]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/net/cadence_gem.c
Include hw/irq.h a lot less
[thirdparty/qemu.git] / hw / net / cadence_gem.c
1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "qapi/error.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "sysemu/dma.h"
34 #include "net/checksum.h"
35
36 #ifdef CADENCE_GEM_ERR_DEBUG
37 #define DB_PRINT(...) do { \
38 fprintf(stderr, ": %s: ", __func__); \
39 fprintf(stderr, ## __VA_ARGS__); \
40 } while (0)
41 #else
42 #define DB_PRINT(...)
43 #endif
44
45 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
46 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
47 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
48 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
49 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
50 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
51 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
52 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
53 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
54 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
55 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
56 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
57 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
58 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
59 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
60 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
61 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
62 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
63 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
64 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
65 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
66 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
67 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
68 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
69 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
70 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
71 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
72 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
73 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
74 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
75 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
76 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
77 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
78 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
79 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
80 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
81 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
82 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
83 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
84 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
85 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
86 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
87 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
88 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
89 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
90 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
91 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
92 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
93 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
94 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
95 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
96 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
97 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
98 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
99 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
100 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
101 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
102 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
103 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
104 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
105 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
106 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
107 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
108 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
109 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
110 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
111 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
112 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
113 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
114 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
115 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
116 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
117 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
118 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
119 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
120 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
121 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
122 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
123 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
124 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
125 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
126
127 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
128 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
129 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
130 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
131 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
132 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
133 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
134 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
135 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
136 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
137 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
138 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
139
140 /* Design Configuration Registers */
141 #define GEM_DESCONF (0x00000280/4)
142 #define GEM_DESCONF2 (0x00000284/4)
143 #define GEM_DESCONF3 (0x00000288/4)
144 #define GEM_DESCONF4 (0x0000028C/4)
145 #define GEM_DESCONF5 (0x00000290/4)
146 #define GEM_DESCONF6 (0x00000294/4)
147 #define GEM_DESCONF6_64B_MASK (1U << 23)
148 #define GEM_DESCONF7 (0x00000298/4)
149
150 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
151 #define GEM_INT_Q1_MASK (0x00000640 / 4)
152
153 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
154 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
155
156 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
157 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
158
159 #define GEM_TBQPH (0x000004C8 / 4)
160 #define GEM_RBQPH (0x000004D4 / 4)
161
162 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
163 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
164
165 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
166 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
167
168 #define GEM_INT_Q1_MASK (0x00000640 / 4)
169 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
170
171 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
172
173 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
174 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
175 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
176 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
177 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
178 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
179 #define GEM_ST1R_QUEUE_SHIFT (0)
180 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
181
182 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
183
184 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
185 #define GEM_ST2R_COMPARE_A_SHIFT (13)
186 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
187 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
188 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
189 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
190 + 1)
191 #define GEM_ST2R_QUEUE_SHIFT (0)
192 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
193
194 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
195 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
196
197 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
198 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
199 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
200 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
201
202 /*****************************************/
203 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
204 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
205 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
206 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
207
208 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
209 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
210 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
211 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
212 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
213 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
214 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
215 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
216
217 #define GEM_DMACFG_ADDR_64B (1U << 30)
218 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
219 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
220 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
221 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
222 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
223 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
224
225 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
226 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
227
228 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
229 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
230
231 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
232 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
233 #define GEM_INT_TXUSED 0x00000008
234 #define GEM_INT_RXUSED 0x00000004
235 #define GEM_INT_RXCMPL 0x00000002
236
237 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
238 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
239 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
240 #define GEM_PHYMNTNC_ADDR_SHFT 23
241 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
242 #define GEM_PHYMNTNC_REG_SHIFT 18
243
244 /* Marvell PHY definitions */
245 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
246
247 #define PHY_REG_CONTROL 0
248 #define PHY_REG_STATUS 1
249 #define PHY_REG_PHYID1 2
250 #define PHY_REG_PHYID2 3
251 #define PHY_REG_ANEGADV 4
252 #define PHY_REG_LINKPABIL 5
253 #define PHY_REG_ANEGEXP 6
254 #define PHY_REG_NEXTP 7
255 #define PHY_REG_LINKPNEXTP 8
256 #define PHY_REG_100BTCTRL 9
257 #define PHY_REG_1000BTSTAT 10
258 #define PHY_REG_EXTSTAT 15
259 #define PHY_REG_PHYSPCFC_CTL 16
260 #define PHY_REG_PHYSPCFC_ST 17
261 #define PHY_REG_INT_EN 18
262 #define PHY_REG_INT_ST 19
263 #define PHY_REG_EXT_PHYSPCFC_CTL 20
264 #define PHY_REG_RXERR 21
265 #define PHY_REG_EACD 22
266 #define PHY_REG_LED 24
267 #define PHY_REG_LED_OVRD 25
268 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
269 #define PHY_REG_EXT_PHYSPCFC_ST 27
270 #define PHY_REG_CABLE_DIAG 28
271
272 #define PHY_REG_CONTROL_RST 0x8000
273 #define PHY_REG_CONTROL_LOOP 0x4000
274 #define PHY_REG_CONTROL_ANEG 0x1000
275
276 #define PHY_REG_STATUS_LINK 0x0004
277 #define PHY_REG_STATUS_ANEGCMPL 0x0020
278
279 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
280 #define PHY_REG_INT_ST_LINKC 0x0400
281 #define PHY_REG_INT_ST_ENERGY 0x0010
282
283 /***********************************************************************/
284 #define GEM_RX_REJECT (-1)
285 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
286 #define GEM_RX_BROADCAST_ACCEPT (-3)
287 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
288 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
289
290 #define GEM_RX_SAR_ACCEPT 0
291
292 /***********************************************************************/
293
294 #define DESC_1_USED 0x80000000
295 #define DESC_1_LENGTH 0x00001FFF
296
297 #define DESC_1_TX_WRAP 0x40000000
298 #define DESC_1_TX_LAST 0x00008000
299
300 #define DESC_0_RX_WRAP 0x00000002
301 #define DESC_0_RX_OWNERSHIP 0x00000001
302
303 #define R_DESC_1_RX_SAR_SHIFT 25
304 #define R_DESC_1_RX_SAR_LENGTH 2
305 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
306 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
307 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
308 #define R_DESC_1_RX_BROADCAST (1 << 31)
309
310 #define DESC_1_RX_SOF 0x00004000
311 #define DESC_1_RX_EOF 0x00008000
312
313 #define GEM_MODID_VALUE 0x00020118
314
315 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
316 {
317 uint64_t ret = desc[0];
318
319 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
320 ret |= (uint64_t)desc[2] << 32;
321 }
322 return ret;
323 }
324
325 static inline unsigned tx_desc_get_used(uint32_t *desc)
326 {
327 return (desc[1] & DESC_1_USED) ? 1 : 0;
328 }
329
330 static inline void tx_desc_set_used(uint32_t *desc)
331 {
332 desc[1] |= DESC_1_USED;
333 }
334
335 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
336 {
337 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
338 }
339
340 static inline unsigned tx_desc_get_last(uint32_t *desc)
341 {
342 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
343 }
344
345 static inline void tx_desc_set_last(uint32_t *desc)
346 {
347 desc[1] |= DESC_1_TX_LAST;
348 }
349
350 static inline unsigned tx_desc_get_length(uint32_t *desc)
351 {
352 return desc[1] & DESC_1_LENGTH;
353 }
354
355 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
356 {
357 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
358 DB_PRINT("bufaddr: 0x%08x\n", *desc);
359 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
360 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
361 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
362 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
363 }
364
365 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
366 {
367 uint64_t ret = desc[0] & ~0x3UL;
368
369 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
370 ret |= (uint64_t)desc[2] << 32;
371 }
372 return ret;
373 }
374
375 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
376 {
377 int ret = 2;
378
379 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
380 ret += 2;
381 }
382 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
383 : GEM_DMACFG_TX_BD_EXT)) {
384 ret += 2;
385 }
386
387 assert(ret <= DESC_MAX_NUM_WORDS);
388 return ret;
389 }
390
391 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
392 {
393 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
394 }
395
396 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
397 {
398 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
399 }
400
401 static inline void rx_desc_set_ownership(uint32_t *desc)
402 {
403 desc[0] |= DESC_0_RX_OWNERSHIP;
404 }
405
406 static inline void rx_desc_set_sof(uint32_t *desc)
407 {
408 desc[1] |= DESC_1_RX_SOF;
409 }
410
411 static inline void rx_desc_set_eof(uint32_t *desc)
412 {
413 desc[1] |= DESC_1_RX_EOF;
414 }
415
416 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
417 {
418 desc[1] &= ~DESC_1_LENGTH;
419 desc[1] |= len;
420 }
421
422 static inline void rx_desc_set_broadcast(uint32_t *desc)
423 {
424 desc[1] |= R_DESC_1_RX_BROADCAST;
425 }
426
427 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
428 {
429 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
430 }
431
432 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
433 {
434 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
435 }
436
437 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
438 {
439 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
440 sar_idx);
441 desc[1] |= R_DESC_1_RX_SAR_MATCH;
442 }
443
444 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
445 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
446
447 /*
448 * gem_init_register_masks:
449 * One time initialization.
450 * Set masks to identify which register bits have magical clear properties
451 */
452 static void gem_init_register_masks(CadenceGEMState *s)
453 {
454 /* Mask of register bits which are read only */
455 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
456 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
457 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
458 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
459 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
460 s->regs_ro[GEM_RXQBASE] = 0x00000003;
461 s->regs_ro[GEM_TXQBASE] = 0x00000003;
462 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
463 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
464 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
465 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
466
467 /* Mask of register bits which are clear on read */
468 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
469 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
470
471 /* Mask of register bits which are write 1 to clear */
472 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
473 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
474 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
475
476 /* Mask of register bits which are write only */
477 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
478 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
479 s->regs_wo[GEM_IER] = 0x07FFFFFF;
480 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
481 }
482
483 /*
484 * phy_update_link:
485 * Make the emulated PHY link state match the QEMU "interface" state.
486 */
487 static void phy_update_link(CadenceGEMState *s)
488 {
489 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
490
491 /* Autonegotiation status mirrors link status. */
492 if (qemu_get_queue(s->nic)->link_down) {
493 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
494 PHY_REG_STATUS_LINK);
495 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
496 } else {
497 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
498 PHY_REG_STATUS_LINK);
499 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
500 PHY_REG_INT_ST_ANEGCMPL |
501 PHY_REG_INT_ST_ENERGY);
502 }
503 }
504
505 static int gem_can_receive(NetClientState *nc)
506 {
507 CadenceGEMState *s;
508 int i;
509
510 s = qemu_get_nic_opaque(nc);
511
512 /* Do nothing if receive is not enabled. */
513 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
514 if (s->can_rx_state != 1) {
515 s->can_rx_state = 1;
516 DB_PRINT("can't receive - no enable\n");
517 }
518 return 0;
519 }
520
521 for (i = 0; i < s->num_priority_queues; i++) {
522 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
523 break;
524 }
525 };
526
527 if (i == s->num_priority_queues) {
528 if (s->can_rx_state != 2) {
529 s->can_rx_state = 2;
530 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
531 }
532 return 0;
533 }
534
535 if (s->can_rx_state != 0) {
536 s->can_rx_state = 0;
537 DB_PRINT("can receive\n");
538 }
539 return 1;
540 }
541
542 /*
543 * gem_update_int_status:
544 * Raise or lower interrupt based on current status.
545 */
546 static void gem_update_int_status(CadenceGEMState *s)
547 {
548 int i;
549
550 if (!s->regs[GEM_ISR]) {
551 /* ISR isn't set, clear all the interrupts */
552 for (i = 0; i < s->num_priority_queues; ++i) {
553 qemu_set_irq(s->irq[i], 0);
554 }
555 return;
556 }
557
558 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
559 * check it again.
560 */
561 if (s->num_priority_queues == 1) {
562 /* No priority queues, just trigger the interrupt */
563 DB_PRINT("asserting int.\n");
564 qemu_set_irq(s->irq[0], 1);
565 return;
566 }
567
568 for (i = 0; i < s->num_priority_queues; ++i) {
569 if (s->regs[GEM_INT_Q1_STATUS + i]) {
570 DB_PRINT("asserting int. (q=%d)\n", i);
571 qemu_set_irq(s->irq[i], 1);
572 }
573 }
574 }
575
576 /*
577 * gem_receive_updatestats:
578 * Increment receive statistics.
579 */
580 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
581 unsigned bytes)
582 {
583 uint64_t octets;
584
585 /* Total octets (bytes) received */
586 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
587 s->regs[GEM_OCTRXHI];
588 octets += bytes;
589 s->regs[GEM_OCTRXLO] = octets >> 32;
590 s->regs[GEM_OCTRXHI] = octets;
591
592 /* Error-free Frames received */
593 s->regs[GEM_RXCNT]++;
594
595 /* Error-free Broadcast Frames counter */
596 if (!memcmp(packet, broadcast_addr, 6)) {
597 s->regs[GEM_RXBROADCNT]++;
598 }
599
600 /* Error-free Multicast Frames counter */
601 if (packet[0] == 0x01) {
602 s->regs[GEM_RXMULTICNT]++;
603 }
604
605 if (bytes <= 64) {
606 s->regs[GEM_RX64CNT]++;
607 } else if (bytes <= 127) {
608 s->regs[GEM_RX65CNT]++;
609 } else if (bytes <= 255) {
610 s->regs[GEM_RX128CNT]++;
611 } else if (bytes <= 511) {
612 s->regs[GEM_RX256CNT]++;
613 } else if (bytes <= 1023) {
614 s->regs[GEM_RX512CNT]++;
615 } else if (bytes <= 1518) {
616 s->regs[GEM_RX1024CNT]++;
617 } else {
618 s->regs[GEM_RX1519CNT]++;
619 }
620 }
621
622 /*
623 * Get the MAC Address bit from the specified position
624 */
625 static unsigned get_bit(const uint8_t *mac, unsigned bit)
626 {
627 unsigned byte;
628
629 byte = mac[bit / 8];
630 byte >>= (bit & 0x7);
631 byte &= 1;
632
633 return byte;
634 }
635
636 /*
637 * Calculate a GEM MAC Address hash index
638 */
639 static unsigned calc_mac_hash(const uint8_t *mac)
640 {
641 int index_bit, mac_bit;
642 unsigned hash_index;
643
644 hash_index = 0;
645 mac_bit = 5;
646 for (index_bit = 5; index_bit >= 0; index_bit--) {
647 hash_index |= (get_bit(mac, mac_bit) ^
648 get_bit(mac, mac_bit + 6) ^
649 get_bit(mac, mac_bit + 12) ^
650 get_bit(mac, mac_bit + 18) ^
651 get_bit(mac, mac_bit + 24) ^
652 get_bit(mac, mac_bit + 30) ^
653 get_bit(mac, mac_bit + 36) ^
654 get_bit(mac, mac_bit + 42)) << index_bit;
655 mac_bit--;
656 }
657
658 return hash_index;
659 }
660
661 /*
662 * gem_mac_address_filter:
663 * Accept or reject this destination address?
664 * Returns:
665 * GEM_RX_REJECT: reject
666 * >= 0: Specific address accept (which matched SAR is returned)
667 * others for various other modes of accept:
668 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
669 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
670 */
671 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
672 {
673 uint8_t *gem_spaddr;
674 int i;
675
676 /* Promiscuous mode? */
677 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
678 return GEM_RX_PROMISCUOUS_ACCEPT;
679 }
680
681 if (!memcmp(packet, broadcast_addr, 6)) {
682 /* Reject broadcast packets? */
683 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
684 return GEM_RX_REJECT;
685 }
686 return GEM_RX_BROADCAST_ACCEPT;
687 }
688
689 /* Accept packets -w- hash match? */
690 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
691 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
692 unsigned hash_index;
693
694 hash_index = calc_mac_hash(packet);
695 if (hash_index < 32) {
696 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
697 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
698 GEM_RX_UNICAST_HASH_ACCEPT;
699 }
700 } else {
701 hash_index -= 32;
702 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
703 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
704 GEM_RX_UNICAST_HASH_ACCEPT;
705 }
706 }
707 }
708
709 /* Check all 4 specific addresses */
710 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
711 for (i = 3; i >= 0; i--) {
712 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
713 return GEM_RX_SAR_ACCEPT + i;
714 }
715 }
716
717 /* No address match; reject the packet */
718 return GEM_RX_REJECT;
719 }
720
721 /* Figure out which queue the received data should be sent to */
722 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
723 unsigned rxbufsize)
724 {
725 uint32_t reg;
726 bool matched, mismatched;
727 int i, j;
728
729 for (i = 0; i < s->num_type1_screeners; i++) {
730 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
731 matched = false;
732 mismatched = false;
733
734 /* Screening is based on UDP Port */
735 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
736 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
737 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
738 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
739 matched = true;
740 } else {
741 mismatched = true;
742 }
743 }
744
745 /* Screening is based on DS/TC */
746 if (reg & GEM_ST1R_DSTC_ENABLE) {
747 uint8_t dscp = rxbuf_ptr[14 + 1];
748 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
749 GEM_ST1R_DSTC_MATCH_WIDTH)) {
750 matched = true;
751 } else {
752 mismatched = true;
753 }
754 }
755
756 if (matched && !mismatched) {
757 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
758 }
759 }
760
761 for (i = 0; i < s->num_type2_screeners; i++) {
762 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
763 matched = false;
764 mismatched = false;
765
766 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
767 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
768 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
769 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
770
771 if (et_idx > s->num_type2_screeners) {
772 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
773 "register index: %d\n", et_idx);
774 }
775 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
776 et_idx]) {
777 matched = true;
778 } else {
779 mismatched = true;
780 }
781 }
782
783 /* Compare A, B, C */
784 for (j = 0; j < 3; j++) {
785 uint32_t cr0, cr1, mask;
786 uint16_t rx_cmp;
787 int offset;
788 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
789 GEM_ST2R_COMPARE_WIDTH);
790
791 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
792 continue;
793 }
794 if (cr_idx > s->num_type2_screeners) {
795 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
796 "register index: %d\n", cr_idx);
797 }
798
799 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
800 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
801 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
802 GEM_T2CW1_OFFSET_VALUE_WIDTH);
803
804 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
805 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
806 case 3: /* Skip UDP header */
807 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
808 "unimplemented - assuming UDP\n");
809 offset += 8;
810 /* Fallthrough */
811 case 2: /* skip the IP header */
812 offset += 20;
813 /* Fallthrough */
814 case 1: /* Count from after the ethertype */
815 offset += 14;
816 break;
817 case 0:
818 /* Offset from start of frame */
819 break;
820 }
821
822 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
823 mask = extract32(cr0, 0, 16);
824
825 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
826 matched = true;
827 } else {
828 mismatched = true;
829 }
830 }
831
832 if (matched && !mismatched) {
833 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
834 }
835 }
836
837 /* We made it here, assume it's queue 0 */
838 return 0;
839 }
840
841 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
842 {
843 hwaddr desc_addr = 0;
844
845 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
846 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
847 }
848 desc_addr <<= 32;
849 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
850 return desc_addr;
851 }
852
853 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
854 {
855 return gem_get_desc_addr(s, true, q);
856 }
857
858 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
859 {
860 return gem_get_desc_addr(s, false, q);
861 }
862
863 static void gem_get_rx_desc(CadenceGEMState *s, int q)
864 {
865 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
866
867 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
868
869 /* read current descriptor */
870 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
871 (uint8_t *)s->rx_desc[q],
872 sizeof(uint32_t) * gem_get_desc_len(s, true));
873
874 /* Descriptor owned by software ? */
875 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
876 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
877 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
878 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
879 /* Handle interrupt consequences */
880 gem_update_int_status(s);
881 }
882 }
883
884 /*
885 * gem_receive:
886 * Fit a packet handed to us by QEMU into the receive descriptor ring.
887 */
888 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
889 {
890 CadenceGEMState *s;
891 unsigned rxbufsize, bytes_to_copy;
892 unsigned rxbuf_offset;
893 uint8_t rxbuf[2048];
894 uint8_t *rxbuf_ptr;
895 bool first_desc = true;
896 int maf;
897 int q = 0;
898
899 s = qemu_get_nic_opaque(nc);
900
901 /* Is this destination MAC address "for us" ? */
902 maf = gem_mac_address_filter(s, buf);
903 if (maf == GEM_RX_REJECT) {
904 return -1;
905 }
906
907 /* Discard packets with receive length error enabled ? */
908 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
909 unsigned type_len;
910
911 /* Fish the ethertype / length field out of the RX packet */
912 type_len = buf[12] << 8 | buf[13];
913 /* It is a length field, not an ethertype */
914 if (type_len < 0x600) {
915 if (size < type_len) {
916 /* discard */
917 return -1;
918 }
919 }
920 }
921
922 /*
923 * Determine configured receive buffer offset (probably 0)
924 */
925 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
926 GEM_NWCFG_BUFF_OFST_S;
927
928 /* The configure size of each receive buffer. Determines how many
929 * buffers needed to hold this packet.
930 */
931 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
932 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
933 bytes_to_copy = size;
934
935 /* Hardware allows a zero value here but warns against it. To avoid QEMU
936 * indefinite loops we enforce a minimum value here
937 */
938 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
939 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
940 }
941
942 /* Pad to minimum length. Assume FCS field is stripped, logic
943 * below will increment it to the real minimum of 64 when
944 * not FCS stripping
945 */
946 if (size < 60) {
947 size = 60;
948 }
949
950 /* Strip of FCS field ? (usually yes) */
951 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
952 rxbuf_ptr = (void *)buf;
953 } else {
954 unsigned crc_val;
955
956 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
957 size = sizeof(rxbuf) - sizeof(crc_val);
958 }
959 bytes_to_copy = size;
960 /* The application wants the FCS field, which QEMU does not provide.
961 * We must try and calculate one.
962 */
963
964 memcpy(rxbuf, buf, size);
965 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
966 rxbuf_ptr = rxbuf;
967 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
968 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
969
970 bytes_to_copy += 4;
971 size += 4;
972 }
973
974 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
975
976 /* Find which queue we are targeting */
977 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
978
979 while (bytes_to_copy) {
980 hwaddr desc_addr;
981
982 /* Do nothing if receive is not enabled. */
983 if (!gem_can_receive(nc)) {
984 return -1;
985 }
986
987 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
988 rx_desc_get_buffer(s->rx_desc[q]));
989
990 /* Copy packet data to emulated DMA buffer */
991 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
992 rxbuf_offset,
993 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
994 MIN(bytes_to_copy, rxbufsize));
995 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
996 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
997
998 /* Update the descriptor. */
999 if (first_desc) {
1000 rx_desc_set_sof(s->rx_desc[q]);
1001 first_desc = false;
1002 }
1003 if (bytes_to_copy == 0) {
1004 rx_desc_set_eof(s->rx_desc[q]);
1005 rx_desc_set_length(s->rx_desc[q], size);
1006 }
1007 rx_desc_set_ownership(s->rx_desc[q]);
1008
1009 switch (maf) {
1010 case GEM_RX_PROMISCUOUS_ACCEPT:
1011 break;
1012 case GEM_RX_BROADCAST_ACCEPT:
1013 rx_desc_set_broadcast(s->rx_desc[q]);
1014 break;
1015 case GEM_RX_UNICAST_HASH_ACCEPT:
1016 rx_desc_set_unicast_hash(s->rx_desc[q]);
1017 break;
1018 case GEM_RX_MULTICAST_HASH_ACCEPT:
1019 rx_desc_set_multicast_hash(s->rx_desc[q]);
1020 break;
1021 case GEM_RX_REJECT:
1022 abort();
1023 default: /* SAR */
1024 rx_desc_set_sar(s->rx_desc[q], maf);
1025 }
1026
1027 /* Descriptor write-back. */
1028 desc_addr = gem_get_rx_desc_addr(s, q);
1029 address_space_write(&s->dma_as, desc_addr,
1030 MEMTXATTRS_UNSPECIFIED,
1031 (uint8_t *)s->rx_desc[q],
1032 sizeof(uint32_t) * gem_get_desc_len(s, true));
1033
1034 /* Next descriptor */
1035 if (rx_desc_get_wrap(s->rx_desc[q])) {
1036 DB_PRINT("wrapping RX descriptor list\n");
1037 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1038 } else {
1039 DB_PRINT("incrementing RX descriptor list\n");
1040 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1041 }
1042
1043 gem_get_rx_desc(s, q);
1044 }
1045
1046 /* Count it */
1047 gem_receive_updatestats(s, buf, size);
1048
1049 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1050 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1051
1052 /* Handle interrupt consequences */
1053 gem_update_int_status(s);
1054
1055 return size;
1056 }
1057
1058 /*
1059 * gem_transmit_updatestats:
1060 * Increment transmit statistics.
1061 */
1062 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1063 unsigned bytes)
1064 {
1065 uint64_t octets;
1066
1067 /* Total octets (bytes) transmitted */
1068 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1069 s->regs[GEM_OCTTXHI];
1070 octets += bytes;
1071 s->regs[GEM_OCTTXLO] = octets >> 32;
1072 s->regs[GEM_OCTTXHI] = octets;
1073
1074 /* Error-free Frames transmitted */
1075 s->regs[GEM_TXCNT]++;
1076
1077 /* Error-free Broadcast Frames counter */
1078 if (!memcmp(packet, broadcast_addr, 6)) {
1079 s->regs[GEM_TXBCNT]++;
1080 }
1081
1082 /* Error-free Multicast Frames counter */
1083 if (packet[0] == 0x01) {
1084 s->regs[GEM_TXMCNT]++;
1085 }
1086
1087 if (bytes <= 64) {
1088 s->regs[GEM_TX64CNT]++;
1089 } else if (bytes <= 127) {
1090 s->regs[GEM_TX65CNT]++;
1091 } else if (bytes <= 255) {
1092 s->regs[GEM_TX128CNT]++;
1093 } else if (bytes <= 511) {
1094 s->regs[GEM_TX256CNT]++;
1095 } else if (bytes <= 1023) {
1096 s->regs[GEM_TX512CNT]++;
1097 } else if (bytes <= 1518) {
1098 s->regs[GEM_TX1024CNT]++;
1099 } else {
1100 s->regs[GEM_TX1519CNT]++;
1101 }
1102 }
1103
1104 /*
1105 * gem_transmit:
1106 * Fish packets out of the descriptor ring and feed them to QEMU
1107 */
1108 static void gem_transmit(CadenceGEMState *s)
1109 {
1110 uint32_t desc[DESC_MAX_NUM_WORDS];
1111 hwaddr packet_desc_addr;
1112 uint8_t tx_packet[2048];
1113 uint8_t *p;
1114 unsigned total_bytes;
1115 int q = 0;
1116
1117 /* Do nothing if transmit is not enabled. */
1118 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1119 return;
1120 }
1121
1122 DB_PRINT("\n");
1123
1124 /* The packet we will hand off to QEMU.
1125 * Packets scattered across multiple descriptors are gathered to this
1126 * one contiguous buffer first.
1127 */
1128 p = tx_packet;
1129 total_bytes = 0;
1130
1131 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1132 /* read current descriptor */
1133 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1134
1135 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1136 address_space_read(&s->dma_as, packet_desc_addr,
1137 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1138 sizeof(uint32_t) * gem_get_desc_len(s, false));
1139 /* Handle all descriptors owned by hardware */
1140 while (tx_desc_get_used(desc) == 0) {
1141
1142 /* Do nothing if transmit is not enabled. */
1143 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1144 return;
1145 }
1146 print_gem_tx_desc(desc, q);
1147
1148 /* The real hardware would eat this (and possibly crash).
1149 * For QEMU let's lend a helping hand.
1150 */
1151 if ((tx_desc_get_buffer(s, desc) == 0) ||
1152 (tx_desc_get_length(desc) == 0)) {
1153 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1154 (unsigned)packet_desc_addr);
1155 break;
1156 }
1157
1158 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1159 (p - tx_packet)) {
1160 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1161 "0x%x\n", (unsigned)packet_desc_addr,
1162 (unsigned)tx_desc_get_length(desc),
1163 sizeof(tx_packet) - (p - tx_packet));
1164 break;
1165 }
1166
1167 /* Gather this fragment of the packet from "dma memory" to our
1168 * contig buffer.
1169 */
1170 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1171 MEMTXATTRS_UNSPECIFIED,
1172 p, tx_desc_get_length(desc));
1173 p += tx_desc_get_length(desc);
1174 total_bytes += tx_desc_get_length(desc);
1175
1176 /* Last descriptor for this packet; hand the whole thing off */
1177 if (tx_desc_get_last(desc)) {
1178 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1179 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1180
1181 /* Modify the 1st descriptor of this packet to be owned by
1182 * the processor.
1183 */
1184 address_space_read(&s->dma_as, desc_addr,
1185 MEMTXATTRS_UNSPECIFIED,
1186 (uint8_t *)desc_first,
1187 sizeof(desc_first));
1188 tx_desc_set_used(desc_first);
1189 address_space_write(&s->dma_as, desc_addr,
1190 MEMTXATTRS_UNSPECIFIED,
1191 (uint8_t *)desc_first,
1192 sizeof(desc_first));
1193 /* Advance the hardware current descriptor past this packet */
1194 if (tx_desc_get_wrap(desc)) {
1195 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1196 } else {
1197 s->tx_desc_addr[q] = packet_desc_addr +
1198 4 * gem_get_desc_len(s, false);
1199 }
1200 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1201
1202 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1203 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1204
1205 /* Update queue interrupt status */
1206 if (s->num_priority_queues > 1) {
1207 s->regs[GEM_INT_Q1_STATUS + q] |=
1208 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1209 }
1210
1211 /* Handle interrupt consequences */
1212 gem_update_int_status(s);
1213
1214 /* Is checksum offload enabled? */
1215 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1216 net_checksum_calculate(tx_packet, total_bytes);
1217 }
1218
1219 /* Update MAC statistics */
1220 gem_transmit_updatestats(s, tx_packet, total_bytes);
1221
1222 /* Send the packet somewhere */
1223 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1224 GEM_NWCTRL_LOCALLOOP)) {
1225 gem_receive(qemu_get_queue(s->nic), tx_packet,
1226 total_bytes);
1227 } else {
1228 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1229 total_bytes);
1230 }
1231
1232 /* Prepare for next packet */
1233 p = tx_packet;
1234 total_bytes = 0;
1235 }
1236
1237 /* read next descriptor */
1238 if (tx_desc_get_wrap(desc)) {
1239 tx_desc_set_last(desc);
1240 packet_desc_addr = s->regs[GEM_TXQBASE];
1241 } else {
1242 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1243 }
1244 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1245 address_space_read(&s->dma_as, packet_desc_addr,
1246 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1247 sizeof(uint32_t) * gem_get_desc_len(s, false));
1248 }
1249
1250 if (tx_desc_get_used(desc)) {
1251 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1252 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1253 gem_update_int_status(s);
1254 }
1255 }
1256 }
1257
1258 static void gem_phy_reset(CadenceGEMState *s)
1259 {
1260 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1261 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1262 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1263 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1264 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1265 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1266 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1267 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1268 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1269 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1270 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1271 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1272 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1273 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1274 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1275 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1276 s->phy_regs[PHY_REG_LED] = 0x4100;
1277 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1278 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1279
1280 phy_update_link(s);
1281 }
1282
1283 static void gem_reset(DeviceState *d)
1284 {
1285 int i;
1286 CadenceGEMState *s = CADENCE_GEM(d);
1287 const uint8_t *a;
1288 uint32_t queues_mask = 0;
1289
1290 DB_PRINT("\n");
1291
1292 /* Set post reset register values */
1293 memset(&s->regs[0], 0, sizeof(s->regs));
1294 s->regs[GEM_NWCFG] = 0x00080000;
1295 s->regs[GEM_NWSTATUS] = 0x00000006;
1296 s->regs[GEM_DMACFG] = 0x00020784;
1297 s->regs[GEM_IMR] = 0x07ffffff;
1298 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1299 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1300 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1301 s->regs[GEM_MODID] = s->revision;
1302 s->regs[GEM_DESCONF] = 0x02500111;
1303 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1304 s->regs[GEM_DESCONF5] = 0x002f2045;
1305 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1306
1307 if (s->num_priority_queues > 1) {
1308 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1309 s->regs[GEM_DESCONF6] |= queues_mask;
1310 }
1311
1312 /* Set MAC address */
1313 a = &s->conf.macaddr.a[0];
1314 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1315 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1316
1317 for (i = 0; i < 4; i++) {
1318 s->sar_active[i] = false;
1319 }
1320
1321 gem_phy_reset(s);
1322
1323 gem_update_int_status(s);
1324 }
1325
1326 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1327 {
1328 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1329 return s->phy_regs[reg_num];
1330 }
1331
1332 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1333 {
1334 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1335
1336 switch (reg_num) {
1337 case PHY_REG_CONTROL:
1338 if (val & PHY_REG_CONTROL_RST) {
1339 /* Phy reset */
1340 gem_phy_reset(s);
1341 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1342 s->phy_loop = 0;
1343 }
1344 if (val & PHY_REG_CONTROL_ANEG) {
1345 /* Complete autonegotiation immediately */
1346 val &= ~PHY_REG_CONTROL_ANEG;
1347 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1348 }
1349 if (val & PHY_REG_CONTROL_LOOP) {
1350 DB_PRINT("PHY placed in loopback\n");
1351 s->phy_loop = 1;
1352 } else {
1353 s->phy_loop = 0;
1354 }
1355 break;
1356 }
1357 s->phy_regs[reg_num] = val;
1358 }
1359
1360 /*
1361 * gem_read32:
1362 * Read a GEM register.
1363 */
1364 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1365 {
1366 CadenceGEMState *s;
1367 uint32_t retval;
1368 s = (CadenceGEMState *)opaque;
1369
1370 offset >>= 2;
1371 retval = s->regs[offset];
1372
1373 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1374
1375 switch (offset) {
1376 case GEM_ISR:
1377 DB_PRINT("lowering irqs on ISR read\n");
1378 /* The interrupts get updated at the end of the function. */
1379 break;
1380 case GEM_PHYMNTNC:
1381 if (retval & GEM_PHYMNTNC_OP_R) {
1382 uint32_t phy_addr, reg_num;
1383
1384 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1385 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1386 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1387 retval &= 0xFFFF0000;
1388 retval |= gem_phy_read(s, reg_num);
1389 } else {
1390 retval |= 0xFFFF; /* No device at this address */
1391 }
1392 }
1393 break;
1394 }
1395
1396 /* Squash read to clear bits */
1397 s->regs[offset] &= ~(s->regs_rtc[offset]);
1398
1399 /* Do not provide write only bits */
1400 retval &= ~(s->regs_wo[offset]);
1401
1402 DB_PRINT("0x%08x\n", retval);
1403 gem_update_int_status(s);
1404 return retval;
1405 }
1406
1407 /*
1408 * gem_write32:
1409 * Write a GEM register.
1410 */
1411 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1412 unsigned size)
1413 {
1414 CadenceGEMState *s = (CadenceGEMState *)opaque;
1415 uint32_t readonly;
1416 int i;
1417
1418 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1419 offset >>= 2;
1420
1421 /* Squash bits which are read only in write value */
1422 val &= ~(s->regs_ro[offset]);
1423 /* Preserve (only) bits which are read only and wtc in register */
1424 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1425
1426 /* Copy register write to backing store */
1427 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1428
1429 /* do w1c */
1430 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1431
1432 /* Handle register write side effects */
1433 switch (offset) {
1434 case GEM_NWCTRL:
1435 if (val & GEM_NWCTRL_RXENA) {
1436 for (i = 0; i < s->num_priority_queues; ++i) {
1437 gem_get_rx_desc(s, i);
1438 }
1439 }
1440 if (val & GEM_NWCTRL_TXSTART) {
1441 gem_transmit(s);
1442 }
1443 if (!(val & GEM_NWCTRL_TXENA)) {
1444 /* Reset to start of Q when transmit disabled. */
1445 for (i = 0; i < s->num_priority_queues; i++) {
1446 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1447 }
1448 }
1449 if (gem_can_receive(qemu_get_queue(s->nic))) {
1450 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1451 }
1452 break;
1453
1454 case GEM_TXSTATUS:
1455 gem_update_int_status(s);
1456 break;
1457 case GEM_RXQBASE:
1458 s->rx_desc_addr[0] = val;
1459 break;
1460 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1461 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1462 break;
1463 case GEM_TXQBASE:
1464 s->tx_desc_addr[0] = val;
1465 break;
1466 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1467 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1468 break;
1469 case GEM_RXSTATUS:
1470 gem_update_int_status(s);
1471 break;
1472 case GEM_IER:
1473 s->regs[GEM_IMR] &= ~val;
1474 gem_update_int_status(s);
1475 break;
1476 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1477 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1478 gem_update_int_status(s);
1479 break;
1480 case GEM_IDR:
1481 s->regs[GEM_IMR] |= val;
1482 gem_update_int_status(s);
1483 break;
1484 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1485 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1486 gem_update_int_status(s);
1487 break;
1488 case GEM_SPADDR1LO:
1489 case GEM_SPADDR2LO:
1490 case GEM_SPADDR3LO:
1491 case GEM_SPADDR4LO:
1492 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1493 break;
1494 case GEM_SPADDR1HI:
1495 case GEM_SPADDR2HI:
1496 case GEM_SPADDR3HI:
1497 case GEM_SPADDR4HI:
1498 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1499 break;
1500 case GEM_PHYMNTNC:
1501 if (val & GEM_PHYMNTNC_OP_W) {
1502 uint32_t phy_addr, reg_num;
1503
1504 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1505 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1506 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1507 gem_phy_write(s, reg_num, val);
1508 }
1509 }
1510 break;
1511 }
1512
1513 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1514 }
1515
1516 static const MemoryRegionOps gem_ops = {
1517 .read = gem_read,
1518 .write = gem_write,
1519 .endianness = DEVICE_LITTLE_ENDIAN,
1520 };
1521
1522 static void gem_set_link(NetClientState *nc)
1523 {
1524 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1525
1526 DB_PRINT("\n");
1527 phy_update_link(s);
1528 gem_update_int_status(s);
1529 }
1530
1531 static NetClientInfo net_gem_info = {
1532 .type = NET_CLIENT_DRIVER_NIC,
1533 .size = sizeof(NICState),
1534 .can_receive = gem_can_receive,
1535 .receive = gem_receive,
1536 .link_status_changed = gem_set_link,
1537 };
1538
1539 static void gem_realize(DeviceState *dev, Error **errp)
1540 {
1541 CadenceGEMState *s = CADENCE_GEM(dev);
1542 int i;
1543
1544 address_space_init(&s->dma_as,
1545 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1546
1547 if (s->num_priority_queues == 0 ||
1548 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1549 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1550 s->num_priority_queues);
1551 return;
1552 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1553 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1554 s->num_type1_screeners);
1555 return;
1556 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1557 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1558 s->num_type2_screeners);
1559 return;
1560 }
1561
1562 for (i = 0; i < s->num_priority_queues; ++i) {
1563 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1564 }
1565
1566 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1567
1568 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1569 object_get_typename(OBJECT(dev)), dev->id, s);
1570 }
1571
1572 static void gem_init(Object *obj)
1573 {
1574 CadenceGEMState *s = CADENCE_GEM(obj);
1575 DeviceState *dev = DEVICE(obj);
1576
1577 DB_PRINT("\n");
1578
1579 gem_init_register_masks(s);
1580 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1581 "enet", sizeof(s->regs));
1582
1583 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1584
1585 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1586 (Object **)&s->dma_mr,
1587 qdev_prop_allow_set_link_before_realize,
1588 OBJ_PROP_LINK_STRONG,
1589 &error_abort);
1590 }
1591
1592 static const VMStateDescription vmstate_cadence_gem = {
1593 .name = "cadence_gem",
1594 .version_id = 4,
1595 .minimum_version_id = 4,
1596 .fields = (VMStateField[]) {
1597 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1598 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1599 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1600 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1601 MAX_PRIORITY_QUEUES),
1602 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1603 MAX_PRIORITY_QUEUES),
1604 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1605 VMSTATE_END_OF_LIST(),
1606 }
1607 };
1608
1609 static Property gem_properties[] = {
1610 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1611 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1612 GEM_MODID_VALUE),
1613 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1614 num_priority_queues, 1),
1615 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1616 num_type1_screeners, 4),
1617 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1618 num_type2_screeners, 4),
1619 DEFINE_PROP_END_OF_LIST(),
1620 };
1621
1622 static void gem_class_init(ObjectClass *klass, void *data)
1623 {
1624 DeviceClass *dc = DEVICE_CLASS(klass);
1625
1626 dc->realize = gem_realize;
1627 dc->props = gem_properties;
1628 dc->vmsd = &vmstate_cadence_gem;
1629 dc->reset = gem_reset;
1630 }
1631
1632 static const TypeInfo gem_info = {
1633 .name = TYPE_CADENCE_GEM,
1634 .parent = TYPE_SYS_BUS_DEVICE,
1635 .instance_size = sizeof(CadenceGEMState),
1636 .instance_init = gem_init,
1637 .class_init = gem_class_init,
1638 };
1639
1640 static void gem_register_types(void)
1641 {
1642 type_register_static(&gem_info);
1643 }
1644
1645 type_init(gem_register_types)