]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/spapr_pci.c
Include hw/qdev-properties.h less
[thirdparty/qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "cpu.h"
29 #include "hw/irq.h"
30 #include "hw/sysbus.h"
31 #include "migration/vmstate.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/msi.h"
34 #include "hw/pci/msix.h"
35 #include "hw/pci/pci_host.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/pci-host/spapr.h"
38 #include "exec/address-spaces.h"
39 #include "exec/ram_addr.h"
40 #include <libfdt.h>
41 #include "trace.h"
42 #include "qemu/error-report.h"
43 #include "qemu/module.h"
44 #include "qapi/qmp/qerror.h"
45 #include "hw/ppc/fdt.h"
46 #include "hw/pci/pci_bridge.h"
47 #include "hw/pci/pci_bus.h"
48 #include "hw/pci/pci_ids.h"
49 #include "hw/ppc/spapr_drc.h"
50 #include "hw/qdev-properties.h"
51 #include "sysemu/device_tree.h"
52 #include "sysemu/kvm.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/numa.h"
55
56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
57 #define RTAS_QUERY_FN 0
58 #define RTAS_CHANGE_FN 1
59 #define RTAS_RESET_FN 2
60 #define RTAS_CHANGE_MSI_FN 3
61 #define RTAS_CHANGE_MSIX_FN 4
62
63 /* Interrupt types to return on RTAS_CHANGE_* */
64 #define RTAS_TYPE_MSI 1
65 #define RTAS_TYPE_MSIX 2
66
67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
68 {
69 SpaprPhbState *sphb;
70
71 QLIST_FOREACH(sphb, &spapr->phbs, list) {
72 if (sphb->buid != buid) {
73 continue;
74 }
75 return sphb;
76 }
77
78 return NULL;
79 }
80
81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
82 uint32_t config_addr)
83 {
84 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
85 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
86 int bus_num = (config_addr >> 16) & 0xFF;
87 int devfn = (config_addr >> 8) & 0xFF;
88
89 if (!phb) {
90 return NULL;
91 }
92
93 return pci_find_device(phb->bus, bus_num, devfn);
94 }
95
96 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
97 {
98 /* This handles the encoding of extended config space addresses */
99 return ((arg >> 20) & 0xf00) | (arg & 0xff);
100 }
101
102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
103 uint32_t addr, uint32_t size,
104 target_ulong rets)
105 {
106 PCIDevice *pci_dev;
107 uint32_t val;
108
109 if ((size != 1) && (size != 2) && (size != 4)) {
110 /* access must be 1, 2 or 4 bytes */
111 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
112 return;
113 }
114
115 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
116 addr = rtas_pci_cfgaddr(addr);
117
118 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
119 /* Access must be to a valid device, within bounds and
120 * naturally aligned */
121 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
122 return;
123 }
124
125 val = pci_host_config_read_common(pci_dev, addr,
126 pci_config_size(pci_dev), size);
127
128 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
129 rtas_st(rets, 1, val);
130 }
131
132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
133 uint32_t token, uint32_t nargs,
134 target_ulong args,
135 uint32_t nret, target_ulong rets)
136 {
137 uint64_t buid;
138 uint32_t size, addr;
139
140 if ((nargs != 4) || (nret != 2)) {
141 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
142 return;
143 }
144
145 buid = rtas_ldq(args, 1);
146 size = rtas_ld(args, 3);
147 addr = rtas_ld(args, 0);
148
149 finish_read_pci_config(spapr, buid, addr, size, rets);
150 }
151
152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
153 uint32_t token, uint32_t nargs,
154 target_ulong args,
155 uint32_t nret, target_ulong rets)
156 {
157 uint32_t size, addr;
158
159 if ((nargs != 2) || (nret != 2)) {
160 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
161 return;
162 }
163
164 size = rtas_ld(args, 1);
165 addr = rtas_ld(args, 0);
166
167 finish_read_pci_config(spapr, 0, addr, size, rets);
168 }
169
170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
171 uint32_t addr, uint32_t size,
172 uint32_t val, target_ulong rets)
173 {
174 PCIDevice *pci_dev;
175
176 if ((size != 1) && (size != 2) && (size != 4)) {
177 /* access must be 1, 2 or 4 bytes */
178 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
179 return;
180 }
181
182 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
183 addr = rtas_pci_cfgaddr(addr);
184
185 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
186 /* Access must be to a valid device, within bounds and
187 * naturally aligned */
188 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
189 return;
190 }
191
192 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
193 val, size);
194
195 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
196 }
197
198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
199 uint32_t token, uint32_t nargs,
200 target_ulong args,
201 uint32_t nret, target_ulong rets)
202 {
203 uint64_t buid;
204 uint32_t val, size, addr;
205
206 if ((nargs != 5) || (nret != 1)) {
207 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
208 return;
209 }
210
211 buid = rtas_ldq(args, 1);
212 val = rtas_ld(args, 4);
213 size = rtas_ld(args, 3);
214 addr = rtas_ld(args, 0);
215
216 finish_write_pci_config(spapr, buid, addr, size, val, rets);
217 }
218
219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
220 uint32_t token, uint32_t nargs,
221 target_ulong args,
222 uint32_t nret, target_ulong rets)
223 {
224 uint32_t val, size, addr;
225
226 if ((nargs != 3) || (nret != 1)) {
227 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
228 return;
229 }
230
231
232 val = rtas_ld(args, 2);
233 size = rtas_ld(args, 1);
234 addr = rtas_ld(args, 0);
235
236 finish_write_pci_config(spapr, 0, addr, size, val, rets);
237 }
238
239 /*
240 * Set MSI/MSIX message data.
241 * This is required for msi_notify()/msix_notify() which
242 * will write at the addresses via spapr_msi_write().
243 *
244 * If hwaddr == 0, all entries will have .data == first_irq i.e.
245 * table will be reset.
246 */
247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
248 unsigned first_irq, unsigned req_num)
249 {
250 unsigned i;
251 MSIMessage msg = { .address = addr, .data = first_irq };
252
253 if (!msix) {
254 msi_set_message(pdev, msg);
255 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
256 return;
257 }
258
259 for (i = 0; i < req_num; ++i) {
260 msix_set_message(pdev, i, msg);
261 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
262 if (addr) {
263 ++msg.data;
264 }
265 }
266 }
267
268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
269 uint32_t token, uint32_t nargs,
270 target_ulong args, uint32_t nret,
271 target_ulong rets)
272 {
273 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
274 uint32_t config_addr = rtas_ld(args, 0);
275 uint64_t buid = rtas_ldq(args, 1);
276 unsigned int func = rtas_ld(args, 3);
277 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
278 unsigned int seq_num = rtas_ld(args, 5);
279 unsigned int ret_intr_type;
280 unsigned int irq, max_irqs = 0;
281 SpaprPhbState *phb = NULL;
282 PCIDevice *pdev = NULL;
283 spapr_pci_msi *msi;
284 int *config_addr_key;
285 Error *err = NULL;
286 int i;
287
288 /* Fins SpaprPhbState */
289 phb = spapr_pci_find_phb(spapr, buid);
290 if (phb) {
291 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
292 }
293 if (!phb || !pdev) {
294 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
295 return;
296 }
297
298 switch (func) {
299 case RTAS_CHANGE_FN:
300 if (msi_present(pdev)) {
301 ret_intr_type = RTAS_TYPE_MSI;
302 } else if (msix_present(pdev)) {
303 ret_intr_type = RTAS_TYPE_MSIX;
304 } else {
305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306 return;
307 }
308 break;
309 case RTAS_CHANGE_MSI_FN:
310 if (msi_present(pdev)) {
311 ret_intr_type = RTAS_TYPE_MSI;
312 } else {
313 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
314 return;
315 }
316 break;
317 case RTAS_CHANGE_MSIX_FN:
318 if (msix_present(pdev)) {
319 ret_intr_type = RTAS_TYPE_MSIX;
320 } else {
321 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
322 return;
323 }
324 break;
325 default:
326 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
327 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
328 return;
329 }
330
331 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
332
333 /* Releasing MSIs */
334 if (!req_num) {
335 if (!msi) {
336 trace_spapr_pci_msi("Releasing wrong config", config_addr);
337 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
338 return;
339 }
340
341 if (!smc->legacy_irq_allocation) {
342 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
343 }
344 spapr_irq_free(spapr, msi->first_irq, msi->num);
345 if (msi_present(pdev)) {
346 spapr_msi_setmsg(pdev, 0, false, 0, 0);
347 }
348 if (msix_present(pdev)) {
349 spapr_msi_setmsg(pdev, 0, true, 0, 0);
350 }
351 g_hash_table_remove(phb->msi, &config_addr);
352
353 trace_spapr_pci_msi("Released MSIs", config_addr);
354 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
355 rtas_st(rets, 1, 0);
356 return;
357 }
358
359 /* Enabling MSI */
360
361 /* Check if the device supports as many IRQs as requested */
362 if (ret_intr_type == RTAS_TYPE_MSI) {
363 max_irqs = msi_nr_vectors_allocated(pdev);
364 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
365 max_irqs = pdev->msix_entries_nr;
366 }
367 if (!max_irqs) {
368 error_report("Requested interrupt type %d is not enabled for device %x",
369 ret_intr_type, config_addr);
370 rtas_st(rets, 0, -1); /* Hardware error */
371 return;
372 }
373 /* Correct the number if the guest asked for too many */
374 if (req_num > max_irqs) {
375 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
376 req_num = max_irqs;
377 irq = 0; /* to avoid misleading trace */
378 goto out;
379 }
380
381 /* Allocate MSIs */
382 if (smc->legacy_irq_allocation) {
383 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
384 &err);
385 } else {
386 irq = spapr_irq_msi_alloc(spapr, req_num,
387 ret_intr_type == RTAS_TYPE_MSI, &err);
388 }
389 if (err) {
390 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
391 config_addr);
392 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
393 return;
394 }
395
396 for (i = 0; i < req_num; i++) {
397 spapr_irq_claim(spapr, irq + i, false, &err);
398 if (err) {
399 if (i) {
400 spapr_irq_free(spapr, irq, i);
401 }
402 if (!smc->legacy_irq_allocation) {
403 spapr_irq_msi_free(spapr, irq, req_num);
404 }
405 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
406 config_addr);
407 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
408 return;
409 }
410 }
411
412 /* Release previous MSIs */
413 if (msi) {
414 if (!smc->legacy_irq_allocation) {
415 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
416 }
417 spapr_irq_free(spapr, msi->first_irq, msi->num);
418 g_hash_table_remove(phb->msi, &config_addr);
419 }
420
421 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
422 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
423 irq, req_num);
424
425 /* Add MSI device to cache */
426 msi = g_new(spapr_pci_msi, 1);
427 msi->first_irq = irq;
428 msi->num = req_num;
429 config_addr_key = g_new(int, 1);
430 *config_addr_key = config_addr;
431 g_hash_table_insert(phb->msi, config_addr_key, msi);
432
433 out:
434 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
435 rtas_st(rets, 1, req_num);
436 rtas_st(rets, 2, ++seq_num);
437 if (nret > 3) {
438 rtas_st(rets, 3, ret_intr_type);
439 }
440
441 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
442 }
443
444 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
445 SpaprMachineState *spapr,
446 uint32_t token,
447 uint32_t nargs,
448 target_ulong args,
449 uint32_t nret,
450 target_ulong rets)
451 {
452 uint32_t config_addr = rtas_ld(args, 0);
453 uint64_t buid = rtas_ldq(args, 1);
454 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
455 SpaprPhbState *phb = NULL;
456 PCIDevice *pdev = NULL;
457 spapr_pci_msi *msi;
458
459 /* Find SpaprPhbState */
460 phb = spapr_pci_find_phb(spapr, buid);
461 if (phb) {
462 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
463 }
464 if (!phb || !pdev) {
465 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
466 return;
467 }
468
469 /* Find device descriptor and start IRQ */
470 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
471 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
472 trace_spapr_pci_msi("Failed to return vector", config_addr);
473 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
474 return;
475 }
476 intr_src_num = msi->first_irq + ioa_intr_num;
477 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
478 intr_src_num);
479
480 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
481 rtas_st(rets, 1, intr_src_num);
482 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
483 }
484
485 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
486 SpaprMachineState *spapr,
487 uint32_t token, uint32_t nargs,
488 target_ulong args, uint32_t nret,
489 target_ulong rets)
490 {
491 SpaprPhbState *sphb;
492 uint32_t addr, option;
493 uint64_t buid;
494 int ret;
495
496 if ((nargs != 4) || (nret != 1)) {
497 goto param_error_exit;
498 }
499
500 buid = rtas_ldq(args, 1);
501 addr = rtas_ld(args, 0);
502 option = rtas_ld(args, 3);
503
504 sphb = spapr_pci_find_phb(spapr, buid);
505 if (!sphb) {
506 goto param_error_exit;
507 }
508
509 if (!spapr_phb_eeh_available(sphb)) {
510 goto param_error_exit;
511 }
512
513 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
514 rtas_st(rets, 0, ret);
515 return;
516
517 param_error_exit:
518 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
519 }
520
521 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
522 SpaprMachineState *spapr,
523 uint32_t token, uint32_t nargs,
524 target_ulong args, uint32_t nret,
525 target_ulong rets)
526 {
527 SpaprPhbState *sphb;
528 PCIDevice *pdev;
529 uint32_t addr, option;
530 uint64_t buid;
531
532 if ((nargs != 4) || (nret != 2)) {
533 goto param_error_exit;
534 }
535
536 buid = rtas_ldq(args, 1);
537 sphb = spapr_pci_find_phb(spapr, buid);
538 if (!sphb) {
539 goto param_error_exit;
540 }
541
542 if (!spapr_phb_eeh_available(sphb)) {
543 goto param_error_exit;
544 }
545
546 /*
547 * We always have PE address of form "00BB0001". "BB"
548 * represents the bus number of PE's primary bus.
549 */
550 option = rtas_ld(args, 3);
551 switch (option) {
552 case RTAS_GET_PE_ADDR:
553 addr = rtas_ld(args, 0);
554 pdev = spapr_pci_find_dev(spapr, buid, addr);
555 if (!pdev) {
556 goto param_error_exit;
557 }
558
559 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
560 break;
561 case RTAS_GET_PE_MODE:
562 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
563 break;
564 default:
565 goto param_error_exit;
566 }
567
568 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
569 return;
570
571 param_error_exit:
572 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
573 }
574
575 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
576 SpaprMachineState *spapr,
577 uint32_t token, uint32_t nargs,
578 target_ulong args, uint32_t nret,
579 target_ulong rets)
580 {
581 SpaprPhbState *sphb;
582 uint64_t buid;
583 int state, ret;
584
585 if ((nargs != 3) || (nret != 4 && nret != 5)) {
586 goto param_error_exit;
587 }
588
589 buid = rtas_ldq(args, 1);
590 sphb = spapr_pci_find_phb(spapr, buid);
591 if (!sphb) {
592 goto param_error_exit;
593 }
594
595 if (!spapr_phb_eeh_available(sphb)) {
596 goto param_error_exit;
597 }
598
599 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
600 rtas_st(rets, 0, ret);
601 if (ret != RTAS_OUT_SUCCESS) {
602 return;
603 }
604
605 rtas_st(rets, 1, state);
606 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
607 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
608 if (nret >= 5) {
609 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
610 }
611 return;
612
613 param_error_exit:
614 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
615 }
616
617 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
618 SpaprMachineState *spapr,
619 uint32_t token, uint32_t nargs,
620 target_ulong args, uint32_t nret,
621 target_ulong rets)
622 {
623 SpaprPhbState *sphb;
624 uint32_t option;
625 uint64_t buid;
626 int ret;
627
628 if ((nargs != 4) || (nret != 1)) {
629 goto param_error_exit;
630 }
631
632 buid = rtas_ldq(args, 1);
633 option = rtas_ld(args, 3);
634 sphb = spapr_pci_find_phb(spapr, buid);
635 if (!sphb) {
636 goto param_error_exit;
637 }
638
639 if (!spapr_phb_eeh_available(sphb)) {
640 goto param_error_exit;
641 }
642
643 ret = spapr_phb_vfio_eeh_reset(sphb, option);
644 rtas_st(rets, 0, ret);
645 return;
646
647 param_error_exit:
648 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
649 }
650
651 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
652 SpaprMachineState *spapr,
653 uint32_t token, uint32_t nargs,
654 target_ulong args, uint32_t nret,
655 target_ulong rets)
656 {
657 SpaprPhbState *sphb;
658 uint64_t buid;
659 int ret;
660
661 if ((nargs != 3) || (nret != 1)) {
662 goto param_error_exit;
663 }
664
665 buid = rtas_ldq(args, 1);
666 sphb = spapr_pci_find_phb(spapr, buid);
667 if (!sphb) {
668 goto param_error_exit;
669 }
670
671 if (!spapr_phb_eeh_available(sphb)) {
672 goto param_error_exit;
673 }
674
675 ret = spapr_phb_vfio_eeh_configure(sphb);
676 rtas_st(rets, 0, ret);
677 return;
678
679 param_error_exit:
680 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
681 }
682
683 /* To support it later */
684 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
685 SpaprMachineState *spapr,
686 uint32_t token, uint32_t nargs,
687 target_ulong args, uint32_t nret,
688 target_ulong rets)
689 {
690 SpaprPhbState *sphb;
691 int option;
692 uint64_t buid;
693
694 if ((nargs != 8) || (nret != 1)) {
695 goto param_error_exit;
696 }
697
698 buid = rtas_ldq(args, 1);
699 sphb = spapr_pci_find_phb(spapr, buid);
700 if (!sphb) {
701 goto param_error_exit;
702 }
703
704 if (!spapr_phb_eeh_available(sphb)) {
705 goto param_error_exit;
706 }
707
708 option = rtas_ld(args, 7);
709 switch (option) {
710 case RTAS_SLOT_TEMP_ERR_LOG:
711 case RTAS_SLOT_PERM_ERR_LOG:
712 break;
713 default:
714 goto param_error_exit;
715 }
716
717 /* We don't have error log yet */
718 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
719 return;
720
721 param_error_exit:
722 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
723 }
724
725 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
726 {
727 /*
728 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
729 * corresponding qemu_irq.
730 */
731 SpaprPhbState *phb = opaque;
732
733 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
734 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
735 }
736
737 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
738 {
739 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
740 PCIINTxRoute route;
741
742 route.mode = PCI_INTX_ENABLED;
743 route.irq = sphb->lsi_table[pin].irq;
744
745 return route;
746 }
747
748 /*
749 * MSI/MSIX memory region implementation.
750 * The handler handles both MSI and MSIX.
751 * The vector number is encoded in least bits in data.
752 */
753 static void spapr_msi_write(void *opaque, hwaddr addr,
754 uint64_t data, unsigned size)
755 {
756 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
757 uint32_t irq = data;
758
759 trace_spapr_pci_msi_write(addr, data, irq);
760
761 qemu_irq_pulse(spapr_qirq(spapr, irq));
762 }
763
764 static const MemoryRegionOps spapr_msi_ops = {
765 /* There is no .read as the read result is undefined by PCI spec */
766 .read = NULL,
767 .write = spapr_msi_write,
768 .endianness = DEVICE_LITTLE_ENDIAN
769 };
770
771 /*
772 * PHB PCI device
773 */
774 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
775 {
776 SpaprPhbState *phb = opaque;
777
778 return &phb->iommu_as;
779 }
780
781 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
782 {
783 char *path = NULL, *buf = NULL, *host = NULL;
784
785 /* Get the PCI VFIO host id */
786 host = object_property_get_str(OBJECT(pdev), "host", NULL);
787 if (!host) {
788 goto err_out;
789 }
790
791 /* Construct the path of the file that will give us the DT location */
792 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
793 g_free(host);
794 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
795 goto err_out;
796 }
797 g_free(path);
798
799 /* Construct and read from host device tree the loc-code */
800 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
801 g_free(buf);
802 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
803 goto err_out;
804 }
805 return buf;
806
807 err_out:
808 g_free(path);
809 return NULL;
810 }
811
812 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
813 {
814 char *buf;
815 const char *devtype = "qemu";
816 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
817
818 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
819 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
820 if (buf) {
821 return buf;
822 }
823 devtype = "vfio";
824 }
825 /*
826 * For emulated devices and VFIO-failure case, make up
827 * the loc-code.
828 */
829 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
830 devtype, pdev->name, sphb->index, busnr,
831 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
832 return buf;
833 }
834
835 /* Macros to operate with address in OF binding to PCI */
836 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
837 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
838 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
839 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
840 #define b_ss(x) b_x((x), 24, 2) /* the space code */
841 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
842 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
843 #define b_fff(x) b_x((x), 8, 3) /* function number */
844 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
845
846 /* for 'reg'/'assigned-addresses' OF properties */
847 #define RESOURCE_CELLS_SIZE 2
848 #define RESOURCE_CELLS_ADDRESS 3
849
850 typedef struct ResourceFields {
851 uint32_t phys_hi;
852 uint32_t phys_mid;
853 uint32_t phys_lo;
854 uint32_t size_hi;
855 uint32_t size_lo;
856 } QEMU_PACKED ResourceFields;
857
858 typedef struct ResourceProps {
859 ResourceFields reg[8];
860 ResourceFields assigned[7];
861 uint32_t reg_len;
862 uint32_t assigned_len;
863 } ResourceProps;
864
865 /* fill in the 'reg'/'assigned-resources' OF properties for
866 * a PCI device. 'reg' describes resource requirements for a
867 * device's IO/MEM regions, 'assigned-addresses' describes the
868 * actual resource assignments.
869 *
870 * the properties are arrays of ('phys-addr', 'size') pairs describing
871 * the addressable regions of the PCI device, where 'phys-addr' is a
872 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
873 * (phys.hi, phys.mid, phys.lo), and 'size' is a
874 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
875 *
876 * phys.hi = 0xYYXXXXZZ, where:
877 * 0xYY = npt000ss
878 * ||| |
879 * ||| +-- space code
880 * ||| |
881 * ||| + 00 if configuration space
882 * ||| + 01 if IO region,
883 * ||| + 10 if 32-bit MEM region
884 * ||| + 11 if 64-bit MEM region
885 * |||
886 * ||+------ for non-relocatable IO: 1 if aliased
887 * || for relocatable IO: 1 if below 64KB
888 * || for MEM: 1 if below 1MB
889 * |+------- 1 if region is prefetchable
890 * +-------- 1 if region is non-relocatable
891 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
892 * bits respectively
893 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
894 * to the region
895 *
896 * phys.mid and phys.lo correspond respectively to the hi/lo portions
897 * of the actual address of the region.
898 *
899 * how the phys-addr/size values are used differ slightly between
900 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
901 * an additional description for the config space region of the
902 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
903 * to describe the region as relocatable, with an address-mapping
904 * that corresponds directly to the PHB's address space for the
905 * resource. 'assigned-addresses' always has n=1 set with an absolute
906 * address assigned for the resource. in general, 'assigned-addresses'
907 * won't be populated, since addresses for PCI devices are generally
908 * unmapped initially and left to the guest to assign.
909 *
910 * note also that addresses defined in these properties are, at least
911 * for PAPR guests, relative to the PHBs IO/MEM windows, and
912 * correspond directly to the addresses in the BARs.
913 *
914 * in accordance with PCI Bus Binding to Open Firmware,
915 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
916 * Appendix C.
917 */
918 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
919 {
920 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
921 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
922 b_ddddd(PCI_SLOT(d->devfn)) |
923 b_fff(PCI_FUNC(d->devfn)));
924 ResourceFields *reg, *assigned;
925 int i, reg_idx = 0, assigned_idx = 0;
926
927 /* config space region */
928 reg = &rp->reg[reg_idx++];
929 reg->phys_hi = cpu_to_be32(dev_id);
930 reg->phys_mid = 0;
931 reg->phys_lo = 0;
932 reg->size_hi = 0;
933 reg->size_lo = 0;
934
935 for (i = 0; i < PCI_NUM_REGIONS; i++) {
936 if (!d->io_regions[i].size) {
937 continue;
938 }
939
940 reg = &rp->reg[reg_idx++];
941
942 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
943 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
944 reg->phys_hi |= cpu_to_be32(b_ss(1));
945 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
946 reg->phys_hi |= cpu_to_be32(b_ss(3));
947 } else {
948 reg->phys_hi |= cpu_to_be32(b_ss(2));
949 }
950 reg->phys_mid = 0;
951 reg->phys_lo = 0;
952 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
953 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
954
955 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
956 continue;
957 }
958
959 assigned = &rp->assigned[assigned_idx++];
960 assigned->phys_hi = cpu_to_be32(be32_to_cpu(reg->phys_hi) | b_n(1));
961 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
962 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
963 assigned->size_hi = reg->size_hi;
964 assigned->size_lo = reg->size_lo;
965 }
966
967 rp->reg_len = reg_idx * sizeof(ResourceFields);
968 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
969 }
970
971 typedef struct PCIClass PCIClass;
972 typedef struct PCISubClass PCISubClass;
973 typedef struct PCIIFace PCIIFace;
974
975 struct PCIIFace {
976 int iface;
977 const char *name;
978 };
979
980 struct PCISubClass {
981 int subclass;
982 const char *name;
983 const PCIIFace *iface;
984 };
985
986 struct PCIClass {
987 const char *name;
988 const PCISubClass *subc;
989 };
990
991 static const PCISubClass undef_subclass[] = {
992 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
993 { 0xFF, NULL, NULL },
994 };
995
996 static const PCISubClass mass_subclass[] = {
997 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
998 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
999 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
1000 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
1001 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
1002 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
1003 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
1004 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
1005 { 0xFF, NULL, NULL },
1006 };
1007
1008 static const PCISubClass net_subclass[] = {
1009 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1010 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1011 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1012 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1013 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1014 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1015 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1016 { 0xFF, NULL, NULL },
1017 };
1018
1019 static const PCISubClass displ_subclass[] = {
1020 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1021 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1022 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1023 { 0xFF, NULL, NULL },
1024 };
1025
1026 static const PCISubClass media_subclass[] = {
1027 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1028 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1029 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1030 { 0xFF, NULL, NULL },
1031 };
1032
1033 static const PCISubClass mem_subclass[] = {
1034 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1035 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1036 { 0xFF, NULL, NULL },
1037 };
1038
1039 static const PCISubClass bridg_subclass[] = {
1040 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1041 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1042 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1043 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1044 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1045 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1046 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1047 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1048 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1049 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1050 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1051 { 0xFF, NULL, NULL },
1052 };
1053
1054 static const PCISubClass comm_subclass[] = {
1055 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1056 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1057 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1058 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1059 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1060 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1061 { 0xFF, NULL, NULL, },
1062 };
1063
1064 static const PCIIFace pic_iface[] = {
1065 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1066 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1067 { 0xFF, NULL },
1068 };
1069
1070 static const PCISubClass sys_subclass[] = {
1071 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1072 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1073 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1074 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1075 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1076 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1077 { 0xFF, NULL, NULL },
1078 };
1079
1080 static const PCISubClass inp_subclass[] = {
1081 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1082 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1083 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1084 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1085 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1086 { 0xFF, NULL, NULL },
1087 };
1088
1089 static const PCISubClass dock_subclass[] = {
1090 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1091 { 0xFF, NULL, NULL },
1092 };
1093
1094 static const PCISubClass cpu_subclass[] = {
1095 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1096 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1097 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1098 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1099 { 0xFF, NULL, NULL },
1100 };
1101
1102 static const PCIIFace usb_iface[] = {
1103 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1104 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1105 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1106 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1107 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1108 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1109 { 0xFF, NULL },
1110 };
1111
1112 static const PCISubClass ser_subclass[] = {
1113 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1114 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1115 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1116 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1117 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1118 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1119 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1120 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1121 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1122 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1123 { 0xFF, NULL, NULL },
1124 };
1125
1126 static const PCISubClass wrl_subclass[] = {
1127 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1128 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1129 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1130 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1131 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1132 { 0xFF, NULL, NULL },
1133 };
1134
1135 static const PCISubClass sat_subclass[] = {
1136 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1137 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1138 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1139 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1140 { 0xFF, NULL, NULL },
1141 };
1142
1143 static const PCISubClass crypt_subclass[] = {
1144 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1145 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1146 "entertainment-encryption", NULL },
1147 { 0xFF, NULL, NULL },
1148 };
1149
1150 static const PCISubClass spc_subclass[] = {
1151 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1152 { PCI_CLASS_SP_PERF, "counter", NULL },
1153 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1154 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1155 { 0xFF, NULL, NULL },
1156 };
1157
1158 static const PCIClass pci_classes[] = {
1159 { "legacy-device", undef_subclass },
1160 { "mass-storage", mass_subclass },
1161 { "network", net_subclass },
1162 { "display", displ_subclass, },
1163 { "multimedia-device", media_subclass },
1164 { "memory-controller", mem_subclass },
1165 { "unknown-bridge", bridg_subclass },
1166 { "communication-controller", comm_subclass},
1167 { "system-peripheral", sys_subclass },
1168 { "input-controller", inp_subclass },
1169 { "docking-station", dock_subclass },
1170 { "cpu", cpu_subclass },
1171 { "serial-bus", ser_subclass },
1172 { "wireless-controller", wrl_subclass },
1173 { "intelligent-io", NULL },
1174 { "satellite-device", sat_subclass },
1175 { "encryption", crypt_subclass },
1176 { "data-processing-controller", spc_subclass },
1177 };
1178
1179 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1180 uint8_t iface)
1181 {
1182 const PCIClass *pclass;
1183 const PCISubClass *psubclass;
1184 const PCIIFace *piface;
1185 const char *name;
1186
1187 if (class >= ARRAY_SIZE(pci_classes)) {
1188 return "pci";
1189 }
1190
1191 pclass = pci_classes + class;
1192 name = pclass->name;
1193
1194 if (pclass->subc == NULL) {
1195 return name;
1196 }
1197
1198 psubclass = pclass->subc;
1199 while ((psubclass->subclass & 0xff) != 0xff) {
1200 if ((psubclass->subclass & 0xff) == subclass) {
1201 name = psubclass->name;
1202 break;
1203 }
1204 psubclass++;
1205 }
1206
1207 piface = psubclass->iface;
1208 if (piface == NULL) {
1209 return name;
1210 }
1211 while ((piface->iface & 0xff) != 0xff) {
1212 if ((piface->iface & 0xff) == iface) {
1213 name = piface->name;
1214 break;
1215 }
1216 piface++;
1217 }
1218
1219 return name;
1220 }
1221
1222 /*
1223 * DRC helper functions
1224 */
1225
1226 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1227 uint8_t chassis, int32_t devfn)
1228 {
1229 return (phb->index << 16) | (chassis << 8) | devfn;
1230 }
1231
1232 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1233 uint8_t chassis, int32_t devfn)
1234 {
1235 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1236 drc_id_from_devfn(phb, chassis, devfn));
1237 }
1238
1239 static uint8_t chassis_from_bus(PCIBus *bus, Error **errp)
1240 {
1241 if (pci_bus_is_root(bus)) {
1242 return 0;
1243 } else {
1244 PCIDevice *bridge = pci_bridge_get_device(bus);
1245
1246 return object_property_get_uint(OBJECT(bridge), "chassis_nr", errp);
1247 }
1248 }
1249
1250 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1251 {
1252 Error *local_err = NULL;
1253 uint8_t chassis = chassis_from_bus(pci_get_bus(dev), &local_err);
1254
1255 if (local_err) {
1256 error_report_err(local_err);
1257 return NULL;
1258 }
1259
1260 return drc_from_devfn(phb, chassis, dev->devfn);
1261 }
1262
1263 static void add_drcs(SpaprPhbState *phb, PCIBus *bus, Error **errp)
1264 {
1265 Object *owner;
1266 int i;
1267 uint8_t chassis;
1268 Error *local_err = NULL;
1269
1270 if (!phb->dr_enabled) {
1271 return;
1272 }
1273
1274 chassis = chassis_from_bus(bus, &local_err);
1275 if (local_err) {
1276 error_propagate(errp, local_err);
1277 return;
1278 }
1279
1280 if (pci_bus_is_root(bus)) {
1281 owner = OBJECT(phb);
1282 } else {
1283 owner = OBJECT(pci_bridge_get_device(bus));
1284 }
1285
1286 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1287 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1288 drc_id_from_devfn(phb, chassis, i));
1289 }
1290 }
1291
1292 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus, Error **errp)
1293 {
1294 int i;
1295 uint8_t chassis;
1296 Error *local_err = NULL;
1297
1298 if (!phb->dr_enabled) {
1299 return;
1300 }
1301
1302 chassis = chassis_from_bus(bus, &local_err);
1303 if (local_err) {
1304 error_propagate(errp, local_err);
1305 return;
1306 }
1307
1308 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1309 SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1310
1311 if (drc) {
1312 object_unparent(OBJECT(drc));
1313 }
1314 }
1315 }
1316
1317 typedef struct PciWalkFdt {
1318 void *fdt;
1319 int offset;
1320 SpaprPhbState *sphb;
1321 int err;
1322 } PciWalkFdt;
1323
1324 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1325 void *fdt, int parent_offset);
1326
1327 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1328 void *opaque)
1329 {
1330 PciWalkFdt *p = opaque;
1331 int err;
1332
1333 if (p->err) {
1334 /* Something's already broken, don't keep going */
1335 return;
1336 }
1337
1338 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1339 if (err < 0) {
1340 p->err = err;
1341 }
1342 }
1343
1344 /* Augment PCI device node with bridge specific information */
1345 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1346 void *fdt, int offset)
1347 {
1348 Object *owner;
1349 PciWalkFdt cbinfo = {
1350 .fdt = fdt,
1351 .offset = offset,
1352 .sphb = sphb,
1353 .err = 0,
1354 };
1355 int ret;
1356
1357 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1358 RESOURCE_CELLS_ADDRESS));
1359 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1360 RESOURCE_CELLS_SIZE));
1361
1362 assert(bus);
1363 pci_for_each_device_reverse(bus, pci_bus_num(bus),
1364 spapr_dt_pci_device_cb, &cbinfo);
1365 if (cbinfo.err) {
1366 return cbinfo.err;
1367 }
1368
1369 if (pci_bus_is_root(bus)) {
1370 owner = OBJECT(sphb);
1371 } else {
1372 owner = OBJECT(pci_bridge_get_device(bus));
1373 }
1374
1375 ret = spapr_dt_drc(fdt, offset, owner,
1376 SPAPR_DR_CONNECTOR_TYPE_PCI);
1377 if (ret) {
1378 return ret;
1379 }
1380
1381 return offset;
1382 }
1383
1384 /* create OF node for pci device and required OF DT properties */
1385 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1386 void *fdt, int parent_offset)
1387 {
1388 int offset;
1389 const gchar *basename;
1390 gchar *nodename;
1391 int slot = PCI_SLOT(dev->devfn);
1392 int func = PCI_FUNC(dev->devfn);
1393 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
1394 ResourceProps rp;
1395 SpaprDrc *drc = drc_from_dev(sphb, dev);
1396 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1397 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1398 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1399 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1400 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1401 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1402 uint32_t subsystem_vendor_id =
1403 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1404 uint32_t cache_line_size =
1405 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1406 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1407 gchar *loc_code;
1408
1409 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1410 ccode & 0xff);
1411
1412 if (func != 0) {
1413 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func);
1414 } else {
1415 nodename = g_strdup_printf("%s@%x", basename, slot);
1416 }
1417
1418 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1419
1420 g_free(nodename);
1421
1422 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1423 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1424 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1425 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1426
1427 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1428 if (irq_pin) {
1429 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1430 }
1431
1432 if (subsystem_id) {
1433 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1434 }
1435
1436 if (subsystem_vendor_id) {
1437 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1438 subsystem_vendor_id));
1439 }
1440
1441 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1442
1443
1444 /* the following fdt cells are masked off the pci status register */
1445 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1446 PCI_STATUS_DEVSEL_MASK & pci_status));
1447
1448 if (pci_status & PCI_STATUS_FAST_BACK) {
1449 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1450 }
1451 if (pci_status & PCI_STATUS_66MHZ) {
1452 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1453 }
1454 if (pci_status & PCI_STATUS_UDF) {
1455 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1456 }
1457
1458 loc_code = spapr_phb_get_loc_code(sphb, dev);
1459 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1460 g_free(loc_code);
1461
1462 if (drc) {
1463 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1464 spapr_drc_index(drc)));
1465 }
1466
1467 if (msi_present(dev)) {
1468 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1469 if (max_msi) {
1470 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1471 }
1472 }
1473 if (msix_present(dev)) {
1474 uint32_t max_msix = dev->msix_entries_nr;
1475 if (max_msix) {
1476 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1477 }
1478 }
1479
1480 populate_resource_props(dev, &rp);
1481 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1482 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1483 (uint8_t *)rp.assigned, rp.assigned_len));
1484
1485 if (sphb->pcie_ecs && pci_is_express(dev)) {
1486 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1487 }
1488
1489 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1490
1491 if (!pc->is_bridge) {
1492 /* Properties only for non-bridges */
1493 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1494 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1495 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1496 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1497 return offset;
1498 } else {
1499 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1500
1501 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1502 }
1503 }
1504
1505 /* Callback to be called during DRC release. */
1506 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1507 {
1508 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1509
1510 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1511 object_unparent(OBJECT(dev));
1512 }
1513
1514 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1515 void *fdt, int *fdt_start_offset, Error **errp)
1516 {
1517 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1518 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1519 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1520
1521 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1522 return 0;
1523 }
1524
1525 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1526 PCIBridge *bridge,
1527 Error **errp)
1528 {
1529 Error *local_err = NULL;
1530 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1531
1532 add_drcs(phb, bus, &local_err);
1533 if (local_err) {
1534 error_propagate(errp, local_err);
1535 return;
1536 }
1537 }
1538
1539 static void spapr_pci_plug(HotplugHandler *plug_handler,
1540 DeviceState *plugged_dev, Error **errp)
1541 {
1542 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1543 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1544 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1545 SpaprDrc *drc = drc_from_dev(phb, pdev);
1546 Error *local_err = NULL;
1547 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1548 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1549
1550 /* if DR is disabled we don't need to do anything in the case of
1551 * hotplug or coldplug callbacks
1552 */
1553 if (!phb->dr_enabled) {
1554 /* if this is a hotplug operation initiated by the user
1555 * we need to let them know it's not enabled
1556 */
1557 if (plugged_dev->hotplugged) {
1558 error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1559 object_get_typename(OBJECT(phb)));
1560 }
1561 goto out;
1562 }
1563
1564 g_assert(drc);
1565
1566 if (pc->is_bridge) {
1567 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev), &local_err);
1568 if (local_err) {
1569 error_propagate(errp, local_err);
1570 return;
1571 }
1572 }
1573
1574 /* Following the QEMU convention used for PCIe multifunction
1575 * hotplug, we do not allow functions to be hotplugged to a
1576 * slot that already has function 0 present
1577 */
1578 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1579 PCI_FUNC(pdev->devfn) != 0) {
1580 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1581 " additional functions can no longer be exposed to guest.",
1582 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1583 goto out;
1584 }
1585
1586 spapr_drc_attach(drc, DEVICE(pdev), &local_err);
1587 if (local_err) {
1588 goto out;
1589 }
1590
1591 /* If this is function 0, signal hotplug for all the device functions.
1592 * Otherwise defer sending the hotplug event.
1593 */
1594 if (!spapr_drc_hotplugged(plugged_dev)) {
1595 spapr_drc_reset(drc);
1596 } else if (PCI_FUNC(pdev->devfn) == 0) {
1597 int i;
1598 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev), &local_err);
1599
1600 if (local_err) {
1601 error_propagate(errp, local_err);
1602 return;
1603 }
1604
1605 for (i = 0; i < 8; i++) {
1606 SpaprDrc *func_drc;
1607 SpaprDrcClass *func_drck;
1608 SpaprDREntitySense state;
1609
1610 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1611 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1612 state = func_drck->dr_entity_sense(func_drc);
1613
1614 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1615 spapr_hotplug_req_add_by_index(func_drc);
1616 }
1617 }
1618 }
1619
1620 out:
1621 error_propagate(errp, local_err);
1622 }
1623
1624 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1625 PCIBridge *bridge,
1626 Error **errp)
1627 {
1628 Error *local_err = NULL;
1629 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1630
1631 remove_drcs(phb, bus, &local_err);
1632 if (local_err) {
1633 error_propagate(errp, local_err);
1634 return;
1635 }
1636 }
1637
1638 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1639 DeviceState *plugged_dev, Error **errp)
1640 {
1641 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1642 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1643
1644 /* some version guests do not wait for completion of a device
1645 * cleanup (generally done asynchronously by the kernel) before
1646 * signaling to QEMU that the device is safe, but instead sleep
1647 * for some 'safe' period of time. unfortunately on a busy host
1648 * this sleep isn't guaranteed to be long enough, resulting in
1649 * bad things like IRQ lines being left asserted during final
1650 * device removal. to deal with this we call reset just prior
1651 * to finalizing the device, which will put the device back into
1652 * an 'idle' state, as the device cleanup code expects.
1653 */
1654 pci_device_reset(PCI_DEVICE(plugged_dev));
1655
1656 if (pc->is_bridge) {
1657 Error *local_err = NULL;
1658 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev), &local_err);
1659 if (local_err) {
1660 error_propagate(errp, local_err);
1661 }
1662 return;
1663 }
1664
1665 object_property_set_bool(OBJECT(plugged_dev), false, "realized", NULL);
1666 }
1667
1668 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1669 DeviceState *plugged_dev, Error **errp)
1670 {
1671 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1672 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1673 SpaprDrc *drc = drc_from_dev(phb, pdev);
1674
1675 if (!phb->dr_enabled) {
1676 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1677 object_get_typename(OBJECT(phb)));
1678 return;
1679 }
1680
1681 g_assert(drc);
1682 g_assert(drc->dev == plugged_dev);
1683
1684 if (!spapr_drc_unplug_requested(drc)) {
1685 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1686 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1687 SpaprDrc *func_drc;
1688 SpaprDrcClass *func_drck;
1689 SpaprDREntitySense state;
1690 int i;
1691 Error *local_err = NULL;
1692 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev), &local_err);
1693
1694 if (local_err) {
1695 error_propagate(errp, local_err);
1696 return;
1697 }
1698
1699 if (pc->is_bridge) {
1700 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1701 }
1702
1703 /* ensure any other present functions are pending unplug */
1704 if (PCI_FUNC(pdev->devfn) == 0) {
1705 for (i = 1; i < 8; i++) {
1706 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1707 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1708 state = func_drck->dr_entity_sense(func_drc);
1709 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1710 && !spapr_drc_unplug_requested(func_drc)) {
1711 error_setg(errp,
1712 "PCI: slot %d, function %d still present. "
1713 "Must unplug all non-0 functions first.",
1714 slotnr, i);
1715 return;
1716 }
1717 }
1718 }
1719
1720 spapr_drc_detach(drc);
1721
1722 /* if this isn't func 0, defer unplug event. otherwise signal removal
1723 * for all present functions
1724 */
1725 if (PCI_FUNC(pdev->devfn) == 0) {
1726 for (i = 7; i >= 0; i--) {
1727 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1728 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1729 state = func_drck->dr_entity_sense(func_drc);
1730 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1731 spapr_hotplug_req_remove_by_index(func_drc);
1732 }
1733 }
1734 }
1735 }
1736 }
1737
1738 static void spapr_phb_finalizefn(Object *obj)
1739 {
1740 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1741
1742 g_free(sphb->dtbusname);
1743 sphb->dtbusname = NULL;
1744 }
1745
1746 static void spapr_phb_unrealize(DeviceState *dev, Error **errp)
1747 {
1748 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1749 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1750 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1751 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1752 SpaprTceTable *tcet;
1753 int i;
1754 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1755 Error *local_err = NULL;
1756
1757 spapr_phb_nvgpu_free(sphb);
1758
1759 if (sphb->msi) {
1760 g_hash_table_unref(sphb->msi);
1761 sphb->msi = NULL;
1762 }
1763
1764 /*
1765 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1766 * via PHB's unrealize->object_finalize
1767 */
1768 for (i = windows_supported - 1; i >= 0; i--) {
1769 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1770 if (tcet) {
1771 memory_region_del_subregion(&sphb->iommu_root,
1772 spapr_tce_get_iommu(tcet));
1773 }
1774 }
1775
1776 remove_drcs(sphb, phb->bus, &local_err);
1777 if (local_err) {
1778 error_propagate(errp, local_err);
1779 return;
1780 }
1781
1782 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1783 if (sphb->lsi_table[i].irq) {
1784 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1785 sphb->lsi_table[i].irq = 0;
1786 }
1787 }
1788
1789 QLIST_REMOVE(sphb, list);
1790
1791 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1792
1793 /*
1794 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1795 * unmapped all sections. Remove the listeners now, before destroying the
1796 * address space.
1797 */
1798 address_space_remove_listeners(&sphb->iommu_as);
1799 address_space_destroy(&sphb->iommu_as);
1800
1801 qbus_set_hotplug_handler(BUS(phb->bus), NULL, &error_abort);
1802 pci_unregister_root_bus(phb->bus);
1803
1804 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1805 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1806 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1807 }
1808 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1809 }
1810
1811 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1812 {
1813 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1814 * tries to add a sPAPR PHB to a non-pseries machine.
1815 */
1816 SpaprMachineState *spapr =
1817 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1818 TYPE_SPAPR_MACHINE);
1819 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1820 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1821 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1822 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1823 char *namebuf;
1824 int i;
1825 PCIBus *bus;
1826 uint64_t msi_window_size = 4096;
1827 SpaprTceTable *tcet;
1828 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1829 Error *local_err = NULL;
1830
1831 if (!spapr) {
1832 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1833 return;
1834 }
1835
1836 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1837
1838 if (sphb->mem64_win_size != 0) {
1839 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1840 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1841 " (max 2 GiB)", sphb->mem_win_size);
1842 return;
1843 }
1844
1845 /* 64-bit window defaults to identity mapping */
1846 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1847 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1848 /*
1849 * For compatibility with old configuration, if no 64-bit MMIO
1850 * window is specified, but the ordinary (32-bit) memory
1851 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1852 * window, with a 64-bit MMIO window following on immediately
1853 * afterwards
1854 */
1855 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1856 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1857 sphb->mem64_win_pciaddr =
1858 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1859 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1860 }
1861
1862 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1863 SpaprPhbState *s;
1864
1865 error_setg(errp, "PCI host bridges must have unique indexes");
1866 error_append_hint(errp, "The following indexes are already in use:");
1867 QLIST_FOREACH(s, &spapr->phbs, list) {
1868 error_append_hint(errp, " %d", s->index);
1869 }
1870 error_append_hint(errp, "\nTry another value for the index property\n");
1871 return;
1872 }
1873
1874 if (sphb->numa_node != -1 &&
1875 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1876 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1877 return;
1878 }
1879
1880 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1881
1882 /* Initialize memory regions */
1883 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1884 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1885 g_free(namebuf);
1886
1887 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1888 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1889 namebuf, &sphb->memspace,
1890 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1891 g_free(namebuf);
1892 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1893 &sphb->mem32window);
1894
1895 if (sphb->mem64_win_size != 0) {
1896 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1897 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1898 namebuf, &sphb->memspace,
1899 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1900 g_free(namebuf);
1901
1902 memory_region_add_subregion(get_system_memory(),
1903 sphb->mem64_win_addr,
1904 &sphb->mem64window);
1905 }
1906
1907 /* Initialize IO regions */
1908 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1909 memory_region_init(&sphb->iospace, OBJECT(sphb),
1910 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1911 g_free(namebuf);
1912
1913 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1914 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1915 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1916 g_free(namebuf);
1917 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1918 &sphb->iowindow);
1919
1920 bus = pci_register_root_bus(dev, NULL,
1921 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1922 &sphb->memspace, &sphb->iospace,
1923 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1924 TYPE_PCI_BUS);
1925
1926 /*
1927 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1928 * para-virtualized PCI bus *does* permit PCI-E extended config
1929 * space access
1930 */
1931 if (sphb->pcie_ecs) {
1932 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1933 }
1934 phb->bus = bus;
1935 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL);
1936
1937 /*
1938 * Initialize PHB address space.
1939 * By default there will be at least one subregion for default
1940 * 32bit DMA window.
1941 * Later the guest might want to create another DMA window
1942 * which will become another memory subregion.
1943 */
1944 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1945 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1946 namebuf, UINT64_MAX);
1947 g_free(namebuf);
1948 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1949 sphb->dtbusname);
1950
1951 /*
1952 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1953 * we need to allocate some memory to catch those writes coming
1954 * from msi_notify()/msix_notify().
1955 * As MSIMessage:addr is going to be the same and MSIMessage:data
1956 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1957 * be used.
1958 *
1959 * For KVM we want to ensure that this memory is a full page so that
1960 * our memory slot is of page size granularity.
1961 */
1962 if (kvm_enabled()) {
1963 msi_window_size = getpagesize();
1964 }
1965
1966 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1967 "msi", msi_window_size);
1968 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1969 &sphb->msiwindow);
1970
1971 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1972
1973 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1974
1975 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1976
1977 /* Initialize the LSI table */
1978 for (i = 0; i < PCI_NUM_PINS; i++) {
1979 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1980
1981 if (smc->legacy_irq_allocation) {
1982 irq = spapr_irq_findone(spapr, &local_err);
1983 if (local_err) {
1984 error_propagate_prepend(errp, local_err,
1985 "can't allocate LSIs: ");
1986 /*
1987 * Older machines will never support PHB hotplug, ie, this is an
1988 * init only path and QEMU will terminate. No need to rollback.
1989 */
1990 return;
1991 }
1992 }
1993
1994 spapr_irq_claim(spapr, irq, true, &local_err);
1995 if (local_err) {
1996 error_propagate_prepend(errp, local_err, "can't allocate LSIs: ");
1997 goto unrealize;
1998 }
1999
2000 sphb->lsi_table[i].irq = irq;
2001 }
2002
2003 /* allocate connectors for child PCI devices */
2004 add_drcs(sphb, phb->bus, &local_err);
2005 if (local_err) {
2006 error_propagate(errp, local_err);
2007 goto unrealize;
2008 }
2009
2010 /* DMA setup */
2011 for (i = 0; i < windows_supported; ++i) {
2012 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2013 if (!tcet) {
2014 error_setg(errp, "Creating window#%d failed for %s",
2015 i, sphb->dtbusname);
2016 goto unrealize;
2017 }
2018 memory_region_add_subregion(&sphb->iommu_root, 0,
2019 spapr_tce_get_iommu(tcet));
2020 }
2021
2022 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
2023 return;
2024
2025 unrealize:
2026 spapr_phb_unrealize(dev, NULL);
2027 }
2028
2029 static int spapr_phb_children_reset(Object *child, void *opaque)
2030 {
2031 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2032
2033 if (dev) {
2034 device_reset(dev);
2035 }
2036
2037 return 0;
2038 }
2039
2040 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2041 {
2042 int i;
2043 SpaprTceTable *tcet;
2044
2045 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2046 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2047
2048 if (tcet && tcet->nb_table) {
2049 spapr_tce_table_disable(tcet);
2050 }
2051 }
2052
2053 /* Register default 32bit DMA window */
2054 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2055 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2056 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2057 }
2058
2059 static void spapr_phb_reset(DeviceState *qdev)
2060 {
2061 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2062 Error *errp = NULL;
2063
2064 spapr_phb_dma_reset(sphb);
2065 spapr_phb_nvgpu_free(sphb);
2066 spapr_phb_nvgpu_setup(sphb, &errp);
2067 if (errp) {
2068 error_report_err(errp);
2069 }
2070
2071 /* Reset the IOMMU state */
2072 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2073
2074 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2075 spapr_phb_vfio_reset(qdev);
2076 }
2077 }
2078
2079 static Property spapr_phb_properties[] = {
2080 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2081 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2082 SPAPR_PCI_MEM32_WIN_SIZE),
2083 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2084 SPAPR_PCI_MEM64_WIN_SIZE),
2085 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2086 SPAPR_PCI_IO_WIN_SIZE),
2087 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2088 true),
2089 /* Default DMA window is 0..1GB */
2090 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2091 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2092 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2093 0x800000000000000ULL),
2094 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2095 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2096 (1ULL << 12) | (1ULL << 16)),
2097 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2098 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2099 pre_2_8_migration, false),
2100 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2101 pcie_ecs, true),
2102 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
2103 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
2104 DEFINE_PROP_END_OF_LIST(),
2105 };
2106
2107 static const VMStateDescription vmstate_spapr_pci_lsi = {
2108 .name = "spapr_pci/lsi",
2109 .version_id = 1,
2110 .minimum_version_id = 1,
2111 .fields = (VMStateField[]) {
2112 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
2113
2114 VMSTATE_END_OF_LIST()
2115 },
2116 };
2117
2118 static const VMStateDescription vmstate_spapr_pci_msi = {
2119 .name = "spapr_pci/msi",
2120 .version_id = 1,
2121 .minimum_version_id = 1,
2122 .fields = (VMStateField []) {
2123 VMSTATE_UINT32(key, spapr_pci_msi_mig),
2124 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
2125 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
2126 VMSTATE_END_OF_LIST()
2127 },
2128 };
2129
2130 static int spapr_pci_pre_save(void *opaque)
2131 {
2132 SpaprPhbState *sphb = opaque;
2133 GHashTableIter iter;
2134 gpointer key, value;
2135 int i;
2136
2137 if (sphb->pre_2_8_migration) {
2138 sphb->mig_liobn = sphb->dma_liobn[0];
2139 sphb->mig_mem_win_addr = sphb->mem_win_addr;
2140 sphb->mig_mem_win_size = sphb->mem_win_size;
2141 sphb->mig_io_win_addr = sphb->io_win_addr;
2142 sphb->mig_io_win_size = sphb->io_win_size;
2143
2144 if ((sphb->mem64_win_size != 0)
2145 && (sphb->mem64_win_addr
2146 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2147 sphb->mig_mem_win_size += sphb->mem64_win_size;
2148 }
2149 }
2150
2151 g_free(sphb->msi_devs);
2152 sphb->msi_devs = NULL;
2153 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2154 if (!sphb->msi_devs_num) {
2155 return 0;
2156 }
2157 sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num);
2158
2159 g_hash_table_iter_init(&iter, sphb->msi);
2160 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2161 sphb->msi_devs[i].key = *(uint32_t *) key;
2162 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
2163 }
2164
2165 return 0;
2166 }
2167
2168 static int spapr_pci_post_load(void *opaque, int version_id)
2169 {
2170 SpaprPhbState *sphb = opaque;
2171 gpointer key, value;
2172 int i;
2173
2174 for (i = 0; i < sphb->msi_devs_num; ++i) {
2175 key = g_memdup(&sphb->msi_devs[i].key,
2176 sizeof(sphb->msi_devs[i].key));
2177 value = g_memdup(&sphb->msi_devs[i].value,
2178 sizeof(sphb->msi_devs[i].value));
2179 g_hash_table_insert(sphb->msi, key, value);
2180 }
2181 g_free(sphb->msi_devs);
2182 sphb->msi_devs = NULL;
2183 sphb->msi_devs_num = 0;
2184
2185 return 0;
2186 }
2187
2188 static bool pre_2_8_migration(void *opaque, int version_id)
2189 {
2190 SpaprPhbState *sphb = opaque;
2191
2192 return sphb->pre_2_8_migration;
2193 }
2194
2195 static const VMStateDescription vmstate_spapr_pci = {
2196 .name = "spapr_pci",
2197 .version_id = 2,
2198 .minimum_version_id = 2,
2199 .pre_save = spapr_pci_pre_save,
2200 .post_load = spapr_pci_post_load,
2201 .fields = (VMStateField[]) {
2202 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2203 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2204 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2205 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2206 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2207 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2208 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2209 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
2210 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2211 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2212 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
2213 VMSTATE_END_OF_LIST()
2214 },
2215 };
2216
2217 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2218 PCIBus *rootbus)
2219 {
2220 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2221
2222 return sphb->dtbusname;
2223 }
2224
2225 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2226 {
2227 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2228 DeviceClass *dc = DEVICE_CLASS(klass);
2229 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2230
2231 hc->root_bus_path = spapr_phb_root_bus_path;
2232 dc->realize = spapr_phb_realize;
2233 dc->unrealize = spapr_phb_unrealize;
2234 dc->props = spapr_phb_properties;
2235 dc->reset = spapr_phb_reset;
2236 dc->vmsd = &vmstate_spapr_pci;
2237 /* Supported by TYPE_SPAPR_MACHINE */
2238 dc->user_creatable = true;
2239 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2240 hp->plug = spapr_pci_plug;
2241 hp->unplug = spapr_pci_unplug;
2242 hp->unplug_request = spapr_pci_unplug_request;
2243 }
2244
2245 static const TypeInfo spapr_phb_info = {
2246 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2247 .parent = TYPE_PCI_HOST_BRIDGE,
2248 .instance_size = sizeof(SpaprPhbState),
2249 .instance_finalize = spapr_phb_finalizefn,
2250 .class_init = spapr_phb_class_init,
2251 .interfaces = (InterfaceInfo[]) {
2252 { TYPE_HOTPLUG_HANDLER },
2253 { }
2254 }
2255 };
2256
2257 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2258 void *opaque)
2259 {
2260 unsigned int *bus_no = opaque;
2261 PCIBus *sec_bus = NULL;
2262
2263 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2264 PCI_HEADER_TYPE_BRIDGE)) {
2265 return;
2266 }
2267
2268 (*bus_no)++;
2269 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2270 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2271 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2272
2273 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2274 if (!sec_bus) {
2275 return;
2276 }
2277
2278 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2279 spapr_phb_pci_enumerate_bridge, bus_no);
2280 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2281 }
2282
2283 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2284 {
2285 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2286 unsigned int bus_no = 0;
2287
2288 pci_for_each_device(bus, pci_bus_num(bus),
2289 spapr_phb_pci_enumerate_bridge,
2290 &bus_no);
2291
2292 }
2293
2294 int spapr_dt_phb(SpaprPhbState *phb, uint32_t intc_phandle, void *fdt,
2295 uint32_t nr_msis, int *node_offset)
2296 {
2297 int bus_off, i, j, ret;
2298 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2299 struct {
2300 uint32_t hi;
2301 uint64_t child;
2302 uint64_t parent;
2303 uint64_t size;
2304 } QEMU_PACKED ranges[] = {
2305 {
2306 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2307 cpu_to_be64(phb->io_win_addr),
2308 cpu_to_be64(memory_region_size(&phb->iospace)),
2309 },
2310 {
2311 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2312 cpu_to_be64(phb->mem_win_addr),
2313 cpu_to_be64(phb->mem_win_size),
2314 },
2315 {
2316 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2317 cpu_to_be64(phb->mem64_win_addr),
2318 cpu_to_be64(phb->mem64_win_size),
2319 },
2320 };
2321 const unsigned sizeof_ranges =
2322 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2323 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2324 uint32_t interrupt_map_mask[] = {
2325 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2326 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2327 uint32_t ddw_applicable[] = {
2328 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2329 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2330 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2331 };
2332 uint32_t ddw_extensions[] = {
2333 cpu_to_be32(1),
2334 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2335 };
2336 uint32_t associativity[] = {cpu_to_be32(0x4),
2337 cpu_to_be32(0x0),
2338 cpu_to_be32(0x0),
2339 cpu_to_be32(0x0),
2340 cpu_to_be32(phb->numa_node)};
2341 SpaprTceTable *tcet;
2342 SpaprDrc *drc;
2343 Error *errp = NULL;
2344
2345 /* Start populating the FDT */
2346 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2347 if (node_offset) {
2348 *node_offset = bus_off;
2349 }
2350
2351 /* Write PHB properties */
2352 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2353 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2354 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2355 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2356 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2357 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2358 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2359 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2360 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis));
2361
2362 /* Dynamic DMA window */
2363 if (phb->ddw_enabled) {
2364 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2365 sizeof(ddw_applicable)));
2366 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2367 &ddw_extensions, sizeof(ddw_extensions)));
2368 }
2369
2370 /* Advertise NUMA via ibm,associativity */
2371 if (phb->numa_node != -1) {
2372 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2373 sizeof(associativity)));
2374 }
2375
2376 /* Build the interrupt-map, this must matches what is done
2377 * in pci_swizzle_map_irq_fn
2378 */
2379 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2380 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2381 for (i = 0; i < PCI_SLOT_MAX; i++) {
2382 for (j = 0; j < PCI_NUM_PINS; j++) {
2383 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2384 int lsi_num = pci_swizzle(i, j);
2385
2386 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2387 irqmap[1] = 0;
2388 irqmap[2] = 0;
2389 irqmap[3] = cpu_to_be32(j+1);
2390 irqmap[4] = cpu_to_be32(intc_phandle);
2391 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2392 }
2393 }
2394 /* Write interrupt map */
2395 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2396 sizeof(interrupt_map)));
2397
2398 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2399 if (!tcet) {
2400 return -1;
2401 }
2402 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2403 tcet->liobn, tcet->bus_offset,
2404 tcet->nb_table << tcet->page_shift);
2405
2406 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2407 if (drc) {
2408 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2409
2410 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2411 sizeof(drc_index)));
2412 }
2413
2414 /* Walk the bridges and program the bus numbers*/
2415 spapr_phb_pci_enumerate(phb);
2416 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2417
2418 /* Walk the bridge and subordinate buses */
2419 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2420 if (ret < 0) {
2421 return ret;
2422 }
2423
2424 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &errp);
2425 if (errp) {
2426 error_report_err(errp);
2427 }
2428 spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2429
2430 return 0;
2431 }
2432
2433 void spapr_pci_rtas_init(void)
2434 {
2435 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2436 rtas_read_pci_config);
2437 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2438 rtas_write_pci_config);
2439 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2440 rtas_ibm_read_pci_config);
2441 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2442 rtas_ibm_write_pci_config);
2443 if (msi_nonbroken) {
2444 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2445 "ibm,query-interrupt-source-number",
2446 rtas_ibm_query_interrupt_source_number);
2447 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2448 rtas_ibm_change_msi);
2449 }
2450
2451 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2452 "ibm,set-eeh-option",
2453 rtas_ibm_set_eeh_option);
2454 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2455 "ibm,get-config-addr-info2",
2456 rtas_ibm_get_config_addr_info2);
2457 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2458 "ibm,read-slot-reset-state2",
2459 rtas_ibm_read_slot_reset_state2);
2460 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2461 "ibm,set-slot-reset",
2462 rtas_ibm_set_slot_reset);
2463 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2464 "ibm,configure-pe",
2465 rtas_ibm_configure_pe);
2466 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2467 "ibm,slot-error-detail",
2468 rtas_ibm_slot_error_detail);
2469 }
2470
2471 static void spapr_pci_register_types(void)
2472 {
2473 type_register_static(&spapr_phb_info);
2474 }
2475
2476 type_init(spapr_pci_register_types)
2477
2478 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2479 {
2480 bool be = *(bool *)opaque;
2481
2482 if (object_dynamic_cast(OBJECT(dev), "VGA")
2483 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2484 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2485 &error_abort);
2486 }
2487 return 0;
2488 }
2489
2490 void spapr_pci_switch_vga(bool big_endian)
2491 {
2492 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2493 SpaprPhbState *sphb;
2494
2495 /*
2496 * For backward compatibility with existing guests, we switch
2497 * the endianness of the VGA controller when changing the guest
2498 * interrupt mode
2499 */
2500 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2501 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2502 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2503 &big_endian);
2504 }
2505 }