]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/nvme/ctrl.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[thirdparty/qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,detached=<true|false[optional]>
47 *
48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52 *
53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54 * For example:
55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
57 *
58 * The PMR will use BAR 4/5 exclusively.
59 *
60 * To place controller(s) and namespace(s) to a subsystem, then provide
61 * nvme-subsys device as above.
62 *
63 * nvme subsystem device parameters
64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 * - `nqn`
66 * This parameter provides the `<nqn_id>` part of the string
67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68 * of subsystem controllers. Note that `<nqn_id>` should be unique per
69 * subsystem, but this is not enforced by QEMU. If not specified, it will
70 * default to the value of the `id` parameter (`<subsys_id>`).
71 *
72 * nvme device parameters
73 * ~~~~~~~~~~~~~~~~~~~~~~
74 * - `subsys`
75 * Specifying this parameter attaches the controller to the subsystem and
76 * the SUBNQN field in the controller will report the NQN of the subsystem
77 * device. This also enables multi controller capability represented in
78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
79 * Namespace Sharing Capabilities).
80 *
81 * - `aerl`
82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83 * of concurrently outstanding Asynchronous Event Request commands support
84 * by the controller. This is a 0's based value.
85 *
86 * - `aer_max_queued`
87 * This is the maximum number of events that the device will enqueue for
88 * completion when there are no outstanding AERs. When the maximum number of
89 * enqueued events are reached, subsequent events will be dropped.
90 *
91 * - `mdts`
92 * Indicates the maximum data transfer size for a command that transfers data
93 * between host-accessible memory and the controller. The value is specified
94 * as a power of two (2^n) and is in units of the minimum memory page size
95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96 *
97 * - `vsl`
98 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
99 * this value is specified as a power of two (2^n) and is in units of the
100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101 * KiB).
102 *
103 * - `zoned.zasl`
104 * Indicates the maximum data transfer size for the Zone Append command. Like
105 * `mdts`, the value is specified as a power of two (2^n) and is in units of
106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107 * defaulting to the value of `mdts`).
108 *
109 * - `zoned.auto_transition`
110 * Indicates if zones in zone state implicitly opened can be automatically
111 * transitioned to zone state closed for resource management purposes.
112 * Defaults to 'on'.
113 *
114 * - `sriov_max_vfs`
115 * Indicates the maximum number of PCIe virtual functions supported
116 * by the controller. The default value is 0. Specifying a non-zero value
117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118 * Virtual function controllers will not report SR-IOV capability.
119 *
120 * NOTE: Single Root I/O Virtualization support is experimental.
121 * All the related parameters may be subject to change.
122 *
123 * - `sriov_vq_flexible`
124 * Indicates the total number of flexible queue resources assignable to all
125 * the secondary controllers. Implicitly sets the number of primary
126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127 *
128 * - `sriov_vi_flexible`
129 * Indicates the total number of flexible interrupt resources assignable to
130 * all the secondary controllers. Implicitly sets the number of primary
131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132 *
133 * - `sriov_max_vi_per_vf`
134 * Indicates the maximum number of virtual interrupt resources assignable
135 * to a secondary controller. The default 0 resolves to
136 * `(sriov_vi_flexible / sriov_max_vfs)`.
137 *
138 * - `sriov_max_vq_per_vf`
139 * Indicates the maximum number of virtual queue resources assignable to
140 * a secondary controller. The default 0 resolves to
141 * `(sriov_vq_flexible / sriov_max_vfs)`.
142 *
143 * nvme namespace device parameters
144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145 * - `shared`
146 * When the parent nvme device (as defined explicitly by the 'bus' parameter
147 * or implicitly by the most recently defined NvmeBus) is linked to an
148 * nvme-subsys device, the namespace will be attached to all controllers in
149 * the subsystem. If set to 'off' (the default), the namespace will remain a
150 * private namespace and may only be attached to a single controller at a
151 * time.
152 *
153 * - `detached`
154 * This parameter is only valid together with the `subsys` parameter. If left
155 * at the default value (`false/off`), the namespace will be attached to all
156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157 * namespace will be available in the subsystem but not attached to any
158 * controllers.
159 *
160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
161 * In this case, the following namespace properties are available to configure
162 * zoned operation:
163 * zoned.zone_size=<zone size in bytes, default: 128MiB>
164 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
165 *
166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167 * The value 0 (default) forces zone capacity to be the same as zone
168 * size. The value of this property may not exceed zone size.
169 *
170 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
171 * This value needs to be specified in 64B units. If it is zero,
172 * namespace(s) will not support zone descriptor extensions.
173 *
174 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
175 * The default value means there is no limit to the number of
176 * concurrently active zones.
177 *
178 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
179 * The default value means there is no limit to the number of
180 * concurrently open zones.
181 *
182 * zoned.cross_read=<enable RAZB, default: false>
183 * Setting this property to true enables Read Across Zone Boundaries.
184 */
185
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE 4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221 do { \
222 (trace_##trace)(__VA_ARGS__); \
223 qemu_log_mask(LOG_GUEST_ERROR, #trace \
224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225 } while (0)
226
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228 [NVME_ARBITRATION] = true,
229 [NVME_POWER_MANAGEMENT] = true,
230 [NVME_TEMPERATURE_THRESHOLD] = true,
231 [NVME_ERROR_RECOVERY] = true,
232 [NVME_VOLATILE_WRITE_CACHE] = true,
233 [NVME_NUMBER_OF_QUEUES] = true,
234 [NVME_INTERRUPT_COALESCING] = true,
235 [NVME_INTERRUPT_VECTOR_CONF] = true,
236 [NVME_WRITE_ATOMICITY] = true,
237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
238 [NVME_TIMESTAMP] = true,
239 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
240 [NVME_COMMAND_SET_PROFILE] = true,
241 };
242
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
245 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
247 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
248 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
249 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
250 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
251 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
252 };
253
254 static const uint32_t nvme_cse_acs[256] = {
255 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
256 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
257 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
258 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
259 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
260 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
261 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
262 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
263 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
264 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
265 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270
271 static const uint32_t nvme_cse_iocs_none[256];
272
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
278 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
280 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
289 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 };
297
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303 return le16_to_cpu(req->sq->sqid);
304 }
305
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307 NvmeZoneState state)
308 {
309 if (QTAILQ_IN_USE(zone, entry)) {
310 switch (nvme_get_zone_state(zone)) {
311 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313 break;
314 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316 break;
317 case NVME_ZONE_STATE_CLOSED:
318 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319 break;
320 case NVME_ZONE_STATE_FULL:
321 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322 default:
323 ;
324 }
325 }
326
327 nvme_set_zone_state(zone, state);
328
329 switch (state) {
330 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332 break;
333 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335 break;
336 case NVME_ZONE_STATE_CLOSED:
337 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338 break;
339 case NVME_ZONE_STATE_FULL:
340 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341 case NVME_ZONE_STATE_READ_ONLY:
342 break;
343 default:
344 zone->d.za = 0;
345 }
346 }
347
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349 uint32_t opn, uint32_t zrwa)
350 {
351 if (ns->params.max_active_zones != 0 &&
352 ns->nr_active_zones + act > ns->params.max_active_zones) {
353 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355 }
356
357 if (ns->params.max_open_zones != 0 &&
358 ns->nr_open_zones + opn > ns->params.max_open_zones) {
359 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361 }
362
363 if (zrwa > ns->zns.numzrwa) {
364 return NVME_NOZRWA | NVME_DNR;
365 }
366
367 return NVME_SUCCESS;
368 }
369
370 /*
371 * Check if we can open a zone without exceeding open/active limits.
372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373 */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376 return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381 hwaddr hi, lo;
382
383 if (!n->cmb.cmse) {
384 return false;
385 }
386
387 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388 hi = lo + int128_get64(n->cmb.mem.size);
389
390 return addr >= lo && addr < hi;
391 }
392
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396 return &n->cmb.buf[addr - base];
397 }
398
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401 hwaddr hi;
402
403 if (!n->pmr.cmse) {
404 return false;
405 }
406
407 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408
409 return addr >= n->pmr.cba && addr < hi;
410 }
411
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419 hwaddr hi, lo;
420
421 /*
422 * The purpose of this check is to guard against invalid "local" access to
423 * the iomem (i.e. controller registers). Thus, we check against the range
424 * covered by the 'bar0' MemoryRegion since that is currently composed of
425 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426 * that if the device model is ever changed to allow the CMB to be located
427 * in BAR0 as well, then this must be changed.
428 */
429 lo = n->bar0.addr;
430 hi = lo + int128_get64(n->bar0.size);
431
432 return addr >= lo && addr < hi;
433 }
434
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437 hwaddr hi = addr + size - 1;
438 if (hi < addr) {
439 return 1;
440 }
441
442 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444 return 0;
445 }
446
447 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449 return 0;
450 }
451
452 return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457 hwaddr hi = addr + size - 1;
458 if (hi < addr) {
459 return 1;
460 }
461
462 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464 return 0;
465 }
466
467 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469 return 0;
470 }
471
472 return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477 return nsid &&
478 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493 cq->tail++;
494 if (cq->tail >= cq->size) {
495 cq->tail = 0;
496 cq->phase = !cq->phase;
497 }
498 }
499
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502 sq->head = (sq->head + 1) % sq->size;
503 }
504
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507 return (cq->tail + 1) % cq->size == cq->head;
508 }
509
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512 return sq->head == sq->tail;
513 }
514
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517 uint32_t intms = ldl_le_p(&n->bar.intms);
518
519 if (msix_enabled(&(n->parent_obj))) {
520 return;
521 }
522 if (~intms & n->irq_status) {
523 pci_irq_assert(&n->parent_obj);
524 } else {
525 pci_irq_deassert(&n->parent_obj);
526 }
527 }
528
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531 if (cq->irq_enabled) {
532 if (msix_enabled(&(n->parent_obj))) {
533 trace_pci_nvme_irq_msix(cq->vector);
534 msix_notify(&(n->parent_obj), cq->vector);
535 } else {
536 trace_pci_nvme_irq_pin();
537 assert(cq->vector < 32);
538 n->irq_status |= 1 << cq->vector;
539 nvme_irq_check(n);
540 }
541 } else {
542 trace_pci_nvme_irq_masked();
543 }
544 }
545
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548 if (cq->irq_enabled) {
549 if (msix_enabled(&(n->parent_obj))) {
550 return;
551 } else {
552 assert(cq->vector < 32);
553 if (!n->cq_pending) {
554 n->irq_status &= ~(1 << cq->vector);
555 }
556 nvme_irq_check(n);
557 }
558 }
559 }
560
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563 req->ns = NULL;
564 req->opaque = NULL;
565 req->aiocb = NULL;
566 memset(&req->cqe, 0x0, sizeof(req->cqe));
567 req->status = NVME_SUCCESS;
568 }
569
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572 if (dma) {
573 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574 sg->flags = NVME_SG_DMA;
575 } else {
576 qemu_iovec_init(&sg->iov, 0);
577 }
578
579 sg->flags |= NVME_SG_ALLOC;
580 }
581
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584 if (!(sg->flags & NVME_SG_ALLOC)) {
585 return;
586 }
587
588 if (sg->flags & NVME_SG_DMA) {
589 qemu_sglist_destroy(&sg->qsg);
590 } else {
591 qemu_iovec_destroy(&sg->iov);
592 }
593
594 memset(sg, 0x0, sizeof(*sg));
595 }
596
597 /*
598 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599 * holds both data and metadata. This function splits the data and metadata
600 * into two separate QSG/IOVs.
601 */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603 NvmeSg *mdata)
604 {
605 NvmeSg *dst = data;
606 uint32_t trans_len, count = ns->lbasz;
607 uint64_t offset = 0;
608 bool dma = sg->flags & NVME_SG_DMA;
609 size_t sge_len;
610 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611 int sg_idx = 0;
612
613 assert(sg->flags & NVME_SG_ALLOC);
614
615 while (sg_len) {
616 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617
618 trans_len = MIN(sg_len, count);
619 trans_len = MIN(trans_len, sge_len - offset);
620
621 if (dst) {
622 if (dma) {
623 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624 trans_len);
625 } else {
626 qemu_iovec_add(&dst->iov,
627 sg->iov.iov[sg_idx].iov_base + offset,
628 trans_len);
629 }
630 }
631
632 sg_len -= trans_len;
633 count -= trans_len;
634 offset += trans_len;
635
636 if (count == 0) {
637 dst = (dst == data) ? mdata : data;
638 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639 }
640
641 if (sge_len == offset) {
642 offset = 0;
643 sg_idx++;
644 }
645 }
646 }
647
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649 size_t len)
650 {
651 if (!len) {
652 return NVME_SUCCESS;
653 }
654
655 trace_pci_nvme_map_addr_cmb(addr, len);
656
657 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658 return NVME_DATA_TRAS_ERROR;
659 }
660
661 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662
663 return NVME_SUCCESS;
664 }
665
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667 size_t len)
668 {
669 if (!len) {
670 return NVME_SUCCESS;
671 }
672
673 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674 return NVME_DATA_TRAS_ERROR;
675 }
676
677 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678
679 return NVME_SUCCESS;
680 }
681
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684 bool cmb = false, pmr = false;
685
686 if (!len) {
687 return NVME_SUCCESS;
688 }
689
690 trace_pci_nvme_map_addr(addr, len);
691
692 if (nvme_addr_is_iomem(n, addr)) {
693 return NVME_DATA_TRAS_ERROR;
694 }
695
696 if (nvme_addr_is_cmb(n, addr)) {
697 cmb = true;
698 } else if (nvme_addr_is_pmr(n, addr)) {
699 pmr = true;
700 }
701
702 if (cmb || pmr) {
703 if (sg->flags & NVME_SG_DMA) {
704 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705 }
706
707 if (sg->iov.niov + 1 > IOV_MAX) {
708 goto max_mappings_exceeded;
709 }
710
711 if (cmb) {
712 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713 } else {
714 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715 }
716 }
717
718 if (!(sg->flags & NVME_SG_DMA)) {
719 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720 }
721
722 if (sg->qsg.nsg + 1 > IOV_MAX) {
723 goto max_mappings_exceeded;
724 }
725
726 qemu_sglist_add(&sg->qsg, addr, len);
727
728 return NVME_SUCCESS;
729
730 max_mappings_exceeded:
731 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732 "number of mappings exceed 1024");
733 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742 uint64_t prp2, uint32_t len)
743 {
744 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745 trans_len = MIN(len, trans_len);
746 int num_prps = (len >> n->page_bits) + 1;
747 uint16_t status;
748 int ret;
749
750 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751
752 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753
754 status = nvme_map_addr(n, sg, prp1, trans_len);
755 if (status) {
756 goto unmap;
757 }
758
759 len -= trans_len;
760 if (len) {
761 if (len > n->page_size) {
762 uint64_t prp_list[n->max_prp_ents];
763 uint32_t nents, prp_trans;
764 int i = 0;
765
766 /*
767 * The first PRP list entry, pointed to by PRP2 may contain offset.
768 * Hence, we need to calculate the number of entries in based on
769 * that offset.
770 */
771 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774 if (ret) {
775 trace_pci_nvme_err_addr_read(prp2);
776 status = NVME_DATA_TRAS_ERROR;
777 goto unmap;
778 }
779 while (len != 0) {
780 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781
782 if (i == nents - 1 && len > n->page_size) {
783 if (unlikely(prp_ent & (n->page_size - 1))) {
784 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786 goto unmap;
787 }
788
789 i = 0;
790 nents = (len + n->page_size - 1) >> n->page_bits;
791 nents = MIN(nents, n->max_prp_ents);
792 prp_trans = nents * sizeof(uint64_t);
793 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794 prp_trans);
795 if (ret) {
796 trace_pci_nvme_err_addr_read(prp_ent);
797 status = NVME_DATA_TRAS_ERROR;
798 goto unmap;
799 }
800 prp_ent = le64_to_cpu(prp_list[i]);
801 }
802
803 if (unlikely(prp_ent & (n->page_size - 1))) {
804 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806 goto unmap;
807 }
808
809 trans_len = MIN(len, n->page_size);
810 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811 if (status) {
812 goto unmap;
813 }
814
815 len -= trans_len;
816 i++;
817 }
818 } else {
819 if (unlikely(prp2 & (n->page_size - 1))) {
820 trace_pci_nvme_err_invalid_prp2_align(prp2);
821 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822 goto unmap;
823 }
824 status = nvme_map_addr(n, sg, prp2, len);
825 if (status) {
826 goto unmap;
827 }
828 }
829 }
830
831 return NVME_SUCCESS;
832
833 unmap:
834 nvme_sg_unmap(sg);
835 return status;
836 }
837
838 /*
839 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840 * number of bytes mapped in len.
841 */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843 NvmeSglDescriptor *segment, uint64_t nsgld,
844 size_t *len, NvmeCmd *cmd)
845 {
846 dma_addr_t addr, trans_len;
847 uint32_t dlen;
848 uint16_t status;
849
850 for (int i = 0; i < nsgld; i++) {
851 uint8_t type = NVME_SGL_TYPE(segment[i].type);
852
853 switch (type) {
854 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855 break;
856 case NVME_SGL_DESCR_TYPE_SEGMENT:
857 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859 default:
860 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861 }
862
863 dlen = le32_to_cpu(segment[i].len);
864
865 if (!dlen) {
866 continue;
867 }
868
869 if (*len == 0) {
870 /*
871 * All data has been mapped, but the SGL contains additional
872 * segments and/or descriptors. The controller might accept
873 * ignoring the rest of the SGL.
874 */
875 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877 break;
878 }
879
880 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882 }
883
884 trans_len = MIN(*len, dlen);
885
886 addr = le64_to_cpu(segment[i].addr);
887
888 if (UINT64_MAX - addr < dlen) {
889 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890 }
891
892 status = nvme_map_addr(n, sg, addr, trans_len);
893 if (status) {
894 return status;
895 }
896
897 *len -= trans_len;
898 }
899
900 return NVME_SUCCESS;
901 }
902
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904 size_t len, NvmeCmd *cmd)
905 {
906 /*
907 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908 * dynamically allocating a potentially huge SGL. The spec allows the SGL
909 * to be larger (as in number of bytes required to describe the SGL
910 * descriptors and segment chain) than the command transfer size, so it is
911 * not bounded by MDTS.
912 */
913 const int SEG_CHUNK_SIZE = 256;
914
915 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916 uint64_t nsgld;
917 uint32_t seg_len;
918 uint16_t status;
919 hwaddr addr;
920 int ret;
921
922 sgld = &sgl;
923 addr = le64_to_cpu(sgl.addr);
924
925 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926
927 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928
929 /*
930 * If the entire transfer can be described with a single data block it can
931 * be mapped directly.
932 */
933 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935 if (status) {
936 goto unmap;
937 }
938
939 goto out;
940 }
941
942 for (;;) {
943 switch (NVME_SGL_TYPE(sgld->type)) {
944 case NVME_SGL_DESCR_TYPE_SEGMENT:
945 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946 break;
947 default:
948 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949 }
950
951 seg_len = le32_to_cpu(sgld->len);
952
953 /* check the length of the (Last) Segment descriptor */
954 if (!seg_len || seg_len & 0xf) {
955 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956 }
957
958 if (UINT64_MAX - addr < seg_len) {
959 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960 }
961
962 nsgld = seg_len / sizeof(NvmeSglDescriptor);
963
964 while (nsgld > SEG_CHUNK_SIZE) {
965 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966 trace_pci_nvme_err_addr_read(addr);
967 status = NVME_DATA_TRAS_ERROR;
968 goto unmap;
969 }
970
971 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972 &len, cmd);
973 if (status) {
974 goto unmap;
975 }
976
977 nsgld -= SEG_CHUNK_SIZE;
978 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979 }
980
981 ret = nvme_addr_read(n, addr, segment, nsgld *
982 sizeof(NvmeSglDescriptor));
983 if (ret) {
984 trace_pci_nvme_err_addr_read(addr);
985 status = NVME_DATA_TRAS_ERROR;
986 goto unmap;
987 }
988
989 last_sgld = &segment[nsgld - 1];
990
991 /*
992 * If the segment ends with a Data Block, then we are done.
993 */
994 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996 if (status) {
997 goto unmap;
998 }
999
1000 goto out;
1001 }
1002
1003 /*
1004 * If the last descriptor was not a Data Block, then the current
1005 * segment must not be a Last Segment.
1006 */
1007 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009 goto unmap;
1010 }
1011
1012 sgld = last_sgld;
1013 addr = le64_to_cpu(sgld->addr);
1014
1015 /*
1016 * Do not map the last descriptor; it will be a Segment or Last Segment
1017 * descriptor and is handled by the next iteration.
1018 */
1019 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020 if (status) {
1021 goto unmap;
1022 }
1023 }
1024
1025 out:
1026 /* if there is any residual left in len, the SGL was too short */
1027 if (len) {
1028 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029 goto unmap;
1030 }
1031
1032 return NVME_SUCCESS;
1033
1034 unmap:
1035 nvme_sg_unmap(sg);
1036 return status;
1037 }
1038
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040 NvmeCmd *cmd)
1041 {
1042 uint64_t prp1, prp2;
1043
1044 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045 case NVME_PSDT_PRP:
1046 prp1 = le64_to_cpu(cmd->dptr.prp1);
1047 prp2 = le64_to_cpu(cmd->dptr.prp2);
1048
1049 return nvme_map_prp(n, sg, prp1, prp2, len);
1050 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051 case NVME_PSDT_SGL_MPTR_SGL:
1052 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053 default:
1054 return NVME_INVALID_FIELD;
1055 }
1056 }
1057
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059 NvmeCmd *cmd)
1060 {
1061 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062 hwaddr mptr = le64_to_cpu(cmd->mptr);
1063 uint16_t status;
1064
1065 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066 NvmeSglDescriptor sgl;
1067
1068 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069 return NVME_DATA_TRAS_ERROR;
1070 }
1071
1072 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075 }
1076
1077 return status;
1078 }
1079
1080 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081 status = nvme_map_addr(n, sg, mptr, len);
1082 if (status) {
1083 nvme_sg_unmap(sg);
1084 }
1085
1086 return status;
1087 }
1088
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091 NvmeNamespace *ns = req->ns;
1092 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095 size_t len = nvme_l2b(ns, nlb);
1096 uint16_t status;
1097
1098 if (nvme_ns_ext(ns) &&
1099 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100 NvmeSg sg;
1101
1102 len += nvme_m2b(ns, nlb);
1103
1104 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105 if (status) {
1106 return status;
1107 }
1108
1109 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110 nvme_sg_split(&sg, ns, &req->sg, NULL);
1111 nvme_sg_unmap(&sg);
1112
1113 return NVME_SUCCESS;
1114 }
1115
1116 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121 NvmeNamespace *ns = req->ns;
1122 size_t len = nvme_m2b(ns, nlb);
1123 uint16_t status;
1124
1125 if (nvme_ns_ext(ns)) {
1126 NvmeSg sg;
1127
1128 len += nvme_l2b(ns, nlb);
1129
1130 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131 if (status) {
1132 return status;
1133 }
1134
1135 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136 nvme_sg_split(&sg, ns, NULL, &req->sg);
1137 nvme_sg_unmap(&sg);
1138
1139 return NVME_SUCCESS;
1140 }
1141
1142 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146 uint32_t len, uint32_t bytes,
1147 int32_t skip_bytes, int64_t offset,
1148 NvmeTxDirection dir)
1149 {
1150 hwaddr addr;
1151 uint32_t trans_len, count = bytes;
1152 bool dma = sg->flags & NVME_SG_DMA;
1153 int64_t sge_len;
1154 int sg_idx = 0;
1155 int ret;
1156
1157 assert(sg->flags & NVME_SG_ALLOC);
1158
1159 while (len) {
1160 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161
1162 if (sge_len - offset < 0) {
1163 offset -= sge_len;
1164 sg_idx++;
1165 continue;
1166 }
1167
1168 if (sge_len == offset) {
1169 offset = 0;
1170 sg_idx++;
1171 continue;
1172 }
1173
1174 trans_len = MIN(len, count);
1175 trans_len = MIN(trans_len, sge_len - offset);
1176
1177 if (dma) {
1178 addr = sg->qsg.sg[sg_idx].base + offset;
1179 } else {
1180 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181 }
1182
1183 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184 ret = nvme_addr_read(n, addr, ptr, trans_len);
1185 } else {
1186 ret = nvme_addr_write(n, addr, ptr, trans_len);
1187 }
1188
1189 if (ret) {
1190 return NVME_DATA_TRAS_ERROR;
1191 }
1192
1193 ptr += trans_len;
1194 len -= trans_len;
1195 count -= trans_len;
1196 offset += trans_len;
1197
1198 if (count == 0) {
1199 count = bytes;
1200 offset += skip_bytes;
1201 }
1202 }
1203
1204 return NVME_SUCCESS;
1205 }
1206
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208 NvmeTxDirection dir)
1209 {
1210 assert(sg->flags & NVME_SG_ALLOC);
1211
1212 if (sg->flags & NVME_SG_DMA) {
1213 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214 dma_addr_t residual;
1215
1216 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218 } else {
1219 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220 }
1221
1222 if (unlikely(residual)) {
1223 trace_pci_nvme_err_invalid_dma();
1224 return NVME_INVALID_FIELD | NVME_DNR;
1225 }
1226 } else {
1227 size_t bytes;
1228
1229 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231 } else {
1232 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233 }
1234
1235 if (unlikely(bytes != len)) {
1236 trace_pci_nvme_err_invalid_dma();
1237 return NVME_INVALID_FIELD | NVME_DNR;
1238 }
1239 }
1240
1241 return NVME_SUCCESS;
1242 }
1243
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245 NvmeRequest *req)
1246 {
1247 uint16_t status;
1248
1249 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250 if (status) {
1251 return status;
1252 }
1253
1254 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258 NvmeRequest *req)
1259 {
1260 uint16_t status;
1261
1262 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263 if (status) {
1264 return status;
1265 }
1266
1267 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271 NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273 NvmeNamespace *ns = req->ns;
1274 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277
1278 if (nvme_ns_ext(ns) &&
1279 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281 ns->lbaf.ms, 0, dir);
1282 }
1283
1284 return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288 NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290 NvmeNamespace *ns = req->ns;
1291 uint16_t status;
1292
1293 if (nvme_ns_ext(ns)) {
1294 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295 ns->lbasz, ns->lbasz, dir);
1296 }
1297
1298 nvme_sg_unmap(&req->sg);
1299
1300 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301 if (status) {
1302 return status;
1303 }
1304
1305 return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309 BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311 assert(req->sg.flags & NVME_SG_ALLOC);
1312
1313 if (req->sg.flags & NVME_SG_DMA) {
1314 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315 cb, req);
1316 } else {
1317 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318 }
1319 }
1320
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322 BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324 assert(req->sg.flags & NVME_SG_ALLOC);
1325
1326 if (req->sg.flags & NVME_SG_DMA) {
1327 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328 cb, req);
1329 } else {
1330 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331 }
1332 }
1333
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336 pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337 sizeof(cq->head));
1338 trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343 NvmeCQueue *cq = opaque;
1344 NvmeCtrl *n = cq->ctrl;
1345 NvmeRequest *req, *next;
1346 bool pending = cq->head != cq->tail;
1347 int ret;
1348
1349 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350 NvmeSQueue *sq;
1351 hwaddr addr;
1352
1353 if (n->dbbuf_enabled) {
1354 nvme_update_cq_head(cq);
1355 }
1356
1357 if (nvme_cq_full(cq)) {
1358 break;
1359 }
1360
1361 sq = req->sq;
1362 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364 req->cqe.sq_head = cpu_to_le16(sq->head);
1365 addr = cq->dma_addr + cq->tail * n->cqe_size;
1366 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367 sizeof(req->cqe));
1368 if (ret) {
1369 trace_pci_nvme_err_addr_write(addr);
1370 trace_pci_nvme_err_cfs();
1371 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372 break;
1373 }
1374 QTAILQ_REMOVE(&cq->req_list, req, entry);
1375 nvme_inc_cq_tail(cq);
1376 nvme_sg_unmap(&req->sg);
1377 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378 }
1379 if (cq->tail != cq->head) {
1380 if (cq->irq_enabled && !pending) {
1381 n->cq_pending++;
1382 }
1383
1384 nvme_irq_assert(n, cq);
1385 }
1386 }
1387
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390 assert(cq->cqid == req->sq->cqid);
1391 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392 le32_to_cpu(req->cqe.result),
1393 le32_to_cpu(req->cqe.dw1),
1394 req->status);
1395
1396 if (req->status) {
1397 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398 req->status, req->cmd.opcode);
1399 }
1400
1401 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403
1404 qemu_bh_schedule(cq->bh);
1405 }
1406
1407 static void nvme_process_aers(void *opaque)
1408 {
1409 NvmeCtrl *n = opaque;
1410 NvmeAsyncEvent *event, *next;
1411
1412 trace_pci_nvme_process_aers(n->aer_queued);
1413
1414 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1415 NvmeRequest *req;
1416 NvmeAerResult *result;
1417
1418 /* can't post cqe if there is nothing to complete */
1419 if (!n->outstanding_aers) {
1420 trace_pci_nvme_no_outstanding_aers();
1421 break;
1422 }
1423
1424 /* ignore if masked (cqe posted, but event not cleared) */
1425 if (n->aer_mask & (1 << event->result.event_type)) {
1426 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1427 continue;
1428 }
1429
1430 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1431 n->aer_queued--;
1432
1433 n->aer_mask |= 1 << event->result.event_type;
1434 n->outstanding_aers--;
1435
1436 req = n->aer_reqs[n->outstanding_aers];
1437
1438 result = (NvmeAerResult *) &req->cqe.result;
1439 result->event_type = event->result.event_type;
1440 result->event_info = event->result.event_info;
1441 result->log_page = event->result.log_page;
1442 g_free(event);
1443
1444 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1445 result->log_page);
1446
1447 nvme_enqueue_req_completion(&n->admin_cq, req);
1448 }
1449 }
1450
1451 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1452 uint8_t event_info, uint8_t log_page)
1453 {
1454 NvmeAsyncEvent *event;
1455
1456 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1457
1458 if (n->aer_queued == n->params.aer_max_queued) {
1459 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1460 return;
1461 }
1462
1463 event = g_new(NvmeAsyncEvent, 1);
1464 event->result = (NvmeAerResult) {
1465 .event_type = event_type,
1466 .event_info = event_info,
1467 .log_page = log_page,
1468 };
1469
1470 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1471 n->aer_queued++;
1472
1473 nvme_process_aers(n);
1474 }
1475
1476 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1477 {
1478 uint8_t aer_info;
1479
1480 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1481 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1482 return;
1483 }
1484
1485 switch (event) {
1486 case NVME_SMART_SPARE:
1487 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1488 break;
1489 case NVME_SMART_TEMPERATURE:
1490 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1491 break;
1492 case NVME_SMART_RELIABILITY:
1493 case NVME_SMART_MEDIA_READ_ONLY:
1494 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1495 case NVME_SMART_PMR_UNRELIABLE:
1496 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1497 break;
1498 default:
1499 return;
1500 }
1501
1502 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1503 }
1504
1505 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1506 {
1507 n->aer_mask &= ~(1 << event_type);
1508 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1509 nvme_process_aers(n);
1510 }
1511 }
1512
1513 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1514 {
1515 uint8_t mdts = n->params.mdts;
1516
1517 if (mdts && len > n->page_size << mdts) {
1518 trace_pci_nvme_err_mdts(len);
1519 return NVME_INVALID_FIELD | NVME_DNR;
1520 }
1521
1522 return NVME_SUCCESS;
1523 }
1524
1525 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1526 uint32_t nlb)
1527 {
1528 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1529
1530 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1531 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1532 return NVME_LBA_RANGE | NVME_DNR;
1533 }
1534
1535 return NVME_SUCCESS;
1536 }
1537
1538 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1539 uint32_t nlb, int flags)
1540 {
1541 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1542
1543 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1544 int64_t offset = nvme_l2b(ns, slba);
1545 int ret;
1546
1547 /*
1548 * `pnum` holds the number of bytes after offset that shares the same
1549 * allocation status as the byte at offset. If `pnum` is different from
1550 * `bytes`, we should check the allocation status of the next range and
1551 * continue this until all bytes have been checked.
1552 */
1553 do {
1554 bytes -= pnum;
1555
1556 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1557 if (ret < 0) {
1558 return ret;
1559 }
1560
1561
1562 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1563 !!(ret & BDRV_BLOCK_ZERO));
1564
1565 if (!(ret & flags)) {
1566 return 1;
1567 }
1568
1569 offset += pnum;
1570 } while (pnum != bytes);
1571
1572 return 0;
1573 }
1574
1575 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1576 uint32_t nlb)
1577 {
1578 int ret;
1579 Error *err = NULL;
1580
1581 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1582 if (ret) {
1583 if (ret < 0) {
1584 error_setg_errno(&err, -ret, "unable to get block status");
1585 error_report_err(err);
1586
1587 return NVME_INTERNAL_DEV_ERROR;
1588 }
1589
1590 return NVME_DULB;
1591 }
1592
1593 return NVME_SUCCESS;
1594 }
1595
1596 static void nvme_aio_err(NvmeRequest *req, int ret)
1597 {
1598 uint16_t status = NVME_SUCCESS;
1599 Error *local_err = NULL;
1600
1601 switch (req->cmd.opcode) {
1602 case NVME_CMD_READ:
1603 status = NVME_UNRECOVERED_READ;
1604 break;
1605 case NVME_CMD_FLUSH:
1606 case NVME_CMD_WRITE:
1607 case NVME_CMD_WRITE_ZEROES:
1608 case NVME_CMD_ZONE_APPEND:
1609 status = NVME_WRITE_FAULT;
1610 break;
1611 default:
1612 status = NVME_INTERNAL_DEV_ERROR;
1613 break;
1614 }
1615
1616 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1617
1618 error_setg_errno(&local_err, -ret, "aio failed");
1619 error_report_err(local_err);
1620
1621 /*
1622 * Set the command status code to the first encountered error but allow a
1623 * subsequent Internal Device Error to trump it.
1624 */
1625 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1626 return;
1627 }
1628
1629 req->status = status;
1630 }
1631
1632 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1633 {
1634 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1635 slba / ns->zone_size;
1636 }
1637
1638 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1639 {
1640 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1641
1642 if (zone_idx >= ns->num_zones) {
1643 return NULL;
1644 }
1645
1646 return &ns->zone_array[zone_idx];
1647 }
1648
1649 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1650 {
1651 uint64_t zslba = zone->d.zslba;
1652
1653 switch (nvme_get_zone_state(zone)) {
1654 case NVME_ZONE_STATE_EMPTY:
1655 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1656 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1657 case NVME_ZONE_STATE_CLOSED:
1658 return NVME_SUCCESS;
1659 case NVME_ZONE_STATE_FULL:
1660 trace_pci_nvme_err_zone_is_full(zslba);
1661 return NVME_ZONE_FULL;
1662 case NVME_ZONE_STATE_OFFLINE:
1663 trace_pci_nvme_err_zone_is_offline(zslba);
1664 return NVME_ZONE_OFFLINE;
1665 case NVME_ZONE_STATE_READ_ONLY:
1666 trace_pci_nvme_err_zone_is_read_only(zslba);
1667 return NVME_ZONE_READ_ONLY;
1668 default:
1669 assert(false);
1670 }
1671
1672 return NVME_INTERNAL_DEV_ERROR;
1673 }
1674
1675 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1676 uint64_t slba, uint32_t nlb)
1677 {
1678 uint64_t zcap = nvme_zone_wr_boundary(zone);
1679 uint16_t status;
1680
1681 status = nvme_check_zone_state_for_write(zone);
1682 if (status) {
1683 return status;
1684 }
1685
1686 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1687 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1688
1689 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1690 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1691 return NVME_ZONE_INVALID_WRITE;
1692 }
1693 } else {
1694 if (unlikely(slba != zone->w_ptr)) {
1695 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1696 zone->w_ptr);
1697 return NVME_ZONE_INVALID_WRITE;
1698 }
1699 }
1700
1701 if (unlikely((slba + nlb) > zcap)) {
1702 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1703 return NVME_ZONE_BOUNDARY_ERROR;
1704 }
1705
1706 return NVME_SUCCESS;
1707 }
1708
1709 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1710 {
1711 switch (nvme_get_zone_state(zone)) {
1712 case NVME_ZONE_STATE_EMPTY:
1713 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1714 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1715 case NVME_ZONE_STATE_FULL:
1716 case NVME_ZONE_STATE_CLOSED:
1717 case NVME_ZONE_STATE_READ_ONLY:
1718 return NVME_SUCCESS;
1719 case NVME_ZONE_STATE_OFFLINE:
1720 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1721 return NVME_ZONE_OFFLINE;
1722 default:
1723 assert(false);
1724 }
1725
1726 return NVME_INTERNAL_DEV_ERROR;
1727 }
1728
1729 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1730 uint32_t nlb)
1731 {
1732 NvmeZone *zone;
1733 uint64_t bndry, end;
1734 uint16_t status;
1735
1736 zone = nvme_get_zone_by_slba(ns, slba);
1737 assert(zone);
1738
1739 bndry = nvme_zone_rd_boundary(ns, zone);
1740 end = slba + nlb;
1741
1742 status = nvme_check_zone_state_for_read(zone);
1743 if (status) {
1744 ;
1745 } else if (unlikely(end > bndry)) {
1746 if (!ns->params.cross_zone_read) {
1747 status = NVME_ZONE_BOUNDARY_ERROR;
1748 } else {
1749 /*
1750 * Read across zone boundary - check that all subsequent
1751 * zones that are being read have an appropriate state.
1752 */
1753 do {
1754 zone++;
1755 status = nvme_check_zone_state_for_read(zone);
1756 if (status) {
1757 break;
1758 }
1759 } while (end > nvme_zone_rd_boundary(ns, zone));
1760 }
1761 }
1762
1763 return status;
1764 }
1765
1766 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1767 {
1768 switch (nvme_get_zone_state(zone)) {
1769 case NVME_ZONE_STATE_FULL:
1770 return NVME_SUCCESS;
1771
1772 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1773 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1774 nvme_aor_dec_open(ns);
1775 /* fallthrough */
1776 case NVME_ZONE_STATE_CLOSED:
1777 nvme_aor_dec_active(ns);
1778
1779 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1780 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1781 if (ns->params.numzrwa) {
1782 ns->zns.numzrwa++;
1783 }
1784 }
1785
1786 /* fallthrough */
1787 case NVME_ZONE_STATE_EMPTY:
1788 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1789 return NVME_SUCCESS;
1790
1791 default:
1792 return NVME_ZONE_INVAL_TRANSITION;
1793 }
1794 }
1795
1796 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1797 {
1798 switch (nvme_get_zone_state(zone)) {
1799 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1800 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1801 nvme_aor_dec_open(ns);
1802 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1803 /* fall through */
1804 case NVME_ZONE_STATE_CLOSED:
1805 return NVME_SUCCESS;
1806
1807 default:
1808 return NVME_ZONE_INVAL_TRANSITION;
1809 }
1810 }
1811
1812 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1813 {
1814 switch (nvme_get_zone_state(zone)) {
1815 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1816 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1817 nvme_aor_dec_open(ns);
1818 /* fallthrough */
1819 case NVME_ZONE_STATE_CLOSED:
1820 nvme_aor_dec_active(ns);
1821
1822 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1823 if (ns->params.numzrwa) {
1824 ns->zns.numzrwa++;
1825 }
1826 }
1827
1828 /* fallthrough */
1829 case NVME_ZONE_STATE_FULL:
1830 zone->w_ptr = zone->d.zslba;
1831 zone->d.wp = zone->w_ptr;
1832 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1833 /* fallthrough */
1834 case NVME_ZONE_STATE_EMPTY:
1835 return NVME_SUCCESS;
1836
1837 default:
1838 return NVME_ZONE_INVAL_TRANSITION;
1839 }
1840 }
1841
1842 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1843 {
1844 NvmeZone *zone;
1845
1846 if (ns->params.max_open_zones &&
1847 ns->nr_open_zones == ns->params.max_open_zones) {
1848 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1849 if (zone) {
1850 /*
1851 * Automatically close this implicitly open zone.
1852 */
1853 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1854 nvme_zrm_close(ns, zone);
1855 }
1856 }
1857 }
1858
1859 enum {
1860 NVME_ZRM_AUTO = 1 << 0,
1861 NVME_ZRM_ZRWA = 1 << 1,
1862 };
1863
1864 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1865 NvmeZone *zone, int flags)
1866 {
1867 int act = 0;
1868 uint16_t status;
1869
1870 switch (nvme_get_zone_state(zone)) {
1871 case NVME_ZONE_STATE_EMPTY:
1872 act = 1;
1873
1874 /* fallthrough */
1875
1876 case NVME_ZONE_STATE_CLOSED:
1877 if (n->params.auto_transition_zones) {
1878 nvme_zrm_auto_transition_zone(ns);
1879 }
1880 status = nvme_zns_check_resources(ns, act, 1,
1881 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1882 if (status) {
1883 return status;
1884 }
1885
1886 if (act) {
1887 nvme_aor_inc_active(ns);
1888 }
1889
1890 nvme_aor_inc_open(ns);
1891
1892 if (flags & NVME_ZRM_AUTO) {
1893 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1894 return NVME_SUCCESS;
1895 }
1896
1897 /* fallthrough */
1898
1899 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1900 if (flags & NVME_ZRM_AUTO) {
1901 return NVME_SUCCESS;
1902 }
1903
1904 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1905
1906 /* fallthrough */
1907
1908 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1909 if (flags & NVME_ZRM_ZRWA) {
1910 ns->zns.numzrwa--;
1911
1912 zone->d.za |= NVME_ZA_ZRWA_VALID;
1913 }
1914
1915 return NVME_SUCCESS;
1916
1917 default:
1918 return NVME_ZONE_INVAL_TRANSITION;
1919 }
1920 }
1921
1922 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1923 NvmeZone *zone)
1924 {
1925 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1926 }
1927
1928 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1929 uint32_t nlb)
1930 {
1931 zone->d.wp += nlb;
1932
1933 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1934 nvme_zrm_finish(ns, zone);
1935 }
1936 }
1937
1938 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1939 uint32_t nlbc)
1940 {
1941 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1942
1943 nlbc = nzrwafgs * ns->zns.zrwafg;
1944
1945 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1946
1947 zone->w_ptr += nlbc;
1948
1949 nvme_advance_zone_wp(ns, zone, nlbc);
1950 }
1951
1952 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1953 {
1954 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1955 NvmeZone *zone;
1956 uint64_t slba;
1957 uint32_t nlb;
1958
1959 slba = le64_to_cpu(rw->slba);
1960 nlb = le16_to_cpu(rw->nlb) + 1;
1961 zone = nvme_get_zone_by_slba(ns, slba);
1962 assert(zone);
1963
1964 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1965 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1966 uint64_t elba = slba + nlb - 1;
1967
1968 if (elba > ezrwa) {
1969 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1970 }
1971
1972 return;
1973 }
1974
1975 nvme_advance_zone_wp(ns, zone, nlb);
1976 }
1977
1978 static inline bool nvme_is_write(NvmeRequest *req)
1979 {
1980 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1981
1982 return rw->opcode == NVME_CMD_WRITE ||
1983 rw->opcode == NVME_CMD_ZONE_APPEND ||
1984 rw->opcode == NVME_CMD_WRITE_ZEROES;
1985 }
1986
1987 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1988 {
1989 return qemu_get_aio_context();
1990 }
1991
1992 static void nvme_misc_cb(void *opaque, int ret)
1993 {
1994 NvmeRequest *req = opaque;
1995
1996 trace_pci_nvme_misc_cb(nvme_cid(req));
1997
1998 if (ret) {
1999 nvme_aio_err(req, ret);
2000 }
2001
2002 nvme_enqueue_req_completion(nvme_cq(req), req);
2003 }
2004
2005 void nvme_rw_complete_cb(void *opaque, int ret)
2006 {
2007 NvmeRequest *req = opaque;
2008 NvmeNamespace *ns = req->ns;
2009 BlockBackend *blk = ns->blkconf.blk;
2010 BlockAcctCookie *acct = &req->acct;
2011 BlockAcctStats *stats = blk_get_stats(blk);
2012
2013 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2014
2015 if (ret) {
2016 block_acct_failed(stats, acct);
2017 nvme_aio_err(req, ret);
2018 } else {
2019 block_acct_done(stats, acct);
2020 }
2021
2022 if (ns->params.zoned && nvme_is_write(req)) {
2023 nvme_finalize_zoned_write(ns, req);
2024 }
2025
2026 nvme_enqueue_req_completion(nvme_cq(req), req);
2027 }
2028
2029 static void nvme_rw_cb(void *opaque, int ret)
2030 {
2031 NvmeRequest *req = opaque;
2032 NvmeNamespace *ns = req->ns;
2033
2034 BlockBackend *blk = ns->blkconf.blk;
2035
2036 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2037
2038 if (ret) {
2039 goto out;
2040 }
2041
2042 if (ns->lbaf.ms) {
2043 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2044 uint64_t slba = le64_to_cpu(rw->slba);
2045 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2046 uint64_t offset = nvme_moff(ns, slba);
2047
2048 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2049 size_t mlen = nvme_m2b(ns, nlb);
2050
2051 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2052 BDRV_REQ_MAY_UNMAP,
2053 nvme_rw_complete_cb, req);
2054 return;
2055 }
2056
2057 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2058 uint16_t status;
2059
2060 nvme_sg_unmap(&req->sg);
2061 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2062 if (status) {
2063 ret = -EFAULT;
2064 goto out;
2065 }
2066
2067 if (req->cmd.opcode == NVME_CMD_READ) {
2068 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2069 }
2070
2071 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2072 }
2073 }
2074
2075 out:
2076 nvme_rw_complete_cb(req, ret);
2077 }
2078
2079 static void nvme_verify_cb(void *opaque, int ret)
2080 {
2081 NvmeBounceContext *ctx = opaque;
2082 NvmeRequest *req = ctx->req;
2083 NvmeNamespace *ns = req->ns;
2084 BlockBackend *blk = ns->blkconf.blk;
2085 BlockAcctCookie *acct = &req->acct;
2086 BlockAcctStats *stats = blk_get_stats(blk);
2087 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2088 uint64_t slba = le64_to_cpu(rw->slba);
2089 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2090 uint16_t apptag = le16_to_cpu(rw->apptag);
2091 uint16_t appmask = le16_to_cpu(rw->appmask);
2092 uint64_t reftag = le32_to_cpu(rw->reftag);
2093 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2094 uint16_t status;
2095
2096 reftag |= cdw3 << 32;
2097
2098 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2099
2100 if (ret) {
2101 block_acct_failed(stats, acct);
2102 nvme_aio_err(req, ret);
2103 goto out;
2104 }
2105
2106 block_acct_done(stats, acct);
2107
2108 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2109 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2110 ctx->mdata.iov.size, slba);
2111 if (status) {
2112 req->status = status;
2113 goto out;
2114 }
2115
2116 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2117 ctx->mdata.bounce, ctx->mdata.iov.size,
2118 prinfo, slba, apptag, appmask, &reftag);
2119 }
2120
2121 out:
2122 qemu_iovec_destroy(&ctx->data.iov);
2123 g_free(ctx->data.bounce);
2124
2125 qemu_iovec_destroy(&ctx->mdata.iov);
2126 g_free(ctx->mdata.bounce);
2127
2128 g_free(ctx);
2129
2130 nvme_enqueue_req_completion(nvme_cq(req), req);
2131 }
2132
2133
2134 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2135 {
2136 NvmeBounceContext *ctx = opaque;
2137 NvmeRequest *req = ctx->req;
2138 NvmeNamespace *ns = req->ns;
2139 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2140 uint64_t slba = le64_to_cpu(rw->slba);
2141 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2142 size_t mlen = nvme_m2b(ns, nlb);
2143 uint64_t offset = nvme_moff(ns, slba);
2144 BlockBackend *blk = ns->blkconf.blk;
2145
2146 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2147
2148 if (ret) {
2149 goto out;
2150 }
2151
2152 ctx->mdata.bounce = g_malloc(mlen);
2153
2154 qemu_iovec_reset(&ctx->mdata.iov);
2155 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2156
2157 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2158 nvme_verify_cb, ctx);
2159 return;
2160
2161 out:
2162 nvme_verify_cb(ctx, ret);
2163 }
2164
2165 struct nvme_compare_ctx {
2166 struct {
2167 QEMUIOVector iov;
2168 uint8_t *bounce;
2169 } data;
2170
2171 struct {
2172 QEMUIOVector iov;
2173 uint8_t *bounce;
2174 } mdata;
2175 };
2176
2177 static void nvme_compare_mdata_cb(void *opaque, int ret)
2178 {
2179 NvmeRequest *req = opaque;
2180 NvmeNamespace *ns = req->ns;
2181 NvmeCtrl *n = nvme_ctrl(req);
2182 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2183 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2184 uint16_t apptag = le16_to_cpu(rw->apptag);
2185 uint16_t appmask = le16_to_cpu(rw->appmask);
2186 uint64_t reftag = le32_to_cpu(rw->reftag);
2187 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2188 struct nvme_compare_ctx *ctx = req->opaque;
2189 g_autofree uint8_t *buf = NULL;
2190 BlockBackend *blk = ns->blkconf.blk;
2191 BlockAcctCookie *acct = &req->acct;
2192 BlockAcctStats *stats = blk_get_stats(blk);
2193 uint16_t status = NVME_SUCCESS;
2194
2195 reftag |= cdw3 << 32;
2196
2197 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2198
2199 if (ret) {
2200 block_acct_failed(stats, acct);
2201 nvme_aio_err(req, ret);
2202 goto out;
2203 }
2204
2205 buf = g_malloc(ctx->mdata.iov.size);
2206
2207 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2208 NVME_TX_DIRECTION_TO_DEVICE, req);
2209 if (status) {
2210 req->status = status;
2211 goto out;
2212 }
2213
2214 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2215 uint64_t slba = le64_to_cpu(rw->slba);
2216 uint8_t *bufp;
2217 uint8_t *mbufp = ctx->mdata.bounce;
2218 uint8_t *end = mbufp + ctx->mdata.iov.size;
2219 int16_t pil = 0;
2220
2221 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2222 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2223 slba, apptag, appmask, &reftag);
2224 if (status) {
2225 req->status = status;
2226 goto out;
2227 }
2228
2229 /*
2230 * When formatted with protection information, do not compare the DIF
2231 * tuple.
2232 */
2233 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2234 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2235 }
2236
2237 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2238 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2239 req->status = NVME_CMP_FAILURE;
2240 goto out;
2241 }
2242 }
2243
2244 goto out;
2245 }
2246
2247 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2248 req->status = NVME_CMP_FAILURE;
2249 goto out;
2250 }
2251
2252 block_acct_done(stats, acct);
2253
2254 out:
2255 qemu_iovec_destroy(&ctx->data.iov);
2256 g_free(ctx->data.bounce);
2257
2258 qemu_iovec_destroy(&ctx->mdata.iov);
2259 g_free(ctx->mdata.bounce);
2260
2261 g_free(ctx);
2262
2263 nvme_enqueue_req_completion(nvme_cq(req), req);
2264 }
2265
2266 static void nvme_compare_data_cb(void *opaque, int ret)
2267 {
2268 NvmeRequest *req = opaque;
2269 NvmeCtrl *n = nvme_ctrl(req);
2270 NvmeNamespace *ns = req->ns;
2271 BlockBackend *blk = ns->blkconf.blk;
2272 BlockAcctCookie *acct = &req->acct;
2273 BlockAcctStats *stats = blk_get_stats(blk);
2274
2275 struct nvme_compare_ctx *ctx = req->opaque;
2276 g_autofree uint8_t *buf = NULL;
2277 uint16_t status;
2278
2279 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2280
2281 if (ret) {
2282 block_acct_failed(stats, acct);
2283 nvme_aio_err(req, ret);
2284 goto out;
2285 }
2286
2287 buf = g_malloc(ctx->data.iov.size);
2288
2289 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2290 NVME_TX_DIRECTION_TO_DEVICE, req);
2291 if (status) {
2292 req->status = status;
2293 goto out;
2294 }
2295
2296 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2297 req->status = NVME_CMP_FAILURE;
2298 goto out;
2299 }
2300
2301 if (ns->lbaf.ms) {
2302 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2303 uint64_t slba = le64_to_cpu(rw->slba);
2304 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2305 size_t mlen = nvme_m2b(ns, nlb);
2306 uint64_t offset = nvme_moff(ns, slba);
2307
2308 ctx->mdata.bounce = g_malloc(mlen);
2309
2310 qemu_iovec_init(&ctx->mdata.iov, 1);
2311 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2312
2313 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2314 nvme_compare_mdata_cb, req);
2315 return;
2316 }
2317
2318 block_acct_done(stats, acct);
2319
2320 out:
2321 qemu_iovec_destroy(&ctx->data.iov);
2322 g_free(ctx->data.bounce);
2323 g_free(ctx);
2324
2325 nvme_enqueue_req_completion(nvme_cq(req), req);
2326 }
2327
2328 typedef struct NvmeDSMAIOCB {
2329 BlockAIOCB common;
2330 BlockAIOCB *aiocb;
2331 NvmeRequest *req;
2332 QEMUBH *bh;
2333 int ret;
2334
2335 NvmeDsmRange *range;
2336 unsigned int nr;
2337 unsigned int idx;
2338 } NvmeDSMAIOCB;
2339
2340 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2341 {
2342 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2343
2344 /* break nvme_dsm_cb loop */
2345 iocb->idx = iocb->nr;
2346 iocb->ret = -ECANCELED;
2347
2348 if (iocb->aiocb) {
2349 blk_aio_cancel_async(iocb->aiocb);
2350 iocb->aiocb = NULL;
2351 } else {
2352 /*
2353 * We only reach this if nvme_dsm_cancel() has already been called or
2354 * the command ran to completion and nvme_dsm_bh is scheduled to run.
2355 */
2356 assert(iocb->idx == iocb->nr);
2357 }
2358 }
2359
2360 static const AIOCBInfo nvme_dsm_aiocb_info = {
2361 .aiocb_size = sizeof(NvmeDSMAIOCB),
2362 .cancel_async = nvme_dsm_cancel,
2363 };
2364
2365 static void nvme_dsm_bh(void *opaque)
2366 {
2367 NvmeDSMAIOCB *iocb = opaque;
2368
2369 iocb->common.cb(iocb->common.opaque, iocb->ret);
2370
2371 qemu_bh_delete(iocb->bh);
2372 iocb->bh = NULL;
2373 qemu_aio_unref(iocb);
2374 }
2375
2376 static void nvme_dsm_cb(void *opaque, int ret);
2377
2378 static void nvme_dsm_md_cb(void *opaque, int ret)
2379 {
2380 NvmeDSMAIOCB *iocb = opaque;
2381 NvmeRequest *req = iocb->req;
2382 NvmeNamespace *ns = req->ns;
2383 NvmeDsmRange *range;
2384 uint64_t slba;
2385 uint32_t nlb;
2386
2387 if (ret < 0) {
2388 iocb->ret = ret;
2389 goto done;
2390 }
2391
2392 if (!ns->lbaf.ms) {
2393 nvme_dsm_cb(iocb, 0);
2394 return;
2395 }
2396
2397 range = &iocb->range[iocb->idx - 1];
2398 slba = le64_to_cpu(range->slba);
2399 nlb = le32_to_cpu(range->nlb);
2400
2401 /*
2402 * Check that all block were discarded (zeroed); otherwise we do not zero
2403 * the metadata.
2404 */
2405
2406 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2407 if (ret) {
2408 if (ret < 0) {
2409 iocb->ret = ret;
2410 goto done;
2411 }
2412
2413 nvme_dsm_cb(iocb, 0);
2414 return;
2415 }
2416
2417 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2418 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2419 nvme_dsm_cb, iocb);
2420 return;
2421
2422 done:
2423 iocb->aiocb = NULL;
2424 qemu_bh_schedule(iocb->bh);
2425 }
2426
2427 static void nvme_dsm_cb(void *opaque, int ret)
2428 {
2429 NvmeDSMAIOCB *iocb = opaque;
2430 NvmeRequest *req = iocb->req;
2431 NvmeCtrl *n = nvme_ctrl(req);
2432 NvmeNamespace *ns = req->ns;
2433 NvmeDsmRange *range;
2434 uint64_t slba;
2435 uint32_t nlb;
2436
2437 if (ret < 0) {
2438 iocb->ret = ret;
2439 goto done;
2440 }
2441
2442 next:
2443 if (iocb->idx == iocb->nr) {
2444 goto done;
2445 }
2446
2447 range = &iocb->range[iocb->idx++];
2448 slba = le64_to_cpu(range->slba);
2449 nlb = le32_to_cpu(range->nlb);
2450
2451 trace_pci_nvme_dsm_deallocate(slba, nlb);
2452
2453 if (nlb > n->dmrsl) {
2454 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2455 goto next;
2456 }
2457
2458 if (nvme_check_bounds(ns, slba, nlb)) {
2459 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2460 ns->id_ns.nsze);
2461 goto next;
2462 }
2463
2464 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2465 nvme_l2b(ns, nlb),
2466 nvme_dsm_md_cb, iocb);
2467 return;
2468
2469 done:
2470 iocb->aiocb = NULL;
2471 qemu_bh_schedule(iocb->bh);
2472 }
2473
2474 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2475 {
2476 NvmeNamespace *ns = req->ns;
2477 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2478 uint32_t attr = le32_to_cpu(dsm->attributes);
2479 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2480 uint16_t status = NVME_SUCCESS;
2481
2482 trace_pci_nvme_dsm(nr, attr);
2483
2484 if (attr & NVME_DSMGMT_AD) {
2485 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2486 nvme_misc_cb, req);
2487
2488 iocb->req = req;
2489 iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2490 iocb->ret = 0;
2491 iocb->range = g_new(NvmeDsmRange, nr);
2492 iocb->nr = nr;
2493 iocb->idx = 0;
2494
2495 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2496 req);
2497 if (status) {
2498 return status;
2499 }
2500
2501 req->aiocb = &iocb->common;
2502 nvme_dsm_cb(iocb, 0);
2503
2504 return NVME_NO_COMPLETE;
2505 }
2506
2507 return status;
2508 }
2509
2510 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2511 {
2512 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2513 NvmeNamespace *ns = req->ns;
2514 BlockBackend *blk = ns->blkconf.blk;
2515 uint64_t slba = le64_to_cpu(rw->slba);
2516 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2517 size_t len = nvme_l2b(ns, nlb);
2518 int64_t offset = nvme_l2b(ns, slba);
2519 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2520 uint32_t reftag = le32_to_cpu(rw->reftag);
2521 NvmeBounceContext *ctx = NULL;
2522 uint16_t status;
2523
2524 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2525
2526 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2527 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2528 if (status) {
2529 return status;
2530 }
2531
2532 if (prinfo & NVME_PRINFO_PRACT) {
2533 return NVME_INVALID_PROT_INFO | NVME_DNR;
2534 }
2535 }
2536
2537 if (len > n->page_size << n->params.vsl) {
2538 return NVME_INVALID_FIELD | NVME_DNR;
2539 }
2540
2541 status = nvme_check_bounds(ns, slba, nlb);
2542 if (status) {
2543 return status;
2544 }
2545
2546 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2547 status = nvme_check_dulbe(ns, slba, nlb);
2548 if (status) {
2549 return status;
2550 }
2551 }
2552
2553 ctx = g_new0(NvmeBounceContext, 1);
2554 ctx->req = req;
2555
2556 ctx->data.bounce = g_malloc(len);
2557
2558 qemu_iovec_init(&ctx->data.iov, 1);
2559 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2560
2561 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2562 BLOCK_ACCT_READ);
2563
2564 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2565 nvme_verify_mdata_in_cb, ctx);
2566 return NVME_NO_COMPLETE;
2567 }
2568
2569 typedef struct NvmeCopyAIOCB {
2570 BlockAIOCB common;
2571 BlockAIOCB *aiocb;
2572 NvmeRequest *req;
2573 QEMUBH *bh;
2574 int ret;
2575
2576 void *ranges;
2577 unsigned int format;
2578 int nr;
2579 int idx;
2580
2581 uint8_t *bounce;
2582 QEMUIOVector iov;
2583 struct {
2584 BlockAcctCookie read;
2585 BlockAcctCookie write;
2586 } acct;
2587
2588 uint64_t reftag;
2589 uint64_t slba;
2590
2591 NvmeZone *zone;
2592 } NvmeCopyAIOCB;
2593
2594 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2595 {
2596 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2597
2598 iocb->ret = -ECANCELED;
2599
2600 if (iocb->aiocb) {
2601 blk_aio_cancel_async(iocb->aiocb);
2602 iocb->aiocb = NULL;
2603 }
2604 }
2605
2606 static const AIOCBInfo nvme_copy_aiocb_info = {
2607 .aiocb_size = sizeof(NvmeCopyAIOCB),
2608 .cancel_async = nvme_copy_cancel,
2609 };
2610
2611 static void nvme_copy_bh(void *opaque)
2612 {
2613 NvmeCopyAIOCB *iocb = opaque;
2614 NvmeRequest *req = iocb->req;
2615 NvmeNamespace *ns = req->ns;
2616 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2617
2618 if (iocb->idx != iocb->nr) {
2619 req->cqe.result = cpu_to_le32(iocb->idx);
2620 }
2621
2622 qemu_iovec_destroy(&iocb->iov);
2623 g_free(iocb->bounce);
2624
2625 qemu_bh_delete(iocb->bh);
2626 iocb->bh = NULL;
2627
2628 if (iocb->ret < 0) {
2629 block_acct_failed(stats, &iocb->acct.read);
2630 block_acct_failed(stats, &iocb->acct.write);
2631 } else {
2632 block_acct_done(stats, &iocb->acct.read);
2633 block_acct_done(stats, &iocb->acct.write);
2634 }
2635
2636 iocb->common.cb(iocb->common.opaque, iocb->ret);
2637 qemu_aio_unref(iocb);
2638 }
2639
2640 static void nvme_copy_cb(void *opaque, int ret);
2641
2642 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2643 uint64_t *slba, uint32_t *nlb,
2644 uint16_t *apptag,
2645 uint16_t *appmask,
2646 uint64_t *reftag)
2647 {
2648 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2649
2650 if (slba) {
2651 *slba = le64_to_cpu(_ranges[idx].slba);
2652 }
2653
2654 if (nlb) {
2655 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2656 }
2657
2658 if (apptag) {
2659 *apptag = le16_to_cpu(_ranges[idx].apptag);
2660 }
2661
2662 if (appmask) {
2663 *appmask = le16_to_cpu(_ranges[idx].appmask);
2664 }
2665
2666 if (reftag) {
2667 *reftag = le32_to_cpu(_ranges[idx].reftag);
2668 }
2669 }
2670
2671 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2672 uint64_t *slba, uint32_t *nlb,
2673 uint16_t *apptag,
2674 uint16_t *appmask,
2675 uint64_t *reftag)
2676 {
2677 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2678
2679 if (slba) {
2680 *slba = le64_to_cpu(_ranges[idx].slba);
2681 }
2682
2683 if (nlb) {
2684 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2685 }
2686
2687 if (apptag) {
2688 *apptag = le16_to_cpu(_ranges[idx].apptag);
2689 }
2690
2691 if (appmask) {
2692 *appmask = le16_to_cpu(_ranges[idx].appmask);
2693 }
2694
2695 if (reftag) {
2696 *reftag = 0;
2697
2698 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2699 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2700 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2701 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2702 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2703 *reftag |= (uint64_t)_ranges[idx].sr[9];
2704 }
2705 }
2706
2707 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2708 uint64_t *slba, uint32_t *nlb,
2709 uint16_t *apptag, uint16_t *appmask,
2710 uint64_t *reftag)
2711 {
2712 switch (format) {
2713 case NVME_COPY_FORMAT_0:
2714 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2715 appmask, reftag);
2716 break;
2717
2718 case NVME_COPY_FORMAT_1:
2719 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2720 appmask, reftag);
2721 break;
2722
2723 default:
2724 abort();
2725 }
2726 }
2727
2728 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2729 {
2730 NvmeCopyAIOCB *iocb = opaque;
2731 NvmeRequest *req = iocb->req;
2732 NvmeNamespace *ns = req->ns;
2733 uint32_t nlb;
2734
2735 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2736 &nlb, NULL, NULL, NULL);
2737
2738 if (ret < 0) {
2739 iocb->ret = ret;
2740 goto out;
2741 } else if (iocb->ret < 0) {
2742 goto out;
2743 }
2744
2745 if (ns->params.zoned) {
2746 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2747 }
2748
2749 iocb->idx++;
2750 iocb->slba += nlb;
2751 out:
2752 nvme_copy_cb(iocb, iocb->ret);
2753 }
2754
2755 static void nvme_copy_out_cb(void *opaque, int ret)
2756 {
2757 NvmeCopyAIOCB *iocb = opaque;
2758 NvmeRequest *req = iocb->req;
2759 NvmeNamespace *ns = req->ns;
2760 uint32_t nlb;
2761 size_t mlen;
2762 uint8_t *mbounce;
2763
2764 if (ret < 0) {
2765 iocb->ret = ret;
2766 goto out;
2767 } else if (iocb->ret < 0) {
2768 goto out;
2769 }
2770
2771 if (!ns->lbaf.ms) {
2772 nvme_copy_out_completed_cb(iocb, 0);
2773 return;
2774 }
2775
2776 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2777 &nlb, NULL, NULL, NULL);
2778
2779 mlen = nvme_m2b(ns, nlb);
2780 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2781
2782 qemu_iovec_reset(&iocb->iov);
2783 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2784
2785 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2786 &iocb->iov, 0, nvme_copy_out_completed_cb,
2787 iocb);
2788
2789 return;
2790
2791 out:
2792 nvme_copy_cb(iocb, ret);
2793 }
2794
2795 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2796 {
2797 NvmeCopyAIOCB *iocb = opaque;
2798 NvmeRequest *req = iocb->req;
2799 NvmeNamespace *ns = req->ns;
2800 uint32_t nlb;
2801 uint64_t slba;
2802 uint16_t apptag, appmask;
2803 uint64_t reftag;
2804 size_t len;
2805 uint16_t status;
2806
2807 if (ret < 0) {
2808 iocb->ret = ret;
2809 goto out;
2810 } else if (iocb->ret < 0) {
2811 goto out;
2812 }
2813
2814 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2815 &nlb, &apptag, &appmask, &reftag);
2816 len = nvme_l2b(ns, nlb);
2817
2818 trace_pci_nvme_copy_out(iocb->slba, nlb);
2819
2820 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2821 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2822
2823 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2824 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2825
2826 size_t mlen = nvme_m2b(ns, nlb);
2827 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2828
2829 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2830 if (status) {
2831 goto invalid;
2832 }
2833 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2834 slba, apptag, appmask, &reftag);
2835 if (status) {
2836 goto invalid;
2837 }
2838
2839 apptag = le16_to_cpu(copy->apptag);
2840 appmask = le16_to_cpu(copy->appmask);
2841
2842 if (prinfow & NVME_PRINFO_PRACT) {
2843 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2844 if (status) {
2845 goto invalid;
2846 }
2847
2848 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2849 apptag, &iocb->reftag);
2850 } else {
2851 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2852 prinfow, iocb->slba, apptag, appmask,
2853 &iocb->reftag);
2854 if (status) {
2855 goto invalid;
2856 }
2857 }
2858 }
2859
2860 status = nvme_check_bounds(ns, iocb->slba, nlb);
2861 if (status) {
2862 goto invalid;
2863 }
2864
2865 if (ns->params.zoned) {
2866 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2867 if (status) {
2868 goto invalid;
2869 }
2870
2871 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2872 iocb->zone->w_ptr += nlb;
2873 }
2874 }
2875
2876 qemu_iovec_reset(&iocb->iov);
2877 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2878
2879 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2880 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2881
2882 return;
2883
2884 invalid:
2885 req->status = status;
2886 iocb->aiocb = NULL;
2887 if (iocb->bh) {
2888 qemu_bh_schedule(iocb->bh);
2889 }
2890
2891 return;
2892
2893 out:
2894 nvme_copy_cb(iocb, ret);
2895 }
2896
2897 static void nvme_copy_in_cb(void *opaque, int ret)
2898 {
2899 NvmeCopyAIOCB *iocb = opaque;
2900 NvmeRequest *req = iocb->req;
2901 NvmeNamespace *ns = req->ns;
2902 uint64_t slba;
2903 uint32_t nlb;
2904
2905 if (ret < 0) {
2906 iocb->ret = ret;
2907 goto out;
2908 } else if (iocb->ret < 0) {
2909 goto out;
2910 }
2911
2912 if (!ns->lbaf.ms) {
2913 nvme_copy_in_completed_cb(iocb, 0);
2914 return;
2915 }
2916
2917 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2918 &nlb, NULL, NULL, NULL);
2919
2920 qemu_iovec_reset(&iocb->iov);
2921 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2922 nvme_m2b(ns, nlb));
2923
2924 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2925 &iocb->iov, 0, nvme_copy_in_completed_cb,
2926 iocb);
2927 return;
2928
2929 out:
2930 nvme_copy_cb(iocb, iocb->ret);
2931 }
2932
2933 static void nvme_copy_cb(void *opaque, int ret)
2934 {
2935 NvmeCopyAIOCB *iocb = opaque;
2936 NvmeRequest *req = iocb->req;
2937 NvmeNamespace *ns = req->ns;
2938 uint64_t slba;
2939 uint32_t nlb;
2940 size_t len;
2941 uint16_t status;
2942
2943 if (ret < 0) {
2944 iocb->ret = ret;
2945 goto done;
2946 } else if (iocb->ret < 0) {
2947 goto done;
2948 }
2949
2950 if (iocb->idx == iocb->nr) {
2951 goto done;
2952 }
2953
2954 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2955 &nlb, NULL, NULL, NULL);
2956 len = nvme_l2b(ns, nlb);
2957
2958 trace_pci_nvme_copy_source_range(slba, nlb);
2959
2960 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2961 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2962 goto invalid;
2963 }
2964
2965 status = nvme_check_bounds(ns, slba, nlb);
2966 if (status) {
2967 goto invalid;
2968 }
2969
2970 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2971 status = nvme_check_dulbe(ns, slba, nlb);
2972 if (status) {
2973 goto invalid;
2974 }
2975 }
2976
2977 if (ns->params.zoned) {
2978 status = nvme_check_zone_read(ns, slba, nlb);
2979 if (status) {
2980 goto invalid;
2981 }
2982 }
2983
2984 qemu_iovec_reset(&iocb->iov);
2985 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2986
2987 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2988 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2989 return;
2990
2991 invalid:
2992 req->status = status;
2993 done:
2994 iocb->aiocb = NULL;
2995 if (iocb->bh) {
2996 qemu_bh_schedule(iocb->bh);
2997 }
2998 }
2999
3000
3001 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3002 {
3003 NvmeNamespace *ns = req->ns;
3004 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3005 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3006 nvme_misc_cb, req);
3007 uint16_t nr = copy->nr + 1;
3008 uint8_t format = copy->control[0] & 0xf;
3009 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3010 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3011 size_t len = sizeof(NvmeCopySourceRangeFormat0);
3012
3013 uint16_t status;
3014
3015 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3016
3017 iocb->ranges = NULL;
3018 iocb->zone = NULL;
3019
3020 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3021 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3022 status = NVME_INVALID_FIELD | NVME_DNR;
3023 goto invalid;
3024 }
3025
3026 if (!(n->id_ctrl.ocfs & (1 << format))) {
3027 trace_pci_nvme_err_copy_invalid_format(format);
3028 status = NVME_INVALID_FIELD | NVME_DNR;
3029 goto invalid;
3030 }
3031
3032 if (nr > ns->id_ns.msrc + 1) {
3033 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3034 goto invalid;
3035 }
3036
3037 if ((ns->pif == 0x0 && format != 0x0) ||
3038 (ns->pif != 0x0 && format != 0x1)) {
3039 status = NVME_INVALID_FORMAT | NVME_DNR;
3040 goto invalid;
3041 }
3042
3043 if (ns->pif) {
3044 len = sizeof(NvmeCopySourceRangeFormat1);
3045 }
3046
3047 iocb->format = format;
3048 iocb->ranges = g_malloc_n(nr, len);
3049 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3050 if (status) {
3051 goto invalid;
3052 }
3053
3054 iocb->slba = le64_to_cpu(copy->sdlba);
3055
3056 if (ns->params.zoned) {
3057 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3058 if (!iocb->zone) {
3059 status = NVME_LBA_RANGE | NVME_DNR;
3060 goto invalid;
3061 }
3062
3063 status = nvme_zrm_auto(n, ns, iocb->zone);
3064 if (status) {
3065 goto invalid;
3066 }
3067 }
3068
3069 iocb->req = req;
3070 iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3071 iocb->ret = 0;
3072 iocb->nr = nr;
3073 iocb->idx = 0;
3074 iocb->reftag = le32_to_cpu(copy->reftag);
3075 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3076 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3077 ns->lbasz + ns->lbaf.ms);
3078
3079 qemu_iovec_init(&iocb->iov, 1);
3080
3081 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3082 BLOCK_ACCT_READ);
3083 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3084 BLOCK_ACCT_WRITE);
3085
3086 req->aiocb = &iocb->common;
3087 nvme_copy_cb(iocb, 0);
3088
3089 return NVME_NO_COMPLETE;
3090
3091 invalid:
3092 g_free(iocb->ranges);
3093 qemu_aio_unref(iocb);
3094 return status;
3095 }
3096
3097 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3098 {
3099 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3100 NvmeNamespace *ns = req->ns;
3101 BlockBackend *blk = ns->blkconf.blk;
3102 uint64_t slba = le64_to_cpu(rw->slba);
3103 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3104 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3105 size_t data_len = nvme_l2b(ns, nlb);
3106 size_t len = data_len;
3107 int64_t offset = nvme_l2b(ns, slba);
3108 struct nvme_compare_ctx *ctx = NULL;
3109 uint16_t status;
3110
3111 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3112
3113 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3114 return NVME_INVALID_PROT_INFO | NVME_DNR;
3115 }
3116
3117 if (nvme_ns_ext(ns)) {
3118 len += nvme_m2b(ns, nlb);
3119 }
3120
3121 status = nvme_check_mdts(n, len);
3122 if (status) {
3123 return status;
3124 }
3125
3126 status = nvme_check_bounds(ns, slba, nlb);
3127 if (status) {
3128 return status;
3129 }
3130
3131 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3132 status = nvme_check_dulbe(ns, slba, nlb);
3133 if (status) {
3134 return status;
3135 }
3136 }
3137
3138 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3139 if (status) {
3140 return status;
3141 }
3142
3143 ctx = g_new(struct nvme_compare_ctx, 1);
3144 ctx->data.bounce = g_malloc(data_len);
3145
3146 req->opaque = ctx;
3147
3148 qemu_iovec_init(&ctx->data.iov, 1);
3149 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3150
3151 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3152 BLOCK_ACCT_READ);
3153 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3154 nvme_compare_data_cb, req);
3155
3156 return NVME_NO_COMPLETE;
3157 }
3158
3159 typedef struct NvmeFlushAIOCB {
3160 BlockAIOCB common;
3161 BlockAIOCB *aiocb;
3162 NvmeRequest *req;
3163 QEMUBH *bh;
3164 int ret;
3165
3166 NvmeNamespace *ns;
3167 uint32_t nsid;
3168 bool broadcast;
3169 } NvmeFlushAIOCB;
3170
3171 static void nvme_flush_cancel(BlockAIOCB *acb)
3172 {
3173 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3174
3175 iocb->ret = -ECANCELED;
3176
3177 if (iocb->aiocb) {
3178 blk_aio_cancel_async(iocb->aiocb);
3179 }
3180 }
3181
3182 static const AIOCBInfo nvme_flush_aiocb_info = {
3183 .aiocb_size = sizeof(NvmeFlushAIOCB),
3184 .cancel_async = nvme_flush_cancel,
3185 .get_aio_context = nvme_get_aio_context,
3186 };
3187
3188 static void nvme_flush_ns_cb(void *opaque, int ret)
3189 {
3190 NvmeFlushAIOCB *iocb = opaque;
3191 NvmeNamespace *ns = iocb->ns;
3192
3193 if (ret < 0) {
3194 iocb->ret = ret;
3195 goto out;
3196 } else if (iocb->ret < 0) {
3197 goto out;
3198 }
3199
3200 if (ns) {
3201 trace_pci_nvme_flush_ns(iocb->nsid);
3202
3203 iocb->ns = NULL;
3204 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3205 return;
3206 }
3207
3208 out:
3209 iocb->aiocb = NULL;
3210 qemu_bh_schedule(iocb->bh);
3211 }
3212
3213 static void nvme_flush_bh(void *opaque)
3214 {
3215 NvmeFlushAIOCB *iocb = opaque;
3216 NvmeRequest *req = iocb->req;
3217 NvmeCtrl *n = nvme_ctrl(req);
3218 int i;
3219
3220 if (iocb->ret < 0) {
3221 goto done;
3222 }
3223
3224 if (iocb->broadcast) {
3225 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3226 iocb->ns = nvme_ns(n, i);
3227 if (iocb->ns) {
3228 iocb->nsid = i;
3229 break;
3230 }
3231 }
3232 }
3233
3234 if (!iocb->ns) {
3235 goto done;
3236 }
3237
3238 nvme_flush_ns_cb(iocb, 0);
3239 return;
3240
3241 done:
3242 qemu_bh_delete(iocb->bh);
3243 iocb->bh = NULL;
3244
3245 iocb->common.cb(iocb->common.opaque, iocb->ret);
3246
3247 qemu_aio_unref(iocb);
3248
3249 return;
3250 }
3251
3252 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3253 {
3254 NvmeFlushAIOCB *iocb;
3255 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3256 uint16_t status;
3257
3258 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3259
3260 iocb->req = req;
3261 iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3262 iocb->ret = 0;
3263 iocb->ns = NULL;
3264 iocb->nsid = 0;
3265 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3266
3267 if (!iocb->broadcast) {
3268 if (!nvme_nsid_valid(n, nsid)) {
3269 status = NVME_INVALID_NSID | NVME_DNR;
3270 goto out;
3271 }
3272
3273 iocb->ns = nvme_ns(n, nsid);
3274 if (!iocb->ns) {
3275 status = NVME_INVALID_FIELD | NVME_DNR;
3276 goto out;
3277 }
3278
3279 iocb->nsid = nsid;
3280 }
3281
3282 req->aiocb = &iocb->common;
3283 qemu_bh_schedule(iocb->bh);
3284
3285 return NVME_NO_COMPLETE;
3286
3287 out:
3288 qemu_bh_delete(iocb->bh);
3289 iocb->bh = NULL;
3290 qemu_aio_unref(iocb);
3291
3292 return status;
3293 }
3294
3295 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3296 {
3297 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3298 NvmeNamespace *ns = req->ns;
3299 uint64_t slba = le64_to_cpu(rw->slba);
3300 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3301 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3302 uint64_t data_size = nvme_l2b(ns, nlb);
3303 uint64_t mapped_size = data_size;
3304 uint64_t data_offset;
3305 BlockBackend *blk = ns->blkconf.blk;
3306 uint16_t status;
3307
3308 if (nvme_ns_ext(ns)) {
3309 mapped_size += nvme_m2b(ns, nlb);
3310
3311 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3312 bool pract = prinfo & NVME_PRINFO_PRACT;
3313
3314 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3315 mapped_size = data_size;
3316 }
3317 }
3318 }
3319
3320 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3321
3322 status = nvme_check_mdts(n, mapped_size);
3323 if (status) {
3324 goto invalid;
3325 }
3326
3327 status = nvme_check_bounds(ns, slba, nlb);
3328 if (status) {
3329 goto invalid;
3330 }
3331
3332 if (ns->params.zoned) {
3333 status = nvme_check_zone_read(ns, slba, nlb);
3334 if (status) {
3335 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3336 goto invalid;
3337 }
3338 }
3339
3340 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3341 status = nvme_check_dulbe(ns, slba, nlb);
3342 if (status) {
3343 goto invalid;
3344 }
3345 }
3346
3347 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3348 return nvme_dif_rw(n, req);
3349 }
3350
3351 status = nvme_map_data(n, nlb, req);
3352 if (status) {
3353 goto invalid;
3354 }
3355
3356 data_offset = nvme_l2b(ns, slba);
3357
3358 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3359 BLOCK_ACCT_READ);
3360 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3361 return NVME_NO_COMPLETE;
3362
3363 invalid:
3364 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3365 return status | NVME_DNR;
3366 }
3367
3368 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3369 bool wrz)
3370 {
3371 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3372 NvmeNamespace *ns = req->ns;
3373 uint64_t slba = le64_to_cpu(rw->slba);
3374 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3375 uint16_t ctrl = le16_to_cpu(rw->control);
3376 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3377 uint64_t data_size = nvme_l2b(ns, nlb);
3378 uint64_t mapped_size = data_size;
3379 uint64_t data_offset;
3380 NvmeZone *zone;
3381 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3382 BlockBackend *blk = ns->blkconf.blk;
3383 uint16_t status;
3384
3385 if (nvme_ns_ext(ns)) {
3386 mapped_size += nvme_m2b(ns, nlb);
3387
3388 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3389 bool pract = prinfo & NVME_PRINFO_PRACT;
3390
3391 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3392 mapped_size -= nvme_m2b(ns, nlb);
3393 }
3394 }
3395 }
3396
3397 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3398 nvme_nsid(ns), nlb, mapped_size, slba);
3399
3400 if (!wrz) {
3401 status = nvme_check_mdts(n, mapped_size);
3402 if (status) {
3403 goto invalid;
3404 }
3405 }
3406
3407 status = nvme_check_bounds(ns, slba, nlb);
3408 if (status) {
3409 goto invalid;
3410 }
3411
3412 if (ns->params.zoned) {
3413 zone = nvme_get_zone_by_slba(ns, slba);
3414 assert(zone);
3415
3416 if (append) {
3417 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3418
3419 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3420 return NVME_INVALID_ZONE_OP | NVME_DNR;
3421 }
3422
3423 if (unlikely(slba != zone->d.zslba)) {
3424 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3425 status = NVME_INVALID_FIELD;
3426 goto invalid;
3427 }
3428
3429 if (n->params.zasl &&
3430 data_size > (uint64_t)n->page_size << n->params.zasl) {
3431 trace_pci_nvme_err_zasl(data_size);
3432 return NVME_INVALID_FIELD | NVME_DNR;
3433 }
3434
3435 slba = zone->w_ptr;
3436 rw->slba = cpu_to_le64(slba);
3437 res->slba = cpu_to_le64(slba);
3438
3439 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3440 case NVME_ID_NS_DPS_TYPE_1:
3441 if (!piremap) {
3442 return NVME_INVALID_PROT_INFO | NVME_DNR;
3443 }
3444
3445 /* fallthrough */
3446
3447 case NVME_ID_NS_DPS_TYPE_2:
3448 if (piremap) {
3449 uint32_t reftag = le32_to_cpu(rw->reftag);
3450 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3451 }
3452
3453 break;
3454
3455 case NVME_ID_NS_DPS_TYPE_3:
3456 if (piremap) {
3457 return NVME_INVALID_PROT_INFO | NVME_DNR;
3458 }
3459
3460 break;
3461 }
3462 }
3463
3464 status = nvme_check_zone_write(ns, zone, slba, nlb);
3465 if (status) {
3466 goto invalid;
3467 }
3468
3469 status = nvme_zrm_auto(n, ns, zone);
3470 if (status) {
3471 goto invalid;
3472 }
3473
3474 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3475 zone->w_ptr += nlb;
3476 }
3477 }
3478
3479 data_offset = nvme_l2b(ns, slba);
3480
3481 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3482 return nvme_dif_rw(n, req);
3483 }
3484
3485 if (!wrz) {
3486 status = nvme_map_data(n, nlb, req);
3487 if (status) {
3488 goto invalid;
3489 }
3490
3491 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3492 BLOCK_ACCT_WRITE);
3493 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3494 } else {
3495 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3496 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3497 req);
3498 }
3499
3500 return NVME_NO_COMPLETE;
3501
3502 invalid:
3503 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3504 return status | NVME_DNR;
3505 }
3506
3507 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3508 {
3509 return nvme_do_write(n, req, false, false);
3510 }
3511
3512 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3513 {
3514 return nvme_do_write(n, req, false, true);
3515 }
3516
3517 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3518 {
3519 return nvme_do_write(n, req, true, false);
3520 }
3521
3522 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3523 uint64_t *slba, uint32_t *zone_idx)
3524 {
3525 uint32_t dw10 = le32_to_cpu(c->cdw10);
3526 uint32_t dw11 = le32_to_cpu(c->cdw11);
3527
3528 if (!ns->params.zoned) {
3529 trace_pci_nvme_err_invalid_opc(c->opcode);
3530 return NVME_INVALID_OPCODE | NVME_DNR;
3531 }
3532
3533 *slba = ((uint64_t)dw11) << 32 | dw10;
3534 if (unlikely(*slba >= ns->id_ns.nsze)) {
3535 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3536 *slba = 0;
3537 return NVME_LBA_RANGE | NVME_DNR;
3538 }
3539
3540 *zone_idx = nvme_zone_idx(ns, *slba);
3541 assert(*zone_idx < ns->num_zones);
3542
3543 return NVME_SUCCESS;
3544 }
3545
3546 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3547 NvmeRequest *);
3548
3549 enum NvmeZoneProcessingMask {
3550 NVME_PROC_CURRENT_ZONE = 0,
3551 NVME_PROC_OPENED_ZONES = 1 << 0,
3552 NVME_PROC_CLOSED_ZONES = 1 << 1,
3553 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3554 NVME_PROC_FULL_ZONES = 1 << 3,
3555 };
3556
3557 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3558 NvmeZoneState state, NvmeRequest *req)
3559 {
3560 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3561 int flags = 0;
3562
3563 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3564 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3565
3566 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3567 return NVME_INVALID_ZONE_OP | NVME_DNR;
3568 }
3569
3570 if (zone->w_ptr % ns->zns.zrwafg) {
3571 return NVME_NOZRWA | NVME_DNR;
3572 }
3573
3574 flags = NVME_ZRM_ZRWA;
3575 }
3576
3577 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3578 }
3579
3580 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3581 NvmeZoneState state, NvmeRequest *req)
3582 {
3583 return nvme_zrm_close(ns, zone);
3584 }
3585
3586 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3587 NvmeZoneState state, NvmeRequest *req)
3588 {
3589 return nvme_zrm_finish(ns, zone);
3590 }
3591
3592 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3593 NvmeZoneState state, NvmeRequest *req)
3594 {
3595 switch (state) {
3596 case NVME_ZONE_STATE_READ_ONLY:
3597 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3598 /* fall through */
3599 case NVME_ZONE_STATE_OFFLINE:
3600 return NVME_SUCCESS;
3601 default:
3602 return NVME_ZONE_INVAL_TRANSITION;
3603 }
3604 }
3605
3606 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3607 {
3608 uint16_t status;
3609 uint8_t state = nvme_get_zone_state(zone);
3610
3611 if (state == NVME_ZONE_STATE_EMPTY) {
3612 status = nvme_aor_check(ns, 1, 0);
3613 if (status) {
3614 return status;
3615 }
3616 nvme_aor_inc_active(ns);
3617 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3618 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3619 return NVME_SUCCESS;
3620 }
3621
3622 return NVME_ZONE_INVAL_TRANSITION;
3623 }
3624
3625 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3626 enum NvmeZoneProcessingMask proc_mask,
3627 op_handler_t op_hndlr, NvmeRequest *req)
3628 {
3629 uint16_t status = NVME_SUCCESS;
3630 NvmeZoneState zs = nvme_get_zone_state(zone);
3631 bool proc_zone;
3632
3633 switch (zs) {
3634 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3635 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3636 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3637 break;
3638 case NVME_ZONE_STATE_CLOSED:
3639 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3640 break;
3641 case NVME_ZONE_STATE_READ_ONLY:
3642 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3643 break;
3644 case NVME_ZONE_STATE_FULL:
3645 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3646 break;
3647 default:
3648 proc_zone = false;
3649 }
3650
3651 if (proc_zone) {
3652 status = op_hndlr(ns, zone, zs, req);
3653 }
3654
3655 return status;
3656 }
3657
3658 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3659 enum NvmeZoneProcessingMask proc_mask,
3660 op_handler_t op_hndlr, NvmeRequest *req)
3661 {
3662 NvmeZone *next;
3663 uint16_t status = NVME_SUCCESS;
3664 int i;
3665
3666 if (!proc_mask) {
3667 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3668 } else {
3669 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3670 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3671 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3672 req);
3673 if (status && status != NVME_NO_COMPLETE) {
3674 goto out;
3675 }
3676 }
3677 }
3678 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3679 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3680 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3681 req);
3682 if (status && status != NVME_NO_COMPLETE) {
3683 goto out;
3684 }
3685 }
3686
3687 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3688 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3689 req);
3690 if (status && status != NVME_NO_COMPLETE) {
3691 goto out;
3692 }
3693 }
3694 }
3695 if (proc_mask & NVME_PROC_FULL_ZONES) {
3696 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3697 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3698 req);
3699 if (status && status != NVME_NO_COMPLETE) {
3700 goto out;
3701 }
3702 }
3703 }
3704
3705 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3706 for (i = 0; i < ns->num_zones; i++, zone++) {
3707 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3708 req);
3709 if (status && status != NVME_NO_COMPLETE) {
3710 goto out;
3711 }
3712 }
3713 }
3714 }
3715
3716 out:
3717 return status;
3718 }
3719
3720 typedef struct NvmeZoneResetAIOCB {
3721 BlockAIOCB common;
3722 BlockAIOCB *aiocb;
3723 NvmeRequest *req;
3724 QEMUBH *bh;
3725 int ret;
3726
3727 bool all;
3728 int idx;
3729 NvmeZone *zone;
3730 } NvmeZoneResetAIOCB;
3731
3732 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3733 {
3734 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3735 NvmeRequest *req = iocb->req;
3736 NvmeNamespace *ns = req->ns;
3737
3738 iocb->idx = ns->num_zones;
3739
3740 iocb->ret = -ECANCELED;
3741
3742 if (iocb->aiocb) {
3743 blk_aio_cancel_async(iocb->aiocb);
3744 iocb->aiocb = NULL;
3745 }
3746 }
3747
3748 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3749 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3750 .cancel_async = nvme_zone_reset_cancel,
3751 };
3752
3753 static void nvme_zone_reset_bh(void *opaque)
3754 {
3755 NvmeZoneResetAIOCB *iocb = opaque;
3756
3757 iocb->common.cb(iocb->common.opaque, iocb->ret);
3758
3759 qemu_bh_delete(iocb->bh);
3760 iocb->bh = NULL;
3761 qemu_aio_unref(iocb);
3762 }
3763
3764 static void nvme_zone_reset_cb(void *opaque, int ret);
3765
3766 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3767 {
3768 NvmeZoneResetAIOCB *iocb = opaque;
3769 NvmeRequest *req = iocb->req;
3770 NvmeNamespace *ns = req->ns;
3771 int64_t moff;
3772 int count;
3773
3774 if (ret < 0) {
3775 nvme_zone_reset_cb(iocb, ret);
3776 return;
3777 }
3778
3779 if (!ns->lbaf.ms) {
3780 nvme_zone_reset_cb(iocb, 0);
3781 return;
3782 }
3783
3784 moff = nvme_moff(ns, iocb->zone->d.zslba);
3785 count = nvme_m2b(ns, ns->zone_size);
3786
3787 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3788 BDRV_REQ_MAY_UNMAP,
3789 nvme_zone_reset_cb, iocb);
3790 return;
3791 }
3792
3793 static void nvme_zone_reset_cb(void *opaque, int ret)
3794 {
3795 NvmeZoneResetAIOCB *iocb = opaque;
3796 NvmeRequest *req = iocb->req;
3797 NvmeNamespace *ns = req->ns;
3798
3799 if (ret < 0) {
3800 iocb->ret = ret;
3801 goto done;
3802 }
3803
3804 if (iocb->zone) {
3805 nvme_zrm_reset(ns, iocb->zone);
3806
3807 if (!iocb->all) {
3808 goto done;
3809 }
3810 }
3811
3812 while (iocb->idx < ns->num_zones) {
3813 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3814
3815 switch (nvme_get_zone_state(zone)) {
3816 case NVME_ZONE_STATE_EMPTY:
3817 if (!iocb->all) {
3818 goto done;
3819 }
3820
3821 continue;
3822
3823 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3824 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3825 case NVME_ZONE_STATE_CLOSED:
3826 case NVME_ZONE_STATE_FULL:
3827 iocb->zone = zone;
3828 break;
3829
3830 default:
3831 continue;
3832 }
3833
3834 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3835
3836 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3837 nvme_l2b(ns, zone->d.zslba),
3838 nvme_l2b(ns, ns->zone_size),
3839 BDRV_REQ_MAY_UNMAP,
3840 nvme_zone_reset_epilogue_cb,
3841 iocb);
3842 return;
3843 }
3844
3845 done:
3846 iocb->aiocb = NULL;
3847 if (iocb->bh) {
3848 qemu_bh_schedule(iocb->bh);
3849 }
3850 }
3851
3852 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3853 uint64_t elba, NvmeRequest *req)
3854 {
3855 NvmeNamespace *ns = req->ns;
3856 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3857 uint64_t wp = zone->d.wp;
3858 uint32_t nlb = elba - wp + 1;
3859 uint16_t status;
3860
3861
3862 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3863 return NVME_INVALID_ZONE_OP | NVME_DNR;
3864 }
3865
3866 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3867 return NVME_INVALID_FIELD | NVME_DNR;
3868 }
3869
3870 if (elba < wp || elba > wp + ns->zns.zrwas) {
3871 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3872 }
3873
3874 if (nlb % ns->zns.zrwafg) {
3875 return NVME_INVALID_FIELD | NVME_DNR;
3876 }
3877
3878 status = nvme_zrm_auto(n, ns, zone);
3879 if (status) {
3880 return status;
3881 }
3882
3883 zone->w_ptr += nlb;
3884
3885 nvme_advance_zone_wp(ns, zone, nlb);
3886
3887 return NVME_SUCCESS;
3888 }
3889
3890 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3891 {
3892 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3893 NvmeNamespace *ns = req->ns;
3894 NvmeZone *zone;
3895 NvmeZoneResetAIOCB *iocb;
3896 uint8_t *zd_ext;
3897 uint64_t slba = 0;
3898 uint32_t zone_idx = 0;
3899 uint16_t status;
3900 uint8_t action = cmd->zsa;
3901 bool all;
3902 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3903
3904 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3905
3906 req->status = NVME_SUCCESS;
3907
3908 if (!all) {
3909 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3910 if (status) {
3911 return status;
3912 }
3913 }
3914
3915 zone = &ns->zone_array[zone_idx];
3916 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3917 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3918 return NVME_INVALID_FIELD | NVME_DNR;
3919 }
3920
3921 switch (action) {
3922
3923 case NVME_ZONE_ACTION_OPEN:
3924 if (all) {
3925 proc_mask = NVME_PROC_CLOSED_ZONES;
3926 }
3927 trace_pci_nvme_open_zone(slba, zone_idx, all);
3928 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3929 break;
3930
3931 case NVME_ZONE_ACTION_CLOSE:
3932 if (all) {
3933 proc_mask = NVME_PROC_OPENED_ZONES;
3934 }
3935 trace_pci_nvme_close_zone(slba, zone_idx, all);
3936 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3937 break;
3938
3939 case NVME_ZONE_ACTION_FINISH:
3940 if (all) {
3941 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3942 }
3943 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3944 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3945 break;
3946
3947 case NVME_ZONE_ACTION_RESET:
3948 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3949
3950 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3951 nvme_misc_cb, req);
3952
3953 iocb->req = req;
3954 iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3955 iocb->ret = 0;
3956 iocb->all = all;
3957 iocb->idx = zone_idx;
3958 iocb->zone = NULL;
3959
3960 req->aiocb = &iocb->common;
3961 nvme_zone_reset_cb(iocb, 0);
3962
3963 return NVME_NO_COMPLETE;
3964
3965 case NVME_ZONE_ACTION_OFFLINE:
3966 if (all) {
3967 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3968 }
3969 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3970 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3971 break;
3972
3973 case NVME_ZONE_ACTION_SET_ZD_EXT:
3974 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3975 if (all || !ns->params.zd_extension_size) {
3976 return NVME_INVALID_FIELD | NVME_DNR;
3977 }
3978 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3979 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3980 if (status) {
3981 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3982 return status;
3983 }
3984
3985 status = nvme_set_zd_ext(ns, zone);
3986 if (status == NVME_SUCCESS) {
3987 trace_pci_nvme_zd_extension_set(zone_idx);
3988 return status;
3989 }
3990 break;
3991
3992 case NVME_ZONE_ACTION_ZRWA_FLUSH:
3993 if (all) {
3994 return NVME_INVALID_FIELD | NVME_DNR;
3995 }
3996
3997 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3998
3999 default:
4000 trace_pci_nvme_err_invalid_mgmt_action(action);
4001 status = NVME_INVALID_FIELD;
4002 }
4003
4004 if (status == NVME_ZONE_INVAL_TRANSITION) {
4005 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4006 zone->d.za);
4007 }
4008 if (status) {
4009 status |= NVME_DNR;
4010 }
4011
4012 return status;
4013 }
4014
4015 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4016 {
4017 NvmeZoneState zs = nvme_get_zone_state(zl);
4018
4019 switch (zafs) {
4020 case NVME_ZONE_REPORT_ALL:
4021 return true;
4022 case NVME_ZONE_REPORT_EMPTY:
4023 return zs == NVME_ZONE_STATE_EMPTY;
4024 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4025 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4026 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4027 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4028 case NVME_ZONE_REPORT_CLOSED:
4029 return zs == NVME_ZONE_STATE_CLOSED;
4030 case NVME_ZONE_REPORT_FULL:
4031 return zs == NVME_ZONE_STATE_FULL;
4032 case NVME_ZONE_REPORT_READ_ONLY:
4033 return zs == NVME_ZONE_STATE_READ_ONLY;
4034 case NVME_ZONE_REPORT_OFFLINE:
4035 return zs == NVME_ZONE_STATE_OFFLINE;
4036 default:
4037 return false;
4038 }
4039 }
4040
4041 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4042 {
4043 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4044 NvmeNamespace *ns = req->ns;
4045 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4046 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4047 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4048 uint32_t zone_idx, zra, zrasf, partial;
4049 uint64_t max_zones, nr_zones = 0;
4050 uint16_t status;
4051 uint64_t slba;
4052 NvmeZoneDescr *z;
4053 NvmeZone *zone;
4054 NvmeZoneReportHeader *header;
4055 void *buf, *buf_p;
4056 size_t zone_entry_sz;
4057 int i;
4058
4059 req->status = NVME_SUCCESS;
4060
4061 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4062 if (status) {
4063 return status;
4064 }
4065
4066 zra = dw13 & 0xff;
4067 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4068 return NVME_INVALID_FIELD | NVME_DNR;
4069 }
4070 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4071 return NVME_INVALID_FIELD | NVME_DNR;
4072 }
4073
4074 zrasf = (dw13 >> 8) & 0xff;
4075 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4076 return NVME_INVALID_FIELD | NVME_DNR;
4077 }
4078
4079 if (data_size < sizeof(NvmeZoneReportHeader)) {
4080 return NVME_INVALID_FIELD | NVME_DNR;
4081 }
4082
4083 status = nvme_check_mdts(n, data_size);
4084 if (status) {
4085 return status;
4086 }
4087
4088 partial = (dw13 >> 16) & 0x01;
4089
4090 zone_entry_sz = sizeof(NvmeZoneDescr);
4091 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4092 zone_entry_sz += ns->params.zd_extension_size;
4093 }
4094
4095 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4096 buf = g_malloc0(data_size);
4097
4098 zone = &ns->zone_array[zone_idx];
4099 for (i = zone_idx; i < ns->num_zones; i++) {
4100 if (partial && nr_zones >= max_zones) {
4101 break;
4102 }
4103 if (nvme_zone_matches_filter(zrasf, zone++)) {
4104 nr_zones++;
4105 }
4106 }
4107 header = (NvmeZoneReportHeader *)buf;
4108 header->nr_zones = cpu_to_le64(nr_zones);
4109
4110 buf_p = buf + sizeof(NvmeZoneReportHeader);
4111 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4112 zone = &ns->zone_array[zone_idx];
4113 if (nvme_zone_matches_filter(zrasf, zone)) {
4114 z = (NvmeZoneDescr *)buf_p;
4115 buf_p += sizeof(NvmeZoneDescr);
4116
4117 z->zt = zone->d.zt;
4118 z->zs = zone->d.zs;
4119 z->zcap = cpu_to_le64(zone->d.zcap);
4120 z->zslba = cpu_to_le64(zone->d.zslba);
4121 z->za = zone->d.za;
4122
4123 if (nvme_wp_is_valid(zone)) {
4124 z->wp = cpu_to_le64(zone->d.wp);
4125 } else {
4126 z->wp = cpu_to_le64(~0ULL);
4127 }
4128
4129 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4130 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4131 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4132 ns->params.zd_extension_size);
4133 }
4134 buf_p += ns->params.zd_extension_size;
4135 }
4136
4137 max_zones--;
4138 }
4139 }
4140
4141 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4142
4143 g_free(buf);
4144
4145 return status;
4146 }
4147
4148 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4149 {
4150 NvmeNamespace *ns;
4151 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4152
4153 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4154 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4155
4156 if (!nvme_nsid_valid(n, nsid)) {
4157 return NVME_INVALID_NSID | NVME_DNR;
4158 }
4159
4160 /*
4161 * In the base NVM command set, Flush may apply to all namespaces
4162 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4163 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4164 *
4165 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4166 * opcode with a specific command since we cannot determine a unique I/O
4167 * command set. Opcode 0h could have any other meaning than something
4168 * equivalent to flushing and say it DOES have completely different
4169 * semantics in some other command set - does an NSID of FFFFFFFFh then
4170 * mean "for all namespaces, apply whatever command set specific command
4171 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4172 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4173 * to be FFFFFFFFh"?
4174 *
4175 * Anyway (and luckily), for now, we do not care about this since the
4176 * device only supports namespace types that includes the NVM Flush command
4177 * (NVM and Zoned), so always do an NVM Flush.
4178 */
4179 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4180 return nvme_flush(n, req);
4181 }
4182
4183 ns = nvme_ns(n, nsid);
4184 if (unlikely(!ns)) {
4185 return NVME_INVALID_FIELD | NVME_DNR;
4186 }
4187
4188 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4189 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4190 return NVME_INVALID_OPCODE | NVME_DNR;
4191 }
4192
4193 if (ns->status) {
4194 return ns->status;
4195 }
4196
4197 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4198 return NVME_INVALID_FIELD;
4199 }
4200
4201 req->ns = ns;
4202
4203 switch (req->cmd.opcode) {
4204 case NVME_CMD_WRITE_ZEROES:
4205 return nvme_write_zeroes(n, req);
4206 case NVME_CMD_ZONE_APPEND:
4207 return nvme_zone_append(n, req);
4208 case NVME_CMD_WRITE:
4209 return nvme_write(n, req);
4210 case NVME_CMD_READ:
4211 return nvme_read(n, req);
4212 case NVME_CMD_COMPARE:
4213 return nvme_compare(n, req);
4214 case NVME_CMD_DSM:
4215 return nvme_dsm(n, req);
4216 case NVME_CMD_VERIFY:
4217 return nvme_verify(n, req);
4218 case NVME_CMD_COPY:
4219 return nvme_copy(n, req);
4220 case NVME_CMD_ZONE_MGMT_SEND:
4221 return nvme_zone_mgmt_send(n, req);
4222 case NVME_CMD_ZONE_MGMT_RECV:
4223 return nvme_zone_mgmt_recv(n, req);
4224 default:
4225 assert(false);
4226 }
4227
4228 return NVME_INVALID_OPCODE | NVME_DNR;
4229 }
4230
4231 static void nvme_cq_notifier(EventNotifier *e)
4232 {
4233 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4234 NvmeCtrl *n = cq->ctrl;
4235
4236 if (!event_notifier_test_and_clear(e)) {
4237 return;
4238 }
4239
4240 nvme_update_cq_head(cq);
4241
4242 if (cq->tail == cq->head) {
4243 if (cq->irq_enabled) {
4244 n->cq_pending--;
4245 }
4246
4247 nvme_irq_deassert(n, cq);
4248 }
4249
4250 qemu_bh_schedule(cq->bh);
4251 }
4252
4253 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4254 {
4255 NvmeCtrl *n = cq->ctrl;
4256 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4257 int ret;
4258
4259 ret = event_notifier_init(&cq->notifier, 0);
4260 if (ret < 0) {
4261 return ret;
4262 }
4263
4264 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4265 memory_region_add_eventfd(&n->iomem,
4266 0x1000 + offset, 4, false, 0, &cq->notifier);
4267
4268 return 0;
4269 }
4270
4271 static void nvme_sq_notifier(EventNotifier *e)
4272 {
4273 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4274
4275 if (!event_notifier_test_and_clear(e)) {
4276 return;
4277 }
4278
4279 nvme_process_sq(sq);
4280 }
4281
4282 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4283 {
4284 NvmeCtrl *n = sq->ctrl;
4285 uint16_t offset = sq->sqid << 3;
4286 int ret;
4287
4288 ret = event_notifier_init(&sq->notifier, 0);
4289 if (ret < 0) {
4290 return ret;
4291 }
4292
4293 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4294 memory_region_add_eventfd(&n->iomem,
4295 0x1000 + offset, 4, false, 0, &sq->notifier);
4296
4297 return 0;
4298 }
4299
4300 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4301 {
4302 uint16_t offset = sq->sqid << 3;
4303
4304 n->sq[sq->sqid] = NULL;
4305 qemu_bh_delete(sq->bh);
4306 if (sq->ioeventfd_enabled) {
4307 memory_region_del_eventfd(&n->iomem,
4308 0x1000 + offset, 4, false, 0, &sq->notifier);
4309 event_notifier_set_handler(&sq->notifier, NULL);
4310 event_notifier_cleanup(&sq->notifier);
4311 }
4312 g_free(sq->io_req);
4313 if (sq->sqid) {
4314 g_free(sq);
4315 }
4316 }
4317
4318 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4319 {
4320 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4321 NvmeRequest *r, *next;
4322 NvmeSQueue *sq;
4323 NvmeCQueue *cq;
4324 uint16_t qid = le16_to_cpu(c->qid);
4325
4326 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4327 trace_pci_nvme_err_invalid_del_sq(qid);
4328 return NVME_INVALID_QID | NVME_DNR;
4329 }
4330
4331 trace_pci_nvme_del_sq(qid);
4332
4333 sq = n->sq[qid];
4334 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4335 r = QTAILQ_FIRST(&sq->out_req_list);
4336 assert(r->aiocb);
4337 blk_aio_cancel(r->aiocb);
4338 }
4339
4340 assert(QTAILQ_EMPTY(&sq->out_req_list));
4341
4342 if (!nvme_check_cqid(n, sq->cqid)) {
4343 cq = n->cq[sq->cqid];
4344 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4345
4346 nvme_post_cqes(cq);
4347 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4348 if (r->sq == sq) {
4349 QTAILQ_REMOVE(&cq->req_list, r, entry);
4350 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4351 }
4352 }
4353 }
4354
4355 nvme_free_sq(sq, n);
4356 return NVME_SUCCESS;
4357 }
4358
4359 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4360 uint16_t sqid, uint16_t cqid, uint16_t size)
4361 {
4362 int i;
4363 NvmeCQueue *cq;
4364
4365 sq->ctrl = n;
4366 sq->dma_addr = dma_addr;
4367 sq->sqid = sqid;
4368 sq->size = size;
4369 sq->cqid = cqid;
4370 sq->head = sq->tail = 0;
4371 sq->io_req = g_new0(NvmeRequest, sq->size);
4372
4373 QTAILQ_INIT(&sq->req_list);
4374 QTAILQ_INIT(&sq->out_req_list);
4375 for (i = 0; i < sq->size; i++) {
4376 sq->io_req[i].sq = sq;
4377 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4378 }
4379
4380 sq->bh = qemu_bh_new(nvme_process_sq, sq);
4381
4382 if (n->dbbuf_enabled) {
4383 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4384 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4385
4386 if (n->params.ioeventfd && sq->sqid != 0) {
4387 if (!nvme_init_sq_ioeventfd(sq)) {
4388 sq->ioeventfd_enabled = true;
4389 }
4390 }
4391 }
4392
4393 assert(n->cq[cqid]);
4394 cq = n->cq[cqid];
4395 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4396 n->sq[sqid] = sq;
4397 }
4398
4399 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4400 {
4401 NvmeSQueue *sq;
4402 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4403
4404 uint16_t cqid = le16_to_cpu(c->cqid);
4405 uint16_t sqid = le16_to_cpu(c->sqid);
4406 uint16_t qsize = le16_to_cpu(c->qsize);
4407 uint16_t qflags = le16_to_cpu(c->sq_flags);
4408 uint64_t prp1 = le64_to_cpu(c->prp1);
4409
4410 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4411
4412 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4413 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4414 return NVME_INVALID_CQID | NVME_DNR;
4415 }
4416 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4417 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4418 return NVME_INVALID_QID | NVME_DNR;
4419 }
4420 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4421 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4422 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4423 }
4424 if (unlikely(prp1 & (n->page_size - 1))) {
4425 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4426 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4427 }
4428 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4429 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4430 return NVME_INVALID_FIELD | NVME_DNR;
4431 }
4432 sq = g_malloc0(sizeof(*sq));
4433 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4434 return NVME_SUCCESS;
4435 }
4436
4437 struct nvme_stats {
4438 uint64_t units_read;
4439 uint64_t units_written;
4440 uint64_t read_commands;
4441 uint64_t write_commands;
4442 };
4443
4444 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4445 {
4446 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4447
4448 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4449 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4450 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4451 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4452 }
4453
4454 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4455 uint64_t off, NvmeRequest *req)
4456 {
4457 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4458 struct nvme_stats stats = { 0 };
4459 NvmeSmartLog smart = { 0 };
4460 uint32_t trans_len;
4461 NvmeNamespace *ns;
4462 time_t current_ms;
4463
4464 if (off >= sizeof(smart)) {
4465 return NVME_INVALID_FIELD | NVME_DNR;
4466 }
4467
4468 if (nsid != 0xffffffff) {
4469 ns = nvme_ns(n, nsid);
4470 if (!ns) {
4471 return NVME_INVALID_NSID | NVME_DNR;
4472 }
4473 nvme_set_blk_stats(ns, &stats);
4474 } else {
4475 int i;
4476
4477 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4478 ns = nvme_ns(n, i);
4479 if (!ns) {
4480 continue;
4481 }
4482 nvme_set_blk_stats(ns, &stats);
4483 }
4484 }
4485
4486 trans_len = MIN(sizeof(smart) - off, buf_len);
4487 smart.critical_warning = n->smart_critical_warning;
4488
4489 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4490 1000));
4491 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4492 1000));
4493 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4494 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4495
4496 smart.temperature = cpu_to_le16(n->temperature);
4497
4498 if ((n->temperature >= n->features.temp_thresh_hi) ||
4499 (n->temperature <= n->features.temp_thresh_low)) {
4500 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4501 }
4502
4503 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4504 smart.power_on_hours[0] =
4505 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4506
4507 if (!rae) {
4508 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4509 }
4510
4511 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4512 }
4513
4514 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4515 NvmeRequest *req)
4516 {
4517 uint32_t trans_len;
4518 NvmeFwSlotInfoLog fw_log = {
4519 .afi = 0x1,
4520 };
4521
4522 if (off >= sizeof(fw_log)) {
4523 return NVME_INVALID_FIELD | NVME_DNR;
4524 }
4525
4526 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4527 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4528
4529 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4530 }
4531
4532 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4533 uint64_t off, NvmeRequest *req)
4534 {
4535 uint32_t trans_len;
4536 NvmeErrorLog errlog;
4537
4538 if (off >= sizeof(errlog)) {
4539 return NVME_INVALID_FIELD | NVME_DNR;
4540 }
4541
4542 if (!rae) {
4543 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4544 }
4545
4546 memset(&errlog, 0x0, sizeof(errlog));
4547 trans_len = MIN(sizeof(errlog) - off, buf_len);
4548
4549 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4550 }
4551
4552 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4553 uint64_t off, NvmeRequest *req)
4554 {
4555 uint32_t nslist[1024];
4556 uint32_t trans_len;
4557 int i = 0;
4558 uint32_t nsid;
4559
4560 if (off >= sizeof(nslist)) {
4561 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4562 return NVME_INVALID_FIELD | NVME_DNR;
4563 }
4564
4565 memset(nslist, 0x0, sizeof(nslist));
4566 trans_len = MIN(sizeof(nslist) - off, buf_len);
4567
4568 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4569 NVME_CHANGED_NSID_SIZE) {
4570 /*
4571 * If more than 1024 namespaces, the first entry in the log page should
4572 * be set to FFFFFFFFh and the others to 0 as spec.
4573 */
4574 if (i == ARRAY_SIZE(nslist)) {
4575 memset(nslist, 0x0, sizeof(nslist));
4576 nslist[0] = 0xffffffff;
4577 break;
4578 }
4579
4580 nslist[i++] = nsid;
4581 clear_bit(nsid, n->changed_nsids);
4582 }
4583
4584 /*
4585 * Remove all the remaining list entries in case returns directly due to
4586 * more than 1024 namespaces.
4587 */
4588 if (nslist[0] == 0xffffffff) {
4589 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4590 }
4591
4592 if (!rae) {
4593 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4594 }
4595
4596 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4597 }
4598
4599 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4600 uint64_t off, NvmeRequest *req)
4601 {
4602 NvmeEffectsLog log = {};
4603 const uint32_t *src_iocs = NULL;
4604 uint32_t trans_len;
4605
4606 if (off >= sizeof(log)) {
4607 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4608 return NVME_INVALID_FIELD | NVME_DNR;
4609 }
4610
4611 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4612 case NVME_CC_CSS_NVM:
4613 src_iocs = nvme_cse_iocs_nvm;
4614 /* fall through */
4615 case NVME_CC_CSS_ADMIN_ONLY:
4616 break;
4617 case NVME_CC_CSS_CSI:
4618 switch (csi) {
4619 case NVME_CSI_NVM:
4620 src_iocs = nvme_cse_iocs_nvm;
4621 break;
4622 case NVME_CSI_ZONED:
4623 src_iocs = nvme_cse_iocs_zoned;
4624 break;
4625 }
4626 }
4627
4628 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4629
4630 if (src_iocs) {
4631 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4632 }
4633
4634 trans_len = MIN(sizeof(log) - off, buf_len);
4635
4636 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4637 }
4638
4639 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4640 {
4641 NvmeCmd *cmd = &req->cmd;
4642
4643 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4644 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4645 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4646 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4647 uint8_t lid = dw10 & 0xff;
4648 uint8_t lsp = (dw10 >> 8) & 0xf;
4649 uint8_t rae = (dw10 >> 15) & 0x1;
4650 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4651 uint32_t numdl, numdu;
4652 uint64_t off, lpol, lpou;
4653 size_t len;
4654 uint16_t status;
4655
4656 numdl = (dw10 >> 16);
4657 numdu = (dw11 & 0xffff);
4658 lpol = dw12;
4659 lpou = dw13;
4660
4661 len = (((numdu << 16) | numdl) + 1) << 2;
4662 off = (lpou << 32ULL) | lpol;
4663
4664 if (off & 0x3) {
4665 return NVME_INVALID_FIELD | NVME_DNR;
4666 }
4667
4668 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4669
4670 status = nvme_check_mdts(n, len);
4671 if (status) {
4672 return status;
4673 }
4674
4675 switch (lid) {
4676 case NVME_LOG_ERROR_INFO:
4677 return nvme_error_info(n, rae, len, off, req);
4678 case NVME_LOG_SMART_INFO:
4679 return nvme_smart_info(n, rae, len, off, req);
4680 case NVME_LOG_FW_SLOT_INFO:
4681 return nvme_fw_log_info(n, len, off, req);
4682 case NVME_LOG_CHANGED_NSLIST:
4683 return nvme_changed_nslist(n, rae, len, off, req);
4684 case NVME_LOG_CMD_EFFECTS:
4685 return nvme_cmd_effects(n, csi, len, off, req);
4686 default:
4687 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4688 return NVME_INVALID_FIELD | NVME_DNR;
4689 }
4690 }
4691
4692 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4693 {
4694 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4695
4696 n->cq[cq->cqid] = NULL;
4697 qemu_bh_delete(cq->bh);
4698 if (cq->ioeventfd_enabled) {
4699 memory_region_del_eventfd(&n->iomem,
4700 0x1000 + offset, 4, false, 0, &cq->notifier);
4701 event_notifier_set_handler(&cq->notifier, NULL);
4702 event_notifier_cleanup(&cq->notifier);
4703 }
4704 if (msix_enabled(&n->parent_obj)) {
4705 msix_vector_unuse(&n->parent_obj, cq->vector);
4706 }
4707 if (cq->cqid) {
4708 g_free(cq);
4709 }
4710 }
4711
4712 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4713 {
4714 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4715 NvmeCQueue *cq;
4716 uint16_t qid = le16_to_cpu(c->qid);
4717
4718 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4719 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4720 return NVME_INVALID_CQID | NVME_DNR;
4721 }
4722
4723 cq = n->cq[qid];
4724 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4725 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4726 return NVME_INVALID_QUEUE_DEL;
4727 }
4728
4729 if (cq->irq_enabled && cq->tail != cq->head) {
4730 n->cq_pending--;
4731 }
4732
4733 nvme_irq_deassert(n, cq);
4734 trace_pci_nvme_del_cq(qid);
4735 nvme_free_cq(cq, n);
4736 return NVME_SUCCESS;
4737 }
4738
4739 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4740 uint16_t cqid, uint16_t vector, uint16_t size,
4741 uint16_t irq_enabled)
4742 {
4743 if (msix_enabled(&n->parent_obj)) {
4744 msix_vector_use(&n->parent_obj, vector);
4745 }
4746 cq->ctrl = n;
4747 cq->cqid = cqid;
4748 cq->size = size;
4749 cq->dma_addr = dma_addr;
4750 cq->phase = 1;
4751 cq->irq_enabled = irq_enabled;
4752 cq->vector = vector;
4753 cq->head = cq->tail = 0;
4754 QTAILQ_INIT(&cq->req_list);
4755 QTAILQ_INIT(&cq->sq_list);
4756 if (n->dbbuf_enabled) {
4757 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4758 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4759
4760 if (n->params.ioeventfd && cqid != 0) {
4761 if (!nvme_init_cq_ioeventfd(cq)) {
4762 cq->ioeventfd_enabled = true;
4763 }
4764 }
4765 }
4766 n->cq[cqid] = cq;
4767 cq->bh = qemu_bh_new(nvme_post_cqes, cq);
4768 }
4769
4770 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4771 {
4772 NvmeCQueue *cq;
4773 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4774 uint16_t cqid = le16_to_cpu(c->cqid);
4775 uint16_t vector = le16_to_cpu(c->irq_vector);
4776 uint16_t qsize = le16_to_cpu(c->qsize);
4777 uint16_t qflags = le16_to_cpu(c->cq_flags);
4778 uint64_t prp1 = le64_to_cpu(c->prp1);
4779
4780 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4781 NVME_CQ_FLAGS_IEN(qflags) != 0);
4782
4783 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4784 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4785 return NVME_INVALID_QID | NVME_DNR;
4786 }
4787 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4788 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4789 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4790 }
4791 if (unlikely(prp1 & (n->page_size - 1))) {
4792 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4793 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4794 }
4795 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4796 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4797 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4798 }
4799 if (unlikely(vector >= n->conf_msix_qsize)) {
4800 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4801 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4802 }
4803 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4804 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4805 return NVME_INVALID_FIELD | NVME_DNR;
4806 }
4807
4808 cq = g_malloc0(sizeof(*cq));
4809 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4810 NVME_CQ_FLAGS_IEN(qflags));
4811
4812 /*
4813 * It is only required to set qs_created when creating a completion queue;
4814 * creating a submission queue without a matching completion queue will
4815 * fail.
4816 */
4817 n->qs_created = true;
4818 return NVME_SUCCESS;
4819 }
4820
4821 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4822 {
4823 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4824
4825 return nvme_c2h(n, id, sizeof(id), req);
4826 }
4827
4828 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4829 {
4830 trace_pci_nvme_identify_ctrl();
4831
4832 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4833 }
4834
4835 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4836 {
4837 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4838 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4839 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4840
4841 trace_pci_nvme_identify_ctrl_csi(c->csi);
4842
4843 switch (c->csi) {
4844 case NVME_CSI_NVM:
4845 id_nvm->vsl = n->params.vsl;
4846 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4847 break;
4848
4849 case NVME_CSI_ZONED:
4850 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4851 break;
4852
4853 default:
4854 return NVME_INVALID_FIELD | NVME_DNR;
4855 }
4856
4857 return nvme_c2h(n, id, sizeof(id), req);
4858 }
4859
4860 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4861 {
4862 NvmeNamespace *ns;
4863 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4864 uint32_t nsid = le32_to_cpu(c->nsid);
4865
4866 trace_pci_nvme_identify_ns(nsid);
4867
4868 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4869 return NVME_INVALID_NSID | NVME_DNR;
4870 }
4871
4872 ns = nvme_ns(n, nsid);
4873 if (unlikely(!ns)) {
4874 if (!active) {
4875 ns = nvme_subsys_ns(n->subsys, nsid);
4876 if (!ns) {
4877 return nvme_rpt_empty_id_struct(n, req);
4878 }
4879 } else {
4880 return nvme_rpt_empty_id_struct(n, req);
4881 }
4882 }
4883
4884 if (active || ns->csi == NVME_CSI_NVM) {
4885 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4886 }
4887
4888 return NVME_INVALID_CMD_SET | NVME_DNR;
4889 }
4890
4891 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4892 bool attached)
4893 {
4894 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4895 uint32_t nsid = le32_to_cpu(c->nsid);
4896 uint16_t min_id = le16_to_cpu(c->ctrlid);
4897 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4898 uint16_t *ids = &list[1];
4899 NvmeNamespace *ns;
4900 NvmeCtrl *ctrl;
4901 int cntlid, nr_ids = 0;
4902
4903 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4904
4905 if (!n->subsys) {
4906 return NVME_INVALID_FIELD | NVME_DNR;
4907 }
4908
4909 if (attached) {
4910 if (nsid == NVME_NSID_BROADCAST) {
4911 return NVME_INVALID_FIELD | NVME_DNR;
4912 }
4913
4914 ns = nvme_subsys_ns(n->subsys, nsid);
4915 if (!ns) {
4916 return NVME_INVALID_FIELD | NVME_DNR;
4917 }
4918 }
4919
4920 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4921 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4922 if (!ctrl) {
4923 continue;
4924 }
4925
4926 if (attached && !nvme_ns(ctrl, nsid)) {
4927 continue;
4928 }
4929
4930 ids[nr_ids++] = cntlid;
4931 }
4932
4933 list[0] = nr_ids;
4934
4935 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4936 }
4937
4938 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4939 {
4940 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4941
4942 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4943 sizeof(NvmePriCtrlCap), req);
4944 }
4945
4946 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4947 {
4948 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4949 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4950 uint16_t min_id = le16_to_cpu(c->ctrlid);
4951 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4952 NvmeSecCtrlList list = {0};
4953 uint8_t i;
4954
4955 for (i = 0; i < num_sec_ctrl; i++) {
4956 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4957 list.numcntl = num_sec_ctrl - i;
4958 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4959 list.numcntl * sizeof(NvmeSecCtrlEntry));
4960 break;
4961 }
4962 }
4963
4964 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4965
4966 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4967 }
4968
4969 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4970 bool active)
4971 {
4972 NvmeNamespace *ns;
4973 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4974 uint32_t nsid = le32_to_cpu(c->nsid);
4975
4976 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4977
4978 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4979 return NVME_INVALID_NSID | NVME_DNR;
4980 }
4981
4982 ns = nvme_ns(n, nsid);
4983 if (unlikely(!ns)) {
4984 if (!active) {
4985 ns = nvme_subsys_ns(n->subsys, nsid);
4986 if (!ns) {
4987 return nvme_rpt_empty_id_struct(n, req);
4988 }
4989 } else {
4990 return nvme_rpt_empty_id_struct(n, req);
4991 }
4992 }
4993
4994 if (c->csi == NVME_CSI_NVM) {
4995 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4996 req);
4997 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4998 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4999 req);
5000 }
5001
5002 return NVME_INVALID_FIELD | NVME_DNR;
5003 }
5004
5005 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5006 bool active)
5007 {
5008 NvmeNamespace *ns;
5009 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5010 uint32_t min_nsid = le32_to_cpu(c->nsid);
5011 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5012 static const int data_len = sizeof(list);
5013 uint32_t *list_ptr = (uint32_t *)list;
5014 int i, j = 0;
5015
5016 trace_pci_nvme_identify_nslist(min_nsid);
5017
5018 /*
5019 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5020 * since the Active Namespace ID List should return namespaces with ids
5021 * *higher* than the NSID specified in the command. This is also specified
5022 * in the spec (NVM Express v1.3d, Section 5.15.4).
5023 */
5024 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5025 return NVME_INVALID_NSID | NVME_DNR;
5026 }
5027
5028 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5029 ns = nvme_ns(n, i);
5030 if (!ns) {
5031 if (!active) {
5032 ns = nvme_subsys_ns(n->subsys, i);
5033 if (!ns) {
5034 continue;
5035 }
5036 } else {
5037 continue;
5038 }
5039 }
5040 if (ns->params.nsid <= min_nsid) {
5041 continue;
5042 }
5043 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5044 if (j == data_len / sizeof(uint32_t)) {
5045 break;
5046 }
5047 }
5048
5049 return nvme_c2h(n, list, data_len, req);
5050 }
5051
5052 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5053 bool active)
5054 {
5055 NvmeNamespace *ns;
5056 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5057 uint32_t min_nsid = le32_to_cpu(c->nsid);
5058 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5059 static const int data_len = sizeof(list);
5060 uint32_t *list_ptr = (uint32_t *)list;
5061 int i, j = 0;
5062
5063 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5064
5065 /*
5066 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5067 */
5068 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5069 return NVME_INVALID_NSID | NVME_DNR;
5070 }
5071
5072 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5073 return NVME_INVALID_FIELD | NVME_DNR;
5074 }
5075
5076 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5077 ns = nvme_ns(n, i);
5078 if (!ns) {
5079 if (!active) {
5080 ns = nvme_subsys_ns(n->subsys, i);
5081 if (!ns) {
5082 continue;
5083 }
5084 } else {
5085 continue;
5086 }
5087 }
5088 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5089 continue;
5090 }
5091 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5092 if (j == data_len / sizeof(uint32_t)) {
5093 break;
5094 }
5095 }
5096
5097 return nvme_c2h(n, list, data_len, req);
5098 }
5099
5100 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5101 {
5102 NvmeNamespace *ns;
5103 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5104 uint32_t nsid = le32_to_cpu(c->nsid);
5105 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5106 uint8_t *pos = list;
5107 struct {
5108 NvmeIdNsDescr hdr;
5109 uint8_t v[NVME_NIDL_UUID];
5110 } QEMU_PACKED uuid = {};
5111 struct {
5112 NvmeIdNsDescr hdr;
5113 uint64_t v;
5114 } QEMU_PACKED eui64 = {};
5115 struct {
5116 NvmeIdNsDescr hdr;
5117 uint8_t v;
5118 } QEMU_PACKED csi = {};
5119
5120 trace_pci_nvme_identify_ns_descr_list(nsid);
5121
5122 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5123 return NVME_INVALID_NSID | NVME_DNR;
5124 }
5125
5126 ns = nvme_ns(n, nsid);
5127 if (unlikely(!ns)) {
5128 return NVME_INVALID_FIELD | NVME_DNR;
5129 }
5130
5131 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5132 uuid.hdr.nidt = NVME_NIDT_UUID;
5133 uuid.hdr.nidl = NVME_NIDL_UUID;
5134 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5135 memcpy(pos, &uuid, sizeof(uuid));
5136 pos += sizeof(uuid);
5137 }
5138
5139 if (ns->params.eui64) {
5140 eui64.hdr.nidt = NVME_NIDT_EUI64;
5141 eui64.hdr.nidl = NVME_NIDL_EUI64;
5142 eui64.v = cpu_to_be64(ns->params.eui64);
5143 memcpy(pos, &eui64, sizeof(eui64));
5144 pos += sizeof(eui64);
5145 }
5146
5147 csi.hdr.nidt = NVME_NIDT_CSI;
5148 csi.hdr.nidl = NVME_NIDL_CSI;
5149 csi.v = ns->csi;
5150 memcpy(pos, &csi, sizeof(csi));
5151 pos += sizeof(csi);
5152
5153 return nvme_c2h(n, list, sizeof(list), req);
5154 }
5155
5156 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5157 {
5158 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5159 static const int data_len = sizeof(list);
5160
5161 trace_pci_nvme_identify_cmd_set();
5162
5163 NVME_SET_CSI(*list, NVME_CSI_NVM);
5164 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5165
5166 return nvme_c2h(n, list, data_len, req);
5167 }
5168
5169 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5170 {
5171 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5172
5173 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5174 c->csi);
5175
5176 switch (c->cns) {
5177 case NVME_ID_CNS_NS:
5178 return nvme_identify_ns(n, req, true);
5179 case NVME_ID_CNS_NS_PRESENT:
5180 return nvme_identify_ns(n, req, false);
5181 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5182 return nvme_identify_ctrl_list(n, req, true);
5183 case NVME_ID_CNS_CTRL_LIST:
5184 return nvme_identify_ctrl_list(n, req, false);
5185 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5186 return nvme_identify_pri_ctrl_cap(n, req);
5187 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5188 return nvme_identify_sec_ctrl_list(n, req);
5189 case NVME_ID_CNS_CS_NS:
5190 return nvme_identify_ns_csi(n, req, true);
5191 case NVME_ID_CNS_CS_NS_PRESENT:
5192 return nvme_identify_ns_csi(n, req, false);
5193 case NVME_ID_CNS_CTRL:
5194 return nvme_identify_ctrl(n, req);
5195 case NVME_ID_CNS_CS_CTRL:
5196 return nvme_identify_ctrl_csi(n, req);
5197 case NVME_ID_CNS_NS_ACTIVE_LIST:
5198 return nvme_identify_nslist(n, req, true);
5199 case NVME_ID_CNS_NS_PRESENT_LIST:
5200 return nvme_identify_nslist(n, req, false);
5201 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5202 return nvme_identify_nslist_csi(n, req, true);
5203 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5204 return nvme_identify_nslist_csi(n, req, false);
5205 case NVME_ID_CNS_NS_DESCR_LIST:
5206 return nvme_identify_ns_descr_list(n, req);
5207 case NVME_ID_CNS_IO_COMMAND_SET:
5208 return nvme_identify_cmd_set(n, req);
5209 default:
5210 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5211 return NVME_INVALID_FIELD | NVME_DNR;
5212 }
5213 }
5214
5215 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5216 {
5217 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5218
5219 req->cqe.result = 1;
5220 if (nvme_check_sqid(n, sqid)) {
5221 return NVME_INVALID_FIELD | NVME_DNR;
5222 }
5223
5224 return NVME_SUCCESS;
5225 }
5226
5227 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5228 {
5229 trace_pci_nvme_setfeat_timestamp(ts);
5230
5231 n->host_timestamp = le64_to_cpu(ts);
5232 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5233 }
5234
5235 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5236 {
5237 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5238 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5239
5240 union nvme_timestamp {
5241 struct {
5242 uint64_t timestamp:48;
5243 uint64_t sync:1;
5244 uint64_t origin:3;
5245 uint64_t rsvd1:12;
5246 };
5247 uint64_t all;
5248 };
5249
5250 union nvme_timestamp ts;
5251 ts.all = 0;
5252 ts.timestamp = n->host_timestamp + elapsed_time;
5253
5254 /* If the host timestamp is non-zero, set the timestamp origin */
5255 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5256
5257 trace_pci_nvme_getfeat_timestamp(ts.all);
5258
5259 return cpu_to_le64(ts.all);
5260 }
5261
5262 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5263 {
5264 uint64_t timestamp = nvme_get_timestamp(n);
5265
5266 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5267 }
5268
5269 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5270 {
5271 NvmeCmd *cmd = &req->cmd;
5272 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5273 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5274 uint32_t nsid = le32_to_cpu(cmd->nsid);
5275 uint32_t result;
5276 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5277 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5278 uint16_t iv;
5279 NvmeNamespace *ns;
5280 int i;
5281
5282 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5283 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5284 };
5285
5286 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5287
5288 if (!nvme_feature_support[fid]) {
5289 return NVME_INVALID_FIELD | NVME_DNR;
5290 }
5291
5292 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5293 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5294 /*
5295 * The Reservation Notification Mask and Reservation Persistence
5296 * features require a status code of Invalid Field in Command when
5297 * NSID is FFFFFFFFh. Since the device does not support those
5298 * features we can always return Invalid Namespace or Format as we
5299 * should do for all other features.
5300 */
5301 return NVME_INVALID_NSID | NVME_DNR;
5302 }
5303
5304 if (!nvme_ns(n, nsid)) {
5305 return NVME_INVALID_FIELD | NVME_DNR;
5306 }
5307 }
5308
5309 switch (sel) {
5310 case NVME_GETFEAT_SELECT_CURRENT:
5311 break;
5312 case NVME_GETFEAT_SELECT_SAVED:
5313 /* no features are saveable by the controller; fallthrough */
5314 case NVME_GETFEAT_SELECT_DEFAULT:
5315 goto defaults;
5316 case NVME_GETFEAT_SELECT_CAP:
5317 result = nvme_feature_cap[fid];
5318 goto out;
5319 }
5320
5321 switch (fid) {
5322 case NVME_TEMPERATURE_THRESHOLD:
5323 result = 0;
5324
5325 /*
5326 * The controller only implements the Composite Temperature sensor, so
5327 * return 0 for all other sensors.
5328 */
5329 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5330 goto out;
5331 }
5332
5333 switch (NVME_TEMP_THSEL(dw11)) {
5334 case NVME_TEMP_THSEL_OVER:
5335 result = n->features.temp_thresh_hi;
5336 goto out;
5337 case NVME_TEMP_THSEL_UNDER:
5338 result = n->features.temp_thresh_low;
5339 goto out;
5340 }
5341
5342 return NVME_INVALID_FIELD | NVME_DNR;
5343 case NVME_ERROR_RECOVERY:
5344 if (!nvme_nsid_valid(n, nsid)) {
5345 return NVME_INVALID_NSID | NVME_DNR;
5346 }
5347
5348 ns = nvme_ns(n, nsid);
5349 if (unlikely(!ns)) {
5350 return NVME_INVALID_FIELD | NVME_DNR;
5351 }
5352
5353 result = ns->features.err_rec;
5354 goto out;
5355 case NVME_VOLATILE_WRITE_CACHE:
5356 result = 0;
5357 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5358 ns = nvme_ns(n, i);
5359 if (!ns) {
5360 continue;
5361 }
5362
5363 result = blk_enable_write_cache(ns->blkconf.blk);
5364 if (result) {
5365 break;
5366 }
5367 }
5368 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5369 goto out;
5370 case NVME_ASYNCHRONOUS_EVENT_CONF:
5371 result = n->features.async_config;
5372 goto out;
5373 case NVME_TIMESTAMP:
5374 return nvme_get_feature_timestamp(n, req);
5375 case NVME_HOST_BEHAVIOR_SUPPORT:
5376 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5377 sizeof(n->features.hbs), req);
5378 default:
5379 break;
5380 }
5381
5382 defaults:
5383 switch (fid) {
5384 case NVME_TEMPERATURE_THRESHOLD:
5385 result = 0;
5386
5387 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5388 break;
5389 }
5390
5391 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5392 result = NVME_TEMPERATURE_WARNING;
5393 }
5394
5395 break;
5396 case NVME_NUMBER_OF_QUEUES:
5397 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5398 trace_pci_nvme_getfeat_numq(result);
5399 break;
5400 case NVME_INTERRUPT_VECTOR_CONF:
5401 iv = dw11 & 0xffff;
5402 if (iv >= n->conf_ioqpairs + 1) {
5403 return NVME_INVALID_FIELD | NVME_DNR;
5404 }
5405
5406 result = iv;
5407 if (iv == n->admin_cq.vector) {
5408 result |= NVME_INTVC_NOCOALESCING;
5409 }
5410 break;
5411 default:
5412 result = nvme_feature_default[fid];
5413 break;
5414 }
5415
5416 out:
5417 req->cqe.result = cpu_to_le32(result);
5418 return NVME_SUCCESS;
5419 }
5420
5421 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5422 {
5423 uint16_t ret;
5424 uint64_t timestamp;
5425
5426 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5427 if (ret) {
5428 return ret;
5429 }
5430
5431 nvme_set_timestamp(n, timestamp);
5432
5433 return NVME_SUCCESS;
5434 }
5435
5436 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5437 {
5438 NvmeNamespace *ns = NULL;
5439
5440 NvmeCmd *cmd = &req->cmd;
5441 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5442 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5443 uint32_t nsid = le32_to_cpu(cmd->nsid);
5444 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5445 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5446 uint16_t status;
5447 int i;
5448
5449 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5450
5451 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5452 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5453 }
5454
5455 if (!nvme_feature_support[fid]) {
5456 return NVME_INVALID_FIELD | NVME_DNR;
5457 }
5458
5459 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5460 if (nsid != NVME_NSID_BROADCAST) {
5461 if (!nvme_nsid_valid(n, nsid)) {
5462 return NVME_INVALID_NSID | NVME_DNR;
5463 }
5464
5465 ns = nvme_ns(n, nsid);
5466 if (unlikely(!ns)) {
5467 return NVME_INVALID_FIELD | NVME_DNR;
5468 }
5469 }
5470 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5471 if (!nvme_nsid_valid(n, nsid)) {
5472 return NVME_INVALID_NSID | NVME_DNR;
5473 }
5474
5475 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5476 }
5477
5478 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5479 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5480 }
5481
5482 switch (fid) {
5483 case NVME_TEMPERATURE_THRESHOLD:
5484 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5485 break;
5486 }
5487
5488 switch (NVME_TEMP_THSEL(dw11)) {
5489 case NVME_TEMP_THSEL_OVER:
5490 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5491 break;
5492 case NVME_TEMP_THSEL_UNDER:
5493 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5494 break;
5495 default:
5496 return NVME_INVALID_FIELD | NVME_DNR;
5497 }
5498
5499 if ((n->temperature >= n->features.temp_thresh_hi) ||
5500 (n->temperature <= n->features.temp_thresh_low)) {
5501 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5502 }
5503
5504 break;
5505 case NVME_ERROR_RECOVERY:
5506 if (nsid == NVME_NSID_BROADCAST) {
5507 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5508 ns = nvme_ns(n, i);
5509
5510 if (!ns) {
5511 continue;
5512 }
5513
5514 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5515 ns->features.err_rec = dw11;
5516 }
5517 }
5518
5519 break;
5520 }
5521
5522 assert(ns);
5523 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5524 ns->features.err_rec = dw11;
5525 }
5526 break;
5527 case NVME_VOLATILE_WRITE_CACHE:
5528 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5529 ns = nvme_ns(n, i);
5530 if (!ns) {
5531 continue;
5532 }
5533
5534 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5535 blk_flush(ns->blkconf.blk);
5536 }
5537
5538 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5539 }
5540
5541 break;
5542
5543 case NVME_NUMBER_OF_QUEUES:
5544 if (n->qs_created) {
5545 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5546 }
5547
5548 /*
5549 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5550 * and NSQR.
5551 */
5552 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5553 return NVME_INVALID_FIELD | NVME_DNR;
5554 }
5555
5556 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5557 ((dw11 >> 16) & 0xffff) + 1,
5558 n->conf_ioqpairs,
5559 n->conf_ioqpairs);
5560 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5561 ((n->conf_ioqpairs - 1) << 16));
5562 break;
5563 case NVME_ASYNCHRONOUS_EVENT_CONF:
5564 n->features.async_config = dw11;
5565 break;
5566 case NVME_TIMESTAMP:
5567 return nvme_set_feature_timestamp(n, req);
5568 case NVME_HOST_BEHAVIOR_SUPPORT:
5569 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5570 sizeof(n->features.hbs), req);
5571 if (status) {
5572 return status;
5573 }
5574
5575 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5576 ns = nvme_ns(n, i);
5577
5578 if (!ns) {
5579 continue;
5580 }
5581
5582 ns->id_ns.nlbaf = ns->nlbaf - 1;
5583 if (!n->features.hbs.lbafee) {
5584 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5585 }
5586 }
5587
5588 return status;
5589 case NVME_COMMAND_SET_PROFILE:
5590 if (dw11 & 0x1ff) {
5591 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5592 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5593 }
5594 break;
5595 default:
5596 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5597 }
5598 return NVME_SUCCESS;
5599 }
5600
5601 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5602 {
5603 trace_pci_nvme_aer(nvme_cid(req));
5604
5605 if (n->outstanding_aers > n->params.aerl) {
5606 trace_pci_nvme_aer_aerl_exceeded();
5607 return NVME_AER_LIMIT_EXCEEDED;
5608 }
5609
5610 n->aer_reqs[n->outstanding_aers] = req;
5611 n->outstanding_aers++;
5612
5613 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5614 nvme_process_aers(n);
5615 }
5616
5617 return NVME_NO_COMPLETE;
5618 }
5619
5620 static void nvme_update_dmrsl(NvmeCtrl *n)
5621 {
5622 int nsid;
5623
5624 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5625 NvmeNamespace *ns = nvme_ns(n, nsid);
5626 if (!ns) {
5627 continue;
5628 }
5629
5630 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5631 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5632 }
5633 }
5634
5635 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5636 {
5637 uint32_t cc = ldl_le_p(&n->bar.cc);
5638
5639 ns->iocs = nvme_cse_iocs_none;
5640 switch (ns->csi) {
5641 case NVME_CSI_NVM:
5642 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5643 ns->iocs = nvme_cse_iocs_nvm;
5644 }
5645 break;
5646 case NVME_CSI_ZONED:
5647 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5648 ns->iocs = nvme_cse_iocs_zoned;
5649 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5650 ns->iocs = nvme_cse_iocs_nvm;
5651 }
5652 break;
5653 }
5654 }
5655
5656 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5657 {
5658 NvmeNamespace *ns;
5659 NvmeCtrl *ctrl;
5660 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5661 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5662 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5663 uint8_t sel = dw10 & 0xf;
5664 uint16_t *nr_ids = &list[0];
5665 uint16_t *ids = &list[1];
5666 uint16_t ret;
5667 int i;
5668
5669 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5670
5671 if (!nvme_nsid_valid(n, nsid)) {
5672 return NVME_INVALID_NSID | NVME_DNR;
5673 }
5674
5675 ns = nvme_subsys_ns(n->subsys, nsid);
5676 if (!ns) {
5677 return NVME_INVALID_FIELD | NVME_DNR;
5678 }
5679
5680 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5681 if (ret) {
5682 return ret;
5683 }
5684
5685 if (!*nr_ids) {
5686 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5687 }
5688
5689 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5690 for (i = 0; i < *nr_ids; i++) {
5691 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5692 if (!ctrl) {
5693 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5694 }
5695
5696 switch (sel) {
5697 case NVME_NS_ATTACHMENT_ATTACH:
5698 if (nvme_ns(ctrl, nsid)) {
5699 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5700 }
5701
5702 if (ns->attached && !ns->params.shared) {
5703 return NVME_NS_PRIVATE | NVME_DNR;
5704 }
5705
5706 nvme_attach_ns(ctrl, ns);
5707 nvme_select_iocs_ns(ctrl, ns);
5708
5709 break;
5710
5711 case NVME_NS_ATTACHMENT_DETACH:
5712 if (!nvme_ns(ctrl, nsid)) {
5713 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5714 }
5715
5716 ctrl->namespaces[nsid] = NULL;
5717 ns->attached--;
5718
5719 nvme_update_dmrsl(ctrl);
5720
5721 break;
5722
5723 default:
5724 return NVME_INVALID_FIELD | NVME_DNR;
5725 }
5726
5727 /*
5728 * Add namespace id to the changed namespace id list for event clearing
5729 * via Get Log Page command.
5730 */
5731 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5732 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5733 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5734 NVME_LOG_CHANGED_NSLIST);
5735 }
5736 }
5737
5738 return NVME_SUCCESS;
5739 }
5740
5741 typedef struct NvmeFormatAIOCB {
5742 BlockAIOCB common;
5743 BlockAIOCB *aiocb;
5744 QEMUBH *bh;
5745 NvmeRequest *req;
5746 int ret;
5747
5748 NvmeNamespace *ns;
5749 uint32_t nsid;
5750 bool broadcast;
5751 int64_t offset;
5752
5753 uint8_t lbaf;
5754 uint8_t mset;
5755 uint8_t pi;
5756 uint8_t pil;
5757 } NvmeFormatAIOCB;
5758
5759 static void nvme_format_bh(void *opaque);
5760
5761 static void nvme_format_cancel(BlockAIOCB *aiocb)
5762 {
5763 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5764
5765 if (iocb->aiocb) {
5766 blk_aio_cancel_async(iocb->aiocb);
5767 }
5768 }
5769
5770 static const AIOCBInfo nvme_format_aiocb_info = {
5771 .aiocb_size = sizeof(NvmeFormatAIOCB),
5772 .cancel_async = nvme_format_cancel,
5773 .get_aio_context = nvme_get_aio_context,
5774 };
5775
5776 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5777 uint8_t pi, uint8_t pil)
5778 {
5779 uint8_t lbafl = lbaf & 0xf;
5780 uint8_t lbafu = lbaf >> 4;
5781
5782 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5783
5784 ns->id_ns.dps = (pil << 3) | pi;
5785 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5786
5787 nvme_ns_init_format(ns);
5788 }
5789
5790 static void nvme_format_ns_cb(void *opaque, int ret)
5791 {
5792 NvmeFormatAIOCB *iocb = opaque;
5793 NvmeNamespace *ns = iocb->ns;
5794 int bytes;
5795
5796 if (ret < 0) {
5797 iocb->ret = ret;
5798 goto done;
5799 }
5800
5801 assert(ns);
5802
5803 if (iocb->offset < ns->size) {
5804 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5805
5806 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5807 bytes, BDRV_REQ_MAY_UNMAP,
5808 nvme_format_ns_cb, iocb);
5809
5810 iocb->offset += bytes;
5811 return;
5812 }
5813
5814 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5815 ns->status = 0x0;
5816 iocb->ns = NULL;
5817 iocb->offset = 0;
5818
5819 done:
5820 iocb->aiocb = NULL;
5821 qemu_bh_schedule(iocb->bh);
5822 }
5823
5824 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5825 {
5826 if (ns->params.zoned) {
5827 return NVME_INVALID_FORMAT | NVME_DNR;
5828 }
5829
5830 if (lbaf > ns->id_ns.nlbaf) {
5831 return NVME_INVALID_FORMAT | NVME_DNR;
5832 }
5833
5834 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5835 return NVME_INVALID_FORMAT | NVME_DNR;
5836 }
5837
5838 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5839 return NVME_INVALID_FIELD | NVME_DNR;
5840 }
5841
5842 return NVME_SUCCESS;
5843 }
5844
5845 static void nvme_format_bh(void *opaque)
5846 {
5847 NvmeFormatAIOCB *iocb = opaque;
5848 NvmeRequest *req = iocb->req;
5849 NvmeCtrl *n = nvme_ctrl(req);
5850 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5851 uint8_t lbaf = dw10 & 0xf;
5852 uint8_t pi = (dw10 >> 5) & 0x7;
5853 uint16_t status;
5854 int i;
5855
5856 if (iocb->ret < 0) {
5857 goto done;
5858 }
5859
5860 if (iocb->broadcast) {
5861 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5862 iocb->ns = nvme_ns(n, i);
5863 if (iocb->ns) {
5864 iocb->nsid = i;
5865 break;
5866 }
5867 }
5868 }
5869
5870 if (!iocb->ns) {
5871 goto done;
5872 }
5873
5874 status = nvme_format_check(iocb->ns, lbaf, pi);
5875 if (status) {
5876 req->status = status;
5877 goto done;
5878 }
5879
5880 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5881 nvme_format_ns_cb(iocb, 0);
5882 return;
5883
5884 done:
5885 qemu_bh_delete(iocb->bh);
5886 iocb->bh = NULL;
5887
5888 iocb->common.cb(iocb->common.opaque, iocb->ret);
5889
5890 qemu_aio_unref(iocb);
5891 }
5892
5893 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5894 {
5895 NvmeFormatAIOCB *iocb;
5896 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5897 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5898 uint8_t lbaf = dw10 & 0xf;
5899 uint8_t mset = (dw10 >> 4) & 0x1;
5900 uint8_t pi = (dw10 >> 5) & 0x7;
5901 uint8_t pil = (dw10 >> 8) & 0x1;
5902 uint8_t lbafu = (dw10 >> 12) & 0x3;
5903 uint16_t status;
5904
5905 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5906
5907 iocb->req = req;
5908 iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5909 iocb->ret = 0;
5910 iocb->ns = NULL;
5911 iocb->nsid = 0;
5912 iocb->lbaf = lbaf;
5913 iocb->mset = mset;
5914 iocb->pi = pi;
5915 iocb->pil = pil;
5916 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5917 iocb->offset = 0;
5918
5919 if (n->features.hbs.lbafee) {
5920 iocb->lbaf |= lbafu << 4;
5921 }
5922
5923 if (!iocb->broadcast) {
5924 if (!nvme_nsid_valid(n, nsid)) {
5925 status = NVME_INVALID_NSID | NVME_DNR;
5926 goto out;
5927 }
5928
5929 iocb->ns = nvme_ns(n, nsid);
5930 if (!iocb->ns) {
5931 status = NVME_INVALID_FIELD | NVME_DNR;
5932 goto out;
5933 }
5934 }
5935
5936 req->aiocb = &iocb->common;
5937 qemu_bh_schedule(iocb->bh);
5938
5939 return NVME_NO_COMPLETE;
5940
5941 out:
5942 qemu_bh_delete(iocb->bh);
5943 iocb->bh = NULL;
5944 qemu_aio_unref(iocb);
5945 return status;
5946 }
5947
5948 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5949 int *num_prim, int *num_sec)
5950 {
5951 *num_total = le32_to_cpu(rt ?
5952 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5953 *num_prim = le16_to_cpu(rt ?
5954 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5955 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5956 }
5957
5958 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5959 uint16_t cntlid, uint8_t rt,
5960 int nr)
5961 {
5962 int num_total, num_prim, num_sec;
5963
5964 if (cntlid != n->cntlid) {
5965 return NVME_INVALID_CTRL_ID | NVME_DNR;
5966 }
5967
5968 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5969
5970 if (nr > num_total) {
5971 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5972 }
5973
5974 if (nr > num_total - num_sec) {
5975 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5976 }
5977
5978 if (rt) {
5979 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5980 } else {
5981 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5982 }
5983
5984 req->cqe.result = cpu_to_le32(nr);
5985 return req->status;
5986 }
5987
5988 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5989 uint8_t rt, int nr)
5990 {
5991 int prev_nr, prev_total;
5992
5993 if (rt) {
5994 prev_nr = le16_to_cpu(sctrl->nvi);
5995 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5996 sctrl->nvi = cpu_to_le16(nr);
5997 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5998 } else {
5999 prev_nr = le16_to_cpu(sctrl->nvq);
6000 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6001 sctrl->nvq = cpu_to_le16(nr);
6002 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6003 }
6004 }
6005
6006 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6007 uint16_t cntlid, uint8_t rt, int nr)
6008 {
6009 int num_total, num_prim, num_sec, num_free, diff, limit;
6010 NvmeSecCtrlEntry *sctrl;
6011
6012 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6013 if (!sctrl) {
6014 return NVME_INVALID_CTRL_ID | NVME_DNR;
6015 }
6016
6017 if (sctrl->scs) {
6018 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6019 }
6020
6021 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6022 if (nr > limit) {
6023 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6024 }
6025
6026 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6027 num_free = num_total - num_prim - num_sec;
6028 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6029
6030 if (diff > num_free) {
6031 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6032 }
6033
6034 nvme_update_virt_res(n, sctrl, rt, nr);
6035 req->cqe.result = cpu_to_le32(nr);
6036
6037 return req->status;
6038 }
6039
6040 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6041 {
6042 NvmeCtrl *sn = NULL;
6043 NvmeSecCtrlEntry *sctrl;
6044 int vf_index;
6045
6046 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6047 if (!sctrl) {
6048 return NVME_INVALID_CTRL_ID | NVME_DNR;
6049 }
6050
6051 if (!pci_is_vf(&n->parent_obj)) {
6052 vf_index = le16_to_cpu(sctrl->vfn) - 1;
6053 sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
6054 }
6055
6056 if (online) {
6057 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6058 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6059 }
6060
6061 if (!sctrl->scs) {
6062 sctrl->scs = 0x1;
6063 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6064 }
6065 } else {
6066 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6067 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6068
6069 if (sctrl->scs) {
6070 sctrl->scs = 0x0;
6071 if (sn) {
6072 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6073 }
6074 }
6075 }
6076
6077 return NVME_SUCCESS;
6078 }
6079
6080 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6081 {
6082 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6083 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6084 uint8_t act = dw10 & 0xf;
6085 uint8_t rt = (dw10 >> 8) & 0x7;
6086 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6087 int nr = dw11 & 0xffff;
6088
6089 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6090
6091 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6092 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6093 }
6094
6095 switch (act) {
6096 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6097 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6098 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6099 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6100 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6101 return nvme_virt_set_state(n, cntlid, true);
6102 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6103 return nvme_virt_set_state(n, cntlid, false);
6104 default:
6105 return NVME_INVALID_FIELD | NVME_DNR;
6106 }
6107 }
6108
6109 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6110 {
6111 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6112 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6113 int i;
6114
6115 /* Address should be page aligned */
6116 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6117 return NVME_INVALID_FIELD | NVME_DNR;
6118 }
6119
6120 /* Save shadow buffer base addr for use during queue creation */
6121 n->dbbuf_dbs = dbs_addr;
6122 n->dbbuf_eis = eis_addr;
6123 n->dbbuf_enabled = true;
6124
6125 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6126 NvmeSQueue *sq = n->sq[i];
6127 NvmeCQueue *cq = n->cq[i];
6128
6129 if (sq) {
6130 /*
6131 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6132 * nvme_process_db() uses this hard-coded way to calculate
6133 * doorbell offsets. Be consistent with that here.
6134 */
6135 sq->db_addr = dbs_addr + (i << 3);
6136 sq->ei_addr = eis_addr + (i << 3);
6137 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6138 sizeof(sq->tail));
6139
6140 if (n->params.ioeventfd && sq->sqid != 0) {
6141 if (!nvme_init_sq_ioeventfd(sq)) {
6142 sq->ioeventfd_enabled = true;
6143 }
6144 }
6145 }
6146
6147 if (cq) {
6148 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6149 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6150 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6151 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6152 sizeof(cq->head));
6153
6154 if (n->params.ioeventfd && cq->cqid != 0) {
6155 if (!nvme_init_cq_ioeventfd(cq)) {
6156 cq->ioeventfd_enabled = true;
6157 }
6158 }
6159 }
6160 }
6161
6162 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6163
6164 return NVME_SUCCESS;
6165 }
6166
6167 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6168 {
6169 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6170 nvme_adm_opc_str(req->cmd.opcode));
6171
6172 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6173 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6174 return NVME_INVALID_OPCODE | NVME_DNR;
6175 }
6176
6177 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6178 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6179 return NVME_INVALID_FIELD | NVME_DNR;
6180 }
6181
6182 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6183 return NVME_INVALID_FIELD;
6184 }
6185
6186 switch (req->cmd.opcode) {
6187 case NVME_ADM_CMD_DELETE_SQ:
6188 return nvme_del_sq(n, req);
6189 case NVME_ADM_CMD_CREATE_SQ:
6190 return nvme_create_sq(n, req);
6191 case NVME_ADM_CMD_GET_LOG_PAGE:
6192 return nvme_get_log(n, req);
6193 case NVME_ADM_CMD_DELETE_CQ:
6194 return nvme_del_cq(n, req);
6195 case NVME_ADM_CMD_CREATE_CQ:
6196 return nvme_create_cq(n, req);
6197 case NVME_ADM_CMD_IDENTIFY:
6198 return nvme_identify(n, req);
6199 case NVME_ADM_CMD_ABORT:
6200 return nvme_abort(n, req);
6201 case NVME_ADM_CMD_SET_FEATURES:
6202 return nvme_set_feature(n, req);
6203 case NVME_ADM_CMD_GET_FEATURES:
6204 return nvme_get_feature(n, req);
6205 case NVME_ADM_CMD_ASYNC_EV_REQ:
6206 return nvme_aer(n, req);
6207 case NVME_ADM_CMD_NS_ATTACHMENT:
6208 return nvme_ns_attachment(n, req);
6209 case NVME_ADM_CMD_VIRT_MNGMT:
6210 return nvme_virt_mngmt(n, req);
6211 case NVME_ADM_CMD_DBBUF_CONFIG:
6212 return nvme_dbbuf_config(n, req);
6213 case NVME_ADM_CMD_FORMAT_NVM:
6214 return nvme_format(n, req);
6215 default:
6216 assert(false);
6217 }
6218
6219 return NVME_INVALID_OPCODE | NVME_DNR;
6220 }
6221
6222 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6223 {
6224 pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6225 sizeof(sq->tail));
6226 trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6227 }
6228
6229 static void nvme_update_sq_tail(NvmeSQueue *sq)
6230 {
6231 pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6232 sizeof(sq->tail));
6233 trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6234 }
6235
6236 static void nvme_process_sq(void *opaque)
6237 {
6238 NvmeSQueue *sq = opaque;
6239 NvmeCtrl *n = sq->ctrl;
6240 NvmeCQueue *cq = n->cq[sq->cqid];
6241
6242 uint16_t status;
6243 hwaddr addr;
6244 NvmeCmd cmd;
6245 NvmeRequest *req;
6246
6247 if (n->dbbuf_enabled) {
6248 nvme_update_sq_tail(sq);
6249 }
6250
6251 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6252 addr = sq->dma_addr + sq->head * n->sqe_size;
6253 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6254 trace_pci_nvme_err_addr_read(addr);
6255 trace_pci_nvme_err_cfs();
6256 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6257 break;
6258 }
6259 nvme_inc_sq_head(sq);
6260
6261 req = QTAILQ_FIRST(&sq->req_list);
6262 QTAILQ_REMOVE(&sq->req_list, req, entry);
6263 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6264 nvme_req_clear(req);
6265 req->cqe.cid = cmd.cid;
6266 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6267
6268 status = sq->sqid ? nvme_io_cmd(n, req) :
6269 nvme_admin_cmd(n, req);
6270 if (status != NVME_NO_COMPLETE) {
6271 req->status = status;
6272 nvme_enqueue_req_completion(cq, req);
6273 }
6274
6275 if (n->dbbuf_enabled) {
6276 nvme_update_sq_eventidx(sq);
6277 nvme_update_sq_tail(sq);
6278 }
6279 }
6280 }
6281
6282 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6283 {
6284 uint8_t *config;
6285
6286 if (!msix_present(pci_dev)) {
6287 return;
6288 }
6289
6290 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6291
6292 config = pci_dev->config + pci_dev->msix_cap;
6293 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6294 table_size - 1);
6295 }
6296
6297 static void nvme_activate_virt_res(NvmeCtrl *n)
6298 {
6299 PCIDevice *pci_dev = &n->parent_obj;
6300 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6301 NvmeSecCtrlEntry *sctrl;
6302
6303 /* -1 to account for the admin queue */
6304 if (pci_is_vf(pci_dev)) {
6305 sctrl = nvme_sctrl(n);
6306 cap->vqprt = sctrl->nvq;
6307 cap->viprt = sctrl->nvi;
6308 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6309 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6310 } else {
6311 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6312 cap->virfap = n->next_pri_ctrl_cap.virfap;
6313 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6314 le16_to_cpu(cap->vqrfap) - 1;
6315 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6316 le16_to_cpu(cap->virfap);
6317 }
6318 }
6319
6320 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6321 {
6322 PCIDevice *pci_dev = &n->parent_obj;
6323 NvmeSecCtrlEntry *sctrl;
6324 NvmeNamespace *ns;
6325 int i;
6326
6327 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6328 ns = nvme_ns(n, i);
6329 if (!ns) {
6330 continue;
6331 }
6332
6333 nvme_ns_drain(ns);
6334 }
6335
6336 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6337 if (n->sq[i] != NULL) {
6338 nvme_free_sq(n->sq[i], n);
6339 }
6340 }
6341 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6342 if (n->cq[i] != NULL) {
6343 nvme_free_cq(n->cq[i], n);
6344 }
6345 }
6346
6347 while (!QTAILQ_EMPTY(&n->aer_queue)) {
6348 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6349 QTAILQ_REMOVE(&n->aer_queue, event, entry);
6350 g_free(event);
6351 }
6352
6353 if (n->params.sriov_max_vfs) {
6354 if (!pci_is_vf(pci_dev)) {
6355 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6356 sctrl = &n->sec_ctrl_list.sec[i];
6357 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6358 }
6359
6360 if (rst != NVME_RESET_CONTROLLER) {
6361 pcie_sriov_pf_disable_vfs(pci_dev);
6362 }
6363 }
6364
6365 if (rst != NVME_RESET_CONTROLLER) {
6366 nvme_activate_virt_res(n);
6367 }
6368 }
6369
6370 n->aer_queued = 0;
6371 n->aer_mask = 0;
6372 n->outstanding_aers = 0;
6373 n->qs_created = false;
6374
6375 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6376
6377 if (pci_is_vf(pci_dev)) {
6378 sctrl = nvme_sctrl(n);
6379
6380 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6381 } else {
6382 stl_le_p(&n->bar.csts, 0);
6383 }
6384
6385 stl_le_p(&n->bar.intms, 0);
6386 stl_le_p(&n->bar.intmc, 0);
6387 stl_le_p(&n->bar.cc, 0);
6388
6389 n->dbbuf_dbs = 0;
6390 n->dbbuf_eis = 0;
6391 n->dbbuf_enabled = false;
6392 }
6393
6394 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6395 {
6396 NvmeNamespace *ns;
6397 int i;
6398
6399 if (n->pmr.dev) {
6400 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6401 }
6402
6403 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6404 ns = nvme_ns(n, i);
6405 if (!ns) {
6406 continue;
6407 }
6408
6409 nvme_ns_shutdown(ns);
6410 }
6411 }
6412
6413 static void nvme_select_iocs(NvmeCtrl *n)
6414 {
6415 NvmeNamespace *ns;
6416 int i;
6417
6418 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6419 ns = nvme_ns(n, i);
6420 if (!ns) {
6421 continue;
6422 }
6423
6424 nvme_select_iocs_ns(n, ns);
6425 }
6426 }
6427
6428 static int nvme_start_ctrl(NvmeCtrl *n)
6429 {
6430 uint64_t cap = ldq_le_p(&n->bar.cap);
6431 uint32_t cc = ldl_le_p(&n->bar.cc);
6432 uint32_t aqa = ldl_le_p(&n->bar.aqa);
6433 uint64_t asq = ldq_le_p(&n->bar.asq);
6434 uint64_t acq = ldq_le_p(&n->bar.acq);
6435 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6436 uint32_t page_size = 1 << page_bits;
6437 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6438
6439 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6440 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6441 le16_to_cpu(sctrl->nvq),
6442 sctrl->scs ? "ONLINE" :
6443 "OFFLINE");
6444 return -1;
6445 }
6446 if (unlikely(n->cq[0])) {
6447 trace_pci_nvme_err_startfail_cq();
6448 return -1;
6449 }
6450 if (unlikely(n->sq[0])) {
6451 trace_pci_nvme_err_startfail_sq();
6452 return -1;
6453 }
6454 if (unlikely(asq & (page_size - 1))) {
6455 trace_pci_nvme_err_startfail_asq_misaligned(asq);
6456 return -1;
6457 }
6458 if (unlikely(acq & (page_size - 1))) {
6459 trace_pci_nvme_err_startfail_acq_misaligned(acq);
6460 return -1;
6461 }
6462 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6463 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6464 return -1;
6465 }
6466 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6467 trace_pci_nvme_err_startfail_page_too_small(
6468 NVME_CC_MPS(cc),
6469 NVME_CAP_MPSMIN(cap));
6470 return -1;
6471 }
6472 if (unlikely(NVME_CC_MPS(cc) >
6473 NVME_CAP_MPSMAX(cap))) {
6474 trace_pci_nvme_err_startfail_page_too_large(
6475 NVME_CC_MPS(cc),
6476 NVME_CAP_MPSMAX(cap));
6477 return -1;
6478 }
6479 if (unlikely(NVME_CC_IOCQES(cc) <
6480 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6481 trace_pci_nvme_err_startfail_cqent_too_small(
6482 NVME_CC_IOCQES(cc),
6483 NVME_CTRL_CQES_MIN(cap));
6484 return -1;
6485 }
6486 if (unlikely(NVME_CC_IOCQES(cc) >
6487 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6488 trace_pci_nvme_err_startfail_cqent_too_large(
6489 NVME_CC_IOCQES(cc),
6490 NVME_CTRL_CQES_MAX(cap));
6491 return -1;
6492 }
6493 if (unlikely(NVME_CC_IOSQES(cc) <
6494 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6495 trace_pci_nvme_err_startfail_sqent_too_small(
6496 NVME_CC_IOSQES(cc),
6497 NVME_CTRL_SQES_MIN(cap));
6498 return -1;
6499 }
6500 if (unlikely(NVME_CC_IOSQES(cc) >
6501 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6502 trace_pci_nvme_err_startfail_sqent_too_large(
6503 NVME_CC_IOSQES(cc),
6504 NVME_CTRL_SQES_MAX(cap));
6505 return -1;
6506 }
6507 if (unlikely(!NVME_AQA_ASQS(aqa))) {
6508 trace_pci_nvme_err_startfail_asqent_sz_zero();
6509 return -1;
6510 }
6511 if (unlikely(!NVME_AQA_ACQS(aqa))) {
6512 trace_pci_nvme_err_startfail_acqent_sz_zero();
6513 return -1;
6514 }
6515
6516 n->page_bits = page_bits;
6517 n->page_size = page_size;
6518 n->max_prp_ents = n->page_size / sizeof(uint64_t);
6519 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6520 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6521 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6522 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6523
6524 nvme_set_timestamp(n, 0ULL);
6525
6526 nvme_select_iocs(n);
6527
6528 return 0;
6529 }
6530
6531 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6532 {
6533 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6534 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6535
6536 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6537 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6538 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6539 stl_le_p(&n->bar.cmbloc, cmbloc);
6540
6541 NVME_CMBSZ_SET_SQS(cmbsz, 1);
6542 NVME_CMBSZ_SET_CQS(cmbsz, 0);
6543 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6544 NVME_CMBSZ_SET_RDS(cmbsz, 1);
6545 NVME_CMBSZ_SET_WDS(cmbsz, 1);
6546 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6547 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6548 stl_le_p(&n->bar.cmbsz, cmbsz);
6549 }
6550
6551 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6552 unsigned size)
6553 {
6554 uint64_t cap = ldq_le_p(&n->bar.cap);
6555 uint32_t cc = ldl_le_p(&n->bar.cc);
6556 uint32_t intms = ldl_le_p(&n->bar.intms);
6557 uint32_t csts = ldl_le_p(&n->bar.csts);
6558 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6559
6560 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6561 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6562 "MMIO write not 32-bit aligned,"
6563 " offset=0x%"PRIx64"", offset);
6564 /* should be ignored, fall through for now */
6565 }
6566
6567 if (unlikely(size < sizeof(uint32_t))) {
6568 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6569 "MMIO write smaller than 32-bits,"
6570 " offset=0x%"PRIx64", size=%u",
6571 offset, size);
6572 /* should be ignored, fall through for now */
6573 }
6574
6575 switch (offset) {
6576 case NVME_REG_INTMS:
6577 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6578 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6579 "undefined access to interrupt mask set"
6580 " when MSI-X is enabled");
6581 /* should be ignored, fall through for now */
6582 }
6583 intms |= data;
6584 stl_le_p(&n->bar.intms, intms);
6585 n->bar.intmc = n->bar.intms;
6586 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6587 nvme_irq_check(n);
6588 break;
6589 case NVME_REG_INTMC:
6590 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6591 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6592 "undefined access to interrupt mask clr"
6593 " when MSI-X is enabled");
6594 /* should be ignored, fall through for now */
6595 }
6596 intms &= ~data;
6597 stl_le_p(&n->bar.intms, intms);
6598 n->bar.intmc = n->bar.intms;
6599 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6600 nvme_irq_check(n);
6601 break;
6602 case NVME_REG_CC:
6603 stl_le_p(&n->bar.cc, data);
6604
6605 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6606
6607 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6608 trace_pci_nvme_mmio_shutdown_set();
6609 nvme_ctrl_shutdown(n);
6610 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6611 csts |= NVME_CSTS_SHST_COMPLETE;
6612 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6613 trace_pci_nvme_mmio_shutdown_cleared();
6614 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6615 }
6616
6617 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6618 if (unlikely(nvme_start_ctrl(n))) {
6619 trace_pci_nvme_err_startfail();
6620 csts = NVME_CSTS_FAILED;
6621 } else {
6622 trace_pci_nvme_mmio_start_success();
6623 csts = NVME_CSTS_READY;
6624 }
6625 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6626 trace_pci_nvme_mmio_stopped();
6627 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6628
6629 break;
6630 }
6631
6632 stl_le_p(&n->bar.csts, csts);
6633
6634 break;
6635 case NVME_REG_CSTS:
6636 if (data & (1 << 4)) {
6637 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6638 "attempted to W1C CSTS.NSSRO"
6639 " but CAP.NSSRS is zero (not supported)");
6640 } else if (data != 0) {
6641 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6642 "attempted to set a read only bit"
6643 " of controller status");
6644 }
6645 break;
6646 case NVME_REG_NSSR:
6647 if (data == 0x4e564d65) {
6648 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6649 } else {
6650 /* The spec says that writes of other values have no effect */
6651 return;
6652 }
6653 break;
6654 case NVME_REG_AQA:
6655 stl_le_p(&n->bar.aqa, data);
6656 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6657 break;
6658 case NVME_REG_ASQ:
6659 stn_le_p(&n->bar.asq, size, data);
6660 trace_pci_nvme_mmio_asqaddr(data);
6661 break;
6662 case NVME_REG_ASQ + 4:
6663 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6664 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6665 break;
6666 case NVME_REG_ACQ:
6667 trace_pci_nvme_mmio_acqaddr(data);
6668 stn_le_p(&n->bar.acq, size, data);
6669 break;
6670 case NVME_REG_ACQ + 4:
6671 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6672 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6673 break;
6674 case NVME_REG_CMBLOC:
6675 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6676 "invalid write to reserved CMBLOC"
6677 " when CMBSZ is zero, ignored");
6678 return;
6679 case NVME_REG_CMBSZ:
6680 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6681 "invalid write to read only CMBSZ, ignored");
6682 return;
6683 case NVME_REG_CMBMSC:
6684 if (!NVME_CAP_CMBS(cap)) {
6685 return;
6686 }
6687
6688 stn_le_p(&n->bar.cmbmsc, size, data);
6689 n->cmb.cmse = false;
6690
6691 if (NVME_CMBMSC_CRE(data)) {
6692 nvme_cmb_enable_regs(n);
6693
6694 if (NVME_CMBMSC_CMSE(data)) {
6695 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6696 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6697 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6698 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6699 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6700 stl_le_p(&n->bar.cmbsts, cmbsts);
6701 return;
6702 }
6703
6704 n->cmb.cba = cba;
6705 n->cmb.cmse = true;
6706 }
6707 } else {
6708 n->bar.cmbsz = 0;
6709 n->bar.cmbloc = 0;
6710 }
6711
6712 return;
6713 case NVME_REG_CMBMSC + 4:
6714 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6715 return;
6716
6717 case NVME_REG_PMRCAP:
6718 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6719 "invalid write to PMRCAP register, ignored");
6720 return;
6721 case NVME_REG_PMRCTL:
6722 if (!NVME_CAP_PMRS(cap)) {
6723 return;
6724 }
6725
6726 stl_le_p(&n->bar.pmrctl, data);
6727 if (NVME_PMRCTL_EN(data)) {
6728 memory_region_set_enabled(&n->pmr.dev->mr, true);
6729 pmrsts = 0;
6730 } else {
6731 memory_region_set_enabled(&n->pmr.dev->mr, false);
6732 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6733 n->pmr.cmse = false;
6734 }
6735 stl_le_p(&n->bar.pmrsts, pmrsts);
6736 return;
6737 case NVME_REG_PMRSTS:
6738 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6739 "invalid write to PMRSTS register, ignored");
6740 return;
6741 case NVME_REG_PMREBS:
6742 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6743 "invalid write to PMREBS register, ignored");
6744 return;
6745 case NVME_REG_PMRSWTP:
6746 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6747 "invalid write to PMRSWTP register, ignored");
6748 return;
6749 case NVME_REG_PMRMSCL:
6750 if (!NVME_CAP_PMRS(cap)) {
6751 return;
6752 }
6753
6754 stl_le_p(&n->bar.pmrmscl, data);
6755 n->pmr.cmse = false;
6756
6757 if (NVME_PMRMSCL_CMSE(data)) {
6758 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6759 hwaddr cba = pmrmscu << 32 |
6760 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6761 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6762 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6763 stl_le_p(&n->bar.pmrsts, pmrsts);
6764 return;
6765 }
6766
6767 n->pmr.cmse = true;
6768 n->pmr.cba = cba;
6769 }
6770
6771 return;
6772 case NVME_REG_PMRMSCU:
6773 if (!NVME_CAP_PMRS(cap)) {
6774 return;
6775 }
6776
6777 stl_le_p(&n->bar.pmrmscu, data);
6778 return;
6779 default:
6780 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6781 "invalid MMIO write,"
6782 " offset=0x%"PRIx64", data=%"PRIx64"",
6783 offset, data);
6784 break;
6785 }
6786 }
6787
6788 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6789 {
6790 NvmeCtrl *n = (NvmeCtrl *)opaque;
6791 uint8_t *ptr = (uint8_t *)&n->bar;
6792
6793 trace_pci_nvme_mmio_read(addr, size);
6794
6795 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6796 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6797 "MMIO read not 32-bit aligned,"
6798 " offset=0x%"PRIx64"", addr);
6799 /* should RAZ, fall through for now */
6800 } else if (unlikely(size < sizeof(uint32_t))) {
6801 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6802 "MMIO read smaller than 32-bits,"
6803 " offset=0x%"PRIx64"", addr);
6804 /* should RAZ, fall through for now */
6805 }
6806
6807 if (addr > sizeof(n->bar) - size) {
6808 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6809 "MMIO read beyond last register,"
6810 " offset=0x%"PRIx64", returning 0", addr);
6811
6812 return 0;
6813 }
6814
6815 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6816 addr != NVME_REG_CSTS) {
6817 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6818 return 0;
6819 }
6820
6821 /*
6822 * When PMRWBM bit 1 is set then read from
6823 * from PMRSTS should ensure prior writes
6824 * made it to persistent media
6825 */
6826 if (addr == NVME_REG_PMRSTS &&
6827 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6828 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6829 }
6830
6831 return ldn_le_p(ptr + addr, size);
6832 }
6833
6834 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6835 {
6836 uint32_t qid;
6837
6838 if (unlikely(addr & ((1 << 2) - 1))) {
6839 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6840 "doorbell write not 32-bit aligned,"
6841 " offset=0x%"PRIx64", ignoring", addr);
6842 return;
6843 }
6844
6845 if (((addr - 0x1000) >> 2) & 1) {
6846 /* Completion queue doorbell write */
6847
6848 uint16_t new_head = val & 0xffff;
6849 int start_sqs;
6850 NvmeCQueue *cq;
6851
6852 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6853 if (unlikely(nvme_check_cqid(n, qid))) {
6854 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6855 "completion queue doorbell write"
6856 " for nonexistent queue,"
6857 " sqid=%"PRIu32", ignoring", qid);
6858
6859 /*
6860 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6861 * an invalid value to the Submission Queue Tail Doorbell or
6862 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6863 * Request command is outstanding, then an asynchronous event is
6864 * posted to the Admin Completion Queue with a status code of
6865 * Invalid Doorbell Write Value."
6866 *
6867 * Also note that the spec includes the "Invalid Doorbell Register"
6868 * status code, but nowhere does it specify when to use it.
6869 * However, it seems reasonable to use it here in a similar
6870 * fashion.
6871 */
6872 if (n->outstanding_aers) {
6873 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6874 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6875 NVME_LOG_ERROR_INFO);
6876 }
6877
6878 return;
6879 }
6880
6881 cq = n->cq[qid];
6882 if (unlikely(new_head >= cq->size)) {
6883 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6884 "completion queue doorbell write value"
6885 " beyond queue size, sqid=%"PRIu32","
6886 " new_head=%"PRIu16", ignoring",
6887 qid, new_head);
6888
6889 if (n->outstanding_aers) {
6890 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6891 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6892 NVME_LOG_ERROR_INFO);
6893 }
6894
6895 return;
6896 }
6897
6898 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6899
6900 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6901 cq->head = new_head;
6902 if (!qid && n->dbbuf_enabled) {
6903 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6904 sizeof(cq->head));
6905 }
6906 if (start_sqs) {
6907 NvmeSQueue *sq;
6908 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6909 qemu_bh_schedule(sq->bh);
6910 }
6911 qemu_bh_schedule(cq->bh);
6912 }
6913
6914 if (cq->tail == cq->head) {
6915 if (cq->irq_enabled) {
6916 n->cq_pending--;
6917 }
6918
6919 nvme_irq_deassert(n, cq);
6920 }
6921 } else {
6922 /* Submission queue doorbell write */
6923
6924 uint16_t new_tail = val & 0xffff;
6925 NvmeSQueue *sq;
6926
6927 qid = (addr - 0x1000) >> 3;
6928 if (unlikely(nvme_check_sqid(n, qid))) {
6929 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6930 "submission queue doorbell write"
6931 " for nonexistent queue,"
6932 " sqid=%"PRIu32", ignoring", qid);
6933
6934 if (n->outstanding_aers) {
6935 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6936 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6937 NVME_LOG_ERROR_INFO);
6938 }
6939
6940 return;
6941 }
6942
6943 sq = n->sq[qid];
6944 if (unlikely(new_tail >= sq->size)) {
6945 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6946 "submission queue doorbell write value"
6947 " beyond queue size, sqid=%"PRIu32","
6948 " new_tail=%"PRIu16", ignoring",
6949 qid, new_tail);
6950
6951 if (n->outstanding_aers) {
6952 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6953 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6954 NVME_LOG_ERROR_INFO);
6955 }
6956
6957 return;
6958 }
6959
6960 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6961
6962 sq->tail = new_tail;
6963 if (!qid && n->dbbuf_enabled) {
6964 /*
6965 * The spec states "the host shall also update the controller's
6966 * corresponding doorbell property to match the value of that entry
6967 * in the Shadow Doorbell buffer."
6968 *
6969 * Since this context is currently a VM trap, we can safely enforce
6970 * the requirement from the device side in case the host is
6971 * misbehaving.
6972 *
6973 * Note, we shouldn't have to do this, but various drivers
6974 * including ones that run on Linux, are not updating Admin Queues,
6975 * so we can't trust reading it for an appropriate sq tail.
6976 */
6977 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6978 sizeof(sq->tail));
6979 }
6980
6981 qemu_bh_schedule(sq->bh);
6982 }
6983 }
6984
6985 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6986 unsigned size)
6987 {
6988 NvmeCtrl *n = (NvmeCtrl *)opaque;
6989
6990 trace_pci_nvme_mmio_write(addr, data, size);
6991
6992 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6993 addr != NVME_REG_CSTS) {
6994 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6995 return;
6996 }
6997
6998 if (addr < sizeof(n->bar)) {
6999 nvme_write_bar(n, addr, data, size);
7000 } else {
7001 nvme_process_db(n, addr, data);
7002 }
7003 }
7004
7005 static const MemoryRegionOps nvme_mmio_ops = {
7006 .read = nvme_mmio_read,
7007 .write = nvme_mmio_write,
7008 .endianness = DEVICE_LITTLE_ENDIAN,
7009 .impl = {
7010 .min_access_size = 2,
7011 .max_access_size = 8,
7012 },
7013 };
7014
7015 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7016 unsigned size)
7017 {
7018 NvmeCtrl *n = (NvmeCtrl *)opaque;
7019 stn_le_p(&n->cmb.buf[addr], size, data);
7020 }
7021
7022 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7023 {
7024 NvmeCtrl *n = (NvmeCtrl *)opaque;
7025 return ldn_le_p(&n->cmb.buf[addr], size);
7026 }
7027
7028 static const MemoryRegionOps nvme_cmb_ops = {
7029 .read = nvme_cmb_read,
7030 .write = nvme_cmb_write,
7031 .endianness = DEVICE_LITTLE_ENDIAN,
7032 .impl = {
7033 .min_access_size = 1,
7034 .max_access_size = 8,
7035 },
7036 };
7037
7038 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
7039 {
7040 NvmeParams *params = &n->params;
7041
7042 if (params->num_queues) {
7043 warn_report("num_queues is deprecated; please use max_ioqpairs "
7044 "instead");
7045
7046 params->max_ioqpairs = params->num_queues - 1;
7047 }
7048
7049 if (n->namespace.blkconf.blk && n->subsys) {
7050 error_setg(errp, "subsystem support is unavailable with legacy "
7051 "namespace ('drive' property)");
7052 return;
7053 }
7054
7055 if (params->max_ioqpairs < 1 ||
7056 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7057 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7058 NVME_MAX_IOQPAIRS);
7059 return;
7060 }
7061
7062 if (params->msix_qsize < 1 ||
7063 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7064 error_setg(errp, "msix_qsize must be between 1 and %d",
7065 PCI_MSIX_FLAGS_QSIZE + 1);
7066 return;
7067 }
7068
7069 if (!params->serial) {
7070 error_setg(errp, "serial property not set");
7071 return;
7072 }
7073
7074 if (n->pmr.dev) {
7075 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7076 error_setg(errp, "can't use already busy memdev: %s",
7077 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7078 return;
7079 }
7080
7081 if (!is_power_of_2(n->pmr.dev->size)) {
7082 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7083 return;
7084 }
7085
7086 host_memory_backend_set_mapped(n->pmr.dev, true);
7087 }
7088
7089 if (n->params.zasl > n->params.mdts) {
7090 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7091 "than or equal to mdts (Maximum Data Transfer Size)");
7092 return;
7093 }
7094
7095 if (!n->params.vsl) {
7096 error_setg(errp, "vsl must be non-zero");
7097 return;
7098 }
7099
7100 if (params->sriov_max_vfs) {
7101 if (!n->subsys) {
7102 error_setg(errp, "subsystem is required for the use of SR-IOV");
7103 return;
7104 }
7105
7106 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7107 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7108 NVME_MAX_VFS);
7109 return;
7110 }
7111
7112 if (params->cmb_size_mb) {
7113 error_setg(errp, "CMB is not supported with SR-IOV");
7114 return;
7115 }
7116
7117 if (n->pmr.dev) {
7118 error_setg(errp, "PMR is not supported with SR-IOV");
7119 return;
7120 }
7121
7122 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7123 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7124 " must be set for the use of SR-IOV");
7125 return;
7126 }
7127
7128 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7129 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7130 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7131 return;
7132 }
7133
7134 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7135 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7136 " greater than or equal to 2");
7137 return;
7138 }
7139
7140 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7141 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7142 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7143 return;
7144 }
7145
7146 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7147 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7148 " greater than or equal to 1");
7149 return;
7150 }
7151
7152 if (params->sriov_max_vi_per_vf &&
7153 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7154 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7155 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7156 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7157 return;
7158 }
7159
7160 if (params->sriov_max_vq_per_vf &&
7161 (params->sriov_max_vq_per_vf < 2 ||
7162 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7163 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7164 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7165 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7166 return;
7167 }
7168 }
7169 }
7170
7171 static void nvme_init_state(NvmeCtrl *n)
7172 {
7173 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7174 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7175 NvmeSecCtrlEntry *sctrl;
7176 uint8_t max_vfs;
7177 int i;
7178
7179 if (pci_is_vf(&n->parent_obj)) {
7180 sctrl = nvme_sctrl(n);
7181 max_vfs = 0;
7182 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7183 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7184 } else {
7185 max_vfs = n->params.sriov_max_vfs;
7186 n->conf_ioqpairs = n->params.max_ioqpairs;
7187 n->conf_msix_qsize = n->params.msix_qsize;
7188 }
7189
7190 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7191 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7192 n->temperature = NVME_TEMPERATURE;
7193 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7194 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7195 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7196 QTAILQ_INIT(&n->aer_queue);
7197
7198 list->numcntl = cpu_to_le16(max_vfs);
7199 for (i = 0; i < max_vfs; i++) {
7200 sctrl = &list->sec[i];
7201 sctrl->pcid = cpu_to_le16(n->cntlid);
7202 sctrl->vfn = cpu_to_le16(i + 1);
7203 }
7204
7205 cap->cntlid = cpu_to_le16(n->cntlid);
7206 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7207
7208 if (pci_is_vf(&n->parent_obj)) {
7209 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7210 } else {
7211 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7212 n->params.sriov_vq_flexible);
7213 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7214 cap->vqrfap = cap->vqfrt;
7215 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7216 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7217 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7218 cap->vqfrt / MAX(max_vfs, 1);
7219 }
7220
7221 if (pci_is_vf(&n->parent_obj)) {
7222 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7223 } else {
7224 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7225 n->params.sriov_vi_flexible);
7226 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7227 cap->virfap = cap->vifrt;
7228 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7229 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7230 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7231 cap->vifrt / MAX(max_vfs, 1);
7232 }
7233 }
7234
7235 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7236 {
7237 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7238 uint64_t cap = ldq_le_p(&n->bar.cap);
7239
7240 n->cmb.buf = g_malloc0(cmb_size);
7241 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7242 "nvme-cmb", cmb_size);
7243 pci_register_bar(pci_dev, NVME_CMB_BIR,
7244 PCI_BASE_ADDRESS_SPACE_MEMORY |
7245 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7246 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7247
7248 NVME_CAP_SET_CMBS(cap, 1);
7249 stq_le_p(&n->bar.cap, cap);
7250
7251 if (n->params.legacy_cmb) {
7252 nvme_cmb_enable_regs(n);
7253 n->cmb.cmse = true;
7254 }
7255 }
7256
7257 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7258 {
7259 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7260
7261 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7262 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7263 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7264 /* Turn on bit 1 support */
7265 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7266 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7267 stl_le_p(&n->bar.pmrcap, pmrcap);
7268
7269 pci_register_bar(pci_dev, NVME_PMR_BIR,
7270 PCI_BASE_ADDRESS_SPACE_MEMORY |
7271 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7272 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7273
7274 memory_region_set_enabled(&n->pmr.dev->mr, false);
7275 }
7276
7277 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7278 unsigned *msix_table_offset,
7279 unsigned *msix_pba_offset)
7280 {
7281 uint64_t bar_size, msix_table_size, msix_pba_size;
7282
7283 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7284 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7285
7286 if (msix_table_offset) {
7287 *msix_table_offset = bar_size;
7288 }
7289
7290 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7291 bar_size += msix_table_size;
7292 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7293
7294 if (msix_pba_offset) {
7295 *msix_pba_offset = bar_size;
7296 }
7297
7298 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7299 bar_size += msix_pba_size;
7300
7301 bar_size = pow2ceil(bar_size);
7302 return bar_size;
7303 }
7304
7305 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7306 {
7307 uint16_t vf_dev_id = n->params.use_intel_id ?
7308 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7309 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7310 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7311 le16_to_cpu(cap->vifrsm),
7312 NULL, NULL);
7313
7314 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7315 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7316 NVME_VF_OFFSET, NVME_VF_STRIDE);
7317
7318 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7319 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7320 }
7321
7322 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7323 {
7324 Error *err = NULL;
7325 int ret;
7326
7327 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7328 PCI_PM_SIZEOF, &err);
7329 if (err) {
7330 error_report_err(err);
7331 return ret;
7332 }
7333
7334 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7335 PCI_PM_CAP_VER_1_2);
7336 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7337 PCI_PM_CTRL_NO_SOFT_RESET);
7338 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7339 PCI_PM_CTRL_STATE_MASK);
7340
7341 return 0;
7342 }
7343
7344 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7345 {
7346 uint8_t *pci_conf = pci_dev->config;
7347 uint64_t bar_size;
7348 unsigned msix_table_offset, msix_pba_offset;
7349 int ret;
7350
7351 Error *err = NULL;
7352
7353 pci_conf[PCI_INTERRUPT_PIN] = 1;
7354 pci_config_set_prog_interface(pci_conf, 0x2);
7355
7356 if (n->params.use_intel_id) {
7357 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7358 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7359 } else {
7360 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7361 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7362 }
7363
7364 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7365 nvme_add_pm_capability(pci_dev, 0x60);
7366 pcie_endpoint_cap_init(pci_dev, 0x80);
7367 pcie_cap_flr_init(pci_dev);
7368 if (n->params.sriov_max_vfs) {
7369 pcie_ari_init(pci_dev, 0x100, 1);
7370 }
7371
7372 /* add one to max_ioqpairs to account for the admin queue pair */
7373 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7374 &msix_table_offset, &msix_pba_offset);
7375
7376 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7377 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7378 msix_table_offset);
7379 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7380
7381 if (pci_is_vf(pci_dev)) {
7382 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7383 } else {
7384 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7385 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7386 }
7387 ret = msix_init(pci_dev, n->params.msix_qsize,
7388 &n->bar0, 0, msix_table_offset,
7389 &n->bar0, 0, msix_pba_offset, 0, &err);
7390 if (ret < 0) {
7391 if (ret == -ENOTSUP) {
7392 warn_report_err(err);
7393 } else {
7394 error_propagate(errp, err);
7395 return ret;
7396 }
7397 }
7398
7399 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7400
7401 if (n->params.cmb_size_mb) {
7402 nvme_init_cmb(n, pci_dev);
7403 }
7404
7405 if (n->pmr.dev) {
7406 nvme_init_pmr(n, pci_dev);
7407 }
7408
7409 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7410 nvme_init_sriov(n, pci_dev, 0x120);
7411 }
7412
7413 return 0;
7414 }
7415
7416 static void nvme_init_subnqn(NvmeCtrl *n)
7417 {
7418 NvmeSubsystem *subsys = n->subsys;
7419 NvmeIdCtrl *id = &n->id_ctrl;
7420
7421 if (!subsys) {
7422 snprintf((char *)id->subnqn, sizeof(id->subnqn),
7423 "nqn.2019-08.org.qemu:%s", n->params.serial);
7424 } else {
7425 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7426 }
7427 }
7428
7429 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7430 {
7431 NvmeIdCtrl *id = &n->id_ctrl;
7432 uint8_t *pci_conf = pci_dev->config;
7433 uint64_t cap = ldq_le_p(&n->bar.cap);
7434 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7435
7436 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7437 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7438 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7439 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7440 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7441
7442 id->cntlid = cpu_to_le16(n->cntlid);
7443
7444 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7445 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7446
7447 id->rab = 6;
7448
7449 if (n->params.use_intel_id) {
7450 id->ieee[0] = 0xb3;
7451 id->ieee[1] = 0x02;
7452 id->ieee[2] = 0x00;
7453 } else {
7454 id->ieee[0] = 0x00;
7455 id->ieee[1] = 0x54;
7456 id->ieee[2] = 0x52;
7457 }
7458
7459 id->mdts = n->params.mdts;
7460 id->ver = cpu_to_le32(NVME_SPEC_VER);
7461 id->oacs =
7462 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7463 id->cntrltype = 0x1;
7464
7465 /*
7466 * Because the controller always completes the Abort command immediately,
7467 * there can never be more than one concurrently executing Abort command,
7468 * so this value is never used for anything. Note that there can easily be
7469 * many Abort commands in the queues, but they are not considered
7470 * "executing" until processed by nvme_abort.
7471 *
7472 * The specification recommends a value of 3 for Abort Command Limit (four
7473 * concurrently outstanding Abort commands), so lets use that though it is
7474 * inconsequential.
7475 */
7476 id->acl = 3;
7477 id->aerl = n->params.aerl;
7478 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7479 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7480
7481 /* recommended default value (~70 C) */
7482 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7483 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7484
7485 id->sqes = (0x6 << 4) | 0x6;
7486 id->cqes = (0x4 << 4) | 0x4;
7487 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7488 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7489 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7490 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7491
7492 /*
7493 * NOTE: If this device ever supports a command set that does NOT use 0x0
7494 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7495 * should probably be removed.
7496 *
7497 * See comment in nvme_io_cmd.
7498 */
7499 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7500
7501 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7502 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7503
7504 nvme_init_subnqn(n);
7505
7506 id->psd[0].mp = cpu_to_le16(0x9c4);
7507 id->psd[0].enlat = cpu_to_le32(0x10);
7508 id->psd[0].exlat = cpu_to_le32(0x4);
7509
7510 if (n->subsys) {
7511 id->cmic |= NVME_CMIC_MULTI_CTRL;
7512 }
7513
7514 NVME_CAP_SET_MQES(cap, 0x7ff);
7515 NVME_CAP_SET_CQR(cap, 1);
7516 NVME_CAP_SET_TO(cap, 0xf);
7517 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7518 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7519 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7520 NVME_CAP_SET_MPSMAX(cap, 4);
7521 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7522 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7523 stq_le_p(&n->bar.cap, cap);
7524
7525 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7526 n->bar.intmc = n->bar.intms = 0;
7527
7528 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7529 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7530 }
7531 }
7532
7533 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7534 {
7535 int cntlid;
7536
7537 if (!n->subsys) {
7538 return 0;
7539 }
7540
7541 cntlid = nvme_subsys_register_ctrl(n, errp);
7542 if (cntlid < 0) {
7543 return -1;
7544 }
7545
7546 n->cntlid = cntlid;
7547
7548 return 0;
7549 }
7550
7551 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7552 {
7553 uint32_t nsid = ns->params.nsid;
7554 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7555
7556 n->namespaces[nsid] = ns;
7557 ns->attached++;
7558
7559 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7560 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7561 }
7562
7563 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7564 {
7565 NvmeCtrl *n = NVME(pci_dev);
7566 NvmeNamespace *ns;
7567 Error *local_err = NULL;
7568 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7569
7570 if (pci_is_vf(pci_dev)) {
7571 /*
7572 * VFs derive settings from the parent. PF's lifespan exceeds
7573 * that of VF's, so it's safe to share params.serial.
7574 */
7575 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7576 n->subsys = pn->subsys;
7577 }
7578
7579 nvme_check_constraints(n, &local_err);
7580 if (local_err) {
7581 error_propagate(errp, local_err);
7582 return;
7583 }
7584
7585 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7586 &pci_dev->qdev, n->parent_obj.qdev.id);
7587
7588 if (nvme_init_subsys(n, errp)) {
7589 error_propagate(errp, local_err);
7590 return;
7591 }
7592 nvme_init_state(n);
7593 if (nvme_init_pci(n, pci_dev, errp)) {
7594 return;
7595 }
7596 nvme_init_ctrl(n, pci_dev);
7597
7598 /* setup a namespace if the controller drive property was given */
7599 if (n->namespace.blkconf.blk) {
7600 ns = &n->namespace;
7601 ns->params.nsid = 1;
7602
7603 if (nvme_ns_setup(ns, errp)) {
7604 return;
7605 }
7606
7607 nvme_attach_ns(n, ns);
7608 }
7609 }
7610
7611 static void nvme_exit(PCIDevice *pci_dev)
7612 {
7613 NvmeCtrl *n = NVME(pci_dev);
7614 NvmeNamespace *ns;
7615 int i;
7616
7617 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7618
7619 if (n->subsys) {
7620 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7621 ns = nvme_ns(n, i);
7622 if (ns) {
7623 ns->attached--;
7624 }
7625 }
7626
7627 nvme_subsys_unregister_ctrl(n->subsys, n);
7628 }
7629
7630 g_free(n->cq);
7631 g_free(n->sq);
7632 g_free(n->aer_reqs);
7633
7634 if (n->params.cmb_size_mb) {
7635 g_free(n->cmb.buf);
7636 }
7637
7638 if (n->pmr.dev) {
7639 host_memory_backend_set_mapped(n->pmr.dev, false);
7640 }
7641
7642 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7643 pcie_sriov_pf_exit(pci_dev);
7644 }
7645
7646 msix_uninit(pci_dev, &n->bar0, &n->bar0);
7647 memory_region_del_subregion(&n->bar0, &n->iomem);
7648 }
7649
7650 static Property nvme_props[] = {
7651 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7652 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7653 HostMemoryBackend *),
7654 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7655 NvmeSubsystem *),
7656 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7657 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7658 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7659 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7660 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7661 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7662 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7663 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7664 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7665 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7666 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7667 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7668 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7669 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7670 params.auto_transition_zones, true),
7671 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7672 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7673 params.sriov_vq_flexible, 0),
7674 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7675 params.sriov_vi_flexible, 0),
7676 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7677 params.sriov_max_vi_per_vf, 0),
7678 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7679 params.sriov_max_vq_per_vf, 0),
7680 DEFINE_PROP_END_OF_LIST(),
7681 };
7682
7683 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7684 void *opaque, Error **errp)
7685 {
7686 NvmeCtrl *n = NVME(obj);
7687 uint8_t value = n->smart_critical_warning;
7688
7689 visit_type_uint8(v, name, &value, errp);
7690 }
7691
7692 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7693 void *opaque, Error **errp)
7694 {
7695 NvmeCtrl *n = NVME(obj);
7696 uint8_t value, old_value, cap = 0, index, event;
7697
7698 if (!visit_type_uint8(v, name, &value, errp)) {
7699 return;
7700 }
7701
7702 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7703 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7704 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7705 cap |= NVME_SMART_PMR_UNRELIABLE;
7706 }
7707
7708 if ((value & cap) != value) {
7709 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7710 value & ~cap);
7711 return;
7712 }
7713
7714 old_value = n->smart_critical_warning;
7715 n->smart_critical_warning = value;
7716
7717 /* only inject new bits of smart critical warning */
7718 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7719 event = 1 << index;
7720 if (value & ~old_value & event)
7721 nvme_smart_event(n, event);
7722 }
7723 }
7724
7725 static void nvme_pci_reset(DeviceState *qdev)
7726 {
7727 PCIDevice *pci_dev = PCI_DEVICE(qdev);
7728 NvmeCtrl *n = NVME(pci_dev);
7729
7730 trace_pci_nvme_pci_reset();
7731 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7732 }
7733
7734 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7735 uint32_t val, int len)
7736 {
7737 NvmeCtrl *n = NVME(dev);
7738 NvmeSecCtrlEntry *sctrl;
7739 uint16_t sriov_cap = dev->exp.sriov_cap;
7740 uint32_t off = address - sriov_cap;
7741 int i, num_vfs;
7742
7743 if (!sriov_cap) {
7744 return;
7745 }
7746
7747 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7748 if (!(val & PCI_SRIOV_CTRL_VFE)) {
7749 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7750 for (i = 0; i < num_vfs; i++) {
7751 sctrl = &n->sec_ctrl_list.sec[i];
7752 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7753 }
7754 }
7755 }
7756 }
7757
7758 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7759 uint32_t val, int len)
7760 {
7761 nvme_sriov_pre_write_ctrl(dev, address, val, len);
7762 pci_default_write_config(dev, address, val, len);
7763 pcie_cap_flr_write_config(dev, address, val, len);
7764 }
7765
7766 static const VMStateDescription nvme_vmstate = {
7767 .name = "nvme",
7768 .unmigratable = 1,
7769 };
7770
7771 static void nvme_class_init(ObjectClass *oc, void *data)
7772 {
7773 DeviceClass *dc = DEVICE_CLASS(oc);
7774 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7775
7776 pc->realize = nvme_realize;
7777 pc->config_write = nvme_pci_write_config;
7778 pc->exit = nvme_exit;
7779 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7780 pc->revision = 2;
7781
7782 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7783 dc->desc = "Non-Volatile Memory Express";
7784 device_class_set_props(dc, nvme_props);
7785 dc->vmsd = &nvme_vmstate;
7786 dc->reset = nvme_pci_reset;
7787 }
7788
7789 static void nvme_instance_init(Object *obj)
7790 {
7791 NvmeCtrl *n = NVME(obj);
7792
7793 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7794 "bootindex", "/namespace@1,0",
7795 DEVICE(obj));
7796
7797 object_property_add(obj, "smart_critical_warning", "uint8",
7798 nvme_get_smart_warning,
7799 nvme_set_smart_warning, NULL, NULL);
7800 }
7801
7802 static const TypeInfo nvme_info = {
7803 .name = TYPE_NVME,
7804 .parent = TYPE_PCI_DEVICE,
7805 .instance_size = sizeof(NvmeCtrl),
7806 .instance_init = nvme_instance_init,
7807 .class_init = nvme_class_init,
7808 .interfaces = (InterfaceInfo[]) {
7809 { INTERFACE_PCIE_DEVICE },
7810 { }
7811 },
7812 };
7813
7814 static const TypeInfo nvme_bus_info = {
7815 .name = TYPE_NVME_BUS,
7816 .parent = TYPE_BUS,
7817 .instance_size = sizeof(NvmeBus),
7818 };
7819
7820 static void nvme_register_types(void)
7821 {
7822 type_register_static(&nvme_info);
7823 type_register_static(&nvme_bus_info);
7824 }
7825
7826 type_init(nvme_register_types)