]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/pnv_lpc.c
71143b7692df503539f1c9121b1da8db0f13280d
[thirdparty/qemu.git] / hw / ppc / pnv_lpc.c
1 /*
2 * QEMU PowerPC PowerNV LPC controller
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_chip.h"
30 #include "hw/ppc/pnv_lpc.h"
31 #include "hw/ppc/pnv_xscom.h"
32 #include "hw/ppc/fdt.h"
33
34 #include <libfdt.h>
35
36 enum {
37 ECCB_CTL = 0,
38 ECCB_RESET = 1,
39 ECCB_STAT = 2,
40 ECCB_DATA = 3,
41 };
42
43 /* OPB Master LS registers */
44 #define OPB_MASTER_LS_ROUTE0 0x8
45 #define OPB_MASTER_LS_ROUTE1 0xC
46 #define OPB_MASTER_LS_IRQ_STAT 0x50
47 #define OPB_MASTER_IRQ_LPC 0x00000800
48 #define OPB_MASTER_LS_IRQ_MASK 0x54
49 #define OPB_MASTER_LS_IRQ_POL 0x58
50 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
51
52 /* LPC HC registers */
53 #define LPC_HC_FW_SEG_IDSEL 0x24
54 #define LPC_HC_FW_RD_ACC_SIZE 0x28
55 #define LPC_HC_FW_RD_1B 0x00000000
56 #define LPC_HC_FW_RD_2B 0x01000000
57 #define LPC_HC_FW_RD_4B 0x02000000
58 #define LPC_HC_FW_RD_16B 0x04000000
59 #define LPC_HC_FW_RD_128B 0x07000000
60 #define LPC_HC_IRQSER_CTRL 0x30
61 #define LPC_HC_IRQSER_EN 0x80000000
62 #define LPC_HC_IRQSER_QMODE 0x40000000
63 #define LPC_HC_IRQSER_START_MASK 0x03000000
64 #define LPC_HC_IRQSER_START_4CLK 0x00000000
65 #define LPC_HC_IRQSER_START_6CLK 0x01000000
66 #define LPC_HC_IRQSER_START_8CLK 0x02000000
67 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
68 #define LPC_HC_IRQSTAT 0x38
69 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
70 #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
71 #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
72 #define LPC_HC_IRQ_LRESET 0x00000400
73 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
74 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
75 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
76 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
77 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
78 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
79 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
80 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
81 #define LPC_HC_ERROR_ADDRESS 0x40
82
83 #define LPC_OPB_SIZE 0x100000000ull
84
85 #define ISA_IO_SIZE 0x00010000
86 #define ISA_MEM_SIZE 0x10000000
87 #define ISA_FW_SIZE 0x10000000
88 #define LPC_IO_OPB_ADDR 0xd0010000
89 #define LPC_IO_OPB_SIZE 0x00010000
90 #define LPC_MEM_OPB_ADDR 0xe0000000
91 #define LPC_MEM_OPB_SIZE 0x10000000
92 #define LPC_FW_OPB_ADDR 0xf0000000
93 #define LPC_FW_OPB_SIZE 0x10000000
94
95 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000
96 #define LPC_OPB_REGS_OPB_SIZE 0x00000060
97 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000
98 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008
99 #define LPC_HC_REGS_OPB_ADDR 0xc0012000
100 #define LPC_HC_REGS_OPB_SIZE 0x00000100
101
102 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
103 {
104 const char compat[] = "ibm,power8-lpc\0ibm,lpc";
105 char *name;
106 int offset;
107 uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
108 uint32_t reg[] = {
109 cpu_to_be32(lpc_pcba),
110 cpu_to_be32(PNV_XSCOM_LPC_SIZE)
111 };
112
113 name = g_strdup_printf("isa@%x", lpc_pcba);
114 offset = fdt_add_subnode(fdt, xscom_offset, name);
115 _FDT(offset);
116 g_free(name);
117
118 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
119 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
120 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
121 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
122 return 0;
123 }
124
125 /* POWER9 only */
126 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
127 uint64_t lpcm_size)
128 {
129 const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
130 const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
131 char *name;
132 int offset, lpcm_offset;
133 uint32_t opb_ranges[8] = { 0,
134 cpu_to_be32(lpcm_addr >> 32),
135 cpu_to_be32((uint32_t)lpcm_addr),
136 cpu_to_be32(lpcm_size / 2),
137 cpu_to_be32(lpcm_size / 2),
138 cpu_to_be32(lpcm_addr >> 32),
139 cpu_to_be32(lpcm_size / 2),
140 cpu_to_be32(lpcm_size / 2),
141 };
142 uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
143 cpu_to_be32((uint32_t)lpcm_addr),
144 cpu_to_be32(lpcm_size >> 32),
145 cpu_to_be32((uint32_t)lpcm_size),
146 };
147 uint32_t lpc_ranges[12] = { 0, 0,
148 cpu_to_be32(LPC_MEM_OPB_ADDR),
149 cpu_to_be32(LPC_MEM_OPB_SIZE),
150 cpu_to_be32(1), 0,
151 cpu_to_be32(LPC_IO_OPB_ADDR),
152 cpu_to_be32(LPC_IO_OPB_SIZE),
153 cpu_to_be32(3), 0,
154 cpu_to_be32(LPC_FW_OPB_ADDR),
155 cpu_to_be32(LPC_FW_OPB_SIZE),
156 };
157 uint32_t reg[2];
158
159 /*
160 * OPB bus
161 */
162 name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
163 lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
164 _FDT(lpcm_offset);
165 g_free(name);
166
167 _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
168 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
169 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
170 _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
171 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
172 _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
173 sizeof(opb_ranges))));
174
175 /*
176 * OPB Master registers
177 */
178 name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
179 offset = fdt_add_subnode(fdt, lpcm_offset, name);
180 _FDT(offset);
181 g_free(name);
182
183 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
184 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
185 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
186 _FDT((fdt_setprop_string(fdt, offset, "compatible",
187 "ibm,power9-lpcm-opb-master")));
188
189 /*
190 * OPB arbitrer registers
191 */
192 name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
193 offset = fdt_add_subnode(fdt, lpcm_offset, name);
194 _FDT(offset);
195 g_free(name);
196
197 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
198 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
199 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
200 _FDT((fdt_setprop_string(fdt, offset, "compatible",
201 "ibm,power9-lpcm-opb-arbiter")));
202
203 /*
204 * LPC Host Controller registers
205 */
206 name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
207 offset = fdt_add_subnode(fdt, lpcm_offset, name);
208 _FDT(offset);
209 g_free(name);
210
211 reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
212 reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
213 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
214 _FDT((fdt_setprop_string(fdt, offset, "compatible",
215 "ibm,power9-lpc-controller")));
216
217 name = g_strdup_printf("lpc@0");
218 offset = fdt_add_subnode(fdt, lpcm_offset, name);
219 _FDT(offset);
220 g_free(name);
221 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
222 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
223 _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
224 sizeof(lpc_compat))));
225 _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
226 sizeof(lpc_ranges))));
227
228 return 0;
229 }
230
231 /*
232 * These read/write handlers of the OPB address space should be common
233 * with the P9 LPC Controller which uses direct MMIOs.
234 *
235 * TODO: rework to use address_space_stq() and address_space_ldq()
236 * instead.
237 */
238 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
239 int sz)
240 {
241 /* XXX Handle access size limits and FW read caching here */
242 return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
243 data, sz);
244 }
245
246 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
247 int sz)
248 {
249 /* XXX Handle access size limits here */
250 return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
251 data, sz);
252 }
253
254 #define ECCB_CTL_READ PPC_BIT(15)
255 #define ECCB_CTL_SZ_LSH (63 - 7)
256 #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
257 #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
258
259 #define ECCB_STAT_OP_DONE PPC_BIT(52)
260 #define ECCB_STAT_OP_ERR PPC_BIT(52)
261 #define ECCB_STAT_RD_DATA_LSH (63 - 37)
262 #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
263
264 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
265 {
266 /* XXX Check for magic bits at the top, addr size etc... */
267 unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
268 uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
269 uint8_t data[8];
270 bool success;
271
272 if (sz > sizeof(data)) {
273 qemu_log_mask(LOG_GUEST_ERROR,
274 "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
275 return;
276 }
277
278 if (cmd & ECCB_CTL_READ) {
279 success = opb_read(lpc, opb_addr, data, sz);
280 if (success) {
281 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
282 (((uint64_t)data[0]) << 24 |
283 ((uint64_t)data[1]) << 16 |
284 ((uint64_t)data[2]) << 8 |
285 ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
286 } else {
287 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
288 (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
289 }
290 } else {
291 data[0] = lpc->eccb_data_reg >> 24;
292 data[1] = lpc->eccb_data_reg >> 16;
293 data[2] = lpc->eccb_data_reg >> 8;
294 data[3] = lpc->eccb_data_reg;
295
296 success = opb_write(lpc, opb_addr, data, sz);
297 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
298 }
299 /* XXX Which error bit (if any) to signal OPB error ? */
300 }
301
302 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
303 {
304 PnvLpcController *lpc = PNV_LPC(opaque);
305 uint32_t offset = addr >> 3;
306 uint64_t val = 0;
307
308 switch (offset & 3) {
309 case ECCB_CTL:
310 case ECCB_RESET:
311 val = 0;
312 break;
313 case ECCB_STAT:
314 val = lpc->eccb_stat_reg;
315 lpc->eccb_stat_reg = 0;
316 break;
317 case ECCB_DATA:
318 val = ((uint64_t)lpc->eccb_data_reg) << 32;
319 break;
320 }
321 return val;
322 }
323
324 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
325 uint64_t val, unsigned size)
326 {
327 PnvLpcController *lpc = PNV_LPC(opaque);
328 uint32_t offset = addr >> 3;
329
330 switch (offset & 3) {
331 case ECCB_CTL:
332 pnv_lpc_do_eccb(lpc, val);
333 break;
334 case ECCB_RESET:
335 /* XXXX */
336 break;
337 case ECCB_STAT:
338 break;
339 case ECCB_DATA:
340 lpc->eccb_data_reg = val >> 32;
341 break;
342 }
343 }
344
345 static const MemoryRegionOps pnv_lpc_xscom_ops = {
346 .read = pnv_lpc_xscom_read,
347 .write = pnv_lpc_xscom_write,
348 .valid.min_access_size = 8,
349 .valid.max_access_size = 8,
350 .impl.min_access_size = 8,
351 .impl.max_access_size = 8,
352 .endianness = DEVICE_BIG_ENDIAN,
353 };
354
355 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
356 {
357 PnvLpcController *lpc = PNV_LPC(opaque);
358 uint64_t val = 0;
359 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
360 MemTxResult result;
361
362 switch (size) {
363 case 4:
364 val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
365 &result);
366 break;
367 case 1:
368 val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
369 &result);
370 break;
371 default:
372 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
373 HWADDR_PRIx " invalid size %d\n", addr, size);
374 return 0;
375 }
376
377 if (result != MEMTX_OK) {
378 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
379 HWADDR_PRIx "\n", addr);
380 }
381
382 return val;
383 }
384
385 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
386 uint64_t val, unsigned size)
387 {
388 PnvLpcController *lpc = PNV_LPC(opaque);
389 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
390 MemTxResult result;
391
392 switch (size) {
393 case 4:
394 address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
395 &result);
396 break;
397 case 1:
398 address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
399 &result);
400 break;
401 default:
402 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
403 HWADDR_PRIx " invalid size %d\n", addr, size);
404 return;
405 }
406
407 if (result != MEMTX_OK) {
408 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
409 HWADDR_PRIx "\n", addr);
410 }
411 }
412
413 static const MemoryRegionOps pnv_lpc_mmio_ops = {
414 .read = pnv_lpc_mmio_read,
415 .write = pnv_lpc_mmio_write,
416 .impl = {
417 .min_access_size = 1,
418 .max_access_size = 4,
419 },
420 .endianness = DEVICE_BIG_ENDIAN,
421 };
422
423 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
424 {
425 bool lpc_to_opb_irq = false;
426
427 /* Update LPC controller to OPB line */
428 if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
429 uint32_t irqs;
430
431 irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
432 lpc_to_opb_irq = (irqs != 0);
433 }
434
435 /* We don't honor the polarity register, it's pointless and unused
436 * anyway
437 */
438 if (lpc_to_opb_irq) {
439 lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
440 } else {
441 lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
442 }
443
444 /* Update OPB internal latch */
445 lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
446
447 /* Reflect the interrupt */
448 qemu_set_irq(lpc->psi_irq, lpc->opb_irq_stat != 0);
449 }
450
451 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
452 {
453 PnvLpcController *lpc = opaque;
454 uint64_t val = 0xfffffffffffffffful;
455
456 switch (addr) {
457 case LPC_HC_FW_SEG_IDSEL:
458 val = lpc->lpc_hc_fw_seg_idsel;
459 break;
460 case LPC_HC_FW_RD_ACC_SIZE:
461 val = lpc->lpc_hc_fw_rd_acc_size;
462 break;
463 case LPC_HC_IRQSER_CTRL:
464 val = lpc->lpc_hc_irqser_ctrl;
465 break;
466 case LPC_HC_IRQMASK:
467 val = lpc->lpc_hc_irqmask;
468 break;
469 case LPC_HC_IRQSTAT:
470 val = lpc->lpc_hc_irqstat;
471 break;
472 case LPC_HC_ERROR_ADDRESS:
473 val = lpc->lpc_hc_error_addr;
474 break;
475 default:
476 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
477 HWADDR_PRIx "\n", addr);
478 }
479 return val;
480 }
481
482 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
483 unsigned size)
484 {
485 PnvLpcController *lpc = opaque;
486
487 /* XXX Filter out reserved bits */
488
489 switch (addr) {
490 case LPC_HC_FW_SEG_IDSEL:
491 /* XXX Actually figure out how that works as this impact
492 * memory regions/aliases
493 */
494 lpc->lpc_hc_fw_seg_idsel = val;
495 break;
496 case LPC_HC_FW_RD_ACC_SIZE:
497 lpc->lpc_hc_fw_rd_acc_size = val;
498 break;
499 case LPC_HC_IRQSER_CTRL:
500 lpc->lpc_hc_irqser_ctrl = val;
501 pnv_lpc_eval_irqs(lpc);
502 break;
503 case LPC_HC_IRQMASK:
504 lpc->lpc_hc_irqmask = val;
505 pnv_lpc_eval_irqs(lpc);
506 break;
507 case LPC_HC_IRQSTAT:
508 lpc->lpc_hc_irqstat &= ~val;
509 pnv_lpc_eval_irqs(lpc);
510 break;
511 case LPC_HC_ERROR_ADDRESS:
512 break;
513 default:
514 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
515 HWADDR_PRIx "\n", addr);
516 }
517 }
518
519 static const MemoryRegionOps lpc_hc_ops = {
520 .read = lpc_hc_read,
521 .write = lpc_hc_write,
522 .endianness = DEVICE_BIG_ENDIAN,
523 .valid = {
524 .min_access_size = 4,
525 .max_access_size = 4,
526 },
527 .impl = {
528 .min_access_size = 4,
529 .max_access_size = 4,
530 },
531 };
532
533 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
534 {
535 PnvLpcController *lpc = opaque;
536 uint64_t val = 0xfffffffffffffffful;
537
538 switch (addr) {
539 case OPB_MASTER_LS_ROUTE0: /* TODO */
540 val = lpc->opb_irq_route0;
541 break;
542 case OPB_MASTER_LS_ROUTE1: /* TODO */
543 val = lpc->opb_irq_route1;
544 break;
545 case OPB_MASTER_LS_IRQ_STAT:
546 val = lpc->opb_irq_stat;
547 break;
548 case OPB_MASTER_LS_IRQ_MASK:
549 val = lpc->opb_irq_mask;
550 break;
551 case OPB_MASTER_LS_IRQ_POL:
552 val = lpc->opb_irq_pol;
553 break;
554 case OPB_MASTER_LS_IRQ_INPUT:
555 val = lpc->opb_irq_input;
556 break;
557 default:
558 qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
559 HWADDR_PRIx "\n", addr);
560 }
561
562 return val;
563 }
564
565 static void opb_master_write(void *opaque, hwaddr addr,
566 uint64_t val, unsigned size)
567 {
568 PnvLpcController *lpc = opaque;
569
570 switch (addr) {
571 case OPB_MASTER_LS_ROUTE0: /* TODO */
572 lpc->opb_irq_route0 = val;
573 break;
574 case OPB_MASTER_LS_ROUTE1: /* TODO */
575 lpc->opb_irq_route1 = val;
576 break;
577 case OPB_MASTER_LS_IRQ_STAT:
578 lpc->opb_irq_stat &= ~val;
579 pnv_lpc_eval_irqs(lpc);
580 break;
581 case OPB_MASTER_LS_IRQ_MASK:
582 lpc->opb_irq_mask = val;
583 pnv_lpc_eval_irqs(lpc);
584 break;
585 case OPB_MASTER_LS_IRQ_POL:
586 lpc->opb_irq_pol = val;
587 pnv_lpc_eval_irqs(lpc);
588 break;
589 case OPB_MASTER_LS_IRQ_INPUT:
590 /* Read only */
591 break;
592 default:
593 qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
594 HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
595 }
596 }
597
598 static const MemoryRegionOps opb_master_ops = {
599 .read = opb_master_read,
600 .write = opb_master_write,
601 .endianness = DEVICE_BIG_ENDIAN,
602 .valid = {
603 .min_access_size = 4,
604 .max_access_size = 4,
605 },
606 .impl = {
607 .min_access_size = 4,
608 .max_access_size = 4,
609 },
610 };
611
612 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
613 {
614 PnvLpcController *lpc = PNV_LPC(dev);
615 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
616 Error *local_err = NULL;
617
618 plc->parent_realize(dev, &local_err);
619 if (local_err) {
620 error_propagate(errp, local_err);
621 return;
622 }
623
624 /* P8 uses a XSCOM region for LPC registers */
625 pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
626 &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
627 PNV_XSCOM_LPC_SIZE);
628 }
629
630 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
631 {
632 DeviceClass *dc = DEVICE_CLASS(klass);
633 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
634 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
635
636 dc->desc = "PowerNV LPC Controller POWER8";
637
638 xdc->dt_xscom = pnv_lpc_dt_xscom;
639
640 device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
641 &plc->parent_realize);
642 }
643
644 static const TypeInfo pnv_lpc_power8_info = {
645 .name = TYPE_PNV8_LPC,
646 .parent = TYPE_PNV_LPC,
647 .class_init = pnv_lpc_power8_class_init,
648 .interfaces = (InterfaceInfo[]) {
649 { TYPE_PNV_XSCOM_INTERFACE },
650 { }
651 }
652 };
653
654 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
655 {
656 PnvLpcController *lpc = PNV_LPC(dev);
657 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
658 Error *local_err = NULL;
659
660 plc->parent_realize(dev, &local_err);
661 if (local_err) {
662 error_propagate(errp, local_err);
663 return;
664 }
665
666 /* P9 uses a MMIO region */
667 memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
668 lpc, "lpcm", PNV9_LPCM_SIZE);
669 }
670
671 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
672 {
673 DeviceClass *dc = DEVICE_CLASS(klass);
674 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
675
676 dc->desc = "PowerNV LPC Controller POWER9";
677
678 device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
679 &plc->parent_realize);
680 }
681
682 static const TypeInfo pnv_lpc_power9_info = {
683 .name = TYPE_PNV9_LPC,
684 .parent = TYPE_PNV_LPC,
685 .class_init = pnv_lpc_power9_class_init,
686 };
687
688 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
689 {
690 DeviceClass *dc = DEVICE_CLASS(klass);
691
692 dc->desc = "PowerNV LPC Controller POWER10";
693 }
694
695 static const TypeInfo pnv_lpc_power10_info = {
696 .name = TYPE_PNV10_LPC,
697 .parent = TYPE_PNV9_LPC,
698 .class_init = pnv_lpc_power10_class_init,
699 };
700
701 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
702 {
703 PnvLpcController *lpc = PNV_LPC(dev);
704
705 /* Reg inits */
706 lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
707
708 /* Create address space and backing MR for the OPB bus */
709 memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
710 address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
711
712 /* Create ISA IO and Mem space regions which are the root of
713 * the ISA bus (ie, ISA address spaces). We don't create a
714 * separate one for FW which we alias to memory.
715 */
716 memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
717 memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
718 memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE);
719
720 /* Create windows from the OPB space to the ISA space */
721 memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
722 &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
723 memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
724 &lpc->opb_isa_io);
725 memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
726 &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
727 memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
728 &lpc->opb_isa_mem);
729 memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
730 &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
731 memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
732 &lpc->opb_isa_fw);
733
734 /* Create MMIO regions for LPC HC and OPB registers */
735 memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
736 lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
737 memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
738 &lpc->opb_master_regs);
739 memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
740 "lpc-hc", LPC_HC_REGS_OPB_SIZE);
741 memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
742 &lpc->lpc_hc_regs);
743
744 qdev_init_gpio_out(DEVICE(dev), &lpc->psi_irq, 1);
745 }
746
747 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
748 {
749 DeviceClass *dc = DEVICE_CLASS(klass);
750
751 dc->realize = pnv_lpc_realize;
752 dc->desc = "PowerNV LPC Controller";
753 dc->user_creatable = false;
754 }
755
756 static const TypeInfo pnv_lpc_info = {
757 .name = TYPE_PNV_LPC,
758 .parent = TYPE_DEVICE,
759 .instance_size = sizeof(PnvLpcController),
760 .class_init = pnv_lpc_class_init,
761 .class_size = sizeof(PnvLpcClass),
762 .abstract = true,
763 };
764
765 static void pnv_lpc_register_types(void)
766 {
767 type_register_static(&pnv_lpc_info);
768 type_register_static(&pnv_lpc_power8_info);
769 type_register_static(&pnv_lpc_power9_info);
770 type_register_static(&pnv_lpc_power10_info);
771 }
772
773 type_init(pnv_lpc_register_types)
774
775 /* If we don't use the built-in LPC interrupt deserializer, we need
776 * to provide a set of qirqs for the ISA bus or things will go bad.
777 *
778 * Most machines using pre-Naples chips (without said deserializer)
779 * have a CPLD that will collect the SerIRQ and shoot them as a
780 * single level interrupt to the P8 chip. So let's setup a hook
781 * for doing just that.
782 */
783 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
784 {
785 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
786 uint32_t old_state = pnv->cpld_irqstate;
787 PnvLpcController *lpc = PNV_LPC(opaque);
788
789 if (level) {
790 pnv->cpld_irqstate |= 1u << n;
791 } else {
792 pnv->cpld_irqstate &= ~(1u << n);
793 }
794
795 if (pnv->cpld_irqstate != old_state) {
796 qemu_set_irq(lpc->psi_irq, pnv->cpld_irqstate != 0);
797 }
798 }
799
800 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
801 {
802 PnvLpcController *lpc = PNV_LPC(opaque);
803
804 /* The Naples HW latches the 1 levels, clearing is done by SW */
805 if (level) {
806 lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
807 pnv_lpc_eval_irqs(lpc);
808 }
809 }
810
811 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
812 {
813 Error *local_err = NULL;
814 ISABus *isa_bus;
815 qemu_irq *irqs;
816 qemu_irq_handler handler;
817
818 /* let isa_bus_new() create its own bridge on SysBus otherwise
819 * devices specified on the command line won't find the bus and
820 * will fail to create.
821 */
822 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
823 if (local_err) {
824 error_propagate(errp, local_err);
825 return NULL;
826 }
827
828 /* Not all variants have a working serial irq decoder. If not,
829 * handling of LPC interrupts becomes a platform issue (some
830 * platforms have a CPLD to do it).
831 */
832 if (use_cpld) {
833 handler = pnv_lpc_isa_irq_handler_cpld;
834 } else {
835 handler = pnv_lpc_isa_irq_handler;
836 }
837
838 irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
839
840 isa_bus_irqs(isa_bus, irqs);
841
842 return isa_bus;
843 }