 case CCM_CLPCR:
72 return "CLPCR";
73 case CCM_CISR:
74 return "CISR";
75 case CCM_CIMR:
76 return "CIMR";
77 case CCM_CCOSR:
78 return "CCOSR";
79 case CCM_CGPR:
80 return "CGPR";
81 case CCM_CCGR0:
82 return "CCGR0";
83 case CCM_CCGR1:
84 return "CCGR1";
85 case CCM_CCGR2:
86 return "CCGR2";
87 case CCM_CCGR3:
88 return "CCGR3";
89 case CCM_CCGR4:
90 return "CCGR4";
91 case CCM_CCGR5:
92 return "CCGR5";
93 case CCM_CCGR6:
94 return "CCGR6";
95 case CCM_CMEOR:
96 return "CMEOR";
97 default:
98 sprintf(unknown, "%d ?", reg);
99 return unknown;
100 }
101 }
102
103 static const char *imx6_analog_reg_name(uint32_t reg)
104 {
105 static char unknown[20];
106
107 switch (reg) {
108 case CCM_ANALOG_PLL_ARM:
109 return "PLL_ARM";
110 case CCM_ANALOG_PLL_ARM_SET:
111 return "PLL_ARM_SET";
112 case CCM_ANALOG_PLL_ARM_CLR:
113 return "PLL_ARM_CLR";
114 case CCM_ANALOG_PLL_ARM_TOG:
115 return "PLL_ARM_TOG";
116 case CCM_ANALOG_PLL_USB1:
117 return "PLL_USB1";
118 case CCM_ANALOG_PLL_USB1_SET:
119 return "PLL_USB1_SET";
120 case CCM_ANALOG_PLL_USB1_CLR:
121 return "PLL_USB1_CLR";
122 case CCM_ANALOG_PLL_USB1_TOG:
123 return "PLL_USB1_TOG";
124 case CCM_ANALOG_PLL_USB2:
125 return "PLL_USB2";
126 case CCM_ANALOG_PLL_USB2_SET:
127 return "PLL_USB2_SET";
128 case CCM_ANALOG_PLL_USB2_CLR:
129 return "PLL_USB2_CLR";
130 case CCM_ANALOG_PLL_USB2_TOG:
131 return "PLL_USB2_TOG";
132 case CCM_ANALOG_PLL_SYS:
133 return "PLL_SYS";
134 case CCM_ANALOG_PLL_SYS_SET:
135 return "PLL_SYS_SET";
136 case CCM_ANALOG_PLL_SYS_CLR:
137 return "PLL_SYS_CLR";
138 case CCM_ANALOG_PLL_SYS_TOG:
139 return "PLL_SYS_TOG";
140 case CCM_ANALOG_PLL_SYS_SS:
141 return "PLL_SYS_SS";
142 case CCM_ANALOG_PLL_SYS_NUM:
143 return "PLL_SYS_NUM";
144 case CCM_ANALOG_PLL_SYS_DENOM:
145 return "PLL_SYS_DENOM";
146 case CCM_ANALOG_PLL_AUDIO:
147 return "PLL_AUDIO";
148 case CCM_ANALOG_PLL_AUDIO_SET:
149 return "PLL_AUDIO_SET";
150 case CCM_ANALOG_PLL_AUDIO_CLR:
151 return "PLL_AUDIO_CLR";
152 case CCM_ANALOG_PLL_AUDIO_TOG:
153 return "PLL_AUDIO_TOG";
154 case CCM_ANALOG_PLL_AUDIO_NUM:
155 return "PLL_AUDIO_NUM";
156 case CCM_ANALOG_PLL_AUDIO_DENOM:
157 return "PLL_AUDIO_DENOM";
158 case CCM_ANALOG_PLL_VIDEO:
159 return "PLL_VIDEO";
160 case CCM_ANALOG_PLL_VIDEO_SET:
161 return "PLL_VIDEO_SET";
162 case CCM_ANALOG_PLL_VIDEO_CLR:
163 return "PLL_VIDEO_CLR";
164 case CCM_ANALOG_PLL_VIDEO_TOG:
165 return "PLL_VIDEO_TOG";
166 case CCM_ANALOG_PLL_VIDEO_NUM:
167 return "PLL_VIDEO_NUM";
168 case CCM_ANALOG_PLL_VIDEO_DENOM:
169 return "PLL_VIDEO_DENOM";
170 case CCM_ANALOG_PLL_MLB:
171 return "PLL_MLB";
172 case CCM_ANALOG_PLL_MLB_SET:
173 return "PLL_MLB_SET";
174 case CCM_ANALOG_PLL_MLB_CLR:
175 return "PLL_MLB_CLR";
176 case CCM_ANALOG_PLL_MLB_TOG:
177 return "PLL_MLB_TOG";
178 case CCM_ANALOG_PLL_ENET:
179 return "PLL_ENET";
180 case CCM_ANALOG_PLL_ENET_SET:
181 return "PLL_ENET_SET";
182 case CCM_ANALOG_PLL_ENET_CLR:
183 return "PLL_ENET_CLR";
184 case CCM_ANALOG_PLL_ENET_TOG:
185 return "PLL_ENET_TOG";
186 case CCM_ANALOG_PFD_480:
187 return "PFD_480";
188 case CCM_ANALOG_PFD_480_SET:
189 return "PFD_480_SET";
190 case CCM_ANALOG_PFD_480_CLR:
191 return "PFD_480_CLR";
192 case CCM_ANALOG_PFD_480_TOG:
193 return "PFD_480_TOG";
194 case CCM_ANALOG_PFD_528:
195 return "PFD_528";
196 case CCM_ANALOG_PFD_528_SET:
197 return "PFD_528_SET";
198 case CCM_ANALOG_PFD_528_CLR:
199 return "PFD_528_CLR";
200 case CCM_ANALOG_PFD_528_TOG:
201 return "PFD_528_TOG";
202 case CCM_ANALOG_MISC0:
203 return "MISC0";
204 case CCM_ANALOG_MISC0_SET:
205 return "MISC0_SET";
206 case CCM_ANALOG_MISC0_CLR:
207 return "MISC0_CLR";
208 case CCM_ANALOG_MISC0_TOG:
209 return "MISC0_TOG";
210 case CCM_ANALOG_MISC2:
211 return "MISC2";
212 case CCM_ANALOG_MISC2_SET:
213 return "MISC2_SET";
214 case CCM_ANALOG_MISC2_CLR:
215 return "MISC2_CLR";
216 case CCM_ANALOG_MISC2_TOG:
217 return "MISC2_TOG";
218 case PMU_REG_1P1:
219 return "PMU_REG_1P1";
220 case PMU_REG_3P0:
221 return "PMU_REG_3P0";
222 case PMU_REG_2P5:
223 return "PMU_REG_2P5";
224 case PMU_REG_CORE:
225 return "PMU_REG_CORE";
226 case PMU_MISC1:
227 return "PMU_MISC1";
228 case PMU_MISC1_SET:
229 return "PMU_MISC1_SET";
230 case PMU_MISC1_CLR:
231 return "PMU_MISC1_CLR";
232 case PMU_MISC1_TOG:
233 return "PMU_MISC1_TOG";
234 case USB_ANALOG_DIGPROG:
235 return "USB_ANALOG_DIGPROG";
236 default:
237 sprintf(unknown, "%d ?", reg);
238 return unknown;
239 }
240 }
241
242 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
243
244 static const VMStateDescription vmstate_imx6_ccm = {
245 .name = TYPE_IMX6_CCM,
246 .version_id = 1,
247 .minimum_version_id = 1,
248 .fields = (VMStateField[]) {
249 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
250 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
251 VMSTATE_END_OF_LIST()
252 },
253 };
254
255 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
256 {
257 uint64_t freq = 24000000;
258
259 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
260 freq *= 22;
261 } else {
262 freq *= 20;
263 }
264
265 DPRINTF("freq = %d\n", (uint32_t)freq);
266
267 return freq;
268 }
269
270 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
271 {
272 uint64_t freq = 0;
273
274 freq = imx6_analog_get_pll2_clk(dev) * 18
275 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
276
277 DPRINTF("freq = %d\n", (uint32_t)freq);
278
279 return freq;
280 }
281
282 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
283 {
284 uint64_t freq = 0;
285
286 freq = imx6_analog_get_pll2_clk(dev) * 18
287 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
288
289 DPRINTF("freq = %d\n", (uint32_t)freq);
290
291 return freq;
292 }
293
294 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
295 {
296 uint64_t freq = 0;
297
298 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
299 case 0:
300 freq = imx6_analog_get_pll2_clk(dev);
301 break;
302 case 1:
303 freq = imx6_analog_get_pll2_pfd2_clk(dev);
304 break;
305 case 2:
306 freq = imx6_analog_get_pll2_pfd0_clk(dev);
307 break;
308 case 3:
309 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
310 break;
311 default:
312 /* We should never get there */
313 g_assert_not_reached();
314 break;
315 }
316
317 DPRINTF("freq = %d\n", (uint32_t)freq);
318
319 return freq;
320 }
321
322 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
323 {
324 uint64_t freq = 0;
325
326 freq = imx6_analog_get_periph_clk(dev)
327 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
328
329 DPRINTF("freq = %d\n", (uint32_t)freq);
330
331 return freq;
332 }
333
334 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
335 {
336 uint64_t freq = 0;
337
338 freq = imx6_ccm_get_ahb_clk(dev)
339 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
340
341 DPRINTF("freq = %d\n", (uint32_t)freq);
342
343 return freq;
344 }
345
346 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
347 {
348 uint64_t freq = 0;
349
350 freq = imx6_ccm_get_ipg_clk(dev)
351 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
352
353 DPRINTF("freq = %d\n", (uint32_t)freq);
354
355 return freq;
356 }
357
358 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
359 {
360 uint32_t freq = 0;
361 IMX6CCMState *s = IMX6_CCM(dev);
362
363 switch (clock) {
364 case CLK_NONE:
365 break;
366 case CLK_IPG:
367 freq = imx6_ccm_get_ipg_clk(s);
368 break;
369 case CLK_IPG_HIGH:
370 freq = imx6_ccm_get_per_clk(s);
371 break;
372 case CLK_32k:
373 freq = CKIL_FREQ;
374 break;
375 case CLK_HIGH:
376 freq = 24000000;
377 break;
378 case CLK_HIGH_DIV:
379 freq = 24000000 / 8;
380 break;
381 default:
382 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
383 TYPE_IMX6_CCM, __func__, clock);
384 break;
385 }
386
387 DPRINTF("Clock = %d) = %d\n", clock, freq);
388
389 return freq;
390 }
391
392 static void imx6_ccm_reset(DeviceState *dev)
393 {
394 IMX6CCMState *s = IMX6_CCM(dev);
395
396 DPRINTF("\n");
397
398 s->ccm[CCM_CCR] = 0x040116FF;
399 s->ccm[CCM_CCDR] = 0x00000000;
400 s->ccm[CCM_CSR] = 0x00000010;
401 s->ccm[CCM_CCSR] = 0x00000100;
402 s->ccm[CCM_CACRR] = 0x00000000;
403 s->ccm[CCM_CBCDR] = 0x00018D40;
404 s->ccm[CCM_CBCMR] = 0x00022324;
405 s->ccm[CCM_CSCMR1] = 0x00F00000;
406 s->ccm[CCM_CSCMR2] = 0x02B92F06;
407 s->ccm[CCM_CSCDR1] = 0x00490B00;
408 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
409 s->ccm[CCM_CS2CDR] = 0x000736C1;
410 s->ccm[CCM_CDCDR] = 0x33F71F92;
411 s->ccm[CCM_CHSCCDR] = 0x0002A150;
412 s->ccm[CCM_CSCDR2] = 0x0002A150;
413 s->ccm[CCM_CSCDR3] = 0x00014841;
414 s->ccm[CCM_CDHIPR] = 0x00000000;
415 s->ccm[CCM_CTOR] = 0x00000000;
416 s->ccm[CCM_CLPCR] = 0x00000079;
417 s->ccm[CCM_CISR] = 0x00000000;
418 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
419 s->ccm[CCM_CCOSR] = 0x000A0001;
420 s->ccm[CCM_CGPR] = 0x0000FE62;
421 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
422 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
423 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
424 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
425 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
426 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
427 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
428 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
429
430 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
431 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
432 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
433 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
434 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
435 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
436 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
437 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
438 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
439 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
440 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
441 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
442 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
443 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
444 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
445 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
446 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
447
448 s->analog[PMU_REG_1P1] = 0x00001073;
449 s->analog[PMU_REG_3P0] = 0x00000F74;
450 s->analog[PMU_REG_2P5] = 0x00005071;
451 s->analog[PMU_REG_CORE] = 0x00402010;
452 s->analog[PMU_MISC0] = 0x04000000;
453 s->analog[PMU_MISC1] = 0x00000000;
454 s->analog[PMU_MISC2] = 0x00272727;
455
456 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
457 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
458 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
459 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
460 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
461 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
462 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
463 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
464 s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
465
466 /* all PLLs need to be locked */
467 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
468 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
469 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
470 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
471 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
472 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
473 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK;
474 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
475 }
476
477 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
478 {
479 uint32_t value = 0;
480 uint32_t index = offset >> 2;
481 IMX6CCMState *s = (IMX6CCMState *)opaque;
482
483 value = s->ccm[index];
484
485 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
486
487 return (uint64_t)value;
488 }
489
490 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
491 unsigned size)
492 {
493 uint32_t index = offset >> 2;
494 IMX6CCMState *s = (IMX6CCMState *)opaque;
495
496 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
497 (uint32_t)value);
498
499 /*
500 * We will do a better implementation later. In particular some bits
501 * cannot be written to.
502 */
503 s->ccm[index] = (uint32_t)value;
504 }
505
506 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
507 {
508 uint32_t value;
509 uint32_t index = offset >> 2;
510 IMX6CCMState *s = (IMX6CCMState *)opaque;
511
512 switch (index) {
513 case CCM_ANALOG_PLL_ARM_SET:
514 case CCM_ANALOG_PLL_USB1_SET:
515 case CCM_ANALOG_PLL_USB2_SET:
516 case CCM_ANALOG_PLL_SYS_SET:
517 case CCM_ANALOG_PLL_AUDIO_SET:
518 case CCM_ANALOG_PLL_VIDEO_SET:
519 case CCM_ANALOG_PLL_MLB_SET:
520 case CCM_ANALOG_PLL_ENET_SET:
521 case CCM_ANALOG_PFD_480_SET:
522 case CCM_ANALOG_PFD_528_SET:
523 case CCM_ANALOG_MISC0_SET:
524 case PMU_MISC1_SET:
525 case CCM_ANALOG_MISC2_SET:
526 case USB_ANALOG_USB1_VBUS_DETECT_SET:
527 case USB_ANALOG_USB1_CHRG_DETECT_SET:
528 case USB_ANALOG_USB1_MISC_SET:
529 case USB_ANALOG_USB2_VBUS_DETECT_SET:
530 case USB_ANALOG_USB2_CHRG_DETECT_SET:
531 case USB_ANALOG_USB2_MISC_SET:
532 /*
533 * All REG_NAME_SET register access are in fact targeting the
534 * the REG_NAME register.
535 */
536 value = s->analog[index - 1];
537 break;
538 case CCM_ANALOG_PLL_ARM_CLR:
539 case CCM_ANALOG_PLL_USB1_CLR:
540 case CCM_ANALOG_PLL_USB2_CLR:
541 case CCM_ANALOG_PLL_SYS_CLR:
542 case CCM_ANALOG_PLL_AUDIO_CLR:
543 case CCM_ANALOG_PLL_VIDEO_CLR:
544 case CCM_ANALOG_PLL_MLB_CLR:
545 case CCM_ANALOG_PLL_ENET_CLR:
546 case CCM_ANALOG_PFD_480_CLR:
547 case CCM_ANALOG_PFD_528_CLR:
548 case CCM_ANALOG_MISC0_CLR:
549 case PMU_MISC1_CLR:
550 case CCM_ANALOG_MISC2_CLR:
551 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
552 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
553 case USB_ANALOG_USB1_MISC_CLR:
554 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
555 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
556 case USB_ANALOG_USB2_MISC_CLR:
557 /*
558 * All REG_NAME_CLR register access are in fact targeting the
559 * the REG_NAME register.
560 */
561 value = s->analog[index - 2];
562 break;
563 case CCM_ANALOG_PLL_ARM_TOG:
564 case CCM_ANALOG_PLL_USB1_TOG:
565 case CCM_ANALOG_PLL_USB2_TOG:
566 case CCM_ANALOG_PLL_SYS_TOG:
567 case CCM_ANALOG_PLL_AUDIO_TOG:
568 case CCM_ANALOG_PLL_VIDEO_TOG:
569 case CCM_ANALOG_PLL_MLB_TOG:
570 case CCM_ANALOG_PLL_ENET_TOG:
571 case CCM_ANALOG_PFD_480_TOG:
572 case CCM_ANALOG_PFD_528_TOG:
573 case CCM_ANALOG_MISC0_TOG:
574 case PMU_MISC1_TOG:
575 case CCM_ANALOG_MISC2_TOG:
576 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
577 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
578 case USB_ANALOG_USB1_MISC_TOG:
579 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
580 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
581 case USB_ANALOG_USB2_MISC_TOG:
582 /*
583 * All REG_NAME_TOG register access are in fact targeting the
584 * the REG_NAME register.
585 */
586 value = s->analog[index - 3];
587 break;
588 default:
589 value = s->analog[index];
590 break;
591 }
592
593 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
594
595 return (uint64_t)value;
596 }
597
598 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
599 unsigned size)
600 {
601 uint32_t index = offset >> 2;
602 IMX6CCMState *s = (IMX6CCMState *)opaque;
603
604 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
605 (uint32_t)value);
606
607 switch (index) {
608 case CCM_ANALOG_PLL_ARM_SET:
609 case CCM_ANALOG_PLL_USB1_SET:
610 case CCM_ANALOG_PLL_USB2_SET:
611 case CCM_ANALOG_PLL_SYS_SET:
612 case CCM_ANALOG_PLL_AUDIO_SET:
613 case CCM_ANALOG_PLL_VIDEO_SET:
614 case CCM_ANALOG_PLL_MLB_SET:
615 case CCM_ANALOG_PLL_ENET_SET:
616 case CCM_ANALOG_PFD_480_SET:
617 case CCM_ANALOG_PFD_528_SET:
618 case CCM_ANALOG_MISC0_SET:
619 case PMU_MISC1_SET:
620 case CCM_ANALOG_MISC2_SET:
621 case USB_ANALOG_USB1_VBUS_DETECT_SET:
622 case USB_ANALOG_USB1_CHRG_DETECT_SET:
623 case USB_ANALOG_USB1_MISC_SET:
624 case USB_ANALOG_USB2_VBUS_DETECT_SET:
625 case USB_ANALOG_USB2_CHRG_DETECT_SET:
626 case USB_ANALOG_USB2_MISC_SET:
627 /*
628 * All REG_NAME_SET register access are in fact targeting the
629 * the REG_NAME register. So we change the value of the
630 * REG_NAME register, setting bits passed in the value.
631 */
632 s->analog[index - 1] |= value;
633 break;
634 case CCM_ANALOG_PLL_ARM_CLR:
635 case CCM_ANALOG_PLL_USB1_CLR:
636 case CCM_ANALOG_PLL_USB2_CLR:
637 case CCM_ANALOG_PLL_SYS_CLR:
638 case CCM_ANALOG_PLL_AUDIO_CLR:
639 case CCM_ANALOG_PLL_VIDEO_CLR:
640 case CCM_ANALOG_PLL_MLB_CLR:
641 case CCM_ANALOG_PLL_ENET_CLR:
642 case CCM_ANALOG_PFD_480_CLR:
643 case CCM_ANALOG_PFD_528_CLR:
644 case CCM_ANALOG_MISC0_CLR:
645 case PMU_MISC1_CLR:
646 case CCM_ANALOG_MISC2_CLR:
647 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
648 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
649 case USB_ANALOG_USB1_MISC_CLR:
650 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
651 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
652 case USB_ANALOG_USB2_MISC_CLR:
653 /*
654 * All REG_NAME_CLR register access are in fact targeting the
655 * the REG_NAME register. So we change the value of the
656 * REG_NAME register, unsetting bits passed in the value.
657 */
658 s->analog[index - 2] &= ~value;
659 break;
660 case CCM_ANALOG_PLL_ARM_TOG:
661 case CCM_ANALOG_PLL_USB1_TOG:
662 case CCM_ANALOG_PLL_USB2_TOG:
663 case CCM_ANALOG_PLL_SYS_TOG:
664 case CCM_ANALOG_PLL_AUDIO_TOG:
665 case CCM_ANALOG_PLL_VIDEO_TOG:
666 case CCM_ANALOG_PLL_MLB_TOG:
667 case CCM_ANALOG_PLL_ENET_TOG:
668 case CCM_ANALOG_PFD_480_TOG:
669 case CCM_ANALOG_PFD_528_TOG:
670 case CCM_ANALOG_MISC0_TOG:
671 case PMU_MISC1_TOG:
672 case CCM_ANALOG_MISC2_TOG:
673 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
674 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
675 case USB_ANALOG_USB1_MISC_TOG:
676 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
677 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
678 case USB_ANALOG_USB2_MISC_TOG:
679 /*
680 * All REG_NAME_TOG register access are in fact targeting the
681 * the REG_NAME register. So we change the value of the
682 * REG_NAME register, toggling bits passed in the value.
683 */
684 s->analog[index - 3] ^= value;
685 break;
686 default:
687 /*
688 * We will do a better implementation later. In particular some bits
689 * cannot be written to.
690 */
691 s->analog[index] = value;
692 break;
693 }
694 }
695
696 static const struct MemoryRegionOps imx6_ccm_ops = {
697 .read = imx6_ccm_read,
698 .write = imx6_ccm_write,
699 .endianness = DEVICE_NATIVE_ENDIAN,
700 .valid = {
701 /*
702 * Our device would not work correctly if the guest was doing
703 * unaligned access. This might not be a limitation on the real
704 * device but in practice there is no reason for a guest to access
705 * this device unaligned.
706 */
707 .min_access_size = 4,
708 .max_access_size = 4,
709 .unaligned = false,
710 },
711 };
712
713 static const struct MemoryRegionOps imx6_analog_ops = {
714 .read = imx6_analog_read,
715 .write = imx6_analog_write,
716 .endianness = DEVICE_NATIVE_ENDIAN,
717 .valid = {
718 /*
719 * Our device would not work correctly if the guest was doing
720 * unaligned access. This might not be a limitation on the real
721 * device but in practice there is no reason for a guest to access
722 * this device unaligned.
723 */
724 .min_access_size = 4,
725 .max_access_size = 4,
726 .unaligned = false,
727 },
728 };
729
730 static void imx6_ccm_init(Object *obj)
731 {
732 DeviceState *dev = DEVICE(obj);
733 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
734 IMX6CCMState *s = IMX6_CCM(obj);
735
736 /* initialize a container for the all memory range */
737 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
738
739 /* We initialize an IO memory region for the CCM part */
740 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
741 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
742
743 /* Add the CCM as a subregion at offset 0 */
744 memory_region_add_subregion(&s->container, 0, &s->ioccm);
745
746 /* We initialize an IO memory region for the ANALOG part */
747 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
748 TYPE_IMX6_CCM ".analog",
749 CCM_ANALOG_MAX * sizeof(uint32_t));
750
751 /* Add the ANALOG as a subregion at offset 0x4000 */
752 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
753
754 sysbus_init_mmio(sd, &s->container);
755 }
756
757 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
758 {
759 DeviceClass *dc = DEVICE_CLASS(klass);
760 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
761
762 dc->reset = imx6_ccm_reset;
763 dc->vmsd = &vmstate_imx6_ccm;
764 dc->desc = "i.MX6 Clock Control Module";
765
766 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
767 }
768
769 static const TypeInfo imx6_ccm_info = {
770 .name = TYPE_IMX6_CCM,
771 .parent = TYPE_IMX_CCM,
772 .instance_size = sizeof(IMX6CCMState),
773 .instance_init = imx6_ccm_init,
774 .class_init = imx6_ccm_class_init,
775 };
776
777 static void imx6_ccm_register_types(void)
778 {
779 type_register_static(&imx6_ccm_info);
780 }
781
782 type_init(imx6_ccm_register_types)