]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - ld/ldlang.c
ld: Properly override the IR definition
[thirdparty/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2020 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (void);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_file_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
570 lang_input_statement_type *file,
571 void *output)
572 {
573 lang_section_bst_type *node;
574 lang_section_bst_type **tree;
575 lang_output_section_statement_type *os;
576
577 os = (lang_output_section_statement_type *) output;
578
579 if (unique_section_p (section, os))
580 return;
581
582 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
583 node->left = 0;
584 node->right = 0;
585 node->section = section;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE, always make a
1468 new output_section_statement for SPECIAL CONSTRAINT. */
1469
1470 lang_output_section_statement_type *
1471 lang_output_section_statement_lookup (const char *name,
1472 int constraint,
1473 bfd_boolean create)
1474 {
1475 struct out_section_hash_entry *entry;
1476
1477 entry = ((struct out_section_hash_entry *)
1478 bfd_hash_lookup (&output_section_statement_table, name,
1479 create, FALSE));
1480 if (entry == NULL)
1481 {
1482 if (create)
1483 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1484 return NULL;
1485 }
1486
1487 if (entry->s.output_section_statement.name != NULL)
1488 {
1489 /* We have a section of this name, but it might not have the correct
1490 constraint. */
1491 struct out_section_hash_entry *last_ent;
1492
1493 name = entry->s.output_section_statement.name;
1494 if (create && constraint == SPECIAL)
1495 /* Not traversing to the end reverses the order of the second
1496 and subsequent SPECIAL sections in the hash table chain,
1497 but that shouldn't matter. */
1498 last_ent = entry;
1499 else
1500 do
1501 {
1502 if (constraint == entry->s.output_section_statement.constraint
1503 || (constraint == 0
1504 && entry->s.output_section_statement.constraint >= 0))
1505 return &entry->s.output_section_statement;
1506 last_ent = entry;
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 }
1509 while (entry != NULL
1510 && name == entry->s.output_section_statement.name);
1511
1512 if (!create)
1513 return NULL;
1514
1515 entry
1516 = ((struct out_section_hash_entry *)
1517 output_section_statement_newfunc (NULL,
1518 &output_section_statement_table,
1519 name));
1520 if (entry == NULL)
1521 {
1522 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1523 return NULL;
1524 }
1525 entry->root = last_ent->root;
1526 last_ent->root.next = &entry->root;
1527 }
1528
1529 entry->s.output_section_statement.name = name;
1530 entry->s.output_section_statement.constraint = constraint;
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (s->constraint != SPECIAL)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bfd_boolean discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = TRUE;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bfd_boolean keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 }
2722
2723 /* Handle wildcard sorting. This returns the lang_input_section which
2724 should follow the one we are going to create for SECTION and FILE,
2725 based on the sorting requirements of WILD. It returns NULL if the
2726 new section should just go at the end of the current list. */
2727
2728 static lang_statement_union_type *
2729 wild_sort (lang_wild_statement_type *wild,
2730 struct wildcard_list *sec,
2731 lang_input_statement_type *file,
2732 asection *section)
2733 {
2734 lang_statement_union_type *l;
2735
2736 if (!wild->filenames_sorted
2737 && (sec == NULL || sec->spec.sorted == none))
2738 return NULL;
2739
2740 for (l = wild->children.head; l != NULL; l = l->header.next)
2741 {
2742 lang_input_section_type *ls;
2743
2744 if (l->header.type != lang_input_section_enum)
2745 continue;
2746 ls = &l->input_section;
2747
2748 /* Sorting by filename takes precedence over sorting by section
2749 name. */
2750
2751 if (wild->filenames_sorted)
2752 {
2753 const char *fn, *ln;
2754 bfd_boolean fa, la;
2755 int i;
2756
2757 /* The PE support for the .idata section as generated by
2758 dlltool assumes that files will be sorted by the name of
2759 the archive and then the name of the file within the
2760 archive. */
2761
2762 if (file->the_bfd != NULL
2763 && file->the_bfd->my_archive != NULL)
2764 {
2765 fn = bfd_get_filename (file->the_bfd->my_archive);
2766 fa = TRUE;
2767 }
2768 else
2769 {
2770 fn = file->filename;
2771 fa = FALSE;
2772 }
2773
2774 if (ls->section->owner->my_archive != NULL)
2775 {
2776 ln = bfd_get_filename (ls->section->owner->my_archive);
2777 la = TRUE;
2778 }
2779 else
2780 {
2781 ln = bfd_get_filename (ls->section->owner);
2782 la = FALSE;
2783 }
2784
2785 i = filename_cmp (fn, ln);
2786 if (i > 0)
2787 continue;
2788 else if (i < 0)
2789 break;
2790
2791 if (fa || la)
2792 {
2793 if (fa)
2794 fn = file->filename;
2795 if (la)
2796 ln = bfd_get_filename (ls->section->owner);
2797
2798 i = filename_cmp (fn, ln);
2799 if (i > 0)
2800 continue;
2801 else if (i < 0)
2802 break;
2803 }
2804 }
2805
2806 /* Here either the files are not sorted by name, or we are
2807 looking at the sections for this file. */
2808
2809 if (sec != NULL
2810 && sec->spec.sorted != none
2811 && sec->spec.sorted != by_none)
2812 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2813 break;
2814 }
2815
2816 return l;
2817 }
2818
2819 /* Expand a wild statement for a particular FILE. SECTION may be
2820 NULL, in which case it is a wild card. */
2821
2822 static void
2823 output_section_callback (lang_wild_statement_type *ptr,
2824 struct wildcard_list *sec,
2825 asection *section,
2826 struct flag_info *sflag_info,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, sflag_info, os);
2848 else
2849 {
2850 lang_statement_list_type list;
2851 lang_statement_union_type **pp;
2852
2853 lang_list_init (&list);
2854 lang_add_section (&list, section, sflag_info, os);
2855
2856 /* If we are discarding the section, LIST.HEAD will
2857 be NULL. */
2858 if (list.head != NULL)
2859 {
2860 ASSERT (list.head->header.next == NULL);
2861
2862 for (pp = &ptr->children.head;
2863 *pp != before;
2864 pp = &(*pp)->header.next)
2865 ASSERT (*pp != NULL);
2866
2867 list.head->header.next = *pp;
2868 *pp = list.head;
2869 }
2870 }
2871 }
2872
2873 /* Check if all sections in a wild statement for a particular FILE
2874 are readonly. */
2875
2876 static void
2877 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2878 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2879 asection *section,
2880 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2881 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2882 void *output)
2883 {
2884 lang_output_section_statement_type *os;
2885
2886 os = (lang_output_section_statement_type *) output;
2887
2888 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2889 if (unique_section_p (section, os))
2890 return;
2891
2892 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2893 os->all_input_readonly = FALSE;
2894 }
2895
2896 /* This is passed a file name which must have been seen already and
2897 added to the statement tree. We will see if it has been opened
2898 already and had its symbols read. If not then we'll read it. */
2899
2900 static lang_input_statement_type *
2901 lookup_name (const char *name)
2902 {
2903 lang_input_statement_type *search;
2904
2905 for (search = (void *) input_file_chain.head;
2906 search != NULL;
2907 search = search->next_real_file)
2908 {
2909 /* Use the local_sym_name as the name of the file that has
2910 already been loaded as filename might have been transformed
2911 via the search directory lookup mechanism. */
2912 const char *filename = search->local_sym_name;
2913
2914 if (filename != NULL
2915 && filename_cmp (filename, name) == 0)
2916 break;
2917 }
2918
2919 if (search == NULL)
2920 {
2921 /* Arrange to splice the input statement added by new_afile into
2922 statement_list after the current input_file_chain tail.
2923 We know input_file_chain is not an empty list, and that
2924 lookup_name was called via open_input_bfds. Later calls to
2925 lookup_name should always match an existing input_statement. */
2926 lang_statement_union_type **tail = stat_ptr->tail;
2927 lang_statement_union_type **after
2928 = (void *) ((char *) input_file_chain.tail
2929 - offsetof (lang_input_statement_type, next_real_file)
2930 + offsetof (lang_input_statement_type, header.next));
2931 lang_statement_union_type *rest = *after;
2932 stat_ptr->tail = after;
2933 search = new_afile (name, lang_input_file_is_search_file_enum,
2934 default_target, NULL);
2935 *stat_ptr->tail = rest;
2936 if (*tail == NULL)
2937 stat_ptr->tail = tail;
2938 }
2939
2940 /* If we have already added this file, or this file is not real
2941 don't add this file. */
2942 if (search->flags.loaded || !search->flags.real)
2943 return search;
2944
2945 if (!load_symbols (search, NULL))
2946 return NULL;
2947
2948 return search;
2949 }
2950
2951 /* Save LIST as a list of libraries whose symbols should not be exported. */
2952
2953 struct excluded_lib
2954 {
2955 char *name;
2956 struct excluded_lib *next;
2957 };
2958 static struct excluded_lib *excluded_libs;
2959
2960 void
2961 add_excluded_libs (const char *list)
2962 {
2963 const char *p = list, *end;
2964
2965 while (*p != '\0')
2966 {
2967 struct excluded_lib *entry;
2968 end = strpbrk (p, ",:");
2969 if (end == NULL)
2970 end = p + strlen (p);
2971 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2972 entry->next = excluded_libs;
2973 entry->name = (char *) xmalloc (end - p + 1);
2974 memcpy (entry->name, p, end - p);
2975 entry->name[end - p] = '\0';
2976 excluded_libs = entry;
2977 if (*end == '\0')
2978 break;
2979 p = end + 1;
2980 }
2981 }
2982
2983 static void
2984 check_excluded_libs (bfd *abfd)
2985 {
2986 struct excluded_lib *lib = excluded_libs;
2987
2988 while (lib)
2989 {
2990 int len = strlen (lib->name);
2991 const char *filename = lbasename (bfd_get_filename (abfd));
2992
2993 if (strcmp (lib->name, "ALL") == 0)
2994 {
2995 abfd->no_export = TRUE;
2996 return;
2997 }
2998
2999 if (filename_ncmp (lib->name, filename, len) == 0
3000 && (filename[len] == '\0'
3001 || (filename[len] == '.' && filename[len + 1] == 'a'
3002 && filename[len + 2] == '\0')))
3003 {
3004 abfd->no_export = TRUE;
3005 return;
3006 }
3007
3008 lib = lib->next;
3009 }
3010 }
3011
3012 /* Get the symbols for an input file. */
3013
3014 bfd_boolean
3015 load_symbols (lang_input_statement_type *entry,
3016 lang_statement_list_type *place)
3017 {
3018 char **matching;
3019
3020 if (entry->flags.loaded)
3021 return TRUE;
3022
3023 ldfile_open_file (entry);
3024
3025 /* Do not process further if the file was missing. */
3026 if (entry->flags.missing_file)
3027 return TRUE;
3028
3029 if (trace_files || verbose)
3030 info_msg ("%pI\n", entry);
3031
3032 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3033 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3034 {
3035 bfd_error_type err;
3036 struct lang_input_statement_flags save_flags;
3037 extern FILE *yyin;
3038
3039 err = bfd_get_error ();
3040
3041 /* See if the emulation has some special knowledge. */
3042 if (ldemul_unrecognized_file (entry))
3043 return TRUE;
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 einfo ("%F\n");
3054 }
3055 else if (err != bfd_error_file_not_recognized
3056 || place == NULL)
3057 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3058
3059 bfd_close (entry->the_bfd);
3060 entry->the_bfd = NULL;
3061
3062 /* Try to interpret the file as a linker script. */
3063 save_flags = input_flags;
3064 ldfile_open_command_file (entry->filename);
3065
3066 push_stat_ptr (place);
3067 input_flags.add_DT_NEEDED_for_regular
3068 = entry->flags.add_DT_NEEDED_for_regular;
3069 input_flags.add_DT_NEEDED_for_dynamic
3070 = entry->flags.add_DT_NEEDED_for_dynamic;
3071 input_flags.whole_archive = entry->flags.whole_archive;
3072 input_flags.dynamic = entry->flags.dynamic;
3073
3074 ldfile_assumed_script = TRUE;
3075 parser_input = input_script;
3076 current_input_file = entry->filename;
3077 yyparse ();
3078 current_input_file = NULL;
3079 ldfile_assumed_script = FALSE;
3080
3081 /* missing_file is sticky. sysrooted will already have been
3082 restored when seeing EOF in yyparse, but no harm to restore
3083 again. */
3084 save_flags.missing_file |= input_flags.missing_file;
3085 input_flags = save_flags;
3086 pop_stat_ptr ();
3087 fclose (yyin);
3088 yyin = NULL;
3089 entry->flags.loaded = TRUE;
3090
3091 return TRUE;
3092 }
3093
3094 if (ldemul_recognized_file (entry))
3095 return TRUE;
3096
3097 /* We don't call ldlang_add_file for an archive. Instead, the
3098 add_symbols entry point will call ldlang_add_file, via the
3099 add_archive_element callback, for each element of the archive
3100 which is used. */
3101 switch (bfd_get_format (entry->the_bfd))
3102 {
3103 default:
3104 break;
3105
3106 case bfd_object:
3107 if (!entry->flags.reload)
3108 ldlang_add_file (entry);
3109 break;
3110
3111 case bfd_archive:
3112 check_excluded_libs (entry->the_bfd);
3113
3114 bfd_set_usrdata (entry->the_bfd, entry);
3115 if (entry->flags.whole_archive)
3116 {
3117 bfd *member = NULL;
3118 bfd_boolean loaded = TRUE;
3119
3120 for (;;)
3121 {
3122 bfd *subsbfd;
3123 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3124
3125 if (member == NULL)
3126 break;
3127
3128 if (!bfd_check_format (member, bfd_object))
3129 {
3130 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3131 entry->the_bfd, member);
3132 loaded = FALSE;
3133 }
3134
3135 subsbfd = member;
3136 if (!(*link_info.callbacks
3137 ->add_archive_element) (&link_info, member,
3138 "--whole-archive", &subsbfd))
3139 abort ();
3140
3141 /* Potentially, the add_archive_element hook may have set a
3142 substitute BFD for us. */
3143 if (!bfd_link_add_symbols (subsbfd, &link_info))
3144 {
3145 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3146 loaded = FALSE;
3147 }
3148 }
3149
3150 entry->flags.loaded = loaded;
3151 return loaded;
3152 }
3153 break;
3154 }
3155
3156 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3157 entry->flags.loaded = TRUE;
3158 else
3159 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3160
3161 return entry->flags.loaded;
3162 }
3163
3164 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3165 may be NULL, indicating that it is a wildcard. Separate
3166 lang_input_section statements are created for each part of the
3167 expansion; they are added after the wild statement S. OUTPUT is
3168 the output section. */
3169
3170 static void
3171 wild (lang_wild_statement_type *s,
3172 const char *target ATTRIBUTE_UNUSED,
3173 lang_output_section_statement_type *output)
3174 {
3175 struct wildcard_list *sec;
3176
3177 if (s->handler_data[0]
3178 && s->handler_data[0]->spec.sorted == by_name
3179 && !s->filenames_sorted)
3180 {
3181 lang_section_bst_type *tree;
3182
3183 walk_wild (s, output_section_callback_fast, output);
3184
3185 tree = s->tree;
3186 if (tree)
3187 {
3188 output_section_callback_tree_to_list (s, tree, output);
3189 s->tree = NULL;
3190 }
3191 }
3192 else
3193 walk_wild (s, output_section_callback, output);
3194
3195 if (default_common_section == NULL)
3196 for (sec = s->section_list; sec != NULL; sec = sec->next)
3197 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3198 {
3199 /* Remember the section that common is going to in case we
3200 later get something which doesn't know where to put it. */
3201 default_common_section = output;
3202 break;
3203 }
3204 }
3205
3206 /* Return TRUE iff target is the sought target. */
3207
3208 static int
3209 get_target (const bfd_target *target, void *data)
3210 {
3211 const char *sought = (const char *) data;
3212
3213 return strcmp (target->name, sought) == 0;
3214 }
3215
3216 /* Like strcpy() but convert to lower case as well. */
3217
3218 static void
3219 stricpy (char *dest, const char *src)
3220 {
3221 char c;
3222
3223 while ((c = *src++) != 0)
3224 *dest++ = TOLOWER (c);
3225
3226 *dest = 0;
3227 }
3228
3229 /* Remove the first occurrence of needle (if any) in haystack
3230 from haystack. */
3231
3232 static void
3233 strcut (char *haystack, const char *needle)
3234 {
3235 haystack = strstr (haystack, needle);
3236
3237 if (haystack)
3238 {
3239 char *src;
3240
3241 for (src = haystack + strlen (needle); *src;)
3242 *haystack++ = *src++;
3243
3244 *haystack = 0;
3245 }
3246 }
3247
3248 /* Compare two target format name strings.
3249 Return a value indicating how "similar" they are. */
3250
3251 static int
3252 name_compare (const char *first, const char *second)
3253 {
3254 char *copy1;
3255 char *copy2;
3256 int result;
3257
3258 copy1 = (char *) xmalloc (strlen (first) + 1);
3259 copy2 = (char *) xmalloc (strlen (second) + 1);
3260
3261 /* Convert the names to lower case. */
3262 stricpy (copy1, first);
3263 stricpy (copy2, second);
3264
3265 /* Remove size and endian strings from the name. */
3266 strcut (copy1, "big");
3267 strcut (copy1, "little");
3268 strcut (copy2, "big");
3269 strcut (copy2, "little");
3270
3271 /* Return a value based on how many characters match,
3272 starting from the beginning. If both strings are
3273 the same then return 10 * their length. */
3274 for (result = 0; copy1[result] == copy2[result]; result++)
3275 if (copy1[result] == 0)
3276 {
3277 result *= 10;
3278 break;
3279 }
3280
3281 free (copy1);
3282 free (copy2);
3283
3284 return result;
3285 }
3286
3287 /* Set by closest_target_match() below. */
3288 static const bfd_target *winner;
3289
3290 /* Scan all the valid bfd targets looking for one that has the endianness
3291 requirement that was specified on the command line, and is the nearest
3292 match to the original output target. */
3293
3294 static int
3295 closest_target_match (const bfd_target *target, void *data)
3296 {
3297 const bfd_target *original = (const bfd_target *) data;
3298
3299 if (command_line.endian == ENDIAN_BIG
3300 && target->byteorder != BFD_ENDIAN_BIG)
3301 return 0;
3302
3303 if (command_line.endian == ENDIAN_LITTLE
3304 && target->byteorder != BFD_ENDIAN_LITTLE)
3305 return 0;
3306
3307 /* Must be the same flavour. */
3308 if (target->flavour != original->flavour)
3309 return 0;
3310
3311 /* Ignore generic big and little endian elf vectors. */
3312 if (strcmp (target->name, "elf32-big") == 0
3313 || strcmp (target->name, "elf64-big") == 0
3314 || strcmp (target->name, "elf32-little") == 0
3315 || strcmp (target->name, "elf64-little") == 0)
3316 return 0;
3317
3318 /* If we have not found a potential winner yet, then record this one. */
3319 if (winner == NULL)
3320 {
3321 winner = target;
3322 return 0;
3323 }
3324
3325 /* Oh dear, we now have two potential candidates for a successful match.
3326 Compare their names and choose the better one. */
3327 if (name_compare (target->name, original->name)
3328 > name_compare (winner->name, original->name))
3329 winner = target;
3330
3331 /* Keep on searching until wqe have checked them all. */
3332 return 0;
3333 }
3334
3335 /* Return the BFD target format of the first input file. */
3336
3337 static const char *
3338 get_first_input_target (void)
3339 {
3340 const char *target = NULL;
3341
3342 LANG_FOR_EACH_INPUT_STATEMENT (s)
3343 {
3344 if (s->header.type == lang_input_statement_enum
3345 && s->flags.real)
3346 {
3347 ldfile_open_file (s);
3348
3349 if (s->the_bfd != NULL
3350 && bfd_check_format (s->the_bfd, bfd_object))
3351 {
3352 target = bfd_get_target (s->the_bfd);
3353
3354 if (target != NULL)
3355 break;
3356 }
3357 }
3358 }
3359
3360 return target;
3361 }
3362
3363 const char *
3364 lang_get_output_target (void)
3365 {
3366 const char *target;
3367
3368 /* Has the user told us which output format to use? */
3369 if (output_target != NULL)
3370 return output_target;
3371
3372 /* No - has the current target been set to something other than
3373 the default? */
3374 if (current_target != default_target && current_target != NULL)
3375 return current_target;
3376
3377 /* No - can we determine the format of the first input file? */
3378 target = get_first_input_target ();
3379 if (target != NULL)
3380 return target;
3381
3382 /* Failed - use the default output target. */
3383 return default_target;
3384 }
3385
3386 /* Open the output file. */
3387
3388 static void
3389 open_output (const char *name)
3390 {
3391 output_target = lang_get_output_target ();
3392
3393 /* Has the user requested a particular endianness on the command
3394 line? */
3395 if (command_line.endian != ENDIAN_UNSET)
3396 {
3397 /* Get the chosen target. */
3398 const bfd_target *target
3399 = bfd_iterate_over_targets (get_target, (void *) output_target);
3400
3401 /* If the target is not supported, we cannot do anything. */
3402 if (target != NULL)
3403 {
3404 enum bfd_endian desired_endian;
3405
3406 if (command_line.endian == ENDIAN_BIG)
3407 desired_endian = BFD_ENDIAN_BIG;
3408 else
3409 desired_endian = BFD_ENDIAN_LITTLE;
3410
3411 /* See if the target has the wrong endianness. This should
3412 not happen if the linker script has provided big and
3413 little endian alternatives, but some scrips don't do
3414 this. */
3415 if (target->byteorder != desired_endian)
3416 {
3417 /* If it does, then see if the target provides
3418 an alternative with the correct endianness. */
3419 if (target->alternative_target != NULL
3420 && (target->alternative_target->byteorder == desired_endian))
3421 output_target = target->alternative_target->name;
3422 else
3423 {
3424 /* Try to find a target as similar as possible to
3425 the default target, but which has the desired
3426 endian characteristic. */
3427 bfd_iterate_over_targets (closest_target_match,
3428 (void *) target);
3429
3430 /* Oh dear - we could not find any targets that
3431 satisfy our requirements. */
3432 if (winner == NULL)
3433 einfo (_("%P: warning: could not find any targets"
3434 " that match endianness requirement\n"));
3435 else
3436 output_target = winner->name;
3437 }
3438 }
3439 }
3440 }
3441
3442 link_info.output_bfd = bfd_openw (name, output_target);
3443
3444 if (link_info.output_bfd == NULL)
3445 {
3446 if (bfd_get_error () == bfd_error_invalid_target)
3447 einfo (_("%F%P: target %s not found\n"), output_target);
3448
3449 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3450 }
3451
3452 delete_output_file_on_failure = TRUE;
3453
3454 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3455 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3456 if (!bfd_set_arch_mach (link_info.output_bfd,
3457 ldfile_output_architecture,
3458 ldfile_output_machine))
3459 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3460
3461 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3462 if (link_info.hash == NULL)
3463 einfo (_("%F%P: can not create hash table: %E\n"));
3464
3465 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3466 }
3467
3468 static void
3469 ldlang_open_output (lang_statement_union_type *statement)
3470 {
3471 switch (statement->header.type)
3472 {
3473 case lang_output_statement_enum:
3474 ASSERT (link_info.output_bfd == NULL);
3475 open_output (statement->output_statement.name);
3476 ldemul_set_output_arch ();
3477 if (config.magic_demand_paged
3478 && !bfd_link_relocatable (&link_info))
3479 link_info.output_bfd->flags |= D_PAGED;
3480 else
3481 link_info.output_bfd->flags &= ~D_PAGED;
3482 if (config.text_read_only)
3483 link_info.output_bfd->flags |= WP_TEXT;
3484 else
3485 link_info.output_bfd->flags &= ~WP_TEXT;
3486 if (link_info.traditional_format)
3487 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3488 else
3489 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3490 break;
3491
3492 case lang_target_statement_enum:
3493 current_target = statement->target_statement.target;
3494 break;
3495 default:
3496 break;
3497 }
3498 }
3499
3500 static void
3501 init_opb (asection *s)
3502 {
3503 unsigned int x;
3504
3505 opb_shift = 0;
3506 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3507 && s != NULL
3508 && (s->flags & SEC_ELF_OCTETS) != 0)
3509 return;
3510
3511 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3512 ldfile_output_machine);
3513 if (x > 1)
3514 while ((x & 1) == 0)
3515 {
3516 x >>= 1;
3517 ++opb_shift;
3518 }
3519 ASSERT (x == 1);
3520 }
3521
3522 /* Open all the input files. */
3523
3524 enum open_bfd_mode
3525 {
3526 OPEN_BFD_NORMAL = 0,
3527 OPEN_BFD_FORCE = 1,
3528 OPEN_BFD_RESCAN = 2
3529 };
3530 #if BFD_SUPPORTS_PLUGINS
3531 static lang_input_statement_type *plugin_insert = NULL;
3532 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3533 #endif
3534
3535 static void
3536 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3537 {
3538 for (; s != NULL; s = s->header.next)
3539 {
3540 switch (s->header.type)
3541 {
3542 case lang_constructors_statement_enum:
3543 open_input_bfds (constructor_list.head, mode);
3544 break;
3545 case lang_output_section_statement_enum:
3546 open_input_bfds (s->output_section_statement.children.head, mode);
3547 break;
3548 case lang_wild_statement_enum:
3549 /* Maybe we should load the file's symbols. */
3550 if ((mode & OPEN_BFD_RESCAN) == 0
3551 && s->wild_statement.filename
3552 && !wildcardp (s->wild_statement.filename)
3553 && !archive_path (s->wild_statement.filename))
3554 lookup_name (s->wild_statement.filename);
3555 open_input_bfds (s->wild_statement.children.head, mode);
3556 break;
3557 case lang_group_statement_enum:
3558 {
3559 struct bfd_link_hash_entry *undefs;
3560 #if BFD_SUPPORTS_PLUGINS
3561 lang_input_statement_type *plugin_insert_save;
3562 #endif
3563
3564 /* We must continually search the entries in the group
3565 until no new symbols are added to the list of undefined
3566 symbols. */
3567
3568 do
3569 {
3570 #if BFD_SUPPORTS_PLUGINS
3571 plugin_insert_save = plugin_insert;
3572 #endif
3573 undefs = link_info.hash->undefs_tail;
3574 open_input_bfds (s->group_statement.children.head,
3575 mode | OPEN_BFD_FORCE);
3576 }
3577 while (undefs != link_info.hash->undefs_tail
3578 #if BFD_SUPPORTS_PLUGINS
3579 /* Objects inserted by a plugin, which are loaded
3580 before we hit this loop, may have added new
3581 undefs. */
3582 || (plugin_insert != plugin_insert_save && plugin_undefs)
3583 #endif
3584 );
3585 }
3586 break;
3587 case lang_target_statement_enum:
3588 current_target = s->target_statement.target;
3589 break;
3590 case lang_input_statement_enum:
3591 if (s->input_statement.flags.real)
3592 {
3593 lang_statement_union_type **os_tail;
3594 lang_statement_list_type add;
3595 bfd *abfd;
3596
3597 s->input_statement.target = current_target;
3598
3599 /* If we are being called from within a group, and this
3600 is an archive which has already been searched, then
3601 force it to be researched unless the whole archive
3602 has been loaded already. Do the same for a rescan.
3603 Likewise reload --as-needed shared libs. */
3604 if (mode != OPEN_BFD_NORMAL
3605 #if BFD_SUPPORTS_PLUGINS
3606 && ((mode & OPEN_BFD_RESCAN) == 0
3607 || plugin_insert == NULL)
3608 #endif
3609 && s->input_statement.flags.loaded
3610 && (abfd = s->input_statement.the_bfd) != NULL
3611 && ((bfd_get_format (abfd) == bfd_archive
3612 && !s->input_statement.flags.whole_archive)
3613 || (bfd_get_format (abfd) == bfd_object
3614 && ((abfd->flags) & DYNAMIC) != 0
3615 && s->input_statement.flags.add_DT_NEEDED_for_regular
3616 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3617 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3618 {
3619 s->input_statement.flags.loaded = FALSE;
3620 s->input_statement.flags.reload = TRUE;
3621 }
3622
3623 os_tail = lang_os_list.tail;
3624 lang_list_init (&add);
3625
3626 if (!load_symbols (&s->input_statement, &add))
3627 config.make_executable = FALSE;
3628
3629 if (add.head != NULL)
3630 {
3631 /* If this was a script with output sections then
3632 tack any added statements on to the end of the
3633 list. This avoids having to reorder the output
3634 section statement list. Very likely the user
3635 forgot -T, and whatever we do here will not meet
3636 naive user expectations. */
3637 if (os_tail != lang_os_list.tail)
3638 {
3639 einfo (_("%P: warning: %s contains output sections;"
3640 " did you forget -T?\n"),
3641 s->input_statement.filename);
3642 *stat_ptr->tail = add.head;
3643 stat_ptr->tail = add.tail;
3644 }
3645 else
3646 {
3647 *add.tail = s->header.next;
3648 s->header.next = add.head;
3649 }
3650 }
3651 }
3652 #if BFD_SUPPORTS_PLUGINS
3653 /* If we have found the point at which a plugin added new
3654 files, clear plugin_insert to enable archive rescan. */
3655 if (&s->input_statement == plugin_insert)
3656 plugin_insert = NULL;
3657 #endif
3658 break;
3659 case lang_assignment_statement_enum:
3660 if (s->assignment_statement.exp->type.node_class != etree_assert)
3661 exp_fold_tree_no_dot (s->assignment_statement.exp);
3662 break;
3663 default:
3664 break;
3665 }
3666 }
3667
3668 /* Exit if any of the files were missing. */
3669 if (input_flags.missing_file)
3670 einfo ("%F");
3671 }
3672
3673 #ifdef ENABLE_LIBCTF
3674 /* Open the CTF sections in the input files with libctf: if any were opened,
3675 create a fake input file that we'll write the merged CTF data to later
3676 on. */
3677
3678 static void
3679 ldlang_open_ctf (void)
3680 {
3681 int any_ctf = 0;
3682 int err;
3683
3684 LANG_FOR_EACH_INPUT_STATEMENT (file)
3685 {
3686 asection *sect;
3687
3688 /* Incoming files from the compiler have a single ctf_file_t in them
3689 (which is presented to us by the libctf API in a ctf_archive_t
3690 wrapper): files derived from a previous relocatable link have a CTF
3691 archive containing possibly many CTF files. */
3692
3693 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3694 {
3695 if (err != ECTF_NOCTFDATA)
3696 einfo (_("%P: warning: CTF section in `%pI' not loaded: "
3697 "its types will be discarded: `%s'\n"), file,
3698 ctf_errmsg (err));
3699 continue;
3700 }
3701
3702 /* Prevent the contents of this section from being written, while
3703 requiring the section itself to be duplicated in the output. */
3704 /* This section must exist if ctf_bfdopen() succeeded. */
3705 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3706 sect->size = 0;
3707 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3708
3709 any_ctf = 1;
3710 }
3711
3712 if (!any_ctf)
3713 {
3714 ctf_output = NULL;
3715 return;
3716 }
3717
3718 if ((ctf_output = ctf_create (&err)) != NULL)
3719 return;
3720
3721 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3722 ctf_errmsg (err));
3723
3724 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3725 ctf_close (errfile->the_ctf);
3726 }
3727
3728 /* Merge together CTF sections. After this, only the symtab-dependent
3729 function and data object sections need adjustment. */
3730
3731 static void
3732 lang_merge_ctf (void)
3733 {
3734 asection *output_sect;
3735
3736 if (!ctf_output)
3737 return;
3738
3739 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3740
3741 /* If the section was discarded, don't waste time merging. */
3742 if (output_sect == NULL)
3743 {
3744 ctf_file_close (ctf_output);
3745 ctf_output = NULL;
3746
3747 LANG_FOR_EACH_INPUT_STATEMENT (file)
3748 {
3749 ctf_close (file->the_ctf);
3750 file->the_ctf = NULL;
3751 }
3752 return;
3753 }
3754
3755 LANG_FOR_EACH_INPUT_STATEMENT (file)
3756 {
3757 if (!file->the_ctf)
3758 continue;
3759
3760 /* Takes ownership of file->u.the_ctfa. */
3761 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3762 {
3763 einfo (_("%F%P: cannot link with CTF in %pB: %s\n"), file->the_bfd,
3764 ctf_errmsg (ctf_errno (ctf_output)));
3765 ctf_close (file->the_ctf);
3766 file->the_ctf = NULL;
3767 continue;
3768 }
3769 }
3770
3771 if (ctf_link (ctf_output, CTF_LINK_SHARE_UNCONFLICTED) < 0)
3772 {
3773 einfo (_("%F%P: CTF linking failed; output will have no CTF section: %s\n"),
3774 ctf_errmsg (ctf_errno (ctf_output)));
3775 if (output_sect)
3776 {
3777 output_sect->size = 0;
3778 output_sect->flags |= SEC_EXCLUDE;
3779 }
3780 }
3781 }
3782
3783 /* Let the emulation examine the symbol table and strtab to help it optimize the
3784 CTF, if supported. */
3785
3786 void
3787 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms, bfd_size_type symcount,
3788 struct elf_strtab_hash *symstrtab)
3789 {
3790 ldemul_examine_strtab_for_ctf (ctf_output, syms, symcount, symstrtab);
3791 }
3792
3793 /* Write out the CTF section. Called early, if the emulation isn't going to
3794 need to dedup against the strtab and symtab, then possibly called from the
3795 target linker code if the dedup has happened. */
3796 static void
3797 lang_write_ctf (int late)
3798 {
3799 size_t output_size;
3800 asection *output_sect;
3801
3802 if (!ctf_output)
3803 return;
3804
3805 if (late)
3806 {
3807 /* Emit CTF late if this emulation says it can do so. */
3808 if (ldemul_emit_ctf_early ())
3809 return;
3810 }
3811 else
3812 {
3813 if (!ldemul_emit_ctf_early ())
3814 return;
3815 }
3816
3817 /* Emit CTF. */
3818
3819 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3820 if (output_sect)
3821 {
3822 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3823 CTF_COMPRESSION_THRESHOLD);
3824 output_sect->size = output_size;
3825 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3826
3827 if (!output_sect->contents)
3828 {
3829 einfo (_("%F%P: CTF section emission failed; output will have no "
3830 "CTF section: %s\n"), ctf_errmsg (ctf_errno (ctf_output)));
3831 output_sect->size = 0;
3832 output_sect->flags |= SEC_EXCLUDE;
3833 }
3834 }
3835
3836 /* This also closes every CTF input file used in the link. */
3837 ctf_file_close (ctf_output);
3838 ctf_output = NULL;
3839
3840 LANG_FOR_EACH_INPUT_STATEMENT (file)
3841 file->the_ctf = NULL;
3842 }
3843
3844 /* Write out the CTF section late, if the emulation needs that. */
3845
3846 void
3847 ldlang_write_ctf_late (void)
3848 {
3849 /* Trigger a "late call", if the emulation needs one. */
3850
3851 lang_write_ctf (1);
3852 }
3853 #else
3854 static void
3855 ldlang_open_ctf (void)
3856 {
3857 LANG_FOR_EACH_INPUT_STATEMENT (file)
3858 {
3859 asection *sect;
3860
3861 /* If built without CTF, warn and delete all CTF sections from the output.
3862 (The alternative would be to simply concatenate them, which does not
3863 yield a valid CTF section.) */
3864
3865 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3866 {
3867 einfo (_("%P: warning: CTF section in `%pI' not linkable: "
3868 "%P was built without support for CTF\n"), file);
3869 sect->size = 0;
3870 sect->flags |= SEC_EXCLUDE;
3871 }
3872 }
3873 }
3874
3875 static void lang_merge_ctf (void) {}
3876 void
3877 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms ATTRIBUTE_UNUSED,
3878 bfd_size_type symcount ATTRIBUTE_UNUSED,
3879 struct elf_strtab_hash *symstrtab ATTRIBUTE_UNUSED)
3880 {
3881 }
3882 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3883 void ldlang_write_ctf_late (void) {}
3884 #endif
3885
3886 /* Add the supplied name to the symbol table as an undefined reference.
3887 This is a two step process as the symbol table doesn't even exist at
3888 the time the ld command line is processed. First we put the name
3889 on a list, then, once the output file has been opened, transfer the
3890 name to the symbol table. */
3891
3892 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3893
3894 #define ldlang_undef_chain_list_head entry_symbol.next
3895
3896 void
3897 ldlang_add_undef (const char *const name, bfd_boolean cmdline ATTRIBUTE_UNUSED)
3898 {
3899 ldlang_undef_chain_list_type *new_undef;
3900
3901 new_undef = stat_alloc (sizeof (*new_undef));
3902 new_undef->next = ldlang_undef_chain_list_head;
3903 ldlang_undef_chain_list_head = new_undef;
3904
3905 new_undef->name = xstrdup (name);
3906
3907 if (link_info.output_bfd != NULL)
3908 insert_undefined (new_undef->name);
3909 }
3910
3911 /* Insert NAME as undefined in the symbol table. */
3912
3913 static void
3914 insert_undefined (const char *name)
3915 {
3916 struct bfd_link_hash_entry *h;
3917
3918 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3919 if (h == NULL)
3920 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3921 if (h->type == bfd_link_hash_new)
3922 {
3923 h->type = bfd_link_hash_undefined;
3924 h->u.undef.abfd = NULL;
3925 h->non_ir_ref_regular = TRUE;
3926 if (is_elf_hash_table (link_info.hash))
3927 ((struct elf_link_hash_entry *) h)->mark = 1;
3928 bfd_link_add_undef (link_info.hash, h);
3929 }
3930 }
3931
3932 /* Run through the list of undefineds created above and place them
3933 into the linker hash table as undefined symbols belonging to the
3934 script file. */
3935
3936 static void
3937 lang_place_undefineds (void)
3938 {
3939 ldlang_undef_chain_list_type *ptr;
3940
3941 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3942 insert_undefined (ptr->name);
3943 }
3944
3945 /* Structure used to build the list of symbols that the user has required
3946 be defined. */
3947
3948 struct require_defined_symbol
3949 {
3950 const char *name;
3951 struct require_defined_symbol *next;
3952 };
3953
3954 /* The list of symbols that the user has required be defined. */
3955
3956 static struct require_defined_symbol *require_defined_symbol_list;
3957
3958 /* Add a new symbol NAME to the list of symbols that are required to be
3959 defined. */
3960
3961 void
3962 ldlang_add_require_defined (const char *const name)
3963 {
3964 struct require_defined_symbol *ptr;
3965
3966 ldlang_add_undef (name, TRUE);
3967 ptr = stat_alloc (sizeof (*ptr));
3968 ptr->next = require_defined_symbol_list;
3969 ptr->name = strdup (name);
3970 require_defined_symbol_list = ptr;
3971 }
3972
3973 /* Check that all symbols the user required to be defined, are defined,
3974 raise an error if we find a symbol that is not defined. */
3975
3976 static void
3977 ldlang_check_require_defined_symbols (void)
3978 {
3979 struct require_defined_symbol *ptr;
3980
3981 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3982 {
3983 struct bfd_link_hash_entry *h;
3984
3985 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3986 FALSE, FALSE, TRUE);
3987 if (h == NULL
3988 || (h->type != bfd_link_hash_defined
3989 && h->type != bfd_link_hash_defweak))
3990 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3991 }
3992 }
3993
3994 /* Check for all readonly or some readwrite sections. */
3995
3996 static void
3997 check_input_sections
3998 (lang_statement_union_type *s,
3999 lang_output_section_statement_type *output_section_statement)
4000 {
4001 for (; s != NULL; s = s->header.next)
4002 {
4003 switch (s->header.type)
4004 {
4005 case lang_wild_statement_enum:
4006 walk_wild (&s->wild_statement, check_section_callback,
4007 output_section_statement);
4008 if (!output_section_statement->all_input_readonly)
4009 return;
4010 break;
4011 case lang_constructors_statement_enum:
4012 check_input_sections (constructor_list.head,
4013 output_section_statement);
4014 if (!output_section_statement->all_input_readonly)
4015 return;
4016 break;
4017 case lang_group_statement_enum:
4018 check_input_sections (s->group_statement.children.head,
4019 output_section_statement);
4020 if (!output_section_statement->all_input_readonly)
4021 return;
4022 break;
4023 default:
4024 break;
4025 }
4026 }
4027 }
4028
4029 /* Update wildcard statements if needed. */
4030
4031 static void
4032 update_wild_statements (lang_statement_union_type *s)
4033 {
4034 struct wildcard_list *sec;
4035
4036 switch (sort_section)
4037 {
4038 default:
4039 FAIL ();
4040
4041 case none:
4042 break;
4043
4044 case by_name:
4045 case by_alignment:
4046 for (; s != NULL; s = s->header.next)
4047 {
4048 switch (s->header.type)
4049 {
4050 default:
4051 break;
4052
4053 case lang_wild_statement_enum:
4054 for (sec = s->wild_statement.section_list; sec != NULL;
4055 sec = sec->next)
4056 /* Don't sort .init/.fini sections. */
4057 if (strcmp (sec->spec.name, ".init") != 0
4058 && strcmp (sec->spec.name, ".fini") != 0)
4059 switch (sec->spec.sorted)
4060 {
4061 case none:
4062 sec->spec.sorted = sort_section;
4063 break;
4064 case by_name:
4065 if (sort_section == by_alignment)
4066 sec->spec.sorted = by_name_alignment;
4067 break;
4068 case by_alignment:
4069 if (sort_section == by_name)
4070 sec->spec.sorted = by_alignment_name;
4071 break;
4072 default:
4073 break;
4074 }
4075 break;
4076
4077 case lang_constructors_statement_enum:
4078 update_wild_statements (constructor_list.head);
4079 break;
4080
4081 case lang_output_section_statement_enum:
4082 update_wild_statements
4083 (s->output_section_statement.children.head);
4084 break;
4085
4086 case lang_group_statement_enum:
4087 update_wild_statements (s->group_statement.children.head);
4088 break;
4089 }
4090 }
4091 break;
4092 }
4093 }
4094
4095 /* Open input files and attach to output sections. */
4096
4097 static void
4098 map_input_to_output_sections
4099 (lang_statement_union_type *s, const char *target,
4100 lang_output_section_statement_type *os)
4101 {
4102 for (; s != NULL; s = s->header.next)
4103 {
4104 lang_output_section_statement_type *tos;
4105 flagword flags;
4106
4107 switch (s->header.type)
4108 {
4109 case lang_wild_statement_enum:
4110 wild (&s->wild_statement, target, os);
4111 break;
4112 case lang_constructors_statement_enum:
4113 map_input_to_output_sections (constructor_list.head,
4114 target,
4115 os);
4116 break;
4117 case lang_output_section_statement_enum:
4118 tos = &s->output_section_statement;
4119 if (tos->constraint != 0)
4120 {
4121 if (tos->constraint != ONLY_IF_RW
4122 && tos->constraint != ONLY_IF_RO)
4123 break;
4124 tos->all_input_readonly = TRUE;
4125 check_input_sections (tos->children.head, tos);
4126 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4127 {
4128 tos->constraint = -1;
4129 break;
4130 }
4131 }
4132 map_input_to_output_sections (tos->children.head,
4133 target,
4134 tos);
4135 break;
4136 case lang_output_statement_enum:
4137 break;
4138 case lang_target_statement_enum:
4139 target = s->target_statement.target;
4140 break;
4141 case lang_group_statement_enum:
4142 map_input_to_output_sections (s->group_statement.children.head,
4143 target,
4144 os);
4145 break;
4146 case lang_data_statement_enum:
4147 /* Make sure that any sections mentioned in the expression
4148 are initialized. */
4149 exp_init_os (s->data_statement.exp);
4150 /* The output section gets CONTENTS, ALLOC and LOAD, but
4151 these may be overridden by the script. */
4152 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4153 switch (os->sectype)
4154 {
4155 case normal_section:
4156 case overlay_section:
4157 case first_overlay_section:
4158 break;
4159 case noalloc_section:
4160 flags = SEC_HAS_CONTENTS;
4161 break;
4162 case noload_section:
4163 if (bfd_get_flavour (link_info.output_bfd)
4164 == bfd_target_elf_flavour)
4165 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4166 else
4167 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4168 break;
4169 }
4170 if (os->bfd_section == NULL)
4171 init_os (os, flags);
4172 else
4173 os->bfd_section->flags |= flags;
4174 break;
4175 case lang_input_section_enum:
4176 break;
4177 case lang_fill_statement_enum:
4178 case lang_object_symbols_statement_enum:
4179 case lang_reloc_statement_enum:
4180 case lang_padding_statement_enum:
4181 case lang_input_statement_enum:
4182 if (os != NULL && os->bfd_section == NULL)
4183 init_os (os, 0);
4184 break;
4185 case lang_assignment_statement_enum:
4186 if (os != NULL && os->bfd_section == NULL)
4187 init_os (os, 0);
4188
4189 /* Make sure that any sections mentioned in the assignment
4190 are initialized. */
4191 exp_init_os (s->assignment_statement.exp);
4192 break;
4193 case lang_address_statement_enum:
4194 /* Mark the specified section with the supplied address.
4195 If this section was actually a segment marker, then the
4196 directive is ignored if the linker script explicitly
4197 processed the segment marker. Originally, the linker
4198 treated segment directives (like -Ttext on the
4199 command-line) as section directives. We honor the
4200 section directive semantics for backwards compatibility;
4201 linker scripts that do not specifically check for
4202 SEGMENT_START automatically get the old semantics. */
4203 if (!s->address_statement.segment
4204 || !s->address_statement.segment->used)
4205 {
4206 const char *name = s->address_statement.section_name;
4207
4208 /* Create the output section statement here so that
4209 orphans with a set address will be placed after other
4210 script sections. If we let the orphan placement code
4211 place them in amongst other sections then the address
4212 will affect following script sections, which is
4213 likely to surprise naive users. */
4214 tos = lang_output_section_statement_lookup (name, 0, TRUE);
4215 tos->addr_tree = s->address_statement.address;
4216 if (tos->bfd_section == NULL)
4217 init_os (tos, 0);
4218 }
4219 break;
4220 case lang_insert_statement_enum:
4221 break;
4222 }
4223 }
4224 }
4225
4226 /* An insert statement snips out all the linker statements from the
4227 start of the list and places them after the output section
4228 statement specified by the insert. This operation is complicated
4229 by the fact that we keep a doubly linked list of output section
4230 statements as well as the singly linked list of all statements.
4231 FIXME someday: Twiddling with the list not only moves statements
4232 from the user's script but also input and group statements that are
4233 built from command line object files and --start-group. We only
4234 get away with this because the list pointers used by file_chain
4235 and input_file_chain are not reordered, and processing via
4236 statement_list after this point mostly ignores input statements.
4237 One exception is the map file, where LOAD and START GROUP/END GROUP
4238 can end up looking odd. */
4239
4240 static void
4241 process_insert_statements (lang_statement_union_type **start)
4242 {
4243 lang_statement_union_type **s;
4244 lang_output_section_statement_type *first_os = NULL;
4245 lang_output_section_statement_type *last_os = NULL;
4246 lang_output_section_statement_type *os;
4247
4248 s = start;
4249 while (*s != NULL)
4250 {
4251 if ((*s)->header.type == lang_output_section_statement_enum)
4252 {
4253 /* Keep pointers to the first and last output section
4254 statement in the sequence we may be about to move. */
4255 os = &(*s)->output_section_statement;
4256
4257 ASSERT (last_os == NULL || last_os->next == os);
4258 last_os = os;
4259
4260 /* Set constraint negative so that lang_output_section_find
4261 won't match this output section statement. At this
4262 stage in linking constraint has values in the range
4263 [-1, ONLY_IN_RW]. */
4264 last_os->constraint = -2 - last_os->constraint;
4265 if (first_os == NULL)
4266 first_os = last_os;
4267 }
4268 else if ((*s)->header.type == lang_group_statement_enum)
4269 {
4270 /* A user might put -T between --start-group and
4271 --end-group. One way this odd construct might arise is
4272 from a wrapper around ld to change library search
4273 behaviour. For example:
4274 #! /bin/sh
4275 exec real_ld --start-group "$@" --end-group
4276 This isn't completely unreasonable so go looking inside a
4277 group statement for insert statements. */
4278 process_insert_statements (&(*s)->group_statement.children.head);
4279 }
4280 else if ((*s)->header.type == lang_insert_statement_enum)
4281 {
4282 lang_insert_statement_type *i = &(*s)->insert_statement;
4283 lang_output_section_statement_type *where;
4284 lang_statement_union_type **ptr;
4285 lang_statement_union_type *first;
4286
4287 if (link_info.non_contiguous_regions)
4288 {
4289 einfo (_("warning: INSERT statement in linker script is "
4290 "incompatible with --enable-non-contiguous-regions.\n"));
4291 }
4292
4293 where = lang_output_section_find (i->where);
4294 if (where != NULL && i->is_before)
4295 {
4296 do
4297 where = where->prev;
4298 while (where != NULL && where->constraint < 0);
4299 }
4300 if (where == NULL)
4301 {
4302 einfo (_("%F%P: %s not found for insert\n"), i->where);
4303 return;
4304 }
4305
4306 /* Deal with reordering the output section statement list. */
4307 if (last_os != NULL)
4308 {
4309 asection *first_sec, *last_sec;
4310 struct lang_output_section_statement_struct **next;
4311
4312 /* Snip out the output sections we are moving. */
4313 first_os->prev->next = last_os->next;
4314 if (last_os->next == NULL)
4315 {
4316 next = &first_os->prev->next;
4317 lang_os_list.tail = (lang_statement_union_type **) next;
4318 }
4319 else
4320 last_os->next->prev = first_os->prev;
4321 /* Add them in at the new position. */
4322 last_os->next = where->next;
4323 if (where->next == NULL)
4324 {
4325 next = &last_os->next;
4326 lang_os_list.tail = (lang_statement_union_type **) next;
4327 }
4328 else
4329 where->next->prev = last_os;
4330 first_os->prev = where;
4331 where->next = first_os;
4332
4333 /* Move the bfd sections in the same way. */
4334 first_sec = NULL;
4335 last_sec = NULL;
4336 for (os = first_os; os != NULL; os = os->next)
4337 {
4338 os->constraint = -2 - os->constraint;
4339 if (os->bfd_section != NULL
4340 && os->bfd_section->owner != NULL)
4341 {
4342 last_sec = os->bfd_section;
4343 if (first_sec == NULL)
4344 first_sec = last_sec;
4345 }
4346 if (os == last_os)
4347 break;
4348 }
4349 if (last_sec != NULL)
4350 {
4351 asection *sec = where->bfd_section;
4352 if (sec == NULL)
4353 sec = output_prev_sec_find (where);
4354
4355 /* The place we want to insert must come after the
4356 sections we are moving. So if we find no
4357 section or if the section is the same as our
4358 last section, then no move is needed. */
4359 if (sec != NULL && sec != last_sec)
4360 {
4361 /* Trim them off. */
4362 if (first_sec->prev != NULL)
4363 first_sec->prev->next = last_sec->next;
4364 else
4365 link_info.output_bfd->sections = last_sec->next;
4366 if (last_sec->next != NULL)
4367 last_sec->next->prev = first_sec->prev;
4368 else
4369 link_info.output_bfd->section_last = first_sec->prev;
4370 /* Add back. */
4371 last_sec->next = sec->next;
4372 if (sec->next != NULL)
4373 sec->next->prev = last_sec;
4374 else
4375 link_info.output_bfd->section_last = last_sec;
4376 first_sec->prev = sec;
4377 sec->next = first_sec;
4378 }
4379 }
4380
4381 first_os = NULL;
4382 last_os = NULL;
4383 }
4384
4385 ptr = insert_os_after (where);
4386 /* Snip everything from the start of the list, up to and
4387 including the insert statement we are currently processing. */
4388 first = *start;
4389 *start = (*s)->header.next;
4390 /* Add them back where they belong, minus the insert. */
4391 *s = *ptr;
4392 if (*s == NULL)
4393 statement_list.tail = s;
4394 *ptr = first;
4395 s = start;
4396 continue;
4397 }
4398 s = &(*s)->header.next;
4399 }
4400
4401 /* Undo constraint twiddling. */
4402 for (os = first_os; os != NULL; os = os->next)
4403 {
4404 os->constraint = -2 - os->constraint;
4405 if (os == last_os)
4406 break;
4407 }
4408 }
4409
4410 /* An output section might have been removed after its statement was
4411 added. For example, ldemul_before_allocation can remove dynamic
4412 sections if they turn out to be not needed. Clean them up here. */
4413
4414 void
4415 strip_excluded_output_sections (void)
4416 {
4417 lang_output_section_statement_type *os;
4418
4419 /* Run lang_size_sections (if not already done). */
4420 if (expld.phase != lang_mark_phase_enum)
4421 {
4422 expld.phase = lang_mark_phase_enum;
4423 expld.dataseg.phase = exp_seg_none;
4424 one_lang_size_sections_pass (NULL, FALSE);
4425 lang_reset_memory_regions ();
4426 }
4427
4428 for (os = (void *) lang_os_list.head;
4429 os != NULL;
4430 os = os->next)
4431 {
4432 asection *output_section;
4433 bfd_boolean exclude;
4434
4435 if (os->constraint < 0)
4436 continue;
4437
4438 output_section = os->bfd_section;
4439 if (output_section == NULL)
4440 continue;
4441
4442 exclude = (output_section->rawsize == 0
4443 && (output_section->flags & SEC_KEEP) == 0
4444 && !bfd_section_removed_from_list (link_info.output_bfd,
4445 output_section));
4446
4447 /* Some sections have not yet been sized, notably .gnu.version,
4448 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4449 input sections, so don't drop output sections that have such
4450 input sections unless they are also marked SEC_EXCLUDE. */
4451 if (exclude && output_section->map_head.s != NULL)
4452 {
4453 asection *s;
4454
4455 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4456 if ((s->flags & SEC_EXCLUDE) == 0
4457 && ((s->flags & SEC_LINKER_CREATED) != 0
4458 || link_info.emitrelocations))
4459 {
4460 exclude = FALSE;
4461 break;
4462 }
4463 }
4464
4465 if (exclude)
4466 {
4467 /* We don't set bfd_section to NULL since bfd_section of the
4468 removed output section statement may still be used. */
4469 if (!os->update_dot)
4470 os->ignored = TRUE;
4471 output_section->flags |= SEC_EXCLUDE;
4472 bfd_section_list_remove (link_info.output_bfd, output_section);
4473 link_info.output_bfd->section_count--;
4474 }
4475 }
4476 }
4477
4478 /* Called from ldwrite to clear out asection.map_head and
4479 asection.map_tail for use as link_orders in ldwrite. */
4480
4481 void
4482 lang_clear_os_map (void)
4483 {
4484 lang_output_section_statement_type *os;
4485
4486 if (map_head_is_link_order)
4487 return;
4488
4489 for (os = (void *) lang_os_list.head;
4490 os != NULL;
4491 os = os->next)
4492 {
4493 asection *output_section;
4494
4495 if (os->constraint < 0)
4496 continue;
4497
4498 output_section = os->bfd_section;
4499 if (output_section == NULL)
4500 continue;
4501
4502 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4503 output_section->map_head.link_order = NULL;
4504 output_section->map_tail.link_order = NULL;
4505 }
4506
4507 /* Stop future calls to lang_add_section from messing with map_head
4508 and map_tail link_order fields. */
4509 map_head_is_link_order = TRUE;
4510 }
4511
4512 static void
4513 print_output_section_statement
4514 (lang_output_section_statement_type *output_section_statement)
4515 {
4516 asection *section = output_section_statement->bfd_section;
4517 int len;
4518
4519 if (output_section_statement != abs_output_section)
4520 {
4521 minfo ("\n%s", output_section_statement->name);
4522
4523 if (section != NULL)
4524 {
4525 print_dot = section->vma;
4526
4527 len = strlen (output_section_statement->name);
4528 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4529 {
4530 print_nl ();
4531 len = 0;
4532 }
4533 while (len < SECTION_NAME_MAP_LENGTH)
4534 {
4535 print_space ();
4536 ++len;
4537 }
4538
4539 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4540
4541 if (section->vma != section->lma)
4542 minfo (_(" load address 0x%V"), section->lma);
4543
4544 if (output_section_statement->update_dot_tree != NULL)
4545 exp_fold_tree (output_section_statement->update_dot_tree,
4546 bfd_abs_section_ptr, &print_dot);
4547 }
4548
4549 print_nl ();
4550 }
4551
4552 print_statement_list (output_section_statement->children.head,
4553 output_section_statement);
4554 }
4555
4556 static void
4557 print_assignment (lang_assignment_statement_type *assignment,
4558 lang_output_section_statement_type *output_section)
4559 {
4560 unsigned int i;
4561 bfd_boolean is_dot;
4562 etree_type *tree;
4563 asection *osec;
4564
4565 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4566 print_space ();
4567
4568 if (assignment->exp->type.node_class == etree_assert)
4569 {
4570 is_dot = FALSE;
4571 tree = assignment->exp->assert_s.child;
4572 }
4573 else
4574 {
4575 const char *dst = assignment->exp->assign.dst;
4576
4577 is_dot = (dst[0] == '.' && dst[1] == 0);
4578 tree = assignment->exp;
4579 }
4580
4581 osec = output_section->bfd_section;
4582 if (osec == NULL)
4583 osec = bfd_abs_section_ptr;
4584
4585 if (assignment->exp->type.node_class != etree_provide)
4586 exp_fold_tree (tree, osec, &print_dot);
4587 else
4588 expld.result.valid_p = FALSE;
4589
4590 if (expld.result.valid_p)
4591 {
4592 bfd_vma value;
4593
4594 if (assignment->exp->type.node_class == etree_assert
4595 || is_dot
4596 || expld.assign_name != NULL)
4597 {
4598 value = expld.result.value;
4599
4600 if (expld.result.section != NULL)
4601 value += expld.result.section->vma;
4602
4603 minfo ("0x%V", value);
4604 if (is_dot)
4605 print_dot = value;
4606 }
4607 else
4608 {
4609 struct bfd_link_hash_entry *h;
4610
4611 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4612 FALSE, FALSE, TRUE);
4613 if (h != NULL
4614 && (h->type == bfd_link_hash_defined
4615 || h->type == bfd_link_hash_defweak))
4616 {
4617 value = h->u.def.value;
4618 value += h->u.def.section->output_section->vma;
4619 value += h->u.def.section->output_offset;
4620
4621 minfo ("[0x%V]", value);
4622 }
4623 else
4624 minfo ("[unresolved]");
4625 }
4626 }
4627 else
4628 {
4629 if (assignment->exp->type.node_class == etree_provide)
4630 minfo ("[!provide]");
4631 else
4632 minfo ("*undef* ");
4633 #ifdef BFD64
4634 minfo (" ");
4635 #endif
4636 }
4637 expld.assign_name = NULL;
4638
4639 minfo (" ");
4640 exp_print_tree (assignment->exp);
4641 print_nl ();
4642 }
4643
4644 static void
4645 print_input_statement (lang_input_statement_type *statm)
4646 {
4647 if (statm->filename != NULL)
4648 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4649 }
4650
4651 /* Print all symbols defined in a particular section. This is called
4652 via bfd_link_hash_traverse, or by print_all_symbols. */
4653
4654 bfd_boolean
4655 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4656 {
4657 asection *sec = (asection *) ptr;
4658
4659 if ((hash_entry->type == bfd_link_hash_defined
4660 || hash_entry->type == bfd_link_hash_defweak)
4661 && sec == hash_entry->u.def.section)
4662 {
4663 int i;
4664
4665 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4666 print_space ();
4667 minfo ("0x%V ",
4668 (hash_entry->u.def.value
4669 + hash_entry->u.def.section->output_offset
4670 + hash_entry->u.def.section->output_section->vma));
4671
4672 minfo (" %pT\n", hash_entry->root.string);
4673 }
4674
4675 return TRUE;
4676 }
4677
4678 static int
4679 hash_entry_addr_cmp (const void *a, const void *b)
4680 {
4681 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4682 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4683
4684 if (l->u.def.value < r->u.def.value)
4685 return -1;
4686 else if (l->u.def.value > r->u.def.value)
4687 return 1;
4688 else
4689 return 0;
4690 }
4691
4692 static void
4693 print_all_symbols (asection *sec)
4694 {
4695 input_section_userdata_type *ud = bfd_section_userdata (sec);
4696 struct map_symbol_def *def;
4697 struct bfd_link_hash_entry **entries;
4698 unsigned int i;
4699
4700 if (!ud)
4701 return;
4702
4703 *ud->map_symbol_def_tail = 0;
4704
4705 /* Sort the symbols by address. */
4706 entries = (struct bfd_link_hash_entry **)
4707 obstack_alloc (&map_obstack,
4708 ud->map_symbol_def_count * sizeof (*entries));
4709
4710 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4711 entries[i] = def->entry;
4712
4713 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4714 hash_entry_addr_cmp);
4715
4716 /* Print the symbols. */
4717 for (i = 0; i < ud->map_symbol_def_count; i++)
4718 ldemul_print_symbol (entries[i], sec);
4719
4720 obstack_free (&map_obstack, entries);
4721 }
4722
4723 /* Print information about an input section to the map file. */
4724
4725 static void
4726 print_input_section (asection *i, bfd_boolean is_discarded)
4727 {
4728 bfd_size_type size = i->size;
4729 int len;
4730 bfd_vma addr;
4731
4732 init_opb (i);
4733
4734 print_space ();
4735 minfo ("%s", i->name);
4736
4737 len = 1 + strlen (i->name);
4738 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4739 {
4740 print_nl ();
4741 len = 0;
4742 }
4743 while (len < SECTION_NAME_MAP_LENGTH)
4744 {
4745 print_space ();
4746 ++len;
4747 }
4748
4749 if (i->output_section != NULL
4750 && i->output_section->owner == link_info.output_bfd)
4751 addr = i->output_section->vma + i->output_offset;
4752 else
4753 {
4754 addr = print_dot;
4755 if (!is_discarded)
4756 size = 0;
4757 }
4758
4759 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4760
4761 if (size != i->rawsize && i->rawsize != 0)
4762 {
4763 len = SECTION_NAME_MAP_LENGTH + 3;
4764 #ifdef BFD64
4765 len += 16;
4766 #else
4767 len += 8;
4768 #endif
4769 while (len > 0)
4770 {
4771 print_space ();
4772 --len;
4773 }
4774
4775 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4776 }
4777
4778 if (i->output_section != NULL
4779 && i->output_section->owner == link_info.output_bfd)
4780 {
4781 if (link_info.reduce_memory_overheads)
4782 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4783 else
4784 print_all_symbols (i);
4785
4786 /* Update print_dot, but make sure that we do not move it
4787 backwards - this could happen if we have overlays and a
4788 later overlay is shorter than an earier one. */
4789 if (addr + TO_ADDR (size) > print_dot)
4790 print_dot = addr + TO_ADDR (size);
4791 }
4792 }
4793
4794 static void
4795 print_fill_statement (lang_fill_statement_type *fill)
4796 {
4797 size_t size;
4798 unsigned char *p;
4799 fputs (" FILL mask 0x", config.map_file);
4800 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4801 fprintf (config.map_file, "%02x", *p);
4802 fputs ("\n", config.map_file);
4803 }
4804
4805 static void
4806 print_data_statement (lang_data_statement_type *data)
4807 {
4808 int i;
4809 bfd_vma addr;
4810 bfd_size_type size;
4811 const char *name;
4812
4813 init_opb (data->output_section);
4814 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4815 print_space ();
4816
4817 addr = data->output_offset;
4818 if (data->output_section != NULL)
4819 addr += data->output_section->vma;
4820
4821 switch (data->type)
4822 {
4823 default:
4824 abort ();
4825 case BYTE:
4826 size = BYTE_SIZE;
4827 name = "BYTE";
4828 break;
4829 case SHORT:
4830 size = SHORT_SIZE;
4831 name = "SHORT";
4832 break;
4833 case LONG:
4834 size = LONG_SIZE;
4835 name = "LONG";
4836 break;
4837 case QUAD:
4838 size = QUAD_SIZE;
4839 name = "QUAD";
4840 break;
4841 case SQUAD:
4842 size = QUAD_SIZE;
4843 name = "SQUAD";
4844 break;
4845 }
4846
4847 if (size < TO_SIZE ((unsigned) 1))
4848 size = TO_SIZE ((unsigned) 1);
4849 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4850
4851 if (data->exp->type.node_class != etree_value)
4852 {
4853 print_space ();
4854 exp_print_tree (data->exp);
4855 }
4856
4857 print_nl ();
4858
4859 print_dot = addr + TO_ADDR (size);
4860 }
4861
4862 /* Print an address statement. These are generated by options like
4863 -Ttext. */
4864
4865 static void
4866 print_address_statement (lang_address_statement_type *address)
4867 {
4868 minfo (_("Address of section %s set to "), address->section_name);
4869 exp_print_tree (address->address);
4870 print_nl ();
4871 }
4872
4873 /* Print a reloc statement. */
4874
4875 static void
4876 print_reloc_statement (lang_reloc_statement_type *reloc)
4877 {
4878 int i;
4879 bfd_vma addr;
4880 bfd_size_type size;
4881
4882 init_opb (reloc->output_section);
4883 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4884 print_space ();
4885
4886 addr = reloc->output_offset;
4887 if (reloc->output_section != NULL)
4888 addr += reloc->output_section->vma;
4889
4890 size = bfd_get_reloc_size (reloc->howto);
4891
4892 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4893
4894 if (reloc->name != NULL)
4895 minfo ("%s+", reloc->name);
4896 else
4897 minfo ("%s+", reloc->section->name);
4898
4899 exp_print_tree (reloc->addend_exp);
4900
4901 print_nl ();
4902
4903 print_dot = addr + TO_ADDR (size);
4904 }
4905
4906 static void
4907 print_padding_statement (lang_padding_statement_type *s)
4908 {
4909 int len;
4910 bfd_vma addr;
4911
4912 init_opb (s->output_section);
4913 minfo (" *fill*");
4914
4915 len = sizeof " *fill*" - 1;
4916 while (len < SECTION_NAME_MAP_LENGTH)
4917 {
4918 print_space ();
4919 ++len;
4920 }
4921
4922 addr = s->output_offset;
4923 if (s->output_section != NULL)
4924 addr += s->output_section->vma;
4925 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4926
4927 if (s->fill->size != 0)
4928 {
4929 size_t size;
4930 unsigned char *p;
4931 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4932 fprintf (config.map_file, "%02x", *p);
4933 }
4934
4935 print_nl ();
4936
4937 print_dot = addr + TO_ADDR (s->size);
4938 }
4939
4940 static void
4941 print_wild_statement (lang_wild_statement_type *w,
4942 lang_output_section_statement_type *os)
4943 {
4944 struct wildcard_list *sec;
4945
4946 print_space ();
4947
4948 if (w->exclude_name_list)
4949 {
4950 name_list *tmp;
4951 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4952 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4953 minfo (" %s", tmp->name);
4954 minfo (") ");
4955 }
4956
4957 if (w->filenames_sorted)
4958 minfo ("SORT_BY_NAME(");
4959 if (w->filename != NULL)
4960 minfo ("%s", w->filename);
4961 else
4962 minfo ("*");
4963 if (w->filenames_sorted)
4964 minfo (")");
4965
4966 minfo ("(");
4967 for (sec = w->section_list; sec; sec = sec->next)
4968 {
4969 int closing_paren = 0;
4970
4971 switch (sec->spec.sorted)
4972 {
4973 case none:
4974 break;
4975
4976 case by_name:
4977 minfo ("SORT_BY_NAME(");
4978 closing_paren = 1;
4979 break;
4980
4981 case by_alignment:
4982 minfo ("SORT_BY_ALIGNMENT(");
4983 closing_paren = 1;
4984 break;
4985
4986 case by_name_alignment:
4987 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4988 closing_paren = 2;
4989 break;
4990
4991 case by_alignment_name:
4992 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4993 closing_paren = 2;
4994 break;
4995
4996 case by_none:
4997 minfo ("SORT_NONE(");
4998 closing_paren = 1;
4999 break;
5000
5001 case by_init_priority:
5002 minfo ("SORT_BY_INIT_PRIORITY(");
5003 closing_paren = 1;
5004 break;
5005 }
5006
5007 if (sec->spec.exclude_name_list != NULL)
5008 {
5009 name_list *tmp;
5010 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5011 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5012 minfo (" %s", tmp->name);
5013 minfo (") ");
5014 }
5015 if (sec->spec.name != NULL)
5016 minfo ("%s", sec->spec.name);
5017 else
5018 minfo ("*");
5019 for (;closing_paren > 0; closing_paren--)
5020 minfo (")");
5021 if (sec->next)
5022 minfo (" ");
5023 }
5024 minfo (")");
5025
5026 print_nl ();
5027
5028 print_statement_list (w->children.head, os);
5029 }
5030
5031 /* Print a group statement. */
5032
5033 static void
5034 print_group (lang_group_statement_type *s,
5035 lang_output_section_statement_type *os)
5036 {
5037 fprintf (config.map_file, "START GROUP\n");
5038 print_statement_list (s->children.head, os);
5039 fprintf (config.map_file, "END GROUP\n");
5040 }
5041
5042 /* Print the list of statements in S.
5043 This can be called for any statement type. */
5044
5045 static void
5046 print_statement_list (lang_statement_union_type *s,
5047 lang_output_section_statement_type *os)
5048 {
5049 while (s != NULL)
5050 {
5051 print_statement (s, os);
5052 s = s->header.next;
5053 }
5054 }
5055
5056 /* Print the first statement in statement list S.
5057 This can be called for any statement type. */
5058
5059 static void
5060 print_statement (lang_statement_union_type *s,
5061 lang_output_section_statement_type *os)
5062 {
5063 switch (s->header.type)
5064 {
5065 default:
5066 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5067 FAIL ();
5068 break;
5069 case lang_constructors_statement_enum:
5070 if (constructor_list.head != NULL)
5071 {
5072 if (constructors_sorted)
5073 minfo (" SORT (CONSTRUCTORS)\n");
5074 else
5075 minfo (" CONSTRUCTORS\n");
5076 print_statement_list (constructor_list.head, os);
5077 }
5078 break;
5079 case lang_wild_statement_enum:
5080 print_wild_statement (&s->wild_statement, os);
5081 break;
5082 case lang_address_statement_enum:
5083 print_address_statement (&s->address_statement);
5084 break;
5085 case lang_object_symbols_statement_enum:
5086 minfo (" CREATE_OBJECT_SYMBOLS\n");
5087 break;
5088 case lang_fill_statement_enum:
5089 print_fill_statement (&s->fill_statement);
5090 break;
5091 case lang_data_statement_enum:
5092 print_data_statement (&s->data_statement);
5093 break;
5094 case lang_reloc_statement_enum:
5095 print_reloc_statement (&s->reloc_statement);
5096 break;
5097 case lang_input_section_enum:
5098 print_input_section (s->input_section.section, FALSE);
5099 break;
5100 case lang_padding_statement_enum:
5101 print_padding_statement (&s->padding_statement);
5102 break;
5103 case lang_output_section_statement_enum:
5104 print_output_section_statement (&s->output_section_statement);
5105 break;
5106 case lang_assignment_statement_enum:
5107 print_assignment (&s->assignment_statement, os);
5108 break;
5109 case lang_target_statement_enum:
5110 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5111 break;
5112 case lang_output_statement_enum:
5113 minfo ("OUTPUT(%s", s->output_statement.name);
5114 if (output_target != NULL)
5115 minfo (" %s", output_target);
5116 minfo (")\n");
5117 break;
5118 case lang_input_statement_enum:
5119 print_input_statement (&s->input_statement);
5120 break;
5121 case lang_group_statement_enum:
5122 print_group (&s->group_statement, os);
5123 break;
5124 case lang_insert_statement_enum:
5125 minfo ("INSERT %s %s\n",
5126 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5127 s->insert_statement.where);
5128 break;
5129 }
5130 }
5131
5132 static void
5133 print_statements (void)
5134 {
5135 print_statement_list (statement_list.head, abs_output_section);
5136 }
5137
5138 /* Print the first N statements in statement list S to STDERR.
5139 If N == 0, nothing is printed.
5140 If N < 0, the entire list is printed.
5141 Intended to be called from GDB. */
5142
5143 void
5144 dprint_statement (lang_statement_union_type *s, int n)
5145 {
5146 FILE *map_save = config.map_file;
5147
5148 config.map_file = stderr;
5149
5150 if (n < 0)
5151 print_statement_list (s, abs_output_section);
5152 else
5153 {
5154 while (s && --n >= 0)
5155 {
5156 print_statement (s, abs_output_section);
5157 s = s->header.next;
5158 }
5159 }
5160
5161 config.map_file = map_save;
5162 }
5163
5164 static void
5165 insert_pad (lang_statement_union_type **ptr,
5166 fill_type *fill,
5167 bfd_size_type alignment_needed,
5168 asection *output_section,
5169 bfd_vma dot)
5170 {
5171 static fill_type zero_fill;
5172 lang_statement_union_type *pad = NULL;
5173
5174 if (ptr != &statement_list.head)
5175 pad = ((lang_statement_union_type *)
5176 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5177 if (pad != NULL
5178 && pad->header.type == lang_padding_statement_enum
5179 && pad->padding_statement.output_section == output_section)
5180 {
5181 /* Use the existing pad statement. */
5182 }
5183 else if ((pad = *ptr) != NULL
5184 && pad->header.type == lang_padding_statement_enum
5185 && pad->padding_statement.output_section == output_section)
5186 {
5187 /* Use the existing pad statement. */
5188 }
5189 else
5190 {
5191 /* Make a new padding statement, linked into existing chain. */
5192 pad = stat_alloc (sizeof (lang_padding_statement_type));
5193 pad->header.next = *ptr;
5194 *ptr = pad;
5195 pad->header.type = lang_padding_statement_enum;
5196 pad->padding_statement.output_section = output_section;
5197 if (fill == NULL)
5198 fill = &zero_fill;
5199 pad->padding_statement.fill = fill;
5200 }
5201 pad->padding_statement.output_offset = dot - output_section->vma;
5202 pad->padding_statement.size = alignment_needed;
5203 if (!(output_section->flags & SEC_FIXED_SIZE))
5204 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5205 - output_section->vma);
5206 }
5207
5208 /* Work out how much this section will move the dot point. */
5209
5210 static bfd_vma
5211 size_input_section
5212 (lang_statement_union_type **this_ptr,
5213 lang_output_section_statement_type *output_section_statement,
5214 fill_type *fill,
5215 bfd_boolean *removed,
5216 bfd_vma dot)
5217 {
5218 lang_input_section_type *is = &((*this_ptr)->input_section);
5219 asection *i = is->section;
5220 asection *o = output_section_statement->bfd_section;
5221 *removed = 0;
5222
5223 if (link_info.non_contiguous_regions)
5224 {
5225 /* If the input section I has already been successfully assigned
5226 to an output section other than O, don't bother with it and
5227 let the caller remove it from the list. Keep processing in
5228 case we have already handled O, because the repeated passes
5229 have reinitialized its size. */
5230 if (i->already_assigned && i->already_assigned != o)
5231 {
5232 *removed = 1;
5233 return dot;
5234 }
5235 }
5236
5237 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5238 i->output_offset = i->vma - o->vma;
5239 else if (((i->flags & SEC_EXCLUDE) != 0)
5240 || output_section_statement->ignored)
5241 i->output_offset = dot - o->vma;
5242 else
5243 {
5244 bfd_size_type alignment_needed;
5245
5246 /* Align this section first to the input sections requirement,
5247 then to the output section's requirement. If this alignment
5248 is greater than any seen before, then record it too. Perform
5249 the alignment by inserting a magic 'padding' statement. */
5250
5251 if (output_section_statement->subsection_alignment != NULL)
5252 i->alignment_power
5253 = exp_get_power (output_section_statement->subsection_alignment,
5254 "subsection alignment");
5255
5256 if (o->alignment_power < i->alignment_power)
5257 o->alignment_power = i->alignment_power;
5258
5259 alignment_needed = align_power (dot, i->alignment_power) - dot;
5260
5261 if (alignment_needed != 0)
5262 {
5263 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5264 dot += alignment_needed;
5265 }
5266
5267 if (link_info.non_contiguous_regions)
5268 {
5269 /* If I would overflow O, let the caller remove I from the
5270 list. */
5271 if (output_section_statement->region)
5272 {
5273 bfd_vma end = output_section_statement->region->origin
5274 + output_section_statement->region->length;
5275
5276 if (dot + TO_ADDR (i->size) > end)
5277 {
5278 if (i->flags & SEC_LINKER_CREATED)
5279 einfo (_("%F%P: Output section '%s' not large enough for the "
5280 "linker-created stubs section '%s'.\n"),
5281 i->output_section->name, i->name);
5282
5283 if (i->rawsize && i->rawsize != i->size)
5284 einfo (_("%F%P: Relaxation not supported with "
5285 "--enable-non-contiguous-regions (section '%s' "
5286 "would overflow '%s' after it changed size).\n"),
5287 i->name, i->output_section->name);
5288
5289 *removed = 1;
5290 dot = end;
5291 i->output_section = NULL;
5292 return dot;
5293 }
5294 }
5295 }
5296
5297 /* Remember where in the output section this input section goes. */
5298 i->output_offset = dot - o->vma;
5299
5300 /* Mark how big the output section must be to contain this now. */
5301 dot += TO_ADDR (i->size);
5302 if (!(o->flags & SEC_FIXED_SIZE))
5303 o->size = TO_SIZE (dot - o->vma);
5304
5305 if (link_info.non_contiguous_regions)
5306 {
5307 /* Record that I was successfully assigned to O, and update
5308 its actual output section too. */
5309 i->already_assigned = o;
5310 i->output_section = o;
5311 }
5312 }
5313
5314 return dot;
5315 }
5316
5317 struct check_sec
5318 {
5319 asection *sec;
5320 bfd_boolean warned;
5321 };
5322
5323 static int
5324 sort_sections_by_lma (const void *arg1, const void *arg2)
5325 {
5326 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5327 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5328
5329 if (sec1->lma < sec2->lma)
5330 return -1;
5331 else if (sec1->lma > sec2->lma)
5332 return 1;
5333 else if (sec1->id < sec2->id)
5334 return -1;
5335 else if (sec1->id > sec2->id)
5336 return 1;
5337
5338 return 0;
5339 }
5340
5341 static int
5342 sort_sections_by_vma (const void *arg1, const void *arg2)
5343 {
5344 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5345 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5346
5347 if (sec1->vma < sec2->vma)
5348 return -1;
5349 else if (sec1->vma > sec2->vma)
5350 return 1;
5351 else if (sec1->id < sec2->id)
5352 return -1;
5353 else if (sec1->id > sec2->id)
5354 return 1;
5355
5356 return 0;
5357 }
5358
5359 #define IS_TBSS(s) \
5360 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5361
5362 #define IGNORE_SECTION(s) \
5363 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5364
5365 /* Check to see if any allocated sections overlap with other allocated
5366 sections. This can happen if a linker script specifies the output
5367 section addresses of the two sections. Also check whether any memory
5368 region has overflowed. */
5369
5370 static void
5371 lang_check_section_addresses (void)
5372 {
5373 asection *s, *p;
5374 struct check_sec *sections;
5375 size_t i, count;
5376 bfd_vma addr_mask;
5377 bfd_vma s_start;
5378 bfd_vma s_end;
5379 bfd_vma p_start = 0;
5380 bfd_vma p_end = 0;
5381 lang_memory_region_type *m;
5382 bfd_boolean overlays;
5383
5384 /* Detect address space overflow on allocated sections. */
5385 addr_mask = ((bfd_vma) 1 <<
5386 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5387 addr_mask = (addr_mask << 1) + 1;
5388 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5389 if ((s->flags & SEC_ALLOC) != 0)
5390 {
5391 s_end = (s->vma + s->size) & addr_mask;
5392 if (s_end != 0 && s_end < (s->vma & addr_mask))
5393 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5394 s->name);
5395 else
5396 {
5397 s_end = (s->lma + s->size) & addr_mask;
5398 if (s_end != 0 && s_end < (s->lma & addr_mask))
5399 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5400 s->name);
5401 }
5402 }
5403
5404 if (bfd_count_sections (link_info.output_bfd) <= 1)
5405 return;
5406
5407 count = bfd_count_sections (link_info.output_bfd);
5408 sections = XNEWVEC (struct check_sec, count);
5409
5410 /* Scan all sections in the output list. */
5411 count = 0;
5412 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5413 {
5414 if (IGNORE_SECTION (s)
5415 || s->size == 0)
5416 continue;
5417
5418 sections[count].sec = s;
5419 sections[count].warned = FALSE;
5420 count++;
5421 }
5422
5423 if (count <= 1)
5424 {
5425 free (sections);
5426 return;
5427 }
5428
5429 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5430
5431 /* First check section LMAs. There should be no overlap of LMAs on
5432 loadable sections, even with overlays. */
5433 for (p = NULL, i = 0; i < count; i++)
5434 {
5435 s = sections[i].sec;
5436 init_opb (s);
5437 if ((s->flags & SEC_LOAD) != 0)
5438 {
5439 s_start = s->lma;
5440 s_end = s_start + TO_ADDR (s->size) - 1;
5441
5442 /* Look for an overlap. We have sorted sections by lma, so
5443 we know that s_start >= p_start. Besides the obvious
5444 case of overlap when the current section starts before
5445 the previous one ends, we also must have overlap if the
5446 previous section wraps around the address space. */
5447 if (p != NULL
5448 && (s_start <= p_end
5449 || p_end < p_start))
5450 {
5451 einfo (_("%X%P: section %s LMA [%V,%V]"
5452 " overlaps section %s LMA [%V,%V]\n"),
5453 s->name, s_start, s_end, p->name, p_start, p_end);
5454 sections[i].warned = TRUE;
5455 }
5456 p = s;
5457 p_start = s_start;
5458 p_end = s_end;
5459 }
5460 }
5461
5462 /* If any non-zero size allocated section (excluding tbss) starts at
5463 exactly the same VMA as another such section, then we have
5464 overlays. Overlays generated by the OVERLAY keyword will have
5465 this property. It is possible to intentionally generate overlays
5466 that fail this test, but it would be unusual. */
5467 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5468 overlays = FALSE;
5469 p_start = sections[0].sec->vma;
5470 for (i = 1; i < count; i++)
5471 {
5472 s_start = sections[i].sec->vma;
5473 if (p_start == s_start)
5474 {
5475 overlays = TRUE;
5476 break;
5477 }
5478 p_start = s_start;
5479 }
5480
5481 /* Now check section VMAs if no overlays were detected. */
5482 if (!overlays)
5483 {
5484 for (p = NULL, i = 0; i < count; i++)
5485 {
5486 s = sections[i].sec;
5487 init_opb (s);
5488 s_start = s->vma;
5489 s_end = s_start + TO_ADDR (s->size) - 1;
5490
5491 if (p != NULL
5492 && !sections[i].warned
5493 && (s_start <= p_end
5494 || p_end < p_start))
5495 einfo (_("%X%P: section %s VMA [%V,%V]"
5496 " overlaps section %s VMA [%V,%V]\n"),
5497 s->name, s_start, s_end, p->name, p_start, p_end);
5498 p = s;
5499 p_start = s_start;
5500 p_end = s_end;
5501 }
5502 }
5503
5504 free (sections);
5505
5506 /* If any memory region has overflowed, report by how much.
5507 We do not issue this diagnostic for regions that had sections
5508 explicitly placed outside their bounds; os_region_check's
5509 diagnostics are adequate for that case.
5510
5511 FIXME: It is conceivable that m->current - (m->origin + m->length)
5512 might overflow a 32-bit integer. There is, alas, no way to print
5513 a bfd_vma quantity in decimal. */
5514 for (m = lang_memory_region_list; m; m = m->next)
5515 if (m->had_full_message)
5516 {
5517 unsigned long over = m->current - (m->origin + m->length);
5518 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5519 "%X%P: region `%s' overflowed by %lu bytes\n",
5520 over),
5521 m->name_list.name, over);
5522 }
5523 }
5524
5525 /* Make sure the new address is within the region. We explicitly permit the
5526 current address to be at the exact end of the region when the address is
5527 non-zero, in case the region is at the end of addressable memory and the
5528 calculation wraps around. */
5529
5530 static void
5531 os_region_check (lang_output_section_statement_type *os,
5532 lang_memory_region_type *region,
5533 etree_type *tree,
5534 bfd_vma rbase)
5535 {
5536 if ((region->current < region->origin
5537 || (region->current - region->origin > region->length))
5538 && ((region->current != region->origin + region->length)
5539 || rbase == 0))
5540 {
5541 if (tree != NULL)
5542 {
5543 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5544 " is not within region `%s'\n"),
5545 region->current,
5546 os->bfd_section->owner,
5547 os->bfd_section->name,
5548 region->name_list.name);
5549 }
5550 else if (!region->had_full_message)
5551 {
5552 region->had_full_message = TRUE;
5553
5554 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5555 os->bfd_section->owner,
5556 os->bfd_section->name,
5557 region->name_list.name);
5558 }
5559 }
5560 }
5561
5562 static void
5563 ldlang_check_relro_region (lang_statement_union_type *s,
5564 seg_align_type *seg)
5565 {
5566 if (seg->relro == exp_seg_relro_start)
5567 {
5568 if (!seg->relro_start_stat)
5569 seg->relro_start_stat = s;
5570 else
5571 {
5572 ASSERT (seg->relro_start_stat == s);
5573 }
5574 }
5575 else if (seg->relro == exp_seg_relro_end)
5576 {
5577 if (!seg->relro_end_stat)
5578 seg->relro_end_stat = s;
5579 else
5580 {
5581 ASSERT (seg->relro_end_stat == s);
5582 }
5583 }
5584 }
5585
5586 /* Set the sizes for all the output sections. */
5587
5588 static bfd_vma
5589 lang_size_sections_1
5590 (lang_statement_union_type **prev,
5591 lang_output_section_statement_type *output_section_statement,
5592 fill_type *fill,
5593 bfd_vma dot,
5594 bfd_boolean *relax,
5595 bfd_boolean check_regions)
5596 {
5597 lang_statement_union_type *s;
5598 lang_statement_union_type *prev_s = NULL;
5599 bfd_boolean removed_prev_s = FALSE;
5600
5601 /* Size up the sections from their constituent parts. */
5602 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5603 {
5604 bfd_boolean removed=FALSE;
5605
5606 switch (s->header.type)
5607 {
5608 case lang_output_section_statement_enum:
5609 {
5610 bfd_vma newdot, after, dotdelta;
5611 lang_output_section_statement_type *os;
5612 lang_memory_region_type *r;
5613 int section_alignment = 0;
5614
5615 os = &s->output_section_statement;
5616 init_opb (os->bfd_section);
5617 if (os->constraint == -1)
5618 break;
5619
5620 /* FIXME: We shouldn't need to zero section vmas for ld -r
5621 here, in lang_insert_orphan, or in the default linker scripts.
5622 This is covering for coff backend linker bugs. See PR6945. */
5623 if (os->addr_tree == NULL
5624 && bfd_link_relocatable (&link_info)
5625 && (bfd_get_flavour (link_info.output_bfd)
5626 == bfd_target_coff_flavour))
5627 os->addr_tree = exp_intop (0);
5628 if (os->addr_tree != NULL)
5629 {
5630 os->processed_vma = FALSE;
5631 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5632
5633 if (expld.result.valid_p)
5634 {
5635 dot = expld.result.value;
5636 if (expld.result.section != NULL)
5637 dot += expld.result.section->vma;
5638 }
5639 else if (expld.phase != lang_mark_phase_enum)
5640 einfo (_("%F%P:%pS: non constant or forward reference"
5641 " address expression for section %s\n"),
5642 os->addr_tree, os->name);
5643 }
5644
5645 if (os->bfd_section == NULL)
5646 /* This section was removed or never actually created. */
5647 break;
5648
5649 /* If this is a COFF shared library section, use the size and
5650 address from the input section. FIXME: This is COFF
5651 specific; it would be cleaner if there were some other way
5652 to do this, but nothing simple comes to mind. */
5653 if (((bfd_get_flavour (link_info.output_bfd)
5654 == bfd_target_ecoff_flavour)
5655 || (bfd_get_flavour (link_info.output_bfd)
5656 == bfd_target_coff_flavour))
5657 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5658 {
5659 asection *input;
5660
5661 if (os->children.head == NULL
5662 || os->children.head->header.next != NULL
5663 || (os->children.head->header.type
5664 != lang_input_section_enum))
5665 einfo (_("%X%P: internal error on COFF shared library"
5666 " section %s\n"), os->name);
5667
5668 input = os->children.head->input_section.section;
5669 bfd_set_section_vma (os->bfd_section,
5670 bfd_section_vma (input));
5671 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5672 os->bfd_section->size = input->size;
5673 break;
5674 }
5675
5676 newdot = dot;
5677 dotdelta = 0;
5678 if (bfd_is_abs_section (os->bfd_section))
5679 {
5680 /* No matter what happens, an abs section starts at zero. */
5681 ASSERT (os->bfd_section->vma == 0);
5682 }
5683 else
5684 {
5685 if (os->addr_tree == NULL)
5686 {
5687 /* No address specified for this section, get one
5688 from the region specification. */
5689 if (os->region == NULL
5690 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5691 && os->region->name_list.name[0] == '*'
5692 && strcmp (os->region->name_list.name,
5693 DEFAULT_MEMORY_REGION) == 0))
5694 {
5695 os->region = lang_memory_default (os->bfd_section);
5696 }
5697
5698 /* If a loadable section is using the default memory
5699 region, and some non default memory regions were
5700 defined, issue an error message. */
5701 if (!os->ignored
5702 && !IGNORE_SECTION (os->bfd_section)
5703 && !bfd_link_relocatable (&link_info)
5704 && check_regions
5705 && strcmp (os->region->name_list.name,
5706 DEFAULT_MEMORY_REGION) == 0
5707 && lang_memory_region_list != NULL
5708 && (strcmp (lang_memory_region_list->name_list.name,
5709 DEFAULT_MEMORY_REGION) != 0
5710 || lang_memory_region_list->next != NULL)
5711 && lang_sizing_iteration == 1)
5712 {
5713 /* By default this is an error rather than just a
5714 warning because if we allocate the section to the
5715 default memory region we can end up creating an
5716 excessively large binary, or even seg faulting when
5717 attempting to perform a negative seek. See
5718 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5719 for an example of this. This behaviour can be
5720 overridden by the using the --no-check-sections
5721 switch. */
5722 if (command_line.check_section_addresses)
5723 einfo (_("%F%P: error: no memory region specified"
5724 " for loadable section `%s'\n"),
5725 bfd_section_name (os->bfd_section));
5726 else
5727 einfo (_("%P: warning: no memory region specified"
5728 " for loadable section `%s'\n"),
5729 bfd_section_name (os->bfd_section));
5730 }
5731
5732 newdot = os->region->current;
5733 section_alignment = os->bfd_section->alignment_power;
5734 }
5735 else
5736 section_alignment = exp_get_power (os->section_alignment,
5737 "section alignment");
5738
5739 /* Align to what the section needs. */
5740 if (section_alignment > 0)
5741 {
5742 bfd_vma savedot = newdot;
5743 bfd_vma diff = 0;
5744
5745 newdot = align_power (newdot, section_alignment);
5746 dotdelta = newdot - savedot;
5747
5748 if (lang_sizing_iteration == 1)
5749 diff = dotdelta;
5750 else if (lang_sizing_iteration > 1)
5751 {
5752 /* Only report adjustments that would change
5753 alignment from what we have already reported. */
5754 diff = newdot - os->bfd_section->vma;
5755 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5756 diff = 0;
5757 }
5758 if (diff != 0
5759 && (config.warn_section_align
5760 || os->addr_tree != NULL))
5761 einfo (_("%P: warning: "
5762 "start of section %s changed by %ld\n"),
5763 os->name, (long) diff);
5764 }
5765
5766 bfd_set_section_vma (os->bfd_section, newdot);
5767
5768 os->bfd_section->output_offset = 0;
5769 }
5770
5771 lang_size_sections_1 (&os->children.head, os,
5772 os->fill, newdot, relax, check_regions);
5773
5774 os->processed_vma = TRUE;
5775
5776 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5777 /* Except for some special linker created sections,
5778 no output section should change from zero size
5779 after strip_excluded_output_sections. A non-zero
5780 size on an ignored section indicates that some
5781 input section was not sized early enough. */
5782 ASSERT (os->bfd_section->size == 0);
5783 else
5784 {
5785 dot = os->bfd_section->vma;
5786
5787 /* Put the section within the requested block size, or
5788 align at the block boundary. */
5789 after = ((dot
5790 + TO_ADDR (os->bfd_section->size)
5791 + os->block_value - 1)
5792 & - (bfd_vma) os->block_value);
5793
5794 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5795 os->bfd_section->size = TO_SIZE (after
5796 - os->bfd_section->vma);
5797 }
5798
5799 /* Set section lma. */
5800 r = os->region;
5801 if (r == NULL)
5802 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5803
5804 if (os->load_base)
5805 {
5806 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5807 os->bfd_section->lma = lma;
5808 }
5809 else if (os->lma_region != NULL)
5810 {
5811 bfd_vma lma = os->lma_region->current;
5812
5813 if (os->align_lma_with_input)
5814 lma += dotdelta;
5815 else
5816 {
5817 /* When LMA_REGION is the same as REGION, align the LMA
5818 as we did for the VMA, possibly including alignment
5819 from the bfd section. If a different region, then
5820 only align according to the value in the output
5821 statement. */
5822 if (os->lma_region != os->region)
5823 section_alignment = exp_get_power (os->section_alignment,
5824 "section alignment");
5825 if (section_alignment > 0)
5826 lma = align_power (lma, section_alignment);
5827 }
5828 os->bfd_section->lma = lma;
5829 }
5830 else if (r->last_os != NULL
5831 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5832 {
5833 bfd_vma lma;
5834 asection *last;
5835
5836 last = r->last_os->output_section_statement.bfd_section;
5837
5838 /* A backwards move of dot should be accompanied by
5839 an explicit assignment to the section LMA (ie.
5840 os->load_base set) because backwards moves can
5841 create overlapping LMAs. */
5842 if (dot < last->vma
5843 && os->bfd_section->size != 0
5844 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5845 {
5846 /* If dot moved backwards then leave lma equal to
5847 vma. This is the old default lma, which might
5848 just happen to work when the backwards move is
5849 sufficiently large. Nag if this changes anything,
5850 so people can fix their linker scripts. */
5851
5852 if (last->vma != last->lma)
5853 einfo (_("%P: warning: dot moved backwards "
5854 "before `%s'\n"), os->name);
5855 }
5856 else
5857 {
5858 /* If this is an overlay, set the current lma to that
5859 at the end of the previous section. */
5860 if (os->sectype == overlay_section)
5861 lma = last->lma + TO_ADDR (last->size);
5862
5863 /* Otherwise, keep the same lma to vma relationship
5864 as the previous section. */
5865 else
5866 lma = os->bfd_section->vma + last->lma - last->vma;
5867
5868 if (section_alignment > 0)
5869 lma = align_power (lma, section_alignment);
5870 os->bfd_section->lma = lma;
5871 }
5872 }
5873 os->processed_lma = TRUE;
5874
5875 /* Keep track of normal sections using the default
5876 lma region. We use this to set the lma for
5877 following sections. Overlays or other linker
5878 script assignment to lma might mean that the
5879 default lma == vma is incorrect.
5880 To avoid warnings about dot moving backwards when using
5881 -Ttext, don't start tracking sections until we find one
5882 of non-zero size or with lma set differently to vma.
5883 Do this tracking before we short-cut the loop so that we
5884 track changes for the case where the section size is zero,
5885 but the lma is set differently to the vma. This is
5886 important, if an orphan section is placed after an
5887 otherwise empty output section that has an explicit lma
5888 set, we want that lma reflected in the orphans lma. */
5889 if (((!IGNORE_SECTION (os->bfd_section)
5890 && (os->bfd_section->size != 0
5891 || (r->last_os == NULL
5892 && os->bfd_section->vma != os->bfd_section->lma)
5893 || (r->last_os != NULL
5894 && dot >= (r->last_os->output_section_statement
5895 .bfd_section->vma))))
5896 || os->sectype == first_overlay_section)
5897 && os->lma_region == NULL
5898 && !bfd_link_relocatable (&link_info))
5899 r->last_os = s;
5900
5901 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5902 break;
5903
5904 /* .tbss sections effectively have zero size. */
5905 if (!IS_TBSS (os->bfd_section)
5906 || bfd_link_relocatable (&link_info))
5907 dotdelta = TO_ADDR (os->bfd_section->size);
5908 else
5909 dotdelta = 0;
5910 dot += dotdelta;
5911
5912 if (os->update_dot_tree != 0)
5913 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5914
5915 /* Update dot in the region ?
5916 We only do this if the section is going to be allocated,
5917 since unallocated sections do not contribute to the region's
5918 overall size in memory. */
5919 if (os->region != NULL
5920 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5921 {
5922 os->region->current = dot;
5923
5924 if (check_regions)
5925 /* Make sure the new address is within the region. */
5926 os_region_check (os, os->region, os->addr_tree,
5927 os->bfd_section->vma);
5928
5929 if (os->lma_region != NULL && os->lma_region != os->region
5930 && ((os->bfd_section->flags & SEC_LOAD)
5931 || os->align_lma_with_input))
5932 {
5933 os->lma_region->current = os->bfd_section->lma + dotdelta;
5934
5935 if (check_regions)
5936 os_region_check (os, os->lma_region, NULL,
5937 os->bfd_section->lma);
5938 }
5939 }
5940 }
5941 break;
5942
5943 case lang_constructors_statement_enum:
5944 dot = lang_size_sections_1 (&constructor_list.head,
5945 output_section_statement,
5946 fill, dot, relax, check_regions);
5947 break;
5948
5949 case lang_data_statement_enum:
5950 {
5951 unsigned int size = 0;
5952
5953 s->data_statement.output_offset =
5954 dot - output_section_statement->bfd_section->vma;
5955 s->data_statement.output_section =
5956 output_section_statement->bfd_section;
5957
5958 /* We might refer to provided symbols in the expression, and
5959 need to mark them as needed. */
5960 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5961
5962 switch (s->data_statement.type)
5963 {
5964 default:
5965 abort ();
5966 case QUAD:
5967 case SQUAD:
5968 size = QUAD_SIZE;
5969 break;
5970 case LONG:
5971 size = LONG_SIZE;
5972 break;
5973 case SHORT:
5974 size = SHORT_SIZE;
5975 break;
5976 case BYTE:
5977 size = BYTE_SIZE;
5978 break;
5979 }
5980 if (size < TO_SIZE ((unsigned) 1))
5981 size = TO_SIZE ((unsigned) 1);
5982 dot += TO_ADDR (size);
5983 if (!(output_section_statement->bfd_section->flags
5984 & SEC_FIXED_SIZE))
5985 output_section_statement->bfd_section->size
5986 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5987
5988 }
5989 break;
5990
5991 case lang_reloc_statement_enum:
5992 {
5993 int size;
5994
5995 s->reloc_statement.output_offset =
5996 dot - output_section_statement->bfd_section->vma;
5997 s->reloc_statement.output_section =
5998 output_section_statement->bfd_section;
5999 size = bfd_get_reloc_size (s->reloc_statement.howto);
6000 dot += TO_ADDR (size);
6001 if (!(output_section_statement->bfd_section->flags
6002 & SEC_FIXED_SIZE))
6003 output_section_statement->bfd_section->size
6004 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6005 }
6006 break;
6007
6008 case lang_wild_statement_enum:
6009 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6010 output_section_statement,
6011 fill, dot, relax, check_regions);
6012 break;
6013
6014 case lang_object_symbols_statement_enum:
6015 link_info.create_object_symbols_section
6016 = output_section_statement->bfd_section;
6017 output_section_statement->bfd_section->flags |= SEC_KEEP;
6018 break;
6019
6020 case lang_output_statement_enum:
6021 case lang_target_statement_enum:
6022 break;
6023
6024 case lang_input_section_enum:
6025 {
6026 asection *i;
6027
6028 i = s->input_section.section;
6029 if (relax)
6030 {
6031 bfd_boolean again;
6032
6033 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6034 einfo (_("%F%P: can't relax section: %E\n"));
6035 if (again)
6036 *relax = TRUE;
6037 }
6038 dot = size_input_section (prev, output_section_statement,
6039 fill, &removed, dot);
6040 }
6041 break;
6042
6043 case lang_input_statement_enum:
6044 break;
6045
6046 case lang_fill_statement_enum:
6047 s->fill_statement.output_section =
6048 output_section_statement->bfd_section;
6049
6050 fill = s->fill_statement.fill;
6051 break;
6052
6053 case lang_assignment_statement_enum:
6054 {
6055 bfd_vma newdot = dot;
6056 etree_type *tree = s->assignment_statement.exp;
6057
6058 expld.dataseg.relro = exp_seg_relro_none;
6059
6060 exp_fold_tree (tree,
6061 output_section_statement->bfd_section,
6062 &newdot);
6063
6064 ldlang_check_relro_region (s, &expld.dataseg);
6065
6066 expld.dataseg.relro = exp_seg_relro_none;
6067
6068 /* This symbol may be relative to this section. */
6069 if ((tree->type.node_class == etree_provided
6070 || tree->type.node_class == etree_assign)
6071 && (tree->assign.dst [0] != '.'
6072 || tree->assign.dst [1] != '\0'))
6073 output_section_statement->update_dot = 1;
6074
6075 if (!output_section_statement->ignored)
6076 {
6077 if (output_section_statement == abs_output_section)
6078 {
6079 /* If we don't have an output section, then just adjust
6080 the default memory address. */
6081 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6082 FALSE)->current = newdot;
6083 }
6084 else if (newdot != dot)
6085 {
6086 /* Insert a pad after this statement. We can't
6087 put the pad before when relaxing, in case the
6088 assignment references dot. */
6089 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6090 output_section_statement->bfd_section, dot);
6091
6092 /* Don't neuter the pad below when relaxing. */
6093 s = s->header.next;
6094
6095 /* If dot is advanced, this implies that the section
6096 should have space allocated to it, unless the
6097 user has explicitly stated that the section
6098 should not be allocated. */
6099 if (output_section_statement->sectype != noalloc_section
6100 && (output_section_statement->sectype != noload_section
6101 || (bfd_get_flavour (link_info.output_bfd)
6102 == bfd_target_elf_flavour)))
6103 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6104 }
6105 dot = newdot;
6106 }
6107 }
6108 break;
6109
6110 case lang_padding_statement_enum:
6111 /* If this is the first time lang_size_sections is called,
6112 we won't have any padding statements. If this is the
6113 second or later passes when relaxing, we should allow
6114 padding to shrink. If padding is needed on this pass, it
6115 will be added back in. */
6116 s->padding_statement.size = 0;
6117
6118 /* Make sure output_offset is valid. If relaxation shrinks
6119 the section and this pad isn't needed, it's possible to
6120 have output_offset larger than the final size of the
6121 section. bfd_set_section_contents will complain even for
6122 a pad size of zero. */
6123 s->padding_statement.output_offset
6124 = dot - output_section_statement->bfd_section->vma;
6125 break;
6126
6127 case lang_group_statement_enum:
6128 dot = lang_size_sections_1 (&s->group_statement.children.head,
6129 output_section_statement,
6130 fill, dot, relax, check_regions);
6131 break;
6132
6133 case lang_insert_statement_enum:
6134 break;
6135
6136 /* We can only get here when relaxing is turned on. */
6137 case lang_address_statement_enum:
6138 break;
6139
6140 default:
6141 FAIL ();
6142 break;
6143 }
6144
6145 /* If an input section doesn't fit in the current output
6146 section, remove it from the list. Handle the case where we
6147 have to remove an input_section statement here: there is a
6148 special case to remove the first element of the list. */
6149 if (link_info.non_contiguous_regions && removed)
6150 {
6151 /* If we removed the first element during the previous
6152 iteration, override the loop assignment of prev_s. */
6153 if (removed_prev_s)
6154 prev_s = NULL;
6155
6156 if (prev_s)
6157 {
6158 /* If there was a real previous input section, just skip
6159 the current one. */
6160 prev_s->header.next=s->header.next;
6161 s = prev_s;
6162 removed_prev_s = FALSE;
6163 }
6164 else
6165 {
6166 /* Remove the first input section of the list. */
6167 *prev = s->header.next;
6168 removed_prev_s = TRUE;
6169 }
6170
6171 /* Move to next element, unless we removed the head of the
6172 list. */
6173 if (!removed_prev_s)
6174 prev = &s->header.next;
6175 }
6176 else
6177 {
6178 prev = &s->header.next;
6179 removed_prev_s = FALSE;
6180 }
6181 }
6182 return dot;
6183 }
6184
6185 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6186 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6187 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6188 segments. We are allowed an opportunity to override this decision. */
6189
6190 bfd_boolean
6191 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6192 bfd *abfd ATTRIBUTE_UNUSED,
6193 asection *current_section,
6194 asection *previous_section,
6195 bfd_boolean new_segment)
6196 {
6197 lang_output_section_statement_type *cur;
6198 lang_output_section_statement_type *prev;
6199
6200 /* The checks below are only necessary when the BFD library has decided
6201 that the two sections ought to be placed into the same segment. */
6202 if (new_segment)
6203 return TRUE;
6204
6205 /* Paranoia checks. */
6206 if (current_section == NULL || previous_section == NULL)
6207 return new_segment;
6208
6209 /* If this flag is set, the target never wants code and non-code
6210 sections comingled in the same segment. */
6211 if (config.separate_code
6212 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6213 return TRUE;
6214
6215 /* Find the memory regions associated with the two sections.
6216 We call lang_output_section_find() here rather than scanning the list
6217 of output sections looking for a matching section pointer because if
6218 we have a large number of sections then a hash lookup is faster. */
6219 cur = lang_output_section_find (current_section->name);
6220 prev = lang_output_section_find (previous_section->name);
6221
6222 /* More paranoia. */
6223 if (cur == NULL || prev == NULL)
6224 return new_segment;
6225
6226 /* If the regions are different then force the sections to live in
6227 different segments. See the email thread starting at the following
6228 URL for the reasons why this is necessary:
6229 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6230 return cur->region != prev->region;
6231 }
6232
6233 void
6234 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6235 {
6236 lang_statement_iteration++;
6237 if (expld.phase != lang_mark_phase_enum)
6238 lang_sizing_iteration++;
6239 lang_size_sections_1 (&statement_list.head, abs_output_section,
6240 0, 0, relax, check_regions);
6241 }
6242
6243 static bfd_boolean
6244 lang_size_segment (seg_align_type *seg)
6245 {
6246 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6247 a page could be saved in the data segment. */
6248 bfd_vma first, last;
6249
6250 first = -seg->base & (seg->pagesize - 1);
6251 last = seg->end & (seg->pagesize - 1);
6252 if (first && last
6253 && ((seg->base & ~(seg->pagesize - 1))
6254 != (seg->end & ~(seg->pagesize - 1)))
6255 && first + last <= seg->pagesize)
6256 {
6257 seg->phase = exp_seg_adjust;
6258 return TRUE;
6259 }
6260
6261 seg->phase = exp_seg_done;
6262 return FALSE;
6263 }
6264
6265 static bfd_vma
6266 lang_size_relro_segment_1 (seg_align_type *seg)
6267 {
6268 bfd_vma relro_end, desired_end;
6269 asection *sec;
6270
6271 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6272 relro_end = ((seg->relro_end + seg->pagesize - 1)
6273 & ~(seg->pagesize - 1));
6274
6275 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6276 desired_end = relro_end - seg->relro_offset;
6277
6278 /* For sections in the relro segment.. */
6279 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6280 if ((sec->flags & SEC_ALLOC) != 0
6281 && sec->vma >= seg->base
6282 && sec->vma < seg->relro_end - seg->relro_offset)
6283 {
6284 /* Where do we want to put this section so that it ends as
6285 desired? */
6286 bfd_vma start, end, bump;
6287
6288 end = start = sec->vma;
6289 if (!IS_TBSS (sec))
6290 end += TO_ADDR (sec->size);
6291 bump = desired_end - end;
6292 /* We'd like to increase START by BUMP, but we must heed
6293 alignment so the increase might be less than optimum. */
6294 start += bump;
6295 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6296 /* This is now the desired end for the previous section. */
6297 desired_end = start;
6298 }
6299
6300 seg->phase = exp_seg_relro_adjust;
6301 ASSERT (desired_end >= seg->base);
6302 seg->base = desired_end;
6303 return relro_end;
6304 }
6305
6306 static bfd_boolean
6307 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6308 {
6309 bfd_boolean do_reset = FALSE;
6310 bfd_boolean do_data_relro;
6311 bfd_vma data_initial_base, data_relro_end;
6312
6313 if (link_info.relro && expld.dataseg.relro_end)
6314 {
6315 do_data_relro = TRUE;
6316 data_initial_base = expld.dataseg.base;
6317 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6318 }
6319 else
6320 {
6321 do_data_relro = FALSE;
6322 data_initial_base = data_relro_end = 0;
6323 }
6324
6325 if (do_data_relro)
6326 {
6327 lang_reset_memory_regions ();
6328 one_lang_size_sections_pass (relax, check_regions);
6329
6330 /* Assignments to dot, or to output section address in a user
6331 script have increased padding over the original. Revert. */
6332 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6333 {
6334 expld.dataseg.base = data_initial_base;;
6335 do_reset = TRUE;
6336 }
6337 }
6338
6339 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6340 do_reset = TRUE;
6341
6342 return do_reset;
6343 }
6344
6345 void
6346 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6347 {
6348 expld.phase = lang_allocating_phase_enum;
6349 expld.dataseg.phase = exp_seg_none;
6350
6351 one_lang_size_sections_pass (relax, check_regions);
6352
6353 if (expld.dataseg.phase != exp_seg_end_seen)
6354 expld.dataseg.phase = exp_seg_done;
6355
6356 if (expld.dataseg.phase == exp_seg_end_seen)
6357 {
6358 bfd_boolean do_reset
6359 = lang_size_relro_segment (relax, check_regions);
6360
6361 if (do_reset)
6362 {
6363 lang_reset_memory_regions ();
6364 one_lang_size_sections_pass (relax, check_regions);
6365 }
6366
6367 if (link_info.relro && expld.dataseg.relro_end)
6368 {
6369 link_info.relro_start = expld.dataseg.base;
6370 link_info.relro_end = expld.dataseg.relro_end;
6371 }
6372 }
6373 }
6374
6375 static lang_output_section_statement_type *current_section;
6376 static lang_assignment_statement_type *current_assign;
6377 static bfd_boolean prefer_next_section;
6378
6379 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6380
6381 static bfd_vma
6382 lang_do_assignments_1 (lang_statement_union_type *s,
6383 lang_output_section_statement_type *current_os,
6384 fill_type *fill,
6385 bfd_vma dot,
6386 bfd_boolean *found_end)
6387 {
6388 for (; s != NULL; s = s->header.next)
6389 {
6390 switch (s->header.type)
6391 {
6392 case lang_constructors_statement_enum:
6393 dot = lang_do_assignments_1 (constructor_list.head,
6394 current_os, fill, dot, found_end);
6395 break;
6396
6397 case lang_output_section_statement_enum:
6398 {
6399 lang_output_section_statement_type *os;
6400 bfd_vma newdot;
6401
6402 os = &(s->output_section_statement);
6403 os->after_end = *found_end;
6404 init_opb (os->bfd_section);
6405 if (os->bfd_section != NULL && !os->ignored)
6406 {
6407 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6408 {
6409 current_section = os;
6410 prefer_next_section = FALSE;
6411 }
6412 dot = os->bfd_section->vma;
6413 }
6414 newdot = lang_do_assignments_1 (os->children.head,
6415 os, os->fill, dot, found_end);
6416 if (!os->ignored)
6417 {
6418 if (os->bfd_section != NULL)
6419 {
6420 /* .tbss sections effectively have zero size. */
6421 if (!IS_TBSS (os->bfd_section)
6422 || bfd_link_relocatable (&link_info))
6423 dot += TO_ADDR (os->bfd_section->size);
6424
6425 if (os->update_dot_tree != NULL)
6426 exp_fold_tree (os->update_dot_tree,
6427 bfd_abs_section_ptr, &dot);
6428 }
6429 else
6430 dot = newdot;
6431 }
6432 }
6433 break;
6434
6435 case lang_wild_statement_enum:
6436
6437 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6438 current_os, fill, dot, found_end);
6439 break;
6440
6441 case lang_object_symbols_statement_enum:
6442 case lang_output_statement_enum:
6443 case lang_target_statement_enum:
6444 break;
6445
6446 case lang_data_statement_enum:
6447 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6448 if (expld.result.valid_p)
6449 {
6450 s->data_statement.value = expld.result.value;
6451 if (expld.result.section != NULL)
6452 s->data_statement.value += expld.result.section->vma;
6453 }
6454 else if (expld.phase == lang_final_phase_enum)
6455 einfo (_("%F%P: invalid data statement\n"));
6456 {
6457 unsigned int size;
6458 switch (s->data_statement.type)
6459 {
6460 default:
6461 abort ();
6462 case QUAD:
6463 case SQUAD:
6464 size = QUAD_SIZE;
6465 break;
6466 case LONG:
6467 size = LONG_SIZE;
6468 break;
6469 case SHORT:
6470 size = SHORT_SIZE;
6471 break;
6472 case BYTE:
6473 size = BYTE_SIZE;
6474 break;
6475 }
6476 if (size < TO_SIZE ((unsigned) 1))
6477 size = TO_SIZE ((unsigned) 1);
6478 dot += TO_ADDR (size);
6479 }
6480 break;
6481
6482 case lang_reloc_statement_enum:
6483 exp_fold_tree (s->reloc_statement.addend_exp,
6484 bfd_abs_section_ptr, &dot);
6485 if (expld.result.valid_p)
6486 s->reloc_statement.addend_value = expld.result.value;
6487 else if (expld.phase == lang_final_phase_enum)
6488 einfo (_("%F%P: invalid reloc statement\n"));
6489 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6490 break;
6491
6492 case lang_input_section_enum:
6493 {
6494 asection *in = s->input_section.section;
6495
6496 if ((in->flags & SEC_EXCLUDE) == 0)
6497 dot += TO_ADDR (in->size);
6498 }
6499 break;
6500
6501 case lang_input_statement_enum:
6502 break;
6503
6504 case lang_fill_statement_enum:
6505 fill = s->fill_statement.fill;
6506 break;
6507
6508 case lang_assignment_statement_enum:
6509 current_assign = &s->assignment_statement;
6510 if (current_assign->exp->type.node_class != etree_assert)
6511 {
6512 const char *p = current_assign->exp->assign.dst;
6513
6514 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6515 prefer_next_section = TRUE;
6516
6517 while (*p == '_')
6518 ++p;
6519 if (strcmp (p, "end") == 0)
6520 *found_end = TRUE;
6521 }
6522 exp_fold_tree (s->assignment_statement.exp,
6523 (current_os->bfd_section != NULL
6524 ? current_os->bfd_section : bfd_und_section_ptr),
6525 &dot);
6526 break;
6527
6528 case lang_padding_statement_enum:
6529 dot += TO_ADDR (s->padding_statement.size);
6530 break;
6531
6532 case lang_group_statement_enum:
6533 dot = lang_do_assignments_1 (s->group_statement.children.head,
6534 current_os, fill, dot, found_end);
6535 break;
6536
6537 case lang_insert_statement_enum:
6538 break;
6539
6540 case lang_address_statement_enum:
6541 break;
6542
6543 default:
6544 FAIL ();
6545 break;
6546 }
6547 }
6548 return dot;
6549 }
6550
6551 void
6552 lang_do_assignments (lang_phase_type phase)
6553 {
6554 bfd_boolean found_end = FALSE;
6555
6556 current_section = NULL;
6557 prefer_next_section = FALSE;
6558 expld.phase = phase;
6559 lang_statement_iteration++;
6560 lang_do_assignments_1 (statement_list.head,
6561 abs_output_section, NULL, 0, &found_end);
6562 }
6563
6564 /* For an assignment statement outside of an output section statement,
6565 choose the best of neighbouring output sections to use for values
6566 of "dot". */
6567
6568 asection *
6569 section_for_dot (void)
6570 {
6571 asection *s;
6572
6573 /* Assignments belong to the previous output section, unless there
6574 has been an assignment to "dot", in which case following
6575 assignments belong to the next output section. (The assumption
6576 is that an assignment to "dot" is setting up the address for the
6577 next output section.) Except that past the assignment to "_end"
6578 we always associate with the previous section. This exception is
6579 for targets like SH that define an alloc .stack or other
6580 weirdness after non-alloc sections. */
6581 if (current_section == NULL || prefer_next_section)
6582 {
6583 lang_statement_union_type *stmt;
6584 lang_output_section_statement_type *os;
6585
6586 for (stmt = (lang_statement_union_type *) current_assign;
6587 stmt != NULL;
6588 stmt = stmt->header.next)
6589 if (stmt->header.type == lang_output_section_statement_enum)
6590 break;
6591
6592 os = &stmt->output_section_statement;
6593 while (os != NULL
6594 && !os->after_end
6595 && (os->bfd_section == NULL
6596 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6597 || bfd_section_removed_from_list (link_info.output_bfd,
6598 os->bfd_section)))
6599 os = os->next;
6600
6601 if (current_section == NULL || os == NULL || !os->after_end)
6602 {
6603 if (os != NULL)
6604 s = os->bfd_section;
6605 else
6606 s = link_info.output_bfd->section_last;
6607 while (s != NULL
6608 && ((s->flags & SEC_ALLOC) == 0
6609 || (s->flags & SEC_THREAD_LOCAL) != 0))
6610 s = s->prev;
6611 if (s != NULL)
6612 return s;
6613
6614 return bfd_abs_section_ptr;
6615 }
6616 }
6617
6618 s = current_section->bfd_section;
6619
6620 /* The section may have been stripped. */
6621 while (s != NULL
6622 && ((s->flags & SEC_EXCLUDE) != 0
6623 || (s->flags & SEC_ALLOC) == 0
6624 || (s->flags & SEC_THREAD_LOCAL) != 0
6625 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6626 s = s->prev;
6627 if (s == NULL)
6628 s = link_info.output_bfd->sections;
6629 while (s != NULL
6630 && ((s->flags & SEC_ALLOC) == 0
6631 || (s->flags & SEC_THREAD_LOCAL) != 0))
6632 s = s->next;
6633 if (s != NULL)
6634 return s;
6635
6636 return bfd_abs_section_ptr;
6637 }
6638
6639 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6640
6641 static struct bfd_link_hash_entry **start_stop_syms;
6642 static size_t start_stop_count = 0;
6643 static size_t start_stop_alloc = 0;
6644
6645 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6646 to start_stop_syms. */
6647
6648 static void
6649 lang_define_start_stop (const char *symbol, asection *sec)
6650 {
6651 struct bfd_link_hash_entry *h;
6652
6653 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6654 if (h != NULL)
6655 {
6656 if (start_stop_count == start_stop_alloc)
6657 {
6658 start_stop_alloc = 2 * start_stop_alloc + 10;
6659 start_stop_syms
6660 = xrealloc (start_stop_syms,
6661 start_stop_alloc * sizeof (*start_stop_syms));
6662 }
6663 start_stop_syms[start_stop_count++] = h;
6664 }
6665 }
6666
6667 /* Check for input sections whose names match references to
6668 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6669 preliminary definitions. */
6670
6671 static void
6672 lang_init_start_stop (void)
6673 {
6674 bfd *abfd;
6675 asection *s;
6676 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6677
6678 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6679 for (s = abfd->sections; s != NULL; s = s->next)
6680 {
6681 const char *ps;
6682 const char *secname = s->name;
6683
6684 for (ps = secname; *ps != '\0'; ps++)
6685 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6686 break;
6687 if (*ps == '\0')
6688 {
6689 char *symbol = (char *) xmalloc (10 + strlen (secname));
6690
6691 symbol[0] = leading_char;
6692 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6693 lang_define_start_stop (symbol, s);
6694
6695 symbol[1] = leading_char;
6696 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6697 lang_define_start_stop (symbol + 1, s);
6698
6699 free (symbol);
6700 }
6701 }
6702 }
6703
6704 /* Iterate over start_stop_syms. */
6705
6706 static void
6707 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6708 {
6709 size_t i;
6710
6711 for (i = 0; i < start_stop_count; ++i)
6712 func (start_stop_syms[i]);
6713 }
6714
6715 /* __start and __stop symbols are only supposed to be defined by the
6716 linker for orphan sections, but we now extend that to sections that
6717 map to an output section of the same name. The symbols were
6718 defined early for --gc-sections, before we mapped input to output
6719 sections, so undo those that don't satisfy this rule. */
6720
6721 static void
6722 undef_start_stop (struct bfd_link_hash_entry *h)
6723 {
6724 if (h->ldscript_def)
6725 return;
6726
6727 if (h->u.def.section->output_section == NULL
6728 || h->u.def.section->output_section->owner != link_info.output_bfd
6729 || strcmp (h->u.def.section->name,
6730 h->u.def.section->output_section->name) != 0)
6731 {
6732 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6733 h->u.def.section->name);
6734 if (sec != NULL)
6735 {
6736 /* When there are more than one input sections with the same
6737 section name, SECNAME, linker picks the first one to define
6738 __start_SECNAME and __stop_SECNAME symbols. When the first
6739 input section is removed by comdat group, we need to check
6740 if there is still an output section with section name
6741 SECNAME. */
6742 asection *i;
6743 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6744 if (strcmp (h->u.def.section->name, i->name) == 0)
6745 {
6746 h->u.def.section = i;
6747 return;
6748 }
6749 }
6750 h->type = bfd_link_hash_undefined;
6751 h->u.undef.abfd = NULL;
6752 }
6753 }
6754
6755 static void
6756 lang_undef_start_stop (void)
6757 {
6758 foreach_start_stop (undef_start_stop);
6759 }
6760
6761 /* Check for output sections whose names match references to
6762 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6763 preliminary definitions. */
6764
6765 static void
6766 lang_init_startof_sizeof (void)
6767 {
6768 asection *s;
6769
6770 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6771 {
6772 const char *secname = s->name;
6773 char *symbol = (char *) xmalloc (10 + strlen (secname));
6774
6775 sprintf (symbol, ".startof.%s", secname);
6776 lang_define_start_stop (symbol, s);
6777
6778 memcpy (symbol + 1, ".size", 5);
6779 lang_define_start_stop (symbol + 1, s);
6780 free (symbol);
6781 }
6782 }
6783
6784 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6785
6786 static void
6787 set_start_stop (struct bfd_link_hash_entry *h)
6788 {
6789 if (h->ldscript_def
6790 || h->type != bfd_link_hash_defined)
6791 return;
6792
6793 if (h->root.string[0] == '.')
6794 {
6795 /* .startof. or .sizeof. symbol.
6796 .startof. already has final value. */
6797 if (h->root.string[2] == 'i')
6798 {
6799 /* .sizeof. */
6800 h->u.def.value = TO_ADDR (h->u.def.section->size);
6801 h->u.def.section = bfd_abs_section_ptr;
6802 }
6803 }
6804 else
6805 {
6806 /* __start or __stop symbol. */
6807 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6808
6809 h->u.def.section = h->u.def.section->output_section;
6810 if (h->root.string[4 + has_lead] == 'o')
6811 {
6812 /* __stop_ */
6813 h->u.def.value = TO_ADDR (h->u.def.section->size);
6814 }
6815 }
6816 }
6817
6818 static void
6819 lang_finalize_start_stop (void)
6820 {
6821 foreach_start_stop (set_start_stop);
6822 }
6823
6824 static void
6825 lang_end (void)
6826 {
6827 struct bfd_link_hash_entry *h;
6828 bfd_boolean warn;
6829
6830 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6831 || bfd_link_dll (&link_info))
6832 warn = entry_from_cmdline;
6833 else
6834 warn = TRUE;
6835
6836 /* Force the user to specify a root when generating a relocatable with
6837 --gc-sections, unless --gc-keep-exported was also given. */
6838 if (bfd_link_relocatable (&link_info)
6839 && link_info.gc_sections
6840 && !link_info.gc_keep_exported)
6841 {
6842 struct bfd_sym_chain *sym;
6843
6844 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6845 {
6846 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6847 FALSE, FALSE, FALSE);
6848 if (h != NULL
6849 && (h->type == bfd_link_hash_defined
6850 || h->type == bfd_link_hash_defweak)
6851 && !bfd_is_const_section (h->u.def.section))
6852 break;
6853 }
6854 if (!sym)
6855 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6856 "specified by -e or -u\n"));
6857 }
6858
6859 if (entry_symbol.name == NULL)
6860 {
6861 /* No entry has been specified. Look for the default entry, but
6862 don't warn if we don't find it. */
6863 entry_symbol.name = entry_symbol_default;
6864 warn = FALSE;
6865 }
6866
6867 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6868 FALSE, FALSE, TRUE);
6869 if (h != NULL
6870 && (h->type == bfd_link_hash_defined
6871 || h->type == bfd_link_hash_defweak)
6872 && h->u.def.section->output_section != NULL)
6873 {
6874 bfd_vma val;
6875
6876 val = (h->u.def.value
6877 + bfd_section_vma (h->u.def.section->output_section)
6878 + h->u.def.section->output_offset);
6879 if (!bfd_set_start_address (link_info.output_bfd, val))
6880 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6881 }
6882 else
6883 {
6884 bfd_vma val;
6885 const char *send;
6886
6887 /* We couldn't find the entry symbol. Try parsing it as a
6888 number. */
6889 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6890 if (*send == '\0')
6891 {
6892 if (!bfd_set_start_address (link_info.output_bfd, val))
6893 einfo (_("%F%P: can't set start address\n"));
6894 }
6895 else
6896 {
6897 asection *ts;
6898
6899 /* Can't find the entry symbol, and it's not a number. Use
6900 the first address in the text section. */
6901 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6902 if (ts != NULL)
6903 {
6904 if (warn)
6905 einfo (_("%P: warning: cannot find entry symbol %s;"
6906 " defaulting to %V\n"),
6907 entry_symbol.name,
6908 bfd_section_vma (ts));
6909 if (!bfd_set_start_address (link_info.output_bfd,
6910 bfd_section_vma (ts)))
6911 einfo (_("%F%P: can't set start address\n"));
6912 }
6913 else
6914 {
6915 if (warn)
6916 einfo (_("%P: warning: cannot find entry symbol %s;"
6917 " not setting start address\n"),
6918 entry_symbol.name);
6919 }
6920 }
6921 }
6922 }
6923
6924 /* This is a small function used when we want to ignore errors from
6925 BFD. */
6926
6927 static void
6928 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6929 va_list ap ATTRIBUTE_UNUSED)
6930 {
6931 /* Don't do anything. */
6932 }
6933
6934 /* Check that the architecture of all the input files is compatible
6935 with the output file. Also call the backend to let it do any
6936 other checking that is needed. */
6937
6938 static void
6939 lang_check (void)
6940 {
6941 lang_input_statement_type *file;
6942 bfd *input_bfd;
6943 const bfd_arch_info_type *compatible;
6944
6945 for (file = (void *) file_chain.head;
6946 file != NULL;
6947 file = file->next)
6948 {
6949 #if BFD_SUPPORTS_PLUGINS
6950 /* Don't check format of files claimed by plugin. */
6951 if (file->flags.claimed)
6952 continue;
6953 #endif /* BFD_SUPPORTS_PLUGINS */
6954 input_bfd = file->the_bfd;
6955 compatible
6956 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6957 command_line.accept_unknown_input_arch);
6958
6959 /* In general it is not possible to perform a relocatable
6960 link between differing object formats when the input
6961 file has relocations, because the relocations in the
6962 input format may not have equivalent representations in
6963 the output format (and besides BFD does not translate
6964 relocs for other link purposes than a final link). */
6965 if ((bfd_link_relocatable (&link_info)
6966 || link_info.emitrelocations)
6967 && (compatible == NULL
6968 || (bfd_get_flavour (input_bfd)
6969 != bfd_get_flavour (link_info.output_bfd)))
6970 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6971 {
6972 einfo (_("%F%P: relocatable linking with relocations from"
6973 " format %s (%pB) to format %s (%pB) is not supported\n"),
6974 bfd_get_target (input_bfd), input_bfd,
6975 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6976 /* einfo with %F exits. */
6977 }
6978
6979 if (compatible == NULL)
6980 {
6981 if (command_line.warn_mismatch)
6982 einfo (_("%X%P: %s architecture of input file `%pB'"
6983 " is incompatible with %s output\n"),
6984 bfd_printable_name (input_bfd), input_bfd,
6985 bfd_printable_name (link_info.output_bfd));
6986 }
6987
6988 /* If the input bfd has no contents, it shouldn't set the
6989 private data of the output bfd. */
6990 else if ((input_bfd->flags & DYNAMIC) != 0
6991 || bfd_count_sections (input_bfd) != 0)
6992 {
6993 bfd_error_handler_type pfn = NULL;
6994
6995 /* If we aren't supposed to warn about mismatched input
6996 files, temporarily set the BFD error handler to a
6997 function which will do nothing. We still want to call
6998 bfd_merge_private_bfd_data, since it may set up
6999 information which is needed in the output file. */
7000 if (!command_line.warn_mismatch)
7001 pfn = bfd_set_error_handler (ignore_bfd_errors);
7002 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7003 {
7004 if (command_line.warn_mismatch)
7005 einfo (_("%X%P: failed to merge target specific data"
7006 " of file %pB\n"), input_bfd);
7007 }
7008 if (!command_line.warn_mismatch)
7009 bfd_set_error_handler (pfn);
7010 }
7011 }
7012 }
7013
7014 /* Look through all the global common symbols and attach them to the
7015 correct section. The -sort-common command line switch may be used
7016 to roughly sort the entries by alignment. */
7017
7018 static void
7019 lang_common (void)
7020 {
7021 if (link_info.inhibit_common_definition)
7022 return;
7023 if (bfd_link_relocatable (&link_info)
7024 && !command_line.force_common_definition)
7025 return;
7026
7027 if (!config.sort_common)
7028 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7029 else
7030 {
7031 unsigned int power;
7032
7033 if (config.sort_common == sort_descending)
7034 {
7035 for (power = 4; power > 0; power--)
7036 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7037
7038 power = 0;
7039 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7040 }
7041 else
7042 {
7043 for (power = 0; power <= 4; power++)
7044 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7045
7046 power = (unsigned int) -1;
7047 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7048 }
7049 }
7050 }
7051
7052 /* Place one common symbol in the correct section. */
7053
7054 static bfd_boolean
7055 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7056 {
7057 unsigned int power_of_two;
7058 bfd_vma size;
7059 asection *section;
7060
7061 if (h->type != bfd_link_hash_common)
7062 return TRUE;
7063
7064 size = h->u.c.size;
7065 power_of_two = h->u.c.p->alignment_power;
7066
7067 if (config.sort_common == sort_descending
7068 && power_of_two < *(unsigned int *) info)
7069 return TRUE;
7070 else if (config.sort_common == sort_ascending
7071 && power_of_two > *(unsigned int *) info)
7072 return TRUE;
7073
7074 section = h->u.c.p->section;
7075 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7076 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7077 h->root.string);
7078
7079 if (config.map_file != NULL)
7080 {
7081 static bfd_boolean header_printed;
7082 int len;
7083 char *name;
7084 char buf[50];
7085
7086 if (!header_printed)
7087 {
7088 minfo (_("\nAllocating common symbols\n"));
7089 minfo (_("Common symbol size file\n\n"));
7090 header_printed = TRUE;
7091 }
7092
7093 name = bfd_demangle (link_info.output_bfd, h->root.string,
7094 DMGL_ANSI | DMGL_PARAMS);
7095 if (name == NULL)
7096 {
7097 minfo ("%s", h->root.string);
7098 len = strlen (h->root.string);
7099 }
7100 else
7101 {
7102 minfo ("%s", name);
7103 len = strlen (name);
7104 free (name);
7105 }
7106
7107 if (len >= 19)
7108 {
7109 print_nl ();
7110 len = 0;
7111 }
7112 while (len < 20)
7113 {
7114 print_space ();
7115 ++len;
7116 }
7117
7118 minfo ("0x");
7119 if (size <= 0xffffffff)
7120 sprintf (buf, "%lx", (unsigned long) size);
7121 else
7122 sprintf_vma (buf, size);
7123 minfo ("%s", buf);
7124 len = strlen (buf);
7125
7126 while (len < 16)
7127 {
7128 print_space ();
7129 ++len;
7130 }
7131
7132 minfo ("%pB\n", section->owner);
7133 }
7134
7135 return TRUE;
7136 }
7137
7138 /* Handle a single orphan section S, placing the orphan into an appropriate
7139 output section. The effects of the --orphan-handling command line
7140 option are handled here. */
7141
7142 static void
7143 ldlang_place_orphan (asection *s)
7144 {
7145 if (config.orphan_handling == orphan_handling_discard)
7146 {
7147 lang_output_section_statement_type *os;
7148 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
7149 TRUE);
7150 if (os->addr_tree == NULL
7151 && (bfd_link_relocatable (&link_info)
7152 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7153 os->addr_tree = exp_intop (0);
7154 lang_add_section (&os->children, s, NULL, os);
7155 }
7156 else
7157 {
7158 lang_output_section_statement_type *os;
7159 const char *name = s->name;
7160 int constraint = 0;
7161
7162 if (config.orphan_handling == orphan_handling_error)
7163 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7164 s, s->owner);
7165
7166 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7167 constraint = SPECIAL;
7168
7169 os = ldemul_place_orphan (s, name, constraint);
7170 if (os == NULL)
7171 {
7172 os = lang_output_section_statement_lookup (name, constraint, TRUE);
7173 if (os->addr_tree == NULL
7174 && (bfd_link_relocatable (&link_info)
7175 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7176 os->addr_tree = exp_intop (0);
7177 lang_add_section (&os->children, s, NULL, os);
7178 }
7179
7180 if (config.orphan_handling == orphan_handling_warn)
7181 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7182 "placed in section `%s'\n"),
7183 s, s->owner, os->name);
7184 }
7185 }
7186
7187 /* Run through the input files and ensure that every input section has
7188 somewhere to go. If one is found without a destination then create
7189 an input request and place it into the statement tree. */
7190
7191 static void
7192 lang_place_orphans (void)
7193 {
7194 LANG_FOR_EACH_INPUT_STATEMENT (file)
7195 {
7196 asection *s;
7197
7198 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7199 {
7200 if (s->output_section == NULL)
7201 {
7202 /* This section of the file is not attached, root
7203 around for a sensible place for it to go. */
7204
7205 if (file->flags.just_syms)
7206 bfd_link_just_syms (file->the_bfd, s, &link_info);
7207 else if (lang_discard_section_p (s))
7208 s->output_section = bfd_abs_section_ptr;
7209 else if (strcmp (s->name, "COMMON") == 0)
7210 {
7211 /* This is a lonely common section which must have
7212 come from an archive. We attach to the section
7213 with the wildcard. */
7214 if (!bfd_link_relocatable (&link_info)
7215 || command_line.force_common_definition)
7216 {
7217 if (default_common_section == NULL)
7218 default_common_section
7219 = lang_output_section_statement_lookup (".bss", 0,
7220 TRUE);
7221 lang_add_section (&default_common_section->children, s,
7222 NULL, default_common_section);
7223 }
7224 }
7225 else
7226 ldlang_place_orphan (s);
7227 }
7228 }
7229 }
7230 }
7231
7232 void
7233 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7234 {
7235 flagword *ptr_flags;
7236
7237 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7238
7239 while (*flags)
7240 {
7241 switch (*flags)
7242 {
7243 /* PR 17900: An exclamation mark in the attributes reverses
7244 the sense of any of the attributes that follow. */
7245 case '!':
7246 invert = !invert;
7247 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7248 break;
7249
7250 case 'A': case 'a':
7251 *ptr_flags |= SEC_ALLOC;
7252 break;
7253
7254 case 'R': case 'r':
7255 *ptr_flags |= SEC_READONLY;
7256 break;
7257
7258 case 'W': case 'w':
7259 *ptr_flags |= SEC_DATA;
7260 break;
7261
7262 case 'X': case 'x':
7263 *ptr_flags |= SEC_CODE;
7264 break;
7265
7266 case 'L': case 'l':
7267 case 'I': case 'i':
7268 *ptr_flags |= SEC_LOAD;
7269 break;
7270
7271 default:
7272 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7273 *flags, *flags);
7274 break;
7275 }
7276 flags++;
7277 }
7278 }
7279
7280 /* Call a function on each real input file. This function will be
7281 called on an archive, but not on the elements. */
7282
7283 void
7284 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7285 {
7286 lang_input_statement_type *f;
7287
7288 for (f = (void *) input_file_chain.head;
7289 f != NULL;
7290 f = f->next_real_file)
7291 if (f->flags.real)
7292 func (f);
7293 }
7294
7295 /* Call a function on each real file. The function will be called on
7296 all the elements of an archive which are included in the link, but
7297 will not be called on the archive file itself. */
7298
7299 void
7300 lang_for_each_file (void (*func) (lang_input_statement_type *))
7301 {
7302 LANG_FOR_EACH_INPUT_STATEMENT (f)
7303 {
7304 if (f->flags.real)
7305 func (f);
7306 }
7307 }
7308
7309 void
7310 ldlang_add_file (lang_input_statement_type *entry)
7311 {
7312 lang_statement_append (&file_chain, entry, &entry->next);
7313
7314 /* The BFD linker needs to have a list of all input BFDs involved in
7315 a link. */
7316 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7317 && entry->the_bfd->link.next == NULL);
7318 ASSERT (entry->the_bfd != link_info.output_bfd);
7319
7320 *link_info.input_bfds_tail = entry->the_bfd;
7321 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7322 bfd_set_usrdata (entry->the_bfd, entry);
7323 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7324
7325 /* Look through the sections and check for any which should not be
7326 included in the link. We need to do this now, so that we can
7327 notice when the backend linker tries to report multiple
7328 definition errors for symbols which are in sections we aren't
7329 going to link. FIXME: It might be better to entirely ignore
7330 symbols which are defined in sections which are going to be
7331 discarded. This would require modifying the backend linker for
7332 each backend which might set the SEC_LINK_ONCE flag. If we do
7333 this, we should probably handle SEC_EXCLUDE in the same way. */
7334
7335 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7336 }
7337
7338 void
7339 lang_add_output (const char *name, int from_script)
7340 {
7341 /* Make -o on command line override OUTPUT in script. */
7342 if (!had_output_filename || !from_script)
7343 {
7344 output_filename = name;
7345 had_output_filename = TRUE;
7346 }
7347 }
7348
7349 lang_output_section_statement_type *
7350 lang_enter_output_section_statement (const char *output_section_statement_name,
7351 etree_type *address_exp,
7352 enum section_type sectype,
7353 etree_type *align,
7354 etree_type *subalign,
7355 etree_type *ebase,
7356 int constraint,
7357 int align_with_input)
7358 {
7359 lang_output_section_statement_type *os;
7360
7361 os = lang_output_section_statement_lookup (output_section_statement_name,
7362 constraint, TRUE);
7363 current_section = os;
7364
7365 if (os->addr_tree == NULL)
7366 {
7367 os->addr_tree = address_exp;
7368 }
7369 os->sectype = sectype;
7370 if (sectype != noload_section)
7371 os->flags = SEC_NO_FLAGS;
7372 else
7373 os->flags = SEC_NEVER_LOAD;
7374 os->block_value = 1;
7375
7376 /* Make next things chain into subchain of this. */
7377 push_stat_ptr (&os->children);
7378
7379 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7380 if (os->align_lma_with_input && align != NULL)
7381 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7382 NULL);
7383
7384 os->subsection_alignment = subalign;
7385 os->section_alignment = align;
7386
7387 os->load_base = ebase;
7388 return os;
7389 }
7390
7391 void
7392 lang_final (void)
7393 {
7394 lang_output_statement_type *new_stmt;
7395
7396 new_stmt = new_stat (lang_output_statement, stat_ptr);
7397 new_stmt->name = output_filename;
7398 }
7399
7400 /* Reset the current counters in the regions. */
7401
7402 void
7403 lang_reset_memory_regions (void)
7404 {
7405 lang_memory_region_type *p = lang_memory_region_list;
7406 asection *o;
7407 lang_output_section_statement_type *os;
7408
7409 for (p = lang_memory_region_list; p != NULL; p = p->next)
7410 {
7411 p->current = p->origin;
7412 p->last_os = NULL;
7413 }
7414
7415 for (os = (void *) lang_os_list.head;
7416 os != NULL;
7417 os = os->next)
7418 {
7419 os->processed_vma = FALSE;
7420 os->processed_lma = FALSE;
7421 }
7422
7423 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7424 {
7425 /* Save the last size for possible use by bfd_relax_section. */
7426 o->rawsize = o->size;
7427 if (!(o->flags & SEC_FIXED_SIZE))
7428 o->size = 0;
7429 }
7430 }
7431
7432 /* Worker for lang_gc_sections_1. */
7433
7434 static void
7435 gc_section_callback (lang_wild_statement_type *ptr,
7436 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7437 asection *section,
7438 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7439 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7440 void *data ATTRIBUTE_UNUSED)
7441 {
7442 /* If the wild pattern was marked KEEP, the member sections
7443 should be as well. */
7444 if (ptr->keep_sections)
7445 section->flags |= SEC_KEEP;
7446 }
7447
7448 /* Iterate over sections marking them against GC. */
7449
7450 static void
7451 lang_gc_sections_1 (lang_statement_union_type *s)
7452 {
7453 for (; s != NULL; s = s->header.next)
7454 {
7455 switch (s->header.type)
7456 {
7457 case lang_wild_statement_enum:
7458 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7459 break;
7460 case lang_constructors_statement_enum:
7461 lang_gc_sections_1 (constructor_list.head);
7462 break;
7463 case lang_output_section_statement_enum:
7464 lang_gc_sections_1 (s->output_section_statement.children.head);
7465 break;
7466 case lang_group_statement_enum:
7467 lang_gc_sections_1 (s->group_statement.children.head);
7468 break;
7469 default:
7470 break;
7471 }
7472 }
7473 }
7474
7475 static void
7476 lang_gc_sections (void)
7477 {
7478 /* Keep all sections so marked in the link script. */
7479 lang_gc_sections_1 (statement_list.head);
7480
7481 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7482 the special case of debug info. (See bfd/stabs.c)
7483 Twiddle the flag here, to simplify later linker code. */
7484 if (bfd_link_relocatable (&link_info))
7485 {
7486 LANG_FOR_EACH_INPUT_STATEMENT (f)
7487 {
7488 asection *sec;
7489 #if BFD_SUPPORTS_PLUGINS
7490 if (f->flags.claimed)
7491 continue;
7492 #endif
7493 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7494 if ((sec->flags & SEC_DEBUGGING) == 0)
7495 sec->flags &= ~SEC_EXCLUDE;
7496 }
7497 }
7498
7499 if (link_info.gc_sections)
7500 bfd_gc_sections (link_info.output_bfd, &link_info);
7501 }
7502
7503 /* Worker for lang_find_relro_sections_1. */
7504
7505 static void
7506 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7507 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7508 asection *section,
7509 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7510 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7511 void *data)
7512 {
7513 /* Discarded, excluded and ignored sections effectively have zero
7514 size. */
7515 if (section->output_section != NULL
7516 && section->output_section->owner == link_info.output_bfd
7517 && (section->output_section->flags & SEC_EXCLUDE) == 0
7518 && !IGNORE_SECTION (section)
7519 && section->size != 0)
7520 {
7521 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7522 *has_relro_section = TRUE;
7523 }
7524 }
7525
7526 /* Iterate over sections for relro sections. */
7527
7528 static void
7529 lang_find_relro_sections_1 (lang_statement_union_type *s,
7530 seg_align_type *seg,
7531 bfd_boolean *has_relro_section)
7532 {
7533 if (*has_relro_section)
7534 return;
7535
7536 for (; s != NULL; s = s->header.next)
7537 {
7538 if (s == seg->relro_end_stat)
7539 break;
7540
7541 switch (s->header.type)
7542 {
7543 case lang_wild_statement_enum:
7544 walk_wild (&s->wild_statement,
7545 find_relro_section_callback,
7546 has_relro_section);
7547 break;
7548 case lang_constructors_statement_enum:
7549 lang_find_relro_sections_1 (constructor_list.head,
7550 seg, has_relro_section);
7551 break;
7552 case lang_output_section_statement_enum:
7553 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7554 seg, has_relro_section);
7555 break;
7556 case lang_group_statement_enum:
7557 lang_find_relro_sections_1 (s->group_statement.children.head,
7558 seg, has_relro_section);
7559 break;
7560 default:
7561 break;
7562 }
7563 }
7564 }
7565
7566 static void
7567 lang_find_relro_sections (void)
7568 {
7569 bfd_boolean has_relro_section = FALSE;
7570
7571 /* Check all sections in the link script. */
7572
7573 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7574 &expld.dataseg, &has_relro_section);
7575
7576 if (!has_relro_section)
7577 link_info.relro = FALSE;
7578 }
7579
7580 /* Relax all sections until bfd_relax_section gives up. */
7581
7582 void
7583 lang_relax_sections (bfd_boolean need_layout)
7584 {
7585 if (RELAXATION_ENABLED)
7586 {
7587 /* We may need more than one relaxation pass. */
7588 int i = link_info.relax_pass;
7589
7590 /* The backend can use it to determine the current pass. */
7591 link_info.relax_pass = 0;
7592
7593 while (i--)
7594 {
7595 /* Keep relaxing until bfd_relax_section gives up. */
7596 bfd_boolean relax_again;
7597
7598 link_info.relax_trip = -1;
7599 do
7600 {
7601 link_info.relax_trip++;
7602
7603 /* Note: pe-dll.c does something like this also. If you find
7604 you need to change this code, you probably need to change
7605 pe-dll.c also. DJ */
7606
7607 /* Do all the assignments with our current guesses as to
7608 section sizes. */
7609 lang_do_assignments (lang_assigning_phase_enum);
7610
7611 /* We must do this after lang_do_assignments, because it uses
7612 size. */
7613 lang_reset_memory_regions ();
7614
7615 /* Perform another relax pass - this time we know where the
7616 globals are, so can make a better guess. */
7617 relax_again = FALSE;
7618 lang_size_sections (&relax_again, FALSE);
7619 }
7620 while (relax_again);
7621
7622 link_info.relax_pass++;
7623 }
7624 need_layout = TRUE;
7625 }
7626
7627 if (need_layout)
7628 {
7629 /* Final extra sizing to report errors. */
7630 lang_do_assignments (lang_assigning_phase_enum);
7631 lang_reset_memory_regions ();
7632 lang_size_sections (NULL, TRUE);
7633 }
7634 }
7635
7636 #if BFD_SUPPORTS_PLUGINS
7637 /* Find the insert point for the plugin's replacement files. We
7638 place them after the first claimed real object file, or if the
7639 first claimed object is an archive member, after the last real
7640 object file immediately preceding the archive. In the event
7641 no objects have been claimed at all, we return the first dummy
7642 object file on the list as the insert point; that works, but
7643 the callee must be careful when relinking the file_chain as it
7644 is not actually on that chain, only the statement_list and the
7645 input_file list; in that case, the replacement files must be
7646 inserted at the head of the file_chain. */
7647
7648 static lang_input_statement_type *
7649 find_replacements_insert_point (bfd_boolean *before)
7650 {
7651 lang_input_statement_type *claim1, *lastobject;
7652 lastobject = (void *) input_file_chain.head;
7653 for (claim1 = (void *) file_chain.head;
7654 claim1 != NULL;
7655 claim1 = claim1->next)
7656 {
7657 if (claim1->flags.claimed)
7658 {
7659 *before = claim1->flags.claim_archive;
7660 return claim1->flags.claim_archive ? lastobject : claim1;
7661 }
7662 /* Update lastobject if this is a real object file. */
7663 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7664 lastobject = claim1;
7665 }
7666 /* No files were claimed by the plugin. Choose the last object
7667 file found on the list (maybe the first, dummy entry) as the
7668 insert point. */
7669 *before = FALSE;
7670 return lastobject;
7671 }
7672
7673 /* Find where to insert ADD, an archive element or shared library
7674 added during a rescan. */
7675
7676 static lang_input_statement_type **
7677 find_rescan_insertion (lang_input_statement_type *add)
7678 {
7679 bfd *add_bfd = add->the_bfd;
7680 lang_input_statement_type *f;
7681 lang_input_statement_type *last_loaded = NULL;
7682 lang_input_statement_type *before = NULL;
7683 lang_input_statement_type **iter = NULL;
7684
7685 if (add_bfd->my_archive != NULL)
7686 add_bfd = add_bfd->my_archive;
7687
7688 /* First look through the input file chain, to find an object file
7689 before the one we've rescanned. Normal object files always
7690 appear on both the input file chain and the file chain, so this
7691 lets us get quickly to somewhere near the correct place on the
7692 file chain if it is full of archive elements. Archives don't
7693 appear on the file chain, but if an element has been extracted
7694 then their input_statement->next points at it. */
7695 for (f = (void *) input_file_chain.head;
7696 f != NULL;
7697 f = f->next_real_file)
7698 {
7699 if (f->the_bfd == add_bfd)
7700 {
7701 before = last_loaded;
7702 if (f->next != NULL)
7703 return &f->next->next;
7704 }
7705 if (f->the_bfd != NULL && f->next != NULL)
7706 last_loaded = f;
7707 }
7708
7709 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7710 *iter != NULL;
7711 iter = &(*iter)->next)
7712 if (!(*iter)->flags.claim_archive
7713 && (*iter)->the_bfd->my_archive == NULL)
7714 break;
7715
7716 return iter;
7717 }
7718
7719 /* Insert SRCLIST into DESTLIST after given element by chaining
7720 on FIELD as the next-pointer. (Counterintuitively does not need
7721 a pointer to the actual after-node itself, just its chain field.) */
7722
7723 static void
7724 lang_list_insert_after (lang_statement_list_type *destlist,
7725 lang_statement_list_type *srclist,
7726 lang_statement_union_type **field)
7727 {
7728 *(srclist->tail) = *field;
7729 *field = srclist->head;
7730 if (destlist->tail == field)
7731 destlist->tail = srclist->tail;
7732 }
7733
7734 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7735 was taken as a copy of it and leave them in ORIGLIST. */
7736
7737 static void
7738 lang_list_remove_tail (lang_statement_list_type *destlist,
7739 lang_statement_list_type *origlist)
7740 {
7741 union lang_statement_union **savetail;
7742 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7743 ASSERT (origlist->head == destlist->head);
7744 savetail = origlist->tail;
7745 origlist->head = *(savetail);
7746 origlist->tail = destlist->tail;
7747 destlist->tail = savetail;
7748 *savetail = NULL;
7749 }
7750
7751 static lang_statement_union_type **
7752 find_next_input_statement (lang_statement_union_type **s)
7753 {
7754 for ( ; *s; s = &(*s)->header.next)
7755 {
7756 lang_statement_union_type **t;
7757 switch ((*s)->header.type)
7758 {
7759 case lang_input_statement_enum:
7760 return s;
7761 case lang_wild_statement_enum:
7762 t = &(*s)->wild_statement.children.head;
7763 break;
7764 case lang_group_statement_enum:
7765 t = &(*s)->group_statement.children.head;
7766 break;
7767 case lang_output_section_statement_enum:
7768 t = &(*s)->output_section_statement.children.head;
7769 break;
7770 default:
7771 continue;
7772 }
7773 t = find_next_input_statement (t);
7774 if (*t)
7775 return t;
7776 }
7777 return s;
7778 }
7779 #endif /* BFD_SUPPORTS_PLUGINS */
7780
7781 /* Add NAME to the list of garbage collection entry points. */
7782
7783 void
7784 lang_add_gc_name (const char *name)
7785 {
7786 struct bfd_sym_chain *sym;
7787
7788 if (name == NULL)
7789 return;
7790
7791 sym = stat_alloc (sizeof (*sym));
7792
7793 sym->next = link_info.gc_sym_list;
7794 sym->name = name;
7795 link_info.gc_sym_list = sym;
7796 }
7797
7798 /* Check relocations. */
7799
7800 static void
7801 lang_check_relocs (void)
7802 {
7803 if (link_info.check_relocs_after_open_input)
7804 {
7805 bfd *abfd;
7806
7807 for (abfd = link_info.input_bfds;
7808 abfd != (bfd *) NULL; abfd = abfd->link.next)
7809 if (!bfd_link_check_relocs (abfd, &link_info))
7810 {
7811 /* No object output, fail return. */
7812 config.make_executable = FALSE;
7813 /* Note: we do not abort the loop, but rather
7814 continue the scan in case there are other
7815 bad relocations to report. */
7816 }
7817 }
7818 }
7819
7820 /* Look through all output sections looking for places where we can
7821 propagate forward the lma region. */
7822
7823 static void
7824 lang_propagate_lma_regions (void)
7825 {
7826 lang_output_section_statement_type *os;
7827
7828 for (os = (void *) lang_os_list.head;
7829 os != NULL;
7830 os = os->next)
7831 {
7832 if (os->prev != NULL
7833 && os->lma_region == NULL
7834 && os->load_base == NULL
7835 && os->addr_tree == NULL
7836 && os->region == os->prev->region)
7837 os->lma_region = os->prev->lma_region;
7838 }
7839 }
7840
7841 void
7842 lang_process (void)
7843 {
7844 /* Finalize dynamic list. */
7845 if (link_info.dynamic_list)
7846 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7847
7848 current_target = default_target;
7849
7850 /* Open the output file. */
7851 lang_for_each_statement (ldlang_open_output);
7852 init_opb (NULL);
7853
7854 ldemul_create_output_section_statements ();
7855
7856 /* Add to the hash table all undefineds on the command line. */
7857 lang_place_undefineds ();
7858
7859 if (!bfd_section_already_linked_table_init ())
7860 einfo (_("%F%P: can not create hash table: %E\n"));
7861
7862 /* Create a bfd for each input file. */
7863 current_target = default_target;
7864 lang_statement_iteration++;
7865 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7866 /* open_input_bfds also handles assignments, so we can give values
7867 to symbolic origin/length now. */
7868 lang_do_memory_regions ();
7869
7870 #if BFD_SUPPORTS_PLUGINS
7871 if (link_info.lto_plugin_active)
7872 {
7873 lang_statement_list_type added;
7874 lang_statement_list_type files, inputfiles;
7875
7876 /* Now all files are read, let the plugin(s) decide if there
7877 are any more to be added to the link before we call the
7878 emulation's after_open hook. We create a private list of
7879 input statements for this purpose, which we will eventually
7880 insert into the global statement list after the first claimed
7881 file. */
7882 added = *stat_ptr;
7883 /* We need to manipulate all three chains in synchrony. */
7884 files = file_chain;
7885 inputfiles = input_file_chain;
7886 if (plugin_call_all_symbols_read ())
7887 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7888 plugin_error_plugin ());
7889 link_info.lto_all_symbols_read = TRUE;
7890 /* Open any newly added files, updating the file chains. */
7891 plugin_undefs = link_info.hash->undefs_tail;
7892 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7893 if (plugin_undefs == link_info.hash->undefs_tail)
7894 plugin_undefs = NULL;
7895 /* Restore the global list pointer now they have all been added. */
7896 lang_list_remove_tail (stat_ptr, &added);
7897 /* And detach the fresh ends of the file lists. */
7898 lang_list_remove_tail (&file_chain, &files);
7899 lang_list_remove_tail (&input_file_chain, &inputfiles);
7900 /* Were any new files added? */
7901 if (added.head != NULL)
7902 {
7903 /* If so, we will insert them into the statement list immediately
7904 after the first input file that was claimed by the plugin,
7905 unless that file was an archive in which case it is inserted
7906 immediately before. */
7907 bfd_boolean before;
7908 lang_statement_union_type **prev;
7909 plugin_insert = find_replacements_insert_point (&before);
7910 /* If a plugin adds input files without having claimed any, we
7911 don't really have a good idea where to place them. Just putting
7912 them at the start or end of the list is liable to leave them
7913 outside the crtbegin...crtend range. */
7914 ASSERT (plugin_insert != NULL);
7915 /* Splice the new statement list into the old one. */
7916 prev = &plugin_insert->header.next;
7917 if (before)
7918 {
7919 prev = find_next_input_statement (prev);
7920 if (*prev != (void *) plugin_insert->next_real_file)
7921 {
7922 /* We didn't find the expected input statement.
7923 Fall back to adding after plugin_insert. */
7924 prev = &plugin_insert->header.next;
7925 }
7926 }
7927 lang_list_insert_after (stat_ptr, &added, prev);
7928 /* Likewise for the file chains. */
7929 lang_list_insert_after (&input_file_chain, &inputfiles,
7930 (void *) &plugin_insert->next_real_file);
7931 /* We must be careful when relinking file_chain; we may need to
7932 insert the new files at the head of the list if the insert
7933 point chosen is the dummy first input file. */
7934 if (plugin_insert->filename)
7935 lang_list_insert_after (&file_chain, &files,
7936 (void *) &plugin_insert->next);
7937 else
7938 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7939
7940 /* Rescan archives in case new undefined symbols have appeared. */
7941 files = file_chain;
7942 lang_statement_iteration++;
7943 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7944 lang_list_remove_tail (&file_chain, &files);
7945 while (files.head != NULL)
7946 {
7947 lang_input_statement_type **insert;
7948 lang_input_statement_type **iter, *temp;
7949 bfd *my_arch;
7950
7951 insert = find_rescan_insertion (&files.head->input_statement);
7952 /* All elements from an archive can be added at once. */
7953 iter = &files.head->input_statement.next;
7954 my_arch = files.head->input_statement.the_bfd->my_archive;
7955 if (my_arch != NULL)
7956 for (; *iter != NULL; iter = &(*iter)->next)
7957 if ((*iter)->the_bfd->my_archive != my_arch)
7958 break;
7959 temp = *insert;
7960 *insert = &files.head->input_statement;
7961 files.head = (lang_statement_union_type *) *iter;
7962 *iter = temp;
7963 if (my_arch != NULL)
7964 {
7965 lang_input_statement_type *parent = bfd_usrdata (my_arch);
7966 if (parent != NULL)
7967 parent->next = (lang_input_statement_type *)
7968 ((char *) iter
7969 - offsetof (lang_input_statement_type, next));
7970 }
7971 }
7972 }
7973 }
7974 #endif /* BFD_SUPPORTS_PLUGINS */
7975
7976 /* Make sure that nobody has tried to add a symbol to this list
7977 before now. */
7978 ASSERT (link_info.gc_sym_list == NULL);
7979
7980 link_info.gc_sym_list = &entry_symbol;
7981
7982 if (entry_symbol.name == NULL)
7983 {
7984 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7985
7986 /* entry_symbol is normally initialied by a ENTRY definition in the
7987 linker script or the -e command line option. But if neither of
7988 these have been used, the target specific backend may still have
7989 provided an entry symbol via a call to lang_default_entry().
7990 Unfortunately this value will not be processed until lang_end()
7991 is called, long after this function has finished. So detect this
7992 case here and add the target's entry symbol to the list of starting
7993 points for garbage collection resolution. */
7994 lang_add_gc_name (entry_symbol_default);
7995 }
7996
7997 lang_add_gc_name (link_info.init_function);
7998 lang_add_gc_name (link_info.fini_function);
7999
8000 ldemul_after_open ();
8001 if (config.map_file != NULL)
8002 lang_print_asneeded ();
8003
8004 ldlang_open_ctf ();
8005
8006 bfd_section_already_linked_table_free ();
8007
8008 /* Make sure that we're not mixing architectures. We call this
8009 after all the input files have been opened, but before we do any
8010 other processing, so that any operations merge_private_bfd_data
8011 does on the output file will be known during the rest of the
8012 link. */
8013 lang_check ();
8014
8015 /* Handle .exports instead of a version script if we're told to do so. */
8016 if (command_line.version_exports_section)
8017 lang_do_version_exports_section ();
8018
8019 /* Build all sets based on the information gathered from the input
8020 files. */
8021 ldctor_build_sets ();
8022
8023 /* Give initial values for __start and __stop symbols, so that ELF
8024 gc_sections will keep sections referenced by these symbols. Must
8025 be done before lang_do_assignments below. */
8026 if (config.build_constructors)
8027 lang_init_start_stop ();
8028
8029 /* PR 13683: We must rerun the assignments prior to running garbage
8030 collection in order to make sure that all symbol aliases are resolved. */
8031 lang_do_assignments (lang_mark_phase_enum);
8032 expld.phase = lang_first_phase_enum;
8033
8034 /* Size up the common data. */
8035 lang_common ();
8036
8037 /* Remove unreferenced sections if asked to. */
8038 lang_gc_sections ();
8039
8040 /* Check relocations. */
8041 lang_check_relocs ();
8042
8043 ldemul_after_check_relocs ();
8044
8045 /* Update wild statements. */
8046 update_wild_statements (statement_list.head);
8047
8048 /* Run through the contours of the script and attach input sections
8049 to the correct output sections. */
8050 lang_statement_iteration++;
8051 map_input_to_output_sections (statement_list.head, NULL, NULL);
8052
8053 /* Start at the statement immediately after the special abs_section
8054 output statement, so that it isn't reordered. */
8055 process_insert_statements (&lang_os_list.head->header.next);
8056
8057 ldemul_before_place_orphans ();
8058
8059 /* Find any sections not attached explicitly and handle them. */
8060 lang_place_orphans ();
8061
8062 if (!bfd_link_relocatable (&link_info))
8063 {
8064 asection *found;
8065
8066 /* Merge SEC_MERGE sections. This has to be done after GC of
8067 sections, so that GCed sections are not merged, but before
8068 assigning dynamic symbols, since removing whole input sections
8069 is hard then. */
8070 bfd_merge_sections (link_info.output_bfd, &link_info);
8071
8072 /* Look for a text section and set the readonly attribute in it. */
8073 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8074
8075 if (found != NULL)
8076 {
8077 if (config.text_read_only)
8078 found->flags |= SEC_READONLY;
8079 else
8080 found->flags &= ~SEC_READONLY;
8081 }
8082 }
8083
8084 /* Merge together CTF sections. After this, only the symtab-dependent
8085 function and data object sections need adjustment. */
8086 lang_merge_ctf ();
8087
8088 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8089 examining things laid out late, like the strtab. */
8090 lang_write_ctf (0);
8091
8092 /* Copy forward lma regions for output sections in same lma region. */
8093 lang_propagate_lma_regions ();
8094
8095 /* Defining __start/__stop symbols early for --gc-sections to work
8096 around a glibc build problem can result in these symbols being
8097 defined when they should not be. Fix them now. */
8098 if (config.build_constructors)
8099 lang_undef_start_stop ();
8100
8101 /* Define .startof./.sizeof. symbols with preliminary values before
8102 dynamic symbols are created. */
8103 if (!bfd_link_relocatable (&link_info))
8104 lang_init_startof_sizeof ();
8105
8106 /* Do anything special before sizing sections. This is where ELF
8107 and other back-ends size dynamic sections. */
8108 ldemul_before_allocation ();
8109
8110 /* We must record the program headers before we try to fix the
8111 section positions, since they will affect SIZEOF_HEADERS. */
8112 lang_record_phdrs ();
8113
8114 /* Check relro sections. */
8115 if (link_info.relro && !bfd_link_relocatable (&link_info))
8116 lang_find_relro_sections ();
8117
8118 /* Size up the sections. */
8119 lang_size_sections (NULL, !RELAXATION_ENABLED);
8120
8121 /* See if anything special should be done now we know how big
8122 everything is. This is where relaxation is done. */
8123 ldemul_after_allocation ();
8124
8125 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8126 lang_finalize_start_stop ();
8127
8128 /* Do all the assignments again, to report errors. Assignment
8129 statements are processed multiple times, updating symbols; In
8130 open_input_bfds, lang_do_assignments, and lang_size_sections.
8131 Since lang_relax_sections calls lang_do_assignments, symbols are
8132 also updated in ldemul_after_allocation. */
8133 lang_do_assignments (lang_final_phase_enum);
8134
8135 ldemul_finish ();
8136
8137 /* Convert absolute symbols to section relative. */
8138 ldexp_finalize_syms ();
8139
8140 /* Make sure that the section addresses make sense. */
8141 if (command_line.check_section_addresses)
8142 lang_check_section_addresses ();
8143
8144 /* Check any required symbols are known. */
8145 ldlang_check_require_defined_symbols ();
8146
8147 lang_end ();
8148 }
8149
8150 /* EXPORTED TO YACC */
8151
8152 void
8153 lang_add_wild (struct wildcard_spec *filespec,
8154 struct wildcard_list *section_list,
8155 bfd_boolean keep_sections)
8156 {
8157 struct wildcard_list *curr, *next;
8158 lang_wild_statement_type *new_stmt;
8159
8160 /* Reverse the list as the parser puts it back to front. */
8161 for (curr = section_list, section_list = NULL;
8162 curr != NULL;
8163 section_list = curr, curr = next)
8164 {
8165 next = curr->next;
8166 curr->next = section_list;
8167 }
8168
8169 if (filespec != NULL && filespec->name != NULL)
8170 {
8171 if (strcmp (filespec->name, "*") == 0)
8172 filespec->name = NULL;
8173 else if (!wildcardp (filespec->name))
8174 lang_has_input_file = TRUE;
8175 }
8176
8177 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8178 new_stmt->filename = NULL;
8179 new_stmt->filenames_sorted = FALSE;
8180 new_stmt->section_flag_list = NULL;
8181 new_stmt->exclude_name_list = NULL;
8182 if (filespec != NULL)
8183 {
8184 new_stmt->filename = filespec->name;
8185 new_stmt->filenames_sorted = filespec->sorted == by_name;
8186 new_stmt->section_flag_list = filespec->section_flag_list;
8187 new_stmt->exclude_name_list = filespec->exclude_name_list;
8188 }
8189 new_stmt->section_list = section_list;
8190 new_stmt->keep_sections = keep_sections;
8191 lang_list_init (&new_stmt->children);
8192 analyze_walk_wild_section_handler (new_stmt);
8193 }
8194
8195 void
8196 lang_section_start (const char *name, etree_type *address,
8197 const segment_type *segment)
8198 {
8199 lang_address_statement_type *ad;
8200
8201 ad = new_stat (lang_address_statement, stat_ptr);
8202 ad->section_name = name;
8203 ad->address = address;
8204 ad->segment = segment;
8205 }
8206
8207 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8208 because of a -e argument on the command line, or zero if this is
8209 called by ENTRY in a linker script. Command line arguments take
8210 precedence. */
8211
8212 void
8213 lang_add_entry (const char *name, bfd_boolean cmdline)
8214 {
8215 if (entry_symbol.name == NULL
8216 || cmdline
8217 || !entry_from_cmdline)
8218 {
8219 entry_symbol.name = name;
8220 entry_from_cmdline = cmdline;
8221 }
8222 }
8223
8224 /* Set the default start symbol to NAME. .em files should use this,
8225 not lang_add_entry, to override the use of "start" if neither the
8226 linker script nor the command line specifies an entry point. NAME
8227 must be permanently allocated. */
8228 void
8229 lang_default_entry (const char *name)
8230 {
8231 entry_symbol_default = name;
8232 }
8233
8234 void
8235 lang_add_target (const char *name)
8236 {
8237 lang_target_statement_type *new_stmt;
8238
8239 new_stmt = new_stat (lang_target_statement, stat_ptr);
8240 new_stmt->target = name;
8241 }
8242
8243 void
8244 lang_add_map (const char *name)
8245 {
8246 while (*name)
8247 {
8248 switch (*name)
8249 {
8250 case 'F':
8251 map_option_f = TRUE;
8252 break;
8253 }
8254 name++;
8255 }
8256 }
8257
8258 void
8259 lang_add_fill (fill_type *fill)
8260 {
8261 lang_fill_statement_type *new_stmt;
8262
8263 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8264 new_stmt->fill = fill;
8265 }
8266
8267 void
8268 lang_add_data (int type, union etree_union *exp)
8269 {
8270 lang_data_statement_type *new_stmt;
8271
8272 new_stmt = new_stat (lang_data_statement, stat_ptr);
8273 new_stmt->exp = exp;
8274 new_stmt->type = type;
8275 }
8276
8277 /* Create a new reloc statement. RELOC is the BFD relocation type to
8278 generate. HOWTO is the corresponding howto structure (we could
8279 look this up, but the caller has already done so). SECTION is the
8280 section to generate a reloc against, or NAME is the name of the
8281 symbol to generate a reloc against. Exactly one of SECTION and
8282 NAME must be NULL. ADDEND is an expression for the addend. */
8283
8284 void
8285 lang_add_reloc (bfd_reloc_code_real_type reloc,
8286 reloc_howto_type *howto,
8287 asection *section,
8288 const char *name,
8289 union etree_union *addend)
8290 {
8291 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8292
8293 p->reloc = reloc;
8294 p->howto = howto;
8295 p->section = section;
8296 p->name = name;
8297 p->addend_exp = addend;
8298
8299 p->addend_value = 0;
8300 p->output_section = NULL;
8301 p->output_offset = 0;
8302 }
8303
8304 lang_assignment_statement_type *
8305 lang_add_assignment (etree_type *exp)
8306 {
8307 lang_assignment_statement_type *new_stmt;
8308
8309 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8310 new_stmt->exp = exp;
8311 return new_stmt;
8312 }
8313
8314 void
8315 lang_add_attribute (enum statement_enum attribute)
8316 {
8317 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8318 }
8319
8320 void
8321 lang_startup (const char *name)
8322 {
8323 if (first_file->filename != NULL)
8324 {
8325 einfo (_("%F%P: multiple STARTUP files\n"));
8326 }
8327 first_file->filename = name;
8328 first_file->local_sym_name = name;
8329 first_file->flags.real = TRUE;
8330 }
8331
8332 void
8333 lang_float (bfd_boolean maybe)
8334 {
8335 lang_float_flag = maybe;
8336 }
8337
8338
8339 /* Work out the load- and run-time regions from a script statement, and
8340 store them in *LMA_REGION and *REGION respectively.
8341
8342 MEMSPEC is the name of the run-time region, or the value of
8343 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8344 LMA_MEMSPEC is the name of the load-time region, or null if the
8345 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8346 had an explicit load address.
8347
8348 It is an error to specify both a load region and a load address. */
8349
8350 static void
8351 lang_get_regions (lang_memory_region_type **region,
8352 lang_memory_region_type **lma_region,
8353 const char *memspec,
8354 const char *lma_memspec,
8355 bfd_boolean have_lma,
8356 bfd_boolean have_vma)
8357 {
8358 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8359
8360 /* If no runtime region or VMA has been specified, but the load region
8361 has been specified, then use the load region for the runtime region
8362 as well. */
8363 if (lma_memspec != NULL
8364 && !have_vma
8365 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8366 *region = *lma_region;
8367 else
8368 *region = lang_memory_region_lookup (memspec, FALSE);
8369
8370 if (have_lma && lma_memspec != 0)
8371 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8372 NULL);
8373 }
8374
8375 void
8376 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8377 lang_output_section_phdr_list *phdrs,
8378 const char *lma_memspec)
8379 {
8380 lang_get_regions (&current_section->region,
8381 &current_section->lma_region,
8382 memspec, lma_memspec,
8383 current_section->load_base != NULL,
8384 current_section->addr_tree != NULL);
8385
8386 current_section->fill = fill;
8387 current_section->phdrs = phdrs;
8388 pop_stat_ptr ();
8389 }
8390
8391 /* Set the output format type. -oformat overrides scripts. */
8392
8393 void
8394 lang_add_output_format (const char *format,
8395 const char *big,
8396 const char *little,
8397 int from_script)
8398 {
8399 if (output_target == NULL || !from_script)
8400 {
8401 if (command_line.endian == ENDIAN_BIG
8402 && big != NULL)
8403 format = big;
8404 else if (command_line.endian == ENDIAN_LITTLE
8405 && little != NULL)
8406 format = little;
8407
8408 output_target = format;
8409 }
8410 }
8411
8412 void
8413 lang_add_insert (const char *where, int is_before)
8414 {
8415 lang_insert_statement_type *new_stmt;
8416
8417 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8418 new_stmt->where = where;
8419 new_stmt->is_before = is_before;
8420 saved_script_handle = previous_script_handle;
8421 }
8422
8423 /* Enter a group. This creates a new lang_group_statement, and sets
8424 stat_ptr to build new statements within the group. */
8425
8426 void
8427 lang_enter_group (void)
8428 {
8429 lang_group_statement_type *g;
8430
8431 g = new_stat (lang_group_statement, stat_ptr);
8432 lang_list_init (&g->children);
8433 push_stat_ptr (&g->children);
8434 }
8435
8436 /* Leave a group. This just resets stat_ptr to start writing to the
8437 regular list of statements again. Note that this will not work if
8438 groups can occur inside anything else which can adjust stat_ptr,
8439 but currently they can't. */
8440
8441 void
8442 lang_leave_group (void)
8443 {
8444 pop_stat_ptr ();
8445 }
8446
8447 /* Add a new program header. This is called for each entry in a PHDRS
8448 command in a linker script. */
8449
8450 void
8451 lang_new_phdr (const char *name,
8452 etree_type *type,
8453 bfd_boolean filehdr,
8454 bfd_boolean phdrs,
8455 etree_type *at,
8456 etree_type *flags)
8457 {
8458 struct lang_phdr *n, **pp;
8459 bfd_boolean hdrs;
8460
8461 n = stat_alloc (sizeof (struct lang_phdr));
8462 n->next = NULL;
8463 n->name = name;
8464 n->type = exp_get_vma (type, 0, "program header type");
8465 n->filehdr = filehdr;
8466 n->phdrs = phdrs;
8467 n->at = at;
8468 n->flags = flags;
8469
8470 hdrs = n->type == 1 && (phdrs || filehdr);
8471
8472 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8473 if (hdrs
8474 && (*pp)->type == 1
8475 && !((*pp)->filehdr || (*pp)->phdrs))
8476 {
8477 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8478 " when prior PT_LOAD headers lack them\n"), NULL);
8479 hdrs = FALSE;
8480 }
8481
8482 *pp = n;
8483 }
8484
8485 /* Record the program header information in the output BFD. FIXME: We
8486 should not be calling an ELF specific function here. */
8487
8488 static void
8489 lang_record_phdrs (void)
8490 {
8491 unsigned int alc;
8492 asection **secs;
8493 lang_output_section_phdr_list *last;
8494 struct lang_phdr *l;
8495 lang_output_section_statement_type *os;
8496
8497 alc = 10;
8498 secs = (asection **) xmalloc (alc * sizeof (asection *));
8499 last = NULL;
8500
8501 for (l = lang_phdr_list; l != NULL; l = l->next)
8502 {
8503 unsigned int c;
8504 flagword flags;
8505 bfd_vma at;
8506
8507 c = 0;
8508 for (os = (void *) lang_os_list.head;
8509 os != NULL;
8510 os = os->next)
8511 {
8512 lang_output_section_phdr_list *pl;
8513
8514 if (os->constraint < 0)
8515 continue;
8516
8517 pl = os->phdrs;
8518 if (pl != NULL)
8519 last = pl;
8520 else
8521 {
8522 if (os->sectype == noload_section
8523 || os->bfd_section == NULL
8524 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8525 continue;
8526
8527 /* Don't add orphans to PT_INTERP header. */
8528 if (l->type == 3)
8529 continue;
8530
8531 if (last == NULL)
8532 {
8533 lang_output_section_statement_type *tmp_os;
8534
8535 /* If we have not run across a section with a program
8536 header assigned to it yet, then scan forwards to find
8537 one. This prevents inconsistencies in the linker's
8538 behaviour when a script has specified just a single
8539 header and there are sections in that script which are
8540 not assigned to it, and which occur before the first
8541 use of that header. See here for more details:
8542 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8543 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8544 if (tmp_os->phdrs)
8545 {
8546 last = tmp_os->phdrs;
8547 break;
8548 }
8549 if (last == NULL)
8550 einfo (_("%F%P: no sections assigned to phdrs\n"));
8551 }
8552 pl = last;
8553 }
8554
8555 if (os->bfd_section == NULL)
8556 continue;
8557
8558 for (; pl != NULL; pl = pl->next)
8559 {
8560 if (strcmp (pl->name, l->name) == 0)
8561 {
8562 if (c >= alc)
8563 {
8564 alc *= 2;
8565 secs = (asection **) xrealloc (secs,
8566 alc * sizeof (asection *));
8567 }
8568 secs[c] = os->bfd_section;
8569 ++c;
8570 pl->used = TRUE;
8571 }
8572 }
8573 }
8574
8575 if (l->flags == NULL)
8576 flags = 0;
8577 else
8578 flags = exp_get_vma (l->flags, 0, "phdr flags");
8579
8580 if (l->at == NULL)
8581 at = 0;
8582 else
8583 at = exp_get_vma (l->at, 0, "phdr load address");
8584
8585 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8586 l->flags != NULL, flags, l->at != NULL,
8587 at, l->filehdr, l->phdrs, c, secs))
8588 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8589 }
8590
8591 free (secs);
8592
8593 /* Make sure all the phdr assignments succeeded. */
8594 for (os = (void *) lang_os_list.head;
8595 os != NULL;
8596 os = os->next)
8597 {
8598 lang_output_section_phdr_list *pl;
8599
8600 if (os->constraint < 0
8601 || os->bfd_section == NULL)
8602 continue;
8603
8604 for (pl = os->phdrs;
8605 pl != NULL;
8606 pl = pl->next)
8607 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8608 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8609 os->name, pl->name);
8610 }
8611 }
8612
8613 /* Record a list of sections which may not be cross referenced. */
8614
8615 void
8616 lang_add_nocrossref (lang_nocrossref_type *l)
8617 {
8618 struct lang_nocrossrefs *n;
8619
8620 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8621 n->next = nocrossref_list;
8622 n->list = l;
8623 n->onlyfirst = FALSE;
8624 nocrossref_list = n;
8625
8626 /* Set notice_all so that we get informed about all symbols. */
8627 link_info.notice_all = TRUE;
8628 }
8629
8630 /* Record a section that cannot be referenced from a list of sections. */
8631
8632 void
8633 lang_add_nocrossref_to (lang_nocrossref_type *l)
8634 {
8635 lang_add_nocrossref (l);
8636 nocrossref_list->onlyfirst = TRUE;
8637 }
8638 \f
8639 /* Overlay handling. We handle overlays with some static variables. */
8640
8641 /* The overlay virtual address. */
8642 static etree_type *overlay_vma;
8643 /* And subsection alignment. */
8644 static etree_type *overlay_subalign;
8645
8646 /* An expression for the maximum section size seen so far. */
8647 static etree_type *overlay_max;
8648
8649 /* A list of all the sections in this overlay. */
8650
8651 struct overlay_list {
8652 struct overlay_list *next;
8653 lang_output_section_statement_type *os;
8654 };
8655
8656 static struct overlay_list *overlay_list;
8657
8658 /* Start handling an overlay. */
8659
8660 void
8661 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8662 {
8663 /* The grammar should prevent nested overlays from occurring. */
8664 ASSERT (overlay_vma == NULL
8665 && overlay_subalign == NULL
8666 && overlay_max == NULL);
8667
8668 overlay_vma = vma_expr;
8669 overlay_subalign = subalign;
8670 }
8671
8672 /* Start a section in an overlay. We handle this by calling
8673 lang_enter_output_section_statement with the correct VMA.
8674 lang_leave_overlay sets up the LMA and memory regions. */
8675
8676 void
8677 lang_enter_overlay_section (const char *name)
8678 {
8679 struct overlay_list *n;
8680 etree_type *size;
8681
8682 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8683 0, overlay_subalign, 0, 0, 0);
8684
8685 /* If this is the first section, then base the VMA of future
8686 sections on this one. This will work correctly even if `.' is
8687 used in the addresses. */
8688 if (overlay_list == NULL)
8689 overlay_vma = exp_nameop (ADDR, name);
8690
8691 /* Remember the section. */
8692 n = (struct overlay_list *) xmalloc (sizeof *n);
8693 n->os = current_section;
8694 n->next = overlay_list;
8695 overlay_list = n;
8696
8697 size = exp_nameop (SIZEOF, name);
8698
8699 /* Arrange to work out the maximum section end address. */
8700 if (overlay_max == NULL)
8701 overlay_max = size;
8702 else
8703 overlay_max = exp_binop (MAX_K, overlay_max, size);
8704 }
8705
8706 /* Finish a section in an overlay. There isn't any special to do
8707 here. */
8708
8709 void
8710 lang_leave_overlay_section (fill_type *fill,
8711 lang_output_section_phdr_list *phdrs)
8712 {
8713 const char *name;
8714 char *clean, *s2;
8715 const char *s1;
8716 char *buf;
8717
8718 name = current_section->name;
8719
8720 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8721 region and that no load-time region has been specified. It doesn't
8722 really matter what we say here, since lang_leave_overlay will
8723 override it. */
8724 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8725
8726 /* Define the magic symbols. */
8727
8728 clean = (char *) xmalloc (strlen (name) + 1);
8729 s2 = clean;
8730 for (s1 = name; *s1 != '\0'; s1++)
8731 if (ISALNUM (*s1) || *s1 == '_')
8732 *s2++ = *s1;
8733 *s2 = '\0';
8734
8735 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8736 sprintf (buf, "__load_start_%s", clean);
8737 lang_add_assignment (exp_provide (buf,
8738 exp_nameop (LOADADDR, name),
8739 FALSE));
8740
8741 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8742 sprintf (buf, "__load_stop_%s", clean);
8743 lang_add_assignment (exp_provide (buf,
8744 exp_binop ('+',
8745 exp_nameop (LOADADDR, name),
8746 exp_nameop (SIZEOF, name)),
8747 FALSE));
8748
8749 free (clean);
8750 }
8751
8752 /* Finish an overlay. If there are any overlay wide settings, this
8753 looks through all the sections in the overlay and sets them. */
8754
8755 void
8756 lang_leave_overlay (etree_type *lma_expr,
8757 int nocrossrefs,
8758 fill_type *fill,
8759 const char *memspec,
8760 lang_output_section_phdr_list *phdrs,
8761 const char *lma_memspec)
8762 {
8763 lang_memory_region_type *region;
8764 lang_memory_region_type *lma_region;
8765 struct overlay_list *l;
8766 lang_nocrossref_type *nocrossref;
8767
8768 lang_get_regions (&region, &lma_region,
8769 memspec, lma_memspec,
8770 lma_expr != NULL, FALSE);
8771
8772 nocrossref = NULL;
8773
8774 /* After setting the size of the last section, set '.' to end of the
8775 overlay region. */
8776 if (overlay_list != NULL)
8777 {
8778 overlay_list->os->update_dot = 1;
8779 overlay_list->os->update_dot_tree
8780 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8781 }
8782
8783 l = overlay_list;
8784 while (l != NULL)
8785 {
8786 struct overlay_list *next;
8787
8788 if (fill != NULL && l->os->fill == NULL)
8789 l->os->fill = fill;
8790
8791 l->os->region = region;
8792 l->os->lma_region = lma_region;
8793
8794 /* The first section has the load address specified in the
8795 OVERLAY statement. The rest are worked out from that.
8796 The base address is not needed (and should be null) if
8797 an LMA region was specified. */
8798 if (l->next == 0)
8799 {
8800 l->os->load_base = lma_expr;
8801 l->os->sectype = first_overlay_section;
8802 }
8803 if (phdrs != NULL && l->os->phdrs == NULL)
8804 l->os->phdrs = phdrs;
8805
8806 if (nocrossrefs)
8807 {
8808 lang_nocrossref_type *nc;
8809
8810 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8811 nc->name = l->os->name;
8812 nc->next = nocrossref;
8813 nocrossref = nc;
8814 }
8815
8816 next = l->next;
8817 free (l);
8818 l = next;
8819 }
8820
8821 if (nocrossref != NULL)
8822 lang_add_nocrossref (nocrossref);
8823
8824 overlay_vma = NULL;
8825 overlay_list = NULL;
8826 overlay_max = NULL;
8827 overlay_subalign = NULL;
8828 }
8829 \f
8830 /* Version handling. This is only useful for ELF. */
8831
8832 /* If PREV is NULL, return first version pattern matching particular symbol.
8833 If PREV is non-NULL, return first version pattern matching particular
8834 symbol after PREV (previously returned by lang_vers_match). */
8835
8836 static struct bfd_elf_version_expr *
8837 lang_vers_match (struct bfd_elf_version_expr_head *head,
8838 struct bfd_elf_version_expr *prev,
8839 const char *sym)
8840 {
8841 const char *c_sym;
8842 const char *cxx_sym = sym;
8843 const char *java_sym = sym;
8844 struct bfd_elf_version_expr *expr = NULL;
8845 enum demangling_styles curr_style;
8846
8847 curr_style = CURRENT_DEMANGLING_STYLE;
8848 cplus_demangle_set_style (no_demangling);
8849 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8850 if (!c_sym)
8851 c_sym = sym;
8852 cplus_demangle_set_style (curr_style);
8853
8854 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8855 {
8856 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8857 DMGL_PARAMS | DMGL_ANSI);
8858 if (!cxx_sym)
8859 cxx_sym = sym;
8860 }
8861 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8862 {
8863 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8864 if (!java_sym)
8865 java_sym = sym;
8866 }
8867
8868 if (head->htab && (prev == NULL || prev->literal))
8869 {
8870 struct bfd_elf_version_expr e;
8871
8872 switch (prev ? prev->mask : 0)
8873 {
8874 case 0:
8875 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8876 {
8877 e.pattern = c_sym;
8878 expr = (struct bfd_elf_version_expr *)
8879 htab_find ((htab_t) head->htab, &e);
8880 while (expr && strcmp (expr->pattern, c_sym) == 0)
8881 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8882 goto out_ret;
8883 else
8884 expr = expr->next;
8885 }
8886 /* Fallthrough */
8887 case BFD_ELF_VERSION_C_TYPE:
8888 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8889 {
8890 e.pattern = cxx_sym;
8891 expr = (struct bfd_elf_version_expr *)
8892 htab_find ((htab_t) head->htab, &e);
8893 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8894 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8895 goto out_ret;
8896 else
8897 expr = expr->next;
8898 }
8899 /* Fallthrough */
8900 case BFD_ELF_VERSION_CXX_TYPE:
8901 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8902 {
8903 e.pattern = java_sym;
8904 expr = (struct bfd_elf_version_expr *)
8905 htab_find ((htab_t) head->htab, &e);
8906 while (expr && strcmp (expr->pattern, java_sym) == 0)
8907 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8908 goto out_ret;
8909 else
8910 expr = expr->next;
8911 }
8912 /* Fallthrough */
8913 default:
8914 break;
8915 }
8916 }
8917
8918 /* Finally, try the wildcards. */
8919 if (prev == NULL || prev->literal)
8920 expr = head->remaining;
8921 else
8922 expr = prev->next;
8923 for (; expr; expr = expr->next)
8924 {
8925 const char *s;
8926
8927 if (!expr->pattern)
8928 continue;
8929
8930 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8931 break;
8932
8933 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8934 s = java_sym;
8935 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8936 s = cxx_sym;
8937 else
8938 s = c_sym;
8939 if (fnmatch (expr->pattern, s, 0) == 0)
8940 break;
8941 }
8942
8943 out_ret:
8944 if (c_sym != sym)
8945 free ((char *) c_sym);
8946 if (cxx_sym != sym)
8947 free ((char *) cxx_sym);
8948 if (java_sym != sym)
8949 free ((char *) java_sym);
8950 return expr;
8951 }
8952
8953 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8954 return a pointer to the symbol name with any backslash quotes removed. */
8955
8956 static const char *
8957 realsymbol (const char *pattern)
8958 {
8959 const char *p;
8960 bfd_boolean changed = FALSE, backslash = FALSE;
8961 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8962
8963 for (p = pattern, s = symbol; *p != '\0'; ++p)
8964 {
8965 /* It is a glob pattern only if there is no preceding
8966 backslash. */
8967 if (backslash)
8968 {
8969 /* Remove the preceding backslash. */
8970 *(s - 1) = *p;
8971 backslash = FALSE;
8972 changed = TRUE;
8973 }
8974 else
8975 {
8976 if (*p == '?' || *p == '*' || *p == '[')
8977 {
8978 free (symbol);
8979 return NULL;
8980 }
8981
8982 *s++ = *p;
8983 backslash = *p == '\\';
8984 }
8985 }
8986
8987 if (changed)
8988 {
8989 *s = '\0';
8990 return symbol;
8991 }
8992 else
8993 {
8994 free (symbol);
8995 return pattern;
8996 }
8997 }
8998
8999 /* This is called for each variable name or match expression. NEW_NAME is
9000 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9001 pattern to be matched against symbol names. */
9002
9003 struct bfd_elf_version_expr *
9004 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9005 const char *new_name,
9006 const char *lang,
9007 bfd_boolean literal_p)
9008 {
9009 struct bfd_elf_version_expr *ret;
9010
9011 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9012 ret->next = orig;
9013 ret->symver = 0;
9014 ret->script = 0;
9015 ret->literal = TRUE;
9016 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9017 if (ret->pattern == NULL)
9018 {
9019 ret->pattern = new_name;
9020 ret->literal = FALSE;
9021 }
9022
9023 if (lang == NULL || strcasecmp (lang, "C") == 0)
9024 ret->mask = BFD_ELF_VERSION_C_TYPE;
9025 else if (strcasecmp (lang, "C++") == 0)
9026 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9027 else if (strcasecmp (lang, "Java") == 0)
9028 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9029 else
9030 {
9031 einfo (_("%X%P: unknown language `%s' in version information\n"),
9032 lang);
9033 ret->mask = BFD_ELF_VERSION_C_TYPE;
9034 }
9035
9036 return ldemul_new_vers_pattern (ret);
9037 }
9038
9039 /* This is called for each set of variable names and match
9040 expressions. */
9041
9042 struct bfd_elf_version_tree *
9043 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9044 struct bfd_elf_version_expr *locals)
9045 {
9046 struct bfd_elf_version_tree *ret;
9047
9048 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9049 ret->globals.list = globals;
9050 ret->locals.list = locals;
9051 ret->match = lang_vers_match;
9052 ret->name_indx = (unsigned int) -1;
9053 return ret;
9054 }
9055
9056 /* This static variable keeps track of version indices. */
9057
9058 static int version_index;
9059
9060 static hashval_t
9061 version_expr_head_hash (const void *p)
9062 {
9063 const struct bfd_elf_version_expr *e =
9064 (const struct bfd_elf_version_expr *) p;
9065
9066 return htab_hash_string (e->pattern);
9067 }
9068
9069 static int
9070 version_expr_head_eq (const void *p1, const void *p2)
9071 {
9072 const struct bfd_elf_version_expr *e1 =
9073 (const struct bfd_elf_version_expr *) p1;
9074 const struct bfd_elf_version_expr *e2 =
9075 (const struct bfd_elf_version_expr *) p2;
9076
9077 return strcmp (e1->pattern, e2->pattern) == 0;
9078 }
9079
9080 static void
9081 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9082 {
9083 size_t count = 0;
9084 struct bfd_elf_version_expr *e, *next;
9085 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9086
9087 for (e = head->list; e; e = e->next)
9088 {
9089 if (e->literal)
9090 count++;
9091 head->mask |= e->mask;
9092 }
9093
9094 if (count)
9095 {
9096 head->htab = htab_create (count * 2, version_expr_head_hash,
9097 version_expr_head_eq, NULL);
9098 list_loc = &head->list;
9099 remaining_loc = &head->remaining;
9100 for (e = head->list; e; e = next)
9101 {
9102 next = e->next;
9103 if (!e->literal)
9104 {
9105 *remaining_loc = e;
9106 remaining_loc = &e->next;
9107 }
9108 else
9109 {
9110 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9111
9112 if (*loc)
9113 {
9114 struct bfd_elf_version_expr *e1, *last;
9115
9116 e1 = (struct bfd_elf_version_expr *) *loc;
9117 last = NULL;
9118 do
9119 {
9120 if (e1->mask == e->mask)
9121 {
9122 last = NULL;
9123 break;
9124 }
9125 last = e1;
9126 e1 = e1->next;
9127 }
9128 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9129
9130 if (last == NULL)
9131 {
9132 /* This is a duplicate. */
9133 /* FIXME: Memory leak. Sometimes pattern is not
9134 xmalloced alone, but in larger chunk of memory. */
9135 /* free (e->pattern); */
9136 free (e);
9137 }
9138 else
9139 {
9140 e->next = last->next;
9141 last->next = e;
9142 }
9143 }
9144 else
9145 {
9146 *loc = e;
9147 *list_loc = e;
9148 list_loc = &e->next;
9149 }
9150 }
9151 }
9152 *remaining_loc = NULL;
9153 *list_loc = head->remaining;
9154 }
9155 else
9156 head->remaining = head->list;
9157 }
9158
9159 /* This is called when we know the name and dependencies of the
9160 version. */
9161
9162 void
9163 lang_register_vers_node (const char *name,
9164 struct bfd_elf_version_tree *version,
9165 struct bfd_elf_version_deps *deps)
9166 {
9167 struct bfd_elf_version_tree *t, **pp;
9168 struct bfd_elf_version_expr *e1;
9169
9170 if (name == NULL)
9171 name = "";
9172
9173 if (link_info.version_info != NULL
9174 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9175 {
9176 einfo (_("%X%P: anonymous version tag cannot be combined"
9177 " with other version tags\n"));
9178 free (version);
9179 return;
9180 }
9181
9182 /* Make sure this node has a unique name. */
9183 for (t = link_info.version_info; t != NULL; t = t->next)
9184 if (strcmp (t->name, name) == 0)
9185 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9186
9187 lang_finalize_version_expr_head (&version->globals);
9188 lang_finalize_version_expr_head (&version->locals);
9189
9190 /* Check the global and local match names, and make sure there
9191 aren't any duplicates. */
9192
9193 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9194 {
9195 for (t = link_info.version_info; t != NULL; t = t->next)
9196 {
9197 struct bfd_elf_version_expr *e2;
9198
9199 if (t->locals.htab && e1->literal)
9200 {
9201 e2 = (struct bfd_elf_version_expr *)
9202 htab_find ((htab_t) t->locals.htab, e1);
9203 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9204 {
9205 if (e1->mask == e2->mask)
9206 einfo (_("%X%P: duplicate expression `%s'"
9207 " in version information\n"), e1->pattern);
9208 e2 = e2->next;
9209 }
9210 }
9211 else if (!e1->literal)
9212 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9213 if (strcmp (e1->pattern, e2->pattern) == 0
9214 && e1->mask == e2->mask)
9215 einfo (_("%X%P: duplicate expression `%s'"
9216 " in version information\n"), e1->pattern);
9217 }
9218 }
9219
9220 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9221 {
9222 for (t = link_info.version_info; t != NULL; t = t->next)
9223 {
9224 struct bfd_elf_version_expr *e2;
9225
9226 if (t->globals.htab && e1->literal)
9227 {
9228 e2 = (struct bfd_elf_version_expr *)
9229 htab_find ((htab_t) t->globals.htab, e1);
9230 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9231 {
9232 if (e1->mask == e2->mask)
9233 einfo (_("%X%P: duplicate expression `%s'"
9234 " in version information\n"),
9235 e1->pattern);
9236 e2 = e2->next;
9237 }
9238 }
9239 else if (!e1->literal)
9240 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9241 if (strcmp (e1->pattern, e2->pattern) == 0
9242 && e1->mask == e2->mask)
9243 einfo (_("%X%P: duplicate expression `%s'"
9244 " in version information\n"), e1->pattern);
9245 }
9246 }
9247
9248 version->deps = deps;
9249 version->name = name;
9250 if (name[0] != '\0')
9251 {
9252 ++version_index;
9253 version->vernum = version_index;
9254 }
9255 else
9256 version->vernum = 0;
9257
9258 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9259 ;
9260 *pp = version;
9261 }
9262
9263 /* This is called when we see a version dependency. */
9264
9265 struct bfd_elf_version_deps *
9266 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9267 {
9268 struct bfd_elf_version_deps *ret;
9269 struct bfd_elf_version_tree *t;
9270
9271 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9272 ret->next = list;
9273
9274 for (t = link_info.version_info; t != NULL; t = t->next)
9275 {
9276 if (strcmp (t->name, name) == 0)
9277 {
9278 ret->version_needed = t;
9279 return ret;
9280 }
9281 }
9282
9283 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9284
9285 ret->version_needed = NULL;
9286 return ret;
9287 }
9288
9289 static void
9290 lang_do_version_exports_section (void)
9291 {
9292 struct bfd_elf_version_expr *greg = NULL, *lreg;
9293
9294 LANG_FOR_EACH_INPUT_STATEMENT (is)
9295 {
9296 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9297 char *contents, *p;
9298 bfd_size_type len;
9299
9300 if (sec == NULL)
9301 continue;
9302
9303 len = sec->size;
9304 contents = (char *) xmalloc (len);
9305 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9306 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9307
9308 p = contents;
9309 while (p < contents + len)
9310 {
9311 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9312 p = strchr (p, '\0') + 1;
9313 }
9314
9315 /* Do not free the contents, as we used them creating the regex. */
9316
9317 /* Do not include this section in the link. */
9318 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9319 }
9320
9321 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9322 lang_register_vers_node (command_line.version_exports_section,
9323 lang_new_vers_node (greg, lreg), NULL);
9324 }
9325
9326 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
9327
9328 static void
9329 lang_do_memory_regions (void)
9330 {
9331 lang_memory_region_type *r = lang_memory_region_list;
9332
9333 for (; r != NULL; r = r->next)
9334 {
9335 if (r->origin_exp)
9336 {
9337 exp_fold_tree_no_dot (r->origin_exp);
9338 if (expld.result.valid_p)
9339 {
9340 r->origin = expld.result.value;
9341 r->current = r->origin;
9342 }
9343 else
9344 einfo (_("%F%P: invalid origin for memory region %s\n"),
9345 r->name_list.name);
9346 }
9347 if (r->length_exp)
9348 {
9349 exp_fold_tree_no_dot (r->length_exp);
9350 if (expld.result.valid_p)
9351 r->length = expld.result.value;
9352 else
9353 einfo (_("%F%P: invalid length for memory region %s\n"),
9354 r->name_list.name);
9355 }
9356 }
9357 }
9358
9359 void
9360 lang_add_unique (const char *name)
9361 {
9362 struct unique_sections *ent;
9363
9364 for (ent = unique_section_list; ent; ent = ent->next)
9365 if (strcmp (ent->name, name) == 0)
9366 return;
9367
9368 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9369 ent->name = xstrdup (name);
9370 ent->next = unique_section_list;
9371 unique_section_list = ent;
9372 }
9373
9374 /* Append the list of dynamic symbols to the existing one. */
9375
9376 void
9377 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9378 struct bfd_elf_version_expr *dynamic)
9379 {
9380 if (*list_p)
9381 {
9382 struct bfd_elf_version_expr *tail;
9383 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9384 ;
9385 tail->next = (*list_p)->head.list;
9386 (*list_p)->head.list = dynamic;
9387 }
9388 else
9389 {
9390 struct bfd_elf_dynamic_list *d;
9391
9392 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9393 d->head.list = dynamic;
9394 d->match = lang_vers_match;
9395 *list_p = d;
9396 }
9397 }
9398
9399 /* Append the list of C++ typeinfo dynamic symbols to the existing
9400 one. */
9401
9402 void
9403 lang_append_dynamic_list_cpp_typeinfo (void)
9404 {
9405 const char *symbols[] =
9406 {
9407 "typeinfo name for*",
9408 "typeinfo for*"
9409 };
9410 struct bfd_elf_version_expr *dynamic = NULL;
9411 unsigned int i;
9412
9413 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9414 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9415 FALSE);
9416
9417 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9418 }
9419
9420 /* Append the list of C++ operator new and delete dynamic symbols to the
9421 existing one. */
9422
9423 void
9424 lang_append_dynamic_list_cpp_new (void)
9425 {
9426 const char *symbols[] =
9427 {
9428 "operator new*",
9429 "operator delete*"
9430 };
9431 struct bfd_elf_version_expr *dynamic = NULL;
9432 unsigned int i;
9433
9434 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9435 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9436 FALSE);
9437
9438 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9439 }
9440
9441 /* Scan a space and/or comma separated string of features. */
9442
9443 void
9444 lang_ld_feature (char *str)
9445 {
9446 char *p, *q;
9447
9448 p = str;
9449 while (*p)
9450 {
9451 char sep;
9452 while (*p == ',' || ISSPACE (*p))
9453 ++p;
9454 if (!*p)
9455 break;
9456 q = p + 1;
9457 while (*q && *q != ',' && !ISSPACE (*q))
9458 ++q;
9459 sep = *q;
9460 *q = 0;
9461 if (strcasecmp (p, "SANE_EXPR") == 0)
9462 config.sane_expr = TRUE;
9463 else
9464 einfo (_("%X%P: unknown feature `%s'\n"), p);
9465 *q = sep;
9466 p = q;
9467 }
9468 }
9469
9470 /* Pretty print memory amount. */
9471
9472 static void
9473 lang_print_memory_size (bfd_vma sz)
9474 {
9475 if ((sz & 0x3fffffff) == 0)
9476 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9477 else if ((sz & 0xfffff) == 0)
9478 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9479 else if ((sz & 0x3ff) == 0)
9480 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9481 else
9482 printf (" %10" BFD_VMA_FMT "u B", sz);
9483 }
9484
9485 /* Implement --print-memory-usage: disply per region memory usage. */
9486
9487 void
9488 lang_print_memory_usage (void)
9489 {
9490 lang_memory_region_type *r;
9491
9492 printf ("Memory region Used Size Region Size %%age Used\n");
9493 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9494 {
9495 bfd_vma used_length = r->current - r->origin;
9496
9497 printf ("%16s: ",r->name_list.name);
9498 lang_print_memory_size (used_length);
9499 lang_print_memory_size ((bfd_vma) r->length);
9500
9501 if (r->length != 0)
9502 {
9503 double percent = used_length * 100.0 / r->length;
9504 printf (" %6.2f%%", percent);
9505 }
9506 printf ("\n");
9507 }
9508 }