]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/spapr_drc.c
Include migration/vmstate.h less
[thirdparty/qemu.git] / hw / ppc / spapr_drc.c
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3 *
4 * Copyright IBM Corp. 2014
5 *
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "hw/qdev.h"
21 #include "migration/vmstate.h"
22 #include "qapi/visitor.h"
23 #include "qemu/error-report.h"
24 #include "hw/ppc/spapr.h" /* for RTAS return codes */
25 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37
38 return 1 << drck->typeshift;
39 }
40
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44
45 /* no set format for a drc index: it only needs to be globally
46 * unique. this is how we encode the DRC type on bare-metal
47 * however, so might as well do that here
48 */
49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50 | (drc->id & DRC_INDEX_ID_MASK);
51 }
52
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55 switch (drc->state) {
56 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57 return RTAS_OUT_SUCCESS; /* Nothing to do */
58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59 break; /* see below */
60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61 return RTAS_OUT_PARAM_ERROR; /* not allowed */
62 default:
63 g_assert_not_reached();
64 }
65
66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67
68 if (drc->unplug_requested) {
69 uint32_t drc_index = spapr_drc_index(drc);
70 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71 spapr_drc_detach(drc);
72 }
73
74 return RTAS_OUT_SUCCESS;
75 }
76
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79 switch (drc->state) {
80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82 return RTAS_OUT_SUCCESS; /* Nothing to do */
83 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84 break; /* see below */
85 default:
86 g_assert_not_reached();
87 }
88
89 /* cannot unisolate a non-existent resource, and, or resources
90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91 * 13.5.3.5)
92 */
93 if (!drc->dev) {
94 return RTAS_OUT_NO_SUCH_INDICATOR;
95 }
96
97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98 drc->ccs_offset = drc->fdt_start_offset;
99 drc->ccs_depth = 0;
100
101 return RTAS_OUT_SUCCESS;
102 }
103
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106 switch (drc->state) {
107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109 return RTAS_OUT_SUCCESS; /* Nothing to do */
110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111 break; /* see below */
112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113 return RTAS_OUT_PARAM_ERROR; /* not allowed */
114 default:
115 g_assert_not_reached();
116 }
117
118 /*
119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120 * belong to a DIMM device that is marked for removal.
121 *
122 * Currently the guest userspace tool drmgr that drives the memory
123 * hotplug/unplug will just try to remove a set of 'removable' LMBs
124 * in response to a hot unplug request that is based on drc-count.
125 * If the LMB being removed doesn't belong to a DIMM device that is
126 * actually being unplugged, fail the isolation request here.
127 */
128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129 && !drc->unplug_requested) {
130 return RTAS_OUT_HW_ERROR;
131 }
132
133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134
135 /* if we're awaiting release, but still in an unconfigured state,
136 * it's likely the guest is still in the process of configuring
137 * the device and is transitioning the devices to an ISOLATED
138 * state as a part of that process. so we only complete the
139 * removal when this transition happens for a device in a
140 * configured state, as suggested by the state diagram from PAPR+
141 * 2.7, 13.4
142 */
143 if (drc->unplug_requested) {
144 uint32_t drc_index = spapr_drc_index(drc);
145 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146 spapr_drc_detach(drc);
147 }
148 return RTAS_OUT_SUCCESS;
149 }
150
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153 switch (drc->state) {
154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156 return RTAS_OUT_SUCCESS; /* Nothing to do */
157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158 break; /* see below */
159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161 default:
162 g_assert_not_reached();
163 }
164
165 /* Move to AVAILABLE state should have ensured device was present */
166 g_assert(drc->dev);
167
168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169 drc->ccs_offset = drc->fdt_start_offset;
170 drc->ccs_depth = 0;
171
172 return RTAS_OUT_SUCCESS;
173 }
174
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177 switch (drc->state) {
178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181 return RTAS_OUT_SUCCESS; /* Nothing to do */
182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183 break; /* see below */
184 default:
185 g_assert_not_reached();
186 }
187
188 /* if there's no resource/device associated with the DRC, there's
189 * no way for us to put it in an allocation state consistent with
190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191 * result in an RTAS return code of -3 / "no such indicator"
192 */
193 if (!drc->dev) {
194 return RTAS_OUT_NO_SUCH_INDICATOR;
195 }
196 if (drc->unplug_requested) {
197 /* Don't allow the guest to move a device away from UNUSABLE
198 * state when we want to unplug it */
199 return RTAS_OUT_NO_SUCH_INDICATOR;
200 }
201
202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203
204 return RTAS_OUT_SUCCESS;
205 }
206
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209 switch (drc->state) {
210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211 return RTAS_OUT_SUCCESS; /* Nothing to do */
212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213 break; /* see below */
214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217 default:
218 g_assert_not_reached();
219 }
220
221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222 if (drc->unplug_requested) {
223 uint32_t drc_index = spapr_drc_index(drc);
224 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225 spapr_drc_detach(drc);
226 }
227
228 return RTAS_OUT_SUCCESS;
229 }
230
231 static const char *spapr_drc_name(SpaprDrc *drc)
232 {
233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234
235 /* human-readable name for a DRC to encode into the DT
236 * description. this is mainly only used within a guest in place
237 * of the unique DRC index.
238 *
239 * in the case of VIO/PCI devices, it corresponds to a "location
240 * code" that maps a logical device/function (DRC index) to a
241 * physical (or virtual in the case of VIO) location in the system
242 * by chaining together the "location label" for each
243 * encapsulating component.
244 *
245 * since this is more to do with diagnosing physical hardware
246 * issues than guest compatibility, we choose location codes/DRC
247 * names that adhere to the documented format, but avoid encoding
248 * the entire topology information into the label/code, instead
249 * just using the location codes based on the labels for the
250 * endpoints (VIO/PCI adaptor connectors), which is basically just
251 * "C" followed by an integer ID.
252 *
253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254 * location codes as documented by PAPR+ v2.7, 12.3.1.5
255 */
256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258
259 /*
260 * dr-entity-sense sensor value
261 * returned via get-sensor-state RTAS calls
262 * as expected by state diagram in PAPR+ 2.7, 13.4
263 * based on the current allocation/indicator/power states
264 * for the DR connector.
265 */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268 /* this assumes all PCI devices are assigned to a 'live insertion'
269 * power domain, where QEMU manages power state automatically as
270 * opposed to the guest. present, non-PCI resources are unaffected
271 * by power state.
272 */
273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274 : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279 switch (drc->state) {
280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285 g_assert(drc->dev);
286 return SPAPR_DR_ENTITY_SENSE_PRESENT;
287 default:
288 g_assert_not_reached();
289 }
290 }
291
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293 void *opaque, Error **errp)
294 {
295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296 uint32_t value = spapr_drc_index(drc);
297 visit_type_uint32(v, name, &value, errp);
298 }
299
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301 void *opaque, Error **errp)
302 {
303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304 QNull *null = NULL;
305 Error *err = NULL;
306 int fdt_offset_next, fdt_offset, fdt_depth;
307 void *fdt;
308
309 if (!drc->fdt) {
310 visit_type_null(v, NULL, &null, errp);
311 qobject_unref(null);
312 return;
313 }
314
315 fdt = drc->fdt;
316 fdt_offset = drc->fdt_start_offset;
317 fdt_depth = 0;
318
319 do {
320 const char *name = NULL;
321 const struct fdt_property *prop = NULL;
322 int prop_len = 0, name_len = 0;
323 uint32_t tag;
324
325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326 switch (tag) {
327 case FDT_BEGIN_NODE:
328 fdt_depth++;
329 name = fdt_get_name(fdt, fdt_offset, &name_len);
330 visit_start_struct(v, name, NULL, 0, &err);
331 if (err) {
332 error_propagate(errp, err);
333 return;
334 }
335 break;
336 case FDT_END_NODE:
337 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
338 g_assert(fdt_depth > 0);
339 visit_check_struct(v, &err);
340 visit_end_struct(v, NULL);
341 if (err) {
342 error_propagate(errp, err);
343 return;
344 }
345 fdt_depth--;
346 break;
347 case FDT_PROP: {
348 int i;
349 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351 visit_start_list(v, name, NULL, 0, &err);
352 if (err) {
353 error_propagate(errp, err);
354 return;
355 }
356 for (i = 0; i < prop_len; i++) {
357 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
358 if (err) {
359 error_propagate(errp, err);
360 return;
361 }
362 }
363 visit_check_list(v, &err);
364 visit_end_list(v, NULL);
365 if (err) {
366 error_propagate(errp, err);
367 return;
368 }
369 break;
370 }
371 default:
372 error_report("device FDT in unexpected state: %d", tag);
373 abort();
374 }
375 fdt_offset = fdt_offset_next;
376 } while (fdt_depth != 0);
377 }
378
379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
380 {
381 trace_spapr_drc_attach(spapr_drc_index(drc));
382
383 if (drc->dev) {
384 error_setg(errp, "an attached device is still awaiting release");
385 return;
386 }
387 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
388 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
389
390 drc->dev = d;
391
392 object_property_add_link(OBJECT(drc), "device",
393 object_get_typename(OBJECT(drc->dev)),
394 (Object **)(&drc->dev),
395 NULL, 0, NULL);
396 }
397
398 static void spapr_drc_release(SpaprDrc *drc)
399 {
400 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
401
402 drck->release(drc->dev);
403
404 drc->unplug_requested = false;
405 g_free(drc->fdt);
406 drc->fdt = NULL;
407 drc->fdt_start_offset = 0;
408 object_property_del(OBJECT(drc), "device", &error_abort);
409 drc->dev = NULL;
410 }
411
412 void spapr_drc_detach(SpaprDrc *drc)
413 {
414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
415
416 trace_spapr_drc_detach(spapr_drc_index(drc));
417
418 g_assert(drc->dev);
419
420 drc->unplug_requested = true;
421
422 if (drc->state != drck->empty_state) {
423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
424 return;
425 }
426
427 spapr_drc_release(drc);
428 }
429
430 void spapr_drc_reset(SpaprDrc *drc)
431 {
432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
433
434 trace_spapr_drc_reset(spapr_drc_index(drc));
435
436 /* immediately upon reset we can safely assume DRCs whose devices
437 * are pending removal can be safely removed.
438 */
439 if (drc->unplug_requested) {
440 spapr_drc_release(drc);
441 }
442
443 if (drc->dev) {
444 /* A device present at reset is ready to go, same as coldplugged */
445 drc->state = drck->ready_state;
446 /*
447 * Ensure that we are able to send the FDT fragment again
448 * via configure-connector call if the guest requests.
449 */
450 drc->ccs_offset = drc->fdt_start_offset;
451 drc->ccs_depth = 0;
452 } else {
453 drc->state = drck->empty_state;
454 drc->ccs_offset = -1;
455 drc->ccs_depth = -1;
456 }
457 }
458
459 bool spapr_drc_needed(void *opaque)
460 {
461 SpaprDrc *drc = (SpaprDrc *)opaque;
462 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
463
464 /* If no dev is plugged in there is no need to migrate the DRC state */
465 if (!drc->dev) {
466 return false;
467 }
468
469 /*
470 * We need to migrate the state if it's not equal to the expected
471 * long-term state, which is the same as the coldplugged initial
472 * state */
473 return (drc->state != drck->ready_state);
474 }
475
476 static const VMStateDescription vmstate_spapr_drc = {
477 .name = "spapr_drc",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = spapr_drc_needed,
481 .fields = (VMStateField []) {
482 VMSTATE_UINT32(state, SpaprDrc),
483 VMSTATE_END_OF_LIST()
484 }
485 };
486
487 static void realize(DeviceState *d, Error **errp)
488 {
489 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
490 Object *root_container;
491 gchar *link_name;
492 gchar *child_name;
493 Error *err = NULL;
494
495 trace_spapr_drc_realize(spapr_drc_index(drc));
496 /* NOTE: we do this as part of realize/unrealize due to the fact
497 * that the guest will communicate with the DRC via RTAS calls
498 * referencing the global DRC index. By unlinking the DRC
499 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
500 * inaccessible by the guest, since lookups rely on this path
501 * existing in the composition tree
502 */
503 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
504 link_name = g_strdup_printf("%x", spapr_drc_index(drc));
505 child_name = object_get_canonical_path_component(OBJECT(drc));
506 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
507 object_property_add_alias(root_container, link_name,
508 drc->owner, child_name, &err);
509 g_free(child_name);
510 g_free(link_name);
511 if (err) {
512 error_propagate(errp, err);
513 return;
514 }
515 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
516 drc);
517 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
518 }
519
520 static void unrealize(DeviceState *d, Error **errp)
521 {
522 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
523 Object *root_container;
524 gchar *name;
525
526 trace_spapr_drc_unrealize(spapr_drc_index(drc));
527 vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
528 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
529 name = g_strdup_printf("%x", spapr_drc_index(drc));
530 object_property_del(root_container, name, errp);
531 g_free(name);
532 }
533
534 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
535 uint32_t id)
536 {
537 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
538 char *prop_name;
539
540 drc->id = id;
541 drc->owner = owner;
542 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
543 spapr_drc_index(drc));
544 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
545 object_unref(OBJECT(drc));
546 object_property_set_bool(OBJECT(drc), true, "realized", NULL);
547 g_free(prop_name);
548
549 return drc;
550 }
551
552 static void spapr_dr_connector_instance_init(Object *obj)
553 {
554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
555 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
556
557 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
558 object_property_add(obj, "index", "uint32", prop_get_index,
559 NULL, NULL, NULL, NULL);
560 object_property_add(obj, "fdt", "struct", prop_get_fdt,
561 NULL, NULL, NULL, NULL);
562 drc->state = drck->empty_state;
563 }
564
565 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
566 {
567 DeviceClass *dk = DEVICE_CLASS(k);
568
569 dk->realize = realize;
570 dk->unrealize = unrealize;
571 /*
572 * Reason: it crashes FIXME find and document the real reason
573 */
574 dk->user_creatable = false;
575 }
576
577 static bool drc_physical_needed(void *opaque)
578 {
579 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
580 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
581
582 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
583 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
584 return false;
585 }
586 return true;
587 }
588
589 static const VMStateDescription vmstate_spapr_drc_physical = {
590 .name = "spapr_drc/physical",
591 .version_id = 1,
592 .minimum_version_id = 1,
593 .needed = drc_physical_needed,
594 .fields = (VMStateField []) {
595 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
596 VMSTATE_END_OF_LIST()
597 }
598 };
599
600 static void drc_physical_reset(void *opaque)
601 {
602 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
603 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
604
605 if (drc->dev) {
606 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
607 } else {
608 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
609 }
610 }
611
612 static void realize_physical(DeviceState *d, Error **errp)
613 {
614 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
615 Error *local_err = NULL;
616
617 realize(d, &local_err);
618 if (local_err) {
619 error_propagate(errp, local_err);
620 return;
621 }
622
623 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
624 &vmstate_spapr_drc_physical, drcp);
625 qemu_register_reset(drc_physical_reset, drcp);
626 }
627
628 static void unrealize_physical(DeviceState *d, Error **errp)
629 {
630 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
631 Error *local_err = NULL;
632
633 unrealize(d, &local_err);
634 if (local_err) {
635 error_propagate(errp, local_err);
636 return;
637 }
638
639 vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
640 qemu_unregister_reset(drc_physical_reset, drcp);
641 }
642
643 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
644 {
645 DeviceClass *dk = DEVICE_CLASS(k);
646 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
647
648 dk->realize = realize_physical;
649 dk->unrealize = unrealize_physical;
650 drck->dr_entity_sense = physical_entity_sense;
651 drck->isolate = drc_isolate_physical;
652 drck->unisolate = drc_unisolate_physical;
653 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
654 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
655 }
656
657 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
658 {
659 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
660
661 drck->dr_entity_sense = logical_entity_sense;
662 drck->isolate = drc_isolate_logical;
663 drck->unisolate = drc_unisolate_logical;
664 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
665 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
666 }
667
668 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
669 {
670 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
671
672 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
673 drck->typename = "CPU";
674 drck->drc_name_prefix = "CPU ";
675 drck->release = spapr_core_release;
676 drck->dt_populate = spapr_core_dt_populate;
677 }
678
679 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
680 {
681 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
682
683 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
684 drck->typename = "28";
685 drck->drc_name_prefix = "C";
686 drck->release = spapr_phb_remove_pci_device_cb;
687 drck->dt_populate = spapr_pci_dt_populate;
688 }
689
690 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
691 {
692 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
693
694 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
695 drck->typename = "MEM";
696 drck->drc_name_prefix = "LMB ";
697 drck->release = spapr_lmb_release;
698 drck->dt_populate = spapr_lmb_dt_populate;
699 }
700
701 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
702 {
703 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
704
705 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
706 drck->typename = "PHB";
707 drck->drc_name_prefix = "PHB ";
708 drck->release = spapr_phb_release;
709 drck->dt_populate = spapr_phb_dt_populate;
710 }
711
712 static const TypeInfo spapr_dr_connector_info = {
713 .name = TYPE_SPAPR_DR_CONNECTOR,
714 .parent = TYPE_DEVICE,
715 .instance_size = sizeof(SpaprDrc),
716 .instance_init = spapr_dr_connector_instance_init,
717 .class_size = sizeof(SpaprDrcClass),
718 .class_init = spapr_dr_connector_class_init,
719 .abstract = true,
720 };
721
722 static const TypeInfo spapr_drc_physical_info = {
723 .name = TYPE_SPAPR_DRC_PHYSICAL,
724 .parent = TYPE_SPAPR_DR_CONNECTOR,
725 .instance_size = sizeof(SpaprDrcPhysical),
726 .class_init = spapr_drc_physical_class_init,
727 .abstract = true,
728 };
729
730 static const TypeInfo spapr_drc_logical_info = {
731 .name = TYPE_SPAPR_DRC_LOGICAL,
732 .parent = TYPE_SPAPR_DR_CONNECTOR,
733 .class_init = spapr_drc_logical_class_init,
734 .abstract = true,
735 };
736
737 static const TypeInfo spapr_drc_cpu_info = {
738 .name = TYPE_SPAPR_DRC_CPU,
739 .parent = TYPE_SPAPR_DRC_LOGICAL,
740 .class_init = spapr_drc_cpu_class_init,
741 };
742
743 static const TypeInfo spapr_drc_pci_info = {
744 .name = TYPE_SPAPR_DRC_PCI,
745 .parent = TYPE_SPAPR_DRC_PHYSICAL,
746 .class_init = spapr_drc_pci_class_init,
747 };
748
749 static const TypeInfo spapr_drc_lmb_info = {
750 .name = TYPE_SPAPR_DRC_LMB,
751 .parent = TYPE_SPAPR_DRC_LOGICAL,
752 .class_init = spapr_drc_lmb_class_init,
753 };
754
755 static const TypeInfo spapr_drc_phb_info = {
756 .name = TYPE_SPAPR_DRC_PHB,
757 .parent = TYPE_SPAPR_DRC_LOGICAL,
758 .instance_size = sizeof(SpaprDrc),
759 .class_init = spapr_drc_phb_class_init,
760 };
761
762 /* helper functions for external users */
763
764 SpaprDrc *spapr_drc_by_index(uint32_t index)
765 {
766 Object *obj;
767 gchar *name;
768
769 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
770 obj = object_resolve_path(name, NULL);
771 g_free(name);
772
773 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
774 }
775
776 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
777 {
778 SpaprDrcClass *drck
779 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
780
781 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
782 | (id & DRC_INDEX_ID_MASK));
783 }
784
785 /**
786 * spapr_dt_drc
787 *
788 * @fdt: libfdt device tree
789 * @path: path in the DT to generate properties
790 * @owner: parent Object/DeviceState for which to generate DRC
791 * descriptions for
792 * @drc_type_mask: mask of SpaprDrcType values corresponding
793 * to the types of DRCs to generate entries for
794 *
795 * generate OF properties to describe DRC topology/indices to guests
796 *
797 * as documented in PAPR+ v2.1, 13.5.2
798 */
799 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
800 {
801 Object *root_container;
802 ObjectProperty *prop;
803 ObjectPropertyIterator iter;
804 uint32_t drc_count = 0;
805 GArray *drc_indexes, *drc_power_domains;
806 GString *drc_names, *drc_types;
807 int ret;
808
809 /* the first entry of each properties is a 32-bit integer encoding
810 * the number of elements in the array. we won't know this until
811 * we complete the iteration through all the matching DRCs, but
812 * reserve the space now and set the offsets accordingly so we
813 * can fill them in later.
814 */
815 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
816 drc_indexes = g_array_set_size(drc_indexes, 1);
817 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
818 drc_power_domains = g_array_set_size(drc_power_domains, 1);
819 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
820 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
821
822 /* aliases for all DRConnector objects will be rooted in QOM
823 * composition tree at DRC_CONTAINER_PATH
824 */
825 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
826
827 object_property_iter_init(&iter, root_container);
828 while ((prop = object_property_iter_next(&iter))) {
829 Object *obj;
830 SpaprDrc *drc;
831 SpaprDrcClass *drck;
832 uint32_t drc_index, drc_power_domain;
833
834 if (!strstart(prop->type, "link<", NULL)) {
835 continue;
836 }
837
838 obj = object_property_get_link(root_container, prop->name, NULL);
839 drc = SPAPR_DR_CONNECTOR(obj);
840 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
841
842 if (owner && (drc->owner != owner)) {
843 continue;
844 }
845
846 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
847 continue;
848 }
849
850 drc_count++;
851
852 /* ibm,drc-indexes */
853 drc_index = cpu_to_be32(spapr_drc_index(drc));
854 g_array_append_val(drc_indexes, drc_index);
855
856 /* ibm,drc-power-domains */
857 drc_power_domain = cpu_to_be32(-1);
858 g_array_append_val(drc_power_domains, drc_power_domain);
859
860 /* ibm,drc-names */
861 drc_names = g_string_append(drc_names, spapr_drc_name(drc));
862 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
863
864 /* ibm,drc-types */
865 drc_types = g_string_append(drc_types, drck->typename);
866 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
867 }
868
869 /* now write the drc count into the space we reserved at the
870 * beginning of the arrays previously
871 */
872 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
873 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
874 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
875 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
876
877 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
878 drc_indexes->data,
879 drc_indexes->len * sizeof(uint32_t));
880 if (ret) {
881 error_report("Couldn't create ibm,drc-indexes property");
882 goto out;
883 }
884
885 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
886 drc_power_domains->data,
887 drc_power_domains->len * sizeof(uint32_t));
888 if (ret) {
889 error_report("Couldn't finalize ibm,drc-power-domains property");
890 goto out;
891 }
892
893 ret = fdt_setprop(fdt, offset, "ibm,drc-names",
894 drc_names->str, drc_names->len);
895 if (ret) {
896 error_report("Couldn't finalize ibm,drc-names property");
897 goto out;
898 }
899
900 ret = fdt_setprop(fdt, offset, "ibm,drc-types",
901 drc_types->str, drc_types->len);
902 if (ret) {
903 error_report("Couldn't finalize ibm,drc-types property");
904 goto out;
905 }
906
907 out:
908 g_array_free(drc_indexes, true);
909 g_array_free(drc_power_domains, true);
910 g_string_free(drc_names, true);
911 g_string_free(drc_types, true);
912
913 return ret;
914 }
915
916 /*
917 * RTAS calls
918 */
919
920 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
921 {
922 SpaprDrc *drc = spapr_drc_by_index(idx);
923 SpaprDrcClass *drck;
924
925 if (!drc) {
926 return RTAS_OUT_NO_SUCH_INDICATOR;
927 }
928
929 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
930
931 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
932
933 switch (state) {
934 case SPAPR_DR_ISOLATION_STATE_ISOLATED:
935 return drck->isolate(drc);
936
937 case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
938 return drck->unisolate(drc);
939
940 default:
941 return RTAS_OUT_PARAM_ERROR;
942 }
943 }
944
945 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
946 {
947 SpaprDrc *drc = spapr_drc_by_index(idx);
948
949 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
950 return RTAS_OUT_NO_SUCH_INDICATOR;
951 }
952
953 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
954
955 switch (state) {
956 case SPAPR_DR_ALLOCATION_STATE_USABLE:
957 return drc_set_usable(drc);
958
959 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
960 return drc_set_unusable(drc);
961
962 default:
963 return RTAS_OUT_PARAM_ERROR;
964 }
965 }
966
967 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
968 {
969 SpaprDrc *drc = spapr_drc_by_index(idx);
970
971 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
972 return RTAS_OUT_NO_SUCH_INDICATOR;
973 }
974 if ((state != SPAPR_DR_INDICATOR_INACTIVE)
975 && (state != SPAPR_DR_INDICATOR_ACTIVE)
976 && (state != SPAPR_DR_INDICATOR_IDENTIFY)
977 && (state != SPAPR_DR_INDICATOR_ACTION)) {
978 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
979 }
980
981 trace_spapr_drc_set_dr_indicator(idx, state);
982 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
983 return RTAS_OUT_SUCCESS;
984 }
985
986 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
987 uint32_t token,
988 uint32_t nargs, target_ulong args,
989 uint32_t nret, target_ulong rets)
990 {
991 uint32_t type, idx, state;
992 uint32_t ret = RTAS_OUT_SUCCESS;
993
994 if (nargs != 3 || nret != 1) {
995 ret = RTAS_OUT_PARAM_ERROR;
996 goto out;
997 }
998
999 type = rtas_ld(args, 0);
1000 idx = rtas_ld(args, 1);
1001 state = rtas_ld(args, 2);
1002
1003 switch (type) {
1004 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1005 ret = rtas_set_isolation_state(idx, state);
1006 break;
1007 case RTAS_SENSOR_TYPE_DR:
1008 ret = rtas_set_dr_indicator(idx, state);
1009 break;
1010 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1011 ret = rtas_set_allocation_state(idx, state);
1012 break;
1013 default:
1014 ret = RTAS_OUT_NOT_SUPPORTED;
1015 }
1016
1017 out:
1018 rtas_st(rets, 0, ret);
1019 }
1020
1021 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1022 uint32_t token, uint32_t nargs,
1023 target_ulong args, uint32_t nret,
1024 target_ulong rets)
1025 {
1026 uint32_t sensor_type;
1027 uint32_t sensor_index;
1028 uint32_t sensor_state = 0;
1029 SpaprDrc *drc;
1030 SpaprDrcClass *drck;
1031 uint32_t ret = RTAS_OUT_SUCCESS;
1032
1033 if (nargs != 2 || nret != 2) {
1034 ret = RTAS_OUT_PARAM_ERROR;
1035 goto out;
1036 }
1037
1038 sensor_type = rtas_ld(args, 0);
1039 sensor_index = rtas_ld(args, 1);
1040
1041 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1042 /* currently only DR-related sensors are implemented */
1043 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1044 sensor_type);
1045 ret = RTAS_OUT_NOT_SUPPORTED;
1046 goto out;
1047 }
1048
1049 drc = spapr_drc_by_index(sensor_index);
1050 if (!drc) {
1051 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1052 ret = RTAS_OUT_PARAM_ERROR;
1053 goto out;
1054 }
1055 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1056 sensor_state = drck->dr_entity_sense(drc);
1057
1058 out:
1059 rtas_st(rets, 0, ret);
1060 rtas_st(rets, 1, sensor_state);
1061 }
1062
1063 /* configure-connector work area offsets, int32_t units for field
1064 * indexes, bytes for field offset/len values.
1065 *
1066 * as documented by PAPR+ v2.7, 13.5.3.5
1067 */
1068 #define CC_IDX_NODE_NAME_OFFSET 2
1069 #define CC_IDX_PROP_NAME_OFFSET 2
1070 #define CC_IDX_PROP_LEN 3
1071 #define CC_IDX_PROP_DATA_OFFSET 4
1072 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1073 #define CC_WA_LEN 4096
1074
1075 static void configure_connector_st(target_ulong addr, target_ulong offset,
1076 const void *buf, size_t len)
1077 {
1078 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1079 buf, MIN(len, CC_WA_LEN - offset));
1080 }
1081
1082 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1083 SpaprMachineState *spapr,
1084 uint32_t token, uint32_t nargs,
1085 target_ulong args, uint32_t nret,
1086 target_ulong rets)
1087 {
1088 uint64_t wa_addr;
1089 uint64_t wa_offset;
1090 uint32_t drc_index;
1091 SpaprDrc *drc;
1092 SpaprDrcClass *drck;
1093 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1094 int rc;
1095
1096 if (nargs != 2 || nret != 1) {
1097 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1098 return;
1099 }
1100
1101 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1102
1103 drc_index = rtas_ld(wa_addr, 0);
1104 drc = spapr_drc_by_index(drc_index);
1105 if (!drc) {
1106 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1107 rc = RTAS_OUT_PARAM_ERROR;
1108 goto out;
1109 }
1110
1111 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1112 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1113 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1114 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1115 /*
1116 * Need to unisolate the device before configuring
1117 * or it should already be in configured state to
1118 * allow configure-connector be called repeatedly.
1119 */
1120 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1121 goto out;
1122 }
1123
1124 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1125
1126 if (!drc->fdt) {
1127 Error *local_err = NULL;
1128 void *fdt;
1129 int fdt_size;
1130
1131 fdt = create_device_tree(&fdt_size);
1132
1133 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1134 &local_err)) {
1135 g_free(fdt);
1136 error_free(local_err);
1137 rc = SPAPR_DR_CC_RESPONSE_ERROR;
1138 goto out;
1139 }
1140
1141 drc->fdt = fdt;
1142 drc->ccs_offset = drc->fdt_start_offset;
1143 drc->ccs_depth = 0;
1144 }
1145
1146 do {
1147 uint32_t tag;
1148 const char *name;
1149 const struct fdt_property *prop;
1150 int fdt_offset_next, prop_len;
1151
1152 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1153
1154 switch (tag) {
1155 case FDT_BEGIN_NODE:
1156 drc->ccs_depth++;
1157 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1158
1159 /* provide the name of the next OF node */
1160 wa_offset = CC_VAL_DATA_OFFSET;
1161 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1162 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1163 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1164 break;
1165 case FDT_END_NODE:
1166 drc->ccs_depth--;
1167 if (drc->ccs_depth == 0) {
1168 uint32_t drc_index = spapr_drc_index(drc);
1169
1170 /* done sending the device tree, move to configured state */
1171 trace_spapr_drc_set_configured(drc_index);
1172 drc->state = drck->ready_state;
1173 /*
1174 * Ensure that we are able to send the FDT fragment
1175 * again via configure-connector call if the guest requests.
1176 */
1177 drc->ccs_offset = drc->fdt_start_offset;
1178 drc->ccs_depth = 0;
1179 fdt_offset_next = drc->fdt_start_offset;
1180 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1181 } else {
1182 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1183 }
1184 break;
1185 case FDT_PROP:
1186 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1187 &prop_len);
1188 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1189
1190 /* provide the name of the next OF property */
1191 wa_offset = CC_VAL_DATA_OFFSET;
1192 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1193 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1194
1195 /* provide the length and value of the OF property. data gets
1196 * placed immediately after NULL terminator of the OF property's
1197 * name string
1198 */
1199 wa_offset += strlen(name) + 1,
1200 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1201 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1202 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1203 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1204 break;
1205 case FDT_END:
1206 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1207 default:
1208 /* keep seeking for an actionable tag */
1209 break;
1210 }
1211 if (drc->ccs_offset >= 0) {
1212 drc->ccs_offset = fdt_offset_next;
1213 }
1214 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1215
1216 rc = resp;
1217 out:
1218 rtas_st(rets, 0, rc);
1219 }
1220
1221 static void spapr_drc_register_types(void)
1222 {
1223 type_register_static(&spapr_dr_connector_info);
1224 type_register_static(&spapr_drc_physical_info);
1225 type_register_static(&spapr_drc_logical_info);
1226 type_register_static(&spapr_drc_cpu_info);
1227 type_register_static(&spapr_drc_pci_info);
1228 type_register_static(&spapr_drc_lmb_info);
1229 type_register_static(&spapr_drc_phb_info);
1230
1231 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1232 rtas_set_indicator);
1233 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1234 rtas_get_sensor_state);
1235 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1236 rtas_ibm_configure_connector);
1237 }
1238 type_init(spapr_drc_register_types)