]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - ld/ldlang.c
Change the linker's heuristic for computing the entry point for binaries so that...
[thirdparty/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2021 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bool map_head_is_link_order = false;
67 static lang_output_section_statement_type *default_common_section;
68 static bool map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bool);
89 static bool lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (bool);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 /* Header for list of statements corresponding to any files involved in the
100 link, either specified from the command-line or added implicitely (eg.
101 archive member used to resolved undefined symbol, wildcard statement from
102 linker script, etc.). Next pointer is in next field of a
103 lang_statement_header_type (reached via header field in a
104 lang_statement_union). */
105 lang_statement_list_type statement_list;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bool entry_from_cmdline;
126 bool lang_has_input_file = false;
127 bool had_output_filename = false;
128 bool lang_float_flag = false;
129 bool delete_output_file_on_failure = false;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_dict_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bool
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bool match = false;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = true;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bool
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return true;
263
264 return false;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bool
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return true;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return true;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return true;
301 }
302
303 return false;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, file, data);
343
344 while (sec != NULL)
345 {
346 bool skip = false;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bool multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bool
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = true;
380 return true;
381 }
382
383 d->found_section = s;
384 return false;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bool *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, false };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bool
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bool
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return false;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return false;
427
428 return true;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 lang_input_statement_type *file,
570 void *output)
571 {
572 lang_section_bst_type *node;
573 lang_section_bst_type **tree;
574 lang_output_section_statement_type *os;
575
576 os = (lang_output_section_statement_type *) output;
577
578 if (unique_section_p (section, os))
579 return;
580
581 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
582 node->left = 0;
583 node->right = 0;
584 node->section = section;
585 node->pattern = ptr->section_list;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, tree->pattern, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bool multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bool skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bool multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bool multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bool multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bool skip = !match_simple_wild (wildsec2->spec.name, sname);
772
773 if (!skip)
774 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
775 data);
776 else
777 {
778 skip = !match_simple_wild (wildsec3->spec.name, sname);
779 if (!skip)
780 walk_wild_consider_section (ptr, file, s, wildsec3,
781 callback, data);
782 }
783 }
784 }
785 }
786
787 static void
788 walk_wild_section (lang_wild_statement_type *ptr,
789 lang_input_statement_type *file,
790 callback_t callback,
791 void *data)
792 {
793 if (file->flags.just_syms)
794 return;
795
796 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
797 }
798
799 /* Returns TRUE when name1 is a wildcard spec that might match
800 something name2 can match. We're conservative: we return FALSE
801 only if the prefixes of name1 and name2 are different up to the
802 first wildcard character. */
803
804 static bool
805 wild_spec_can_overlap (const char *name1, const char *name2)
806 {
807 size_t prefix1_len = strcspn (name1, "?*[");
808 size_t prefix2_len = strcspn (name2, "?*[");
809 size_t min_prefix_len;
810
811 /* Note that if there is no wildcard character, then we treat the
812 terminating 0 as part of the prefix. Thus ".text" won't match
813 ".text." or ".text.*", for example. */
814 if (name1[prefix1_len] == '\0')
815 prefix1_len++;
816 if (name2[prefix2_len] == '\0')
817 prefix2_len++;
818
819 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
820
821 return memcmp (name1, name2, min_prefix_len) == 0;
822 }
823
824 /* Select specialized code to handle various kinds of wildcard
825 statements. */
826
827 static void
828 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
829 {
830 int sec_count = 0;
831 int wild_name_count = 0;
832 struct wildcard_list *sec;
833 int signature;
834 int data_counter;
835
836 ptr->walk_wild_section_handler = walk_wild_section_general;
837 ptr->handler_data[0] = NULL;
838 ptr->handler_data[1] = NULL;
839 ptr->handler_data[2] = NULL;
840 ptr->handler_data[3] = NULL;
841 ptr->tree = NULL;
842
843 /* Count how many wildcard_specs there are, and how many of those
844 actually use wildcards in the name. Also, bail out if any of the
845 wildcard names are NULL. (Can this actually happen?
846 walk_wild_section used to test for it.) And bail out if any
847 of the wildcards are more complex than a simple string
848 ending in a single '*'. */
849 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
850 {
851 ++sec_count;
852 if (sec->spec.name == NULL)
853 return;
854 if (wildcardp (sec->spec.name))
855 {
856 ++wild_name_count;
857 if (!is_simple_wild (sec->spec.name))
858 return;
859 }
860 }
861
862 /* The zero-spec case would be easy to optimize but it doesn't
863 happen in practice. Likewise, more than 4 specs doesn't
864 happen in practice. */
865 if (sec_count == 0 || sec_count > 4)
866 return;
867
868 /* Check that no two specs can match the same section. */
869 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
870 {
871 struct wildcard_list *sec2;
872 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
873 {
874 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
875 return;
876 }
877 }
878
879 signature = (sec_count << 8) + wild_name_count;
880 switch (signature)
881 {
882 case 0x0100:
883 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
884 break;
885 case 0x0101:
886 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
887 break;
888 case 0x0201:
889 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
890 break;
891 case 0x0302:
892 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
893 break;
894 case 0x0402:
895 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
896 break;
897 default:
898 return;
899 }
900
901 /* Now fill the data array with pointers to the specs, first the
902 specs with non-wildcard names, then the specs with wildcard
903 names. It's OK to process the specs in different order from the
904 given order, because we've already determined that no section
905 will match more than one spec. */
906 data_counter = 0;
907 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
908 if (!wildcardp (sec->spec.name))
909 ptr->handler_data[data_counter++] = sec;
910 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
911 if (wildcardp (sec->spec.name))
912 ptr->handler_data[data_counter++] = sec;
913 }
914
915 /* Handle a wild statement for a single file F. */
916
917 static void
918 walk_wild_file (lang_wild_statement_type *s,
919 lang_input_statement_type *f,
920 callback_t callback,
921 void *data)
922 {
923 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
924 return;
925
926 if (f->the_bfd == NULL
927 || !bfd_check_format (f->the_bfd, bfd_archive))
928 walk_wild_section (s, f, callback, data);
929 else
930 {
931 bfd *member;
932
933 /* This is an archive file. We must map each member of the
934 archive separately. */
935 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
936 while (member != NULL)
937 {
938 /* When lookup_name is called, it will call the add_symbols
939 entry point for the archive. For each element of the
940 archive which is included, BFD will call ldlang_add_file,
941 which will set the usrdata field of the member to the
942 lang_input_statement. */
943 if (bfd_usrdata (member) != NULL)
944 walk_wild_section (s, bfd_usrdata (member), callback, data);
945
946 member = bfd_openr_next_archived_file (f->the_bfd, member);
947 }
948 }
949 }
950
951 static void
952 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
953 {
954 const char *file_spec = s->filename;
955 char *p;
956
957 if (file_spec == NULL)
958 {
959 /* Perform the iteration over all files in the list. */
960 LANG_FOR_EACH_INPUT_STATEMENT (f)
961 {
962 walk_wild_file (s, f, callback, data);
963 }
964 }
965 else if ((p = archive_path (file_spec)) != NULL)
966 {
967 LANG_FOR_EACH_INPUT_STATEMENT (f)
968 {
969 if (input_statement_is_archive_path (file_spec, p, f))
970 walk_wild_file (s, f, callback, data);
971 }
972 }
973 else if (wildcardp (file_spec))
974 {
975 LANG_FOR_EACH_INPUT_STATEMENT (f)
976 {
977 if (fnmatch (file_spec, f->filename, 0) == 0)
978 walk_wild_file (s, f, callback, data);
979 }
980 }
981 else
982 {
983 lang_input_statement_type *f;
984
985 /* Perform the iteration over a single file. */
986 f = lookup_name (file_spec);
987 if (f)
988 walk_wild_file (s, f, callback, data);
989 }
990 }
991
992 /* lang_for_each_statement walks the parse tree and calls the provided
993 function for each node, except those inside output section statements
994 with constraint set to -1. */
995
996 void
997 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
998 lang_statement_union_type *s)
999 {
1000 for (; s != NULL; s = s->header.next)
1001 {
1002 func (s);
1003
1004 switch (s->header.type)
1005 {
1006 case lang_constructors_statement_enum:
1007 lang_for_each_statement_worker (func, constructor_list.head);
1008 break;
1009 case lang_output_section_statement_enum:
1010 if (s->output_section_statement.constraint != -1)
1011 lang_for_each_statement_worker
1012 (func, s->output_section_statement.children.head);
1013 break;
1014 case lang_wild_statement_enum:
1015 lang_for_each_statement_worker (func,
1016 s->wild_statement.children.head);
1017 break;
1018 case lang_group_statement_enum:
1019 lang_for_each_statement_worker (func,
1020 s->group_statement.children.head);
1021 break;
1022 case lang_data_statement_enum:
1023 case lang_reloc_statement_enum:
1024 case lang_object_symbols_statement_enum:
1025 case lang_output_statement_enum:
1026 case lang_target_statement_enum:
1027 case lang_input_section_enum:
1028 case lang_input_statement_enum:
1029 case lang_assignment_statement_enum:
1030 case lang_padding_statement_enum:
1031 case lang_address_statement_enum:
1032 case lang_fill_statement_enum:
1033 case lang_insert_statement_enum:
1034 break;
1035 default:
1036 FAIL ();
1037 break;
1038 }
1039 }
1040 }
1041
1042 void
1043 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1044 {
1045 lang_for_each_statement_worker (func, statement_list.head);
1046 }
1047
1048 /*----------------------------------------------------------------------*/
1049
1050 void
1051 lang_list_init (lang_statement_list_type *list)
1052 {
1053 list->head = NULL;
1054 list->tail = &list->head;
1055 }
1056
1057 static void
1058 lang_statement_append (lang_statement_list_type *list,
1059 void *element,
1060 void *field)
1061 {
1062 *(list->tail) = element;
1063 list->tail = field;
1064 }
1065
1066 void
1067 push_stat_ptr (lang_statement_list_type *new_ptr)
1068 {
1069 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1070 abort ();
1071 *stat_save_ptr++ = stat_ptr;
1072 stat_ptr = new_ptr;
1073 }
1074
1075 void
1076 pop_stat_ptr (void)
1077 {
1078 if (stat_save_ptr <= stat_save)
1079 abort ();
1080 stat_ptr = *--stat_save_ptr;
1081 }
1082
1083 /* Build a new statement node for the parse tree. */
1084
1085 static lang_statement_union_type *
1086 new_statement (enum statement_enum type,
1087 size_t size,
1088 lang_statement_list_type *list)
1089 {
1090 lang_statement_union_type *new_stmt;
1091
1092 new_stmt = stat_alloc (size);
1093 new_stmt->header.type = type;
1094 new_stmt->header.next = NULL;
1095 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1096 return new_stmt;
1097 }
1098
1099 /* Build a new input file node for the language. There are several
1100 ways in which we treat an input file, eg, we only look at symbols,
1101 or prefix it with a -l etc.
1102
1103 We can be supplied with requests for input files more than once;
1104 they may, for example be split over several lines like foo.o(.text)
1105 foo.o(.data) etc, so when asked for a file we check that we haven't
1106 got it already so we don't duplicate the bfd. */
1107
1108 static lang_input_statement_type *
1109 new_afile (const char *name,
1110 lang_input_file_enum_type file_type,
1111 const char *target,
1112 const char *from_filename)
1113 {
1114 lang_input_statement_type *p;
1115
1116 lang_has_input_file = true;
1117
1118 p = new_stat (lang_input_statement, stat_ptr);
1119 memset (&p->the_bfd, 0,
1120 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1121 p->extra_search_path = NULL;
1122 p->target = target;
1123 p->flags.dynamic = input_flags.dynamic;
1124 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1125 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1126 p->flags.whole_archive = input_flags.whole_archive;
1127 p->flags.sysrooted = input_flags.sysrooted;
1128
1129 switch (file_type)
1130 {
1131 case lang_input_file_is_symbols_only_enum:
1132 p->filename = name;
1133 p->local_sym_name = name;
1134 p->flags.real = true;
1135 p->flags.just_syms = true;
1136 break;
1137 case lang_input_file_is_fake_enum:
1138 p->filename = name;
1139 p->local_sym_name = name;
1140 break;
1141 case lang_input_file_is_l_enum:
1142 if (name[0] == ':' && name[1] != '\0')
1143 {
1144 p->filename = name + 1;
1145 p->flags.full_name_provided = true;
1146 }
1147 else
1148 p->filename = name;
1149 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1150 p->flags.maybe_archive = true;
1151 p->flags.real = true;
1152 p->flags.search_dirs = true;
1153 break;
1154 case lang_input_file_is_marker_enum:
1155 p->filename = name;
1156 p->local_sym_name = name;
1157 p->flags.search_dirs = true;
1158 break;
1159 case lang_input_file_is_search_file_enum:
1160 p->filename = name;
1161 p->local_sym_name = name;
1162 /* If name is a relative path, search the directory of the current linker
1163 script first. */
1164 if (from_filename && !IS_ABSOLUTE_PATH (name))
1165 p->extra_search_path = ldirname (from_filename);
1166 p->flags.real = true;
1167 p->flags.search_dirs = true;
1168 break;
1169 case lang_input_file_is_file_enum:
1170 p->filename = name;
1171 p->local_sym_name = name;
1172 p->flags.real = true;
1173 break;
1174 default:
1175 FAIL ();
1176 }
1177
1178 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1179 return p;
1180 }
1181
1182 lang_input_statement_type *
1183 lang_add_input_file (const char *name,
1184 lang_input_file_enum_type file_type,
1185 const char *target)
1186 {
1187 if (name != NULL
1188 && (*name == '=' || startswith (name, "$SYSROOT")))
1189 {
1190 lang_input_statement_type *ret;
1191 char *sysrooted_name
1192 = concat (ld_sysroot,
1193 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1194 (const char *) NULL);
1195
1196 /* We've now forcibly prepended the sysroot, making the input
1197 file independent of the context. Therefore, temporarily
1198 force a non-sysrooted context for this statement, so it won't
1199 get the sysroot prepended again when opened. (N.B. if it's a
1200 script, any child nodes with input files starting with "/"
1201 will be handled as "sysrooted" as they'll be found to be
1202 within the sysroot subdirectory.) */
1203 unsigned int outer_sysrooted = input_flags.sysrooted;
1204 input_flags.sysrooted = 0;
1205 ret = new_afile (sysrooted_name, file_type, target, NULL);
1206 input_flags.sysrooted = outer_sysrooted;
1207 return ret;
1208 }
1209
1210 return new_afile (name, file_type, target, current_input_file);
1211 }
1212
1213 struct out_section_hash_entry
1214 {
1215 struct bfd_hash_entry root;
1216 lang_statement_union_type s;
1217 };
1218
1219 /* The hash table. */
1220
1221 static struct bfd_hash_table output_section_statement_table;
1222
1223 /* Support routines for the hash table used by lang_output_section_find,
1224 initialize the table, fill in an entry and remove the table. */
1225
1226 static struct bfd_hash_entry *
1227 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1228 struct bfd_hash_table *table,
1229 const char *string)
1230 {
1231 lang_output_section_statement_type **nextp;
1232 struct out_section_hash_entry *ret;
1233
1234 if (entry == NULL)
1235 {
1236 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1237 sizeof (*ret));
1238 if (entry == NULL)
1239 return entry;
1240 }
1241
1242 entry = bfd_hash_newfunc (entry, table, string);
1243 if (entry == NULL)
1244 return entry;
1245
1246 ret = (struct out_section_hash_entry *) entry;
1247 memset (&ret->s, 0, sizeof (ret->s));
1248 ret->s.header.type = lang_output_section_statement_enum;
1249 ret->s.output_section_statement.subsection_alignment = NULL;
1250 ret->s.output_section_statement.section_alignment = NULL;
1251 ret->s.output_section_statement.block_value = 1;
1252 lang_list_init (&ret->s.output_section_statement.children);
1253 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1254
1255 /* For every output section statement added to the list, except the
1256 first one, lang_os_list.tail points to the "next"
1257 field of the last element of the list. */
1258 if (lang_os_list.head != NULL)
1259 ret->s.output_section_statement.prev
1260 = ((lang_output_section_statement_type *)
1261 ((char *) lang_os_list.tail
1262 - offsetof (lang_output_section_statement_type, next)));
1263
1264 /* GCC's strict aliasing rules prevent us from just casting the
1265 address, so we store the pointer in a variable and cast that
1266 instead. */
1267 nextp = &ret->s.output_section_statement.next;
1268 lang_statement_append (&lang_os_list, &ret->s, nextp);
1269 return &ret->root;
1270 }
1271
1272 static void
1273 output_section_statement_table_init (void)
1274 {
1275 if (!bfd_hash_table_init_n (&output_section_statement_table,
1276 output_section_statement_newfunc,
1277 sizeof (struct out_section_hash_entry),
1278 61))
1279 einfo (_("%F%P: can not create hash table: %E\n"));
1280 }
1281
1282 static void
1283 output_section_statement_table_free (void)
1284 {
1285 bfd_hash_table_free (&output_section_statement_table);
1286 }
1287
1288 /* Build enough state so that the parser can build its tree. */
1289
1290 void
1291 lang_init (void)
1292 {
1293 obstack_begin (&stat_obstack, 1000);
1294
1295 stat_ptr = &statement_list;
1296
1297 output_section_statement_table_init ();
1298
1299 lang_list_init (stat_ptr);
1300
1301 lang_list_init (&input_file_chain);
1302 lang_list_init (&lang_os_list);
1303 lang_list_init (&file_chain);
1304 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1305 NULL);
1306 abs_output_section =
1307 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1308
1309 abs_output_section->bfd_section = bfd_abs_section_ptr;
1310
1311 asneeded_list_head = NULL;
1312 asneeded_list_tail = &asneeded_list_head;
1313 }
1314
1315 void
1316 lang_finish (void)
1317 {
1318 output_section_statement_table_free ();
1319 }
1320
1321 /*----------------------------------------------------------------------
1322 A region is an area of memory declared with the
1323 MEMORY { name:org=exp, len=exp ... }
1324 syntax.
1325
1326 We maintain a list of all the regions here.
1327
1328 If no regions are specified in the script, then the default is used
1329 which is created when looked up to be the entire data space.
1330
1331 If create is true we are creating a region inside a MEMORY block.
1332 In this case it is probably an error to create a region that has
1333 already been created. If we are not inside a MEMORY block it is
1334 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1335 and so we issue a warning.
1336
1337 Each region has at least one name. The first name is either
1338 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1339 alias names to an existing region within a script with
1340 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1341 region. */
1342
1343 static lang_memory_region_type *lang_memory_region_list;
1344 static lang_memory_region_type **lang_memory_region_list_tail
1345 = &lang_memory_region_list;
1346
1347 lang_memory_region_type *
1348 lang_memory_region_lookup (const char *const name, bool create)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *new_region;
1353
1354 /* NAME is NULL for LMA memspecs if no region was specified. */
1355 if (name == NULL)
1356 return NULL;
1357
1358 for (r = lang_memory_region_list; r != NULL; r = r->next)
1359 for (n = &r->name_list; n != NULL; n = n->next)
1360 if (strcmp (n->name, name) == 0)
1361 {
1362 if (create)
1363 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1364 NULL, name);
1365 return r;
1366 }
1367
1368 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1369 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1370 NULL, name);
1371
1372 new_region = stat_alloc (sizeof (lang_memory_region_type));
1373
1374 new_region->name_list.name = xstrdup (name);
1375 new_region->name_list.next = NULL;
1376 new_region->next = NULL;
1377 new_region->origin_exp = NULL;
1378 new_region->origin = 0;
1379 new_region->length_exp = NULL;
1380 new_region->length = ~(bfd_size_type) 0;
1381 new_region->current = 0;
1382 new_region->last_os = NULL;
1383 new_region->flags = 0;
1384 new_region->not_flags = 0;
1385 new_region->had_full_message = false;
1386
1387 *lang_memory_region_list_tail = new_region;
1388 lang_memory_region_list_tail = &new_region->next;
1389
1390 return new_region;
1391 }
1392
1393 void
1394 lang_memory_region_alias (const char *alias, const char *region_name)
1395 {
1396 lang_memory_region_name *n;
1397 lang_memory_region_type *r;
1398 lang_memory_region_type *region;
1399
1400 /* The default region must be unique. This ensures that it is not necessary
1401 to iterate through the name list if someone wants the check if a region is
1402 the default memory region. */
1403 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1404 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1405 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1406
1407 /* Look for the target region and check if the alias is not already
1408 in use. */
1409 region = NULL;
1410 for (r = lang_memory_region_list; r != NULL; r = r->next)
1411 for (n = &r->name_list; n != NULL; n = n->next)
1412 {
1413 if (region == NULL && strcmp (n->name, region_name) == 0)
1414 region = r;
1415 if (strcmp (n->name, alias) == 0)
1416 einfo (_("%F%P:%pS: error: redefinition of memory region "
1417 "alias `%s'\n"),
1418 NULL, alias);
1419 }
1420
1421 /* Check if the target region exists. */
1422 if (region == NULL)
1423 einfo (_("%F%P:%pS: error: memory region `%s' "
1424 "for alias `%s' does not exist\n"),
1425 NULL, region_name, alias);
1426
1427 /* Add alias to region name list. */
1428 n = stat_alloc (sizeof (lang_memory_region_name));
1429 n->name = xstrdup (alias);
1430 n->next = region->name_list.next;
1431 region->name_list.next = n;
1432 }
1433
1434 static lang_memory_region_type *
1435 lang_memory_default (asection *section)
1436 {
1437 lang_memory_region_type *p;
1438
1439 flagword sec_flags = section->flags;
1440
1441 /* Override SEC_DATA to mean a writable section. */
1442 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1443 sec_flags |= SEC_DATA;
1444
1445 for (p = lang_memory_region_list; p != NULL; p = p->next)
1446 {
1447 if ((p->flags & sec_flags) != 0
1448 && (p->not_flags & sec_flags) == 0)
1449 {
1450 return p;
1451 }
1452 }
1453 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
1454 }
1455
1456 /* Get the output section statement directly from the userdata. */
1457
1458 lang_output_section_statement_type *
1459 lang_output_section_get (const asection *output_section)
1460 {
1461 return bfd_section_userdata (output_section);
1462 }
1463
1464 /* Find or create an output_section_statement with the given NAME.
1465 If CONSTRAINT is non-zero match one with that constraint, otherwise
1466 match any non-negative constraint. If CREATE is 0 return NULL when
1467 no match exists. If CREATE is 1, create an output_section_statement
1468 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1469 always make a new output_section_statement. */
1470
1471 lang_output_section_statement_type *
1472 lang_output_section_statement_lookup (const char *name,
1473 int constraint,
1474 int create)
1475 {
1476 struct out_section_hash_entry *entry;
1477
1478 entry = ((struct out_section_hash_entry *)
1479 bfd_hash_lookup (&output_section_statement_table, name,
1480 create != 0, false));
1481 if (entry == NULL)
1482 {
1483 if (create)
1484 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1485 return NULL;
1486 }
1487
1488 if (entry->s.output_section_statement.name != NULL)
1489 {
1490 /* We have a section of this name, but it might not have the correct
1491 constraint. */
1492 struct out_section_hash_entry *last_ent;
1493
1494 name = entry->s.output_section_statement.name;
1495 do
1496 {
1497 if (create != 2
1498 && !(create && constraint == SPECIAL)
1499 && (constraint == entry->s.output_section_statement.constraint
1500 || (constraint == 0
1501 && entry->s.output_section_statement.constraint >= 0)))
1502 return &entry->s.output_section_statement;
1503 last_ent = entry;
1504 entry = (struct out_section_hash_entry *) entry->root.next;
1505 }
1506 while (entry != NULL
1507 && name == entry->s.output_section_statement.name);
1508
1509 if (!create)
1510 return NULL;
1511
1512 entry
1513 = ((struct out_section_hash_entry *)
1514 output_section_statement_newfunc (NULL,
1515 &output_section_statement_table,
1516 name));
1517 if (entry == NULL)
1518 {
1519 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1520 return NULL;
1521 }
1522 entry->root = last_ent->root;
1523 last_ent->root.next = &entry->root;
1524 }
1525
1526 entry->s.output_section_statement.name = name;
1527 entry->s.output_section_statement.constraint = constraint;
1528 entry->s.output_section_statement.dup_output = (create == 2
1529 || constraint == SPECIAL);
1530 return &entry->s.output_section_statement;
1531 }
1532
1533 /* Find the next output_section_statement with the same name as OS.
1534 If CONSTRAINT is non-zero, find one with that constraint otherwise
1535 match any non-negative constraint. */
1536
1537 lang_output_section_statement_type *
1538 next_matching_output_section_statement (lang_output_section_statement_type *os,
1539 int constraint)
1540 {
1541 /* All output_section_statements are actually part of a
1542 struct out_section_hash_entry. */
1543 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1544 ((char *) os
1545 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1546 const char *name = os->name;
1547
1548 ASSERT (name == entry->root.string);
1549 do
1550 {
1551 entry = (struct out_section_hash_entry *) entry->root.next;
1552 if (entry == NULL
1553 || name != entry->s.output_section_statement.name)
1554 return NULL;
1555 }
1556 while (constraint != entry->s.output_section_statement.constraint
1557 && (constraint != 0
1558 || entry->s.output_section_statement.constraint < 0));
1559
1560 return &entry->s.output_section_statement;
1561 }
1562
1563 /* A variant of lang_output_section_find used by place_orphan.
1564 Returns the output statement that should precede a new output
1565 statement for SEC. If an exact match is found on certain flags,
1566 sets *EXACT too. */
1567
1568 lang_output_section_statement_type *
1569 lang_output_section_find_by_flags (const asection *sec,
1570 flagword sec_flags,
1571 lang_output_section_statement_type **exact,
1572 lang_match_sec_type_func match_type)
1573 {
1574 lang_output_section_statement_type *first, *look, *found;
1575 flagword look_flags, differ;
1576
1577 /* We know the first statement on this list is *ABS*. May as well
1578 skip it. */
1579 first = (void *) lang_os_list.head;
1580 first = first->next;
1581
1582 /* First try for an exact match. */
1583 found = NULL;
1584 for (look = first; look; look = look->next)
1585 {
1586 look_flags = look->flags;
1587 if (look->bfd_section != NULL)
1588 {
1589 look_flags = look->bfd_section->flags;
1590 if (match_type && !match_type (link_info.output_bfd,
1591 look->bfd_section,
1592 sec->owner, sec))
1593 continue;
1594 }
1595 differ = look_flags ^ sec_flags;
1596 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1597 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1598 found = look;
1599 }
1600 if (found != NULL)
1601 {
1602 if (exact != NULL)
1603 *exact = found;
1604 return found;
1605 }
1606
1607 if ((sec_flags & SEC_CODE) != 0
1608 && (sec_flags & SEC_ALLOC) != 0)
1609 {
1610 /* Try for a rw code section. */
1611 for (look = first; look; look = look->next)
1612 {
1613 look_flags = look->flags;
1614 if (look->bfd_section != NULL)
1615 {
1616 look_flags = look->bfd_section->flags;
1617 if (match_type && !match_type (link_info.output_bfd,
1618 look->bfd_section,
1619 sec->owner, sec))
1620 continue;
1621 }
1622 differ = look_flags ^ sec_flags;
1623 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1624 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1625 found = look;
1626 }
1627 }
1628 else if ((sec_flags & SEC_READONLY) != 0
1629 && (sec_flags & SEC_ALLOC) != 0)
1630 {
1631 /* .rodata can go after .text, .sdata2 after .rodata. */
1632 for (look = first; look; look = look->next)
1633 {
1634 look_flags = look->flags;
1635 if (look->bfd_section != NULL)
1636 {
1637 look_flags = look->bfd_section->flags;
1638 if (match_type && !match_type (link_info.output_bfd,
1639 look->bfd_section,
1640 sec->owner, sec))
1641 continue;
1642 }
1643 differ = look_flags ^ sec_flags;
1644 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1645 | SEC_READONLY | SEC_SMALL_DATA))
1646 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1647 | SEC_READONLY))
1648 && !(look_flags & SEC_SMALL_DATA)))
1649 found = look;
1650 }
1651 }
1652 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1653 && (sec_flags & SEC_ALLOC) != 0)
1654 {
1655 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1656 as if it were a loaded section, and don't use match_type. */
1657 bool seen_thread_local = false;
1658
1659 match_type = NULL;
1660 for (look = first; look; look = look->next)
1661 {
1662 look_flags = look->flags;
1663 if (look->bfd_section != NULL)
1664 look_flags = look->bfd_section->flags;
1665
1666 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1667 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1668 {
1669 /* .tdata and .tbss must be adjacent and in that order. */
1670 if (!(look_flags & SEC_LOAD)
1671 && (sec_flags & SEC_LOAD))
1672 /* ..so if we're at a .tbss section and we're placing
1673 a .tdata section stop looking and return the
1674 previous section. */
1675 break;
1676 found = look;
1677 seen_thread_local = true;
1678 }
1679 else if (seen_thread_local)
1680 break;
1681 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_SMALL_DATA) != 0
1686 && (sec_flags & SEC_ALLOC) != 0)
1687 {
1688 /* .sdata goes after .data, .sbss after .sdata. */
1689 for (look = first; look; look = look->next)
1690 {
1691 look_flags = look->flags;
1692 if (look->bfd_section != NULL)
1693 {
1694 look_flags = look->bfd_section->flags;
1695 if (match_type && !match_type (link_info.output_bfd,
1696 look->bfd_section,
1697 sec->owner, sec))
1698 continue;
1699 }
1700 differ = look_flags ^ sec_flags;
1701 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1702 | SEC_THREAD_LOCAL))
1703 || ((look_flags & SEC_SMALL_DATA)
1704 && !(sec_flags & SEC_HAS_CONTENTS)))
1705 found = look;
1706 }
1707 }
1708 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1709 && (sec_flags & SEC_ALLOC) != 0)
1710 {
1711 /* .data goes after .rodata. */
1712 for (look = first; look; look = look->next)
1713 {
1714 look_flags = look->flags;
1715 if (look->bfd_section != NULL)
1716 {
1717 look_flags = look->bfd_section->flags;
1718 if (match_type && !match_type (link_info.output_bfd,
1719 look->bfd_section,
1720 sec->owner, sec))
1721 continue;
1722 }
1723 differ = look_flags ^ sec_flags;
1724 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1725 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1726 found = look;
1727 }
1728 }
1729 else if ((sec_flags & SEC_ALLOC) != 0)
1730 {
1731 /* .bss goes after any other alloc section. */
1732 for (look = first; look; look = look->next)
1733 {
1734 look_flags = look->flags;
1735 if (look->bfd_section != NULL)
1736 {
1737 look_flags = look->bfd_section->flags;
1738 if (match_type && !match_type (link_info.output_bfd,
1739 look->bfd_section,
1740 sec->owner, sec))
1741 continue;
1742 }
1743 differ = look_flags ^ sec_flags;
1744 if (!(differ & SEC_ALLOC))
1745 found = look;
1746 }
1747 }
1748 else
1749 {
1750 /* non-alloc go last. */
1751 for (look = first; look; look = look->next)
1752 {
1753 look_flags = look->flags;
1754 if (look->bfd_section != NULL)
1755 look_flags = look->bfd_section->flags;
1756 differ = look_flags ^ sec_flags;
1757 if (!(differ & SEC_DEBUGGING))
1758 found = look;
1759 }
1760 return found;
1761 }
1762
1763 if (found || !match_type)
1764 return found;
1765
1766 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1767 }
1768
1769 /* Find the last output section before given output statement.
1770 Used by place_orphan. */
1771
1772 static asection *
1773 output_prev_sec_find (lang_output_section_statement_type *os)
1774 {
1775 lang_output_section_statement_type *lookup;
1776
1777 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1778 {
1779 if (lookup->constraint < 0)
1780 continue;
1781
1782 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1783 return lookup->bfd_section;
1784 }
1785
1786 return NULL;
1787 }
1788
1789 /* Look for a suitable place for a new output section statement. The
1790 idea is to skip over anything that might be inside a SECTIONS {}
1791 statement in a script, before we find another output section
1792 statement. Assignments to "dot" before an output section statement
1793 are assumed to belong to it, except in two cases; The first
1794 assignment to dot, and assignments before non-alloc sections.
1795 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1796 similar assignments that set the initial address, or we might
1797 insert non-alloc note sections among assignments setting end of
1798 image symbols. */
1799
1800 static lang_statement_union_type **
1801 insert_os_after (lang_output_section_statement_type *after)
1802 {
1803 lang_statement_union_type **where;
1804 lang_statement_union_type **assign = NULL;
1805 bool ignore_first;
1806
1807 ignore_first = after == (void *) lang_os_list.head;
1808
1809 for (where = &after->header.next;
1810 *where != NULL;
1811 where = &(*where)->header.next)
1812 {
1813 switch ((*where)->header.type)
1814 {
1815 case lang_assignment_statement_enum:
1816 if (assign == NULL)
1817 {
1818 lang_assignment_statement_type *ass;
1819
1820 ass = &(*where)->assignment_statement;
1821 if (ass->exp->type.node_class != etree_assert
1822 && ass->exp->assign.dst[0] == '.'
1823 && ass->exp->assign.dst[1] == 0)
1824 {
1825 if (!ignore_first)
1826 assign = where;
1827 ignore_first = false;
1828 }
1829 }
1830 continue;
1831 case lang_wild_statement_enum:
1832 case lang_input_section_enum:
1833 case lang_object_symbols_statement_enum:
1834 case lang_fill_statement_enum:
1835 case lang_data_statement_enum:
1836 case lang_reloc_statement_enum:
1837 case lang_padding_statement_enum:
1838 case lang_constructors_statement_enum:
1839 assign = NULL;
1840 ignore_first = false;
1841 continue;
1842 case lang_output_section_statement_enum:
1843 if (assign != NULL)
1844 {
1845 asection *s = (*where)->output_section_statement.bfd_section;
1846
1847 if (s == NULL
1848 || s->map_head.s == NULL
1849 || (s->flags & SEC_ALLOC) != 0)
1850 where = assign;
1851 }
1852 break;
1853 case lang_input_statement_enum:
1854 case lang_address_statement_enum:
1855 case lang_target_statement_enum:
1856 case lang_output_statement_enum:
1857 case lang_group_statement_enum:
1858 case lang_insert_statement_enum:
1859 continue;
1860 }
1861 break;
1862 }
1863
1864 return where;
1865 }
1866
1867 lang_output_section_statement_type *
1868 lang_insert_orphan (asection *s,
1869 const char *secname,
1870 int constraint,
1871 lang_output_section_statement_type *after,
1872 struct orphan_save *place,
1873 etree_type *address,
1874 lang_statement_list_type *add_child)
1875 {
1876 lang_statement_list_type add;
1877 lang_output_section_statement_type *os;
1878 lang_output_section_statement_type **os_tail;
1879
1880 /* If we have found an appropriate place for the output section
1881 statements for this orphan, add them to our own private list,
1882 inserting them later into the global statement list. */
1883 if (after != NULL)
1884 {
1885 lang_list_init (&add);
1886 push_stat_ptr (&add);
1887 }
1888
1889 if (bfd_link_relocatable (&link_info)
1890 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1891 address = exp_intop (0);
1892
1893 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1894 os = lang_enter_output_section_statement (secname, address, normal_section,
1895 NULL, NULL, NULL, constraint, 0);
1896
1897 if (add_child == NULL)
1898 add_child = &os->children;
1899 lang_add_section (add_child, s, NULL, NULL, os);
1900
1901 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1902 {
1903 const char *region = (after->region
1904 ? after->region->name_list.name
1905 : DEFAULT_MEMORY_REGION);
1906 const char *lma_region = (after->lma_region
1907 ? after->lma_region->name_list.name
1908 : NULL);
1909 lang_leave_output_section_statement (NULL, region, after->phdrs,
1910 lma_region);
1911 }
1912 else
1913 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1914 NULL);
1915
1916 /* Restore the global list pointer. */
1917 if (after != NULL)
1918 pop_stat_ptr ();
1919
1920 if (after != NULL && os->bfd_section != NULL)
1921 {
1922 asection *snew, *as;
1923 bool place_after = place->stmt == NULL;
1924 bool insert_after = true;
1925
1926 snew = os->bfd_section;
1927
1928 /* Shuffle the bfd section list to make the output file look
1929 neater. This is really only cosmetic. */
1930 if (place->section == NULL
1931 && after != (void *) lang_os_list.head)
1932 {
1933 asection *bfd_section = after->bfd_section;
1934
1935 /* If the output statement hasn't been used to place any input
1936 sections (and thus doesn't have an output bfd_section),
1937 look for the closest prior output statement having an
1938 output section. */
1939 if (bfd_section == NULL)
1940 bfd_section = output_prev_sec_find (after);
1941
1942 if (bfd_section != NULL && bfd_section != snew)
1943 place->section = &bfd_section->next;
1944 }
1945
1946 if (place->section == NULL)
1947 place->section = &link_info.output_bfd->sections;
1948
1949 as = *place->section;
1950
1951 if (!as)
1952 {
1953 /* Put the section at the end of the list. */
1954
1955 /* Unlink the section. */
1956 bfd_section_list_remove (link_info.output_bfd, snew);
1957
1958 /* Now tack it back on in the right place. */
1959 bfd_section_list_append (link_info.output_bfd, snew);
1960 }
1961 else if ((bfd_get_flavour (link_info.output_bfd)
1962 == bfd_target_elf_flavour)
1963 && (bfd_get_flavour (s->owner)
1964 == bfd_target_elf_flavour)
1965 && ((elf_section_type (s) == SHT_NOTE
1966 && (s->flags & SEC_LOAD) != 0)
1967 || (elf_section_type (as) == SHT_NOTE
1968 && (as->flags & SEC_LOAD) != 0)))
1969 {
1970 /* Make sure that output note sections are grouped and sorted
1971 by alignments when inserting a note section or insert a
1972 section after a note section, */
1973 asection *sec;
1974 /* A specific section after which the output note section
1975 should be placed. */
1976 asection *after_sec;
1977 /* True if we need to insert the orphan section after a
1978 specific section to maintain output note section order. */
1979 bool after_sec_note = false;
1980
1981 static asection *first_orphan_note = NULL;
1982
1983 /* Group and sort output note section by alignments in
1984 ascending order. */
1985 after_sec = NULL;
1986 if (elf_section_type (s) == SHT_NOTE
1987 && (s->flags & SEC_LOAD) != 0)
1988 {
1989 /* Search from the beginning for the last output note
1990 section with equal or larger alignments. NB: Don't
1991 place orphan note section after non-note sections. */
1992
1993 first_orphan_note = NULL;
1994 for (sec = link_info.output_bfd->sections;
1995 (sec != NULL
1996 && !bfd_is_abs_section (sec));
1997 sec = sec->next)
1998 if (sec != snew
1999 && elf_section_type (sec) == SHT_NOTE
2000 && (sec->flags & SEC_LOAD) != 0)
2001 {
2002 if (!first_orphan_note)
2003 first_orphan_note = sec;
2004 if (sec->alignment_power >= s->alignment_power)
2005 after_sec = sec;
2006 }
2007 else if (first_orphan_note)
2008 {
2009 /* Stop if there is non-note section after the first
2010 orphan note section. */
2011 break;
2012 }
2013
2014 /* If this will be the first orphan note section, it can
2015 be placed at the default location. */
2016 after_sec_note = first_orphan_note != NULL;
2017 if (after_sec == NULL && after_sec_note)
2018 {
2019 /* If all output note sections have smaller
2020 alignments, place the section before all
2021 output orphan note sections. */
2022 after_sec = first_orphan_note;
2023 insert_after = false;
2024 }
2025 }
2026 else if (first_orphan_note)
2027 {
2028 /* Don't place non-note sections in the middle of orphan
2029 note sections. */
2030 after_sec_note = true;
2031 after_sec = as;
2032 for (sec = as->next;
2033 (sec != NULL
2034 && !bfd_is_abs_section (sec));
2035 sec = sec->next)
2036 if (elf_section_type (sec) == SHT_NOTE
2037 && (sec->flags & SEC_LOAD) != 0)
2038 after_sec = sec;
2039 }
2040
2041 if (after_sec_note)
2042 {
2043 if (after_sec)
2044 {
2045 /* Search forward to insert OS after AFTER_SEC output
2046 statement. */
2047 lang_output_section_statement_type *stmt, *next;
2048 bool found = false;
2049 for (stmt = after; stmt != NULL; stmt = next)
2050 {
2051 next = stmt->next;
2052 if (insert_after)
2053 {
2054 if (stmt->bfd_section == after_sec)
2055 {
2056 place_after = true;
2057 found = true;
2058 after = stmt;
2059 break;
2060 }
2061 }
2062 else
2063 {
2064 /* If INSERT_AFTER is FALSE, place OS before
2065 AFTER_SEC output statement. */
2066 if (next && next->bfd_section == after_sec)
2067 {
2068 place_after = true;
2069 found = true;
2070 after = stmt;
2071 break;
2072 }
2073 }
2074 }
2075
2076 /* Search backward to insert OS after AFTER_SEC output
2077 statement. */
2078 if (!found)
2079 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2080 {
2081 if (insert_after)
2082 {
2083 if (stmt->bfd_section == after_sec)
2084 {
2085 place_after = true;
2086 after = stmt;
2087 break;
2088 }
2089 }
2090 else
2091 {
2092 /* If INSERT_AFTER is FALSE, place OS before
2093 AFTER_SEC output statement. */
2094 if (stmt->next->bfd_section == after_sec)
2095 {
2096 place_after = true;
2097 after = stmt;
2098 break;
2099 }
2100 }
2101 }
2102 }
2103
2104 if (after_sec == NULL
2105 || (insert_after && after_sec->next != snew)
2106 || (!insert_after && after_sec->prev != snew))
2107 {
2108 /* Unlink the section. */
2109 bfd_section_list_remove (link_info.output_bfd, snew);
2110
2111 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2112 prepend SNEW. */
2113 if (after_sec)
2114 {
2115 if (insert_after)
2116 bfd_section_list_insert_after (link_info.output_bfd,
2117 after_sec, snew);
2118 else
2119 bfd_section_list_insert_before (link_info.output_bfd,
2120 after_sec, snew);
2121 }
2122 else
2123 bfd_section_list_prepend (link_info.output_bfd, snew);
2124 }
2125 }
2126 else if (as != snew && as->prev != snew)
2127 {
2128 /* Unlink the section. */
2129 bfd_section_list_remove (link_info.output_bfd, snew);
2130
2131 /* Now tack it back on in the right place. */
2132 bfd_section_list_insert_before (link_info.output_bfd,
2133 as, snew);
2134 }
2135 }
2136 else if (as != snew && as->prev != snew)
2137 {
2138 /* Unlink the section. */
2139 bfd_section_list_remove (link_info.output_bfd, snew);
2140
2141 /* Now tack it back on in the right place. */
2142 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2143 }
2144
2145 /* Save the end of this list. Further ophans of this type will
2146 follow the one we've just added. */
2147 place->section = &snew->next;
2148
2149 /* The following is non-cosmetic. We try to put the output
2150 statements in some sort of reasonable order here, because they
2151 determine the final load addresses of the orphan sections.
2152 In addition, placing output statements in the wrong order may
2153 require extra segments. For instance, given a typical
2154 situation of all read-only sections placed in one segment and
2155 following that a segment containing all the read-write
2156 sections, we wouldn't want to place an orphan read/write
2157 section before or amongst the read-only ones. */
2158 if (add.head != NULL)
2159 {
2160 lang_output_section_statement_type *newly_added_os;
2161
2162 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2163 if (place_after)
2164 {
2165 lang_statement_union_type **where = insert_os_after (after);
2166
2167 *add.tail = *where;
2168 *where = add.head;
2169
2170 place->os_tail = &after->next;
2171 }
2172 else
2173 {
2174 /* Put it after the last orphan statement we added. */
2175 *add.tail = *place->stmt;
2176 *place->stmt = add.head;
2177 }
2178
2179 /* Fix the global list pointer if we happened to tack our
2180 new list at the tail. */
2181 if (*stat_ptr->tail == add.head)
2182 stat_ptr->tail = add.tail;
2183
2184 /* Save the end of this list. */
2185 place->stmt = add.tail;
2186
2187 /* Do the same for the list of output section statements. */
2188 newly_added_os = *os_tail;
2189 *os_tail = NULL;
2190 newly_added_os->prev = (lang_output_section_statement_type *)
2191 ((char *) place->os_tail
2192 - offsetof (lang_output_section_statement_type, next));
2193 newly_added_os->next = *place->os_tail;
2194 if (newly_added_os->next != NULL)
2195 newly_added_os->next->prev = newly_added_os;
2196 *place->os_tail = newly_added_os;
2197 place->os_tail = &newly_added_os->next;
2198
2199 /* Fixing the global list pointer here is a little different.
2200 We added to the list in lang_enter_output_section_statement,
2201 trimmed off the new output_section_statment above when
2202 assigning *os_tail = NULL, but possibly added it back in
2203 the same place when assigning *place->os_tail. */
2204 if (*os_tail == NULL)
2205 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2206 }
2207 }
2208 return os;
2209 }
2210
2211 static void
2212 lang_print_asneeded (void)
2213 {
2214 struct asneeded_minfo *m;
2215
2216 if (asneeded_list_head == NULL)
2217 return;
2218
2219 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2220
2221 for (m = asneeded_list_head; m != NULL; m = m->next)
2222 {
2223 size_t len;
2224
2225 minfo ("%s", m->soname);
2226 len = strlen (m->soname);
2227
2228 if (len >= 29)
2229 {
2230 print_nl ();
2231 len = 0;
2232 }
2233 while (len < 30)
2234 {
2235 print_space ();
2236 ++len;
2237 }
2238
2239 if (m->ref != NULL)
2240 minfo ("%pB ", m->ref);
2241 minfo ("(%pT)\n", m->name);
2242 }
2243 }
2244
2245 static void
2246 lang_map_flags (flagword flag)
2247 {
2248 if (flag & SEC_ALLOC)
2249 minfo ("a");
2250
2251 if (flag & SEC_CODE)
2252 minfo ("x");
2253
2254 if (flag & SEC_READONLY)
2255 minfo ("r");
2256
2257 if (flag & SEC_DATA)
2258 minfo ("w");
2259
2260 if (flag & SEC_LOAD)
2261 minfo ("l");
2262 }
2263
2264 void
2265 lang_map (void)
2266 {
2267 lang_memory_region_type *m;
2268 bool dis_header_printed = false;
2269
2270 LANG_FOR_EACH_INPUT_STATEMENT (file)
2271 {
2272 asection *s;
2273
2274 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2275 || file->flags.just_syms)
2276 continue;
2277
2278 if (config.print_map_discarded)
2279 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2280 if ((s->output_section == NULL
2281 || s->output_section->owner != link_info.output_bfd)
2282 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2283 {
2284 if (! dis_header_printed)
2285 {
2286 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2287 dis_header_printed = true;
2288 }
2289
2290 print_input_section (s, true);
2291 }
2292 }
2293
2294 minfo (_("\nMemory Configuration\n\n"));
2295 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2296 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2297
2298 for (m = lang_memory_region_list; m != NULL; m = m->next)
2299 {
2300 char buf[100];
2301 int len;
2302
2303 fprintf (config.map_file, "%-16s ", m->name_list.name);
2304
2305 sprintf_vma (buf, m->origin);
2306 minfo ("0x%s ", buf);
2307 len = strlen (buf);
2308 while (len < 16)
2309 {
2310 print_space ();
2311 ++len;
2312 }
2313
2314 minfo ("0x%V", m->length);
2315 if (m->flags || m->not_flags)
2316 {
2317 #ifndef BFD64
2318 minfo (" ");
2319 #endif
2320 if (m->flags)
2321 {
2322 print_space ();
2323 lang_map_flags (m->flags);
2324 }
2325
2326 if (m->not_flags)
2327 {
2328 minfo (" !");
2329 lang_map_flags (m->not_flags);
2330 }
2331 }
2332
2333 print_nl ();
2334 }
2335
2336 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2337
2338 if (!link_info.reduce_memory_overheads)
2339 {
2340 obstack_begin (&map_obstack, 1000);
2341 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2342 }
2343 expld.phase = lang_fixed_phase_enum;
2344 lang_statement_iteration++;
2345 print_statements ();
2346
2347 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2348 config.map_file);
2349 }
2350
2351 static bool
2352 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2353 void *info ATTRIBUTE_UNUSED)
2354 {
2355 if ((hash_entry->type == bfd_link_hash_defined
2356 || hash_entry->type == bfd_link_hash_defweak)
2357 && hash_entry->u.def.section->owner != link_info.output_bfd
2358 && hash_entry->u.def.section->owner != NULL)
2359 {
2360 input_section_userdata_type *ud;
2361 struct map_symbol_def *def;
2362
2363 ud = bfd_section_userdata (hash_entry->u.def.section);
2364 if (!ud)
2365 {
2366 ud = stat_alloc (sizeof (*ud));
2367 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2368 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2369 ud->map_symbol_def_count = 0;
2370 }
2371 else if (!ud->map_symbol_def_tail)
2372 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2373
2374 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2375 def->entry = hash_entry;
2376 *(ud->map_symbol_def_tail) = def;
2377 ud->map_symbol_def_tail = &def->next;
2378 ud->map_symbol_def_count++;
2379 }
2380 return true;
2381 }
2382
2383 /* Initialize an output section. */
2384
2385 static void
2386 init_os (lang_output_section_statement_type *s, flagword flags)
2387 {
2388 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2389 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2390
2391 if (!s->dup_output)
2392 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2393 if (s->bfd_section == NULL)
2394 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2395 s->name, flags);
2396 if (s->bfd_section == NULL)
2397 {
2398 einfo (_("%F%P: output format %s cannot represent section"
2399 " called %s: %E\n"),
2400 link_info.output_bfd->xvec->name, s->name);
2401 }
2402 s->bfd_section->output_section = s->bfd_section;
2403 s->bfd_section->output_offset = 0;
2404
2405 /* Set the userdata of the output section to the output section
2406 statement to avoid lookup. */
2407 bfd_set_section_userdata (s->bfd_section, s);
2408
2409 /* If there is a base address, make sure that any sections it might
2410 mention are initialized. */
2411 if (s->addr_tree != NULL)
2412 exp_init_os (s->addr_tree);
2413
2414 if (s->load_base != NULL)
2415 exp_init_os (s->load_base);
2416
2417 /* If supplied an alignment, set it. */
2418 if (s->section_alignment != NULL)
2419 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2420 "section alignment");
2421 }
2422
2423 /* Make sure that all output sections mentioned in an expression are
2424 initialized. */
2425
2426 static void
2427 exp_init_os (etree_type *exp)
2428 {
2429 switch (exp->type.node_class)
2430 {
2431 case etree_assign:
2432 case etree_provide:
2433 case etree_provided:
2434 exp_init_os (exp->assign.src);
2435 break;
2436
2437 case etree_binary:
2438 exp_init_os (exp->binary.lhs);
2439 exp_init_os (exp->binary.rhs);
2440 break;
2441
2442 case etree_trinary:
2443 exp_init_os (exp->trinary.cond);
2444 exp_init_os (exp->trinary.lhs);
2445 exp_init_os (exp->trinary.rhs);
2446 break;
2447
2448 case etree_assert:
2449 exp_init_os (exp->assert_s.child);
2450 break;
2451
2452 case etree_unary:
2453 exp_init_os (exp->unary.child);
2454 break;
2455
2456 case etree_name:
2457 switch (exp->type.node_code)
2458 {
2459 case ADDR:
2460 case LOADADDR:
2461 case SIZEOF:
2462 {
2463 lang_output_section_statement_type *os;
2464
2465 os = lang_output_section_find (exp->name.name);
2466 if (os != NULL && os->bfd_section == NULL)
2467 init_os (os, 0);
2468 }
2469 }
2470 break;
2471
2472 default:
2473 break;
2474 }
2475 }
2476 \f
2477 static void
2478 section_already_linked (bfd *abfd, asection *sec, void *data)
2479 {
2480 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2481
2482 /* If we are only reading symbols from this object, then we want to
2483 discard all sections. */
2484 if (entry->flags.just_syms)
2485 {
2486 bfd_link_just_syms (abfd, sec, &link_info);
2487 return;
2488 }
2489
2490 /* Deal with SHF_EXCLUDE ELF sections. */
2491 if (!bfd_link_relocatable (&link_info)
2492 && (abfd->flags & BFD_PLUGIN) == 0
2493 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2494 sec->output_section = bfd_abs_section_ptr;
2495
2496 if (!(abfd->flags & DYNAMIC))
2497 bfd_section_already_linked (abfd, sec, &link_info);
2498 }
2499 \f
2500
2501 /* Returns true if SECTION is one we know will be discarded based on its
2502 section flags, otherwise returns false. */
2503
2504 static bool
2505 lang_discard_section_p (asection *section)
2506 {
2507 bool discard;
2508 flagword flags = section->flags;
2509
2510 /* Discard sections marked with SEC_EXCLUDE. */
2511 discard = (flags & SEC_EXCLUDE) != 0;
2512
2513 /* Discard the group descriptor sections when we're finally placing the
2514 sections from within the group. */
2515 if ((flags & SEC_GROUP) != 0
2516 && link_info.resolve_section_groups)
2517 discard = true;
2518
2519 /* Discard debugging sections if we are stripping debugging
2520 information. */
2521 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2522 && (flags & SEC_DEBUGGING) != 0)
2523 discard = true;
2524
2525 return discard;
2526 }
2527
2528 /* The wild routines.
2529
2530 These expand statements like *(.text) and foo.o to a list of
2531 explicit actions, like foo.o(.text), bar.o(.text) and
2532 foo.o(.text, .data). */
2533
2534 /* Add SECTION to the output section OUTPUT. Do this by creating a
2535 lang_input_section statement which is placed at PTR. */
2536
2537 void
2538 lang_add_section (lang_statement_list_type *ptr,
2539 asection *section,
2540 struct wildcard_list *pattern,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bool discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = true;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bool keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case readonly_section:
2643 flags |= SEC_READONLY;
2644 break;
2645 case noload_section:
2646 flags &= ~SEC_LOAD;
2647 flags |= SEC_NEVER_LOAD;
2648 /* Unfortunately GNU ld has managed to evolve two different
2649 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2650 alloc, no contents section. All others get a noload, noalloc
2651 section. */
2652 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2653 flags &= ~SEC_HAS_CONTENTS;
2654 else
2655 flags &= ~SEC_ALLOC;
2656 break;
2657 }
2658
2659 if (output->bfd_section == NULL)
2660 init_os (output, flags);
2661
2662 /* If SEC_READONLY is not set in the input section, then clear
2663 it from the output section. */
2664 output->bfd_section->flags &= flags | ~SEC_READONLY;
2665
2666 if (output->bfd_section->linker_has_input)
2667 {
2668 /* Only set SEC_READONLY flag on the first input section. */
2669 flags &= ~ SEC_READONLY;
2670
2671 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2672 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2673 != (flags & (SEC_MERGE | SEC_STRINGS))
2674 || ((flags & SEC_MERGE) != 0
2675 && output->bfd_section->entsize != section->entsize))
2676 {
2677 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2678 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2679 }
2680 }
2681 output->bfd_section->flags |= flags;
2682
2683 if (!output->bfd_section->linker_has_input)
2684 {
2685 output->bfd_section->linker_has_input = 1;
2686 /* This must happen after flags have been updated. The output
2687 section may have been created before we saw its first input
2688 section, eg. for a data statement. */
2689 bfd_init_private_section_data (section->owner, section,
2690 link_info.output_bfd,
2691 output->bfd_section,
2692 &link_info);
2693 if ((flags & SEC_MERGE) != 0)
2694 output->bfd_section->entsize = section->entsize;
2695 }
2696
2697 if ((flags & SEC_TIC54X_BLOCK) != 0
2698 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2699 {
2700 /* FIXME: This value should really be obtained from the bfd... */
2701 output->block_value = 128;
2702 }
2703
2704 if (section->alignment_power > output->bfd_section->alignment_power)
2705 output->bfd_section->alignment_power = section->alignment_power;
2706
2707 section->output_section = output->bfd_section;
2708
2709 if (!map_head_is_link_order)
2710 {
2711 asection *s = output->bfd_section->map_tail.s;
2712 output->bfd_section->map_tail.s = section;
2713 section->map_head.s = NULL;
2714 section->map_tail.s = s;
2715 if (s != NULL)
2716 s->map_head.s = section;
2717 else
2718 output->bfd_section->map_head.s = section;
2719 }
2720
2721 /* Add a section reference to the list. */
2722 new_section = new_stat (lang_input_section, ptr);
2723 new_section->section = section;
2724 new_section->pattern = pattern;
2725 }
2726
2727 /* Handle wildcard sorting. This returns the lang_input_section which
2728 should follow the one we are going to create for SECTION and FILE,
2729 based on the sorting requirements of WILD. It returns NULL if the
2730 new section should just go at the end of the current list. */
2731
2732 static lang_statement_union_type *
2733 wild_sort (lang_wild_statement_type *wild,
2734 struct wildcard_list *sec,
2735 lang_input_statement_type *file,
2736 asection *section)
2737 {
2738 lang_statement_union_type *l;
2739
2740 if (!wild->filenames_sorted
2741 && (sec == NULL || sec->spec.sorted == none))
2742 return NULL;
2743
2744 for (l = wild->children.head; l != NULL; l = l->header.next)
2745 {
2746 lang_input_section_type *ls;
2747
2748 if (l->header.type != lang_input_section_enum)
2749 continue;
2750 ls = &l->input_section;
2751
2752 /* Sorting by filename takes precedence over sorting by section
2753 name. */
2754
2755 if (wild->filenames_sorted)
2756 {
2757 const char *fn, *ln;
2758 bool fa, la;
2759 int i;
2760
2761 /* The PE support for the .idata section as generated by
2762 dlltool assumes that files will be sorted by the name of
2763 the archive and then the name of the file within the
2764 archive. */
2765
2766 if (file->the_bfd != NULL
2767 && file->the_bfd->my_archive != NULL)
2768 {
2769 fn = bfd_get_filename (file->the_bfd->my_archive);
2770 fa = true;
2771 }
2772 else
2773 {
2774 fn = file->filename;
2775 fa = false;
2776 }
2777
2778 if (ls->section->owner->my_archive != NULL)
2779 {
2780 ln = bfd_get_filename (ls->section->owner->my_archive);
2781 la = true;
2782 }
2783 else
2784 {
2785 ln = bfd_get_filename (ls->section->owner);
2786 la = false;
2787 }
2788
2789 i = filename_cmp (fn, ln);
2790 if (i > 0)
2791 continue;
2792 else if (i < 0)
2793 break;
2794
2795 if (fa || la)
2796 {
2797 if (fa)
2798 fn = file->filename;
2799 if (la)
2800 ln = bfd_get_filename (ls->section->owner);
2801
2802 i = filename_cmp (fn, ln);
2803 if (i > 0)
2804 continue;
2805 else if (i < 0)
2806 break;
2807 }
2808 }
2809
2810 /* Here either the files are not sorted by name, or we are
2811 looking at the sections for this file. */
2812
2813 if (sec != NULL
2814 && sec->spec.sorted != none
2815 && sec->spec.sorted != by_none)
2816 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2817 break;
2818 }
2819
2820 return l;
2821 }
2822
2823 /* Expand a wild statement for a particular FILE. SECTION may be
2824 NULL, in which case it is a wild card. */
2825
2826 static void
2827 output_section_callback (lang_wild_statement_type *ptr,
2828 struct wildcard_list *sec,
2829 asection *section,
2830 lang_input_statement_type *file,
2831 void *output)
2832 {
2833 lang_statement_union_type *before;
2834 lang_output_section_statement_type *os;
2835
2836 os = (lang_output_section_statement_type *) output;
2837
2838 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2839 if (unique_section_p (section, os))
2840 return;
2841
2842 before = wild_sort (ptr, sec, file, section);
2843
2844 /* Here BEFORE points to the lang_input_section which
2845 should follow the one we are about to add. If BEFORE
2846 is NULL, then the section should just go at the end
2847 of the current list. */
2848
2849 if (before == NULL)
2850 lang_add_section (&ptr->children, section, ptr->section_list,
2851 ptr->section_flag_list, os);
2852 else
2853 {
2854 lang_statement_list_type list;
2855 lang_statement_union_type **pp;
2856
2857 lang_list_init (&list);
2858 lang_add_section (&list, section, ptr->section_list,
2859 ptr->section_flag_list, os);
2860
2861 /* If we are discarding the section, LIST.HEAD will
2862 be NULL. */
2863 if (list.head != NULL)
2864 {
2865 ASSERT (list.head->header.next == NULL);
2866
2867 for (pp = &ptr->children.head;
2868 *pp != before;
2869 pp = &(*pp)->header.next)
2870 ASSERT (*pp != NULL);
2871
2872 list.head->header.next = *pp;
2873 *pp = list.head;
2874 }
2875 }
2876 }
2877
2878 /* Check if all sections in a wild statement for a particular FILE
2879 are readonly. */
2880
2881 static void
2882 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2883 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2884 asection *section,
2885 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2886 void *output)
2887 {
2888 lang_output_section_statement_type *os;
2889
2890 os = (lang_output_section_statement_type *) output;
2891
2892 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2893 if (unique_section_p (section, os))
2894 return;
2895
2896 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2897 os->all_input_readonly = false;
2898 }
2899
2900 /* This is passed a file name which must have been seen already and
2901 added to the statement tree. We will see if it has been opened
2902 already and had its symbols read. If not then we'll read it. */
2903
2904 static lang_input_statement_type *
2905 lookup_name (const char *name)
2906 {
2907 lang_input_statement_type *search;
2908
2909 for (search = (void *) input_file_chain.head;
2910 search != NULL;
2911 search = search->next_real_file)
2912 {
2913 /* Use the local_sym_name as the name of the file that has
2914 already been loaded as filename might have been transformed
2915 via the search directory lookup mechanism. */
2916 const char *filename = search->local_sym_name;
2917
2918 if (filename != NULL
2919 && filename_cmp (filename, name) == 0)
2920 break;
2921 }
2922
2923 if (search == NULL)
2924 {
2925 /* Arrange to splice the input statement added by new_afile into
2926 statement_list after the current input_file_chain tail.
2927 We know input_file_chain is not an empty list, and that
2928 lookup_name was called via open_input_bfds. Later calls to
2929 lookup_name should always match an existing input_statement. */
2930 lang_statement_union_type **tail = stat_ptr->tail;
2931 lang_statement_union_type **after
2932 = (void *) ((char *) input_file_chain.tail
2933 - offsetof (lang_input_statement_type, next_real_file)
2934 + offsetof (lang_input_statement_type, header.next));
2935 lang_statement_union_type *rest = *after;
2936 stat_ptr->tail = after;
2937 search = new_afile (name, lang_input_file_is_search_file_enum,
2938 default_target, NULL);
2939 *stat_ptr->tail = rest;
2940 if (*tail == NULL)
2941 stat_ptr->tail = tail;
2942 }
2943
2944 /* If we have already added this file, or this file is not real
2945 don't add this file. */
2946 if (search->flags.loaded || !search->flags.real)
2947 return search;
2948
2949 if (!load_symbols (search, NULL))
2950 return NULL;
2951
2952 return search;
2953 }
2954
2955 /* Save LIST as a list of libraries whose symbols should not be exported. */
2956
2957 struct excluded_lib
2958 {
2959 char *name;
2960 struct excluded_lib *next;
2961 };
2962 static struct excluded_lib *excluded_libs;
2963
2964 void
2965 add_excluded_libs (const char *list)
2966 {
2967 const char *p = list, *end;
2968
2969 while (*p != '\0')
2970 {
2971 struct excluded_lib *entry;
2972 end = strpbrk (p, ",:");
2973 if (end == NULL)
2974 end = p + strlen (p);
2975 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2976 entry->next = excluded_libs;
2977 entry->name = (char *) xmalloc (end - p + 1);
2978 memcpy (entry->name, p, end - p);
2979 entry->name[end - p] = '\0';
2980 excluded_libs = entry;
2981 if (*end == '\0')
2982 break;
2983 p = end + 1;
2984 }
2985 }
2986
2987 static void
2988 check_excluded_libs (bfd *abfd)
2989 {
2990 struct excluded_lib *lib = excluded_libs;
2991
2992 while (lib)
2993 {
2994 int len = strlen (lib->name);
2995 const char *filename = lbasename (bfd_get_filename (abfd));
2996
2997 if (strcmp (lib->name, "ALL") == 0)
2998 {
2999 abfd->no_export = true;
3000 return;
3001 }
3002
3003 if (filename_ncmp (lib->name, filename, len) == 0
3004 && (filename[len] == '\0'
3005 || (filename[len] == '.' && filename[len + 1] == 'a'
3006 && filename[len + 2] == '\0')))
3007 {
3008 abfd->no_export = true;
3009 return;
3010 }
3011
3012 lib = lib->next;
3013 }
3014 }
3015
3016 /* Get the symbols for an input file. */
3017
3018 bool
3019 load_symbols (lang_input_statement_type *entry,
3020 lang_statement_list_type *place)
3021 {
3022 char **matching;
3023
3024 if (entry->flags.loaded)
3025 return true;
3026
3027 ldfile_open_file (entry);
3028
3029 /* Do not process further if the file was missing. */
3030 if (entry->flags.missing_file)
3031 return true;
3032
3033 if (trace_files || verbose)
3034 info_msg ("%pI\n", entry);
3035
3036 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3037 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3038 {
3039 bfd_error_type err;
3040 struct lang_input_statement_flags save_flags;
3041 extern FILE *yyin;
3042
3043 err = bfd_get_error ();
3044
3045 /* See if the emulation has some special knowledge. */
3046 if (ldemul_unrecognized_file (entry))
3047 return true;
3048
3049 if (err == bfd_error_file_ambiguously_recognized)
3050 {
3051 char **p;
3052
3053 einfo (_("%P: %pB: file not recognized: %E;"
3054 " matching formats:"), entry->the_bfd);
3055 for (p = matching; *p != NULL; p++)
3056 einfo (" %s", *p);
3057 einfo ("%F\n");
3058 }
3059 else if (err != bfd_error_file_not_recognized
3060 || place == NULL)
3061 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3062
3063 bfd_close (entry->the_bfd);
3064 entry->the_bfd = NULL;
3065
3066 /* Try to interpret the file as a linker script. */
3067 save_flags = input_flags;
3068 ldfile_open_command_file (entry->filename);
3069
3070 push_stat_ptr (place);
3071 input_flags.add_DT_NEEDED_for_regular
3072 = entry->flags.add_DT_NEEDED_for_regular;
3073 input_flags.add_DT_NEEDED_for_dynamic
3074 = entry->flags.add_DT_NEEDED_for_dynamic;
3075 input_flags.whole_archive = entry->flags.whole_archive;
3076 input_flags.dynamic = entry->flags.dynamic;
3077
3078 ldfile_assumed_script = true;
3079 parser_input = input_script;
3080 current_input_file = entry->filename;
3081 yyparse ();
3082 current_input_file = NULL;
3083 ldfile_assumed_script = false;
3084
3085 /* missing_file is sticky. sysrooted will already have been
3086 restored when seeing EOF in yyparse, but no harm to restore
3087 again. */
3088 save_flags.missing_file |= input_flags.missing_file;
3089 input_flags = save_flags;
3090 pop_stat_ptr ();
3091 fclose (yyin);
3092 yyin = NULL;
3093 entry->flags.loaded = true;
3094
3095 return true;
3096 }
3097
3098 if (ldemul_recognized_file (entry))
3099 return true;
3100
3101 /* We don't call ldlang_add_file for an archive. Instead, the
3102 add_symbols entry point will call ldlang_add_file, via the
3103 add_archive_element callback, for each element of the archive
3104 which is used. */
3105 switch (bfd_get_format (entry->the_bfd))
3106 {
3107 default:
3108 break;
3109
3110 case bfd_object:
3111 if (!entry->flags.reload)
3112 ldlang_add_file (entry);
3113 break;
3114
3115 case bfd_archive:
3116 check_excluded_libs (entry->the_bfd);
3117
3118 bfd_set_usrdata (entry->the_bfd, entry);
3119 if (entry->flags.whole_archive)
3120 {
3121 bfd *member = NULL;
3122 bool loaded = true;
3123
3124 for (;;)
3125 {
3126 bfd *subsbfd;
3127 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3128
3129 if (member == NULL)
3130 break;
3131
3132 if (!bfd_check_format (member, bfd_object))
3133 {
3134 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3135 entry->the_bfd, member);
3136 loaded = false;
3137 }
3138
3139 subsbfd = member;
3140 if (!(*link_info.callbacks
3141 ->add_archive_element) (&link_info, member,
3142 "--whole-archive", &subsbfd))
3143 abort ();
3144
3145 /* Potentially, the add_archive_element hook may have set a
3146 substitute BFD for us. */
3147 if (!bfd_link_add_symbols (subsbfd, &link_info))
3148 {
3149 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3150 loaded = false;
3151 }
3152 }
3153
3154 entry->flags.loaded = loaded;
3155 return loaded;
3156 }
3157 break;
3158 }
3159
3160 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3161 entry->flags.loaded = true;
3162 else
3163 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3164
3165 return entry->flags.loaded;
3166 }
3167
3168 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3169 may be NULL, indicating that it is a wildcard. Separate
3170 lang_input_section statements are created for each part of the
3171 expansion; they are added after the wild statement S. OUTPUT is
3172 the output section. */
3173
3174 static void
3175 wild (lang_wild_statement_type *s,
3176 const char *target ATTRIBUTE_UNUSED,
3177 lang_output_section_statement_type *output)
3178 {
3179 struct wildcard_list *sec;
3180
3181 if (s->handler_data[0]
3182 && s->handler_data[0]->spec.sorted == by_name
3183 && !s->filenames_sorted)
3184 {
3185 lang_section_bst_type *tree;
3186
3187 walk_wild (s, output_section_callback_fast, output);
3188
3189 tree = s->tree;
3190 if (tree)
3191 {
3192 output_section_callback_tree_to_list (s, tree, output);
3193 s->tree = NULL;
3194 }
3195 }
3196 else
3197 walk_wild (s, output_section_callback, output);
3198
3199 if (default_common_section == NULL)
3200 for (sec = s->section_list; sec != NULL; sec = sec->next)
3201 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3202 {
3203 /* Remember the section that common is going to in case we
3204 later get something which doesn't know where to put it. */
3205 default_common_section = output;
3206 break;
3207 }
3208 }
3209
3210 /* Return TRUE iff target is the sought target. */
3211
3212 static int
3213 get_target (const bfd_target *target, void *data)
3214 {
3215 const char *sought = (const char *) data;
3216
3217 return strcmp (target->name, sought) == 0;
3218 }
3219
3220 /* Like strcpy() but convert to lower case as well. */
3221
3222 static void
3223 stricpy (char *dest, const char *src)
3224 {
3225 char c;
3226
3227 while ((c = *src++) != 0)
3228 *dest++ = TOLOWER (c);
3229
3230 *dest = 0;
3231 }
3232
3233 /* Remove the first occurrence of needle (if any) in haystack
3234 from haystack. */
3235
3236 static void
3237 strcut (char *haystack, const char *needle)
3238 {
3239 haystack = strstr (haystack, needle);
3240
3241 if (haystack)
3242 {
3243 char *src;
3244
3245 for (src = haystack + strlen (needle); *src;)
3246 *haystack++ = *src++;
3247
3248 *haystack = 0;
3249 }
3250 }
3251
3252 /* Compare two target format name strings.
3253 Return a value indicating how "similar" they are. */
3254
3255 static int
3256 name_compare (const char *first, const char *second)
3257 {
3258 char *copy1;
3259 char *copy2;
3260 int result;
3261
3262 copy1 = (char *) xmalloc (strlen (first) + 1);
3263 copy2 = (char *) xmalloc (strlen (second) + 1);
3264
3265 /* Convert the names to lower case. */
3266 stricpy (copy1, first);
3267 stricpy (copy2, second);
3268
3269 /* Remove size and endian strings from the name. */
3270 strcut (copy1, "big");
3271 strcut (copy1, "little");
3272 strcut (copy2, "big");
3273 strcut (copy2, "little");
3274
3275 /* Return a value based on how many characters match,
3276 starting from the beginning. If both strings are
3277 the same then return 10 * their length. */
3278 for (result = 0; copy1[result] == copy2[result]; result++)
3279 if (copy1[result] == 0)
3280 {
3281 result *= 10;
3282 break;
3283 }
3284
3285 free (copy1);
3286 free (copy2);
3287
3288 return result;
3289 }
3290
3291 /* Set by closest_target_match() below. */
3292 static const bfd_target *winner;
3293
3294 /* Scan all the valid bfd targets looking for one that has the endianness
3295 requirement that was specified on the command line, and is the nearest
3296 match to the original output target. */
3297
3298 static int
3299 closest_target_match (const bfd_target *target, void *data)
3300 {
3301 const bfd_target *original = (const bfd_target *) data;
3302
3303 if (command_line.endian == ENDIAN_BIG
3304 && target->byteorder != BFD_ENDIAN_BIG)
3305 return 0;
3306
3307 if (command_line.endian == ENDIAN_LITTLE
3308 && target->byteorder != BFD_ENDIAN_LITTLE)
3309 return 0;
3310
3311 /* Must be the same flavour. */
3312 if (target->flavour != original->flavour)
3313 return 0;
3314
3315 /* Ignore generic big and little endian elf vectors. */
3316 if (strcmp (target->name, "elf32-big") == 0
3317 || strcmp (target->name, "elf64-big") == 0
3318 || strcmp (target->name, "elf32-little") == 0
3319 || strcmp (target->name, "elf64-little") == 0)
3320 return 0;
3321
3322 /* If we have not found a potential winner yet, then record this one. */
3323 if (winner == NULL)
3324 {
3325 winner = target;
3326 return 0;
3327 }
3328
3329 /* Oh dear, we now have two potential candidates for a successful match.
3330 Compare their names and choose the better one. */
3331 if (name_compare (target->name, original->name)
3332 > name_compare (winner->name, original->name))
3333 winner = target;
3334
3335 /* Keep on searching until wqe have checked them all. */
3336 return 0;
3337 }
3338
3339 /* Return the BFD target format of the first input file. */
3340
3341 static const char *
3342 get_first_input_target (void)
3343 {
3344 const char *target = NULL;
3345
3346 LANG_FOR_EACH_INPUT_STATEMENT (s)
3347 {
3348 if (s->header.type == lang_input_statement_enum
3349 && s->flags.real)
3350 {
3351 ldfile_open_file (s);
3352
3353 if (s->the_bfd != NULL
3354 && bfd_check_format (s->the_bfd, bfd_object))
3355 {
3356 target = bfd_get_target (s->the_bfd);
3357
3358 if (target != NULL)
3359 break;
3360 }
3361 }
3362 }
3363
3364 return target;
3365 }
3366
3367 const char *
3368 lang_get_output_target (void)
3369 {
3370 const char *target;
3371
3372 /* Has the user told us which output format to use? */
3373 if (output_target != NULL)
3374 return output_target;
3375
3376 /* No - has the current target been set to something other than
3377 the default? */
3378 if (current_target != default_target && current_target != NULL)
3379 return current_target;
3380
3381 /* No - can we determine the format of the first input file? */
3382 target = get_first_input_target ();
3383 if (target != NULL)
3384 return target;
3385
3386 /* Failed - use the default output target. */
3387 return default_target;
3388 }
3389
3390 /* Open the output file. */
3391
3392 static void
3393 open_output (const char *name)
3394 {
3395 output_target = lang_get_output_target ();
3396
3397 /* Has the user requested a particular endianness on the command
3398 line? */
3399 if (command_line.endian != ENDIAN_UNSET)
3400 {
3401 /* Get the chosen target. */
3402 const bfd_target *target
3403 = bfd_iterate_over_targets (get_target, (void *) output_target);
3404
3405 /* If the target is not supported, we cannot do anything. */
3406 if (target != NULL)
3407 {
3408 enum bfd_endian desired_endian;
3409
3410 if (command_line.endian == ENDIAN_BIG)
3411 desired_endian = BFD_ENDIAN_BIG;
3412 else
3413 desired_endian = BFD_ENDIAN_LITTLE;
3414
3415 /* See if the target has the wrong endianness. This should
3416 not happen if the linker script has provided big and
3417 little endian alternatives, but some scrips don't do
3418 this. */
3419 if (target->byteorder != desired_endian)
3420 {
3421 /* If it does, then see if the target provides
3422 an alternative with the correct endianness. */
3423 if (target->alternative_target != NULL
3424 && (target->alternative_target->byteorder == desired_endian))
3425 output_target = target->alternative_target->name;
3426 else
3427 {
3428 /* Try to find a target as similar as possible to
3429 the default target, but which has the desired
3430 endian characteristic. */
3431 bfd_iterate_over_targets (closest_target_match,
3432 (void *) target);
3433
3434 /* Oh dear - we could not find any targets that
3435 satisfy our requirements. */
3436 if (winner == NULL)
3437 einfo (_("%P: warning: could not find any targets"
3438 " that match endianness requirement\n"));
3439 else
3440 output_target = winner->name;
3441 }
3442 }
3443 }
3444 }
3445
3446 link_info.output_bfd = bfd_openw (name, output_target);
3447
3448 if (link_info.output_bfd == NULL)
3449 {
3450 if (bfd_get_error () == bfd_error_invalid_target)
3451 einfo (_("%F%P: target %s not found\n"), output_target);
3452
3453 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3454 }
3455
3456 delete_output_file_on_failure = true;
3457
3458 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3459 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3460 if (!bfd_set_arch_mach (link_info.output_bfd,
3461 ldfile_output_architecture,
3462 ldfile_output_machine))
3463 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3464
3465 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3466 if (link_info.hash == NULL)
3467 einfo (_("%F%P: can not create hash table: %E\n"));
3468
3469 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3470 }
3471
3472 static void
3473 ldlang_open_output (lang_statement_union_type *statement)
3474 {
3475 switch (statement->header.type)
3476 {
3477 case lang_output_statement_enum:
3478 ASSERT (link_info.output_bfd == NULL);
3479 open_output (statement->output_statement.name);
3480 ldemul_set_output_arch ();
3481 if (config.magic_demand_paged
3482 && !bfd_link_relocatable (&link_info))
3483 link_info.output_bfd->flags |= D_PAGED;
3484 else
3485 link_info.output_bfd->flags &= ~D_PAGED;
3486 if (config.text_read_only)
3487 link_info.output_bfd->flags |= WP_TEXT;
3488 else
3489 link_info.output_bfd->flags &= ~WP_TEXT;
3490 if (link_info.traditional_format)
3491 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3492 else
3493 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3494 break;
3495
3496 case lang_target_statement_enum:
3497 current_target = statement->target_statement.target;
3498 break;
3499 default:
3500 break;
3501 }
3502 }
3503
3504 static void
3505 init_opb (asection *s)
3506 {
3507 unsigned int x;
3508
3509 opb_shift = 0;
3510 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3511 && s != NULL
3512 && (s->flags & SEC_ELF_OCTETS) != 0)
3513 return;
3514
3515 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3516 ldfile_output_machine);
3517 if (x > 1)
3518 while ((x & 1) == 0)
3519 {
3520 x >>= 1;
3521 ++opb_shift;
3522 }
3523 ASSERT (x == 1);
3524 }
3525
3526 /* Open all the input files. */
3527
3528 enum open_bfd_mode
3529 {
3530 OPEN_BFD_NORMAL = 0,
3531 OPEN_BFD_FORCE = 1,
3532 OPEN_BFD_RESCAN = 2
3533 };
3534 #if BFD_SUPPORTS_PLUGINS
3535 static lang_input_statement_type *plugin_insert = NULL;
3536 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3537 #endif
3538
3539 static void
3540 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3541 {
3542 for (; s != NULL; s = s->header.next)
3543 {
3544 switch (s->header.type)
3545 {
3546 case lang_constructors_statement_enum:
3547 open_input_bfds (constructor_list.head, mode);
3548 break;
3549 case lang_output_section_statement_enum:
3550 open_input_bfds (s->output_section_statement.children.head, mode);
3551 break;
3552 case lang_wild_statement_enum:
3553 /* Maybe we should load the file's symbols. */
3554 if ((mode & OPEN_BFD_RESCAN) == 0
3555 && s->wild_statement.filename
3556 && !wildcardp (s->wild_statement.filename)
3557 && !archive_path (s->wild_statement.filename))
3558 lookup_name (s->wild_statement.filename);
3559 open_input_bfds (s->wild_statement.children.head, mode);
3560 break;
3561 case lang_group_statement_enum:
3562 {
3563 struct bfd_link_hash_entry *undefs;
3564 #if BFD_SUPPORTS_PLUGINS
3565 lang_input_statement_type *plugin_insert_save;
3566 #endif
3567
3568 /* We must continually search the entries in the group
3569 until no new symbols are added to the list of undefined
3570 symbols. */
3571
3572 do
3573 {
3574 #if BFD_SUPPORTS_PLUGINS
3575 plugin_insert_save = plugin_insert;
3576 #endif
3577 undefs = link_info.hash->undefs_tail;
3578 open_input_bfds (s->group_statement.children.head,
3579 mode | OPEN_BFD_FORCE);
3580 }
3581 while (undefs != link_info.hash->undefs_tail
3582 #if BFD_SUPPORTS_PLUGINS
3583 /* Objects inserted by a plugin, which are loaded
3584 before we hit this loop, may have added new
3585 undefs. */
3586 || (plugin_insert != plugin_insert_save && plugin_undefs)
3587 #endif
3588 );
3589 }
3590 break;
3591 case lang_target_statement_enum:
3592 current_target = s->target_statement.target;
3593 break;
3594 case lang_input_statement_enum:
3595 if (s->input_statement.flags.real)
3596 {
3597 lang_statement_union_type **os_tail;
3598 lang_statement_list_type add;
3599 bfd *abfd;
3600
3601 s->input_statement.target = current_target;
3602
3603 /* If we are being called from within a group, and this
3604 is an archive which has already been searched, then
3605 force it to be researched unless the whole archive
3606 has been loaded already. Do the same for a rescan.
3607 Likewise reload --as-needed shared libs. */
3608 if (mode != OPEN_BFD_NORMAL
3609 #if BFD_SUPPORTS_PLUGINS
3610 && ((mode & OPEN_BFD_RESCAN) == 0
3611 || plugin_insert == NULL)
3612 #endif
3613 && s->input_statement.flags.loaded
3614 && (abfd = s->input_statement.the_bfd) != NULL
3615 && ((bfd_get_format (abfd) == bfd_archive
3616 && !s->input_statement.flags.whole_archive)
3617 || (bfd_get_format (abfd) == bfd_object
3618 && ((abfd->flags) & DYNAMIC) != 0
3619 && s->input_statement.flags.add_DT_NEEDED_for_regular
3620 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3621 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3622 {
3623 s->input_statement.flags.loaded = false;
3624 s->input_statement.flags.reload = true;
3625 }
3626
3627 os_tail = lang_os_list.tail;
3628 lang_list_init (&add);
3629
3630 if (!load_symbols (&s->input_statement, &add))
3631 config.make_executable = false;
3632
3633 if (add.head != NULL)
3634 {
3635 /* If this was a script with output sections then
3636 tack any added statements on to the end of the
3637 list. This avoids having to reorder the output
3638 section statement list. Very likely the user
3639 forgot -T, and whatever we do here will not meet
3640 naive user expectations. */
3641 if (os_tail != lang_os_list.tail)
3642 {
3643 einfo (_("%P: warning: %s contains output sections;"
3644 " did you forget -T?\n"),
3645 s->input_statement.filename);
3646 *stat_ptr->tail = add.head;
3647 stat_ptr->tail = add.tail;
3648 }
3649 else
3650 {
3651 *add.tail = s->header.next;
3652 s->header.next = add.head;
3653 }
3654 }
3655 }
3656 #if BFD_SUPPORTS_PLUGINS
3657 /* If we have found the point at which a plugin added new
3658 files, clear plugin_insert to enable archive rescan. */
3659 if (&s->input_statement == plugin_insert)
3660 plugin_insert = NULL;
3661 #endif
3662 break;
3663 case lang_assignment_statement_enum:
3664 if (s->assignment_statement.exp->type.node_class != etree_assert)
3665 exp_fold_tree_no_dot (s->assignment_statement.exp);
3666 break;
3667 default:
3668 break;
3669 }
3670 }
3671
3672 /* Exit if any of the files were missing. */
3673 if (input_flags.missing_file)
3674 einfo ("%F");
3675 }
3676
3677 #ifdef ENABLE_LIBCTF
3678 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3679 that happened specifically at CTF open time. */
3680 static void
3681 lang_ctf_errs_warnings (ctf_dict_t *fp)
3682 {
3683 ctf_next_t *i = NULL;
3684 char *text;
3685 int is_warning;
3686 int err;
3687
3688 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3689 {
3690 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3691 text);
3692 free (text);
3693 }
3694 if (err != ECTF_NEXT_END)
3695 {
3696 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3697 ctf_errmsg (err));
3698 }
3699
3700 /* `err' returns errors from the error/warning iterator in particular.
3701 These never assert. But if we have an fp, that could have recorded
3702 an assertion failure: assert if it has done so. */
3703 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3704 }
3705
3706 /* Open the CTF sections in the input files with libctf: if any were opened,
3707 create a fake input file that we'll write the merged CTF data to later
3708 on. */
3709
3710 static void
3711 ldlang_open_ctf (void)
3712 {
3713 int any_ctf = 0;
3714 int err;
3715
3716 LANG_FOR_EACH_INPUT_STATEMENT (file)
3717 {
3718 asection *sect;
3719
3720 /* Incoming files from the compiler have a single ctf_dict_t in them
3721 (which is presented to us by the libctf API in a ctf_archive_t
3722 wrapper): files derived from a previous relocatable link have a CTF
3723 archive containing possibly many CTF files. */
3724
3725 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3726 {
3727 if (err != ECTF_NOCTFDATA)
3728 {
3729 lang_ctf_errs_warnings (NULL);
3730 einfo (_("%P: warning: CTF section in %pB not loaded; "
3731 "its types will be discarded: %s\n"), file->the_bfd,
3732 ctf_errmsg (err));
3733 }
3734 continue;
3735 }
3736
3737 /* Prevent the contents of this section from being written, while
3738 requiring the section itself to be duplicated in the output, but only
3739 once. */
3740 /* This section must exist if ctf_bfdopen() succeeded. */
3741 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3742 sect->size = 0;
3743 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3744
3745 if (any_ctf)
3746 sect->flags |= SEC_EXCLUDE;
3747 any_ctf = 1;
3748 }
3749
3750 if (!any_ctf)
3751 {
3752 ctf_output = NULL;
3753 return;
3754 }
3755
3756 if ((ctf_output = ctf_create (&err)) != NULL)
3757 return;
3758
3759 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3760 ctf_errmsg (err));
3761
3762 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3763 ctf_close (errfile->the_ctf);
3764 }
3765
3766 /* Merge together CTF sections. After this, only the symtab-dependent
3767 function and data object sections need adjustment. */
3768
3769 static void
3770 lang_merge_ctf (void)
3771 {
3772 asection *output_sect;
3773 int flags = 0;
3774
3775 if (!ctf_output)
3776 return;
3777
3778 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3779
3780 /* If the section was discarded, don't waste time merging. */
3781 if (output_sect == NULL)
3782 {
3783 ctf_dict_close (ctf_output);
3784 ctf_output = NULL;
3785
3786 LANG_FOR_EACH_INPUT_STATEMENT (file)
3787 {
3788 ctf_close (file->the_ctf);
3789 file->the_ctf = NULL;
3790 }
3791 return;
3792 }
3793
3794 LANG_FOR_EACH_INPUT_STATEMENT (file)
3795 {
3796 if (!file->the_ctf)
3797 continue;
3798
3799 /* Takes ownership of file->the_ctf. */
3800 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3801 {
3802 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3803 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3804 ctf_close (file->the_ctf);
3805 file->the_ctf = NULL;
3806 continue;
3807 }
3808 }
3809
3810 if (!config.ctf_share_duplicated)
3811 flags = CTF_LINK_SHARE_UNCONFLICTED;
3812 else
3813 flags = CTF_LINK_SHARE_DUPLICATED;
3814 if (!config.ctf_variables)
3815 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3816 if (bfd_link_relocatable (&link_info))
3817 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3818
3819 if (ctf_link (ctf_output, flags) < 0)
3820 {
3821 lang_ctf_errs_warnings (ctf_output);
3822 einfo (_("%P: warning: CTF linking failed; "
3823 "output will have no CTF section: %s\n"),
3824 ctf_errmsg (ctf_errno (ctf_output)));
3825 if (output_sect)
3826 {
3827 output_sect->size = 0;
3828 output_sect->flags |= SEC_EXCLUDE;
3829 }
3830 }
3831 /* Output any lingering errors that didn't come from ctf_link. */
3832 lang_ctf_errs_warnings (ctf_output);
3833 }
3834
3835 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3836 the CTF, if supported. */
3837
3838 void
3839 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3840 {
3841 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3842 }
3843
3844 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3845 internal format. */
3846 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3847 {
3848 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3849 }
3850
3851 /* Write out the CTF section. Called early, if the emulation isn't going to
3852 need to dedup against the strtab and symtab, then possibly called from the
3853 target linker code if the dedup has happened. */
3854 static void
3855 lang_write_ctf (int late)
3856 {
3857 size_t output_size;
3858 asection *output_sect;
3859
3860 if (!ctf_output)
3861 return;
3862
3863 if (late)
3864 {
3865 /* Emit CTF late if this emulation says it can do so. */
3866 if (ldemul_emit_ctf_early ())
3867 return;
3868 }
3869 else
3870 {
3871 if (!ldemul_emit_ctf_early ())
3872 return;
3873 }
3874
3875 /* Inform the emulation that all the symbols that will be received have
3876 been. */
3877
3878 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3879
3880 /* Emit CTF. */
3881
3882 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3883 if (output_sect)
3884 {
3885 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3886 CTF_COMPRESSION_THRESHOLD);
3887 output_sect->size = output_size;
3888 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3889
3890 lang_ctf_errs_warnings (ctf_output);
3891 if (!output_sect->contents)
3892 {
3893 einfo (_("%P: warning: CTF section emission failed; "
3894 "output will have no CTF section: %s\n"),
3895 ctf_errmsg (ctf_errno (ctf_output)));
3896 output_sect->size = 0;
3897 output_sect->flags |= SEC_EXCLUDE;
3898 }
3899 }
3900
3901 /* This also closes every CTF input file used in the link. */
3902 ctf_dict_close (ctf_output);
3903 ctf_output = NULL;
3904
3905 LANG_FOR_EACH_INPUT_STATEMENT (file)
3906 file->the_ctf = NULL;
3907 }
3908
3909 /* Write out the CTF section late, if the emulation needs that. */
3910
3911 void
3912 ldlang_write_ctf_late (void)
3913 {
3914 /* Trigger a "late call", if the emulation needs one. */
3915
3916 lang_write_ctf (1);
3917 }
3918 #else
3919 static void
3920 ldlang_open_ctf (void)
3921 {
3922 LANG_FOR_EACH_INPUT_STATEMENT (file)
3923 {
3924 asection *sect;
3925
3926 /* If built without CTF, warn and delete all CTF sections from the output.
3927 (The alternative would be to simply concatenate them, which does not
3928 yield a valid CTF section.) */
3929
3930 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3931 {
3932 einfo (_("%P: warning: CTF section in %pB not linkable: "
3933 "%P was built without support for CTF\n"), file->the_bfd);
3934 sect->size = 0;
3935 sect->flags |= SEC_EXCLUDE;
3936 }
3937 }
3938 }
3939
3940 static void lang_merge_ctf (void) {}
3941 void
3942 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3943 ATTRIBUTE_UNUSED) {}
3944 void
3945 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3946 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3947 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3948 void ldlang_write_ctf_late (void) {}
3949 #endif
3950
3951 /* Add the supplied name to the symbol table as an undefined reference.
3952 This is a two step process as the symbol table doesn't even exist at
3953 the time the ld command line is processed. First we put the name
3954 on a list, then, once the output file has been opened, transfer the
3955 name to the symbol table. */
3956
3957 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3958
3959 #define ldlang_undef_chain_list_head entry_symbol.next
3960
3961 void
3962 ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
3963 {
3964 ldlang_undef_chain_list_type *new_undef;
3965
3966 new_undef = stat_alloc (sizeof (*new_undef));
3967 new_undef->next = ldlang_undef_chain_list_head;
3968 ldlang_undef_chain_list_head = new_undef;
3969
3970 new_undef->name = xstrdup (name);
3971
3972 if (link_info.output_bfd != NULL)
3973 insert_undefined (new_undef->name);
3974 }
3975
3976 /* Insert NAME as undefined in the symbol table. */
3977
3978 static void
3979 insert_undefined (const char *name)
3980 {
3981 struct bfd_link_hash_entry *h;
3982
3983 h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
3984 if (h == NULL)
3985 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3986 if (h->type == bfd_link_hash_new)
3987 {
3988 h->type = bfd_link_hash_undefined;
3989 h->u.undef.abfd = NULL;
3990 h->non_ir_ref_regular = true;
3991 bfd_link_add_undef (link_info.hash, h);
3992 }
3993 }
3994
3995 /* Run through the list of undefineds created above and place them
3996 into the linker hash table as undefined symbols belonging to the
3997 script file. */
3998
3999 static void
4000 lang_place_undefineds (void)
4001 {
4002 ldlang_undef_chain_list_type *ptr;
4003
4004 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4005 insert_undefined (ptr->name);
4006 }
4007
4008 /* Mark -u symbols against garbage collection. */
4009
4010 static void
4011 lang_mark_undefineds (void)
4012 {
4013 ldlang_undef_chain_list_type *ptr;
4014
4015 if (is_elf_hash_table (link_info.hash))
4016 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4017 {
4018 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
4019 bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
4020 if (h != NULL)
4021 h->mark = 1;
4022 }
4023 }
4024
4025 /* Structure used to build the list of symbols that the user has required
4026 be defined. */
4027
4028 struct require_defined_symbol
4029 {
4030 const char *name;
4031 struct require_defined_symbol *next;
4032 };
4033
4034 /* The list of symbols that the user has required be defined. */
4035
4036 static struct require_defined_symbol *require_defined_symbol_list;
4037
4038 /* Add a new symbol NAME to the list of symbols that are required to be
4039 defined. */
4040
4041 void
4042 ldlang_add_require_defined (const char *const name)
4043 {
4044 struct require_defined_symbol *ptr;
4045
4046 ldlang_add_undef (name, true);
4047 ptr = stat_alloc (sizeof (*ptr));
4048 ptr->next = require_defined_symbol_list;
4049 ptr->name = strdup (name);
4050 require_defined_symbol_list = ptr;
4051 }
4052
4053 /* Check that all symbols the user required to be defined, are defined,
4054 raise an error if we find a symbol that is not defined. */
4055
4056 static void
4057 ldlang_check_require_defined_symbols (void)
4058 {
4059 struct require_defined_symbol *ptr;
4060
4061 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4062 {
4063 struct bfd_link_hash_entry *h;
4064
4065 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4066 false, false, true);
4067 if (h == NULL
4068 || (h->type != bfd_link_hash_defined
4069 && h->type != bfd_link_hash_defweak))
4070 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4071 }
4072 }
4073
4074 /* Check for all readonly or some readwrite sections. */
4075
4076 static void
4077 check_input_sections
4078 (lang_statement_union_type *s,
4079 lang_output_section_statement_type *output_section_statement)
4080 {
4081 for (; s != NULL; s = s->header.next)
4082 {
4083 switch (s->header.type)
4084 {
4085 case lang_wild_statement_enum:
4086 walk_wild (&s->wild_statement, check_section_callback,
4087 output_section_statement);
4088 if (!output_section_statement->all_input_readonly)
4089 return;
4090 break;
4091 case lang_constructors_statement_enum:
4092 check_input_sections (constructor_list.head,
4093 output_section_statement);
4094 if (!output_section_statement->all_input_readonly)
4095 return;
4096 break;
4097 case lang_group_statement_enum:
4098 check_input_sections (s->group_statement.children.head,
4099 output_section_statement);
4100 if (!output_section_statement->all_input_readonly)
4101 return;
4102 break;
4103 default:
4104 break;
4105 }
4106 }
4107 }
4108
4109 /* Update wildcard statements if needed. */
4110
4111 static void
4112 update_wild_statements (lang_statement_union_type *s)
4113 {
4114 struct wildcard_list *sec;
4115
4116 switch (sort_section)
4117 {
4118 default:
4119 FAIL ();
4120
4121 case none:
4122 break;
4123
4124 case by_name:
4125 case by_alignment:
4126 for (; s != NULL; s = s->header.next)
4127 {
4128 switch (s->header.type)
4129 {
4130 default:
4131 break;
4132
4133 case lang_wild_statement_enum:
4134 for (sec = s->wild_statement.section_list; sec != NULL;
4135 sec = sec->next)
4136 /* Don't sort .init/.fini sections. */
4137 if (strcmp (sec->spec.name, ".init") != 0
4138 && strcmp (sec->spec.name, ".fini") != 0)
4139 switch (sec->spec.sorted)
4140 {
4141 case none:
4142 sec->spec.sorted = sort_section;
4143 break;
4144 case by_name:
4145 if (sort_section == by_alignment)
4146 sec->spec.sorted = by_name_alignment;
4147 break;
4148 case by_alignment:
4149 if (sort_section == by_name)
4150 sec->spec.sorted = by_alignment_name;
4151 break;
4152 default:
4153 break;
4154 }
4155 break;
4156
4157 case lang_constructors_statement_enum:
4158 update_wild_statements (constructor_list.head);
4159 break;
4160
4161 case lang_output_section_statement_enum:
4162 update_wild_statements
4163 (s->output_section_statement.children.head);
4164 break;
4165
4166 case lang_group_statement_enum:
4167 update_wild_statements (s->group_statement.children.head);
4168 break;
4169 }
4170 }
4171 break;
4172 }
4173 }
4174
4175 /* Open input files and attach to output sections. */
4176
4177 static void
4178 map_input_to_output_sections
4179 (lang_statement_union_type *s, const char *target,
4180 lang_output_section_statement_type *os)
4181 {
4182 for (; s != NULL; s = s->header.next)
4183 {
4184 lang_output_section_statement_type *tos;
4185 flagword flags;
4186
4187 switch (s->header.type)
4188 {
4189 case lang_wild_statement_enum:
4190 wild (&s->wild_statement, target, os);
4191 break;
4192 case lang_constructors_statement_enum:
4193 map_input_to_output_sections (constructor_list.head,
4194 target,
4195 os);
4196 break;
4197 case lang_output_section_statement_enum:
4198 tos = &s->output_section_statement;
4199 if (tos->constraint == ONLY_IF_RW
4200 || tos->constraint == ONLY_IF_RO)
4201 {
4202 tos->all_input_readonly = true;
4203 check_input_sections (tos->children.head, tos);
4204 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4205 tos->constraint = -1;
4206 }
4207 if (tos->constraint >= 0)
4208 map_input_to_output_sections (tos->children.head,
4209 target,
4210 tos);
4211 break;
4212 case lang_output_statement_enum:
4213 break;
4214 case lang_target_statement_enum:
4215 target = s->target_statement.target;
4216 break;
4217 case lang_group_statement_enum:
4218 map_input_to_output_sections (s->group_statement.children.head,
4219 target,
4220 os);
4221 break;
4222 case lang_data_statement_enum:
4223 /* Make sure that any sections mentioned in the expression
4224 are initialized. */
4225 exp_init_os (s->data_statement.exp);
4226 /* The output section gets CONTENTS, ALLOC and LOAD, but
4227 these may be overridden by the script. */
4228 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4229 switch (os->sectype)
4230 {
4231 case normal_section:
4232 case overlay_section:
4233 case first_overlay_section:
4234 break;
4235 case noalloc_section:
4236 flags = SEC_HAS_CONTENTS;
4237 break;
4238 case readonly_section:
4239 flags |= SEC_READONLY;
4240 break;
4241 case noload_section:
4242 if (bfd_get_flavour (link_info.output_bfd)
4243 == bfd_target_elf_flavour)
4244 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4245 else
4246 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4247 break;
4248 }
4249 if (os->bfd_section == NULL)
4250 init_os (os, flags | SEC_READONLY);
4251 else
4252 os->bfd_section->flags |= flags;
4253 break;
4254 case lang_input_section_enum:
4255 break;
4256 case lang_fill_statement_enum:
4257 case lang_object_symbols_statement_enum:
4258 case lang_reloc_statement_enum:
4259 case lang_padding_statement_enum:
4260 case lang_input_statement_enum:
4261 if (os != NULL && os->bfd_section == NULL)
4262 init_os (os, 0);
4263 break;
4264 case lang_assignment_statement_enum:
4265 if (os != NULL && os->bfd_section == NULL)
4266 init_os (os, 0);
4267
4268 /* Make sure that any sections mentioned in the assignment
4269 are initialized. */
4270 exp_init_os (s->assignment_statement.exp);
4271 break;
4272 case lang_address_statement_enum:
4273 /* Mark the specified section with the supplied address.
4274 If this section was actually a segment marker, then the
4275 directive is ignored if the linker script explicitly
4276 processed the segment marker. Originally, the linker
4277 treated segment directives (like -Ttext on the
4278 command-line) as section directives. We honor the
4279 section directive semantics for backwards compatibility;
4280 linker scripts that do not specifically check for
4281 SEGMENT_START automatically get the old semantics. */
4282 if (!s->address_statement.segment
4283 || !s->address_statement.segment->used)
4284 {
4285 const char *name = s->address_statement.section_name;
4286
4287 /* Create the output section statement here so that
4288 orphans with a set address will be placed after other
4289 script sections. If we let the orphan placement code
4290 place them in amongst other sections then the address
4291 will affect following script sections, which is
4292 likely to surprise naive users. */
4293 tos = lang_output_section_statement_lookup (name, 0, 1);
4294 tos->addr_tree = s->address_statement.address;
4295 if (tos->bfd_section == NULL)
4296 init_os (tos, 0);
4297 }
4298 break;
4299 case lang_insert_statement_enum:
4300 break;
4301 }
4302 }
4303 }
4304
4305 /* An insert statement snips out all the linker statements from the
4306 start of the list and places them after the output section
4307 statement specified by the insert. This operation is complicated
4308 by the fact that we keep a doubly linked list of output section
4309 statements as well as the singly linked list of all statements.
4310 FIXME someday: Twiddling with the list not only moves statements
4311 from the user's script but also input and group statements that are
4312 built from command line object files and --start-group. We only
4313 get away with this because the list pointers used by file_chain
4314 and input_file_chain are not reordered, and processing via
4315 statement_list after this point mostly ignores input statements.
4316 One exception is the map file, where LOAD and START GROUP/END GROUP
4317 can end up looking odd. */
4318
4319 static void
4320 process_insert_statements (lang_statement_union_type **start)
4321 {
4322 lang_statement_union_type **s;
4323 lang_output_section_statement_type *first_os = NULL;
4324 lang_output_section_statement_type *last_os = NULL;
4325 lang_output_section_statement_type *os;
4326
4327 s = start;
4328 while (*s != NULL)
4329 {
4330 if ((*s)->header.type == lang_output_section_statement_enum)
4331 {
4332 /* Keep pointers to the first and last output section
4333 statement in the sequence we may be about to move. */
4334 os = &(*s)->output_section_statement;
4335
4336 ASSERT (last_os == NULL || last_os->next == os);
4337 last_os = os;
4338
4339 /* Set constraint negative so that lang_output_section_find
4340 won't match this output section statement. At this
4341 stage in linking constraint has values in the range
4342 [-1, ONLY_IN_RW]. */
4343 last_os->constraint = -2 - last_os->constraint;
4344 if (first_os == NULL)
4345 first_os = last_os;
4346 }
4347 else if ((*s)->header.type == lang_group_statement_enum)
4348 {
4349 /* A user might put -T between --start-group and
4350 --end-group. One way this odd construct might arise is
4351 from a wrapper around ld to change library search
4352 behaviour. For example:
4353 #! /bin/sh
4354 exec real_ld --start-group "$@" --end-group
4355 This isn't completely unreasonable so go looking inside a
4356 group statement for insert statements. */
4357 process_insert_statements (&(*s)->group_statement.children.head);
4358 }
4359 else if ((*s)->header.type == lang_insert_statement_enum)
4360 {
4361 lang_insert_statement_type *i = &(*s)->insert_statement;
4362 lang_output_section_statement_type *where;
4363 lang_statement_union_type **ptr;
4364 lang_statement_union_type *first;
4365
4366 if (link_info.non_contiguous_regions)
4367 {
4368 einfo (_("warning: INSERT statement in linker script is "
4369 "incompatible with --enable-non-contiguous-regions.\n"));
4370 }
4371
4372 where = lang_output_section_find (i->where);
4373 if (where != NULL && i->is_before)
4374 {
4375 do
4376 where = where->prev;
4377 while (where != NULL && where->constraint < 0);
4378 }
4379 if (where == NULL)
4380 {
4381 einfo (_("%F%P: %s not found for insert\n"), i->where);
4382 return;
4383 }
4384
4385 /* Deal with reordering the output section statement list. */
4386 if (last_os != NULL)
4387 {
4388 asection *first_sec, *last_sec;
4389 struct lang_output_section_statement_struct **next;
4390
4391 /* Snip out the output sections we are moving. */
4392 first_os->prev->next = last_os->next;
4393 if (last_os->next == NULL)
4394 {
4395 next = &first_os->prev->next;
4396 lang_os_list.tail = (lang_statement_union_type **) next;
4397 }
4398 else
4399 last_os->next->prev = first_os->prev;
4400 /* Add them in at the new position. */
4401 last_os->next = where->next;
4402 if (where->next == NULL)
4403 {
4404 next = &last_os->next;
4405 lang_os_list.tail = (lang_statement_union_type **) next;
4406 }
4407 else
4408 where->next->prev = last_os;
4409 first_os->prev = where;
4410 where->next = first_os;
4411
4412 /* Move the bfd sections in the same way. */
4413 first_sec = NULL;
4414 last_sec = NULL;
4415 for (os = first_os; os != NULL; os = os->next)
4416 {
4417 os->constraint = -2 - os->constraint;
4418 if (os->bfd_section != NULL
4419 && os->bfd_section->owner != NULL)
4420 {
4421 last_sec = os->bfd_section;
4422 if (first_sec == NULL)
4423 first_sec = last_sec;
4424 }
4425 if (os == last_os)
4426 break;
4427 }
4428 if (last_sec != NULL)
4429 {
4430 asection *sec = where->bfd_section;
4431 if (sec == NULL)
4432 sec = output_prev_sec_find (where);
4433
4434 /* The place we want to insert must come after the
4435 sections we are moving. So if we find no
4436 section or if the section is the same as our
4437 last section, then no move is needed. */
4438 if (sec != NULL && sec != last_sec)
4439 {
4440 /* Trim them off. */
4441 if (first_sec->prev != NULL)
4442 first_sec->prev->next = last_sec->next;
4443 else
4444 link_info.output_bfd->sections = last_sec->next;
4445 if (last_sec->next != NULL)
4446 last_sec->next->prev = first_sec->prev;
4447 else
4448 link_info.output_bfd->section_last = first_sec->prev;
4449 /* Add back. */
4450 last_sec->next = sec->next;
4451 if (sec->next != NULL)
4452 sec->next->prev = last_sec;
4453 else
4454 link_info.output_bfd->section_last = last_sec;
4455 first_sec->prev = sec;
4456 sec->next = first_sec;
4457 }
4458 }
4459
4460 first_os = NULL;
4461 last_os = NULL;
4462 }
4463
4464 ptr = insert_os_after (where);
4465 /* Snip everything from the start of the list, up to and
4466 including the insert statement we are currently processing. */
4467 first = *start;
4468 *start = (*s)->header.next;
4469 /* Add them back where they belong, minus the insert. */
4470 *s = *ptr;
4471 if (*s == NULL)
4472 statement_list.tail = s;
4473 *ptr = first;
4474 s = start;
4475 continue;
4476 }
4477 s = &(*s)->header.next;
4478 }
4479
4480 /* Undo constraint twiddling. */
4481 for (os = first_os; os != NULL; os = os->next)
4482 {
4483 os->constraint = -2 - os->constraint;
4484 if (os == last_os)
4485 break;
4486 }
4487 }
4488
4489 /* An output section might have been removed after its statement was
4490 added. For example, ldemul_before_allocation can remove dynamic
4491 sections if they turn out to be not needed. Clean them up here. */
4492
4493 void
4494 strip_excluded_output_sections (void)
4495 {
4496 lang_output_section_statement_type *os;
4497
4498 /* Run lang_size_sections (if not already done). */
4499 if (expld.phase != lang_mark_phase_enum)
4500 {
4501 expld.phase = lang_mark_phase_enum;
4502 expld.dataseg.phase = exp_seg_none;
4503 one_lang_size_sections_pass (NULL, false);
4504 lang_reset_memory_regions ();
4505 }
4506
4507 for (os = (void *) lang_os_list.head;
4508 os != NULL;
4509 os = os->next)
4510 {
4511 asection *output_section;
4512 bool exclude;
4513
4514 if (os->constraint < 0)
4515 continue;
4516
4517 output_section = os->bfd_section;
4518 if (output_section == NULL)
4519 continue;
4520
4521 exclude = (output_section->rawsize == 0
4522 && (output_section->flags & SEC_KEEP) == 0
4523 && !bfd_section_removed_from_list (link_info.output_bfd,
4524 output_section));
4525
4526 /* Some sections have not yet been sized, notably .gnu.version,
4527 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4528 input sections, so don't drop output sections that have such
4529 input sections unless they are also marked SEC_EXCLUDE. */
4530 if (exclude && output_section->map_head.s != NULL)
4531 {
4532 asection *s;
4533
4534 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4535 if ((s->flags & SEC_EXCLUDE) == 0
4536 && ((s->flags & SEC_LINKER_CREATED) != 0
4537 || link_info.emitrelocations))
4538 {
4539 exclude = false;
4540 break;
4541 }
4542 }
4543
4544 if (exclude)
4545 {
4546 /* We don't set bfd_section to NULL since bfd_section of the
4547 removed output section statement may still be used. */
4548 if (!os->update_dot)
4549 os->ignored = true;
4550 output_section->flags |= SEC_EXCLUDE;
4551 bfd_section_list_remove (link_info.output_bfd, output_section);
4552 link_info.output_bfd->section_count--;
4553 }
4554 }
4555 }
4556
4557 /* Called from ldwrite to clear out asection.map_head and
4558 asection.map_tail for use as link_orders in ldwrite. */
4559
4560 void
4561 lang_clear_os_map (void)
4562 {
4563 lang_output_section_statement_type *os;
4564
4565 if (map_head_is_link_order)
4566 return;
4567
4568 for (os = (void *) lang_os_list.head;
4569 os != NULL;
4570 os = os->next)
4571 {
4572 asection *output_section;
4573
4574 if (os->constraint < 0)
4575 continue;
4576
4577 output_section = os->bfd_section;
4578 if (output_section == NULL)
4579 continue;
4580
4581 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4582 output_section->map_head.link_order = NULL;
4583 output_section->map_tail.link_order = NULL;
4584 }
4585
4586 /* Stop future calls to lang_add_section from messing with map_head
4587 and map_tail link_order fields. */
4588 map_head_is_link_order = true;
4589 }
4590
4591 static void
4592 print_output_section_statement
4593 (lang_output_section_statement_type *output_section_statement)
4594 {
4595 asection *section = output_section_statement->bfd_section;
4596 int len;
4597
4598 if (output_section_statement != abs_output_section)
4599 {
4600 minfo ("\n%s", output_section_statement->name);
4601
4602 if (section != NULL)
4603 {
4604 print_dot = section->vma;
4605
4606 len = strlen (output_section_statement->name);
4607 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4608 {
4609 print_nl ();
4610 len = 0;
4611 }
4612 while (len < SECTION_NAME_MAP_LENGTH)
4613 {
4614 print_space ();
4615 ++len;
4616 }
4617
4618 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4619
4620 if (section->vma != section->lma)
4621 minfo (_(" load address 0x%V"), section->lma);
4622
4623 if (output_section_statement->update_dot_tree != NULL)
4624 exp_fold_tree (output_section_statement->update_dot_tree,
4625 bfd_abs_section_ptr, &print_dot);
4626 }
4627
4628 print_nl ();
4629 }
4630
4631 print_statement_list (output_section_statement->children.head,
4632 output_section_statement);
4633 }
4634
4635 static void
4636 print_assignment (lang_assignment_statement_type *assignment,
4637 lang_output_section_statement_type *output_section)
4638 {
4639 unsigned int i;
4640 bool is_dot;
4641 etree_type *tree;
4642 asection *osec;
4643
4644 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4645 print_space ();
4646
4647 if (assignment->exp->type.node_class == etree_assert)
4648 {
4649 is_dot = false;
4650 tree = assignment->exp->assert_s.child;
4651 }
4652 else
4653 {
4654 const char *dst = assignment->exp->assign.dst;
4655
4656 is_dot = (dst[0] == '.' && dst[1] == 0);
4657 tree = assignment->exp;
4658 }
4659
4660 osec = output_section->bfd_section;
4661 if (osec == NULL)
4662 osec = bfd_abs_section_ptr;
4663
4664 if (assignment->exp->type.node_class != etree_provide)
4665 exp_fold_tree (tree, osec, &print_dot);
4666 else
4667 expld.result.valid_p = false;
4668
4669 if (expld.result.valid_p)
4670 {
4671 bfd_vma value;
4672
4673 if (assignment->exp->type.node_class == etree_assert
4674 || is_dot
4675 || expld.assign_name != NULL)
4676 {
4677 value = expld.result.value;
4678
4679 if (expld.result.section != NULL)
4680 value += expld.result.section->vma;
4681
4682 minfo ("0x%V", value);
4683 if (is_dot)
4684 print_dot = value;
4685 }
4686 else
4687 {
4688 struct bfd_link_hash_entry *h;
4689
4690 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4691 false, false, true);
4692 if (h != NULL
4693 && (h->type == bfd_link_hash_defined
4694 || h->type == bfd_link_hash_defweak))
4695 {
4696 value = h->u.def.value;
4697 value += h->u.def.section->output_section->vma;
4698 value += h->u.def.section->output_offset;
4699
4700 minfo ("[0x%V]", value);
4701 }
4702 else
4703 minfo ("[unresolved]");
4704 }
4705 }
4706 else
4707 {
4708 if (assignment->exp->type.node_class == etree_provide)
4709 minfo ("[!provide]");
4710 else
4711 minfo ("*undef* ");
4712 #ifdef BFD64
4713 minfo (" ");
4714 #endif
4715 }
4716 expld.assign_name = NULL;
4717
4718 minfo (" ");
4719 exp_print_tree (assignment->exp);
4720 print_nl ();
4721 }
4722
4723 static void
4724 print_input_statement (lang_input_statement_type *statm)
4725 {
4726 if (statm->filename != NULL)
4727 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4728 }
4729
4730 /* Print all symbols defined in a particular section. This is called
4731 via bfd_link_hash_traverse, or by print_all_symbols. */
4732
4733 bool
4734 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4735 {
4736 asection *sec = (asection *) ptr;
4737
4738 if ((hash_entry->type == bfd_link_hash_defined
4739 || hash_entry->type == bfd_link_hash_defweak)
4740 && sec == hash_entry->u.def.section)
4741 {
4742 int i;
4743
4744 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4745 print_space ();
4746 minfo ("0x%V ",
4747 (hash_entry->u.def.value
4748 + hash_entry->u.def.section->output_offset
4749 + hash_entry->u.def.section->output_section->vma));
4750
4751 minfo (" %pT\n", hash_entry->root.string);
4752 }
4753
4754 return true;
4755 }
4756
4757 static int
4758 hash_entry_addr_cmp (const void *a, const void *b)
4759 {
4760 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4761 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4762
4763 if (l->u.def.value < r->u.def.value)
4764 return -1;
4765 else if (l->u.def.value > r->u.def.value)
4766 return 1;
4767 else
4768 return 0;
4769 }
4770
4771 static void
4772 print_all_symbols (asection *sec)
4773 {
4774 input_section_userdata_type *ud = bfd_section_userdata (sec);
4775 struct map_symbol_def *def;
4776 struct bfd_link_hash_entry **entries;
4777 unsigned int i;
4778
4779 if (!ud)
4780 return;
4781
4782 *ud->map_symbol_def_tail = 0;
4783
4784 /* Sort the symbols by address. */
4785 entries = (struct bfd_link_hash_entry **)
4786 obstack_alloc (&map_obstack,
4787 ud->map_symbol_def_count * sizeof (*entries));
4788
4789 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4790 entries[i] = def->entry;
4791
4792 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4793 hash_entry_addr_cmp);
4794
4795 /* Print the symbols. */
4796 for (i = 0; i < ud->map_symbol_def_count; i++)
4797 ldemul_print_symbol (entries[i], sec);
4798
4799 obstack_free (&map_obstack, entries);
4800 }
4801
4802 /* Print information about an input section to the map file. */
4803
4804 static void
4805 print_input_section (asection *i, bool is_discarded)
4806 {
4807 bfd_size_type size = i->size;
4808 int len;
4809 bfd_vma addr;
4810
4811 init_opb (i);
4812
4813 print_space ();
4814 minfo ("%s", i->name);
4815
4816 len = 1 + strlen (i->name);
4817 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4818 {
4819 print_nl ();
4820 len = 0;
4821 }
4822 while (len < SECTION_NAME_MAP_LENGTH)
4823 {
4824 print_space ();
4825 ++len;
4826 }
4827
4828 if (i->output_section != NULL
4829 && i->output_section->owner == link_info.output_bfd)
4830 addr = i->output_section->vma + i->output_offset;
4831 else
4832 {
4833 addr = print_dot;
4834 if (!is_discarded)
4835 size = 0;
4836 }
4837
4838 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4839
4840 if (size != i->rawsize && i->rawsize != 0)
4841 {
4842 len = SECTION_NAME_MAP_LENGTH + 3;
4843 #ifdef BFD64
4844 len += 16;
4845 #else
4846 len += 8;
4847 #endif
4848 while (len > 0)
4849 {
4850 print_space ();
4851 --len;
4852 }
4853
4854 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4855 }
4856
4857 if (i->output_section != NULL
4858 && i->output_section->owner == link_info.output_bfd)
4859 {
4860 if (link_info.reduce_memory_overheads)
4861 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4862 else
4863 print_all_symbols (i);
4864
4865 /* Update print_dot, but make sure that we do not move it
4866 backwards - this could happen if we have overlays and a
4867 later overlay is shorter than an earier one. */
4868 if (addr + TO_ADDR (size) > print_dot)
4869 print_dot = addr + TO_ADDR (size);
4870 }
4871 }
4872
4873 static void
4874 print_fill_statement (lang_fill_statement_type *fill)
4875 {
4876 size_t size;
4877 unsigned char *p;
4878 fputs (" FILL mask 0x", config.map_file);
4879 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4880 fprintf (config.map_file, "%02x", *p);
4881 fputs ("\n", config.map_file);
4882 }
4883
4884 static void
4885 print_data_statement (lang_data_statement_type *data)
4886 {
4887 int i;
4888 bfd_vma addr;
4889 bfd_size_type size;
4890 const char *name;
4891
4892 init_opb (data->output_section);
4893 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4894 print_space ();
4895
4896 addr = data->output_offset;
4897 if (data->output_section != NULL)
4898 addr += data->output_section->vma;
4899
4900 switch (data->type)
4901 {
4902 default:
4903 abort ();
4904 case BYTE:
4905 size = BYTE_SIZE;
4906 name = "BYTE";
4907 break;
4908 case SHORT:
4909 size = SHORT_SIZE;
4910 name = "SHORT";
4911 break;
4912 case LONG:
4913 size = LONG_SIZE;
4914 name = "LONG";
4915 break;
4916 case QUAD:
4917 size = QUAD_SIZE;
4918 name = "QUAD";
4919 break;
4920 case SQUAD:
4921 size = QUAD_SIZE;
4922 name = "SQUAD";
4923 break;
4924 }
4925
4926 if (size < TO_SIZE ((unsigned) 1))
4927 size = TO_SIZE ((unsigned) 1);
4928 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4929
4930 if (data->exp->type.node_class != etree_value)
4931 {
4932 print_space ();
4933 exp_print_tree (data->exp);
4934 }
4935
4936 print_nl ();
4937
4938 print_dot = addr + TO_ADDR (size);
4939 }
4940
4941 /* Print an address statement. These are generated by options like
4942 -Ttext. */
4943
4944 static void
4945 print_address_statement (lang_address_statement_type *address)
4946 {
4947 minfo (_("Address of section %s set to "), address->section_name);
4948 exp_print_tree (address->address);
4949 print_nl ();
4950 }
4951
4952 /* Print a reloc statement. */
4953
4954 static void
4955 print_reloc_statement (lang_reloc_statement_type *reloc)
4956 {
4957 int i;
4958 bfd_vma addr;
4959 bfd_size_type size;
4960
4961 init_opb (reloc->output_section);
4962 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4963 print_space ();
4964
4965 addr = reloc->output_offset;
4966 if (reloc->output_section != NULL)
4967 addr += reloc->output_section->vma;
4968
4969 size = bfd_get_reloc_size (reloc->howto);
4970
4971 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4972
4973 if (reloc->name != NULL)
4974 minfo ("%s+", reloc->name);
4975 else
4976 minfo ("%s+", reloc->section->name);
4977
4978 exp_print_tree (reloc->addend_exp);
4979
4980 print_nl ();
4981
4982 print_dot = addr + TO_ADDR (size);
4983 }
4984
4985 static void
4986 print_padding_statement (lang_padding_statement_type *s)
4987 {
4988 int len;
4989 bfd_vma addr;
4990
4991 init_opb (s->output_section);
4992 minfo (" *fill*");
4993
4994 len = sizeof " *fill*" - 1;
4995 while (len < SECTION_NAME_MAP_LENGTH)
4996 {
4997 print_space ();
4998 ++len;
4999 }
5000
5001 addr = s->output_offset;
5002 if (s->output_section != NULL)
5003 addr += s->output_section->vma;
5004 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
5005
5006 if (s->fill->size != 0)
5007 {
5008 size_t size;
5009 unsigned char *p;
5010 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
5011 fprintf (config.map_file, "%02x", *p);
5012 }
5013
5014 print_nl ();
5015
5016 print_dot = addr + TO_ADDR (s->size);
5017 }
5018
5019 static void
5020 print_wild_statement (lang_wild_statement_type *w,
5021 lang_output_section_statement_type *os)
5022 {
5023 struct wildcard_list *sec;
5024
5025 print_space ();
5026
5027 if (w->exclude_name_list)
5028 {
5029 name_list *tmp;
5030 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5031 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5032 minfo (" %s", tmp->name);
5033 minfo (") ");
5034 }
5035
5036 if (w->filenames_sorted)
5037 minfo ("SORT_BY_NAME(");
5038 if (w->filename != NULL)
5039 minfo ("%s", w->filename);
5040 else
5041 minfo ("*");
5042 if (w->filenames_sorted)
5043 minfo (")");
5044
5045 minfo ("(");
5046 for (sec = w->section_list; sec; sec = sec->next)
5047 {
5048 int closing_paren = 0;
5049
5050 switch (sec->spec.sorted)
5051 {
5052 case none:
5053 break;
5054
5055 case by_name:
5056 minfo ("SORT_BY_NAME(");
5057 closing_paren = 1;
5058 break;
5059
5060 case by_alignment:
5061 minfo ("SORT_BY_ALIGNMENT(");
5062 closing_paren = 1;
5063 break;
5064
5065 case by_name_alignment:
5066 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5067 closing_paren = 2;
5068 break;
5069
5070 case by_alignment_name:
5071 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5072 closing_paren = 2;
5073 break;
5074
5075 case by_none:
5076 minfo ("SORT_NONE(");
5077 closing_paren = 1;
5078 break;
5079
5080 case by_init_priority:
5081 minfo ("SORT_BY_INIT_PRIORITY(");
5082 closing_paren = 1;
5083 break;
5084 }
5085
5086 if (sec->spec.exclude_name_list != NULL)
5087 {
5088 name_list *tmp;
5089 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5090 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5091 minfo (" %s", tmp->name);
5092 minfo (") ");
5093 }
5094 if (sec->spec.name != NULL)
5095 minfo ("%s", sec->spec.name);
5096 else
5097 minfo ("*");
5098 for (;closing_paren > 0; closing_paren--)
5099 minfo (")");
5100 if (sec->next)
5101 minfo (" ");
5102 }
5103 minfo (")");
5104
5105 print_nl ();
5106
5107 print_statement_list (w->children.head, os);
5108 }
5109
5110 /* Print a group statement. */
5111
5112 static void
5113 print_group (lang_group_statement_type *s,
5114 lang_output_section_statement_type *os)
5115 {
5116 fprintf (config.map_file, "START GROUP\n");
5117 print_statement_list (s->children.head, os);
5118 fprintf (config.map_file, "END GROUP\n");
5119 }
5120
5121 /* Print the list of statements in S.
5122 This can be called for any statement type. */
5123
5124 static void
5125 print_statement_list (lang_statement_union_type *s,
5126 lang_output_section_statement_type *os)
5127 {
5128 while (s != NULL)
5129 {
5130 print_statement (s, os);
5131 s = s->header.next;
5132 }
5133 }
5134
5135 /* Print the first statement in statement list S.
5136 This can be called for any statement type. */
5137
5138 static void
5139 print_statement (lang_statement_union_type *s,
5140 lang_output_section_statement_type *os)
5141 {
5142 switch (s->header.type)
5143 {
5144 default:
5145 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5146 FAIL ();
5147 break;
5148 case lang_constructors_statement_enum:
5149 if (constructor_list.head != NULL)
5150 {
5151 if (constructors_sorted)
5152 minfo (" SORT (CONSTRUCTORS)\n");
5153 else
5154 minfo (" CONSTRUCTORS\n");
5155 print_statement_list (constructor_list.head, os);
5156 }
5157 break;
5158 case lang_wild_statement_enum:
5159 print_wild_statement (&s->wild_statement, os);
5160 break;
5161 case lang_address_statement_enum:
5162 print_address_statement (&s->address_statement);
5163 break;
5164 case lang_object_symbols_statement_enum:
5165 minfo (" CREATE_OBJECT_SYMBOLS\n");
5166 break;
5167 case lang_fill_statement_enum:
5168 print_fill_statement (&s->fill_statement);
5169 break;
5170 case lang_data_statement_enum:
5171 print_data_statement (&s->data_statement);
5172 break;
5173 case lang_reloc_statement_enum:
5174 print_reloc_statement (&s->reloc_statement);
5175 break;
5176 case lang_input_section_enum:
5177 print_input_section (s->input_section.section, false);
5178 break;
5179 case lang_padding_statement_enum:
5180 print_padding_statement (&s->padding_statement);
5181 break;
5182 case lang_output_section_statement_enum:
5183 print_output_section_statement (&s->output_section_statement);
5184 break;
5185 case lang_assignment_statement_enum:
5186 print_assignment (&s->assignment_statement, os);
5187 break;
5188 case lang_target_statement_enum:
5189 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5190 break;
5191 case lang_output_statement_enum:
5192 minfo ("OUTPUT(%s", s->output_statement.name);
5193 if (output_target != NULL)
5194 minfo (" %s", output_target);
5195 minfo (")\n");
5196 break;
5197 case lang_input_statement_enum:
5198 print_input_statement (&s->input_statement);
5199 break;
5200 case lang_group_statement_enum:
5201 print_group (&s->group_statement, os);
5202 break;
5203 case lang_insert_statement_enum:
5204 minfo ("INSERT %s %s\n",
5205 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5206 s->insert_statement.where);
5207 break;
5208 }
5209 }
5210
5211 static void
5212 print_statements (void)
5213 {
5214 print_statement_list (statement_list.head, abs_output_section);
5215 }
5216
5217 /* Print the first N statements in statement list S to STDERR.
5218 If N == 0, nothing is printed.
5219 If N < 0, the entire list is printed.
5220 Intended to be called from GDB. */
5221
5222 void
5223 dprint_statement (lang_statement_union_type *s, int n)
5224 {
5225 FILE *map_save = config.map_file;
5226
5227 config.map_file = stderr;
5228
5229 if (n < 0)
5230 print_statement_list (s, abs_output_section);
5231 else
5232 {
5233 while (s && --n >= 0)
5234 {
5235 print_statement (s, abs_output_section);
5236 s = s->header.next;
5237 }
5238 }
5239
5240 config.map_file = map_save;
5241 }
5242
5243 static void
5244 insert_pad (lang_statement_union_type **ptr,
5245 fill_type *fill,
5246 bfd_size_type alignment_needed,
5247 asection *output_section,
5248 bfd_vma dot)
5249 {
5250 static fill_type zero_fill;
5251 lang_statement_union_type *pad = NULL;
5252
5253 if (ptr != &statement_list.head)
5254 pad = ((lang_statement_union_type *)
5255 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5256 if (pad != NULL
5257 && pad->header.type == lang_padding_statement_enum
5258 && pad->padding_statement.output_section == output_section)
5259 {
5260 /* Use the existing pad statement. */
5261 }
5262 else if ((pad = *ptr) != NULL
5263 && pad->header.type == lang_padding_statement_enum
5264 && pad->padding_statement.output_section == output_section)
5265 {
5266 /* Use the existing pad statement. */
5267 }
5268 else
5269 {
5270 /* Make a new padding statement, linked into existing chain. */
5271 pad = stat_alloc (sizeof (lang_padding_statement_type));
5272 pad->header.next = *ptr;
5273 *ptr = pad;
5274 pad->header.type = lang_padding_statement_enum;
5275 pad->padding_statement.output_section = output_section;
5276 if (fill == NULL)
5277 fill = &zero_fill;
5278 pad->padding_statement.fill = fill;
5279 }
5280 pad->padding_statement.output_offset = dot - output_section->vma;
5281 pad->padding_statement.size = alignment_needed;
5282 if (!(output_section->flags & SEC_FIXED_SIZE))
5283 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5284 - output_section->vma);
5285 }
5286
5287 /* Work out how much this section will move the dot point. */
5288
5289 static bfd_vma
5290 size_input_section
5291 (lang_statement_union_type **this_ptr,
5292 lang_output_section_statement_type *output_section_statement,
5293 fill_type *fill,
5294 bool *removed,
5295 bfd_vma dot)
5296 {
5297 lang_input_section_type *is = &((*this_ptr)->input_section);
5298 asection *i = is->section;
5299 asection *o = output_section_statement->bfd_section;
5300 *removed = 0;
5301
5302 if (link_info.non_contiguous_regions)
5303 {
5304 /* If the input section I has already been successfully assigned
5305 to an output section other than O, don't bother with it and
5306 let the caller remove it from the list. Keep processing in
5307 case we have already handled O, because the repeated passes
5308 have reinitialized its size. */
5309 if (i->already_assigned && i->already_assigned != o)
5310 {
5311 *removed = 1;
5312 return dot;
5313 }
5314 }
5315
5316 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5317 i->output_offset = i->vma - o->vma;
5318 else if (((i->flags & SEC_EXCLUDE) != 0)
5319 || output_section_statement->ignored)
5320 i->output_offset = dot - o->vma;
5321 else
5322 {
5323 bfd_size_type alignment_needed;
5324
5325 /* Align this section first to the input sections requirement,
5326 then to the output section's requirement. If this alignment
5327 is greater than any seen before, then record it too. Perform
5328 the alignment by inserting a magic 'padding' statement. */
5329
5330 if (output_section_statement->subsection_alignment != NULL)
5331 i->alignment_power
5332 = exp_get_power (output_section_statement->subsection_alignment,
5333 "subsection alignment");
5334
5335 if (o->alignment_power < i->alignment_power)
5336 o->alignment_power = i->alignment_power;
5337
5338 alignment_needed = align_power (dot, i->alignment_power) - dot;
5339
5340 if (alignment_needed != 0)
5341 {
5342 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5343 dot += alignment_needed;
5344 }
5345
5346 if (link_info.non_contiguous_regions)
5347 {
5348 /* If I would overflow O, let the caller remove I from the
5349 list. */
5350 if (output_section_statement->region)
5351 {
5352 bfd_vma end = output_section_statement->region->origin
5353 + output_section_statement->region->length;
5354
5355 if (dot + TO_ADDR (i->size) > end)
5356 {
5357 if (i->flags & SEC_LINKER_CREATED)
5358 einfo (_("%F%P: Output section '%s' not large enough for the "
5359 "linker-created stubs section '%s'.\n"),
5360 i->output_section->name, i->name);
5361
5362 if (i->rawsize && i->rawsize != i->size)
5363 einfo (_("%F%P: Relaxation not supported with "
5364 "--enable-non-contiguous-regions (section '%s' "
5365 "would overflow '%s' after it changed size).\n"),
5366 i->name, i->output_section->name);
5367
5368 *removed = 1;
5369 dot = end;
5370 i->output_section = NULL;
5371 return dot;
5372 }
5373 }
5374 }
5375
5376 /* Remember where in the output section this input section goes. */
5377 i->output_offset = dot - o->vma;
5378
5379 /* Mark how big the output section must be to contain this now. */
5380 dot += TO_ADDR (i->size);
5381 if (!(o->flags & SEC_FIXED_SIZE))
5382 o->size = TO_SIZE (dot - o->vma);
5383
5384 if (link_info.non_contiguous_regions)
5385 {
5386 /* Record that I was successfully assigned to O, and update
5387 its actual output section too. */
5388 i->already_assigned = o;
5389 i->output_section = o;
5390 }
5391 }
5392
5393 return dot;
5394 }
5395
5396 struct check_sec
5397 {
5398 asection *sec;
5399 bool warned;
5400 };
5401
5402 static int
5403 sort_sections_by_lma (const void *arg1, const void *arg2)
5404 {
5405 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5406 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5407
5408 if (sec1->lma < sec2->lma)
5409 return -1;
5410 else if (sec1->lma > sec2->lma)
5411 return 1;
5412 else if (sec1->id < sec2->id)
5413 return -1;
5414 else if (sec1->id > sec2->id)
5415 return 1;
5416
5417 return 0;
5418 }
5419
5420 static int
5421 sort_sections_by_vma (const void *arg1, const void *arg2)
5422 {
5423 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5424 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5425
5426 if (sec1->vma < sec2->vma)
5427 return -1;
5428 else if (sec1->vma > sec2->vma)
5429 return 1;
5430 else if (sec1->id < sec2->id)
5431 return -1;
5432 else if (sec1->id > sec2->id)
5433 return 1;
5434
5435 return 0;
5436 }
5437
5438 #define IS_TBSS(s) \
5439 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5440
5441 #define IGNORE_SECTION(s) \
5442 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5443
5444 /* Check to see if any allocated sections overlap with other allocated
5445 sections. This can happen if a linker script specifies the output
5446 section addresses of the two sections. Also check whether any memory
5447 region has overflowed. */
5448
5449 static void
5450 lang_check_section_addresses (void)
5451 {
5452 asection *s, *p;
5453 struct check_sec *sections;
5454 size_t i, count;
5455 bfd_vma addr_mask;
5456 bfd_vma s_start;
5457 bfd_vma s_end;
5458 bfd_vma p_start = 0;
5459 bfd_vma p_end = 0;
5460 lang_memory_region_type *m;
5461 bool overlays;
5462
5463 /* Detect address space overflow on allocated sections. */
5464 addr_mask = ((bfd_vma) 1 <<
5465 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5466 addr_mask = (addr_mask << 1) + 1;
5467 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5468 if ((s->flags & SEC_ALLOC) != 0)
5469 {
5470 s_end = (s->vma + s->size) & addr_mask;
5471 if (s_end != 0 && s_end < (s->vma & addr_mask))
5472 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5473 s->name);
5474 else
5475 {
5476 s_end = (s->lma + s->size) & addr_mask;
5477 if (s_end != 0 && s_end < (s->lma & addr_mask))
5478 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5479 s->name);
5480 }
5481 }
5482
5483 if (bfd_count_sections (link_info.output_bfd) <= 1)
5484 return;
5485
5486 count = bfd_count_sections (link_info.output_bfd);
5487 sections = XNEWVEC (struct check_sec, count);
5488
5489 /* Scan all sections in the output list. */
5490 count = 0;
5491 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5492 {
5493 if (IGNORE_SECTION (s)
5494 || s->size == 0)
5495 continue;
5496
5497 sections[count].sec = s;
5498 sections[count].warned = false;
5499 count++;
5500 }
5501
5502 if (count <= 1)
5503 {
5504 free (sections);
5505 return;
5506 }
5507
5508 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5509
5510 /* First check section LMAs. There should be no overlap of LMAs on
5511 loadable sections, even with overlays. */
5512 for (p = NULL, i = 0; i < count; i++)
5513 {
5514 s = sections[i].sec;
5515 init_opb (s);
5516 if ((s->flags & SEC_LOAD) != 0)
5517 {
5518 s_start = s->lma;
5519 s_end = s_start + TO_ADDR (s->size) - 1;
5520
5521 /* Look for an overlap. We have sorted sections by lma, so
5522 we know that s_start >= p_start. Besides the obvious
5523 case of overlap when the current section starts before
5524 the previous one ends, we also must have overlap if the
5525 previous section wraps around the address space. */
5526 if (p != NULL
5527 && (s_start <= p_end
5528 || p_end < p_start))
5529 {
5530 einfo (_("%X%P: section %s LMA [%V,%V]"
5531 " overlaps section %s LMA [%V,%V]\n"),
5532 s->name, s_start, s_end, p->name, p_start, p_end);
5533 sections[i].warned = true;
5534 }
5535 p = s;
5536 p_start = s_start;
5537 p_end = s_end;
5538 }
5539 }
5540
5541 /* If any non-zero size allocated section (excluding tbss) starts at
5542 exactly the same VMA as another such section, then we have
5543 overlays. Overlays generated by the OVERLAY keyword will have
5544 this property. It is possible to intentionally generate overlays
5545 that fail this test, but it would be unusual. */
5546 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5547 overlays = false;
5548 p_start = sections[0].sec->vma;
5549 for (i = 1; i < count; i++)
5550 {
5551 s_start = sections[i].sec->vma;
5552 if (p_start == s_start)
5553 {
5554 overlays = true;
5555 break;
5556 }
5557 p_start = s_start;
5558 }
5559
5560 /* Now check section VMAs if no overlays were detected. */
5561 if (!overlays)
5562 {
5563 for (p = NULL, i = 0; i < count; i++)
5564 {
5565 s = sections[i].sec;
5566 init_opb (s);
5567 s_start = s->vma;
5568 s_end = s_start + TO_ADDR (s->size) - 1;
5569
5570 if (p != NULL
5571 && !sections[i].warned
5572 && (s_start <= p_end
5573 || p_end < p_start))
5574 einfo (_("%X%P: section %s VMA [%V,%V]"
5575 " overlaps section %s VMA [%V,%V]\n"),
5576 s->name, s_start, s_end, p->name, p_start, p_end);
5577 p = s;
5578 p_start = s_start;
5579 p_end = s_end;
5580 }
5581 }
5582
5583 free (sections);
5584
5585 /* If any memory region has overflowed, report by how much.
5586 We do not issue this diagnostic for regions that had sections
5587 explicitly placed outside their bounds; os_region_check's
5588 diagnostics are adequate for that case.
5589
5590 FIXME: It is conceivable that m->current - (m->origin + m->length)
5591 might overflow a 32-bit integer. There is, alas, no way to print
5592 a bfd_vma quantity in decimal. */
5593 for (m = lang_memory_region_list; m; m = m->next)
5594 if (m->had_full_message)
5595 {
5596 unsigned long over = m->current - (m->origin + m->length);
5597 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5598 "%X%P: region `%s' overflowed by %lu bytes\n",
5599 over),
5600 m->name_list.name, over);
5601 }
5602 }
5603
5604 /* Make sure the new address is within the region. We explicitly permit the
5605 current address to be at the exact end of the region when the address is
5606 non-zero, in case the region is at the end of addressable memory and the
5607 calculation wraps around. */
5608
5609 static void
5610 os_region_check (lang_output_section_statement_type *os,
5611 lang_memory_region_type *region,
5612 etree_type *tree,
5613 bfd_vma rbase)
5614 {
5615 if ((region->current < region->origin
5616 || (region->current - region->origin > region->length))
5617 && ((region->current != region->origin + region->length)
5618 || rbase == 0))
5619 {
5620 if (tree != NULL)
5621 {
5622 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5623 " is not within region `%s'\n"),
5624 region->current,
5625 os->bfd_section->owner,
5626 os->bfd_section->name,
5627 region->name_list.name);
5628 }
5629 else if (!region->had_full_message)
5630 {
5631 region->had_full_message = true;
5632
5633 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5634 os->bfd_section->owner,
5635 os->bfd_section->name,
5636 region->name_list.name);
5637 }
5638 }
5639 }
5640
5641 static void
5642 ldlang_check_relro_region (lang_statement_union_type *s,
5643 seg_align_type *seg)
5644 {
5645 if (seg->relro == exp_seg_relro_start)
5646 {
5647 if (!seg->relro_start_stat)
5648 seg->relro_start_stat = s;
5649 else
5650 {
5651 ASSERT (seg->relro_start_stat == s);
5652 }
5653 }
5654 else if (seg->relro == exp_seg_relro_end)
5655 {
5656 if (!seg->relro_end_stat)
5657 seg->relro_end_stat = s;
5658 else
5659 {
5660 ASSERT (seg->relro_end_stat == s);
5661 }
5662 }
5663 }
5664
5665 /* Set the sizes for all the output sections. */
5666
5667 static bfd_vma
5668 lang_size_sections_1
5669 (lang_statement_union_type **prev,
5670 lang_output_section_statement_type *output_section_statement,
5671 fill_type *fill,
5672 bfd_vma dot,
5673 bool *relax,
5674 bool check_regions)
5675 {
5676 lang_statement_union_type *s;
5677 lang_statement_union_type *prev_s = NULL;
5678 bool removed_prev_s = false;
5679
5680 /* Size up the sections from their constituent parts. */
5681 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5682 {
5683 bool removed = false;
5684
5685 switch (s->header.type)
5686 {
5687 case lang_output_section_statement_enum:
5688 {
5689 bfd_vma newdot, after, dotdelta;
5690 lang_output_section_statement_type *os;
5691 lang_memory_region_type *r;
5692 int section_alignment = 0;
5693
5694 os = &s->output_section_statement;
5695 init_opb (os->bfd_section);
5696 if (os->constraint == -1)
5697 break;
5698
5699 /* FIXME: We shouldn't need to zero section vmas for ld -r
5700 here, in lang_insert_orphan, or in the default linker scripts.
5701 This is covering for coff backend linker bugs. See PR6945. */
5702 if (os->addr_tree == NULL
5703 && bfd_link_relocatable (&link_info)
5704 && (bfd_get_flavour (link_info.output_bfd)
5705 == bfd_target_coff_flavour))
5706 os->addr_tree = exp_intop (0);
5707 if (os->addr_tree != NULL)
5708 {
5709 os->processed_vma = false;
5710 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5711
5712 if (expld.result.valid_p)
5713 {
5714 dot = expld.result.value;
5715 if (expld.result.section != NULL)
5716 dot += expld.result.section->vma;
5717 }
5718 else if (expld.phase != lang_mark_phase_enum)
5719 einfo (_("%F%P:%pS: non constant or forward reference"
5720 " address expression for section %s\n"),
5721 os->addr_tree, os->name);
5722 }
5723
5724 if (os->bfd_section == NULL)
5725 /* This section was removed or never actually created. */
5726 break;
5727
5728 /* If this is a COFF shared library section, use the size and
5729 address from the input section. FIXME: This is COFF
5730 specific; it would be cleaner if there were some other way
5731 to do this, but nothing simple comes to mind. */
5732 if (((bfd_get_flavour (link_info.output_bfd)
5733 == bfd_target_ecoff_flavour)
5734 || (bfd_get_flavour (link_info.output_bfd)
5735 == bfd_target_coff_flavour))
5736 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5737 {
5738 asection *input;
5739
5740 if (os->children.head == NULL
5741 || os->children.head->header.next != NULL
5742 || (os->children.head->header.type
5743 != lang_input_section_enum))
5744 einfo (_("%X%P: internal error on COFF shared library"
5745 " section %s\n"), os->name);
5746
5747 input = os->children.head->input_section.section;
5748 bfd_set_section_vma (os->bfd_section,
5749 bfd_section_vma (input));
5750 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5751 os->bfd_section->size = input->size;
5752 break;
5753 }
5754
5755 newdot = dot;
5756 dotdelta = 0;
5757 if (bfd_is_abs_section (os->bfd_section))
5758 {
5759 /* No matter what happens, an abs section starts at zero. */
5760 ASSERT (os->bfd_section->vma == 0);
5761 }
5762 else
5763 {
5764 if (os->addr_tree == NULL)
5765 {
5766 /* No address specified for this section, get one
5767 from the region specification. */
5768 if (os->region == NULL
5769 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5770 && os->region->name_list.name[0] == '*'
5771 && strcmp (os->region->name_list.name,
5772 DEFAULT_MEMORY_REGION) == 0))
5773 {
5774 os->region = lang_memory_default (os->bfd_section);
5775 }
5776
5777 /* If a loadable section is using the default memory
5778 region, and some non default memory regions were
5779 defined, issue an error message. */
5780 if (!os->ignored
5781 && !IGNORE_SECTION (os->bfd_section)
5782 && !bfd_link_relocatable (&link_info)
5783 && check_regions
5784 && strcmp (os->region->name_list.name,
5785 DEFAULT_MEMORY_REGION) == 0
5786 && lang_memory_region_list != NULL
5787 && (strcmp (lang_memory_region_list->name_list.name,
5788 DEFAULT_MEMORY_REGION) != 0
5789 || lang_memory_region_list->next != NULL)
5790 && lang_sizing_iteration == 1)
5791 {
5792 /* By default this is an error rather than just a
5793 warning because if we allocate the section to the
5794 default memory region we can end up creating an
5795 excessively large binary, or even seg faulting when
5796 attempting to perform a negative seek. See
5797 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5798 for an example of this. This behaviour can be
5799 overridden by the using the --no-check-sections
5800 switch. */
5801 if (command_line.check_section_addresses)
5802 einfo (_("%F%P: error: no memory region specified"
5803 " for loadable section `%s'\n"),
5804 bfd_section_name (os->bfd_section));
5805 else
5806 einfo (_("%P: warning: no memory region specified"
5807 " for loadable section `%s'\n"),
5808 bfd_section_name (os->bfd_section));
5809 }
5810
5811 newdot = os->region->current;
5812 section_alignment = os->bfd_section->alignment_power;
5813 }
5814 else
5815 section_alignment = exp_get_power (os->section_alignment,
5816 "section alignment");
5817
5818 /* Align to what the section needs. */
5819 if (section_alignment > 0)
5820 {
5821 bfd_vma savedot = newdot;
5822 bfd_vma diff = 0;
5823
5824 newdot = align_power (newdot, section_alignment);
5825 dotdelta = newdot - savedot;
5826
5827 if (lang_sizing_iteration == 1)
5828 diff = dotdelta;
5829 else if (lang_sizing_iteration > 1)
5830 {
5831 /* Only report adjustments that would change
5832 alignment from what we have already reported. */
5833 diff = newdot - os->bfd_section->vma;
5834 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5835 diff = 0;
5836 }
5837 if (diff != 0
5838 && (config.warn_section_align
5839 || os->addr_tree != NULL))
5840 einfo (_("%P: warning: "
5841 "start of section %s changed by %ld\n"),
5842 os->name, (long) diff);
5843 }
5844
5845 bfd_set_section_vma (os->bfd_section, newdot);
5846
5847 os->bfd_section->output_offset = 0;
5848 }
5849
5850 lang_size_sections_1 (&os->children.head, os,
5851 os->fill, newdot, relax, check_regions);
5852
5853 os->processed_vma = true;
5854
5855 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5856 /* Except for some special linker created sections,
5857 no output section should change from zero size
5858 after strip_excluded_output_sections. A non-zero
5859 size on an ignored section indicates that some
5860 input section was not sized early enough. */
5861 ASSERT (os->bfd_section->size == 0);
5862 else
5863 {
5864 dot = os->bfd_section->vma;
5865
5866 /* Put the section within the requested block size, or
5867 align at the block boundary. */
5868 after = ((dot
5869 + TO_ADDR (os->bfd_section->size)
5870 + os->block_value - 1)
5871 & - (bfd_vma) os->block_value);
5872
5873 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5874 os->bfd_section->size = TO_SIZE (after
5875 - os->bfd_section->vma);
5876 }
5877
5878 /* Set section lma. */
5879 r = os->region;
5880 if (r == NULL)
5881 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
5882
5883 if (os->load_base)
5884 {
5885 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5886 os->bfd_section->lma = lma;
5887 }
5888 else if (os->lma_region != NULL)
5889 {
5890 bfd_vma lma = os->lma_region->current;
5891
5892 if (os->align_lma_with_input)
5893 lma += dotdelta;
5894 else
5895 {
5896 /* When LMA_REGION is the same as REGION, align the LMA
5897 as we did for the VMA, possibly including alignment
5898 from the bfd section. If a different region, then
5899 only align according to the value in the output
5900 statement. */
5901 if (os->lma_region != os->region)
5902 section_alignment = exp_get_power (os->section_alignment,
5903 "section alignment");
5904 if (section_alignment > 0)
5905 lma = align_power (lma, section_alignment);
5906 }
5907 os->bfd_section->lma = lma;
5908 }
5909 else if (r->last_os != NULL
5910 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5911 {
5912 bfd_vma lma;
5913 asection *last;
5914
5915 last = r->last_os->output_section_statement.bfd_section;
5916
5917 /* A backwards move of dot should be accompanied by
5918 an explicit assignment to the section LMA (ie.
5919 os->load_base set) because backwards moves can
5920 create overlapping LMAs. */
5921 if (dot < last->vma
5922 && os->bfd_section->size != 0
5923 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5924 {
5925 /* If dot moved backwards then leave lma equal to
5926 vma. This is the old default lma, which might
5927 just happen to work when the backwards move is
5928 sufficiently large. Nag if this changes anything,
5929 so people can fix their linker scripts. */
5930
5931 if (last->vma != last->lma)
5932 einfo (_("%P: warning: dot moved backwards "
5933 "before `%s'\n"), os->name);
5934 }
5935 else
5936 {
5937 /* If this is an overlay, set the current lma to that
5938 at the end of the previous section. */
5939 if (os->sectype == overlay_section)
5940 lma = last->lma + TO_ADDR (last->size);
5941
5942 /* Otherwise, keep the same lma to vma relationship
5943 as the previous section. */
5944 else
5945 lma = os->bfd_section->vma + last->lma - last->vma;
5946
5947 if (section_alignment > 0)
5948 lma = align_power (lma, section_alignment);
5949 os->bfd_section->lma = lma;
5950 }
5951 }
5952 os->processed_lma = true;
5953
5954 /* Keep track of normal sections using the default
5955 lma region. We use this to set the lma for
5956 following sections. Overlays or other linker
5957 script assignment to lma might mean that the
5958 default lma == vma is incorrect.
5959 To avoid warnings about dot moving backwards when using
5960 -Ttext, don't start tracking sections until we find one
5961 of non-zero size or with lma set differently to vma.
5962 Do this tracking before we short-cut the loop so that we
5963 track changes for the case where the section size is zero,
5964 but the lma is set differently to the vma. This is
5965 important, if an orphan section is placed after an
5966 otherwise empty output section that has an explicit lma
5967 set, we want that lma reflected in the orphans lma. */
5968 if (((!IGNORE_SECTION (os->bfd_section)
5969 && (os->bfd_section->size != 0
5970 || (r->last_os == NULL
5971 && os->bfd_section->vma != os->bfd_section->lma)
5972 || (r->last_os != NULL
5973 && dot >= (r->last_os->output_section_statement
5974 .bfd_section->vma))))
5975 || os->sectype == first_overlay_section)
5976 && os->lma_region == NULL
5977 && !bfd_link_relocatable (&link_info))
5978 r->last_os = s;
5979
5980 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5981 break;
5982
5983 /* .tbss sections effectively have zero size. */
5984 if (!IS_TBSS (os->bfd_section)
5985 || bfd_link_relocatable (&link_info))
5986 dotdelta = TO_ADDR (os->bfd_section->size);
5987 else
5988 dotdelta = 0;
5989 dot += dotdelta;
5990
5991 if (os->update_dot_tree != 0)
5992 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5993
5994 /* Update dot in the region ?
5995 We only do this if the section is going to be allocated,
5996 since unallocated sections do not contribute to the region's
5997 overall size in memory. */
5998 if (os->region != NULL
5999 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
6000 {
6001 os->region->current = dot;
6002
6003 if (check_regions)
6004 /* Make sure the new address is within the region. */
6005 os_region_check (os, os->region, os->addr_tree,
6006 os->bfd_section->vma);
6007
6008 if (os->lma_region != NULL && os->lma_region != os->region
6009 && ((os->bfd_section->flags & SEC_LOAD)
6010 || os->align_lma_with_input))
6011 {
6012 os->lma_region->current = os->bfd_section->lma + dotdelta;
6013
6014 if (check_regions)
6015 os_region_check (os, os->lma_region, NULL,
6016 os->bfd_section->lma);
6017 }
6018 }
6019 }
6020 break;
6021
6022 case lang_constructors_statement_enum:
6023 dot = lang_size_sections_1 (&constructor_list.head,
6024 output_section_statement,
6025 fill, dot, relax, check_regions);
6026 break;
6027
6028 case lang_data_statement_enum:
6029 {
6030 unsigned int size = 0;
6031
6032 s->data_statement.output_offset =
6033 dot - output_section_statement->bfd_section->vma;
6034 s->data_statement.output_section =
6035 output_section_statement->bfd_section;
6036
6037 /* We might refer to provided symbols in the expression, and
6038 need to mark them as needed. */
6039 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6040
6041 switch (s->data_statement.type)
6042 {
6043 default:
6044 abort ();
6045 case QUAD:
6046 case SQUAD:
6047 size = QUAD_SIZE;
6048 break;
6049 case LONG:
6050 size = LONG_SIZE;
6051 break;
6052 case SHORT:
6053 size = SHORT_SIZE;
6054 break;
6055 case BYTE:
6056 size = BYTE_SIZE;
6057 break;
6058 }
6059 if (size < TO_SIZE ((unsigned) 1))
6060 size = TO_SIZE ((unsigned) 1);
6061 dot += TO_ADDR (size);
6062 if (!(output_section_statement->bfd_section->flags
6063 & SEC_FIXED_SIZE))
6064 output_section_statement->bfd_section->size
6065 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6066
6067 }
6068 break;
6069
6070 case lang_reloc_statement_enum:
6071 {
6072 int size;
6073
6074 s->reloc_statement.output_offset =
6075 dot - output_section_statement->bfd_section->vma;
6076 s->reloc_statement.output_section =
6077 output_section_statement->bfd_section;
6078 size = bfd_get_reloc_size (s->reloc_statement.howto);
6079 dot += TO_ADDR (size);
6080 if (!(output_section_statement->bfd_section->flags
6081 & SEC_FIXED_SIZE))
6082 output_section_statement->bfd_section->size
6083 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6084 }
6085 break;
6086
6087 case lang_wild_statement_enum:
6088 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6089 output_section_statement,
6090 fill, dot, relax, check_regions);
6091 break;
6092
6093 case lang_object_symbols_statement_enum:
6094 link_info.create_object_symbols_section
6095 = output_section_statement->bfd_section;
6096 output_section_statement->bfd_section->flags |= SEC_KEEP;
6097 break;
6098
6099 case lang_output_statement_enum:
6100 case lang_target_statement_enum:
6101 break;
6102
6103 case lang_input_section_enum:
6104 {
6105 asection *i;
6106
6107 i = s->input_section.section;
6108 if (relax)
6109 {
6110 bool again;
6111
6112 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6113 einfo (_("%F%P: can't relax section: %E\n"));
6114 if (again)
6115 *relax = true;
6116 }
6117 dot = size_input_section (prev, output_section_statement,
6118 fill, &removed, dot);
6119 }
6120 break;
6121
6122 case lang_input_statement_enum:
6123 break;
6124
6125 case lang_fill_statement_enum:
6126 s->fill_statement.output_section =
6127 output_section_statement->bfd_section;
6128
6129 fill = s->fill_statement.fill;
6130 break;
6131
6132 case lang_assignment_statement_enum:
6133 {
6134 bfd_vma newdot = dot;
6135 etree_type *tree = s->assignment_statement.exp;
6136
6137 expld.dataseg.relro = exp_seg_relro_none;
6138
6139 exp_fold_tree (tree,
6140 output_section_statement->bfd_section,
6141 &newdot);
6142
6143 ldlang_check_relro_region (s, &expld.dataseg);
6144
6145 expld.dataseg.relro = exp_seg_relro_none;
6146
6147 /* This symbol may be relative to this section. */
6148 if ((tree->type.node_class == etree_provided
6149 || tree->type.node_class == etree_assign)
6150 && (tree->assign.dst [0] != '.'
6151 || tree->assign.dst [1] != '\0'))
6152 output_section_statement->update_dot = 1;
6153
6154 if (!output_section_statement->ignored)
6155 {
6156 if (output_section_statement == abs_output_section)
6157 {
6158 /* If we don't have an output section, then just adjust
6159 the default memory address. */
6160 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6161 false)->current = newdot;
6162 }
6163 else if (newdot != dot)
6164 {
6165 /* Insert a pad after this statement. We can't
6166 put the pad before when relaxing, in case the
6167 assignment references dot. */
6168 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6169 output_section_statement->bfd_section, dot);
6170
6171 /* Don't neuter the pad below when relaxing. */
6172 s = s->header.next;
6173
6174 /* If dot is advanced, this implies that the section
6175 should have space allocated to it, unless the
6176 user has explicitly stated that the section
6177 should not be allocated. */
6178 if (output_section_statement->sectype != noalloc_section
6179 && (output_section_statement->sectype != noload_section
6180 || (bfd_get_flavour (link_info.output_bfd)
6181 == bfd_target_elf_flavour)))
6182 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6183 }
6184 dot = newdot;
6185 }
6186 }
6187 break;
6188
6189 case lang_padding_statement_enum:
6190 /* If this is the first time lang_size_sections is called,
6191 we won't have any padding statements. If this is the
6192 second or later passes when relaxing, we should allow
6193 padding to shrink. If padding is needed on this pass, it
6194 will be added back in. */
6195 s->padding_statement.size = 0;
6196
6197 /* Make sure output_offset is valid. If relaxation shrinks
6198 the section and this pad isn't needed, it's possible to
6199 have output_offset larger than the final size of the
6200 section. bfd_set_section_contents will complain even for
6201 a pad size of zero. */
6202 s->padding_statement.output_offset
6203 = dot - output_section_statement->bfd_section->vma;
6204 break;
6205
6206 case lang_group_statement_enum:
6207 dot = lang_size_sections_1 (&s->group_statement.children.head,
6208 output_section_statement,
6209 fill, dot, relax, check_regions);
6210 break;
6211
6212 case lang_insert_statement_enum:
6213 break;
6214
6215 /* We can only get here when relaxing is turned on. */
6216 case lang_address_statement_enum:
6217 break;
6218
6219 default:
6220 FAIL ();
6221 break;
6222 }
6223
6224 /* If an input section doesn't fit in the current output
6225 section, remove it from the list. Handle the case where we
6226 have to remove an input_section statement here: there is a
6227 special case to remove the first element of the list. */
6228 if (link_info.non_contiguous_regions && removed)
6229 {
6230 /* If we removed the first element during the previous
6231 iteration, override the loop assignment of prev_s. */
6232 if (removed_prev_s)
6233 prev_s = NULL;
6234
6235 if (prev_s)
6236 {
6237 /* If there was a real previous input section, just skip
6238 the current one. */
6239 prev_s->header.next=s->header.next;
6240 s = prev_s;
6241 removed_prev_s = false;
6242 }
6243 else
6244 {
6245 /* Remove the first input section of the list. */
6246 *prev = s->header.next;
6247 removed_prev_s = true;
6248 }
6249
6250 /* Move to next element, unless we removed the head of the
6251 list. */
6252 if (!removed_prev_s)
6253 prev = &s->header.next;
6254 }
6255 else
6256 {
6257 prev = &s->header.next;
6258 removed_prev_s = false;
6259 }
6260 }
6261 return dot;
6262 }
6263
6264 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6265 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6266 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6267 segments. We are allowed an opportunity to override this decision. */
6268
6269 bool
6270 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6271 bfd *abfd ATTRIBUTE_UNUSED,
6272 asection *current_section,
6273 asection *previous_section,
6274 bool new_segment)
6275 {
6276 lang_output_section_statement_type *cur;
6277 lang_output_section_statement_type *prev;
6278
6279 /* The checks below are only necessary when the BFD library has decided
6280 that the two sections ought to be placed into the same segment. */
6281 if (new_segment)
6282 return true;
6283
6284 /* Paranoia checks. */
6285 if (current_section == NULL || previous_section == NULL)
6286 return new_segment;
6287
6288 /* If this flag is set, the target never wants code and non-code
6289 sections comingled in the same segment. */
6290 if (config.separate_code
6291 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6292 return true;
6293
6294 /* Find the memory regions associated with the two sections.
6295 We call lang_output_section_find() here rather than scanning the list
6296 of output sections looking for a matching section pointer because if
6297 we have a large number of sections then a hash lookup is faster. */
6298 cur = lang_output_section_find (current_section->name);
6299 prev = lang_output_section_find (previous_section->name);
6300
6301 /* More paranoia. */
6302 if (cur == NULL || prev == NULL)
6303 return new_segment;
6304
6305 /* If the regions are different then force the sections to live in
6306 different segments. See the email thread starting at the following
6307 URL for the reasons why this is necessary:
6308 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6309 return cur->region != prev->region;
6310 }
6311
6312 void
6313 one_lang_size_sections_pass (bool *relax, bool check_regions)
6314 {
6315 lang_statement_iteration++;
6316 if (expld.phase != lang_mark_phase_enum)
6317 lang_sizing_iteration++;
6318 lang_size_sections_1 (&statement_list.head, abs_output_section,
6319 0, 0, relax, check_regions);
6320 }
6321
6322 static bool
6323 lang_size_segment (seg_align_type *seg)
6324 {
6325 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6326 a page could be saved in the data segment. */
6327 bfd_vma first, last;
6328
6329 first = -seg->base & (seg->pagesize - 1);
6330 last = seg->end & (seg->pagesize - 1);
6331 if (first && last
6332 && ((seg->base & ~(seg->pagesize - 1))
6333 != (seg->end & ~(seg->pagesize - 1)))
6334 && first + last <= seg->pagesize)
6335 {
6336 seg->phase = exp_seg_adjust;
6337 return true;
6338 }
6339
6340 seg->phase = exp_seg_done;
6341 return false;
6342 }
6343
6344 static bfd_vma
6345 lang_size_relro_segment_1 (seg_align_type *seg)
6346 {
6347 bfd_vma relro_end, desired_end;
6348 asection *sec;
6349
6350 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6351 relro_end = ((seg->relro_end + seg->pagesize - 1)
6352 & ~(seg->pagesize - 1));
6353
6354 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6355 desired_end = relro_end - seg->relro_offset;
6356
6357 /* For sections in the relro segment.. */
6358 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6359 if ((sec->flags & SEC_ALLOC) != 0
6360 && sec->vma >= seg->base
6361 && sec->vma < seg->relro_end - seg->relro_offset)
6362 {
6363 /* Where do we want to put this section so that it ends as
6364 desired? */
6365 bfd_vma start, end, bump;
6366
6367 end = start = sec->vma;
6368 if (!IS_TBSS (sec))
6369 end += TO_ADDR (sec->size);
6370 bump = desired_end - end;
6371 /* We'd like to increase START by BUMP, but we must heed
6372 alignment so the increase might be less than optimum. */
6373 start += bump;
6374 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6375 /* This is now the desired end for the previous section. */
6376 desired_end = start;
6377 }
6378
6379 seg->phase = exp_seg_relro_adjust;
6380 ASSERT (desired_end >= seg->base);
6381 seg->base = desired_end;
6382 return relro_end;
6383 }
6384
6385 static bool
6386 lang_size_relro_segment (bool *relax, bool check_regions)
6387 {
6388 bool do_reset = false;
6389 bool do_data_relro;
6390 bfd_vma data_initial_base, data_relro_end;
6391
6392 if (link_info.relro && expld.dataseg.relro_end)
6393 {
6394 do_data_relro = true;
6395 data_initial_base = expld.dataseg.base;
6396 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6397 }
6398 else
6399 {
6400 do_data_relro = false;
6401 data_initial_base = data_relro_end = 0;
6402 }
6403
6404 if (do_data_relro)
6405 {
6406 lang_reset_memory_regions ();
6407 one_lang_size_sections_pass (relax, check_regions);
6408
6409 /* Assignments to dot, or to output section address in a user
6410 script have increased padding over the original. Revert. */
6411 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6412 {
6413 expld.dataseg.base = data_initial_base;;
6414 do_reset = true;
6415 }
6416 }
6417
6418 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6419 do_reset = true;
6420
6421 return do_reset;
6422 }
6423
6424 void
6425 lang_size_sections (bool *relax, bool check_regions)
6426 {
6427 expld.phase = lang_allocating_phase_enum;
6428 expld.dataseg.phase = exp_seg_none;
6429
6430 one_lang_size_sections_pass (relax, check_regions);
6431
6432 if (expld.dataseg.phase != exp_seg_end_seen)
6433 expld.dataseg.phase = exp_seg_done;
6434
6435 if (expld.dataseg.phase == exp_seg_end_seen)
6436 {
6437 bool do_reset
6438 = lang_size_relro_segment (relax, check_regions);
6439
6440 if (do_reset)
6441 {
6442 lang_reset_memory_regions ();
6443 one_lang_size_sections_pass (relax, check_regions);
6444 }
6445
6446 if (link_info.relro && expld.dataseg.relro_end)
6447 {
6448 link_info.relro_start = expld.dataseg.base;
6449 link_info.relro_end = expld.dataseg.relro_end;
6450 }
6451 }
6452 }
6453
6454 static lang_output_section_statement_type *current_section;
6455 static lang_assignment_statement_type *current_assign;
6456 static bool prefer_next_section;
6457
6458 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6459
6460 static bfd_vma
6461 lang_do_assignments_1 (lang_statement_union_type *s,
6462 lang_output_section_statement_type *current_os,
6463 fill_type *fill,
6464 bfd_vma dot,
6465 bool *found_end)
6466 {
6467 for (; s != NULL; s = s->header.next)
6468 {
6469 switch (s->header.type)
6470 {
6471 case lang_constructors_statement_enum:
6472 dot = lang_do_assignments_1 (constructor_list.head,
6473 current_os, fill, dot, found_end);
6474 break;
6475
6476 case lang_output_section_statement_enum:
6477 {
6478 lang_output_section_statement_type *os;
6479 bfd_vma newdot;
6480
6481 os = &(s->output_section_statement);
6482 os->after_end = *found_end;
6483 init_opb (os->bfd_section);
6484 if (os->bfd_section != NULL && !os->ignored)
6485 {
6486 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6487 {
6488 current_section = os;
6489 prefer_next_section = false;
6490 }
6491 dot = os->bfd_section->vma;
6492 }
6493 newdot = lang_do_assignments_1 (os->children.head,
6494 os, os->fill, dot, found_end);
6495 if (!os->ignored)
6496 {
6497 if (os->bfd_section != NULL)
6498 {
6499 /* .tbss sections effectively have zero size. */
6500 if (!IS_TBSS (os->bfd_section)
6501 || bfd_link_relocatable (&link_info))
6502 dot += TO_ADDR (os->bfd_section->size);
6503
6504 if (os->update_dot_tree != NULL)
6505 exp_fold_tree (os->update_dot_tree,
6506 bfd_abs_section_ptr, &dot);
6507 }
6508 else
6509 dot = newdot;
6510 }
6511 }
6512 break;
6513
6514 case lang_wild_statement_enum:
6515
6516 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6517 current_os, fill, dot, found_end);
6518 break;
6519
6520 case lang_object_symbols_statement_enum:
6521 case lang_output_statement_enum:
6522 case lang_target_statement_enum:
6523 break;
6524
6525 case lang_data_statement_enum:
6526 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6527 if (expld.result.valid_p)
6528 {
6529 s->data_statement.value = expld.result.value;
6530 if (expld.result.section != NULL)
6531 s->data_statement.value += expld.result.section->vma;
6532 }
6533 else if (expld.phase == lang_final_phase_enum)
6534 einfo (_("%F%P: invalid data statement\n"));
6535 {
6536 unsigned int size;
6537 switch (s->data_statement.type)
6538 {
6539 default:
6540 abort ();
6541 case QUAD:
6542 case SQUAD:
6543 size = QUAD_SIZE;
6544 break;
6545 case LONG:
6546 size = LONG_SIZE;
6547 break;
6548 case SHORT:
6549 size = SHORT_SIZE;
6550 break;
6551 case BYTE:
6552 size = BYTE_SIZE;
6553 break;
6554 }
6555 if (size < TO_SIZE ((unsigned) 1))
6556 size = TO_SIZE ((unsigned) 1);
6557 dot += TO_ADDR (size);
6558 }
6559 break;
6560
6561 case lang_reloc_statement_enum:
6562 exp_fold_tree (s->reloc_statement.addend_exp,
6563 bfd_abs_section_ptr, &dot);
6564 if (expld.result.valid_p)
6565 s->reloc_statement.addend_value = expld.result.value;
6566 else if (expld.phase == lang_final_phase_enum)
6567 einfo (_("%F%P: invalid reloc statement\n"));
6568 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6569 break;
6570
6571 case lang_input_section_enum:
6572 {
6573 asection *in = s->input_section.section;
6574
6575 if ((in->flags & SEC_EXCLUDE) == 0)
6576 dot += TO_ADDR (in->size);
6577 }
6578 break;
6579
6580 case lang_input_statement_enum:
6581 break;
6582
6583 case lang_fill_statement_enum:
6584 fill = s->fill_statement.fill;
6585 break;
6586
6587 case lang_assignment_statement_enum:
6588 current_assign = &s->assignment_statement;
6589 if (current_assign->exp->type.node_class != etree_assert)
6590 {
6591 const char *p = current_assign->exp->assign.dst;
6592
6593 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6594 prefer_next_section = true;
6595
6596 while (*p == '_')
6597 ++p;
6598 if (strcmp (p, "end") == 0)
6599 *found_end = true;
6600 }
6601 exp_fold_tree (s->assignment_statement.exp,
6602 (current_os->bfd_section != NULL
6603 ? current_os->bfd_section : bfd_und_section_ptr),
6604 &dot);
6605 break;
6606
6607 case lang_padding_statement_enum:
6608 dot += TO_ADDR (s->padding_statement.size);
6609 break;
6610
6611 case lang_group_statement_enum:
6612 dot = lang_do_assignments_1 (s->group_statement.children.head,
6613 current_os, fill, dot, found_end);
6614 break;
6615
6616 case lang_insert_statement_enum:
6617 break;
6618
6619 case lang_address_statement_enum:
6620 break;
6621
6622 default:
6623 FAIL ();
6624 break;
6625 }
6626 }
6627 return dot;
6628 }
6629
6630 void
6631 lang_do_assignments (lang_phase_type phase)
6632 {
6633 bool found_end = false;
6634
6635 current_section = NULL;
6636 prefer_next_section = false;
6637 expld.phase = phase;
6638 lang_statement_iteration++;
6639 lang_do_assignments_1 (statement_list.head,
6640 abs_output_section, NULL, 0, &found_end);
6641 }
6642
6643 /* For an assignment statement outside of an output section statement,
6644 choose the best of neighbouring output sections to use for values
6645 of "dot". */
6646
6647 asection *
6648 section_for_dot (void)
6649 {
6650 asection *s;
6651
6652 /* Assignments belong to the previous output section, unless there
6653 has been an assignment to "dot", in which case following
6654 assignments belong to the next output section. (The assumption
6655 is that an assignment to "dot" is setting up the address for the
6656 next output section.) Except that past the assignment to "_end"
6657 we always associate with the previous section. This exception is
6658 for targets like SH that define an alloc .stack or other
6659 weirdness after non-alloc sections. */
6660 if (current_section == NULL || prefer_next_section)
6661 {
6662 lang_statement_union_type *stmt;
6663 lang_output_section_statement_type *os;
6664
6665 for (stmt = (lang_statement_union_type *) current_assign;
6666 stmt != NULL;
6667 stmt = stmt->header.next)
6668 if (stmt->header.type == lang_output_section_statement_enum)
6669 break;
6670
6671 os = &stmt->output_section_statement;
6672 while (os != NULL
6673 && !os->after_end
6674 && (os->bfd_section == NULL
6675 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6676 || bfd_section_removed_from_list (link_info.output_bfd,
6677 os->bfd_section)))
6678 os = os->next;
6679
6680 if (current_section == NULL || os == NULL || !os->after_end)
6681 {
6682 if (os != NULL)
6683 s = os->bfd_section;
6684 else
6685 s = link_info.output_bfd->section_last;
6686 while (s != NULL
6687 && ((s->flags & SEC_ALLOC) == 0
6688 || (s->flags & SEC_THREAD_LOCAL) != 0))
6689 s = s->prev;
6690 if (s != NULL)
6691 return s;
6692
6693 return bfd_abs_section_ptr;
6694 }
6695 }
6696
6697 s = current_section->bfd_section;
6698
6699 /* The section may have been stripped. */
6700 while (s != NULL
6701 && ((s->flags & SEC_EXCLUDE) != 0
6702 || (s->flags & SEC_ALLOC) == 0
6703 || (s->flags & SEC_THREAD_LOCAL) != 0
6704 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6705 s = s->prev;
6706 if (s == NULL)
6707 s = link_info.output_bfd->sections;
6708 while (s != NULL
6709 && ((s->flags & SEC_ALLOC) == 0
6710 || (s->flags & SEC_THREAD_LOCAL) != 0))
6711 s = s->next;
6712 if (s != NULL)
6713 return s;
6714
6715 return bfd_abs_section_ptr;
6716 }
6717
6718 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6719
6720 static struct bfd_link_hash_entry **start_stop_syms;
6721 static size_t start_stop_count = 0;
6722 static size_t start_stop_alloc = 0;
6723
6724 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6725 to start_stop_syms. */
6726
6727 static void
6728 lang_define_start_stop (const char *symbol, asection *sec)
6729 {
6730 struct bfd_link_hash_entry *h;
6731
6732 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6733 if (h != NULL)
6734 {
6735 if (start_stop_count == start_stop_alloc)
6736 {
6737 start_stop_alloc = 2 * start_stop_alloc + 10;
6738 start_stop_syms
6739 = xrealloc (start_stop_syms,
6740 start_stop_alloc * sizeof (*start_stop_syms));
6741 }
6742 start_stop_syms[start_stop_count++] = h;
6743 }
6744 }
6745
6746 /* Check for input sections whose names match references to
6747 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6748 preliminary definitions. */
6749
6750 static void
6751 lang_init_start_stop (void)
6752 {
6753 bfd *abfd;
6754 asection *s;
6755 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6756
6757 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6758 for (s = abfd->sections; s != NULL; s = s->next)
6759 {
6760 const char *ps;
6761 const char *secname = s->name;
6762
6763 for (ps = secname; *ps != '\0'; ps++)
6764 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6765 break;
6766 if (*ps == '\0')
6767 {
6768 char *symbol = (char *) xmalloc (10 + strlen (secname));
6769
6770 symbol[0] = leading_char;
6771 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6772 lang_define_start_stop (symbol, s);
6773
6774 symbol[1] = leading_char;
6775 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6776 lang_define_start_stop (symbol + 1, s);
6777
6778 free (symbol);
6779 }
6780 }
6781 }
6782
6783 /* Iterate over start_stop_syms. */
6784
6785 static void
6786 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6787 {
6788 size_t i;
6789
6790 for (i = 0; i < start_stop_count; ++i)
6791 func (start_stop_syms[i]);
6792 }
6793
6794 /* __start and __stop symbols are only supposed to be defined by the
6795 linker for orphan sections, but we now extend that to sections that
6796 map to an output section of the same name. The symbols were
6797 defined early for --gc-sections, before we mapped input to output
6798 sections, so undo those that don't satisfy this rule. */
6799
6800 static void
6801 undef_start_stop (struct bfd_link_hash_entry *h)
6802 {
6803 if (h->ldscript_def)
6804 return;
6805
6806 if (h->u.def.section->output_section == NULL
6807 || h->u.def.section->output_section->owner != link_info.output_bfd
6808 || strcmp (h->u.def.section->name,
6809 h->u.def.section->output_section->name) != 0)
6810 {
6811 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6812 h->u.def.section->name);
6813 if (sec != NULL)
6814 {
6815 /* When there are more than one input sections with the same
6816 section name, SECNAME, linker picks the first one to define
6817 __start_SECNAME and __stop_SECNAME symbols. When the first
6818 input section is removed by comdat group, we need to check
6819 if there is still an output section with section name
6820 SECNAME. */
6821 asection *i;
6822 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6823 if (strcmp (h->u.def.section->name, i->name) == 0)
6824 {
6825 h->u.def.section = i;
6826 return;
6827 }
6828 }
6829 h->type = bfd_link_hash_undefined;
6830 h->u.undef.abfd = NULL;
6831 if (is_elf_hash_table (link_info.hash))
6832 {
6833 const struct elf_backend_data *bed;
6834 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6835 unsigned int was_forced = eh->forced_local;
6836
6837 bed = get_elf_backend_data (link_info.output_bfd);
6838 (*bed->elf_backend_hide_symbol) (&link_info, eh, true);
6839 if (!eh->ref_regular_nonweak)
6840 h->type = bfd_link_hash_undefweak;
6841 eh->def_regular = 0;
6842 eh->forced_local = was_forced;
6843 }
6844 }
6845 }
6846
6847 static void
6848 lang_undef_start_stop (void)
6849 {
6850 foreach_start_stop (undef_start_stop);
6851 }
6852
6853 /* Check for output sections whose names match references to
6854 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6855 preliminary definitions. */
6856
6857 static void
6858 lang_init_startof_sizeof (void)
6859 {
6860 asection *s;
6861
6862 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6863 {
6864 const char *secname = s->name;
6865 char *symbol = (char *) xmalloc (10 + strlen (secname));
6866
6867 sprintf (symbol, ".startof.%s", secname);
6868 lang_define_start_stop (symbol, s);
6869
6870 memcpy (symbol + 1, ".size", 5);
6871 lang_define_start_stop (symbol + 1, s);
6872 free (symbol);
6873 }
6874 }
6875
6876 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6877
6878 static void
6879 set_start_stop (struct bfd_link_hash_entry *h)
6880 {
6881 if (h->ldscript_def
6882 || h->type != bfd_link_hash_defined)
6883 return;
6884
6885 if (h->root.string[0] == '.')
6886 {
6887 /* .startof. or .sizeof. symbol.
6888 .startof. already has final value. */
6889 if (h->root.string[2] == 'i')
6890 {
6891 /* .sizeof. */
6892 h->u.def.value = TO_ADDR (h->u.def.section->size);
6893 h->u.def.section = bfd_abs_section_ptr;
6894 }
6895 }
6896 else
6897 {
6898 /* __start or __stop symbol. */
6899 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6900
6901 h->u.def.section = h->u.def.section->output_section;
6902 if (h->root.string[4 + has_lead] == 'o')
6903 {
6904 /* __stop_ */
6905 h->u.def.value = TO_ADDR (h->u.def.section->size);
6906 }
6907 }
6908 }
6909
6910 static void
6911 lang_finalize_start_stop (void)
6912 {
6913 foreach_start_stop (set_start_stop);
6914 }
6915
6916 static void
6917 lang_end (void)
6918 {
6919 struct bfd_link_hash_entry *h;
6920 bool warn;
6921
6922 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6923 || bfd_link_dll (&link_info))
6924 warn = entry_from_cmdline;
6925 else
6926 warn = true;
6927
6928 /* Force the user to specify a root when generating a relocatable with
6929 --gc-sections, unless --gc-keep-exported was also given. */
6930 if (bfd_link_relocatable (&link_info)
6931 && link_info.gc_sections
6932 && !link_info.gc_keep_exported)
6933 {
6934 struct bfd_sym_chain *sym;
6935
6936 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6937 {
6938 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6939 false, false, false);
6940 if (h != NULL
6941 && (h->type == bfd_link_hash_defined
6942 || h->type == bfd_link_hash_defweak)
6943 && !bfd_is_const_section (h->u.def.section))
6944 break;
6945 }
6946 if (!sym)
6947 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6948 "specified by -e or -u\n"));
6949 }
6950
6951 if (entry_symbol.name == NULL)
6952 {
6953 /* No entry has been specified. Look for the default entry, but
6954 don't warn if we don't find it. */
6955 entry_symbol.name = entry_symbol_default;
6956 warn = false;
6957 }
6958
6959 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6960 false, false, true);
6961 if (h != NULL
6962 && (h->type == bfd_link_hash_defined
6963 || h->type == bfd_link_hash_defweak)
6964 && h->u.def.section->output_section != NULL)
6965 {
6966 bfd_vma val;
6967
6968 val = (h->u.def.value
6969 + bfd_section_vma (h->u.def.section->output_section)
6970 + h->u.def.section->output_offset);
6971 if (!bfd_set_start_address (link_info.output_bfd, val))
6972 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6973 }
6974 else
6975 {
6976 bfd_vma val;
6977 const char *send;
6978
6979 /* We couldn't find the entry symbol. Try parsing it as a
6980 number. */
6981 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6982 if (*send == '\0')
6983 {
6984 if (!bfd_set_start_address (link_info.output_bfd, val))
6985 einfo (_("%F%P: can't set start address\n"));
6986 }
6987 /* BZ 2004952: Only use the start of the entry section for executables. */
6988 else if bfd_link_executable (&link_info)
6989 {
6990 asection *ts;
6991
6992 /* Can't find the entry symbol, and it's not a number. Use
6993 the first address in the text section. */
6994 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6995 if (ts != NULL)
6996 {
6997 if (warn)
6998 einfo (_("%P: warning: cannot find entry symbol %s;"
6999 " defaulting to %V\n"),
7000 entry_symbol.name,
7001 bfd_section_vma (ts));
7002 if (!bfd_set_start_address (link_info.output_bfd,
7003 bfd_section_vma (ts)))
7004 einfo (_("%F%P: can't set start address\n"));
7005 }
7006 else
7007 {
7008 if (warn)
7009 einfo (_("%P: warning: cannot find entry symbol %s;"
7010 " not setting start address\n"),
7011 entry_symbol.name);
7012 }
7013 }
7014 else
7015 {
7016 if (warn)
7017 einfo (_("%P: warning: cannot find entry symbol %s;"
7018 " not setting start address\n"),
7019 entry_symbol.name);
7020 }
7021 }
7022 }
7023
7024 /* This is a small function used when we want to ignore errors from
7025 BFD. */
7026
7027 static void
7028 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7029 va_list ap ATTRIBUTE_UNUSED)
7030 {
7031 /* Don't do anything. */
7032 }
7033
7034 /* Check that the architecture of all the input files is compatible
7035 with the output file. Also call the backend to let it do any
7036 other checking that is needed. */
7037
7038 static void
7039 lang_check (void)
7040 {
7041 lang_input_statement_type *file;
7042 bfd *input_bfd;
7043 const bfd_arch_info_type *compatible;
7044
7045 for (file = (void *) file_chain.head;
7046 file != NULL;
7047 file = file->next)
7048 {
7049 #if BFD_SUPPORTS_PLUGINS
7050 /* Don't check format of files claimed by plugin. */
7051 if (file->flags.claimed)
7052 continue;
7053 #endif /* BFD_SUPPORTS_PLUGINS */
7054 input_bfd = file->the_bfd;
7055 compatible
7056 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7057 command_line.accept_unknown_input_arch);
7058
7059 /* In general it is not possible to perform a relocatable
7060 link between differing object formats when the input
7061 file has relocations, because the relocations in the
7062 input format may not have equivalent representations in
7063 the output format (and besides BFD does not translate
7064 relocs for other link purposes than a final link). */
7065 if (!file->flags.just_syms
7066 && (bfd_link_relocatable (&link_info)
7067 || link_info.emitrelocations)
7068 && (compatible == NULL
7069 || (bfd_get_flavour (input_bfd)
7070 != bfd_get_flavour (link_info.output_bfd)))
7071 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7072 {
7073 einfo (_("%F%P: relocatable linking with relocations from"
7074 " format %s (%pB) to format %s (%pB) is not supported\n"),
7075 bfd_get_target (input_bfd), input_bfd,
7076 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7077 /* einfo with %F exits. */
7078 }
7079
7080 if (compatible == NULL)
7081 {
7082 if (command_line.warn_mismatch)
7083 einfo (_("%X%P: %s architecture of input file `%pB'"
7084 " is incompatible with %s output\n"),
7085 bfd_printable_name (input_bfd), input_bfd,
7086 bfd_printable_name (link_info.output_bfd));
7087 }
7088
7089 /* If the input bfd has no contents, it shouldn't set the
7090 private data of the output bfd. */
7091 else if (!file->flags.just_syms
7092 && ((input_bfd->flags & DYNAMIC) != 0
7093 || bfd_count_sections (input_bfd) != 0))
7094 {
7095 bfd_error_handler_type pfn = NULL;
7096
7097 /* If we aren't supposed to warn about mismatched input
7098 files, temporarily set the BFD error handler to a
7099 function which will do nothing. We still want to call
7100 bfd_merge_private_bfd_data, since it may set up
7101 information which is needed in the output file. */
7102 if (!command_line.warn_mismatch)
7103 pfn = bfd_set_error_handler (ignore_bfd_errors);
7104 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7105 {
7106 if (command_line.warn_mismatch)
7107 einfo (_("%X%P: failed to merge target specific data"
7108 " of file %pB\n"), input_bfd);
7109 }
7110 if (!command_line.warn_mismatch)
7111 bfd_set_error_handler (pfn);
7112 }
7113 }
7114 }
7115
7116 /* Look through all the global common symbols and attach them to the
7117 correct section. The -sort-common command line switch may be used
7118 to roughly sort the entries by alignment. */
7119
7120 static void
7121 lang_common (void)
7122 {
7123 if (link_info.inhibit_common_definition)
7124 return;
7125 if (bfd_link_relocatable (&link_info)
7126 && !command_line.force_common_definition)
7127 return;
7128
7129 if (!config.sort_common)
7130 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7131 else
7132 {
7133 unsigned int power;
7134
7135 if (config.sort_common == sort_descending)
7136 {
7137 for (power = 4; power > 0; power--)
7138 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7139
7140 power = 0;
7141 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7142 }
7143 else
7144 {
7145 for (power = 0; power <= 4; power++)
7146 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7147
7148 power = (unsigned int) -1;
7149 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7150 }
7151 }
7152 }
7153
7154 /* Place one common symbol in the correct section. */
7155
7156 static bool
7157 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7158 {
7159 unsigned int power_of_two;
7160 bfd_vma size;
7161 asection *section;
7162
7163 if (h->type != bfd_link_hash_common)
7164 return true;
7165
7166 size = h->u.c.size;
7167 power_of_two = h->u.c.p->alignment_power;
7168
7169 if (config.sort_common == sort_descending
7170 && power_of_two < *(unsigned int *) info)
7171 return true;
7172 else if (config.sort_common == sort_ascending
7173 && power_of_two > *(unsigned int *) info)
7174 return true;
7175
7176 section = h->u.c.p->section;
7177 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7178 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7179 h->root.string);
7180
7181 if (config.map_file != NULL)
7182 {
7183 static bool header_printed;
7184 int len;
7185 char *name;
7186 char buf[50];
7187
7188 if (!header_printed)
7189 {
7190 minfo (_("\nAllocating common symbols\n"));
7191 minfo (_("Common symbol size file\n\n"));
7192 header_printed = true;
7193 }
7194
7195 name = bfd_demangle (link_info.output_bfd, h->root.string,
7196 DMGL_ANSI | DMGL_PARAMS);
7197 if (name == NULL)
7198 {
7199 minfo ("%s", h->root.string);
7200 len = strlen (h->root.string);
7201 }
7202 else
7203 {
7204 minfo ("%s", name);
7205 len = strlen (name);
7206 free (name);
7207 }
7208
7209 if (len >= 19)
7210 {
7211 print_nl ();
7212 len = 0;
7213 }
7214 while (len < 20)
7215 {
7216 print_space ();
7217 ++len;
7218 }
7219
7220 minfo ("0x");
7221 if (size <= 0xffffffff)
7222 sprintf (buf, "%lx", (unsigned long) size);
7223 else
7224 sprintf_vma (buf, size);
7225 minfo ("%s", buf);
7226 len = strlen (buf);
7227
7228 while (len < 16)
7229 {
7230 print_space ();
7231 ++len;
7232 }
7233
7234 minfo ("%pB\n", section->owner);
7235 }
7236
7237 return true;
7238 }
7239
7240 /* Handle a single orphan section S, placing the orphan into an appropriate
7241 output section. The effects of the --orphan-handling command line
7242 option are handled here. */
7243
7244 static void
7245 ldlang_place_orphan (asection *s)
7246 {
7247 if (config.orphan_handling == orphan_handling_discard)
7248 {
7249 lang_output_section_statement_type *os;
7250 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7251 if (os->addr_tree == NULL
7252 && (bfd_link_relocatable (&link_info)
7253 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7254 os->addr_tree = exp_intop (0);
7255 lang_add_section (&os->children, s, NULL, NULL, os);
7256 }
7257 else
7258 {
7259 lang_output_section_statement_type *os;
7260 const char *name = s->name;
7261 int constraint = 0;
7262
7263 if (config.orphan_handling == orphan_handling_error)
7264 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7265 s, s->owner);
7266
7267 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7268 constraint = SPECIAL;
7269
7270 os = ldemul_place_orphan (s, name, constraint);
7271 if (os == NULL)
7272 {
7273 os = lang_output_section_statement_lookup (name, constraint, 1);
7274 if (os->addr_tree == NULL
7275 && (bfd_link_relocatable (&link_info)
7276 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7277 os->addr_tree = exp_intop (0);
7278 lang_add_section (&os->children, s, NULL, NULL, os);
7279 }
7280
7281 if (config.orphan_handling == orphan_handling_warn)
7282 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7283 "placed in section `%s'\n"),
7284 s, s->owner, os->name);
7285 }
7286 }
7287
7288 /* Run through the input files and ensure that every input section has
7289 somewhere to go. If one is found without a destination then create
7290 an input request and place it into the statement tree. */
7291
7292 static void
7293 lang_place_orphans (void)
7294 {
7295 LANG_FOR_EACH_INPUT_STATEMENT (file)
7296 {
7297 asection *s;
7298
7299 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7300 {
7301 if (s->output_section == NULL)
7302 {
7303 /* This section of the file is not attached, root
7304 around for a sensible place for it to go. */
7305
7306 if (file->flags.just_syms)
7307 bfd_link_just_syms (file->the_bfd, s, &link_info);
7308 else if (lang_discard_section_p (s))
7309 s->output_section = bfd_abs_section_ptr;
7310 else if (strcmp (s->name, "COMMON") == 0)
7311 {
7312 /* This is a lonely common section which must have
7313 come from an archive. We attach to the section
7314 with the wildcard. */
7315 if (!bfd_link_relocatable (&link_info)
7316 || command_line.force_common_definition)
7317 {
7318 if (default_common_section == NULL)
7319 default_common_section
7320 = lang_output_section_statement_lookup (".bss", 0, 1);
7321 lang_add_section (&default_common_section->children, s,
7322 NULL, NULL, default_common_section);
7323 }
7324 }
7325 else
7326 ldlang_place_orphan (s);
7327 }
7328 }
7329 }
7330 }
7331
7332 void
7333 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7334 {
7335 flagword *ptr_flags;
7336
7337 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7338
7339 while (*flags)
7340 {
7341 switch (*flags)
7342 {
7343 /* PR 17900: An exclamation mark in the attributes reverses
7344 the sense of any of the attributes that follow. */
7345 case '!':
7346 invert = !invert;
7347 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7348 break;
7349
7350 case 'A': case 'a':
7351 *ptr_flags |= SEC_ALLOC;
7352 break;
7353
7354 case 'R': case 'r':
7355 *ptr_flags |= SEC_READONLY;
7356 break;
7357
7358 case 'W': case 'w':
7359 *ptr_flags |= SEC_DATA;
7360 break;
7361
7362 case 'X': case 'x':
7363 *ptr_flags |= SEC_CODE;
7364 break;
7365
7366 case 'L': case 'l':
7367 case 'I': case 'i':
7368 *ptr_flags |= SEC_LOAD;
7369 break;
7370
7371 default:
7372 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7373 *flags, *flags);
7374 break;
7375 }
7376 flags++;
7377 }
7378 }
7379
7380 /* Call a function on each real input file. This function will be
7381 called on an archive, but not on the elements. */
7382
7383 void
7384 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7385 {
7386 lang_input_statement_type *f;
7387
7388 for (f = (void *) input_file_chain.head;
7389 f != NULL;
7390 f = f->next_real_file)
7391 if (f->flags.real)
7392 func (f);
7393 }
7394
7395 /* Call a function on each real file. The function will be called on
7396 all the elements of an archive which are included in the link, but
7397 will not be called on the archive file itself. */
7398
7399 void
7400 lang_for_each_file (void (*func) (lang_input_statement_type *))
7401 {
7402 LANG_FOR_EACH_INPUT_STATEMENT (f)
7403 {
7404 if (f->flags.real)
7405 func (f);
7406 }
7407 }
7408
7409 void
7410 ldlang_add_file (lang_input_statement_type *entry)
7411 {
7412 lang_statement_append (&file_chain, entry, &entry->next);
7413
7414 /* The BFD linker needs to have a list of all input BFDs involved in
7415 a link. */
7416 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7417 && entry->the_bfd->link.next == NULL);
7418 ASSERT (entry->the_bfd != link_info.output_bfd);
7419
7420 *link_info.input_bfds_tail = entry->the_bfd;
7421 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7422 bfd_set_usrdata (entry->the_bfd, entry);
7423 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7424
7425 /* Look through the sections and check for any which should not be
7426 included in the link. We need to do this now, so that we can
7427 notice when the backend linker tries to report multiple
7428 definition errors for symbols which are in sections we aren't
7429 going to link. FIXME: It might be better to entirely ignore
7430 symbols which are defined in sections which are going to be
7431 discarded. This would require modifying the backend linker for
7432 each backend which might set the SEC_LINK_ONCE flag. If we do
7433 this, we should probably handle SEC_EXCLUDE in the same way. */
7434
7435 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7436 }
7437
7438 void
7439 lang_add_output (const char *name, int from_script)
7440 {
7441 /* Make -o on command line override OUTPUT in script. */
7442 if (!had_output_filename || !from_script)
7443 {
7444 output_filename = name;
7445 had_output_filename = true;
7446 }
7447 }
7448
7449 lang_output_section_statement_type *
7450 lang_enter_output_section_statement (const char *output_section_statement_name,
7451 etree_type *address_exp,
7452 enum section_type sectype,
7453 etree_type *align,
7454 etree_type *subalign,
7455 etree_type *ebase,
7456 int constraint,
7457 int align_with_input)
7458 {
7459 lang_output_section_statement_type *os;
7460
7461 os = lang_output_section_statement_lookup (output_section_statement_name,
7462 constraint, 2);
7463 current_section = os;
7464
7465 if (os->addr_tree == NULL)
7466 {
7467 os->addr_tree = address_exp;
7468 }
7469 os->sectype = sectype;
7470 if (sectype != noload_section)
7471 os->flags = SEC_NO_FLAGS;
7472 else
7473 os->flags = SEC_NEVER_LOAD;
7474 os->block_value = 1;
7475
7476 /* Make next things chain into subchain of this. */
7477 push_stat_ptr (&os->children);
7478
7479 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7480 if (os->align_lma_with_input && align != NULL)
7481 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7482 NULL);
7483
7484 os->subsection_alignment = subalign;
7485 os->section_alignment = align;
7486
7487 os->load_base = ebase;
7488 return os;
7489 }
7490
7491 void
7492 lang_final (void)
7493 {
7494 lang_output_statement_type *new_stmt;
7495
7496 new_stmt = new_stat (lang_output_statement, stat_ptr);
7497 new_stmt->name = output_filename;
7498 }
7499
7500 /* Reset the current counters in the regions. */
7501
7502 void
7503 lang_reset_memory_regions (void)
7504 {
7505 lang_memory_region_type *p = lang_memory_region_list;
7506 asection *o;
7507 lang_output_section_statement_type *os;
7508
7509 for (p = lang_memory_region_list; p != NULL; p = p->next)
7510 {
7511 p->current = p->origin;
7512 p->last_os = NULL;
7513 }
7514
7515 for (os = (void *) lang_os_list.head;
7516 os != NULL;
7517 os = os->next)
7518 {
7519 os->processed_vma = false;
7520 os->processed_lma = false;
7521 }
7522
7523 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7524 {
7525 /* Save the last size for possible use by bfd_relax_section. */
7526 o->rawsize = o->size;
7527 if (!(o->flags & SEC_FIXED_SIZE))
7528 o->size = 0;
7529 }
7530 }
7531
7532 /* Worker for lang_gc_sections_1. */
7533
7534 static void
7535 gc_section_callback (lang_wild_statement_type *ptr,
7536 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7537 asection *section,
7538 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7539 void *data ATTRIBUTE_UNUSED)
7540 {
7541 /* If the wild pattern was marked KEEP, the member sections
7542 should be as well. */
7543 if (ptr->keep_sections)
7544 section->flags |= SEC_KEEP;
7545 }
7546
7547 /* Iterate over sections marking them against GC. */
7548
7549 static void
7550 lang_gc_sections_1 (lang_statement_union_type *s)
7551 {
7552 for (; s != NULL; s = s->header.next)
7553 {
7554 switch (s->header.type)
7555 {
7556 case lang_wild_statement_enum:
7557 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7558 break;
7559 case lang_constructors_statement_enum:
7560 lang_gc_sections_1 (constructor_list.head);
7561 break;
7562 case lang_output_section_statement_enum:
7563 lang_gc_sections_1 (s->output_section_statement.children.head);
7564 break;
7565 case lang_group_statement_enum:
7566 lang_gc_sections_1 (s->group_statement.children.head);
7567 break;
7568 default:
7569 break;
7570 }
7571 }
7572 }
7573
7574 static void
7575 lang_gc_sections (void)
7576 {
7577 /* Keep all sections so marked in the link script. */
7578 lang_gc_sections_1 (statement_list.head);
7579
7580 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7581 the special case of .stabstr debug info. (See bfd/stabs.c)
7582 Twiddle the flag here, to simplify later linker code. */
7583 if (bfd_link_relocatable (&link_info))
7584 {
7585 LANG_FOR_EACH_INPUT_STATEMENT (f)
7586 {
7587 asection *sec;
7588 #if BFD_SUPPORTS_PLUGINS
7589 if (f->flags.claimed)
7590 continue;
7591 #endif
7592 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7593 if ((sec->flags & SEC_DEBUGGING) == 0
7594 || strcmp (sec->name, ".stabstr") != 0)
7595 sec->flags &= ~SEC_EXCLUDE;
7596 }
7597 }
7598
7599 if (link_info.gc_sections)
7600 bfd_gc_sections (link_info.output_bfd, &link_info);
7601 }
7602
7603 /* Worker for lang_find_relro_sections_1. */
7604
7605 static void
7606 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7607 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7608 asection *section,
7609 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7610 void *data)
7611 {
7612 /* Discarded, excluded and ignored sections effectively have zero
7613 size. */
7614 if (section->output_section != NULL
7615 && section->output_section->owner == link_info.output_bfd
7616 && (section->output_section->flags & SEC_EXCLUDE) == 0
7617 && !IGNORE_SECTION (section)
7618 && section->size != 0)
7619 {
7620 bool *has_relro_section = (bool *) data;
7621 *has_relro_section = true;
7622 }
7623 }
7624
7625 /* Iterate over sections for relro sections. */
7626
7627 static void
7628 lang_find_relro_sections_1 (lang_statement_union_type *s,
7629 seg_align_type *seg,
7630 bool *has_relro_section)
7631 {
7632 if (*has_relro_section)
7633 return;
7634
7635 for (; s != NULL; s = s->header.next)
7636 {
7637 if (s == seg->relro_end_stat)
7638 break;
7639
7640 switch (s->header.type)
7641 {
7642 case lang_wild_statement_enum:
7643 walk_wild (&s->wild_statement,
7644 find_relro_section_callback,
7645 has_relro_section);
7646 break;
7647 case lang_constructors_statement_enum:
7648 lang_find_relro_sections_1 (constructor_list.head,
7649 seg, has_relro_section);
7650 break;
7651 case lang_output_section_statement_enum:
7652 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7653 seg, has_relro_section);
7654 break;
7655 case lang_group_statement_enum:
7656 lang_find_relro_sections_1 (s->group_statement.children.head,
7657 seg, has_relro_section);
7658 break;
7659 default:
7660 break;
7661 }
7662 }
7663 }
7664
7665 static void
7666 lang_find_relro_sections (void)
7667 {
7668 bool has_relro_section = false;
7669
7670 /* Check all sections in the link script. */
7671
7672 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7673 &expld.dataseg, &has_relro_section);
7674
7675 if (!has_relro_section)
7676 link_info.relro = false;
7677 }
7678
7679 /* Relax all sections until bfd_relax_section gives up. */
7680
7681 void
7682 lang_relax_sections (bool need_layout)
7683 {
7684 if (RELAXATION_ENABLED)
7685 {
7686 /* We may need more than one relaxation pass. */
7687 int i = link_info.relax_pass;
7688
7689 /* The backend can use it to determine the current pass. */
7690 link_info.relax_pass = 0;
7691
7692 while (i--)
7693 {
7694 /* Keep relaxing until bfd_relax_section gives up. */
7695 bool relax_again;
7696
7697 link_info.relax_trip = -1;
7698 do
7699 {
7700 link_info.relax_trip++;
7701
7702 /* Note: pe-dll.c does something like this also. If you find
7703 you need to change this code, you probably need to change
7704 pe-dll.c also. DJ */
7705
7706 /* Do all the assignments with our current guesses as to
7707 section sizes. */
7708 lang_do_assignments (lang_assigning_phase_enum);
7709
7710 /* We must do this after lang_do_assignments, because it uses
7711 size. */
7712 lang_reset_memory_regions ();
7713
7714 /* Perform another relax pass - this time we know where the
7715 globals are, so can make a better guess. */
7716 relax_again = false;
7717 lang_size_sections (&relax_again, false);
7718 }
7719 while (relax_again);
7720
7721 link_info.relax_pass++;
7722 }
7723 need_layout = true;
7724 }
7725
7726 if (need_layout)
7727 {
7728 /* Final extra sizing to report errors. */
7729 lang_do_assignments (lang_assigning_phase_enum);
7730 lang_reset_memory_regions ();
7731 lang_size_sections (NULL, true);
7732 }
7733 }
7734
7735 #if BFD_SUPPORTS_PLUGINS
7736 /* Find the insert point for the plugin's replacement files. We
7737 place them after the first claimed real object file, or if the
7738 first claimed object is an archive member, after the last real
7739 object file immediately preceding the archive. In the event
7740 no objects have been claimed at all, we return the first dummy
7741 object file on the list as the insert point; that works, but
7742 the callee must be careful when relinking the file_chain as it
7743 is not actually on that chain, only the statement_list and the
7744 input_file list; in that case, the replacement files must be
7745 inserted at the head of the file_chain. */
7746
7747 static lang_input_statement_type *
7748 find_replacements_insert_point (bool *before)
7749 {
7750 lang_input_statement_type *claim1, *lastobject;
7751 lastobject = (void *) input_file_chain.head;
7752 for (claim1 = (void *) file_chain.head;
7753 claim1 != NULL;
7754 claim1 = claim1->next)
7755 {
7756 if (claim1->flags.claimed)
7757 {
7758 *before = claim1->flags.claim_archive;
7759 return claim1->flags.claim_archive ? lastobject : claim1;
7760 }
7761 /* Update lastobject if this is a real object file. */
7762 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7763 lastobject = claim1;
7764 }
7765 /* No files were claimed by the plugin. Choose the last object
7766 file found on the list (maybe the first, dummy entry) as the
7767 insert point. */
7768 *before = false;
7769 return lastobject;
7770 }
7771
7772 /* Find where to insert ADD, an archive element or shared library
7773 added during a rescan. */
7774
7775 static lang_input_statement_type **
7776 find_rescan_insertion (lang_input_statement_type *add)
7777 {
7778 bfd *add_bfd = add->the_bfd;
7779 lang_input_statement_type *f;
7780 lang_input_statement_type *last_loaded = NULL;
7781 lang_input_statement_type *before = NULL;
7782 lang_input_statement_type **iter = NULL;
7783
7784 if (add_bfd->my_archive != NULL)
7785 add_bfd = add_bfd->my_archive;
7786
7787 /* First look through the input file chain, to find an object file
7788 before the one we've rescanned. Normal object files always
7789 appear on both the input file chain and the file chain, so this
7790 lets us get quickly to somewhere near the correct place on the
7791 file chain if it is full of archive elements. Archives don't
7792 appear on the file chain, but if an element has been extracted
7793 then their input_statement->next points at it. */
7794 for (f = (void *) input_file_chain.head;
7795 f != NULL;
7796 f = f->next_real_file)
7797 {
7798 if (f->the_bfd == add_bfd)
7799 {
7800 before = last_loaded;
7801 if (f->next != NULL)
7802 return &f->next->next;
7803 }
7804 if (f->the_bfd != NULL && f->next != NULL)
7805 last_loaded = f;
7806 }
7807
7808 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7809 *iter != NULL;
7810 iter = &(*iter)->next)
7811 if (!(*iter)->flags.claim_archive
7812 && (*iter)->the_bfd->my_archive == NULL)
7813 break;
7814
7815 return iter;
7816 }
7817
7818 /* Insert SRCLIST into DESTLIST after given element by chaining
7819 on FIELD as the next-pointer. (Counterintuitively does not need
7820 a pointer to the actual after-node itself, just its chain field.) */
7821
7822 static void
7823 lang_list_insert_after (lang_statement_list_type *destlist,
7824 lang_statement_list_type *srclist,
7825 lang_statement_union_type **field)
7826 {
7827 *(srclist->tail) = *field;
7828 *field = srclist->head;
7829 if (destlist->tail == field)
7830 destlist->tail = srclist->tail;
7831 }
7832
7833 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7834 was taken as a copy of it and leave them in ORIGLIST. */
7835
7836 static void
7837 lang_list_remove_tail (lang_statement_list_type *destlist,
7838 lang_statement_list_type *origlist)
7839 {
7840 union lang_statement_union **savetail;
7841 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7842 ASSERT (origlist->head == destlist->head);
7843 savetail = origlist->tail;
7844 origlist->head = *(savetail);
7845 origlist->tail = destlist->tail;
7846 destlist->tail = savetail;
7847 *savetail = NULL;
7848 }
7849
7850 static lang_statement_union_type **
7851 find_next_input_statement (lang_statement_union_type **s)
7852 {
7853 for ( ; *s; s = &(*s)->header.next)
7854 {
7855 lang_statement_union_type **t;
7856 switch ((*s)->header.type)
7857 {
7858 case lang_input_statement_enum:
7859 return s;
7860 case lang_wild_statement_enum:
7861 t = &(*s)->wild_statement.children.head;
7862 break;
7863 case lang_group_statement_enum:
7864 t = &(*s)->group_statement.children.head;
7865 break;
7866 case lang_output_section_statement_enum:
7867 t = &(*s)->output_section_statement.children.head;
7868 break;
7869 default:
7870 continue;
7871 }
7872 t = find_next_input_statement (t);
7873 if (*t)
7874 return t;
7875 }
7876 return s;
7877 }
7878 #endif /* BFD_SUPPORTS_PLUGINS */
7879
7880 /* Add NAME to the list of garbage collection entry points. */
7881
7882 void
7883 lang_add_gc_name (const char *name)
7884 {
7885 struct bfd_sym_chain *sym;
7886
7887 if (name == NULL)
7888 return;
7889
7890 sym = stat_alloc (sizeof (*sym));
7891
7892 sym->next = link_info.gc_sym_list;
7893 sym->name = name;
7894 link_info.gc_sym_list = sym;
7895 }
7896
7897 /* Check relocations. */
7898
7899 static void
7900 lang_check_relocs (void)
7901 {
7902 if (link_info.check_relocs_after_open_input)
7903 {
7904 bfd *abfd;
7905
7906 for (abfd = link_info.input_bfds;
7907 abfd != (bfd *) NULL; abfd = abfd->link.next)
7908 if (!bfd_link_check_relocs (abfd, &link_info))
7909 {
7910 /* No object output, fail return. */
7911 config.make_executable = false;
7912 /* Note: we do not abort the loop, but rather
7913 continue the scan in case there are other
7914 bad relocations to report. */
7915 }
7916 }
7917 }
7918
7919 /* Look through all output sections looking for places where we can
7920 propagate forward the lma region. */
7921
7922 static void
7923 lang_propagate_lma_regions (void)
7924 {
7925 lang_output_section_statement_type *os;
7926
7927 for (os = (void *) lang_os_list.head;
7928 os != NULL;
7929 os = os->next)
7930 {
7931 if (os->prev != NULL
7932 && os->lma_region == NULL
7933 && os->load_base == NULL
7934 && os->addr_tree == NULL
7935 && os->region == os->prev->region)
7936 os->lma_region = os->prev->lma_region;
7937 }
7938 }
7939
7940 void
7941 lang_process (void)
7942 {
7943 /* Finalize dynamic list. */
7944 if (link_info.dynamic_list)
7945 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7946
7947 current_target = default_target;
7948
7949 /* Open the output file. */
7950 lang_for_each_statement (ldlang_open_output);
7951 init_opb (NULL);
7952
7953 ldemul_create_output_section_statements ();
7954
7955 /* Add to the hash table all undefineds on the command line. */
7956 lang_place_undefineds ();
7957
7958 if (!bfd_section_already_linked_table_init ())
7959 einfo (_("%F%P: can not create hash table: %E\n"));
7960
7961 /* A first pass through the memory regions ensures that if any region
7962 references a symbol for its origin or length then this symbol will be
7963 added to the symbol table. Having these symbols in the symbol table
7964 means that when we call open_input_bfds PROVIDE statements will
7965 trigger to provide any needed symbols. The regions origins and
7966 lengths are not assigned as a result of this call. */
7967 lang_do_memory_regions (false);
7968
7969 /* Create a bfd for each input file. */
7970 current_target = default_target;
7971 lang_statement_iteration++;
7972 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7973
7974 /* Now that open_input_bfds has processed assignments and provide
7975 statements we can give values to symbolic origin/length now. */
7976 lang_do_memory_regions (true);
7977
7978 #if BFD_SUPPORTS_PLUGINS
7979 if (link_info.lto_plugin_active)
7980 {
7981 lang_statement_list_type added;
7982 lang_statement_list_type files, inputfiles;
7983
7984 /* Now all files are read, let the plugin(s) decide if there
7985 are any more to be added to the link before we call the
7986 emulation's after_open hook. We create a private list of
7987 input statements for this purpose, which we will eventually
7988 insert into the global statement list after the first claimed
7989 file. */
7990 added = *stat_ptr;
7991 /* We need to manipulate all three chains in synchrony. */
7992 files = file_chain;
7993 inputfiles = input_file_chain;
7994 if (plugin_call_all_symbols_read ())
7995 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7996 plugin_error_plugin ());
7997 link_info.lto_all_symbols_read = true;
7998 /* Open any newly added files, updating the file chains. */
7999 plugin_undefs = link_info.hash->undefs_tail;
8000 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
8001 if (plugin_undefs == link_info.hash->undefs_tail)
8002 plugin_undefs = NULL;
8003 /* Restore the global list pointer now they have all been added. */
8004 lang_list_remove_tail (stat_ptr, &added);
8005 /* And detach the fresh ends of the file lists. */
8006 lang_list_remove_tail (&file_chain, &files);
8007 lang_list_remove_tail (&input_file_chain, &inputfiles);
8008 /* Were any new files added? */
8009 if (added.head != NULL)
8010 {
8011 /* If so, we will insert them into the statement list immediately
8012 after the first input file that was claimed by the plugin,
8013 unless that file was an archive in which case it is inserted
8014 immediately before. */
8015 bool before;
8016 lang_statement_union_type **prev;
8017 plugin_insert = find_replacements_insert_point (&before);
8018 /* If a plugin adds input files without having claimed any, we
8019 don't really have a good idea where to place them. Just putting
8020 them at the start or end of the list is liable to leave them
8021 outside the crtbegin...crtend range. */
8022 ASSERT (plugin_insert != NULL);
8023 /* Splice the new statement list into the old one. */
8024 prev = &plugin_insert->header.next;
8025 if (before)
8026 {
8027 prev = find_next_input_statement (prev);
8028 if (*prev != (void *) plugin_insert->next_real_file)
8029 {
8030 /* We didn't find the expected input statement.
8031 Fall back to adding after plugin_insert. */
8032 prev = &plugin_insert->header.next;
8033 }
8034 }
8035 lang_list_insert_after (stat_ptr, &added, prev);
8036 /* Likewise for the file chains. */
8037 lang_list_insert_after (&input_file_chain, &inputfiles,
8038 (void *) &plugin_insert->next_real_file);
8039 /* We must be careful when relinking file_chain; we may need to
8040 insert the new files at the head of the list if the insert
8041 point chosen is the dummy first input file. */
8042 if (plugin_insert->filename)
8043 lang_list_insert_after (&file_chain, &files,
8044 (void *) &plugin_insert->next);
8045 else
8046 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8047
8048 /* Rescan archives in case new undefined symbols have appeared. */
8049 files = file_chain;
8050 lang_statement_iteration++;
8051 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8052 lang_list_remove_tail (&file_chain, &files);
8053 while (files.head != NULL)
8054 {
8055 lang_input_statement_type **insert;
8056 lang_input_statement_type **iter, *temp;
8057 bfd *my_arch;
8058
8059 insert = find_rescan_insertion (&files.head->input_statement);
8060 /* All elements from an archive can be added at once. */
8061 iter = &files.head->input_statement.next;
8062 my_arch = files.head->input_statement.the_bfd->my_archive;
8063 if (my_arch != NULL)
8064 for (; *iter != NULL; iter = &(*iter)->next)
8065 if ((*iter)->the_bfd->my_archive != my_arch)
8066 break;
8067 temp = *insert;
8068 *insert = &files.head->input_statement;
8069 files.head = (lang_statement_union_type *) *iter;
8070 *iter = temp;
8071 if (my_arch != NULL)
8072 {
8073 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8074 if (parent != NULL)
8075 parent->next = (lang_input_statement_type *)
8076 ((char *) iter
8077 - offsetof (lang_input_statement_type, next));
8078 }
8079 }
8080 }
8081 }
8082 #endif /* BFD_SUPPORTS_PLUGINS */
8083
8084 /* Make sure that nobody has tried to add a symbol to this list
8085 before now. */
8086 ASSERT (link_info.gc_sym_list == NULL);
8087
8088 link_info.gc_sym_list = &entry_symbol;
8089
8090 if (entry_symbol.name == NULL)
8091 {
8092 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8093
8094 /* entry_symbol is normally initialied by a ENTRY definition in the
8095 linker script or the -e command line option. But if neither of
8096 these have been used, the target specific backend may still have
8097 provided an entry symbol via a call to lang_default_entry().
8098 Unfortunately this value will not be processed until lang_end()
8099 is called, long after this function has finished. So detect this
8100 case here and add the target's entry symbol to the list of starting
8101 points for garbage collection resolution. */
8102 lang_add_gc_name (entry_symbol_default);
8103 }
8104
8105 lang_add_gc_name (link_info.init_function);
8106 lang_add_gc_name (link_info.fini_function);
8107
8108 ldemul_after_open ();
8109 if (config.map_file != NULL)
8110 lang_print_asneeded ();
8111
8112 ldlang_open_ctf ();
8113
8114 bfd_section_already_linked_table_free ();
8115
8116 /* Make sure that we're not mixing architectures. We call this
8117 after all the input files have been opened, but before we do any
8118 other processing, so that any operations merge_private_bfd_data
8119 does on the output file will be known during the rest of the
8120 link. */
8121 lang_check ();
8122
8123 /* Handle .exports instead of a version script if we're told to do so. */
8124 if (command_line.version_exports_section)
8125 lang_do_version_exports_section ();
8126
8127 /* Build all sets based on the information gathered from the input
8128 files. */
8129 ldctor_build_sets ();
8130
8131 /* Give initial values for __start and __stop symbols, so that ELF
8132 gc_sections will keep sections referenced by these symbols. Must
8133 be done before lang_do_assignments below. */
8134 if (config.build_constructors)
8135 lang_init_start_stop ();
8136
8137 /* PR 13683: We must rerun the assignments prior to running garbage
8138 collection in order to make sure that all symbol aliases are resolved. */
8139 lang_do_assignments (lang_mark_phase_enum);
8140 expld.phase = lang_first_phase_enum;
8141
8142 /* Size up the common data. */
8143 lang_common ();
8144
8145 /* Remove unreferenced sections if asked to. */
8146 lang_gc_sections ();
8147
8148 lang_mark_undefineds ();
8149
8150 /* Check relocations. */
8151 lang_check_relocs ();
8152
8153 ldemul_after_check_relocs ();
8154
8155 /* Update wild statements. */
8156 update_wild_statements (statement_list.head);
8157
8158 /* Run through the contours of the script and attach input sections
8159 to the correct output sections. */
8160 lang_statement_iteration++;
8161 map_input_to_output_sections (statement_list.head, NULL, NULL);
8162
8163 /* Start at the statement immediately after the special abs_section
8164 output statement, so that it isn't reordered. */
8165 process_insert_statements (&lang_os_list.head->header.next);
8166
8167 ldemul_before_place_orphans ();
8168
8169 /* Find any sections not attached explicitly and handle them. */
8170 lang_place_orphans ();
8171
8172 if (!bfd_link_relocatable (&link_info))
8173 {
8174 asection *found;
8175
8176 /* Merge SEC_MERGE sections. This has to be done after GC of
8177 sections, so that GCed sections are not merged, but before
8178 assigning dynamic symbols, since removing whole input sections
8179 is hard then. */
8180 bfd_merge_sections (link_info.output_bfd, &link_info);
8181
8182 /* Look for a text section and set the readonly attribute in it. */
8183 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8184
8185 if (found != NULL)
8186 {
8187 if (config.text_read_only)
8188 found->flags |= SEC_READONLY;
8189 else
8190 found->flags &= ~SEC_READONLY;
8191 }
8192 }
8193
8194 /* Merge together CTF sections. After this, only the symtab-dependent
8195 function and data object sections need adjustment. */
8196 lang_merge_ctf ();
8197
8198 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8199 examining things laid out late, like the strtab. */
8200 lang_write_ctf (0);
8201
8202 /* Copy forward lma regions for output sections in same lma region. */
8203 lang_propagate_lma_regions ();
8204
8205 /* Defining __start/__stop symbols early for --gc-sections to work
8206 around a glibc build problem can result in these symbols being
8207 defined when they should not be. Fix them now. */
8208 if (config.build_constructors)
8209 lang_undef_start_stop ();
8210
8211 /* Define .startof./.sizeof. symbols with preliminary values before
8212 dynamic symbols are created. */
8213 if (!bfd_link_relocatable (&link_info))
8214 lang_init_startof_sizeof ();
8215
8216 /* Do anything special before sizing sections. This is where ELF
8217 and other back-ends size dynamic sections. */
8218 ldemul_before_allocation ();
8219
8220 /* We must record the program headers before we try to fix the
8221 section positions, since they will affect SIZEOF_HEADERS. */
8222 lang_record_phdrs ();
8223
8224 /* Check relro sections. */
8225 if (link_info.relro && !bfd_link_relocatable (&link_info))
8226 lang_find_relro_sections ();
8227
8228 /* Size up the sections. */
8229 lang_size_sections (NULL, !RELAXATION_ENABLED);
8230
8231 /* See if anything special should be done now we know how big
8232 everything is. This is where relaxation is done. */
8233 ldemul_after_allocation ();
8234
8235 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8236 lang_finalize_start_stop ();
8237
8238 /* Do all the assignments again, to report errors. Assignment
8239 statements are processed multiple times, updating symbols; In
8240 open_input_bfds, lang_do_assignments, and lang_size_sections.
8241 Since lang_relax_sections calls lang_do_assignments, symbols are
8242 also updated in ldemul_after_allocation. */
8243 lang_do_assignments (lang_final_phase_enum);
8244
8245 ldemul_finish ();
8246
8247 /* Convert absolute symbols to section relative. */
8248 ldexp_finalize_syms ();
8249
8250 /* Make sure that the section addresses make sense. */
8251 if (command_line.check_section_addresses)
8252 lang_check_section_addresses ();
8253
8254 /* Check any required symbols are known. */
8255 ldlang_check_require_defined_symbols ();
8256
8257 lang_end ();
8258 }
8259
8260 /* EXPORTED TO YACC */
8261
8262 void
8263 lang_add_wild (struct wildcard_spec *filespec,
8264 struct wildcard_list *section_list,
8265 bool keep_sections)
8266 {
8267 struct wildcard_list *curr, *next;
8268 lang_wild_statement_type *new_stmt;
8269
8270 /* Reverse the list as the parser puts it back to front. */
8271 for (curr = section_list, section_list = NULL;
8272 curr != NULL;
8273 section_list = curr, curr = next)
8274 {
8275 next = curr->next;
8276 curr->next = section_list;
8277 }
8278
8279 if (filespec != NULL && filespec->name != NULL)
8280 {
8281 if (strcmp (filespec->name, "*") == 0)
8282 filespec->name = NULL;
8283 else if (!wildcardp (filespec->name))
8284 lang_has_input_file = true;
8285 }
8286
8287 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8288 new_stmt->filename = NULL;
8289 new_stmt->filenames_sorted = false;
8290 new_stmt->section_flag_list = NULL;
8291 new_stmt->exclude_name_list = NULL;
8292 if (filespec != NULL)
8293 {
8294 new_stmt->filename = filespec->name;
8295 new_stmt->filenames_sorted = filespec->sorted == by_name;
8296 new_stmt->section_flag_list = filespec->section_flag_list;
8297 new_stmt->exclude_name_list = filespec->exclude_name_list;
8298 }
8299 new_stmt->section_list = section_list;
8300 new_stmt->keep_sections = keep_sections;
8301 lang_list_init (&new_stmt->children);
8302 analyze_walk_wild_section_handler (new_stmt);
8303 }
8304
8305 void
8306 lang_section_start (const char *name, etree_type *address,
8307 const segment_type *segment)
8308 {
8309 lang_address_statement_type *ad;
8310
8311 ad = new_stat (lang_address_statement, stat_ptr);
8312 ad->section_name = name;
8313 ad->address = address;
8314 ad->segment = segment;
8315 }
8316
8317 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8318 because of a -e argument on the command line, or zero if this is
8319 called by ENTRY in a linker script. Command line arguments take
8320 precedence. */
8321
8322 void
8323 lang_add_entry (const char *name, bool cmdline)
8324 {
8325 if (entry_symbol.name == NULL
8326 || cmdline
8327 || !entry_from_cmdline)
8328 {
8329 entry_symbol.name = name;
8330 entry_from_cmdline = cmdline;
8331 }
8332 }
8333
8334 /* Set the default start symbol to NAME. .em files should use this,
8335 not lang_add_entry, to override the use of "start" if neither the
8336 linker script nor the command line specifies an entry point. NAME
8337 must be permanently allocated. */
8338 void
8339 lang_default_entry (const char *name)
8340 {
8341 entry_symbol_default = name;
8342 }
8343
8344 void
8345 lang_add_target (const char *name)
8346 {
8347 lang_target_statement_type *new_stmt;
8348
8349 new_stmt = new_stat (lang_target_statement, stat_ptr);
8350 new_stmt->target = name;
8351 }
8352
8353 void
8354 lang_add_map (const char *name)
8355 {
8356 while (*name)
8357 {
8358 switch (*name)
8359 {
8360 case 'F':
8361 map_option_f = true;
8362 break;
8363 }
8364 name++;
8365 }
8366 }
8367
8368 void
8369 lang_add_fill (fill_type *fill)
8370 {
8371 lang_fill_statement_type *new_stmt;
8372
8373 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8374 new_stmt->fill = fill;
8375 }
8376
8377 void
8378 lang_add_data (int type, union etree_union *exp)
8379 {
8380 lang_data_statement_type *new_stmt;
8381
8382 new_stmt = new_stat (lang_data_statement, stat_ptr);
8383 new_stmt->exp = exp;
8384 new_stmt->type = type;
8385 }
8386
8387 /* Create a new reloc statement. RELOC is the BFD relocation type to
8388 generate. HOWTO is the corresponding howto structure (we could
8389 look this up, but the caller has already done so). SECTION is the
8390 section to generate a reloc against, or NAME is the name of the
8391 symbol to generate a reloc against. Exactly one of SECTION and
8392 NAME must be NULL. ADDEND is an expression for the addend. */
8393
8394 void
8395 lang_add_reloc (bfd_reloc_code_real_type reloc,
8396 reloc_howto_type *howto,
8397 asection *section,
8398 const char *name,
8399 union etree_union *addend)
8400 {
8401 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8402
8403 p->reloc = reloc;
8404 p->howto = howto;
8405 p->section = section;
8406 p->name = name;
8407 p->addend_exp = addend;
8408
8409 p->addend_value = 0;
8410 p->output_section = NULL;
8411 p->output_offset = 0;
8412 }
8413
8414 lang_assignment_statement_type *
8415 lang_add_assignment (etree_type *exp)
8416 {
8417 lang_assignment_statement_type *new_stmt;
8418
8419 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8420 new_stmt->exp = exp;
8421 return new_stmt;
8422 }
8423
8424 void
8425 lang_add_attribute (enum statement_enum attribute)
8426 {
8427 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8428 }
8429
8430 void
8431 lang_startup (const char *name)
8432 {
8433 if (first_file->filename != NULL)
8434 {
8435 einfo (_("%F%P: multiple STARTUP files\n"));
8436 }
8437 first_file->filename = name;
8438 first_file->local_sym_name = name;
8439 first_file->flags.real = true;
8440 }
8441
8442 void
8443 lang_float (bool maybe)
8444 {
8445 lang_float_flag = maybe;
8446 }
8447
8448
8449 /* Work out the load- and run-time regions from a script statement, and
8450 store them in *LMA_REGION and *REGION respectively.
8451
8452 MEMSPEC is the name of the run-time region, or the value of
8453 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8454 LMA_MEMSPEC is the name of the load-time region, or null if the
8455 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8456 had an explicit load address.
8457
8458 It is an error to specify both a load region and a load address. */
8459
8460 static void
8461 lang_get_regions (lang_memory_region_type **region,
8462 lang_memory_region_type **lma_region,
8463 const char *memspec,
8464 const char *lma_memspec,
8465 bool have_lma,
8466 bool have_vma)
8467 {
8468 *lma_region = lang_memory_region_lookup (lma_memspec, false);
8469
8470 /* If no runtime region or VMA has been specified, but the load region
8471 has been specified, then use the load region for the runtime region
8472 as well. */
8473 if (lma_memspec != NULL
8474 && !have_vma
8475 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8476 *region = *lma_region;
8477 else
8478 *region = lang_memory_region_lookup (memspec, false);
8479
8480 if (have_lma && lma_memspec != 0)
8481 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8482 NULL);
8483 }
8484
8485 void
8486 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8487 lang_output_section_phdr_list *phdrs,
8488 const char *lma_memspec)
8489 {
8490 lang_get_regions (&current_section->region,
8491 &current_section->lma_region,
8492 memspec, lma_memspec,
8493 current_section->load_base != NULL,
8494 current_section->addr_tree != NULL);
8495
8496 current_section->fill = fill;
8497 current_section->phdrs = phdrs;
8498 pop_stat_ptr ();
8499 }
8500
8501 /* Set the output format type. -oformat overrides scripts. */
8502
8503 void
8504 lang_add_output_format (const char *format,
8505 const char *big,
8506 const char *little,
8507 int from_script)
8508 {
8509 if (output_target == NULL || !from_script)
8510 {
8511 if (command_line.endian == ENDIAN_BIG
8512 && big != NULL)
8513 format = big;
8514 else if (command_line.endian == ENDIAN_LITTLE
8515 && little != NULL)
8516 format = little;
8517
8518 output_target = format;
8519 }
8520 }
8521
8522 void
8523 lang_add_insert (const char *where, int is_before)
8524 {
8525 lang_insert_statement_type *new_stmt;
8526
8527 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8528 new_stmt->where = where;
8529 new_stmt->is_before = is_before;
8530 saved_script_handle = previous_script_handle;
8531 }
8532
8533 /* Enter a group. This creates a new lang_group_statement, and sets
8534 stat_ptr to build new statements within the group. */
8535
8536 void
8537 lang_enter_group (void)
8538 {
8539 lang_group_statement_type *g;
8540
8541 g = new_stat (lang_group_statement, stat_ptr);
8542 lang_list_init (&g->children);
8543 push_stat_ptr (&g->children);
8544 }
8545
8546 /* Leave a group. This just resets stat_ptr to start writing to the
8547 regular list of statements again. Note that this will not work if
8548 groups can occur inside anything else which can adjust stat_ptr,
8549 but currently they can't. */
8550
8551 void
8552 lang_leave_group (void)
8553 {
8554 pop_stat_ptr ();
8555 }
8556
8557 /* Add a new program header. This is called for each entry in a PHDRS
8558 command in a linker script. */
8559
8560 void
8561 lang_new_phdr (const char *name,
8562 etree_type *type,
8563 bool filehdr,
8564 bool phdrs,
8565 etree_type *at,
8566 etree_type *flags)
8567 {
8568 struct lang_phdr *n, **pp;
8569 bool hdrs;
8570
8571 n = stat_alloc (sizeof (struct lang_phdr));
8572 n->next = NULL;
8573 n->name = name;
8574 n->type = exp_get_vma (type, 0, "program header type");
8575 n->filehdr = filehdr;
8576 n->phdrs = phdrs;
8577 n->at = at;
8578 n->flags = flags;
8579
8580 hdrs = n->type == 1 && (phdrs || filehdr);
8581
8582 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8583 if (hdrs
8584 && (*pp)->type == 1
8585 && !((*pp)->filehdr || (*pp)->phdrs))
8586 {
8587 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8588 " when prior PT_LOAD headers lack them\n"), NULL);
8589 hdrs = false;
8590 }
8591
8592 *pp = n;
8593 }
8594
8595 /* Record the program header information in the output BFD. FIXME: We
8596 should not be calling an ELF specific function here. */
8597
8598 static void
8599 lang_record_phdrs (void)
8600 {
8601 unsigned int alc;
8602 asection **secs;
8603 lang_output_section_phdr_list *last;
8604 struct lang_phdr *l;
8605 lang_output_section_statement_type *os;
8606
8607 alc = 10;
8608 secs = (asection **) xmalloc (alc * sizeof (asection *));
8609 last = NULL;
8610
8611 for (l = lang_phdr_list; l != NULL; l = l->next)
8612 {
8613 unsigned int c;
8614 flagword flags;
8615 bfd_vma at;
8616
8617 c = 0;
8618 for (os = (void *) lang_os_list.head;
8619 os != NULL;
8620 os = os->next)
8621 {
8622 lang_output_section_phdr_list *pl;
8623
8624 if (os->constraint < 0)
8625 continue;
8626
8627 pl = os->phdrs;
8628 if (pl != NULL)
8629 last = pl;
8630 else
8631 {
8632 if (os->sectype == noload_section
8633 || os->bfd_section == NULL
8634 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8635 continue;
8636
8637 /* Don't add orphans to PT_INTERP header. */
8638 if (l->type == 3)
8639 continue;
8640
8641 if (last == NULL)
8642 {
8643 lang_output_section_statement_type *tmp_os;
8644
8645 /* If we have not run across a section with a program
8646 header assigned to it yet, then scan forwards to find
8647 one. This prevents inconsistencies in the linker's
8648 behaviour when a script has specified just a single
8649 header and there are sections in that script which are
8650 not assigned to it, and which occur before the first
8651 use of that header. See here for more details:
8652 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8653 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8654 if (tmp_os->phdrs)
8655 {
8656 last = tmp_os->phdrs;
8657 break;
8658 }
8659 if (last == NULL)
8660 einfo (_("%F%P: no sections assigned to phdrs\n"));
8661 }
8662 pl = last;
8663 }
8664
8665 if (os->bfd_section == NULL)
8666 continue;
8667
8668 for (; pl != NULL; pl = pl->next)
8669 {
8670 if (strcmp (pl->name, l->name) == 0)
8671 {
8672 if (c >= alc)
8673 {
8674 alc *= 2;
8675 secs = (asection **) xrealloc (secs,
8676 alc * sizeof (asection *));
8677 }
8678 secs[c] = os->bfd_section;
8679 ++c;
8680 pl->used = true;
8681 }
8682 }
8683 }
8684
8685 if (l->flags == NULL)
8686 flags = 0;
8687 else
8688 flags = exp_get_vma (l->flags, 0, "phdr flags");
8689
8690 if (l->at == NULL)
8691 at = 0;
8692 else
8693 at = exp_get_vma (l->at, 0, "phdr load address");
8694
8695 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8696 l->flags != NULL, flags, l->at != NULL,
8697 at, l->filehdr, l->phdrs, c, secs))
8698 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8699 }
8700
8701 free (secs);
8702
8703 /* Make sure all the phdr assignments succeeded. */
8704 for (os = (void *) lang_os_list.head;
8705 os != NULL;
8706 os = os->next)
8707 {
8708 lang_output_section_phdr_list *pl;
8709
8710 if (os->constraint < 0
8711 || os->bfd_section == NULL)
8712 continue;
8713
8714 for (pl = os->phdrs;
8715 pl != NULL;
8716 pl = pl->next)
8717 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8718 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8719 os->name, pl->name);
8720 }
8721 }
8722
8723 /* Record a list of sections which may not be cross referenced. */
8724
8725 void
8726 lang_add_nocrossref (lang_nocrossref_type *l)
8727 {
8728 struct lang_nocrossrefs *n;
8729
8730 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8731 n->next = nocrossref_list;
8732 n->list = l;
8733 n->onlyfirst = false;
8734 nocrossref_list = n;
8735
8736 /* Set notice_all so that we get informed about all symbols. */
8737 link_info.notice_all = true;
8738 }
8739
8740 /* Record a section that cannot be referenced from a list of sections. */
8741
8742 void
8743 lang_add_nocrossref_to (lang_nocrossref_type *l)
8744 {
8745 lang_add_nocrossref (l);
8746 nocrossref_list->onlyfirst = true;
8747 }
8748 \f
8749 /* Overlay handling. We handle overlays with some static variables. */
8750
8751 /* The overlay virtual address. */
8752 static etree_type *overlay_vma;
8753 /* And subsection alignment. */
8754 static etree_type *overlay_subalign;
8755
8756 /* An expression for the maximum section size seen so far. */
8757 static etree_type *overlay_max;
8758
8759 /* A list of all the sections in this overlay. */
8760
8761 struct overlay_list {
8762 struct overlay_list *next;
8763 lang_output_section_statement_type *os;
8764 };
8765
8766 static struct overlay_list *overlay_list;
8767
8768 /* Start handling an overlay. */
8769
8770 void
8771 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8772 {
8773 /* The grammar should prevent nested overlays from occurring. */
8774 ASSERT (overlay_vma == NULL
8775 && overlay_subalign == NULL
8776 && overlay_max == NULL);
8777
8778 overlay_vma = vma_expr;
8779 overlay_subalign = subalign;
8780 }
8781
8782 /* Start a section in an overlay. We handle this by calling
8783 lang_enter_output_section_statement with the correct VMA.
8784 lang_leave_overlay sets up the LMA and memory regions. */
8785
8786 void
8787 lang_enter_overlay_section (const char *name)
8788 {
8789 struct overlay_list *n;
8790 etree_type *size;
8791
8792 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8793 0, overlay_subalign, 0, 0, 0);
8794
8795 /* If this is the first section, then base the VMA of future
8796 sections on this one. This will work correctly even if `.' is
8797 used in the addresses. */
8798 if (overlay_list == NULL)
8799 overlay_vma = exp_nameop (ADDR, name);
8800
8801 /* Remember the section. */
8802 n = (struct overlay_list *) xmalloc (sizeof *n);
8803 n->os = current_section;
8804 n->next = overlay_list;
8805 overlay_list = n;
8806
8807 size = exp_nameop (SIZEOF, name);
8808
8809 /* Arrange to work out the maximum section end address. */
8810 if (overlay_max == NULL)
8811 overlay_max = size;
8812 else
8813 overlay_max = exp_binop (MAX_K, overlay_max, size);
8814 }
8815
8816 /* Finish a section in an overlay. There isn't any special to do
8817 here. */
8818
8819 void
8820 lang_leave_overlay_section (fill_type *fill,
8821 lang_output_section_phdr_list *phdrs)
8822 {
8823 const char *name;
8824 char *clean, *s2;
8825 const char *s1;
8826 char *buf;
8827
8828 name = current_section->name;
8829
8830 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8831 region and that no load-time region has been specified. It doesn't
8832 really matter what we say here, since lang_leave_overlay will
8833 override it. */
8834 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8835
8836 /* Define the magic symbols. */
8837
8838 clean = (char *) xmalloc (strlen (name) + 1);
8839 s2 = clean;
8840 for (s1 = name; *s1 != '\0'; s1++)
8841 if (ISALNUM (*s1) || *s1 == '_')
8842 *s2++ = *s1;
8843 *s2 = '\0';
8844
8845 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8846 sprintf (buf, "__load_start_%s", clean);
8847 lang_add_assignment (exp_provide (buf,
8848 exp_nameop (LOADADDR, name),
8849 false));
8850
8851 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8852 sprintf (buf, "__load_stop_%s", clean);
8853 lang_add_assignment (exp_provide (buf,
8854 exp_binop ('+',
8855 exp_nameop (LOADADDR, name),
8856 exp_nameop (SIZEOF, name)),
8857 false));
8858
8859 free (clean);
8860 }
8861
8862 /* Finish an overlay. If there are any overlay wide settings, this
8863 looks through all the sections in the overlay and sets them. */
8864
8865 void
8866 lang_leave_overlay (etree_type *lma_expr,
8867 int nocrossrefs,
8868 fill_type *fill,
8869 const char *memspec,
8870 lang_output_section_phdr_list *phdrs,
8871 const char *lma_memspec)
8872 {
8873 lang_memory_region_type *region;
8874 lang_memory_region_type *lma_region;
8875 struct overlay_list *l;
8876 lang_nocrossref_type *nocrossref;
8877
8878 lang_get_regions (&region, &lma_region,
8879 memspec, lma_memspec,
8880 lma_expr != NULL, false);
8881
8882 nocrossref = NULL;
8883
8884 /* After setting the size of the last section, set '.' to end of the
8885 overlay region. */
8886 if (overlay_list != NULL)
8887 {
8888 overlay_list->os->update_dot = 1;
8889 overlay_list->os->update_dot_tree
8890 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
8891 }
8892
8893 l = overlay_list;
8894 while (l != NULL)
8895 {
8896 struct overlay_list *next;
8897
8898 if (fill != NULL && l->os->fill == NULL)
8899 l->os->fill = fill;
8900
8901 l->os->region = region;
8902 l->os->lma_region = lma_region;
8903
8904 /* The first section has the load address specified in the
8905 OVERLAY statement. The rest are worked out from that.
8906 The base address is not needed (and should be null) if
8907 an LMA region was specified. */
8908 if (l->next == 0)
8909 {
8910 l->os->load_base = lma_expr;
8911 l->os->sectype = first_overlay_section;
8912 }
8913 if (phdrs != NULL && l->os->phdrs == NULL)
8914 l->os->phdrs = phdrs;
8915
8916 if (nocrossrefs)
8917 {
8918 lang_nocrossref_type *nc;
8919
8920 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8921 nc->name = l->os->name;
8922 nc->next = nocrossref;
8923 nocrossref = nc;
8924 }
8925
8926 next = l->next;
8927 free (l);
8928 l = next;
8929 }
8930
8931 if (nocrossref != NULL)
8932 lang_add_nocrossref (nocrossref);
8933
8934 overlay_vma = NULL;
8935 overlay_list = NULL;
8936 overlay_max = NULL;
8937 overlay_subalign = NULL;
8938 }
8939 \f
8940 /* Version handling. This is only useful for ELF. */
8941
8942 /* If PREV is NULL, return first version pattern matching particular symbol.
8943 If PREV is non-NULL, return first version pattern matching particular
8944 symbol after PREV (previously returned by lang_vers_match). */
8945
8946 static struct bfd_elf_version_expr *
8947 lang_vers_match (struct bfd_elf_version_expr_head *head,
8948 struct bfd_elf_version_expr *prev,
8949 const char *sym)
8950 {
8951 const char *c_sym;
8952 const char *cxx_sym = sym;
8953 const char *java_sym = sym;
8954 struct bfd_elf_version_expr *expr = NULL;
8955 enum demangling_styles curr_style;
8956
8957 curr_style = CURRENT_DEMANGLING_STYLE;
8958 cplus_demangle_set_style (no_demangling);
8959 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8960 if (!c_sym)
8961 c_sym = sym;
8962 cplus_demangle_set_style (curr_style);
8963
8964 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8965 {
8966 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8967 DMGL_PARAMS | DMGL_ANSI);
8968 if (!cxx_sym)
8969 cxx_sym = sym;
8970 }
8971 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8972 {
8973 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8974 if (!java_sym)
8975 java_sym = sym;
8976 }
8977
8978 if (head->htab && (prev == NULL || prev->literal))
8979 {
8980 struct bfd_elf_version_expr e;
8981
8982 switch (prev ? prev->mask : 0)
8983 {
8984 case 0:
8985 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8986 {
8987 e.pattern = c_sym;
8988 expr = (struct bfd_elf_version_expr *)
8989 htab_find ((htab_t) head->htab, &e);
8990 while (expr && strcmp (expr->pattern, c_sym) == 0)
8991 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8992 goto out_ret;
8993 else
8994 expr = expr->next;
8995 }
8996 /* Fallthrough */
8997 case BFD_ELF_VERSION_C_TYPE:
8998 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8999 {
9000 e.pattern = cxx_sym;
9001 expr = (struct bfd_elf_version_expr *)
9002 htab_find ((htab_t) head->htab, &e);
9003 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
9004 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9005 goto out_ret;
9006 else
9007 expr = expr->next;
9008 }
9009 /* Fallthrough */
9010 case BFD_ELF_VERSION_CXX_TYPE:
9011 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9012 {
9013 e.pattern = java_sym;
9014 expr = (struct bfd_elf_version_expr *)
9015 htab_find ((htab_t) head->htab, &e);
9016 while (expr && strcmp (expr->pattern, java_sym) == 0)
9017 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9018 goto out_ret;
9019 else
9020 expr = expr->next;
9021 }
9022 /* Fallthrough */
9023 default:
9024 break;
9025 }
9026 }
9027
9028 /* Finally, try the wildcards. */
9029 if (prev == NULL || prev->literal)
9030 expr = head->remaining;
9031 else
9032 expr = prev->next;
9033 for (; expr; expr = expr->next)
9034 {
9035 const char *s;
9036
9037 if (!expr->pattern)
9038 continue;
9039
9040 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9041 break;
9042
9043 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9044 s = java_sym;
9045 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9046 s = cxx_sym;
9047 else
9048 s = c_sym;
9049 if (fnmatch (expr->pattern, s, 0) == 0)
9050 break;
9051 }
9052
9053 out_ret:
9054 if (c_sym != sym)
9055 free ((char *) c_sym);
9056 if (cxx_sym != sym)
9057 free ((char *) cxx_sym);
9058 if (java_sym != sym)
9059 free ((char *) java_sym);
9060 return expr;
9061 }
9062
9063 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9064 return a pointer to the symbol name with any backslash quotes removed. */
9065
9066 static const char *
9067 realsymbol (const char *pattern)
9068 {
9069 const char *p;
9070 bool changed = false, backslash = false;
9071 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9072
9073 for (p = pattern, s = symbol; *p != '\0'; ++p)
9074 {
9075 /* It is a glob pattern only if there is no preceding
9076 backslash. */
9077 if (backslash)
9078 {
9079 /* Remove the preceding backslash. */
9080 *(s - 1) = *p;
9081 backslash = false;
9082 changed = true;
9083 }
9084 else
9085 {
9086 if (*p == '?' || *p == '*' || *p == '[')
9087 {
9088 free (symbol);
9089 return NULL;
9090 }
9091
9092 *s++ = *p;
9093 backslash = *p == '\\';
9094 }
9095 }
9096
9097 if (changed)
9098 {
9099 *s = '\0';
9100 return symbol;
9101 }
9102 else
9103 {
9104 free (symbol);
9105 return pattern;
9106 }
9107 }
9108
9109 /* This is called for each variable name or match expression. NEW_NAME is
9110 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9111 pattern to be matched against symbol names. */
9112
9113 struct bfd_elf_version_expr *
9114 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9115 const char *new_name,
9116 const char *lang,
9117 bool literal_p)
9118 {
9119 struct bfd_elf_version_expr *ret;
9120
9121 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9122 ret->next = orig;
9123 ret->symver = 0;
9124 ret->script = 0;
9125 ret->literal = true;
9126 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9127 if (ret->pattern == NULL)
9128 {
9129 ret->pattern = new_name;
9130 ret->literal = false;
9131 }
9132
9133 if (lang == NULL || strcasecmp (lang, "C") == 0)
9134 ret->mask = BFD_ELF_VERSION_C_TYPE;
9135 else if (strcasecmp (lang, "C++") == 0)
9136 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9137 else if (strcasecmp (lang, "Java") == 0)
9138 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9139 else
9140 {
9141 einfo (_("%X%P: unknown language `%s' in version information\n"),
9142 lang);
9143 ret->mask = BFD_ELF_VERSION_C_TYPE;
9144 }
9145
9146 return ldemul_new_vers_pattern (ret);
9147 }
9148
9149 /* This is called for each set of variable names and match
9150 expressions. */
9151
9152 struct bfd_elf_version_tree *
9153 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9154 struct bfd_elf_version_expr *locals)
9155 {
9156 struct bfd_elf_version_tree *ret;
9157
9158 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9159 ret->globals.list = globals;
9160 ret->locals.list = locals;
9161 ret->match = lang_vers_match;
9162 ret->name_indx = (unsigned int) -1;
9163 return ret;
9164 }
9165
9166 /* This static variable keeps track of version indices. */
9167
9168 static int version_index;
9169
9170 static hashval_t
9171 version_expr_head_hash (const void *p)
9172 {
9173 const struct bfd_elf_version_expr *e =
9174 (const struct bfd_elf_version_expr *) p;
9175
9176 return htab_hash_string (e->pattern);
9177 }
9178
9179 static int
9180 version_expr_head_eq (const void *p1, const void *p2)
9181 {
9182 const struct bfd_elf_version_expr *e1 =
9183 (const struct bfd_elf_version_expr *) p1;
9184 const struct bfd_elf_version_expr *e2 =
9185 (const struct bfd_elf_version_expr *) p2;
9186
9187 return strcmp (e1->pattern, e2->pattern) == 0;
9188 }
9189
9190 static void
9191 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9192 {
9193 size_t count = 0;
9194 struct bfd_elf_version_expr *e, *next;
9195 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9196
9197 for (e = head->list; e; e = e->next)
9198 {
9199 if (e->literal)
9200 count++;
9201 head->mask |= e->mask;
9202 }
9203
9204 if (count)
9205 {
9206 head->htab = htab_create (count * 2, version_expr_head_hash,
9207 version_expr_head_eq, NULL);
9208 list_loc = &head->list;
9209 remaining_loc = &head->remaining;
9210 for (e = head->list; e; e = next)
9211 {
9212 next = e->next;
9213 if (!e->literal)
9214 {
9215 *remaining_loc = e;
9216 remaining_loc = &e->next;
9217 }
9218 else
9219 {
9220 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9221
9222 if (*loc)
9223 {
9224 struct bfd_elf_version_expr *e1, *last;
9225
9226 e1 = (struct bfd_elf_version_expr *) *loc;
9227 last = NULL;
9228 do
9229 {
9230 if (e1->mask == e->mask)
9231 {
9232 last = NULL;
9233 break;
9234 }
9235 last = e1;
9236 e1 = e1->next;
9237 }
9238 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9239
9240 if (last == NULL)
9241 {
9242 /* This is a duplicate. */
9243 /* FIXME: Memory leak. Sometimes pattern is not
9244 xmalloced alone, but in larger chunk of memory. */
9245 /* free (e->pattern); */
9246 free (e);
9247 }
9248 else
9249 {
9250 e->next = last->next;
9251 last->next = e;
9252 }
9253 }
9254 else
9255 {
9256 *loc = e;
9257 *list_loc = e;
9258 list_loc = &e->next;
9259 }
9260 }
9261 }
9262 *remaining_loc = NULL;
9263 *list_loc = head->remaining;
9264 }
9265 else
9266 head->remaining = head->list;
9267 }
9268
9269 /* This is called when we know the name and dependencies of the
9270 version. */
9271
9272 void
9273 lang_register_vers_node (const char *name,
9274 struct bfd_elf_version_tree *version,
9275 struct bfd_elf_version_deps *deps)
9276 {
9277 struct bfd_elf_version_tree *t, **pp;
9278 struct bfd_elf_version_expr *e1;
9279
9280 if (name == NULL)
9281 name = "";
9282
9283 if (link_info.version_info != NULL
9284 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9285 {
9286 einfo (_("%X%P: anonymous version tag cannot be combined"
9287 " with other version tags\n"));
9288 free (version);
9289 return;
9290 }
9291
9292 /* Make sure this node has a unique name. */
9293 for (t = link_info.version_info; t != NULL; t = t->next)
9294 if (strcmp (t->name, name) == 0)
9295 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9296
9297 lang_finalize_version_expr_head (&version->globals);
9298 lang_finalize_version_expr_head (&version->locals);
9299
9300 /* Check the global and local match names, and make sure there
9301 aren't any duplicates. */
9302
9303 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9304 {
9305 for (t = link_info.version_info; t != NULL; t = t->next)
9306 {
9307 struct bfd_elf_version_expr *e2;
9308
9309 if (t->locals.htab && e1->literal)
9310 {
9311 e2 = (struct bfd_elf_version_expr *)
9312 htab_find ((htab_t) t->locals.htab, e1);
9313 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9314 {
9315 if (e1->mask == e2->mask)
9316 einfo (_("%X%P: duplicate expression `%s'"
9317 " in version information\n"), e1->pattern);
9318 e2 = e2->next;
9319 }
9320 }
9321 else if (!e1->literal)
9322 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9323 if (strcmp (e1->pattern, e2->pattern) == 0
9324 && e1->mask == e2->mask)
9325 einfo (_("%X%P: duplicate expression `%s'"
9326 " in version information\n"), e1->pattern);
9327 }
9328 }
9329
9330 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9331 {
9332 for (t = link_info.version_info; t != NULL; t = t->next)
9333 {
9334 struct bfd_elf_version_expr *e2;
9335
9336 if (t->globals.htab && e1->literal)
9337 {
9338 e2 = (struct bfd_elf_version_expr *)
9339 htab_find ((htab_t) t->globals.htab, e1);
9340 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9341 {
9342 if (e1->mask == e2->mask)
9343 einfo (_("%X%P: duplicate expression `%s'"
9344 " in version information\n"),
9345 e1->pattern);
9346 e2 = e2->next;
9347 }
9348 }
9349 else if (!e1->literal)
9350 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9351 if (strcmp (e1->pattern, e2->pattern) == 0
9352 && e1->mask == e2->mask)
9353 einfo (_("%X%P: duplicate expression `%s'"
9354 " in version information\n"), e1->pattern);
9355 }
9356 }
9357
9358 version->deps = deps;
9359 version->name = name;
9360 if (name[0] != '\0')
9361 {
9362 ++version_index;
9363 version->vernum = version_index;
9364 }
9365 else
9366 version->vernum = 0;
9367
9368 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9369 ;
9370 *pp = version;
9371 }
9372
9373 /* This is called when we see a version dependency. */
9374
9375 struct bfd_elf_version_deps *
9376 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9377 {
9378 struct bfd_elf_version_deps *ret;
9379 struct bfd_elf_version_tree *t;
9380
9381 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9382 ret->next = list;
9383
9384 for (t = link_info.version_info; t != NULL; t = t->next)
9385 {
9386 if (strcmp (t->name, name) == 0)
9387 {
9388 ret->version_needed = t;
9389 return ret;
9390 }
9391 }
9392
9393 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9394
9395 ret->version_needed = NULL;
9396 return ret;
9397 }
9398
9399 static void
9400 lang_do_version_exports_section (void)
9401 {
9402 struct bfd_elf_version_expr *greg = NULL, *lreg;
9403
9404 LANG_FOR_EACH_INPUT_STATEMENT (is)
9405 {
9406 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9407 char *contents, *p;
9408 bfd_size_type len;
9409
9410 if (sec == NULL)
9411 continue;
9412
9413 len = sec->size;
9414 contents = (char *) xmalloc (len);
9415 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9416 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9417
9418 p = contents;
9419 while (p < contents + len)
9420 {
9421 greg = lang_new_vers_pattern (greg, p, NULL, false);
9422 p = strchr (p, '\0') + 1;
9423 }
9424
9425 /* Do not free the contents, as we used them creating the regex. */
9426
9427 /* Do not include this section in the link. */
9428 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9429 }
9430
9431 lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
9432 lang_register_vers_node (command_line.version_exports_section,
9433 lang_new_vers_node (greg, lreg), NULL);
9434 }
9435
9436 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9437 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9438 thrown, however, references to symbols in the origin and length fields
9439 will be pushed into the symbol table, this allows PROVIDE statements to
9440 then provide these symbols. This function is called a second time with
9441 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9442 data structures, and throw errors if missing symbols are encountered. */
9443
9444 static void
9445 lang_do_memory_regions (bool update_regions_p)
9446 {
9447 lang_memory_region_type *r = lang_memory_region_list;
9448
9449 for (; r != NULL; r = r->next)
9450 {
9451 if (r->origin_exp)
9452 {
9453 exp_fold_tree_no_dot (r->origin_exp);
9454 if (update_regions_p)
9455 {
9456 if (expld.result.valid_p)
9457 {
9458 r->origin = expld.result.value;
9459 r->current = r->origin;
9460 }
9461 else
9462 einfo (_("%P: invalid origin for memory region %s\n"),
9463 r->name_list.name);
9464 }
9465 }
9466 if (r->length_exp)
9467 {
9468 exp_fold_tree_no_dot (r->length_exp);
9469 if (update_regions_p)
9470 {
9471 if (expld.result.valid_p)
9472 r->length = expld.result.value;
9473 else
9474 einfo (_("%P: invalid length for memory region %s\n"),
9475 r->name_list.name);
9476 }
9477 }
9478 }
9479 }
9480
9481 void
9482 lang_add_unique (const char *name)
9483 {
9484 struct unique_sections *ent;
9485
9486 for (ent = unique_section_list; ent; ent = ent->next)
9487 if (strcmp (ent->name, name) == 0)
9488 return;
9489
9490 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9491 ent->name = xstrdup (name);
9492 ent->next = unique_section_list;
9493 unique_section_list = ent;
9494 }
9495
9496 /* Append the list of dynamic symbols to the existing one. */
9497
9498 void
9499 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9500 struct bfd_elf_version_expr *dynamic)
9501 {
9502 if (*list_p)
9503 {
9504 struct bfd_elf_version_expr *tail;
9505 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9506 ;
9507 tail->next = (*list_p)->head.list;
9508 (*list_p)->head.list = dynamic;
9509 }
9510 else
9511 {
9512 struct bfd_elf_dynamic_list *d;
9513
9514 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9515 d->head.list = dynamic;
9516 d->match = lang_vers_match;
9517 *list_p = d;
9518 }
9519 }
9520
9521 /* Append the list of C++ typeinfo dynamic symbols to the existing
9522 one. */
9523
9524 void
9525 lang_append_dynamic_list_cpp_typeinfo (void)
9526 {
9527 const char *symbols[] =
9528 {
9529 "typeinfo name for*",
9530 "typeinfo for*"
9531 };
9532 struct bfd_elf_version_expr *dynamic = NULL;
9533 unsigned int i;
9534
9535 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9536 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9537 false);
9538
9539 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9540 }
9541
9542 /* Append the list of C++ operator new and delete dynamic symbols to the
9543 existing one. */
9544
9545 void
9546 lang_append_dynamic_list_cpp_new (void)
9547 {
9548 const char *symbols[] =
9549 {
9550 "operator new*",
9551 "operator delete*"
9552 };
9553 struct bfd_elf_version_expr *dynamic = NULL;
9554 unsigned int i;
9555
9556 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9557 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9558 false);
9559
9560 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9561 }
9562
9563 /* Scan a space and/or comma separated string of features. */
9564
9565 void
9566 lang_ld_feature (char *str)
9567 {
9568 char *p, *q;
9569
9570 p = str;
9571 while (*p)
9572 {
9573 char sep;
9574 while (*p == ',' || ISSPACE (*p))
9575 ++p;
9576 if (!*p)
9577 break;
9578 q = p + 1;
9579 while (*q && *q != ',' && !ISSPACE (*q))
9580 ++q;
9581 sep = *q;
9582 *q = 0;
9583 if (strcasecmp (p, "SANE_EXPR") == 0)
9584 config.sane_expr = true;
9585 else
9586 einfo (_("%X%P: unknown feature `%s'\n"), p);
9587 *q = sep;
9588 p = q;
9589 }
9590 }
9591
9592 /* Pretty print memory amount. */
9593
9594 static void
9595 lang_print_memory_size (bfd_vma sz)
9596 {
9597 if ((sz & 0x3fffffff) == 0)
9598 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9599 else if ((sz & 0xfffff) == 0)
9600 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9601 else if ((sz & 0x3ff) == 0)
9602 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9603 else
9604 printf (" %10" BFD_VMA_FMT "u B", sz);
9605 }
9606
9607 /* Implement --print-memory-usage: disply per region memory usage. */
9608
9609 void
9610 lang_print_memory_usage (void)
9611 {
9612 lang_memory_region_type *r;
9613
9614 printf ("Memory region Used Size Region Size %%age Used\n");
9615 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9616 {
9617 bfd_vma used_length = r->current - r->origin;
9618
9619 printf ("%16s: ",r->name_list.name);
9620 lang_print_memory_size (used_length);
9621 lang_print_memory_size ((bfd_vma) r->length);
9622
9623 if (r->length != 0)
9624 {
9625 double percent = used_length * 100.0 / r->length;
9626 printf (" %6.2f%%", percent);
9627 }
9628 printf ("\n");
9629 }
9630 }