]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/nvram/fw_cfg.c
Include hw/hw.h exactly where needed
[thirdparty/qemu.git] / hw / nvram / fw_cfg.c
1 /*
2 * QEMU Firmware configuration device emulation
3 *
4 * Copyright (c) 2008 Gleb Natapov
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/sysbus.h"
33 #include "migration/qemu-file-types.h"
34 #include "migration/vmstate.h"
35 #include "trace.h"
36 #include "qemu/error-report.h"
37 #include "qemu/option.h"
38 #include "qemu/config-file.h"
39 #include "qemu/cutils.h"
40 #include "qapi/error.h"
41
42 #define FW_CFG_FILE_SLOTS_DFLT 0x20
43
44 /* FW_CFG_VERSION bits */
45 #define FW_CFG_VERSION 0x01
46 #define FW_CFG_VERSION_DMA 0x02
47
48 /* FW_CFG_DMA_CONTROL bits */
49 #define FW_CFG_DMA_CTL_ERROR 0x01
50 #define FW_CFG_DMA_CTL_READ 0x02
51 #define FW_CFG_DMA_CTL_SKIP 0x04
52 #define FW_CFG_DMA_CTL_SELECT 0x08
53 #define FW_CFG_DMA_CTL_WRITE 0x10
54
55 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
56
57 struct FWCfgEntry {
58 uint32_t len;
59 bool allow_write;
60 uint8_t *data;
61 void *callback_opaque;
62 FWCfgCallback select_cb;
63 FWCfgWriteCallback write_cb;
64 };
65
66 /**
67 * key_name:
68 *
69 * @key: The uint16 selector key.
70 *
71 * Returns: The stringified name if the selector refers to a well-known
72 * numerically defined item, or NULL on key lookup failure.
73 */
74 static const char *key_name(uint16_t key)
75 {
76 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
77 [FW_CFG_SIGNATURE] = "signature",
78 [FW_CFG_ID] = "id",
79 [FW_CFG_UUID] = "uuid",
80 [FW_CFG_RAM_SIZE] = "ram_size",
81 [FW_CFG_NOGRAPHIC] = "nographic",
82 [FW_CFG_NB_CPUS] = "nb_cpus",
83 [FW_CFG_MACHINE_ID] = "machine_id",
84 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
85 [FW_CFG_KERNEL_SIZE] = "kernel_size",
86 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
87 [FW_CFG_INITRD_ADDR] = "initrd_addr",
88 [FW_CFG_INITRD_SIZE] = "initdr_size",
89 [FW_CFG_BOOT_DEVICE] = "boot_device",
90 [FW_CFG_NUMA] = "numa",
91 [FW_CFG_BOOT_MENU] = "boot_menu",
92 [FW_CFG_MAX_CPUS] = "max_cpus",
93 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
94 [FW_CFG_KERNEL_DATA] = "kernel_data",
95 [FW_CFG_INITRD_DATA] = "initrd_data",
96 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
97 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
98 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
99 [FW_CFG_SETUP_ADDR] = "setup_addr",
100 [FW_CFG_SETUP_SIZE] = "setup_size",
101 [FW_CFG_SETUP_DATA] = "setup_data",
102 [FW_CFG_FILE_DIR] = "file_dir",
103 };
104
105 if (key & FW_CFG_ARCH_LOCAL) {
106 return fw_cfg_arch_key_name(key);
107 }
108 if (key < FW_CFG_FILE_FIRST) {
109 return fw_cfg_wellknown_keys[key];
110 }
111
112 return NULL;
113 }
114
115 static inline const char *trace_key_name(uint16_t key)
116 {
117 const char *name = key_name(key);
118
119 return name ? name : "unknown";
120 }
121
122 #define JPG_FILE 0
123 #define BMP_FILE 1
124
125 static char *read_splashfile(char *filename, gsize *file_sizep,
126 int *file_typep)
127 {
128 GError *err = NULL;
129 gchar *content;
130 int file_type;
131 unsigned int filehead;
132 int bmp_bpp;
133
134 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
135 error_report("failed to read splash file '%s': %s",
136 filename, err->message);
137 g_error_free(err);
138 return NULL;
139 }
140
141 /* check file size */
142 if (*file_sizep < 30) {
143 goto error;
144 }
145
146 /* check magic ID */
147 filehead = lduw_le_p(content);
148 if (filehead == 0xd8ff) {
149 file_type = JPG_FILE;
150 } else if (filehead == 0x4d42) {
151 file_type = BMP_FILE;
152 } else {
153 goto error;
154 }
155
156 /* check BMP bpp */
157 if (file_type == BMP_FILE) {
158 bmp_bpp = lduw_le_p(&content[28]);
159 if (bmp_bpp != 24) {
160 goto error;
161 }
162 }
163
164 /* return values */
165 *file_typep = file_type;
166
167 return content;
168
169 error:
170 error_report("splash file '%s' format not recognized; must be JPEG "
171 "or 24 bit BMP", filename);
172 g_free(content);
173 return NULL;
174 }
175
176 static void fw_cfg_bootsplash(FWCfgState *s)
177 {
178 const char *boot_splash_filename = NULL;
179 const char *boot_splash_time = NULL;
180 char *filename, *file_data;
181 gsize file_size;
182 int file_type;
183
184 /* get user configuration */
185 QemuOptsList *plist = qemu_find_opts("boot-opts");
186 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
187 boot_splash_filename = qemu_opt_get(opts, "splash");
188 boot_splash_time = qemu_opt_get(opts, "splash-time");
189
190 /* insert splash time if user configurated */
191 if (boot_splash_time) {
192 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
193 uint16_t bst_le16;
194
195 /* validate the input */
196 if (bst_val < 0 || bst_val > 0xffff) {
197 error_report("splash-time is invalid,"
198 "it should be a value between 0 and 65535");
199 exit(1);
200 }
201 /* use little endian format */
202 bst_le16 = cpu_to_le16(bst_val);
203 fw_cfg_add_file(s, "etc/boot-menu-wait",
204 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
205 }
206
207 /* insert splash file if user configurated */
208 if (boot_splash_filename) {
209 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
210 if (filename == NULL) {
211 error_report("failed to find file '%s'", boot_splash_filename);
212 return;
213 }
214
215 /* loading file data */
216 file_data = read_splashfile(filename, &file_size, &file_type);
217 if (file_data == NULL) {
218 g_free(filename);
219 return;
220 }
221 g_free(boot_splash_filedata);
222 boot_splash_filedata = (uint8_t *)file_data;
223
224 /* insert data */
225 if (file_type == JPG_FILE) {
226 fw_cfg_add_file(s, "bootsplash.jpg",
227 boot_splash_filedata, file_size);
228 } else {
229 fw_cfg_add_file(s, "bootsplash.bmp",
230 boot_splash_filedata, file_size);
231 }
232 g_free(filename);
233 }
234 }
235
236 static void fw_cfg_reboot(FWCfgState *s)
237 {
238 const char *reboot_timeout = NULL;
239 int64_t rt_val = -1;
240 uint32_t rt_le32;
241
242 /* get user configuration */
243 QemuOptsList *plist = qemu_find_opts("boot-opts");
244 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
245 reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
246
247 if (reboot_timeout) {
248 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
249 /* validate the input */
250 if (rt_val < 0 || rt_val > 0xffff) {
251 error_report("reboot timeout is invalid,"
252 "it should be a value between 0 and 65535");
253 exit(1);
254 }
255 }
256
257 rt_le32 = cpu_to_le32(rt_val);
258 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
259 }
260
261 static void fw_cfg_write(FWCfgState *s, uint8_t value)
262 {
263 /* nothing, write support removed in QEMU v2.4+ */
264 }
265
266 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
267 {
268 return s->file_slots;
269 }
270
271 /* Note: this function returns an exclusive limit. */
272 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
273 {
274 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
275 }
276
277 static int fw_cfg_select(FWCfgState *s, uint16_t key)
278 {
279 int arch, ret;
280 FWCfgEntry *e;
281
282 s->cur_offset = 0;
283 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
284 s->cur_entry = FW_CFG_INVALID;
285 ret = 0;
286 } else {
287 s->cur_entry = key;
288 ret = 1;
289 /* entry successfully selected, now run callback if present */
290 arch = !!(key & FW_CFG_ARCH_LOCAL);
291 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
292 if (e->select_cb) {
293 e->select_cb(e->callback_opaque);
294 }
295 }
296
297 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
298 return ret;
299 }
300
301 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
302 {
303 FWCfgState *s = opaque;
304 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
305 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
306 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
307 uint64_t value = 0;
308
309 assert(size > 0 && size <= sizeof(value));
310 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
311 /* The least significant 'size' bytes of the return value are
312 * expected to contain a string preserving portion of the item
313 * data, padded with zeros on the right in case we run out early.
314 * In technical terms, we're composing the host-endian representation
315 * of the big endian interpretation of the fw_cfg string.
316 */
317 do {
318 value = (value << 8) | e->data[s->cur_offset++];
319 } while (--size && s->cur_offset < e->len);
320 /* If size is still not zero, we *did* run out early, so continue
321 * left-shifting, to add the appropriate number of padding zeros
322 * on the right.
323 */
324 value <<= 8 * size;
325 }
326
327 trace_fw_cfg_read(s, value);
328 return value;
329 }
330
331 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
332 uint64_t value, unsigned size)
333 {
334 FWCfgState *s = opaque;
335 unsigned i = size;
336
337 do {
338 fw_cfg_write(s, value >> (8 * --i));
339 } while (i);
340 }
341
342 static void fw_cfg_dma_transfer(FWCfgState *s)
343 {
344 dma_addr_t len;
345 FWCfgDmaAccess dma;
346 int arch;
347 FWCfgEntry *e;
348 int read = 0, write = 0;
349 dma_addr_t dma_addr;
350
351 /* Reset the address before the next access */
352 dma_addr = s->dma_addr;
353 s->dma_addr = 0;
354
355 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
356 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
357 FW_CFG_DMA_CTL_ERROR);
358 return;
359 }
360
361 dma.address = be64_to_cpu(dma.address);
362 dma.length = be32_to_cpu(dma.length);
363 dma.control = be32_to_cpu(dma.control);
364
365 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
366 fw_cfg_select(s, dma.control >> 16);
367 }
368
369 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
370 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
371 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
372
373 if (dma.control & FW_CFG_DMA_CTL_READ) {
374 read = 1;
375 write = 0;
376 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
377 read = 0;
378 write = 1;
379 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
380 read = 0;
381 write = 0;
382 } else {
383 dma.length = 0;
384 }
385
386 dma.control = 0;
387
388 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
389 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
390 s->cur_offset >= e->len) {
391 len = dma.length;
392
393 /* If the access is not a read access, it will be a skip access,
394 * tested before.
395 */
396 if (read) {
397 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
398 dma.control |= FW_CFG_DMA_CTL_ERROR;
399 }
400 }
401 if (write) {
402 dma.control |= FW_CFG_DMA_CTL_ERROR;
403 }
404 } else {
405 if (dma.length <= (e->len - s->cur_offset)) {
406 len = dma.length;
407 } else {
408 len = (e->len - s->cur_offset);
409 }
410
411 /* If the access is not a read access, it will be a skip access,
412 * tested before.
413 */
414 if (read) {
415 if (dma_memory_write(s->dma_as, dma.address,
416 &e->data[s->cur_offset], len)) {
417 dma.control |= FW_CFG_DMA_CTL_ERROR;
418 }
419 }
420 if (write) {
421 if (!e->allow_write ||
422 len != dma.length ||
423 dma_memory_read(s->dma_as, dma.address,
424 &e->data[s->cur_offset], len)) {
425 dma.control |= FW_CFG_DMA_CTL_ERROR;
426 } else if (e->write_cb) {
427 e->write_cb(e->callback_opaque, s->cur_offset, len);
428 }
429 }
430
431 s->cur_offset += len;
432 }
433
434 dma.address += len;
435 dma.length -= len;
436
437 }
438
439 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
440 dma.control);
441
442 trace_fw_cfg_read(s, 0);
443 }
444
445 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
446 unsigned size)
447 {
448 /* Return a signature value (and handle various read sizes) */
449 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
450 }
451
452 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
453 uint64_t value, unsigned size)
454 {
455 FWCfgState *s = opaque;
456
457 if (size == 4) {
458 if (addr == 0) {
459 /* FWCfgDmaAccess high address */
460 s->dma_addr = value << 32;
461 } else if (addr == 4) {
462 /* FWCfgDmaAccess low address */
463 s->dma_addr |= value;
464 fw_cfg_dma_transfer(s);
465 }
466 } else if (size == 8 && addr == 0) {
467 s->dma_addr = value;
468 fw_cfg_dma_transfer(s);
469 }
470 }
471
472 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
473 unsigned size, bool is_write,
474 MemTxAttrs attrs)
475 {
476 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
477 (size == 8 && addr == 0));
478 }
479
480 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
481 unsigned size, bool is_write,
482 MemTxAttrs attrs)
483 {
484 return addr == 0;
485 }
486
487 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
488 {
489 return 0;
490 }
491
492 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
493 uint64_t value, unsigned size)
494 {
495 fw_cfg_select(opaque, (uint16_t)value);
496 }
497
498 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
499 unsigned size, bool is_write,
500 MemTxAttrs attrs)
501 {
502 return is_write && size == 2;
503 }
504
505 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
506 uint64_t value, unsigned size)
507 {
508 switch (size) {
509 case 1:
510 fw_cfg_write(opaque, (uint8_t)value);
511 break;
512 case 2:
513 fw_cfg_select(opaque, (uint16_t)value);
514 break;
515 }
516 }
517
518 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
519 unsigned size, bool is_write,
520 MemTxAttrs attrs)
521 {
522 return (size == 1) || (is_write && size == 2);
523 }
524
525 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
526 .read = fw_cfg_ctl_mem_read,
527 .write = fw_cfg_ctl_mem_write,
528 .endianness = DEVICE_BIG_ENDIAN,
529 .valid.accepts = fw_cfg_ctl_mem_valid,
530 };
531
532 static const MemoryRegionOps fw_cfg_data_mem_ops = {
533 .read = fw_cfg_data_read,
534 .write = fw_cfg_data_mem_write,
535 .endianness = DEVICE_BIG_ENDIAN,
536 .valid = {
537 .min_access_size = 1,
538 .max_access_size = 1,
539 .accepts = fw_cfg_data_mem_valid,
540 },
541 };
542
543 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
544 .read = fw_cfg_data_read,
545 .write = fw_cfg_comb_write,
546 .endianness = DEVICE_LITTLE_ENDIAN,
547 .valid.accepts = fw_cfg_comb_valid,
548 };
549
550 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
551 .read = fw_cfg_dma_mem_read,
552 .write = fw_cfg_dma_mem_write,
553 .endianness = DEVICE_BIG_ENDIAN,
554 .valid.accepts = fw_cfg_dma_mem_valid,
555 .valid.max_access_size = 8,
556 .impl.max_access_size = 8,
557 };
558
559 static void fw_cfg_reset(DeviceState *d)
560 {
561 FWCfgState *s = FW_CFG(d);
562
563 /* we never register a read callback for FW_CFG_SIGNATURE */
564 fw_cfg_select(s, FW_CFG_SIGNATURE);
565 }
566
567 /* Save restore 32 bit int as uint16_t
568 This is a Big hack, but it is how the old state did it.
569 Or we broke compatibility in the state, or we can't use struct tm
570 */
571
572 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
573 const VMStateField *field)
574 {
575 uint32_t *v = pv;
576 *v = qemu_get_be16(f);
577 return 0;
578 }
579
580 static int put_unused(QEMUFile *f, void *pv, size_t size,
581 const VMStateField *field, QJSON *vmdesc)
582 {
583 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
584 fprintf(stderr, "This functions shouldn't be called.\n");
585
586 return 0;
587 }
588
589 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
590 .name = "int32_as_uint16",
591 .get = get_uint32_as_uint16,
592 .put = put_unused,
593 };
594
595 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
596 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
597
598
599 static bool is_version_1(void *opaque, int version_id)
600 {
601 return version_id == 1;
602 }
603
604 bool fw_cfg_dma_enabled(void *opaque)
605 {
606 FWCfgState *s = opaque;
607
608 return s->dma_enabled;
609 }
610
611 static const VMStateDescription vmstate_fw_cfg_dma = {
612 .name = "fw_cfg/dma",
613 .needed = fw_cfg_dma_enabled,
614 .fields = (VMStateField[]) {
615 VMSTATE_UINT64(dma_addr, FWCfgState),
616 VMSTATE_END_OF_LIST()
617 },
618 };
619
620 static const VMStateDescription vmstate_fw_cfg = {
621 .name = "fw_cfg",
622 .version_id = 2,
623 .minimum_version_id = 1,
624 .fields = (VMStateField[]) {
625 VMSTATE_UINT16(cur_entry, FWCfgState),
626 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
627 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
628 VMSTATE_END_OF_LIST()
629 },
630 .subsections = (const VMStateDescription*[]) {
631 &vmstate_fw_cfg_dma,
632 NULL,
633 }
634 };
635
636 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
637 FWCfgCallback select_cb,
638 FWCfgWriteCallback write_cb,
639 void *callback_opaque,
640 void *data, size_t len,
641 bool read_only)
642 {
643 int arch = !!(key & FW_CFG_ARCH_LOCAL);
644
645 key &= FW_CFG_ENTRY_MASK;
646
647 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
648 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
649
650 s->entries[arch][key].data = data;
651 s->entries[arch][key].len = (uint32_t)len;
652 s->entries[arch][key].select_cb = select_cb;
653 s->entries[arch][key].write_cb = write_cb;
654 s->entries[arch][key].callback_opaque = callback_opaque;
655 s->entries[arch][key].allow_write = !read_only;
656 }
657
658 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
659 void *data, size_t len)
660 {
661 void *ptr;
662 int arch = !!(key & FW_CFG_ARCH_LOCAL);
663
664 key &= FW_CFG_ENTRY_MASK;
665
666 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
667
668 /* return the old data to the function caller, avoid memory leak */
669 ptr = s->entries[arch][key].data;
670 s->entries[arch][key].data = data;
671 s->entries[arch][key].len = len;
672 s->entries[arch][key].callback_opaque = NULL;
673 s->entries[arch][key].allow_write = false;
674
675 return ptr;
676 }
677
678 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
679 {
680 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
681 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
682 }
683
684 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
685 {
686 size_t sz = strlen(value) + 1;
687
688 trace_fw_cfg_add_string(key, trace_key_name(key), value);
689 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
690 }
691
692 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
693 {
694 uint16_t *copy;
695
696 copy = g_malloc(sizeof(value));
697 *copy = cpu_to_le16(value);
698 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
699 fw_cfg_add_bytes(s, key, copy, sizeof(value));
700 }
701
702 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
703 {
704 uint16_t *copy, *old;
705
706 copy = g_malloc(sizeof(value));
707 *copy = cpu_to_le16(value);
708 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
709 g_free(old);
710 }
711
712 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
713 {
714 uint32_t *copy;
715
716 copy = g_malloc(sizeof(value));
717 *copy = cpu_to_le32(value);
718 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
719 fw_cfg_add_bytes(s, key, copy, sizeof(value));
720 }
721
722 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
723 {
724 uint64_t *copy;
725
726 copy = g_malloc(sizeof(value));
727 *copy = cpu_to_le64(value);
728 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
729 fw_cfg_add_bytes(s, key, copy, sizeof(value));
730 }
731
732 void fw_cfg_set_order_override(FWCfgState *s, int order)
733 {
734 assert(s->fw_cfg_order_override == 0);
735 s->fw_cfg_order_override = order;
736 }
737
738 void fw_cfg_reset_order_override(FWCfgState *s)
739 {
740 assert(s->fw_cfg_order_override != 0);
741 s->fw_cfg_order_override = 0;
742 }
743
744 /*
745 * This is the legacy order list. For legacy systems, files are in
746 * the fw_cfg in the order defined below, by the "order" value. Note
747 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
748 * specific area, but there may be more than one and they occur in the
749 * order that the user specifies them on the command line. Those are
750 * handled in a special manner, using the order override above.
751 *
752 * For non-legacy, the files are sorted by filename to avoid this kind
753 * of complexity in the future.
754 *
755 * This is only for x86, other arches don't implement versioning so
756 * they won't set legacy mode.
757 */
758 static struct {
759 const char *name;
760 int order;
761 } fw_cfg_order[] = {
762 { "etc/boot-menu-wait", 10 },
763 { "bootsplash.jpg", 11 },
764 { "bootsplash.bmp", 12 },
765 { "etc/boot-fail-wait", 15 },
766 { "etc/smbios/smbios-tables", 20 },
767 { "etc/smbios/smbios-anchor", 30 },
768 { "etc/e820", 40 },
769 { "etc/reserved-memory-end", 50 },
770 { "genroms/kvmvapic.bin", 55 },
771 { "genroms/linuxboot.bin", 60 },
772 { }, /* VGA ROMs from pc_vga_init come here, 70. */
773 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
774 { "etc/system-states", 90 },
775 { }, /* User ROMs come here, 100. */
776 { }, /* Device FW comes here, 110. */
777 { "etc/extra-pci-roots", 120 },
778 { "etc/acpi/tables", 130 },
779 { "etc/table-loader", 140 },
780 { "etc/tpm/log", 150 },
781 { "etc/acpi/rsdp", 160 },
782 { "bootorder", 170 },
783
784 #define FW_CFG_ORDER_OVERRIDE_LAST 200
785 };
786
787 static int get_fw_cfg_order(FWCfgState *s, const char *name)
788 {
789 int i;
790
791 if (s->fw_cfg_order_override > 0) {
792 return s->fw_cfg_order_override;
793 }
794
795 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
796 if (fw_cfg_order[i].name == NULL) {
797 continue;
798 }
799
800 if (strcmp(name, fw_cfg_order[i].name) == 0) {
801 return fw_cfg_order[i].order;
802 }
803 }
804
805 /* Stick unknown stuff at the end. */
806 warn_report("Unknown firmware file in legacy mode: %s", name);
807 return FW_CFG_ORDER_OVERRIDE_LAST;
808 }
809
810 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
811 FWCfgCallback select_cb,
812 FWCfgWriteCallback write_cb,
813 void *callback_opaque,
814 void *data, size_t len, bool read_only)
815 {
816 int i, index, count;
817 size_t dsize;
818 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
819 int order = 0;
820
821 if (!s->files) {
822 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
823 s->files = g_malloc0(dsize);
824 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
825 }
826
827 count = be32_to_cpu(s->files->count);
828 assert(count < fw_cfg_file_slots(s));
829
830 /* Find the insertion point. */
831 if (mc->legacy_fw_cfg_order) {
832 /*
833 * Sort by order. For files with the same order, we keep them
834 * in the sequence in which they were added.
835 */
836 order = get_fw_cfg_order(s, filename);
837 for (index = count;
838 index > 0 && order < s->entry_order[index - 1];
839 index--);
840 } else {
841 /* Sort by file name. */
842 for (index = count;
843 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
844 index--);
845 }
846
847 /*
848 * Move all the entries from the index point and after down one
849 * to create a slot for the new entry. Because calculations are
850 * being done with the index, make it so that "i" is the current
851 * index and "i - 1" is the one being copied from, thus the
852 * unusual start and end in the for statement.
853 */
854 for (i = count; i > index; i--) {
855 s->files->f[i] = s->files->f[i - 1];
856 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
857 s->entries[0][FW_CFG_FILE_FIRST + i] =
858 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
859 s->entry_order[i] = s->entry_order[i - 1];
860 }
861
862 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
863 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
864
865 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
866 for (i = 0; i <= count; i++) {
867 if (i != index &&
868 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
869 error_report("duplicate fw_cfg file name: %s",
870 s->files->f[index].name);
871 exit(1);
872 }
873 }
874
875 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
876 select_cb, write_cb,
877 callback_opaque, data, len,
878 read_only);
879
880 s->files->f[index].size = cpu_to_be32(len);
881 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
882 s->entry_order[index] = order;
883 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
884
885 s->files->count = cpu_to_be32(count+1);
886 }
887
888 void fw_cfg_add_file(FWCfgState *s, const char *filename,
889 void *data, size_t len)
890 {
891 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
892 }
893
894 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
895 void *data, size_t len)
896 {
897 int i, index;
898 void *ptr = NULL;
899
900 assert(s->files);
901
902 index = be32_to_cpu(s->files->count);
903
904 for (i = 0; i < index; i++) {
905 if (strcmp(filename, s->files->f[i].name) == 0) {
906 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
907 data, len);
908 s->files->f[i].size = cpu_to_be32(len);
909 return ptr;
910 }
911 }
912
913 assert(index < fw_cfg_file_slots(s));
914
915 /* add new one */
916 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
917 return NULL;
918 }
919
920 static void fw_cfg_machine_reset(void *opaque)
921 {
922 void *ptr;
923 size_t len;
924 FWCfgState *s = opaque;
925 char *bootindex = get_boot_devices_list(&len);
926
927 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
928 g_free(ptr);
929 }
930
931 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
932 {
933 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
934 qemu_register_reset(fw_cfg_machine_reset, s);
935 }
936
937
938
939 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
940 {
941 FWCfgState *s = FW_CFG(dev);
942 MachineState *machine = MACHINE(qdev_get_machine());
943 uint32_t version = FW_CFG_VERSION;
944
945 if (!fw_cfg_find()) {
946 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
947 return;
948 }
949
950 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
951 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
952 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
953 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
954 fw_cfg_bootsplash(s);
955 fw_cfg_reboot(s);
956
957 if (s->dma_enabled) {
958 version |= FW_CFG_VERSION_DMA;
959 }
960
961 fw_cfg_add_i32(s, FW_CFG_ID, version);
962
963 s->machine_ready.notify = fw_cfg_machine_ready;
964 qemu_add_machine_init_done_notifier(&s->machine_ready);
965 }
966
967 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
968 AddressSpace *dma_as)
969 {
970 DeviceState *dev;
971 SysBusDevice *sbd;
972 FWCfgIoState *ios;
973 FWCfgState *s;
974 bool dma_requested = dma_iobase && dma_as;
975
976 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
977 if (!dma_requested) {
978 qdev_prop_set_bit(dev, "dma_enabled", false);
979 }
980
981 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
982 OBJECT(dev), NULL);
983 qdev_init_nofail(dev);
984
985 sbd = SYS_BUS_DEVICE(dev);
986 ios = FW_CFG_IO(dev);
987 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
988
989 s = FW_CFG(dev);
990
991 if (s->dma_enabled) {
992 /* 64 bits for the address field */
993 s->dma_as = dma_as;
994 s->dma_addr = 0;
995 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
996 }
997
998 return s;
999 }
1000
1001 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1002 {
1003 return fw_cfg_init_io_dma(iobase, 0, NULL);
1004 }
1005
1006 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1007 hwaddr data_addr, uint32_t data_width,
1008 hwaddr dma_addr, AddressSpace *dma_as)
1009 {
1010 DeviceState *dev;
1011 SysBusDevice *sbd;
1012 FWCfgState *s;
1013 bool dma_requested = dma_addr && dma_as;
1014
1015 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1016 qdev_prop_set_uint32(dev, "data_width", data_width);
1017 if (!dma_requested) {
1018 qdev_prop_set_bit(dev, "dma_enabled", false);
1019 }
1020
1021 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1022 OBJECT(dev), NULL);
1023 qdev_init_nofail(dev);
1024
1025 sbd = SYS_BUS_DEVICE(dev);
1026 sysbus_mmio_map(sbd, 0, ctl_addr);
1027 sysbus_mmio_map(sbd, 1, data_addr);
1028
1029 s = FW_CFG(dev);
1030
1031 if (s->dma_enabled) {
1032 s->dma_as = dma_as;
1033 s->dma_addr = 0;
1034 sysbus_mmio_map(sbd, 2, dma_addr);
1035 }
1036
1037 return s;
1038 }
1039
1040 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1041 {
1042 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1043 fw_cfg_data_mem_ops.valid.max_access_size,
1044 0, NULL);
1045 }
1046
1047
1048 FWCfgState *fw_cfg_find(void)
1049 {
1050 /* Returns NULL unless there is exactly one fw_cfg device */
1051 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1052 }
1053
1054
1055 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1056 {
1057 DeviceClass *dc = DEVICE_CLASS(klass);
1058
1059 dc->reset = fw_cfg_reset;
1060 dc->vmsd = &vmstate_fw_cfg;
1061 }
1062
1063 static const TypeInfo fw_cfg_info = {
1064 .name = TYPE_FW_CFG,
1065 .parent = TYPE_SYS_BUS_DEVICE,
1066 .abstract = true,
1067 .instance_size = sizeof(FWCfgState),
1068 .class_init = fw_cfg_class_init,
1069 };
1070
1071 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1072 {
1073 uint16_t file_slots_max;
1074
1075 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1076 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1077 FW_CFG_FILE_SLOTS_MIN);
1078 return;
1079 }
1080
1081 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1082 * that we permit. The actual (exclusive) value coming from the
1083 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1084 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1085 if (fw_cfg_file_slots(s) > file_slots_max) {
1086 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1087 file_slots_max);
1088 return;
1089 }
1090
1091 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1092 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1093 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1094 }
1095
1096 static Property fw_cfg_io_properties[] = {
1097 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1098 true),
1099 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1100 FW_CFG_FILE_SLOTS_DFLT),
1101 DEFINE_PROP_END_OF_LIST(),
1102 };
1103
1104 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1105 {
1106 FWCfgIoState *s = FW_CFG_IO(dev);
1107 Error *local_err = NULL;
1108
1109 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1110 if (local_err) {
1111 error_propagate(errp, local_err);
1112 return;
1113 }
1114
1115 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1116 * with half of the 16-bit control register. Hence, the total size
1117 * of the i/o region used is FW_CFG_CTL_SIZE */
1118 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1119 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1120
1121 if (FW_CFG(s)->dma_enabled) {
1122 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1123 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1124 sizeof(dma_addr_t));
1125 }
1126
1127 fw_cfg_common_realize(dev, errp);
1128 }
1129
1130 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1131 {
1132 DeviceClass *dc = DEVICE_CLASS(klass);
1133
1134 dc->realize = fw_cfg_io_realize;
1135 dc->props = fw_cfg_io_properties;
1136 }
1137
1138 static const TypeInfo fw_cfg_io_info = {
1139 .name = TYPE_FW_CFG_IO,
1140 .parent = TYPE_FW_CFG,
1141 .instance_size = sizeof(FWCfgIoState),
1142 .class_init = fw_cfg_io_class_init,
1143 };
1144
1145
1146 static Property fw_cfg_mem_properties[] = {
1147 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1148 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1149 true),
1150 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1151 FW_CFG_FILE_SLOTS_DFLT),
1152 DEFINE_PROP_END_OF_LIST(),
1153 };
1154
1155 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1156 {
1157 FWCfgMemState *s = FW_CFG_MEM(dev);
1158 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1159 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1160 Error *local_err = NULL;
1161
1162 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1163 if (local_err) {
1164 error_propagate(errp, local_err);
1165 return;
1166 }
1167
1168 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1169 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1170 sysbus_init_mmio(sbd, &s->ctl_iomem);
1171
1172 if (s->data_width > data_ops->valid.max_access_size) {
1173 s->wide_data_ops = *data_ops;
1174
1175 s->wide_data_ops.valid.max_access_size = s->data_width;
1176 s->wide_data_ops.impl.max_access_size = s->data_width;
1177 data_ops = &s->wide_data_ops;
1178 }
1179 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1180 "fwcfg.data", data_ops->valid.max_access_size);
1181 sysbus_init_mmio(sbd, &s->data_iomem);
1182
1183 if (FW_CFG(s)->dma_enabled) {
1184 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1185 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1186 sizeof(dma_addr_t));
1187 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1188 }
1189
1190 fw_cfg_common_realize(dev, errp);
1191 }
1192
1193 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1194 {
1195 DeviceClass *dc = DEVICE_CLASS(klass);
1196
1197 dc->realize = fw_cfg_mem_realize;
1198 dc->props = fw_cfg_mem_properties;
1199 }
1200
1201 static const TypeInfo fw_cfg_mem_info = {
1202 .name = TYPE_FW_CFG_MEM,
1203 .parent = TYPE_FW_CFG,
1204 .instance_size = sizeof(FWCfgMemState),
1205 .class_init = fw_cfg_mem_class_init,
1206 };
1207
1208
1209 static void fw_cfg_register_types(void)
1210 {
1211 type_register_static(&fw_cfg_info);
1212 type_register_static(&fw_cfg_io_info);
1213 type_register_static(&fw_cfg_mem_info);
1214 }
1215
1216 type_init(fw_cfg_register_types)