]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ssi/mss-spi.c
Include hw/irq.h a lot less
[thirdparty/qemu.git] / hw / ssi / mss-spi.c
1 /*
2 * Block model of SPI controller present in
3 * Microsemi's SmartFusion2 and SmartFusion SoCs.
4 *
5 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/irq.h"
28 #include "hw/ssi/mss-spi.h"
29 #include "qemu/log.h"
30 #include "qemu/module.h"
31
32 #ifndef MSS_SPI_ERR_DEBUG
33 #define MSS_SPI_ERR_DEBUG 0
34 #endif
35
36 #define DB_PRINT_L(lvl, fmt, args...) do { \
37 if (MSS_SPI_ERR_DEBUG >= lvl) { \
38 qemu_log("%s: " fmt "\n", __func__, ## args); \
39 } \
40 } while (0)
41
42 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
43
44 #define FIFO_CAPACITY 32
45
46 #define R_SPI_CONTROL 0
47 #define R_SPI_DFSIZE 1
48 #define R_SPI_STATUS 2
49 #define R_SPI_INTCLR 3
50 #define R_SPI_RX 4
51 #define R_SPI_TX 5
52 #define R_SPI_CLKGEN 6
53 #define R_SPI_SS 7
54 #define R_SPI_MIS 8
55 #define R_SPI_RIS 9
56
57 #define S_TXDONE (1 << 0)
58 #define S_RXRDY (1 << 1)
59 #define S_RXCHOVRF (1 << 2)
60 #define S_RXFIFOFUL (1 << 4)
61 #define S_RXFIFOFULNXT (1 << 5)
62 #define S_RXFIFOEMP (1 << 6)
63 #define S_RXFIFOEMPNXT (1 << 7)
64 #define S_TXFIFOFUL (1 << 8)
65 #define S_TXFIFOFULNXT (1 << 9)
66 #define S_TXFIFOEMP (1 << 10)
67 #define S_TXFIFOEMPNXT (1 << 11)
68 #define S_FRAMESTART (1 << 12)
69 #define S_SSEL (1 << 13)
70 #define S_ACTIVE (1 << 14)
71
72 #define C_ENABLE (1 << 0)
73 #define C_MODE (1 << 1)
74 #define C_INTRXDATA (1 << 4)
75 #define C_INTTXDATA (1 << 5)
76 #define C_INTRXOVRFLO (1 << 6)
77 #define C_SPS (1 << 26)
78 #define C_BIGFIFO (1 << 29)
79 #define C_RESET (1 << 31)
80
81 #define FRAMESZ_MASK 0x3F
82 #define FMCOUNT_MASK 0x00FFFF00
83 #define FMCOUNT_SHIFT 8
84 #define FRAMESZ_MAX 32
85
86 static void txfifo_reset(MSSSpiState *s)
87 {
88 fifo32_reset(&s->tx_fifo);
89
90 s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
91 s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
92 }
93
94 static void rxfifo_reset(MSSSpiState *s)
95 {
96 fifo32_reset(&s->rx_fifo);
97
98 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
99 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
100 }
101
102 static void set_fifodepth(MSSSpiState *s)
103 {
104 unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
105
106 if (size <= 8) {
107 s->fifo_depth = 32;
108 } else if (size <= 16) {
109 s->fifo_depth = 16;
110 } else {
111 s->fifo_depth = 8;
112 }
113 }
114
115 static void update_mis(MSSSpiState *s)
116 {
117 uint32_t reg = s->regs[R_SPI_CONTROL];
118 uint32_t tmp;
119
120 /*
121 * form the Control register interrupt enable bits
122 * same as RIS, MIS and Interrupt clear registers for simplicity
123 */
124 tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
125 ((reg & C_INTTXDATA) >> 5);
126 s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
127 }
128
129 static void spi_update_irq(MSSSpiState *s)
130 {
131 int irq;
132
133 update_mis(s);
134 irq = !!(s->regs[R_SPI_MIS]);
135
136 qemu_set_irq(s->irq, irq);
137 }
138
139 static void mss_spi_reset(DeviceState *d)
140 {
141 MSSSpiState *s = MSS_SPI(d);
142
143 memset(s->regs, 0, sizeof s->regs);
144 s->regs[R_SPI_CONTROL] = 0x80000102;
145 s->regs[R_SPI_DFSIZE] = 0x4;
146 s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
147 s->regs[R_SPI_CLKGEN] = 0x7;
148 s->regs[R_SPI_RIS] = 0x0;
149
150 s->fifo_depth = 4;
151 s->frame_count = 1;
152 s->enabled = false;
153
154 rxfifo_reset(s);
155 txfifo_reset(s);
156 }
157
158 static uint64_t
159 spi_read(void *opaque, hwaddr addr, unsigned int size)
160 {
161 MSSSpiState *s = opaque;
162 uint32_t ret = 0;
163
164 addr >>= 2;
165 switch (addr) {
166 case R_SPI_RX:
167 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
168 s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
169 if (fifo32_is_empty(&s->rx_fifo)) {
170 qemu_log_mask(LOG_GUEST_ERROR,
171 "%s: Reading empty RX_FIFO\n",
172 __func__);
173 } else {
174 ret = fifo32_pop(&s->rx_fifo);
175 }
176 if (fifo32_is_empty(&s->rx_fifo)) {
177 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
178 }
179 break;
180
181 case R_SPI_MIS:
182 update_mis(s);
183 ret = s->regs[R_SPI_MIS];
184 break;
185
186 default:
187 if (addr < ARRAY_SIZE(s->regs)) {
188 ret = s->regs[addr];
189 } else {
190 qemu_log_mask(LOG_GUEST_ERROR,
191 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
192 addr * 4);
193 return ret;
194 }
195 break;
196 }
197
198 DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
199 spi_update_irq(s);
200 return ret;
201 }
202
203 static void assert_cs(MSSSpiState *s)
204 {
205 qemu_set_irq(s->cs_line, 0);
206 }
207
208 static void deassert_cs(MSSSpiState *s)
209 {
210 qemu_set_irq(s->cs_line, 1);
211 }
212
213 static void spi_flush_txfifo(MSSSpiState *s)
214 {
215 uint32_t tx;
216 uint32_t rx;
217 bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
218
219 /*
220 * Chip Select(CS) is automatically controlled by this controller.
221 * If SPS bit is set in Control register then CS is asserted
222 * until all the frames set in frame count of Control register are
223 * transferred. If SPS is not set then CS pulses between frames.
224 * Note that Slave Select register specifies which of the CS line
225 * has to be controlled automatically by controller. Bits SS[7:1] are for
226 * masters in FPGA fabric since we model only Microcontroller subsystem
227 * of Smartfusion2 we control only one CS(SS[0]) line.
228 */
229 while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
230 assert_cs(s);
231
232 s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
233
234 tx = fifo32_pop(&s->tx_fifo);
235 DB_PRINT("data tx:0x%" PRIx32, tx);
236 rx = ssi_transfer(s->spi, tx);
237 DB_PRINT("data rx:0x%" PRIx32, rx);
238
239 if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
240 s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
241 s->regs[R_SPI_RIS] |= S_RXCHOVRF;
242 } else {
243 fifo32_push(&s->rx_fifo, rx);
244 s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
245 if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
246 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
247 } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
248 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
249 }
250 }
251 s->frame_count--;
252 if (!sps) {
253 deassert_cs(s);
254 }
255 }
256
257 if (!s->frame_count) {
258 s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
259 FMCOUNT_SHIFT;
260 deassert_cs(s);
261 s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
262 s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
263 }
264 }
265
266 static void spi_write(void *opaque, hwaddr addr,
267 uint64_t val64, unsigned int size)
268 {
269 MSSSpiState *s = opaque;
270 uint32_t value = val64;
271
272 DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
273 addr >>= 2;
274
275 switch (addr) {
276 case R_SPI_TX:
277 /* adding to already full FIFO */
278 if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
279 break;
280 }
281 s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
282 fifo32_push(&s->tx_fifo, value);
283 if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
284 s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
285 } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
286 s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
287 }
288 if (s->enabled) {
289 spi_flush_txfifo(s);
290 }
291 break;
292
293 case R_SPI_CONTROL:
294 s->regs[R_SPI_CONTROL] = value;
295 if (value & C_BIGFIFO) {
296 set_fifodepth(s);
297 } else {
298 s->fifo_depth = 4;
299 }
300 s->enabled = value & C_ENABLE;
301 s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
302 if (value & C_RESET) {
303 mss_spi_reset(DEVICE(s));
304 }
305 break;
306
307 case R_SPI_DFSIZE:
308 if (s->enabled) {
309 break;
310 }
311 /*
312 * [31:6] bits are reserved bits and for future use.
313 * [5:0] are for frame size. Only [5:0] bits are validated
314 * during write, [31:6] bits are untouched.
315 */
316 if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
317 qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
318 "Maximum frame size is %u\n",
319 __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
320 break;
321 }
322 s->regs[R_SPI_DFSIZE] = value;
323 break;
324
325 case R_SPI_INTCLR:
326 s->regs[R_SPI_INTCLR] = value;
327 if (value & S_TXDONE) {
328 s->regs[R_SPI_RIS] &= ~S_TXDONE;
329 }
330 if (value & S_RXRDY) {
331 s->regs[R_SPI_RIS] &= ~S_RXRDY;
332 }
333 if (value & S_RXCHOVRF) {
334 s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
335 }
336 break;
337
338 case R_SPI_MIS:
339 case R_SPI_STATUS:
340 case R_SPI_RIS:
341 qemu_log_mask(LOG_GUEST_ERROR,
342 "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
343 __func__, addr * 4);
344 break;
345
346 default:
347 if (addr < ARRAY_SIZE(s->regs)) {
348 s->regs[addr] = value;
349 } else {
350 qemu_log_mask(LOG_GUEST_ERROR,
351 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
352 addr * 4);
353 }
354 break;
355 }
356
357 spi_update_irq(s);
358 }
359
360 static const MemoryRegionOps spi_ops = {
361 .read = spi_read,
362 .write = spi_write,
363 .endianness = DEVICE_NATIVE_ENDIAN,
364 .valid = {
365 .min_access_size = 1,
366 .max_access_size = 4
367 }
368 };
369
370 static void mss_spi_realize(DeviceState *dev, Error **errp)
371 {
372 MSSSpiState *s = MSS_SPI(dev);
373 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
374
375 s->spi = ssi_create_bus(dev, "spi");
376
377 sysbus_init_irq(sbd, &s->irq);
378 ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
379 sysbus_init_irq(sbd, &s->cs_line);
380
381 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
382 TYPE_MSS_SPI, R_SPI_MAX * 4);
383 sysbus_init_mmio(sbd, &s->mmio);
384
385 fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
386 fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
387 }
388
389 static const VMStateDescription vmstate_mss_spi = {
390 .name = TYPE_MSS_SPI,
391 .version_id = 1,
392 .minimum_version_id = 1,
393 .fields = (VMStateField[]) {
394 VMSTATE_FIFO32(tx_fifo, MSSSpiState),
395 VMSTATE_FIFO32(rx_fifo, MSSSpiState),
396 VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
397 VMSTATE_END_OF_LIST()
398 }
399 };
400
401 static void mss_spi_class_init(ObjectClass *klass, void *data)
402 {
403 DeviceClass *dc = DEVICE_CLASS(klass);
404
405 dc->realize = mss_spi_realize;
406 dc->reset = mss_spi_reset;
407 dc->vmsd = &vmstate_mss_spi;
408 }
409
410 static const TypeInfo mss_spi_info = {
411 .name = TYPE_MSS_SPI,
412 .parent = TYPE_SYS_BUS_DEVICE,
413 .instance_size = sizeof(MSSSpiState),
414 .class_init = mss_spi_class_init,
415 };
416
417 static void mss_spi_register_types(void)
418 {
419 type_register_static(&mss_spi_info);
420 }
421
422 type_init(mss_spi_register_types)