]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/net/e1000e.c
Include migration/vmstate.h less
[thirdparty/qemu.git] / hw / net / e1000e.c
1 /*
2 * QEMU INTEL 82574 GbE NIC emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35
36 #include "qemu/osdep.h"
37 #include "qemu/units.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "qemu/module.h"
41 #include "qemu/range.h"
42 #include "sysemu/sysemu.h"
43 #include "hw/pci/msi.h"
44 #include "hw/pci/msix.h"
45 #include "migration/vmstate.h"
46
47 #include "e1000_regs.h"
48
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51
52 #include "trace.h"
53 #include "qapi/error.h"
54
55 #define TYPE_E1000E "e1000e"
56 #define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E)
57
58 typedef struct E1000EState {
59 PCIDevice parent_obj;
60 NICState *nic;
61 NICConf conf;
62
63 MemoryRegion mmio;
64 MemoryRegion flash;
65 MemoryRegion io;
66 MemoryRegion msix;
67
68 uint32_t ioaddr;
69
70 uint16_t subsys_ven;
71 uint16_t subsys;
72
73 uint16_t subsys_ven_used;
74 uint16_t subsys_used;
75
76 bool disable_vnet;
77
78 E1000ECore core;
79
80 } E1000EState;
81
82 #define E1000E_MMIO_IDX 0
83 #define E1000E_FLASH_IDX 1
84 #define E1000E_IO_IDX 2
85 #define E1000E_MSIX_IDX 3
86
87 #define E1000E_MMIO_SIZE (128 * KiB)
88 #define E1000E_FLASH_SIZE (128 * KiB)
89 #define E1000E_IO_SIZE (32)
90 #define E1000E_MSIX_SIZE (16 * KiB)
91
92 #define E1000E_MSIX_TABLE (0x0000)
93 #define E1000E_MSIX_PBA (0x2000)
94
95 static uint64_t
96 e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size)
97 {
98 E1000EState *s = opaque;
99 return e1000e_core_read(&s->core, addr, size);
100 }
101
102 static void
103 e1000e_mmio_write(void *opaque, hwaddr addr,
104 uint64_t val, unsigned size)
105 {
106 E1000EState *s = opaque;
107 e1000e_core_write(&s->core, addr, val, size);
108 }
109
110 static bool
111 e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx)
112 {
113 if (s->ioaddr < 0x1FFFF) {
114 *idx = s->ioaddr;
115 return true;
116 }
117
118 if (s->ioaddr < 0x7FFFF) {
119 trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
120 return false;
121 }
122
123 if (s->ioaddr < 0xFFFFF) {
124 trace_e1000e_wrn_io_addr_flash(s->ioaddr);
125 return false;
126 }
127
128 trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
129 return false;
130 }
131
132 static uint64_t
133 e1000e_io_read(void *opaque, hwaddr addr, unsigned size)
134 {
135 E1000EState *s = opaque;
136 uint32_t idx = 0;
137 uint64_t val;
138
139 switch (addr) {
140 case E1000_IOADDR:
141 trace_e1000e_io_read_addr(s->ioaddr);
142 return s->ioaddr;
143 case E1000_IODATA:
144 if (e1000e_io_get_reg_index(s, &idx)) {
145 val = e1000e_core_read(&s->core, idx, sizeof(val));
146 trace_e1000e_io_read_data(idx, val);
147 return val;
148 }
149 return 0;
150 default:
151 trace_e1000e_wrn_io_read_unknown(addr);
152 return 0;
153 }
154 }
155
156 static void
157 e1000e_io_write(void *opaque, hwaddr addr,
158 uint64_t val, unsigned size)
159 {
160 E1000EState *s = opaque;
161 uint32_t idx = 0;
162
163 switch (addr) {
164 case E1000_IOADDR:
165 trace_e1000e_io_write_addr(val);
166 s->ioaddr = (uint32_t) val;
167 return;
168 case E1000_IODATA:
169 if (e1000e_io_get_reg_index(s, &idx)) {
170 trace_e1000e_io_write_data(idx, val);
171 e1000e_core_write(&s->core, idx, val, sizeof(val));
172 }
173 return;
174 default:
175 trace_e1000e_wrn_io_write_unknown(addr);
176 return;
177 }
178 }
179
180 static const MemoryRegionOps mmio_ops = {
181 .read = e1000e_mmio_read,
182 .write = e1000e_mmio_write,
183 .endianness = DEVICE_LITTLE_ENDIAN,
184 .impl = {
185 .min_access_size = 4,
186 .max_access_size = 4,
187 },
188 };
189
190 static const MemoryRegionOps io_ops = {
191 .read = e1000e_io_read,
192 .write = e1000e_io_write,
193 .endianness = DEVICE_LITTLE_ENDIAN,
194 .impl = {
195 .min_access_size = 4,
196 .max_access_size = 4,
197 },
198 };
199
200 static int
201 e1000e_nc_can_receive(NetClientState *nc)
202 {
203 E1000EState *s = qemu_get_nic_opaque(nc);
204 return e1000e_can_receive(&s->core);
205 }
206
207 static ssize_t
208 e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
209 {
210 E1000EState *s = qemu_get_nic_opaque(nc);
211 return e1000e_receive_iov(&s->core, iov, iovcnt);
212 }
213
214 static ssize_t
215 e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
216 {
217 E1000EState *s = qemu_get_nic_opaque(nc);
218 return e1000e_receive(&s->core, buf, size);
219 }
220
221 static void
222 e1000e_set_link_status(NetClientState *nc)
223 {
224 E1000EState *s = qemu_get_nic_opaque(nc);
225 e1000e_core_set_link_status(&s->core);
226 }
227
228 static NetClientInfo net_e1000e_info = {
229 .type = NET_CLIENT_DRIVER_NIC,
230 .size = sizeof(NICState),
231 .can_receive = e1000e_nc_can_receive,
232 .receive = e1000e_nc_receive,
233 .receive_iov = e1000e_nc_receive_iov,
234 .link_status_changed = e1000e_set_link_status,
235 };
236
237 /*
238 * EEPROM (NVM) contents documented in Table 36, section 6.1
239 * and generally 6.1.2 Software accessed words.
240 */
241 static const uint16_t e1000e_eeprom_template[64] = {
242 /* Address | Compat. | ImVer | Compat. */
243 0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff,
244 /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */
245 0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058,
246 /* NVM words 1,2,3 |-------------------------------|PCI-EID*/
247 0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704,
248 /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */
249 0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706,
250 /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/
251 0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff,
252 /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP */
253 0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff,
254 /* SW Section */
255 0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff,
256 /* SW Section |CHKSUM */
257 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000,
258 };
259
260 static void e1000e_core_realize(E1000EState *s)
261 {
262 s->core.owner = &s->parent_obj;
263 s->core.owner_nic = s->nic;
264 }
265
266 static void
267 e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors)
268 {
269 int i;
270 for (i = 0; i < num_vectors; i++) {
271 msix_vector_unuse(PCI_DEVICE(s), i);
272 }
273 }
274
275 static bool
276 e1000e_use_msix_vectors(E1000EState *s, int num_vectors)
277 {
278 int i;
279 for (i = 0; i < num_vectors; i++) {
280 int res = msix_vector_use(PCI_DEVICE(s), i);
281 if (res < 0) {
282 trace_e1000e_msix_use_vector_fail(i, res);
283 e1000e_unuse_msix_vectors(s, i);
284 return false;
285 }
286 }
287 return true;
288 }
289
290 static void
291 e1000e_init_msix(E1000EState *s)
292 {
293 PCIDevice *d = PCI_DEVICE(s);
294 int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM,
295 &s->msix,
296 E1000E_MSIX_IDX, E1000E_MSIX_TABLE,
297 &s->msix,
298 E1000E_MSIX_IDX, E1000E_MSIX_PBA,
299 0xA0, NULL);
300
301 if (res < 0) {
302 trace_e1000e_msix_init_fail(res);
303 } else {
304 if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) {
305 msix_uninit(d, &s->msix, &s->msix);
306 }
307 }
308 }
309
310 static void
311 e1000e_cleanup_msix(E1000EState *s)
312 {
313 if (msix_present(PCI_DEVICE(s))) {
314 e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM);
315 msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
316 }
317 }
318
319 static void
320 e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr)
321 {
322 DeviceState *dev = DEVICE(pci_dev);
323 NetClientState *nc;
324 int i;
325
326 s->nic = qemu_new_nic(&net_e1000e_info, &s->conf,
327 object_get_typename(OBJECT(s)), dev->id, s);
328
329 s->core.max_queue_num = s->conf.peers.queues - 1;
330
331 trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
332 memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
333
334 qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
335
336 /* Setup virtio headers */
337 if (s->disable_vnet) {
338 s->core.has_vnet = false;
339 trace_e1000e_cfg_support_virtio(false);
340 return;
341 } else {
342 s->core.has_vnet = true;
343 }
344
345 for (i = 0; i < s->conf.peers.queues; i++) {
346 nc = qemu_get_subqueue(s->nic, i);
347 if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
348 s->core.has_vnet = false;
349 trace_e1000e_cfg_support_virtio(false);
350 return;
351 }
352 }
353
354 trace_e1000e_cfg_support_virtio(true);
355
356 for (i = 0; i < s->conf.peers.queues; i++) {
357 nc = qemu_get_subqueue(s->nic, i);
358 qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
359 qemu_using_vnet_hdr(nc->peer, true);
360 }
361 }
362
363 static inline uint64_t
364 e1000e_gen_dsn(uint8_t *mac)
365 {
366 return (uint64_t)(mac[5]) |
367 (uint64_t)(mac[4]) << 8 |
368 (uint64_t)(mac[3]) << 16 |
369 (uint64_t)(0x00FF) << 24 |
370 (uint64_t)(0x00FF) << 32 |
371 (uint64_t)(mac[2]) << 40 |
372 (uint64_t)(mac[1]) << 48 |
373 (uint64_t)(mac[0]) << 56;
374 }
375
376 static int
377 e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
378 {
379 Error *local_err = NULL;
380 int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset,
381 PCI_PM_SIZEOF, &local_err);
382
383 if (local_err) {
384 error_report_err(local_err);
385 return ret;
386 }
387
388 pci_set_word(pdev->config + offset + PCI_PM_PMC,
389 PCI_PM_CAP_VER_1_1 |
390 pmc);
391
392 pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
393 PCI_PM_CTRL_STATE_MASK |
394 PCI_PM_CTRL_PME_ENABLE |
395 PCI_PM_CTRL_DATA_SEL_MASK);
396
397 pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
398 PCI_PM_CTRL_PME_STATUS);
399
400 return ret;
401 }
402
403 static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address,
404 uint32_t val, int len)
405 {
406 E1000EState *s = E1000E(pci_dev);
407
408 pci_default_write_config(pci_dev, address, val, len);
409
410 if (range_covers_byte(address, len, PCI_COMMAND) &&
411 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
412 e1000e_start_recv(&s->core);
413 }
414 }
415
416 static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp)
417 {
418 static const uint16_t e1000e_pmrb_offset = 0x0C8;
419 static const uint16_t e1000e_pcie_offset = 0x0E0;
420 static const uint16_t e1000e_aer_offset = 0x100;
421 static const uint16_t e1000e_dsn_offset = 0x140;
422 E1000EState *s = E1000E(pci_dev);
423 uint8_t *macaddr;
424 int ret;
425
426 trace_e1000e_cb_pci_realize();
427
428 pci_dev->config_write = e1000e_write_config;
429
430 pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
431 pci_dev->config[PCI_INTERRUPT_PIN] = 1;
432
433 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven);
434 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys);
435
436 s->subsys_ven_used = s->subsys_ven;
437 s->subsys_used = s->subsys;
438
439 /* Define IO/MMIO regions */
440 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
441 "e1000e-mmio", E1000E_MMIO_SIZE);
442 pci_register_bar(pci_dev, E1000E_MMIO_IDX,
443 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
444
445 /*
446 * We provide a dummy implementation for the flash BAR
447 * for drivers that may theoretically probe for its presence.
448 */
449 memory_region_init(&s->flash, OBJECT(s),
450 "e1000e-flash", E1000E_FLASH_SIZE);
451 pci_register_bar(pci_dev, E1000E_FLASH_IDX,
452 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
453
454 memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
455 "e1000e-io", E1000E_IO_SIZE);
456 pci_register_bar(pci_dev, E1000E_IO_IDX,
457 PCI_BASE_ADDRESS_SPACE_IO, &s->io);
458
459 memory_region_init(&s->msix, OBJECT(s), "e1000e-msix",
460 E1000E_MSIX_SIZE);
461 pci_register_bar(pci_dev, E1000E_MSIX_IDX,
462 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix);
463
464 /* Create networking backend */
465 qemu_macaddr_default_if_unset(&s->conf.macaddr);
466 macaddr = s->conf.macaddr.a;
467
468 e1000e_init_msix(s);
469
470 if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) {
471 hw_error("Failed to initialize PCIe capability");
472 }
473
474 ret = msi_init(PCI_DEVICE(s), 0xD0, 1, true, false, NULL);
475 if (ret) {
476 trace_e1000e_msi_init_fail(ret);
477 }
478
479 if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset,
480 PCI_PM_CAP_DSI) < 0) {
481 hw_error("Failed to initialize PM capability");
482 }
483
484 if (pcie_aer_init(pci_dev, PCI_ERR_VER, e1000e_aer_offset,
485 PCI_ERR_SIZEOF, NULL) < 0) {
486 hw_error("Failed to initialize AER capability");
487 }
488
489 pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset,
490 e1000e_gen_dsn(macaddr));
491
492 e1000e_init_net_peer(s, pci_dev, macaddr);
493
494 /* Initialize core */
495 e1000e_core_realize(s);
496
497 e1000e_core_pci_realize(&s->core,
498 e1000e_eeprom_template,
499 sizeof(e1000e_eeprom_template),
500 macaddr);
501 }
502
503 static void e1000e_pci_uninit(PCIDevice *pci_dev)
504 {
505 E1000EState *s = E1000E(pci_dev);
506
507 trace_e1000e_cb_pci_uninit();
508
509 e1000e_core_pci_uninit(&s->core);
510
511 pcie_aer_exit(pci_dev);
512 pcie_cap_exit(pci_dev);
513
514 qemu_del_nic(s->nic);
515
516 e1000e_cleanup_msix(s);
517 msi_uninit(pci_dev);
518 }
519
520 static void e1000e_qdev_reset(DeviceState *dev)
521 {
522 E1000EState *s = E1000E(dev);
523
524 trace_e1000e_cb_qdev_reset();
525
526 e1000e_core_reset(&s->core);
527 }
528
529 static int e1000e_pre_save(void *opaque)
530 {
531 E1000EState *s = opaque;
532
533 trace_e1000e_cb_pre_save();
534
535 e1000e_core_pre_save(&s->core);
536
537 return 0;
538 }
539
540 static int e1000e_post_load(void *opaque, int version_id)
541 {
542 E1000EState *s = opaque;
543
544 trace_e1000e_cb_post_load();
545
546 if ((s->subsys != s->subsys_used) ||
547 (s->subsys_ven != s->subsys_ven_used)) {
548 fprintf(stderr,
549 "ERROR: Cannot migrate while device properties "
550 "(subsys/subsys_ven) differ");
551 return -1;
552 }
553
554 return e1000e_core_post_load(&s->core);
555 }
556
557 static const VMStateDescription e1000e_vmstate_tx = {
558 .name = "e1000e-tx",
559 .version_id = 1,
560 .minimum_version_id = 1,
561 .fields = (VMStateField[]) {
562 VMSTATE_UINT8(sum_needed, struct e1000e_tx),
563 VMSTATE_UINT8(props.ipcss, struct e1000e_tx),
564 VMSTATE_UINT8(props.ipcso, struct e1000e_tx),
565 VMSTATE_UINT16(props.ipcse, struct e1000e_tx),
566 VMSTATE_UINT8(props.tucss, struct e1000e_tx),
567 VMSTATE_UINT8(props.tucso, struct e1000e_tx),
568 VMSTATE_UINT16(props.tucse, struct e1000e_tx),
569 VMSTATE_UINT8(props.hdr_len, struct e1000e_tx),
570 VMSTATE_UINT16(props.mss, struct e1000e_tx),
571 VMSTATE_UINT32(props.paylen, struct e1000e_tx),
572 VMSTATE_INT8(props.ip, struct e1000e_tx),
573 VMSTATE_INT8(props.tcp, struct e1000e_tx),
574 VMSTATE_BOOL(props.tse, struct e1000e_tx),
575 VMSTATE_BOOL(cptse, struct e1000e_tx),
576 VMSTATE_BOOL(skip_cp, struct e1000e_tx),
577 VMSTATE_END_OF_LIST()
578 }
579 };
580
581 static const VMStateDescription e1000e_vmstate_intr_timer = {
582 .name = "e1000e-intr-timer",
583 .version_id = 1,
584 .minimum_version_id = 1,
585 .fields = (VMStateField[]) {
586 VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer),
587 VMSTATE_BOOL(running, E1000IntrDelayTimer),
588 VMSTATE_END_OF_LIST()
589 }
590 };
591
592 #define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s) \
593 VMSTATE_STRUCT(_f, _s, 0, \
594 e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
595
596 #define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \
597 VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \
598 e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
599
600 static const VMStateDescription e1000e_vmstate = {
601 .name = "e1000e",
602 .version_id = 1,
603 .minimum_version_id = 1,
604 .pre_save = e1000e_pre_save,
605 .post_load = e1000e_post_load,
606 .fields = (VMStateField[]) {
607 VMSTATE_PCI_DEVICE(parent_obj, E1000EState),
608 VMSTATE_MSIX(parent_obj, E1000EState),
609
610 VMSTATE_UINT32(ioaddr, E1000EState),
611 VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState),
612 VMSTATE_UINT8(core.rx_desc_len, E1000EState),
613 VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState,
614 E1000_PSRCTL_BUFFS_PER_DESC),
615 VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState),
616 VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE),
617 VMSTATE_UINT16_2DARRAY(core.phy, E1000EState,
618 E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE),
619 VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE),
620 VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN),
621
622 VMSTATE_UINT32(core.delayed_causes, E1000EState),
623
624 VMSTATE_UINT16(subsys, E1000EState),
625 VMSTATE_UINT16(subsys_ven, E1000EState),
626
627 VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState),
628 VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState),
629 VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState),
630 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState),
631 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState),
632
633 VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState),
634 VMSTATE_BOOL(core.itr_intr_pending, E1000EState),
635
636 VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState,
637 E1000E_MSIX_VEC_NUM),
638 VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState,
639 E1000E_MSIX_VEC_NUM),
640
641 VMSTATE_UINT32(core.itr_guest_value, E1000EState),
642 VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState,
643 E1000E_MSIX_VEC_NUM),
644
645 VMSTATE_UINT16(core.vet, E1000EState),
646
647 VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0,
648 e1000e_vmstate_tx, struct e1000e_tx),
649 VMSTATE_END_OF_LIST()
650 }
651 };
652
653 static PropertyInfo e1000e_prop_disable_vnet,
654 e1000e_prop_subsys_ven,
655 e1000e_prop_subsys;
656
657 static Property e1000e_properties[] = {
658 DEFINE_NIC_PROPERTIES(E1000EState, conf),
659 DEFINE_PROP_SIGNED("disable_vnet_hdr", E1000EState, disable_vnet, false,
660 e1000e_prop_disable_vnet, bool),
661 DEFINE_PROP_SIGNED("subsys_ven", E1000EState, subsys_ven,
662 PCI_VENDOR_ID_INTEL,
663 e1000e_prop_subsys_ven, uint16_t),
664 DEFINE_PROP_SIGNED("subsys", E1000EState, subsys, 0,
665 e1000e_prop_subsys, uint16_t),
666 DEFINE_PROP_END_OF_LIST(),
667 };
668
669 static void e1000e_class_init(ObjectClass *class, void *data)
670 {
671 DeviceClass *dc = DEVICE_CLASS(class);
672 PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
673
674 c->realize = e1000e_pci_realize;
675 c->exit = e1000e_pci_uninit;
676 c->vendor_id = PCI_VENDOR_ID_INTEL;
677 c->device_id = E1000_DEV_ID_82574L;
678 c->revision = 0;
679 c->romfile = "efi-e1000e.rom";
680 c->class_id = PCI_CLASS_NETWORK_ETHERNET;
681
682 dc->desc = "Intel 82574L GbE Controller";
683 dc->reset = e1000e_qdev_reset;
684 dc->vmsd = &e1000e_vmstate;
685 dc->props = e1000e_properties;
686
687 e1000e_prop_disable_vnet = qdev_prop_uint8;
688 e1000e_prop_disable_vnet.description = "Do not use virtio headers, "
689 "perform SW offloads emulation "
690 "instead";
691
692 e1000e_prop_subsys_ven = qdev_prop_uint16;
693 e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID";
694
695 e1000e_prop_subsys = qdev_prop_uint16;
696 e1000e_prop_subsys.description = "PCI device Subsystem ID";
697
698 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
699 }
700
701 static void e1000e_instance_init(Object *obj)
702 {
703 E1000EState *s = E1000E(obj);
704 device_add_bootindex_property(obj, &s->conf.bootindex,
705 "bootindex", "/ethernet-phy@0",
706 DEVICE(obj), NULL);
707 }
708
709 static const TypeInfo e1000e_info = {
710 .name = TYPE_E1000E,
711 .parent = TYPE_PCI_DEVICE,
712 .instance_size = sizeof(E1000EState),
713 .class_init = e1000e_class_init,
714 .instance_init = e1000e_instance_init,
715 .interfaces = (InterfaceInfo[]) {
716 { INTERFACE_PCIE_DEVICE },
717 { }
718 },
719 };
720
721 static void e1000e_register_types(void)
722 {
723 type_register_static(&e1000e_info);
724 }
725
726 type_init(e1000e_register_types)