]> git.ipfire.org Git - people/ms/linux.git/blob - io_uring/io_uring.c
Merge branch 'bonding-fix-null-deref-in-bond_rr_gen_slave_id'
[people/ms/linux.git] / io_uring / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78
79 #include <uapi/linux/io_uring.h>
80
81 #include "io-wq.h"
82
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98
99 #define IORING_MAX_ENTRIES 32768
100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
101
102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
103 IORING_REGISTER_LAST + IORING_OP_LAST)
104
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107
108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 REQ_F_ASYNC_DATA)
114
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 IO_REQ_CLEAN_FLAGS)
117
118 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
119
120 #define IO_COMPL_BATCH 32
121 #define IO_REQ_ALLOC_BATCH 8
122
123 enum {
124 IO_CHECK_CQ_OVERFLOW_BIT,
125 IO_CHECK_CQ_DROPPED_BIT,
126 };
127
128 struct io_defer_entry {
129 struct list_head list;
130 struct io_kiocb *req;
131 u32 seq;
132 };
133
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137
138 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
139 struct task_struct *task,
140 bool cancel_all);
141
142 static void io_dismantle_req(struct io_kiocb *req);
143 static void io_clean_op(struct io_kiocb *req);
144 static void io_queue_sqe(struct io_kiocb *req);
145
146 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
147
148 static struct kmem_cache *req_cachep;
149
150 struct sock *io_uring_get_socket(struct file *file)
151 {
152 #if defined(CONFIG_UNIX)
153 if (io_is_uring_fops(file)) {
154 struct io_ring_ctx *ctx = file->private_data;
155
156 return ctx->ring_sock->sk;
157 }
158 #endif
159 return NULL;
160 }
161 EXPORT_SYMBOL(io_uring_get_socket);
162
163 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
164 {
165 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
166 __io_submit_flush_completions(ctx);
167 }
168
169 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
170 {
171 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
172 }
173
174 static bool io_match_linked(struct io_kiocb *head)
175 {
176 struct io_kiocb *req;
177
178 io_for_each_link(req, head) {
179 if (req->flags & REQ_F_INFLIGHT)
180 return true;
181 }
182 return false;
183 }
184
185 /*
186 * As io_match_task() but protected against racing with linked timeouts.
187 * User must not hold timeout_lock.
188 */
189 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
190 bool cancel_all)
191 {
192 bool matched;
193
194 if (task && head->task != task)
195 return false;
196 if (cancel_all)
197 return true;
198
199 if (head->flags & REQ_F_LINK_TIMEOUT) {
200 struct io_ring_ctx *ctx = head->ctx;
201
202 /* protect against races with linked timeouts */
203 spin_lock_irq(&ctx->timeout_lock);
204 matched = io_match_linked(head);
205 spin_unlock_irq(&ctx->timeout_lock);
206 } else {
207 matched = io_match_linked(head);
208 }
209 return matched;
210 }
211
212 static inline void req_fail_link_node(struct io_kiocb *req, int res)
213 {
214 req_set_fail(req);
215 io_req_set_res(req, res, 0);
216 }
217
218 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
219 {
220 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
221 }
222
223 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
224 {
225 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
226
227 complete(&ctx->ref_comp);
228 }
229
230 static __cold void io_fallback_req_func(struct work_struct *work)
231 {
232 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
233 fallback_work.work);
234 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
235 struct io_kiocb *req, *tmp;
236 bool locked = false;
237
238 percpu_ref_get(&ctx->refs);
239 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
240 req->io_task_work.func(req, &locked);
241
242 if (locked) {
243 io_submit_flush_completions(ctx);
244 mutex_unlock(&ctx->uring_lock);
245 }
246 percpu_ref_put(&ctx->refs);
247 }
248
249 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
250 {
251 unsigned hash_buckets = 1U << bits;
252 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
253
254 table->hbs = kmalloc(hash_size, GFP_KERNEL);
255 if (!table->hbs)
256 return -ENOMEM;
257
258 table->hash_bits = bits;
259 init_hash_table(table, hash_buckets);
260 return 0;
261 }
262
263 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
264 {
265 struct io_ring_ctx *ctx;
266 int hash_bits;
267
268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
269 if (!ctx)
270 return NULL;
271
272 xa_init(&ctx->io_bl_xa);
273
274 /*
275 * Use 5 bits less than the max cq entries, that should give us around
276 * 32 entries per hash list if totally full and uniformly spread, but
277 * don't keep too many buckets to not overconsume memory.
278 */
279 hash_bits = ilog2(p->cq_entries) - 5;
280 hash_bits = clamp(hash_bits, 1, 8);
281 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
282 goto err;
283 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
284 goto err;
285
286 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
287 if (!ctx->dummy_ubuf)
288 goto err;
289 /* set invalid range, so io_import_fixed() fails meeting it */
290 ctx->dummy_ubuf->ubuf = -1UL;
291
292 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
293 0, GFP_KERNEL))
294 goto err;
295
296 ctx->flags = p->flags;
297 init_waitqueue_head(&ctx->sqo_sq_wait);
298 INIT_LIST_HEAD(&ctx->sqd_list);
299 INIT_LIST_HEAD(&ctx->cq_overflow_list);
300 INIT_LIST_HEAD(&ctx->io_buffers_cache);
301 io_alloc_cache_init(&ctx->apoll_cache);
302 io_alloc_cache_init(&ctx->netmsg_cache);
303 init_completion(&ctx->ref_comp);
304 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
305 mutex_init(&ctx->uring_lock);
306 init_waitqueue_head(&ctx->cq_wait);
307 spin_lock_init(&ctx->completion_lock);
308 spin_lock_init(&ctx->timeout_lock);
309 INIT_WQ_LIST(&ctx->iopoll_list);
310 INIT_LIST_HEAD(&ctx->io_buffers_pages);
311 INIT_LIST_HEAD(&ctx->io_buffers_comp);
312 INIT_LIST_HEAD(&ctx->defer_list);
313 INIT_LIST_HEAD(&ctx->timeout_list);
314 INIT_LIST_HEAD(&ctx->ltimeout_list);
315 spin_lock_init(&ctx->rsrc_ref_lock);
316 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
317 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
318 init_llist_head(&ctx->rsrc_put_llist);
319 INIT_LIST_HEAD(&ctx->tctx_list);
320 ctx->submit_state.free_list.next = NULL;
321 INIT_WQ_LIST(&ctx->locked_free_list);
322 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
323 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
324 return ctx;
325 err:
326 kfree(ctx->dummy_ubuf);
327 kfree(ctx->cancel_table.hbs);
328 kfree(ctx->cancel_table_locked.hbs);
329 kfree(ctx->io_bl);
330 xa_destroy(&ctx->io_bl_xa);
331 kfree(ctx);
332 return NULL;
333 }
334
335 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
336 {
337 struct io_rings *r = ctx->rings;
338
339 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
340 ctx->cq_extra--;
341 }
342
343 static bool req_need_defer(struct io_kiocb *req, u32 seq)
344 {
345 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
346 struct io_ring_ctx *ctx = req->ctx;
347
348 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
349 }
350
351 return false;
352 }
353
354 static inline void io_req_track_inflight(struct io_kiocb *req)
355 {
356 if (!(req->flags & REQ_F_INFLIGHT)) {
357 req->flags |= REQ_F_INFLIGHT;
358 atomic_inc(&req->task->io_uring->inflight_tracked);
359 }
360 }
361
362 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
363 {
364 if (WARN_ON_ONCE(!req->link))
365 return NULL;
366
367 req->flags &= ~REQ_F_ARM_LTIMEOUT;
368 req->flags |= REQ_F_LINK_TIMEOUT;
369
370 /* linked timeouts should have two refs once prep'ed */
371 io_req_set_refcount(req);
372 __io_req_set_refcount(req->link, 2);
373 return req->link;
374 }
375
376 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
379 return NULL;
380 return __io_prep_linked_timeout(req);
381 }
382
383 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
384 {
385 io_queue_linked_timeout(__io_prep_linked_timeout(req));
386 }
387
388 static inline void io_arm_ltimeout(struct io_kiocb *req)
389 {
390 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
391 __io_arm_ltimeout(req);
392 }
393
394 static void io_prep_async_work(struct io_kiocb *req)
395 {
396 const struct io_op_def *def = &io_op_defs[req->opcode];
397 struct io_ring_ctx *ctx = req->ctx;
398
399 if (!(req->flags & REQ_F_CREDS)) {
400 req->flags |= REQ_F_CREDS;
401 req->creds = get_current_cred();
402 }
403
404 req->work.list.next = NULL;
405 req->work.flags = 0;
406 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
407 if (req->flags & REQ_F_FORCE_ASYNC)
408 req->work.flags |= IO_WQ_WORK_CONCURRENT;
409
410 if (req->file && !io_req_ffs_set(req))
411 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
412
413 if (req->flags & REQ_F_ISREG) {
414 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
415 io_wq_hash_work(&req->work, file_inode(req->file));
416 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
417 if (def->unbound_nonreg_file)
418 req->work.flags |= IO_WQ_WORK_UNBOUND;
419 }
420 }
421
422 static void io_prep_async_link(struct io_kiocb *req)
423 {
424 struct io_kiocb *cur;
425
426 if (req->flags & REQ_F_LINK_TIMEOUT) {
427 struct io_ring_ctx *ctx = req->ctx;
428
429 spin_lock_irq(&ctx->timeout_lock);
430 io_for_each_link(cur, req)
431 io_prep_async_work(cur);
432 spin_unlock_irq(&ctx->timeout_lock);
433 } else {
434 io_for_each_link(cur, req)
435 io_prep_async_work(cur);
436 }
437 }
438
439 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
440 {
441 struct io_kiocb *link = io_prep_linked_timeout(req);
442 struct io_uring_task *tctx = req->task->io_uring;
443
444 BUG_ON(!tctx);
445 BUG_ON(!tctx->io_wq);
446
447 /* init ->work of the whole link before punting */
448 io_prep_async_link(req);
449
450 /*
451 * Not expected to happen, but if we do have a bug where this _can_
452 * happen, catch it here and ensure the request is marked as
453 * canceled. That will make io-wq go through the usual work cancel
454 * procedure rather than attempt to run this request (or create a new
455 * worker for it).
456 */
457 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
458 req->work.flags |= IO_WQ_WORK_CANCEL;
459
460 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
461 io_wq_enqueue(tctx->io_wq, &req->work);
462 if (link)
463 io_queue_linked_timeout(link);
464 }
465
466 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
467 {
468 while (!list_empty(&ctx->defer_list)) {
469 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
470 struct io_defer_entry, list);
471
472 if (req_need_defer(de->req, de->seq))
473 break;
474 list_del_init(&de->list);
475 io_req_task_queue(de->req);
476 kfree(de);
477 }
478 }
479
480 static void io_eventfd_signal(struct io_ring_ctx *ctx)
481 {
482 struct io_ev_fd *ev_fd;
483 bool skip;
484
485 spin_lock(&ctx->completion_lock);
486 /*
487 * Eventfd should only get triggered when at least one event has been
488 * posted. Some applications rely on the eventfd notification count only
489 * changing IFF a new CQE has been added to the CQ ring. There's no
490 * depedency on 1:1 relationship between how many times this function is
491 * called (and hence the eventfd count) and number of CQEs posted to the
492 * CQ ring.
493 */
494 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
495 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
496 spin_unlock(&ctx->completion_lock);
497 if (skip)
498 return;
499
500 rcu_read_lock();
501 /*
502 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
503 * and eventfd_signal
504 */
505 ev_fd = rcu_dereference(ctx->io_ev_fd);
506
507 /*
508 * Check again if ev_fd exists incase an io_eventfd_unregister call
509 * completed between the NULL check of ctx->io_ev_fd at the start of
510 * the function and rcu_read_lock.
511 */
512 if (unlikely(!ev_fd))
513 goto out;
514 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
515 goto out;
516
517 if (!ev_fd->eventfd_async || io_wq_current_is_worker())
518 eventfd_signal(ev_fd->cq_ev_fd, 1);
519 out:
520 rcu_read_unlock();
521 }
522
523 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
524 {
525 if (ctx->off_timeout_used || ctx->drain_active) {
526 spin_lock(&ctx->completion_lock);
527 if (ctx->off_timeout_used)
528 io_flush_timeouts(ctx);
529 if (ctx->drain_active)
530 io_queue_deferred(ctx);
531 spin_unlock(&ctx->completion_lock);
532 }
533 if (ctx->has_evfd)
534 io_eventfd_signal(ctx);
535 }
536
537 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
538 {
539 io_commit_cqring_flush(ctx);
540 io_cqring_wake(ctx);
541 }
542
543 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
544 __releases(ctx->completion_lock)
545 {
546 io_commit_cqring(ctx);
547 spin_unlock(&ctx->completion_lock);
548 io_cqring_ev_posted(ctx);
549 }
550
551 void io_cq_unlock_post(struct io_ring_ctx *ctx)
552 {
553 __io_cq_unlock_post(ctx);
554 }
555
556 /* Returns true if there are no backlogged entries after the flush */
557 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
558 {
559 bool all_flushed;
560 size_t cqe_size = sizeof(struct io_uring_cqe);
561
562 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
563 return false;
564
565 if (ctx->flags & IORING_SETUP_CQE32)
566 cqe_size <<= 1;
567
568 io_cq_lock(ctx);
569 while (!list_empty(&ctx->cq_overflow_list)) {
570 struct io_uring_cqe *cqe = io_get_cqe(ctx);
571 struct io_overflow_cqe *ocqe;
572
573 if (!cqe && !force)
574 break;
575 ocqe = list_first_entry(&ctx->cq_overflow_list,
576 struct io_overflow_cqe, list);
577 if (cqe)
578 memcpy(cqe, &ocqe->cqe, cqe_size);
579 else
580 io_account_cq_overflow(ctx);
581
582 list_del(&ocqe->list);
583 kfree(ocqe);
584 }
585
586 all_flushed = list_empty(&ctx->cq_overflow_list);
587 if (all_flushed) {
588 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
589 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
590 }
591
592 io_cq_unlock_post(ctx);
593 return all_flushed;
594 }
595
596 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
597 {
598 bool ret = true;
599
600 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
601 /* iopoll syncs against uring_lock, not completion_lock */
602 if (ctx->flags & IORING_SETUP_IOPOLL)
603 mutex_lock(&ctx->uring_lock);
604 ret = __io_cqring_overflow_flush(ctx, false);
605 if (ctx->flags & IORING_SETUP_IOPOLL)
606 mutex_unlock(&ctx->uring_lock);
607 }
608
609 return ret;
610 }
611
612 void __io_put_task(struct task_struct *task, int nr)
613 {
614 struct io_uring_task *tctx = task->io_uring;
615
616 percpu_counter_sub(&tctx->inflight, nr);
617 if (unlikely(atomic_read(&tctx->in_idle)))
618 wake_up(&tctx->wait);
619 put_task_struct_many(task, nr);
620 }
621
622 void io_task_refs_refill(struct io_uring_task *tctx)
623 {
624 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
625
626 percpu_counter_add(&tctx->inflight, refill);
627 refcount_add(refill, &current->usage);
628 tctx->cached_refs += refill;
629 }
630
631 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
632 {
633 struct io_uring_task *tctx = task->io_uring;
634 unsigned int refs = tctx->cached_refs;
635
636 if (refs) {
637 tctx->cached_refs = 0;
638 percpu_counter_sub(&tctx->inflight, refs);
639 put_task_struct_many(task, refs);
640 }
641 }
642
643 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
644 s32 res, u32 cflags, u64 extra1, u64 extra2)
645 {
646 struct io_overflow_cqe *ocqe;
647 size_t ocq_size = sizeof(struct io_overflow_cqe);
648 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
649
650 if (is_cqe32)
651 ocq_size += sizeof(struct io_uring_cqe);
652
653 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
654 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
655 if (!ocqe) {
656 /*
657 * If we're in ring overflow flush mode, or in task cancel mode,
658 * or cannot allocate an overflow entry, then we need to drop it
659 * on the floor.
660 */
661 io_account_cq_overflow(ctx);
662 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
663 return false;
664 }
665 if (list_empty(&ctx->cq_overflow_list)) {
666 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
667 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
668
669 }
670 ocqe->cqe.user_data = user_data;
671 ocqe->cqe.res = res;
672 ocqe->cqe.flags = cflags;
673 if (is_cqe32) {
674 ocqe->cqe.big_cqe[0] = extra1;
675 ocqe->cqe.big_cqe[1] = extra2;
676 }
677 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
678 return true;
679 }
680
681 bool io_req_cqe_overflow(struct io_kiocb *req)
682 {
683 if (!(req->flags & REQ_F_CQE32_INIT)) {
684 req->extra1 = 0;
685 req->extra2 = 0;
686 }
687 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
688 req->cqe.res, req->cqe.flags,
689 req->extra1, req->extra2);
690 }
691
692 /*
693 * writes to the cq entry need to come after reading head; the
694 * control dependency is enough as we're using WRITE_ONCE to
695 * fill the cq entry
696 */
697 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
698 {
699 struct io_rings *rings = ctx->rings;
700 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
701 unsigned int free, queued, len;
702
703
704 /* userspace may cheat modifying the tail, be safe and do min */
705 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
706 free = ctx->cq_entries - queued;
707 /* we need a contiguous range, limit based on the current array offset */
708 len = min(free, ctx->cq_entries - off);
709 if (!len)
710 return NULL;
711
712 if (ctx->flags & IORING_SETUP_CQE32) {
713 off <<= 1;
714 len <<= 1;
715 }
716
717 ctx->cqe_cached = &rings->cqes[off];
718 ctx->cqe_sentinel = ctx->cqe_cached + len;
719
720 ctx->cached_cq_tail++;
721 ctx->cqe_cached++;
722 if (ctx->flags & IORING_SETUP_CQE32)
723 ctx->cqe_cached++;
724 return &rings->cqes[off];
725 }
726
727 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
728 bool allow_overflow)
729 {
730 struct io_uring_cqe *cqe;
731
732 ctx->cq_extra++;
733
734 /*
735 * If we can't get a cq entry, userspace overflowed the
736 * submission (by quite a lot). Increment the overflow count in
737 * the ring.
738 */
739 cqe = io_get_cqe(ctx);
740 if (likely(cqe)) {
741 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
742
743 WRITE_ONCE(cqe->user_data, user_data);
744 WRITE_ONCE(cqe->res, res);
745 WRITE_ONCE(cqe->flags, cflags);
746
747 if (ctx->flags & IORING_SETUP_CQE32) {
748 WRITE_ONCE(cqe->big_cqe[0], 0);
749 WRITE_ONCE(cqe->big_cqe[1], 0);
750 }
751 return true;
752 }
753
754 if (allow_overflow)
755 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
756
757 return false;
758 }
759
760 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
761 u64 user_data, s32 res, u32 cflags,
762 bool allow_overflow)
763 {
764 bool filled;
765
766 io_cq_lock(ctx);
767 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
768 io_cq_unlock_post(ctx);
769 return filled;
770 }
771
772 static void __io_req_complete_put(struct io_kiocb *req)
773 {
774 /*
775 * If we're the last reference to this request, add to our locked
776 * free_list cache.
777 */
778 if (req_ref_put_and_test(req)) {
779 struct io_ring_ctx *ctx = req->ctx;
780
781 if (req->flags & IO_REQ_LINK_FLAGS) {
782 if (req->flags & IO_DISARM_MASK)
783 io_disarm_next(req);
784 if (req->link) {
785 io_req_task_queue(req->link);
786 req->link = NULL;
787 }
788 }
789 io_req_put_rsrc(req);
790 /*
791 * Selected buffer deallocation in io_clean_op() assumes that
792 * we don't hold ->completion_lock. Clean them here to avoid
793 * deadlocks.
794 */
795 io_put_kbuf_comp(req);
796 io_dismantle_req(req);
797 io_put_task(req->task, 1);
798 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
799 ctx->locked_free_nr++;
800 }
801 }
802
803 void __io_req_complete_post(struct io_kiocb *req)
804 {
805 if (!(req->flags & REQ_F_CQE_SKIP))
806 __io_fill_cqe_req(req->ctx, req);
807 __io_req_complete_put(req);
808 }
809
810 void io_req_complete_post(struct io_kiocb *req)
811 {
812 struct io_ring_ctx *ctx = req->ctx;
813
814 io_cq_lock(ctx);
815 __io_req_complete_post(req);
816 io_cq_unlock_post(ctx);
817 }
818
819 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
820 {
821 io_req_complete_post(req);
822 }
823
824 void io_req_complete_failed(struct io_kiocb *req, s32 res)
825 {
826 req_set_fail(req);
827 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
828 io_req_complete_post(req);
829 }
830
831 /*
832 * Don't initialise the fields below on every allocation, but do that in
833 * advance and keep them valid across allocations.
834 */
835 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
836 {
837 req->ctx = ctx;
838 req->link = NULL;
839 req->async_data = NULL;
840 /* not necessary, but safer to zero */
841 req->cqe.res = 0;
842 }
843
844 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
845 struct io_submit_state *state)
846 {
847 spin_lock(&ctx->completion_lock);
848 wq_list_splice(&ctx->locked_free_list, &state->free_list);
849 ctx->locked_free_nr = 0;
850 spin_unlock(&ctx->completion_lock);
851 }
852
853 /*
854 * A request might get retired back into the request caches even before opcode
855 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
856 * Because of that, io_alloc_req() should be called only under ->uring_lock
857 * and with extra caution to not get a request that is still worked on.
858 */
859 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
860 __must_hold(&ctx->uring_lock)
861 {
862 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
863 void *reqs[IO_REQ_ALLOC_BATCH];
864 int ret, i;
865
866 /*
867 * If we have more than a batch's worth of requests in our IRQ side
868 * locked cache, grab the lock and move them over to our submission
869 * side cache.
870 */
871 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
872 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
873 if (!io_req_cache_empty(ctx))
874 return true;
875 }
876
877 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
878
879 /*
880 * Bulk alloc is all-or-nothing. If we fail to get a batch,
881 * retry single alloc to be on the safe side.
882 */
883 if (unlikely(ret <= 0)) {
884 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
885 if (!reqs[0])
886 return false;
887 ret = 1;
888 }
889
890 percpu_ref_get_many(&ctx->refs, ret);
891 for (i = 0; i < ret; i++) {
892 struct io_kiocb *req = reqs[i];
893
894 io_preinit_req(req, ctx);
895 io_req_add_to_cache(req, ctx);
896 }
897 return true;
898 }
899
900 static inline void io_dismantle_req(struct io_kiocb *req)
901 {
902 unsigned int flags = req->flags;
903
904 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
905 io_clean_op(req);
906 if (!(flags & REQ_F_FIXED_FILE))
907 io_put_file(req->file);
908 }
909
910 __cold void io_free_req(struct io_kiocb *req)
911 {
912 struct io_ring_ctx *ctx = req->ctx;
913
914 io_req_put_rsrc(req);
915 io_dismantle_req(req);
916 io_put_task(req->task, 1);
917
918 spin_lock(&ctx->completion_lock);
919 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
920 ctx->locked_free_nr++;
921 spin_unlock(&ctx->completion_lock);
922 }
923
924 static void __io_req_find_next_prep(struct io_kiocb *req)
925 {
926 struct io_ring_ctx *ctx = req->ctx;
927
928 io_cq_lock(ctx);
929 io_disarm_next(req);
930 io_cq_unlock_post(ctx);
931 }
932
933 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
934 {
935 struct io_kiocb *nxt;
936
937 /*
938 * If LINK is set, we have dependent requests in this chain. If we
939 * didn't fail this request, queue the first one up, moving any other
940 * dependencies to the next request. In case of failure, fail the rest
941 * of the chain.
942 */
943 if (unlikely(req->flags & IO_DISARM_MASK))
944 __io_req_find_next_prep(req);
945 nxt = req->link;
946 req->link = NULL;
947 return nxt;
948 }
949
950 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
951 {
952 if (!ctx)
953 return;
954 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
955 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
956 if (*locked) {
957 io_submit_flush_completions(ctx);
958 mutex_unlock(&ctx->uring_lock);
959 *locked = false;
960 }
961 percpu_ref_put(&ctx->refs);
962 }
963
964 static unsigned int handle_tw_list(struct llist_node *node,
965 struct io_ring_ctx **ctx, bool *locked,
966 struct llist_node *last)
967 {
968 unsigned int count = 0;
969
970 while (node != last) {
971 struct llist_node *next = node->next;
972 struct io_kiocb *req = container_of(node, struct io_kiocb,
973 io_task_work.node);
974
975 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
976
977 if (req->ctx != *ctx) {
978 ctx_flush_and_put(*ctx, locked);
979 *ctx = req->ctx;
980 /* if not contended, grab and improve batching */
981 *locked = mutex_trylock(&(*ctx)->uring_lock);
982 percpu_ref_get(&(*ctx)->refs);
983 }
984 req->io_task_work.func(req, locked);
985 node = next;
986 count++;
987 }
988
989 return count;
990 }
991
992 /**
993 * io_llist_xchg - swap all entries in a lock-less list
994 * @head: the head of lock-less list to delete all entries
995 * @new: new entry as the head of the list
996 *
997 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
998 * The order of entries returned is from the newest to the oldest added one.
999 */
1000 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1001 struct llist_node *new)
1002 {
1003 return xchg(&head->first, new);
1004 }
1005
1006 /**
1007 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1008 * @head: the head of lock-less list to delete all entries
1009 * @old: expected old value of the first entry of the list
1010 * @new: new entry as the head of the list
1011 *
1012 * perform a cmpxchg on the first entry of the list.
1013 */
1014
1015 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1016 struct llist_node *old,
1017 struct llist_node *new)
1018 {
1019 return cmpxchg(&head->first, old, new);
1020 }
1021
1022 void tctx_task_work(struct callback_head *cb)
1023 {
1024 bool uring_locked = false;
1025 struct io_ring_ctx *ctx = NULL;
1026 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1027 task_work);
1028 struct llist_node fake = {};
1029 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1030 unsigned int loops = 1;
1031 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1032
1033 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1034 while (node != &fake) {
1035 loops++;
1036 node = io_llist_xchg(&tctx->task_list, &fake);
1037 count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1038 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1039 }
1040
1041 ctx_flush_and_put(ctx, &uring_locked);
1042
1043 /* relaxed read is enough as only the task itself sets ->in_idle */
1044 if (unlikely(atomic_read(&tctx->in_idle)))
1045 io_uring_drop_tctx_refs(current);
1046
1047 trace_io_uring_task_work_run(tctx, count, loops);
1048 }
1049
1050 void io_req_task_work_add(struct io_kiocb *req)
1051 {
1052 struct io_uring_task *tctx = req->task->io_uring;
1053 struct io_ring_ctx *ctx = req->ctx;
1054 struct llist_node *node;
1055 bool running;
1056
1057 running = !llist_add(&req->io_task_work.node, &tctx->task_list);
1058
1059 /* task_work already pending, we're done */
1060 if (running)
1061 return;
1062
1063 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1064 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1065
1066 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1067 return;
1068
1069 node = llist_del_all(&tctx->task_list);
1070
1071 while (node) {
1072 req = container_of(node, struct io_kiocb, io_task_work.node);
1073 node = node->next;
1074 if (llist_add(&req->io_task_work.node,
1075 &req->ctx->fallback_llist))
1076 schedule_delayed_work(&req->ctx->fallback_work, 1);
1077 }
1078 }
1079
1080 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1081 {
1082 io_req_complete_post(req);
1083 }
1084
1085 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1086 {
1087 io_req_set_res(req, res, cflags);
1088 req->io_task_work.func = io_req_tw_post;
1089 io_req_task_work_add(req);
1090 }
1091
1092 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1093 {
1094 /* not needed for normal modes, but SQPOLL depends on it */
1095 io_tw_lock(req->ctx, locked);
1096 io_req_complete_failed(req, req->cqe.res);
1097 }
1098
1099 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1100 {
1101 io_tw_lock(req->ctx, locked);
1102 /* req->task == current here, checking PF_EXITING is safe */
1103 if (likely(!(req->task->flags & PF_EXITING)))
1104 io_queue_sqe(req);
1105 else
1106 io_req_complete_failed(req, -EFAULT);
1107 }
1108
1109 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1110 {
1111 io_req_set_res(req, ret, 0);
1112 req->io_task_work.func = io_req_task_cancel;
1113 io_req_task_work_add(req);
1114 }
1115
1116 void io_req_task_queue(struct io_kiocb *req)
1117 {
1118 req->io_task_work.func = io_req_task_submit;
1119 io_req_task_work_add(req);
1120 }
1121
1122 void io_queue_next(struct io_kiocb *req)
1123 {
1124 struct io_kiocb *nxt = io_req_find_next(req);
1125
1126 if (nxt)
1127 io_req_task_queue(nxt);
1128 }
1129
1130 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1131 __must_hold(&ctx->uring_lock)
1132 {
1133 struct task_struct *task = NULL;
1134 int task_refs = 0;
1135
1136 do {
1137 struct io_kiocb *req = container_of(node, struct io_kiocb,
1138 comp_list);
1139
1140 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1141 if (req->flags & REQ_F_REFCOUNT) {
1142 node = req->comp_list.next;
1143 if (!req_ref_put_and_test(req))
1144 continue;
1145 }
1146 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1147 struct async_poll *apoll = req->apoll;
1148
1149 if (apoll->double_poll)
1150 kfree(apoll->double_poll);
1151 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1152 kfree(apoll);
1153 req->flags &= ~REQ_F_POLLED;
1154 }
1155 if (req->flags & IO_REQ_LINK_FLAGS)
1156 io_queue_next(req);
1157 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1158 io_clean_op(req);
1159 }
1160 if (!(req->flags & REQ_F_FIXED_FILE))
1161 io_put_file(req->file);
1162
1163 io_req_put_rsrc_locked(req, ctx);
1164
1165 if (req->task != task) {
1166 if (task)
1167 io_put_task(task, task_refs);
1168 task = req->task;
1169 task_refs = 0;
1170 }
1171 task_refs++;
1172 node = req->comp_list.next;
1173 io_req_add_to_cache(req, ctx);
1174 } while (node);
1175
1176 if (task)
1177 io_put_task(task, task_refs);
1178 }
1179
1180 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1181 __must_hold(&ctx->uring_lock)
1182 {
1183 struct io_wq_work_node *node, *prev;
1184 struct io_submit_state *state = &ctx->submit_state;
1185
1186 spin_lock(&ctx->completion_lock);
1187 wq_list_for_each(node, prev, &state->compl_reqs) {
1188 struct io_kiocb *req = container_of(node, struct io_kiocb,
1189 comp_list);
1190
1191 if (!(req->flags & REQ_F_CQE_SKIP))
1192 __io_fill_cqe_req(ctx, req);
1193 }
1194 __io_cq_unlock_post(ctx);
1195
1196 io_free_batch_list(ctx, state->compl_reqs.first);
1197 INIT_WQ_LIST(&state->compl_reqs);
1198 }
1199
1200 /*
1201 * Drop reference to request, return next in chain (if there is one) if this
1202 * was the last reference to this request.
1203 */
1204 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1205 {
1206 struct io_kiocb *nxt = NULL;
1207
1208 if (req_ref_put_and_test(req)) {
1209 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1210 nxt = io_req_find_next(req);
1211 io_free_req(req);
1212 }
1213 return nxt;
1214 }
1215
1216 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1217 {
1218 /* See comment at the top of this file */
1219 smp_rmb();
1220 return __io_cqring_events(ctx);
1221 }
1222
1223 /*
1224 * We can't just wait for polled events to come to us, we have to actively
1225 * find and complete them.
1226 */
1227 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1228 {
1229 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1230 return;
1231
1232 mutex_lock(&ctx->uring_lock);
1233 while (!wq_list_empty(&ctx->iopoll_list)) {
1234 /* let it sleep and repeat later if can't complete a request */
1235 if (io_do_iopoll(ctx, true) == 0)
1236 break;
1237 /*
1238 * Ensure we allow local-to-the-cpu processing to take place,
1239 * in this case we need to ensure that we reap all events.
1240 * Also let task_work, etc. to progress by releasing the mutex
1241 */
1242 if (need_resched()) {
1243 mutex_unlock(&ctx->uring_lock);
1244 cond_resched();
1245 mutex_lock(&ctx->uring_lock);
1246 }
1247 }
1248 mutex_unlock(&ctx->uring_lock);
1249 }
1250
1251 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1252 {
1253 unsigned int nr_events = 0;
1254 int ret = 0;
1255 unsigned long check_cq;
1256
1257 check_cq = READ_ONCE(ctx->check_cq);
1258 if (unlikely(check_cq)) {
1259 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1260 __io_cqring_overflow_flush(ctx, false);
1261 /*
1262 * Similarly do not spin if we have not informed the user of any
1263 * dropped CQE.
1264 */
1265 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1266 return -EBADR;
1267 }
1268 /*
1269 * Don't enter poll loop if we already have events pending.
1270 * If we do, we can potentially be spinning for commands that
1271 * already triggered a CQE (eg in error).
1272 */
1273 if (io_cqring_events(ctx))
1274 return 0;
1275
1276 do {
1277 /*
1278 * If a submit got punted to a workqueue, we can have the
1279 * application entering polling for a command before it gets
1280 * issued. That app will hold the uring_lock for the duration
1281 * of the poll right here, so we need to take a breather every
1282 * now and then to ensure that the issue has a chance to add
1283 * the poll to the issued list. Otherwise we can spin here
1284 * forever, while the workqueue is stuck trying to acquire the
1285 * very same mutex.
1286 */
1287 if (wq_list_empty(&ctx->iopoll_list)) {
1288 u32 tail = ctx->cached_cq_tail;
1289
1290 mutex_unlock(&ctx->uring_lock);
1291 io_run_task_work();
1292 mutex_lock(&ctx->uring_lock);
1293
1294 /* some requests don't go through iopoll_list */
1295 if (tail != ctx->cached_cq_tail ||
1296 wq_list_empty(&ctx->iopoll_list))
1297 break;
1298 }
1299 ret = io_do_iopoll(ctx, !min);
1300 if (ret < 0)
1301 break;
1302 nr_events += ret;
1303 ret = 0;
1304 } while (nr_events < min && !need_resched());
1305
1306 return ret;
1307 }
1308
1309 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1310 {
1311 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1312 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1313
1314 req->cqe.flags |= io_put_kbuf(req, issue_flags);
1315 }
1316
1317 if (*locked)
1318 io_req_complete_defer(req);
1319 else
1320 io_req_complete_post(req);
1321 }
1322
1323 /*
1324 * After the iocb has been issued, it's safe to be found on the poll list.
1325 * Adding the kiocb to the list AFTER submission ensures that we don't
1326 * find it from a io_do_iopoll() thread before the issuer is done
1327 * accessing the kiocb cookie.
1328 */
1329 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1330 {
1331 struct io_ring_ctx *ctx = req->ctx;
1332 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1333
1334 /* workqueue context doesn't hold uring_lock, grab it now */
1335 if (unlikely(needs_lock))
1336 mutex_lock(&ctx->uring_lock);
1337
1338 /*
1339 * Track whether we have multiple files in our lists. This will impact
1340 * how we do polling eventually, not spinning if we're on potentially
1341 * different devices.
1342 */
1343 if (wq_list_empty(&ctx->iopoll_list)) {
1344 ctx->poll_multi_queue = false;
1345 } else if (!ctx->poll_multi_queue) {
1346 struct io_kiocb *list_req;
1347
1348 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1349 comp_list);
1350 if (list_req->file != req->file)
1351 ctx->poll_multi_queue = true;
1352 }
1353
1354 /*
1355 * For fast devices, IO may have already completed. If it has, add
1356 * it to the front so we find it first.
1357 */
1358 if (READ_ONCE(req->iopoll_completed))
1359 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1360 else
1361 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1362
1363 if (unlikely(needs_lock)) {
1364 /*
1365 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1366 * in sq thread task context or in io worker task context. If
1367 * current task context is sq thread, we don't need to check
1368 * whether should wake up sq thread.
1369 */
1370 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1371 wq_has_sleeper(&ctx->sq_data->wait))
1372 wake_up(&ctx->sq_data->wait);
1373
1374 mutex_unlock(&ctx->uring_lock);
1375 }
1376 }
1377
1378 static bool io_bdev_nowait(struct block_device *bdev)
1379 {
1380 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
1381 }
1382
1383 /*
1384 * If we tracked the file through the SCM inflight mechanism, we could support
1385 * any file. For now, just ensure that anything potentially problematic is done
1386 * inline.
1387 */
1388 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1389 {
1390 if (S_ISBLK(mode)) {
1391 if (IS_ENABLED(CONFIG_BLOCK) &&
1392 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1393 return true;
1394 return false;
1395 }
1396 if (S_ISSOCK(mode))
1397 return true;
1398 if (S_ISREG(mode)) {
1399 if (IS_ENABLED(CONFIG_BLOCK) &&
1400 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1401 !io_is_uring_fops(file))
1402 return true;
1403 return false;
1404 }
1405
1406 /* any ->read/write should understand O_NONBLOCK */
1407 if (file->f_flags & O_NONBLOCK)
1408 return true;
1409 return file->f_mode & FMODE_NOWAIT;
1410 }
1411
1412 /*
1413 * If we tracked the file through the SCM inflight mechanism, we could support
1414 * any file. For now, just ensure that anything potentially problematic is done
1415 * inline.
1416 */
1417 unsigned int io_file_get_flags(struct file *file)
1418 {
1419 umode_t mode = file_inode(file)->i_mode;
1420 unsigned int res = 0;
1421
1422 if (S_ISREG(mode))
1423 res |= FFS_ISREG;
1424 if (__io_file_supports_nowait(file, mode))
1425 res |= FFS_NOWAIT;
1426 if (io_file_need_scm(file))
1427 res |= FFS_SCM;
1428 return res;
1429 }
1430
1431 bool io_alloc_async_data(struct io_kiocb *req)
1432 {
1433 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1434 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1435 if (req->async_data) {
1436 req->flags |= REQ_F_ASYNC_DATA;
1437 return false;
1438 }
1439 return true;
1440 }
1441
1442 int io_req_prep_async(struct io_kiocb *req)
1443 {
1444 const struct io_op_def *def = &io_op_defs[req->opcode];
1445
1446 /* assign early for deferred execution for non-fixed file */
1447 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1448 req->file = io_file_get_normal(req, req->cqe.fd);
1449 if (!def->prep_async)
1450 return 0;
1451 if (WARN_ON_ONCE(req_has_async_data(req)))
1452 return -EFAULT;
1453 if (!io_op_defs[req->opcode].manual_alloc) {
1454 if (io_alloc_async_data(req))
1455 return -EAGAIN;
1456 }
1457 return def->prep_async(req);
1458 }
1459
1460 static u32 io_get_sequence(struct io_kiocb *req)
1461 {
1462 u32 seq = req->ctx->cached_sq_head;
1463 struct io_kiocb *cur;
1464
1465 /* need original cached_sq_head, but it was increased for each req */
1466 io_for_each_link(cur, req)
1467 seq--;
1468 return seq;
1469 }
1470
1471 static __cold void io_drain_req(struct io_kiocb *req)
1472 {
1473 struct io_ring_ctx *ctx = req->ctx;
1474 struct io_defer_entry *de;
1475 int ret;
1476 u32 seq = io_get_sequence(req);
1477
1478 /* Still need defer if there is pending req in defer list. */
1479 spin_lock(&ctx->completion_lock);
1480 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1481 spin_unlock(&ctx->completion_lock);
1482 queue:
1483 ctx->drain_active = false;
1484 io_req_task_queue(req);
1485 return;
1486 }
1487 spin_unlock(&ctx->completion_lock);
1488
1489 ret = io_req_prep_async(req);
1490 if (ret) {
1491 fail:
1492 io_req_complete_failed(req, ret);
1493 return;
1494 }
1495 io_prep_async_link(req);
1496 de = kmalloc(sizeof(*de), GFP_KERNEL);
1497 if (!de) {
1498 ret = -ENOMEM;
1499 goto fail;
1500 }
1501
1502 spin_lock(&ctx->completion_lock);
1503 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1504 spin_unlock(&ctx->completion_lock);
1505 kfree(de);
1506 goto queue;
1507 }
1508
1509 trace_io_uring_defer(req);
1510 de->req = req;
1511 de->seq = seq;
1512 list_add_tail(&de->list, &ctx->defer_list);
1513 spin_unlock(&ctx->completion_lock);
1514 }
1515
1516 static void io_clean_op(struct io_kiocb *req)
1517 {
1518 if (req->flags & REQ_F_BUFFER_SELECTED) {
1519 spin_lock(&req->ctx->completion_lock);
1520 io_put_kbuf_comp(req);
1521 spin_unlock(&req->ctx->completion_lock);
1522 }
1523
1524 if (req->flags & REQ_F_NEED_CLEANUP) {
1525 const struct io_op_def *def = &io_op_defs[req->opcode];
1526
1527 if (def->cleanup)
1528 def->cleanup(req);
1529 }
1530 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1531 kfree(req->apoll->double_poll);
1532 kfree(req->apoll);
1533 req->apoll = NULL;
1534 }
1535 if (req->flags & REQ_F_INFLIGHT) {
1536 struct io_uring_task *tctx = req->task->io_uring;
1537
1538 atomic_dec(&tctx->inflight_tracked);
1539 }
1540 if (req->flags & REQ_F_CREDS)
1541 put_cred(req->creds);
1542 if (req->flags & REQ_F_ASYNC_DATA) {
1543 kfree(req->async_data);
1544 req->async_data = NULL;
1545 }
1546 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1547 }
1548
1549 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1550 {
1551 if (req->file || !io_op_defs[req->opcode].needs_file)
1552 return true;
1553
1554 if (req->flags & REQ_F_FIXED_FILE)
1555 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1556 else
1557 req->file = io_file_get_normal(req, req->cqe.fd);
1558
1559 return !!req->file;
1560 }
1561
1562 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1563 {
1564 const struct io_op_def *def = &io_op_defs[req->opcode];
1565 const struct cred *creds = NULL;
1566 int ret;
1567
1568 if (unlikely(!io_assign_file(req, issue_flags)))
1569 return -EBADF;
1570
1571 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1572 creds = override_creds(req->creds);
1573
1574 if (!def->audit_skip)
1575 audit_uring_entry(req->opcode);
1576
1577 ret = def->issue(req, issue_flags);
1578
1579 if (!def->audit_skip)
1580 audit_uring_exit(!ret, ret);
1581
1582 if (creds)
1583 revert_creds(creds);
1584
1585 if (ret == IOU_OK) {
1586 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1587 io_req_complete_defer(req);
1588 else
1589 io_req_complete_post(req);
1590 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1591 return ret;
1592
1593 /* If the op doesn't have a file, we're not polling for it */
1594 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1595 io_iopoll_req_issued(req, issue_flags);
1596
1597 return 0;
1598 }
1599
1600 int io_poll_issue(struct io_kiocb *req, bool *locked)
1601 {
1602 io_tw_lock(req->ctx, locked);
1603 if (unlikely(req->task->flags & PF_EXITING))
1604 return -EFAULT;
1605 return io_issue_sqe(req, IO_URING_F_NONBLOCK);
1606 }
1607
1608 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1609 {
1610 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1611
1612 req = io_put_req_find_next(req);
1613 return req ? &req->work : NULL;
1614 }
1615
1616 void io_wq_submit_work(struct io_wq_work *work)
1617 {
1618 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1619 const struct io_op_def *def = &io_op_defs[req->opcode];
1620 unsigned int issue_flags = IO_URING_F_UNLOCKED;
1621 bool needs_poll = false;
1622 int ret = 0, err = -ECANCELED;
1623
1624 /* one will be dropped by ->io_free_work() after returning to io-wq */
1625 if (!(req->flags & REQ_F_REFCOUNT))
1626 __io_req_set_refcount(req, 2);
1627 else
1628 req_ref_get(req);
1629
1630 io_arm_ltimeout(req);
1631
1632 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1633 if (work->flags & IO_WQ_WORK_CANCEL) {
1634 fail:
1635 io_req_task_queue_fail(req, err);
1636 return;
1637 }
1638 if (!io_assign_file(req, issue_flags)) {
1639 err = -EBADF;
1640 work->flags |= IO_WQ_WORK_CANCEL;
1641 goto fail;
1642 }
1643
1644 if (req->flags & REQ_F_FORCE_ASYNC) {
1645 bool opcode_poll = def->pollin || def->pollout;
1646
1647 if (opcode_poll && file_can_poll(req->file)) {
1648 needs_poll = true;
1649 issue_flags |= IO_URING_F_NONBLOCK;
1650 }
1651 }
1652
1653 do {
1654 ret = io_issue_sqe(req, issue_flags);
1655 if (ret != -EAGAIN)
1656 break;
1657 /*
1658 * We can get EAGAIN for iopolled IO even though we're
1659 * forcing a sync submission from here, since we can't
1660 * wait for request slots on the block side.
1661 */
1662 if (!needs_poll) {
1663 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1664 break;
1665 cond_resched();
1666 continue;
1667 }
1668
1669 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1670 return;
1671 /* aborted or ready, in either case retry blocking */
1672 needs_poll = false;
1673 issue_flags &= ~IO_URING_F_NONBLOCK;
1674 } while (1);
1675
1676 /* avoid locking problems by failing it from a clean context */
1677 if (ret < 0)
1678 io_req_task_queue_fail(req, ret);
1679 }
1680
1681 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1682 unsigned int issue_flags)
1683 {
1684 struct io_ring_ctx *ctx = req->ctx;
1685 struct file *file = NULL;
1686 unsigned long file_ptr;
1687
1688 io_ring_submit_lock(ctx, issue_flags);
1689
1690 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1691 goto out;
1692 fd = array_index_nospec(fd, ctx->nr_user_files);
1693 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1694 file = (struct file *) (file_ptr & FFS_MASK);
1695 file_ptr &= ~FFS_MASK;
1696 /* mask in overlapping REQ_F and FFS bits */
1697 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1698 io_req_set_rsrc_node(req, ctx, 0);
1699 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
1700 out:
1701 io_ring_submit_unlock(ctx, issue_flags);
1702 return file;
1703 }
1704
1705 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1706 {
1707 struct file *file = fget(fd);
1708
1709 trace_io_uring_file_get(req, fd);
1710
1711 /* we don't allow fixed io_uring files */
1712 if (file && io_is_uring_fops(file))
1713 io_req_track_inflight(req);
1714 return file;
1715 }
1716
1717 static void io_queue_async(struct io_kiocb *req, int ret)
1718 __must_hold(&req->ctx->uring_lock)
1719 {
1720 struct io_kiocb *linked_timeout;
1721
1722 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1723 io_req_complete_failed(req, ret);
1724 return;
1725 }
1726
1727 linked_timeout = io_prep_linked_timeout(req);
1728
1729 switch (io_arm_poll_handler(req, 0)) {
1730 case IO_APOLL_READY:
1731 io_req_task_queue(req);
1732 break;
1733 case IO_APOLL_ABORTED:
1734 /*
1735 * Queued up for async execution, worker will release
1736 * submit reference when the iocb is actually submitted.
1737 */
1738 io_kbuf_recycle(req, 0);
1739 io_queue_iowq(req, NULL);
1740 break;
1741 case IO_APOLL_OK:
1742 break;
1743 }
1744
1745 if (linked_timeout)
1746 io_queue_linked_timeout(linked_timeout);
1747 }
1748
1749 static inline void io_queue_sqe(struct io_kiocb *req)
1750 __must_hold(&req->ctx->uring_lock)
1751 {
1752 int ret;
1753
1754 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1755
1756 /*
1757 * We async punt it if the file wasn't marked NOWAIT, or if the file
1758 * doesn't support non-blocking read/write attempts
1759 */
1760 if (likely(!ret))
1761 io_arm_ltimeout(req);
1762 else
1763 io_queue_async(req, ret);
1764 }
1765
1766 static void io_queue_sqe_fallback(struct io_kiocb *req)
1767 __must_hold(&req->ctx->uring_lock)
1768 {
1769 if (unlikely(req->flags & REQ_F_FAIL)) {
1770 /*
1771 * We don't submit, fail them all, for that replace hardlinks
1772 * with normal links. Extra REQ_F_LINK is tolerated.
1773 */
1774 req->flags &= ~REQ_F_HARDLINK;
1775 req->flags |= REQ_F_LINK;
1776 io_req_complete_failed(req, req->cqe.res);
1777 } else if (unlikely(req->ctx->drain_active)) {
1778 io_drain_req(req);
1779 } else {
1780 int ret = io_req_prep_async(req);
1781
1782 if (unlikely(ret))
1783 io_req_complete_failed(req, ret);
1784 else
1785 io_queue_iowq(req, NULL);
1786 }
1787 }
1788
1789 /*
1790 * Check SQE restrictions (opcode and flags).
1791 *
1792 * Returns 'true' if SQE is allowed, 'false' otherwise.
1793 */
1794 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1795 struct io_kiocb *req,
1796 unsigned int sqe_flags)
1797 {
1798 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1799 return false;
1800
1801 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1802 ctx->restrictions.sqe_flags_required)
1803 return false;
1804
1805 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1806 ctx->restrictions.sqe_flags_required))
1807 return false;
1808
1809 return true;
1810 }
1811
1812 static void io_init_req_drain(struct io_kiocb *req)
1813 {
1814 struct io_ring_ctx *ctx = req->ctx;
1815 struct io_kiocb *head = ctx->submit_state.link.head;
1816
1817 ctx->drain_active = true;
1818 if (head) {
1819 /*
1820 * If we need to drain a request in the middle of a link, drain
1821 * the head request and the next request/link after the current
1822 * link. Considering sequential execution of links,
1823 * REQ_F_IO_DRAIN will be maintained for every request of our
1824 * link.
1825 */
1826 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1827 ctx->drain_next = true;
1828 }
1829 }
1830
1831 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1832 const struct io_uring_sqe *sqe)
1833 __must_hold(&ctx->uring_lock)
1834 {
1835 const struct io_op_def *def;
1836 unsigned int sqe_flags;
1837 int personality;
1838 u8 opcode;
1839
1840 /* req is partially pre-initialised, see io_preinit_req() */
1841 req->opcode = opcode = READ_ONCE(sqe->opcode);
1842 /* same numerical values with corresponding REQ_F_*, safe to copy */
1843 req->flags = sqe_flags = READ_ONCE(sqe->flags);
1844 req->cqe.user_data = READ_ONCE(sqe->user_data);
1845 req->file = NULL;
1846 req->rsrc_node = NULL;
1847 req->task = current;
1848
1849 if (unlikely(opcode >= IORING_OP_LAST)) {
1850 req->opcode = 0;
1851 return -EINVAL;
1852 }
1853 def = &io_op_defs[opcode];
1854 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
1855 /* enforce forwards compatibility on users */
1856 if (sqe_flags & ~SQE_VALID_FLAGS)
1857 return -EINVAL;
1858 if (sqe_flags & IOSQE_BUFFER_SELECT) {
1859 if (!def->buffer_select)
1860 return -EOPNOTSUPP;
1861 req->buf_index = READ_ONCE(sqe->buf_group);
1862 }
1863 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
1864 ctx->drain_disabled = true;
1865 if (sqe_flags & IOSQE_IO_DRAIN) {
1866 if (ctx->drain_disabled)
1867 return -EOPNOTSUPP;
1868 io_init_req_drain(req);
1869 }
1870 }
1871 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
1872 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
1873 return -EACCES;
1874 /* knock it to the slow queue path, will be drained there */
1875 if (ctx->drain_active)
1876 req->flags |= REQ_F_FORCE_ASYNC;
1877 /* if there is no link, we're at "next" request and need to drain */
1878 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
1879 ctx->drain_next = false;
1880 ctx->drain_active = true;
1881 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1882 }
1883 }
1884
1885 if (!def->ioprio && sqe->ioprio)
1886 return -EINVAL;
1887 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
1888 return -EINVAL;
1889
1890 if (def->needs_file) {
1891 struct io_submit_state *state = &ctx->submit_state;
1892
1893 req->cqe.fd = READ_ONCE(sqe->fd);
1894
1895 /*
1896 * Plug now if we have more than 2 IO left after this, and the
1897 * target is potentially a read/write to block based storage.
1898 */
1899 if (state->need_plug && def->plug) {
1900 state->plug_started = true;
1901 state->need_plug = false;
1902 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
1903 }
1904 }
1905
1906 personality = READ_ONCE(sqe->personality);
1907 if (personality) {
1908 int ret;
1909
1910 req->creds = xa_load(&ctx->personalities, personality);
1911 if (!req->creds)
1912 return -EINVAL;
1913 get_cred(req->creds);
1914 ret = security_uring_override_creds(req->creds);
1915 if (ret) {
1916 put_cred(req->creds);
1917 return ret;
1918 }
1919 req->flags |= REQ_F_CREDS;
1920 }
1921
1922 return def->prep(req, sqe);
1923 }
1924
1925 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
1926 struct io_kiocb *req, int ret)
1927 {
1928 struct io_ring_ctx *ctx = req->ctx;
1929 struct io_submit_link *link = &ctx->submit_state.link;
1930 struct io_kiocb *head = link->head;
1931
1932 trace_io_uring_req_failed(sqe, req, ret);
1933
1934 /*
1935 * Avoid breaking links in the middle as it renders links with SQPOLL
1936 * unusable. Instead of failing eagerly, continue assembling the link if
1937 * applicable and mark the head with REQ_F_FAIL. The link flushing code
1938 * should find the flag and handle the rest.
1939 */
1940 req_fail_link_node(req, ret);
1941 if (head && !(head->flags & REQ_F_FAIL))
1942 req_fail_link_node(head, -ECANCELED);
1943
1944 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
1945 if (head) {
1946 link->last->link = req;
1947 link->head = NULL;
1948 req = head;
1949 }
1950 io_queue_sqe_fallback(req);
1951 return ret;
1952 }
1953
1954 if (head)
1955 link->last->link = req;
1956 else
1957 link->head = req;
1958 link->last = req;
1959 return 0;
1960 }
1961
1962 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1963 const struct io_uring_sqe *sqe)
1964 __must_hold(&ctx->uring_lock)
1965 {
1966 struct io_submit_link *link = &ctx->submit_state.link;
1967 int ret;
1968
1969 ret = io_init_req(ctx, req, sqe);
1970 if (unlikely(ret))
1971 return io_submit_fail_init(sqe, req, ret);
1972
1973 /* don't need @sqe from now on */
1974 trace_io_uring_submit_sqe(req, true);
1975
1976 /*
1977 * If we already have a head request, queue this one for async
1978 * submittal once the head completes. If we don't have a head but
1979 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
1980 * submitted sync once the chain is complete. If none of those
1981 * conditions are true (normal request), then just queue it.
1982 */
1983 if (unlikely(link->head)) {
1984 ret = io_req_prep_async(req);
1985 if (unlikely(ret))
1986 return io_submit_fail_init(sqe, req, ret);
1987
1988 trace_io_uring_link(req, link->head);
1989 link->last->link = req;
1990 link->last = req;
1991
1992 if (req->flags & IO_REQ_LINK_FLAGS)
1993 return 0;
1994 /* last request of the link, flush it */
1995 req = link->head;
1996 link->head = NULL;
1997 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
1998 goto fallback;
1999
2000 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2001 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2002 if (req->flags & IO_REQ_LINK_FLAGS) {
2003 link->head = req;
2004 link->last = req;
2005 } else {
2006 fallback:
2007 io_queue_sqe_fallback(req);
2008 }
2009 return 0;
2010 }
2011
2012 io_queue_sqe(req);
2013 return 0;
2014 }
2015
2016 /*
2017 * Batched submission is done, ensure local IO is flushed out.
2018 */
2019 static void io_submit_state_end(struct io_ring_ctx *ctx)
2020 {
2021 struct io_submit_state *state = &ctx->submit_state;
2022
2023 if (unlikely(state->link.head))
2024 io_queue_sqe_fallback(state->link.head);
2025 /* flush only after queuing links as they can generate completions */
2026 io_submit_flush_completions(ctx);
2027 if (state->plug_started)
2028 blk_finish_plug(&state->plug);
2029 }
2030
2031 /*
2032 * Start submission side cache.
2033 */
2034 static void io_submit_state_start(struct io_submit_state *state,
2035 unsigned int max_ios)
2036 {
2037 state->plug_started = false;
2038 state->need_plug = max_ios > 2;
2039 state->submit_nr = max_ios;
2040 /* set only head, no need to init link_last in advance */
2041 state->link.head = NULL;
2042 }
2043
2044 static void io_commit_sqring(struct io_ring_ctx *ctx)
2045 {
2046 struct io_rings *rings = ctx->rings;
2047
2048 /*
2049 * Ensure any loads from the SQEs are done at this point,
2050 * since once we write the new head, the application could
2051 * write new data to them.
2052 */
2053 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2054 }
2055
2056 /*
2057 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2058 * that is mapped by userspace. This means that care needs to be taken to
2059 * ensure that reads are stable, as we cannot rely on userspace always
2060 * being a good citizen. If members of the sqe are validated and then later
2061 * used, it's important that those reads are done through READ_ONCE() to
2062 * prevent a re-load down the line.
2063 */
2064 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2065 {
2066 unsigned head, mask = ctx->sq_entries - 1;
2067 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2068
2069 /*
2070 * The cached sq head (or cq tail) serves two purposes:
2071 *
2072 * 1) allows us to batch the cost of updating the user visible
2073 * head updates.
2074 * 2) allows the kernel side to track the head on its own, even
2075 * though the application is the one updating it.
2076 */
2077 head = READ_ONCE(ctx->sq_array[sq_idx]);
2078 if (likely(head < ctx->sq_entries)) {
2079 /* double index for 128-byte SQEs, twice as long */
2080 if (ctx->flags & IORING_SETUP_SQE128)
2081 head <<= 1;
2082 return &ctx->sq_sqes[head];
2083 }
2084
2085 /* drop invalid entries */
2086 ctx->cq_extra--;
2087 WRITE_ONCE(ctx->rings->sq_dropped,
2088 READ_ONCE(ctx->rings->sq_dropped) + 1);
2089 return NULL;
2090 }
2091
2092 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2093 __must_hold(&ctx->uring_lock)
2094 {
2095 unsigned int entries = io_sqring_entries(ctx);
2096 unsigned int left;
2097 int ret;
2098
2099 if (unlikely(!entries))
2100 return 0;
2101 /* make sure SQ entry isn't read before tail */
2102 ret = left = min3(nr, ctx->sq_entries, entries);
2103 io_get_task_refs(left);
2104 io_submit_state_start(&ctx->submit_state, left);
2105
2106 do {
2107 const struct io_uring_sqe *sqe;
2108 struct io_kiocb *req;
2109
2110 if (unlikely(!io_alloc_req_refill(ctx)))
2111 break;
2112 req = io_alloc_req(ctx);
2113 sqe = io_get_sqe(ctx);
2114 if (unlikely(!sqe)) {
2115 io_req_add_to_cache(req, ctx);
2116 break;
2117 }
2118
2119 /*
2120 * Continue submitting even for sqe failure if the
2121 * ring was setup with IORING_SETUP_SUBMIT_ALL
2122 */
2123 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2124 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2125 left--;
2126 break;
2127 }
2128 } while (--left);
2129
2130 if (unlikely(left)) {
2131 ret -= left;
2132 /* try again if it submitted nothing and can't allocate a req */
2133 if (!ret && io_req_cache_empty(ctx))
2134 ret = -EAGAIN;
2135 current->io_uring->cached_refs += left;
2136 }
2137
2138 io_submit_state_end(ctx);
2139 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2140 io_commit_sqring(ctx);
2141 return ret;
2142 }
2143
2144 struct io_wait_queue {
2145 struct wait_queue_entry wq;
2146 struct io_ring_ctx *ctx;
2147 unsigned cq_tail;
2148 unsigned nr_timeouts;
2149 };
2150
2151 static inline bool io_should_wake(struct io_wait_queue *iowq)
2152 {
2153 struct io_ring_ctx *ctx = iowq->ctx;
2154 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
2155
2156 /*
2157 * Wake up if we have enough events, or if a timeout occurred since we
2158 * started waiting. For timeouts, we always want to return to userspace,
2159 * regardless of event count.
2160 */
2161 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2162 }
2163
2164 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2165 int wake_flags, void *key)
2166 {
2167 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2168 wq);
2169
2170 /*
2171 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2172 * the task, and the next invocation will do it.
2173 */
2174 if (io_should_wake(iowq) ||
2175 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
2176 return autoremove_wake_function(curr, mode, wake_flags, key);
2177 return -1;
2178 }
2179
2180 int io_run_task_work_sig(void)
2181 {
2182 if (io_run_task_work())
2183 return 1;
2184 if (task_sigpending(current))
2185 return -EINTR;
2186 return 0;
2187 }
2188
2189 /* when returns >0, the caller should retry */
2190 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2191 struct io_wait_queue *iowq,
2192 ktime_t timeout)
2193 {
2194 int ret;
2195 unsigned long check_cq;
2196
2197 /* make sure we run task_work before checking for signals */
2198 ret = io_run_task_work_sig();
2199 if (ret || io_should_wake(iowq))
2200 return ret;
2201
2202 check_cq = READ_ONCE(ctx->check_cq);
2203 if (unlikely(check_cq)) {
2204 /* let the caller flush overflows, retry */
2205 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2206 return 1;
2207 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2208 return -EBADR;
2209 }
2210 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2211 return -ETIME;
2212 return 1;
2213 }
2214
2215 /*
2216 * Wait until events become available, if we don't already have some. The
2217 * application must reap them itself, as they reside on the shared cq ring.
2218 */
2219 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2220 const sigset_t __user *sig, size_t sigsz,
2221 struct __kernel_timespec __user *uts)
2222 {
2223 struct io_wait_queue iowq;
2224 struct io_rings *rings = ctx->rings;
2225 ktime_t timeout = KTIME_MAX;
2226 int ret;
2227
2228 do {
2229 io_cqring_overflow_flush(ctx);
2230 if (io_cqring_events(ctx) >= min_events)
2231 return 0;
2232 if (!io_run_task_work())
2233 break;
2234 } while (1);
2235
2236 if (sig) {
2237 #ifdef CONFIG_COMPAT
2238 if (in_compat_syscall())
2239 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2240 sigsz);
2241 else
2242 #endif
2243 ret = set_user_sigmask(sig, sigsz);
2244
2245 if (ret)
2246 return ret;
2247 }
2248
2249 if (uts) {
2250 struct timespec64 ts;
2251
2252 if (get_timespec64(&ts, uts))
2253 return -EFAULT;
2254 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2255 }
2256
2257 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2258 iowq.wq.private = current;
2259 INIT_LIST_HEAD(&iowq.wq.entry);
2260 iowq.ctx = ctx;
2261 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2262 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2263
2264 trace_io_uring_cqring_wait(ctx, min_events);
2265 do {
2266 /* if we can't even flush overflow, don't wait for more */
2267 if (!io_cqring_overflow_flush(ctx)) {
2268 ret = -EBUSY;
2269 break;
2270 }
2271 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2272 TASK_INTERRUPTIBLE);
2273 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2274 cond_resched();
2275 } while (ret > 0);
2276
2277 finish_wait(&ctx->cq_wait, &iowq.wq);
2278 restore_saved_sigmask_unless(ret == -EINTR);
2279
2280 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2281 }
2282
2283 static void io_mem_free(void *ptr)
2284 {
2285 struct page *page;
2286
2287 if (!ptr)
2288 return;
2289
2290 page = virt_to_head_page(ptr);
2291 if (put_page_testzero(page))
2292 free_compound_page(page);
2293 }
2294
2295 static void *io_mem_alloc(size_t size)
2296 {
2297 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2298
2299 return (void *) __get_free_pages(gfp, get_order(size));
2300 }
2301
2302 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2303 unsigned int cq_entries, size_t *sq_offset)
2304 {
2305 struct io_rings *rings;
2306 size_t off, sq_array_size;
2307
2308 off = struct_size(rings, cqes, cq_entries);
2309 if (off == SIZE_MAX)
2310 return SIZE_MAX;
2311 if (ctx->flags & IORING_SETUP_CQE32) {
2312 if (check_shl_overflow(off, 1, &off))
2313 return SIZE_MAX;
2314 }
2315
2316 #ifdef CONFIG_SMP
2317 off = ALIGN(off, SMP_CACHE_BYTES);
2318 if (off == 0)
2319 return SIZE_MAX;
2320 #endif
2321
2322 if (sq_offset)
2323 *sq_offset = off;
2324
2325 sq_array_size = array_size(sizeof(u32), sq_entries);
2326 if (sq_array_size == SIZE_MAX)
2327 return SIZE_MAX;
2328
2329 if (check_add_overflow(off, sq_array_size, &off))
2330 return SIZE_MAX;
2331
2332 return off;
2333 }
2334
2335 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2336 unsigned int eventfd_async)
2337 {
2338 struct io_ev_fd *ev_fd;
2339 __s32 __user *fds = arg;
2340 int fd;
2341
2342 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2343 lockdep_is_held(&ctx->uring_lock));
2344 if (ev_fd)
2345 return -EBUSY;
2346
2347 if (copy_from_user(&fd, fds, sizeof(*fds)))
2348 return -EFAULT;
2349
2350 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2351 if (!ev_fd)
2352 return -ENOMEM;
2353
2354 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2355 if (IS_ERR(ev_fd->cq_ev_fd)) {
2356 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2357 kfree(ev_fd);
2358 return ret;
2359 }
2360
2361 spin_lock(&ctx->completion_lock);
2362 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2363 spin_unlock(&ctx->completion_lock);
2364
2365 ev_fd->eventfd_async = eventfd_async;
2366 ctx->has_evfd = true;
2367 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2368 return 0;
2369 }
2370
2371 static void io_eventfd_put(struct rcu_head *rcu)
2372 {
2373 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
2374
2375 eventfd_ctx_put(ev_fd->cq_ev_fd);
2376 kfree(ev_fd);
2377 }
2378
2379 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2380 {
2381 struct io_ev_fd *ev_fd;
2382
2383 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2384 lockdep_is_held(&ctx->uring_lock));
2385 if (ev_fd) {
2386 ctx->has_evfd = false;
2387 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2388 call_rcu(&ev_fd->rcu, io_eventfd_put);
2389 return 0;
2390 }
2391
2392 return -ENXIO;
2393 }
2394
2395 static void io_req_caches_free(struct io_ring_ctx *ctx)
2396 {
2397 struct io_submit_state *state = &ctx->submit_state;
2398 int nr = 0;
2399
2400 mutex_lock(&ctx->uring_lock);
2401 io_flush_cached_locked_reqs(ctx, state);
2402
2403 while (!io_req_cache_empty(ctx)) {
2404 struct io_wq_work_node *node;
2405 struct io_kiocb *req;
2406
2407 node = wq_stack_extract(&state->free_list);
2408 req = container_of(node, struct io_kiocb, comp_list);
2409 kmem_cache_free(req_cachep, req);
2410 nr++;
2411 }
2412 if (nr)
2413 percpu_ref_put_many(&ctx->refs, nr);
2414 mutex_unlock(&ctx->uring_lock);
2415 }
2416
2417 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2418 {
2419 io_sq_thread_finish(ctx);
2420
2421 if (ctx->mm_account) {
2422 mmdrop(ctx->mm_account);
2423 ctx->mm_account = NULL;
2424 }
2425
2426 io_rsrc_refs_drop(ctx);
2427 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2428 io_wait_rsrc_data(ctx->buf_data);
2429 io_wait_rsrc_data(ctx->file_data);
2430
2431 mutex_lock(&ctx->uring_lock);
2432 if (ctx->buf_data)
2433 __io_sqe_buffers_unregister(ctx);
2434 if (ctx->file_data)
2435 __io_sqe_files_unregister(ctx);
2436 if (ctx->rings)
2437 __io_cqring_overflow_flush(ctx, true);
2438 io_eventfd_unregister(ctx);
2439 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2440 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2441 mutex_unlock(&ctx->uring_lock);
2442 io_destroy_buffers(ctx);
2443 if (ctx->sq_creds)
2444 put_cred(ctx->sq_creds);
2445 if (ctx->submitter_task)
2446 put_task_struct(ctx->submitter_task);
2447
2448 /* there are no registered resources left, nobody uses it */
2449 if (ctx->rsrc_node)
2450 io_rsrc_node_destroy(ctx->rsrc_node);
2451 if (ctx->rsrc_backup_node)
2452 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2453 flush_delayed_work(&ctx->rsrc_put_work);
2454 flush_delayed_work(&ctx->fallback_work);
2455
2456 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2457 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2458
2459 #if defined(CONFIG_UNIX)
2460 if (ctx->ring_sock) {
2461 ctx->ring_sock->file = NULL; /* so that iput() is called */
2462 sock_release(ctx->ring_sock);
2463 }
2464 #endif
2465 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2466 WARN_ON_ONCE(ctx->notif_slots || ctx->nr_notif_slots);
2467
2468 io_mem_free(ctx->rings);
2469 io_mem_free(ctx->sq_sqes);
2470
2471 percpu_ref_exit(&ctx->refs);
2472 free_uid(ctx->user);
2473 io_req_caches_free(ctx);
2474 if (ctx->hash_map)
2475 io_wq_put_hash(ctx->hash_map);
2476 kfree(ctx->cancel_table.hbs);
2477 kfree(ctx->cancel_table_locked.hbs);
2478 kfree(ctx->dummy_ubuf);
2479 kfree(ctx->io_bl);
2480 xa_destroy(&ctx->io_bl_xa);
2481 kfree(ctx);
2482 }
2483
2484 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2485 {
2486 struct io_ring_ctx *ctx = file->private_data;
2487 __poll_t mask = 0;
2488
2489 poll_wait(file, &ctx->cq_wait, wait);
2490 /*
2491 * synchronizes with barrier from wq_has_sleeper call in
2492 * io_commit_cqring
2493 */
2494 smp_rmb();
2495 if (!io_sqring_full(ctx))
2496 mask |= EPOLLOUT | EPOLLWRNORM;
2497
2498 /*
2499 * Don't flush cqring overflow list here, just do a simple check.
2500 * Otherwise there could possible be ABBA deadlock:
2501 * CPU0 CPU1
2502 * ---- ----
2503 * lock(&ctx->uring_lock);
2504 * lock(&ep->mtx);
2505 * lock(&ctx->uring_lock);
2506 * lock(&ep->mtx);
2507 *
2508 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2509 * pushs them to do the flush.
2510 */
2511 if (io_cqring_events(ctx) ||
2512 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
2513 mask |= EPOLLIN | EPOLLRDNORM;
2514
2515 return mask;
2516 }
2517
2518 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2519 {
2520 const struct cred *creds;
2521
2522 creds = xa_erase(&ctx->personalities, id);
2523 if (creds) {
2524 put_cred(creds);
2525 return 0;
2526 }
2527
2528 return -EINVAL;
2529 }
2530
2531 struct io_tctx_exit {
2532 struct callback_head task_work;
2533 struct completion completion;
2534 struct io_ring_ctx *ctx;
2535 };
2536
2537 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2538 {
2539 struct io_uring_task *tctx = current->io_uring;
2540 struct io_tctx_exit *work;
2541
2542 work = container_of(cb, struct io_tctx_exit, task_work);
2543 /*
2544 * When @in_idle, we're in cancellation and it's racy to remove the
2545 * node. It'll be removed by the end of cancellation, just ignore it.
2546 */
2547 if (!atomic_read(&tctx->in_idle))
2548 io_uring_del_tctx_node((unsigned long)work->ctx);
2549 complete(&work->completion);
2550 }
2551
2552 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2553 {
2554 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2555
2556 return req->ctx == data;
2557 }
2558
2559 static __cold void io_ring_exit_work(struct work_struct *work)
2560 {
2561 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2562 unsigned long timeout = jiffies + HZ * 60 * 5;
2563 unsigned long interval = HZ / 20;
2564 struct io_tctx_exit exit;
2565 struct io_tctx_node *node;
2566 int ret;
2567
2568 /*
2569 * If we're doing polled IO and end up having requests being
2570 * submitted async (out-of-line), then completions can come in while
2571 * we're waiting for refs to drop. We need to reap these manually,
2572 * as nobody else will be looking for them.
2573 */
2574 do {
2575 while (io_uring_try_cancel_requests(ctx, NULL, true))
2576 cond_resched();
2577
2578 if (ctx->sq_data) {
2579 struct io_sq_data *sqd = ctx->sq_data;
2580 struct task_struct *tsk;
2581
2582 io_sq_thread_park(sqd);
2583 tsk = sqd->thread;
2584 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2585 io_wq_cancel_cb(tsk->io_uring->io_wq,
2586 io_cancel_ctx_cb, ctx, true);
2587 io_sq_thread_unpark(sqd);
2588 }
2589
2590 io_req_caches_free(ctx);
2591
2592 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2593 /* there is little hope left, don't run it too often */
2594 interval = HZ * 60;
2595 }
2596 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2597
2598 init_completion(&exit.completion);
2599 init_task_work(&exit.task_work, io_tctx_exit_cb);
2600 exit.ctx = ctx;
2601 /*
2602 * Some may use context even when all refs and requests have been put,
2603 * and they are free to do so while still holding uring_lock or
2604 * completion_lock, see io_req_task_submit(). Apart from other work,
2605 * this lock/unlock section also waits them to finish.
2606 */
2607 mutex_lock(&ctx->uring_lock);
2608 while (!list_empty(&ctx->tctx_list)) {
2609 WARN_ON_ONCE(time_after(jiffies, timeout));
2610
2611 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2612 ctx_node);
2613 /* don't spin on a single task if cancellation failed */
2614 list_rotate_left(&ctx->tctx_list);
2615 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2616 if (WARN_ON_ONCE(ret))
2617 continue;
2618
2619 mutex_unlock(&ctx->uring_lock);
2620 wait_for_completion(&exit.completion);
2621 mutex_lock(&ctx->uring_lock);
2622 }
2623 mutex_unlock(&ctx->uring_lock);
2624 spin_lock(&ctx->completion_lock);
2625 spin_unlock(&ctx->completion_lock);
2626
2627 io_ring_ctx_free(ctx);
2628 }
2629
2630 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2631 {
2632 unsigned long index;
2633 struct creds *creds;
2634
2635 mutex_lock(&ctx->uring_lock);
2636 percpu_ref_kill(&ctx->refs);
2637 if (ctx->rings)
2638 __io_cqring_overflow_flush(ctx, true);
2639 xa_for_each(&ctx->personalities, index, creds)
2640 io_unregister_personality(ctx, index);
2641 if (ctx->rings)
2642 io_poll_remove_all(ctx, NULL, true);
2643 mutex_unlock(&ctx->uring_lock);
2644
2645 /* failed during ring init, it couldn't have issued any requests */
2646 if (ctx->rings) {
2647 io_kill_timeouts(ctx, NULL, true);
2648 /* if we failed setting up the ctx, we might not have any rings */
2649 io_iopoll_try_reap_events(ctx);
2650 }
2651
2652 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2653 /*
2654 * Use system_unbound_wq to avoid spawning tons of event kworkers
2655 * if we're exiting a ton of rings at the same time. It just adds
2656 * noise and overhead, there's no discernable change in runtime
2657 * over using system_wq.
2658 */
2659 queue_work(system_unbound_wq, &ctx->exit_work);
2660 }
2661
2662 static int io_uring_release(struct inode *inode, struct file *file)
2663 {
2664 struct io_ring_ctx *ctx = file->private_data;
2665
2666 file->private_data = NULL;
2667 io_ring_ctx_wait_and_kill(ctx);
2668 return 0;
2669 }
2670
2671 struct io_task_cancel {
2672 struct task_struct *task;
2673 bool all;
2674 };
2675
2676 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2677 {
2678 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2679 struct io_task_cancel *cancel = data;
2680
2681 return io_match_task_safe(req, cancel->task, cancel->all);
2682 }
2683
2684 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2685 struct task_struct *task,
2686 bool cancel_all)
2687 {
2688 struct io_defer_entry *de;
2689 LIST_HEAD(list);
2690
2691 spin_lock(&ctx->completion_lock);
2692 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2693 if (io_match_task_safe(de->req, task, cancel_all)) {
2694 list_cut_position(&list, &ctx->defer_list, &de->list);
2695 break;
2696 }
2697 }
2698 spin_unlock(&ctx->completion_lock);
2699 if (list_empty(&list))
2700 return false;
2701
2702 while (!list_empty(&list)) {
2703 de = list_first_entry(&list, struct io_defer_entry, list);
2704 list_del_init(&de->list);
2705 io_req_complete_failed(de->req, -ECANCELED);
2706 kfree(de);
2707 }
2708 return true;
2709 }
2710
2711 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2712 {
2713 struct io_tctx_node *node;
2714 enum io_wq_cancel cret;
2715 bool ret = false;
2716
2717 mutex_lock(&ctx->uring_lock);
2718 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2719 struct io_uring_task *tctx = node->task->io_uring;
2720
2721 /*
2722 * io_wq will stay alive while we hold uring_lock, because it's
2723 * killed after ctx nodes, which requires to take the lock.
2724 */
2725 if (!tctx || !tctx->io_wq)
2726 continue;
2727 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2728 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2729 }
2730 mutex_unlock(&ctx->uring_lock);
2731
2732 return ret;
2733 }
2734
2735 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2736 struct task_struct *task,
2737 bool cancel_all)
2738 {
2739 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2740 struct io_uring_task *tctx = task ? task->io_uring : NULL;
2741 enum io_wq_cancel cret;
2742 bool ret = false;
2743
2744 /* failed during ring init, it couldn't have issued any requests */
2745 if (!ctx->rings)
2746 return false;
2747
2748 if (!task) {
2749 ret |= io_uring_try_cancel_iowq(ctx);
2750 } else if (tctx && tctx->io_wq) {
2751 /*
2752 * Cancels requests of all rings, not only @ctx, but
2753 * it's fine as the task is in exit/exec.
2754 */
2755 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2756 &cancel, true);
2757 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2758 }
2759
2760 /* SQPOLL thread does its own polling */
2761 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2762 (ctx->sq_data && ctx->sq_data->thread == current)) {
2763 while (!wq_list_empty(&ctx->iopoll_list)) {
2764 io_iopoll_try_reap_events(ctx);
2765 ret = true;
2766 }
2767 }
2768
2769 ret |= io_cancel_defer_files(ctx, task, cancel_all);
2770 mutex_lock(&ctx->uring_lock);
2771 ret |= io_poll_remove_all(ctx, task, cancel_all);
2772 mutex_unlock(&ctx->uring_lock);
2773 ret |= io_kill_timeouts(ctx, task, cancel_all);
2774 if (task)
2775 ret |= io_run_task_work();
2776 return ret;
2777 }
2778
2779 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2780 {
2781 if (tracked)
2782 return atomic_read(&tctx->inflight_tracked);
2783 return percpu_counter_sum(&tctx->inflight);
2784 }
2785
2786 /*
2787 * Find any io_uring ctx that this task has registered or done IO on, and cancel
2788 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2789 */
2790 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2791 {
2792 struct io_uring_task *tctx = current->io_uring;
2793 struct io_ring_ctx *ctx;
2794 s64 inflight;
2795 DEFINE_WAIT(wait);
2796
2797 WARN_ON_ONCE(sqd && sqd->thread != current);
2798
2799 if (!current->io_uring)
2800 return;
2801 if (tctx->io_wq)
2802 io_wq_exit_start(tctx->io_wq);
2803
2804 atomic_inc(&tctx->in_idle);
2805 do {
2806 bool loop = false;
2807
2808 io_uring_drop_tctx_refs(current);
2809 /* read completions before cancelations */
2810 inflight = tctx_inflight(tctx, !cancel_all);
2811 if (!inflight)
2812 break;
2813
2814 if (!sqd) {
2815 struct io_tctx_node *node;
2816 unsigned long index;
2817
2818 xa_for_each(&tctx->xa, index, node) {
2819 /* sqpoll task will cancel all its requests */
2820 if (node->ctx->sq_data)
2821 continue;
2822 loop |= io_uring_try_cancel_requests(node->ctx,
2823 current, cancel_all);
2824 }
2825 } else {
2826 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2827 loop |= io_uring_try_cancel_requests(ctx,
2828 current,
2829 cancel_all);
2830 }
2831
2832 if (loop) {
2833 cond_resched();
2834 continue;
2835 }
2836
2837 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
2838 io_run_task_work();
2839 io_uring_drop_tctx_refs(current);
2840
2841 /*
2842 * If we've seen completions, retry without waiting. This
2843 * avoids a race where a completion comes in before we did
2844 * prepare_to_wait().
2845 */
2846 if (inflight == tctx_inflight(tctx, !cancel_all))
2847 schedule();
2848 finish_wait(&tctx->wait, &wait);
2849 } while (1);
2850
2851 io_uring_clean_tctx(tctx);
2852 if (cancel_all) {
2853 /*
2854 * We shouldn't run task_works after cancel, so just leave
2855 * ->in_idle set for normal exit.
2856 */
2857 atomic_dec(&tctx->in_idle);
2858 /* for exec all current's requests should be gone, kill tctx */
2859 __io_uring_free(current);
2860 }
2861 }
2862
2863 void __io_uring_cancel(bool cancel_all)
2864 {
2865 io_uring_cancel_generic(cancel_all, NULL);
2866 }
2867
2868 static void *io_uring_validate_mmap_request(struct file *file,
2869 loff_t pgoff, size_t sz)
2870 {
2871 struct io_ring_ctx *ctx = file->private_data;
2872 loff_t offset = pgoff << PAGE_SHIFT;
2873 struct page *page;
2874 void *ptr;
2875
2876 switch (offset) {
2877 case IORING_OFF_SQ_RING:
2878 case IORING_OFF_CQ_RING:
2879 ptr = ctx->rings;
2880 break;
2881 case IORING_OFF_SQES:
2882 ptr = ctx->sq_sqes;
2883 break;
2884 default:
2885 return ERR_PTR(-EINVAL);
2886 }
2887
2888 page = virt_to_head_page(ptr);
2889 if (sz > page_size(page))
2890 return ERR_PTR(-EINVAL);
2891
2892 return ptr;
2893 }
2894
2895 #ifdef CONFIG_MMU
2896
2897 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2898 {
2899 size_t sz = vma->vm_end - vma->vm_start;
2900 unsigned long pfn;
2901 void *ptr;
2902
2903 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
2904 if (IS_ERR(ptr))
2905 return PTR_ERR(ptr);
2906
2907 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2908 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2909 }
2910
2911 #else /* !CONFIG_MMU */
2912
2913 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2914 {
2915 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
2916 }
2917
2918 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
2919 {
2920 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
2921 }
2922
2923 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
2924 unsigned long addr, unsigned long len,
2925 unsigned long pgoff, unsigned long flags)
2926 {
2927 void *ptr;
2928
2929 ptr = io_uring_validate_mmap_request(file, pgoff, len);
2930 if (IS_ERR(ptr))
2931 return PTR_ERR(ptr);
2932
2933 return (unsigned long) ptr;
2934 }
2935
2936 #endif /* !CONFIG_MMU */
2937
2938 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
2939 {
2940 if (flags & IORING_ENTER_EXT_ARG) {
2941 struct io_uring_getevents_arg arg;
2942
2943 if (argsz != sizeof(arg))
2944 return -EINVAL;
2945 if (copy_from_user(&arg, argp, sizeof(arg)))
2946 return -EFAULT;
2947 }
2948 return 0;
2949 }
2950
2951 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
2952 struct __kernel_timespec __user **ts,
2953 const sigset_t __user **sig)
2954 {
2955 struct io_uring_getevents_arg arg;
2956
2957 /*
2958 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
2959 * is just a pointer to the sigset_t.
2960 */
2961 if (!(flags & IORING_ENTER_EXT_ARG)) {
2962 *sig = (const sigset_t __user *) argp;
2963 *ts = NULL;
2964 return 0;
2965 }
2966
2967 /*
2968 * EXT_ARG is set - ensure we agree on the size of it and copy in our
2969 * timespec and sigset_t pointers if good.
2970 */
2971 if (*argsz != sizeof(arg))
2972 return -EINVAL;
2973 if (copy_from_user(&arg, argp, sizeof(arg)))
2974 return -EFAULT;
2975 if (arg.pad)
2976 return -EINVAL;
2977 *sig = u64_to_user_ptr(arg.sigmask);
2978 *argsz = arg.sigmask_sz;
2979 *ts = u64_to_user_ptr(arg.ts);
2980 return 0;
2981 }
2982
2983 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2984 u32, min_complete, u32, flags, const void __user *, argp,
2985 size_t, argsz)
2986 {
2987 struct io_ring_ctx *ctx;
2988 struct fd f;
2989 long ret;
2990
2991 io_run_task_work();
2992
2993 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
2994 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
2995 IORING_ENTER_REGISTERED_RING)))
2996 return -EINVAL;
2997
2998 /*
2999 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3000 * need only dereference our task private array to find it.
3001 */
3002 if (flags & IORING_ENTER_REGISTERED_RING) {
3003 struct io_uring_task *tctx = current->io_uring;
3004
3005 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3006 return -EINVAL;
3007 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3008 f.file = tctx->registered_rings[fd];
3009 f.flags = 0;
3010 if (unlikely(!f.file))
3011 return -EBADF;
3012 } else {
3013 f = fdget(fd);
3014 if (unlikely(!f.file))
3015 return -EBADF;
3016 ret = -EOPNOTSUPP;
3017 if (unlikely(!io_is_uring_fops(f.file)))
3018 goto out;
3019 }
3020
3021 ctx = f.file->private_data;
3022 ret = -EBADFD;
3023 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3024 goto out;
3025
3026 /*
3027 * For SQ polling, the thread will do all submissions and completions.
3028 * Just return the requested submit count, and wake the thread if
3029 * we were asked to.
3030 */
3031 ret = 0;
3032 if (ctx->flags & IORING_SETUP_SQPOLL) {
3033 io_cqring_overflow_flush(ctx);
3034
3035 if (unlikely(ctx->sq_data->thread == NULL)) {
3036 ret = -EOWNERDEAD;
3037 goto out;
3038 }
3039 if (flags & IORING_ENTER_SQ_WAKEUP)
3040 wake_up(&ctx->sq_data->wait);
3041 if (flags & IORING_ENTER_SQ_WAIT) {
3042 ret = io_sqpoll_wait_sq(ctx);
3043 if (ret)
3044 goto out;
3045 }
3046 ret = to_submit;
3047 } else if (to_submit) {
3048 ret = io_uring_add_tctx_node(ctx);
3049 if (unlikely(ret))
3050 goto out;
3051
3052 mutex_lock(&ctx->uring_lock);
3053 ret = io_submit_sqes(ctx, to_submit);
3054 if (ret != to_submit) {
3055 mutex_unlock(&ctx->uring_lock);
3056 goto out;
3057 }
3058 if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
3059 goto iopoll_locked;
3060 mutex_unlock(&ctx->uring_lock);
3061 }
3062 if (flags & IORING_ENTER_GETEVENTS) {
3063 int ret2;
3064 if (ctx->syscall_iopoll) {
3065 /*
3066 * We disallow the app entering submit/complete with
3067 * polling, but we still need to lock the ring to
3068 * prevent racing with polled issue that got punted to
3069 * a workqueue.
3070 */
3071 mutex_lock(&ctx->uring_lock);
3072 iopoll_locked:
3073 ret2 = io_validate_ext_arg(flags, argp, argsz);
3074 if (likely(!ret2)) {
3075 min_complete = min(min_complete,
3076 ctx->cq_entries);
3077 ret2 = io_iopoll_check(ctx, min_complete);
3078 }
3079 mutex_unlock(&ctx->uring_lock);
3080 } else {
3081 const sigset_t __user *sig;
3082 struct __kernel_timespec __user *ts;
3083
3084 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3085 if (likely(!ret2)) {
3086 min_complete = min(min_complete,
3087 ctx->cq_entries);
3088 ret2 = io_cqring_wait(ctx, min_complete, sig,
3089 argsz, ts);
3090 }
3091 }
3092
3093 if (!ret) {
3094 ret = ret2;
3095
3096 /*
3097 * EBADR indicates that one or more CQE were dropped.
3098 * Once the user has been informed we can clear the bit
3099 * as they are obviously ok with those drops.
3100 */
3101 if (unlikely(ret2 == -EBADR))
3102 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3103 &ctx->check_cq);
3104 }
3105 }
3106 out:
3107 fdput(f);
3108 return ret;
3109 }
3110
3111 static const struct file_operations io_uring_fops = {
3112 .release = io_uring_release,
3113 .mmap = io_uring_mmap,
3114 #ifndef CONFIG_MMU
3115 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3116 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3117 #endif
3118 .poll = io_uring_poll,
3119 #ifdef CONFIG_PROC_FS
3120 .show_fdinfo = io_uring_show_fdinfo,
3121 #endif
3122 };
3123
3124 bool io_is_uring_fops(struct file *file)
3125 {
3126 return file->f_op == &io_uring_fops;
3127 }
3128
3129 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3130 struct io_uring_params *p)
3131 {
3132 struct io_rings *rings;
3133 size_t size, sq_array_offset;
3134
3135 /* make sure these are sane, as we already accounted them */
3136 ctx->sq_entries = p->sq_entries;
3137 ctx->cq_entries = p->cq_entries;
3138
3139 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3140 if (size == SIZE_MAX)
3141 return -EOVERFLOW;
3142
3143 rings = io_mem_alloc(size);
3144 if (!rings)
3145 return -ENOMEM;
3146
3147 ctx->rings = rings;
3148 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3149 rings->sq_ring_mask = p->sq_entries - 1;
3150 rings->cq_ring_mask = p->cq_entries - 1;
3151 rings->sq_ring_entries = p->sq_entries;
3152 rings->cq_ring_entries = p->cq_entries;
3153
3154 if (p->flags & IORING_SETUP_SQE128)
3155 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3156 else
3157 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3158 if (size == SIZE_MAX) {
3159 io_mem_free(ctx->rings);
3160 ctx->rings = NULL;
3161 return -EOVERFLOW;
3162 }
3163
3164 ctx->sq_sqes = io_mem_alloc(size);
3165 if (!ctx->sq_sqes) {
3166 io_mem_free(ctx->rings);
3167 ctx->rings = NULL;
3168 return -ENOMEM;
3169 }
3170
3171 return 0;
3172 }
3173
3174 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3175 {
3176 int ret, fd;
3177
3178 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3179 if (fd < 0)
3180 return fd;
3181
3182 ret = __io_uring_add_tctx_node(ctx, false);
3183 if (ret) {
3184 put_unused_fd(fd);
3185 return ret;
3186 }
3187 fd_install(fd, file);
3188 return fd;
3189 }
3190
3191 /*
3192 * Allocate an anonymous fd, this is what constitutes the application
3193 * visible backing of an io_uring instance. The application mmaps this
3194 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3195 * we have to tie this fd to a socket for file garbage collection purposes.
3196 */
3197 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3198 {
3199 struct file *file;
3200 #if defined(CONFIG_UNIX)
3201 int ret;
3202
3203 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3204 &ctx->ring_sock);
3205 if (ret)
3206 return ERR_PTR(ret);
3207 #endif
3208
3209 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3210 O_RDWR | O_CLOEXEC, NULL);
3211 #if defined(CONFIG_UNIX)
3212 if (IS_ERR(file)) {
3213 sock_release(ctx->ring_sock);
3214 ctx->ring_sock = NULL;
3215 } else {
3216 ctx->ring_sock->file = file;
3217 }
3218 #endif
3219 return file;
3220 }
3221
3222 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3223 struct io_uring_params __user *params)
3224 {
3225 struct io_ring_ctx *ctx;
3226 struct file *file;
3227 int ret;
3228
3229 if (!entries)
3230 return -EINVAL;
3231 if (entries > IORING_MAX_ENTRIES) {
3232 if (!(p->flags & IORING_SETUP_CLAMP))
3233 return -EINVAL;
3234 entries = IORING_MAX_ENTRIES;
3235 }
3236
3237 /*
3238 * Use twice as many entries for the CQ ring. It's possible for the
3239 * application to drive a higher depth than the size of the SQ ring,
3240 * since the sqes are only used at submission time. This allows for
3241 * some flexibility in overcommitting a bit. If the application has
3242 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3243 * of CQ ring entries manually.
3244 */
3245 p->sq_entries = roundup_pow_of_two(entries);
3246 if (p->flags & IORING_SETUP_CQSIZE) {
3247 /*
3248 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3249 * to a power-of-two, if it isn't already. We do NOT impose
3250 * any cq vs sq ring sizing.
3251 */
3252 if (!p->cq_entries)
3253 return -EINVAL;
3254 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3255 if (!(p->flags & IORING_SETUP_CLAMP))
3256 return -EINVAL;
3257 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3258 }
3259 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3260 if (p->cq_entries < p->sq_entries)
3261 return -EINVAL;
3262 } else {
3263 p->cq_entries = 2 * p->sq_entries;
3264 }
3265
3266 ctx = io_ring_ctx_alloc(p);
3267 if (!ctx)
3268 return -ENOMEM;
3269
3270 /*
3271 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3272 * space applications don't need to do io completion events
3273 * polling again, they can rely on io_sq_thread to do polling
3274 * work, which can reduce cpu usage and uring_lock contention.
3275 */
3276 if (ctx->flags & IORING_SETUP_IOPOLL &&
3277 !(ctx->flags & IORING_SETUP_SQPOLL))
3278 ctx->syscall_iopoll = 1;
3279
3280 ctx->compat = in_compat_syscall();
3281 if (!capable(CAP_IPC_LOCK))
3282 ctx->user = get_uid(current_user());
3283
3284 /*
3285 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3286 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3287 */
3288 ret = -EINVAL;
3289 if (ctx->flags & IORING_SETUP_SQPOLL) {
3290 /* IPI related flags don't make sense with SQPOLL */
3291 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3292 IORING_SETUP_TASKRUN_FLAG))
3293 goto err;
3294 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3295 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3296 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3297 } else {
3298 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
3299 goto err;
3300 ctx->notify_method = TWA_SIGNAL;
3301 }
3302
3303 /*
3304 * This is just grabbed for accounting purposes. When a process exits,
3305 * the mm is exited and dropped before the files, hence we need to hang
3306 * on to this mm purely for the purposes of being able to unaccount
3307 * memory (locked/pinned vm). It's not used for anything else.
3308 */
3309 mmgrab(current->mm);
3310 ctx->mm_account = current->mm;
3311
3312 ret = io_allocate_scq_urings(ctx, p);
3313 if (ret)
3314 goto err;
3315
3316 ret = io_sq_offload_create(ctx, p);
3317 if (ret)
3318 goto err;
3319 /* always set a rsrc node */
3320 ret = io_rsrc_node_switch_start(ctx);
3321 if (ret)
3322 goto err;
3323 io_rsrc_node_switch(ctx, NULL);
3324
3325 memset(&p->sq_off, 0, sizeof(p->sq_off));
3326 p->sq_off.head = offsetof(struct io_rings, sq.head);
3327 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3328 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3329 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3330 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3331 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3332 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3333
3334 memset(&p->cq_off, 0, sizeof(p->cq_off));
3335 p->cq_off.head = offsetof(struct io_rings, cq.head);
3336 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3337 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3338 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3339 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3340 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3341 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3342
3343 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3344 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3345 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3346 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3347 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3348 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3349 IORING_FEAT_LINKED_FILE;
3350
3351 if (copy_to_user(params, p, sizeof(*p))) {
3352 ret = -EFAULT;
3353 goto err;
3354 }
3355
3356 file = io_uring_get_file(ctx);
3357 if (IS_ERR(file)) {
3358 ret = PTR_ERR(file);
3359 goto err;
3360 }
3361
3362 /*
3363 * Install ring fd as the very last thing, so we don't risk someone
3364 * having closed it before we finish setup
3365 */
3366 ret = io_uring_install_fd(ctx, file);
3367 if (ret < 0) {
3368 /* fput will clean it up */
3369 fput(file);
3370 return ret;
3371 }
3372
3373 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3374 return ret;
3375 err:
3376 io_ring_ctx_wait_and_kill(ctx);
3377 return ret;
3378 }
3379
3380 /*
3381 * Sets up an aio uring context, and returns the fd. Applications asks for a
3382 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3383 * params structure passed in.
3384 */
3385 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3386 {
3387 struct io_uring_params p;
3388 int i;
3389
3390 if (copy_from_user(&p, params, sizeof(p)))
3391 return -EFAULT;
3392 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3393 if (p.resv[i])
3394 return -EINVAL;
3395 }
3396
3397 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3398 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3399 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3400 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3401 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3402 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3403 IORING_SETUP_SINGLE_ISSUER))
3404 return -EINVAL;
3405
3406 return io_uring_create(entries, &p, params);
3407 }
3408
3409 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3410 struct io_uring_params __user *, params)
3411 {
3412 return io_uring_setup(entries, params);
3413 }
3414
3415 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3416 unsigned nr_args)
3417 {
3418 struct io_uring_probe *p;
3419 size_t size;
3420 int i, ret;
3421
3422 size = struct_size(p, ops, nr_args);
3423 if (size == SIZE_MAX)
3424 return -EOVERFLOW;
3425 p = kzalloc(size, GFP_KERNEL);
3426 if (!p)
3427 return -ENOMEM;
3428
3429 ret = -EFAULT;
3430 if (copy_from_user(p, arg, size))
3431 goto out;
3432 ret = -EINVAL;
3433 if (memchr_inv(p, 0, size))
3434 goto out;
3435
3436 p->last_op = IORING_OP_LAST - 1;
3437 if (nr_args > IORING_OP_LAST)
3438 nr_args = IORING_OP_LAST;
3439
3440 for (i = 0; i < nr_args; i++) {
3441 p->ops[i].op = i;
3442 if (!io_op_defs[i].not_supported)
3443 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3444 }
3445 p->ops_len = i;
3446
3447 ret = 0;
3448 if (copy_to_user(arg, p, size))
3449 ret = -EFAULT;
3450 out:
3451 kfree(p);
3452 return ret;
3453 }
3454
3455 static int io_register_personality(struct io_ring_ctx *ctx)
3456 {
3457 const struct cred *creds;
3458 u32 id;
3459 int ret;
3460
3461 creds = get_current_cred();
3462
3463 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3464 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3465 if (ret < 0) {
3466 put_cred(creds);
3467 return ret;
3468 }
3469 return id;
3470 }
3471
3472 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3473 void __user *arg, unsigned int nr_args)
3474 {
3475 struct io_uring_restriction *res;
3476 size_t size;
3477 int i, ret;
3478
3479 /* Restrictions allowed only if rings started disabled */
3480 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3481 return -EBADFD;
3482
3483 /* We allow only a single restrictions registration */
3484 if (ctx->restrictions.registered)
3485 return -EBUSY;
3486
3487 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3488 return -EINVAL;
3489
3490 size = array_size(nr_args, sizeof(*res));
3491 if (size == SIZE_MAX)
3492 return -EOVERFLOW;
3493
3494 res = memdup_user(arg, size);
3495 if (IS_ERR(res))
3496 return PTR_ERR(res);
3497
3498 ret = 0;
3499
3500 for (i = 0; i < nr_args; i++) {
3501 switch (res[i].opcode) {
3502 case IORING_RESTRICTION_REGISTER_OP:
3503 if (res[i].register_op >= IORING_REGISTER_LAST) {
3504 ret = -EINVAL;
3505 goto out;
3506 }
3507
3508 __set_bit(res[i].register_op,
3509 ctx->restrictions.register_op);
3510 break;
3511 case IORING_RESTRICTION_SQE_OP:
3512 if (res[i].sqe_op >= IORING_OP_LAST) {
3513 ret = -EINVAL;
3514 goto out;
3515 }
3516
3517 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3518 break;
3519 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3520 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3521 break;
3522 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3523 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3524 break;
3525 default:
3526 ret = -EINVAL;
3527 goto out;
3528 }
3529 }
3530
3531 out:
3532 /* Reset all restrictions if an error happened */
3533 if (ret != 0)
3534 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3535 else
3536 ctx->restrictions.registered = true;
3537
3538 kfree(res);
3539 return ret;
3540 }
3541
3542 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3543 {
3544 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3545 return -EBADFD;
3546
3547 if (ctx->restrictions.registered)
3548 ctx->restricted = 1;
3549
3550 ctx->flags &= ~IORING_SETUP_R_DISABLED;
3551 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3552 wake_up(&ctx->sq_data->wait);
3553 return 0;
3554 }
3555
3556 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3557 void __user *arg, unsigned len)
3558 {
3559 struct io_uring_task *tctx = current->io_uring;
3560 cpumask_var_t new_mask;
3561 int ret;
3562
3563 if (!tctx || !tctx->io_wq)
3564 return -EINVAL;
3565
3566 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3567 return -ENOMEM;
3568
3569 cpumask_clear(new_mask);
3570 if (len > cpumask_size())
3571 len = cpumask_size();
3572
3573 if (in_compat_syscall()) {
3574 ret = compat_get_bitmap(cpumask_bits(new_mask),
3575 (const compat_ulong_t __user *)arg,
3576 len * 8 /* CHAR_BIT */);
3577 } else {
3578 ret = copy_from_user(new_mask, arg, len);
3579 }
3580
3581 if (ret) {
3582 free_cpumask_var(new_mask);
3583 return -EFAULT;
3584 }
3585
3586 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3587 free_cpumask_var(new_mask);
3588 return ret;
3589 }
3590
3591 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3592 {
3593 struct io_uring_task *tctx = current->io_uring;
3594
3595 if (!tctx || !tctx->io_wq)
3596 return -EINVAL;
3597
3598 return io_wq_cpu_affinity(tctx->io_wq, NULL);
3599 }
3600
3601 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3602 void __user *arg)
3603 __must_hold(&ctx->uring_lock)
3604 {
3605 struct io_tctx_node *node;
3606 struct io_uring_task *tctx = NULL;
3607 struct io_sq_data *sqd = NULL;
3608 __u32 new_count[2];
3609 int i, ret;
3610
3611 if (copy_from_user(new_count, arg, sizeof(new_count)))
3612 return -EFAULT;
3613 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3614 if (new_count[i] > INT_MAX)
3615 return -EINVAL;
3616
3617 if (ctx->flags & IORING_SETUP_SQPOLL) {
3618 sqd = ctx->sq_data;
3619 if (sqd) {
3620 /*
3621 * Observe the correct sqd->lock -> ctx->uring_lock
3622 * ordering. Fine to drop uring_lock here, we hold
3623 * a ref to the ctx.
3624 */
3625 refcount_inc(&sqd->refs);
3626 mutex_unlock(&ctx->uring_lock);
3627 mutex_lock(&sqd->lock);
3628 mutex_lock(&ctx->uring_lock);
3629 if (sqd->thread)
3630 tctx = sqd->thread->io_uring;
3631 }
3632 } else {
3633 tctx = current->io_uring;
3634 }
3635
3636 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3637
3638 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3639 if (new_count[i])
3640 ctx->iowq_limits[i] = new_count[i];
3641 ctx->iowq_limits_set = true;
3642
3643 if (tctx && tctx->io_wq) {
3644 ret = io_wq_max_workers(tctx->io_wq, new_count);
3645 if (ret)
3646 goto err;
3647 } else {
3648 memset(new_count, 0, sizeof(new_count));
3649 }
3650
3651 if (sqd) {
3652 mutex_unlock(&sqd->lock);
3653 io_put_sq_data(sqd);
3654 }
3655
3656 if (copy_to_user(arg, new_count, sizeof(new_count)))
3657 return -EFAULT;
3658
3659 /* that's it for SQPOLL, only the SQPOLL task creates requests */
3660 if (sqd)
3661 return 0;
3662
3663 /* now propagate the restriction to all registered users */
3664 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3665 struct io_uring_task *tctx = node->task->io_uring;
3666
3667 if (WARN_ON_ONCE(!tctx->io_wq))
3668 continue;
3669
3670 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3671 new_count[i] = ctx->iowq_limits[i];
3672 /* ignore errors, it always returns zero anyway */
3673 (void)io_wq_max_workers(tctx->io_wq, new_count);
3674 }
3675 return 0;
3676 err:
3677 if (sqd) {
3678 mutex_unlock(&sqd->lock);
3679 io_put_sq_data(sqd);
3680 }
3681 return ret;
3682 }
3683
3684 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3685 void __user *arg, unsigned nr_args)
3686 __releases(ctx->uring_lock)
3687 __acquires(ctx->uring_lock)
3688 {
3689 int ret;
3690
3691 /*
3692 * We don't quiesce the refs for register anymore and so it can't be
3693 * dying as we're holding a file ref here.
3694 */
3695 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3696 return -ENXIO;
3697
3698 if (ctx->restricted) {
3699 if (opcode >= IORING_REGISTER_LAST)
3700 return -EINVAL;
3701 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3702 if (!test_bit(opcode, ctx->restrictions.register_op))
3703 return -EACCES;
3704 }
3705
3706 switch (opcode) {
3707 case IORING_REGISTER_BUFFERS:
3708 ret = -EFAULT;
3709 if (!arg)
3710 break;
3711 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3712 break;
3713 case IORING_UNREGISTER_BUFFERS:
3714 ret = -EINVAL;
3715 if (arg || nr_args)
3716 break;
3717 ret = io_sqe_buffers_unregister(ctx);
3718 break;
3719 case IORING_REGISTER_FILES:
3720 ret = -EFAULT;
3721 if (!arg)
3722 break;
3723 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3724 break;
3725 case IORING_UNREGISTER_FILES:
3726 ret = -EINVAL;
3727 if (arg || nr_args)
3728 break;
3729 ret = io_sqe_files_unregister(ctx);
3730 break;
3731 case IORING_REGISTER_FILES_UPDATE:
3732 ret = io_register_files_update(ctx, arg, nr_args);
3733 break;
3734 case IORING_REGISTER_EVENTFD:
3735 ret = -EINVAL;
3736 if (nr_args != 1)
3737 break;
3738 ret = io_eventfd_register(ctx, arg, 0);
3739 break;
3740 case IORING_REGISTER_EVENTFD_ASYNC:
3741 ret = -EINVAL;
3742 if (nr_args != 1)
3743 break;
3744 ret = io_eventfd_register(ctx, arg, 1);
3745 break;
3746 case IORING_UNREGISTER_EVENTFD:
3747 ret = -EINVAL;
3748 if (arg || nr_args)
3749 break;
3750 ret = io_eventfd_unregister(ctx);
3751 break;
3752 case IORING_REGISTER_PROBE:
3753 ret = -EINVAL;
3754 if (!arg || nr_args > 256)
3755 break;
3756 ret = io_probe(ctx, arg, nr_args);
3757 break;
3758 case IORING_REGISTER_PERSONALITY:
3759 ret = -EINVAL;
3760 if (arg || nr_args)
3761 break;
3762 ret = io_register_personality(ctx);
3763 break;
3764 case IORING_UNREGISTER_PERSONALITY:
3765 ret = -EINVAL;
3766 if (arg)
3767 break;
3768 ret = io_unregister_personality(ctx, nr_args);
3769 break;
3770 case IORING_REGISTER_ENABLE_RINGS:
3771 ret = -EINVAL;
3772 if (arg || nr_args)
3773 break;
3774 ret = io_register_enable_rings(ctx);
3775 break;
3776 case IORING_REGISTER_RESTRICTIONS:
3777 ret = io_register_restrictions(ctx, arg, nr_args);
3778 break;
3779 case IORING_REGISTER_FILES2:
3780 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3781 break;
3782 case IORING_REGISTER_FILES_UPDATE2:
3783 ret = io_register_rsrc_update(ctx, arg, nr_args,
3784 IORING_RSRC_FILE);
3785 break;
3786 case IORING_REGISTER_BUFFERS2:
3787 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3788 break;
3789 case IORING_REGISTER_BUFFERS_UPDATE:
3790 ret = io_register_rsrc_update(ctx, arg, nr_args,
3791 IORING_RSRC_BUFFER);
3792 break;
3793 case IORING_REGISTER_IOWQ_AFF:
3794 ret = -EINVAL;
3795 if (!arg || !nr_args)
3796 break;
3797 ret = io_register_iowq_aff(ctx, arg, nr_args);
3798 break;
3799 case IORING_UNREGISTER_IOWQ_AFF:
3800 ret = -EINVAL;
3801 if (arg || nr_args)
3802 break;
3803 ret = io_unregister_iowq_aff(ctx);
3804 break;
3805 case IORING_REGISTER_IOWQ_MAX_WORKERS:
3806 ret = -EINVAL;
3807 if (!arg || nr_args != 2)
3808 break;
3809 ret = io_register_iowq_max_workers(ctx, arg);
3810 break;
3811 case IORING_REGISTER_RING_FDS:
3812 ret = io_ringfd_register(ctx, arg, nr_args);
3813 break;
3814 case IORING_UNREGISTER_RING_FDS:
3815 ret = io_ringfd_unregister(ctx, arg, nr_args);
3816 break;
3817 case IORING_REGISTER_PBUF_RING:
3818 ret = -EINVAL;
3819 if (!arg || nr_args != 1)
3820 break;
3821 ret = io_register_pbuf_ring(ctx, arg);
3822 break;
3823 case IORING_UNREGISTER_PBUF_RING:
3824 ret = -EINVAL;
3825 if (!arg || nr_args != 1)
3826 break;
3827 ret = io_unregister_pbuf_ring(ctx, arg);
3828 break;
3829 case IORING_REGISTER_SYNC_CANCEL:
3830 ret = -EINVAL;
3831 if (!arg || nr_args != 1)
3832 break;
3833 ret = io_sync_cancel(ctx, arg);
3834 break;
3835 case IORING_REGISTER_FILE_ALLOC_RANGE:
3836 ret = -EINVAL;
3837 if (!arg || nr_args)
3838 break;
3839 ret = io_register_file_alloc_range(ctx, arg);
3840 break;
3841 default:
3842 ret = -EINVAL;
3843 break;
3844 }
3845
3846 return ret;
3847 }
3848
3849 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3850 void __user *, arg, unsigned int, nr_args)
3851 {
3852 struct io_ring_ctx *ctx;
3853 long ret = -EBADF;
3854 struct fd f;
3855
3856 f = fdget(fd);
3857 if (!f.file)
3858 return -EBADF;
3859
3860 ret = -EOPNOTSUPP;
3861 if (!io_is_uring_fops(f.file))
3862 goto out_fput;
3863
3864 ctx = f.file->private_data;
3865
3866 io_run_task_work();
3867
3868 mutex_lock(&ctx->uring_lock);
3869 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3870 mutex_unlock(&ctx->uring_lock);
3871 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
3872 out_fput:
3873 fdput(f);
3874 return ret;
3875 }
3876
3877 static int __init io_uring_init(void)
3878 {
3879 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3880 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3881 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3882 } while (0)
3883
3884 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3885 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3886 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3887 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3888 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3889 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3890 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3891 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3892 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3893 BUILD_BUG_SQE_ELEM(8, __u64, off);
3894 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3895 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3896 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3897 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3898 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3899 BUILD_BUG_SQE_ELEM(24, __u32, len);
3900 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3901 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3902 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3903 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3904 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3905 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3906 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3907 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3908 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3909 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3910 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3911 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3912 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3913 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3914 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3915 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3916 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3917 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3918 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3919 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3920 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3921 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3922 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3923 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3924 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3925 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3926 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3927 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3928 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3929 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3930 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3931
3932 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3933 sizeof(struct io_uring_rsrc_update));
3934 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3935 sizeof(struct io_uring_rsrc_update2));
3936
3937 /* ->buf_index is u16 */
3938 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3939 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3940 offsetof(struct io_uring_buf_ring, tail));
3941
3942 /* should fit into one byte */
3943 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3944 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3945 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3946
3947 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
3948
3949 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3950
3951 io_uring_optable_init();
3952
3953 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3954 SLAB_ACCOUNT);
3955 return 0;
3956 };
3957 __initcall(io_uring_init);