]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - libctf/ctf-hash.c
62f3dde346526b2e25acb32086e87627ffb01b36
[thirdparty/binutils-gdb.git] / libctf / ctf-hash.c
1 /* Interface to hashtable implementations.
2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include "libiberty.h"
23 #include "hashtab.h"
24
25 /* We have three hashtable implementations:
26
27 - ctf_hash_* is an interface to a fixed-size hash from const char * ->
28 ctf_id_t with number of elements specified at creation time, that should
29 support addition of items but need not support removal.
30
31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with
32 unknown size that should support addition of large numbers of items, and
33 removal as well, and is used only at type-insertion time and during
34 linking.
35
36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
37 only keys: no values.
38
39 These can be implemented by the same underlying hashmap if you wish. */
40
41 /* The helem is used for general key/value mappings in both the ctf_hash and
42 ctf_dynhash: the owner may not have space allocated for it, and will be
43 garbage (not NULL!) in that case. */
44
45 typedef struct ctf_helem
46 {
47 void *key; /* Either a pointer, or a coerced ctf_id_t. */
48 void *value; /* The value (possibly a coerced int). */
49 ctf_dynhash_t *owner; /* The hash that owns us. */
50 } ctf_helem_t;
51
52 /* Equally, the key_free and value_free may not exist. */
53
54 struct ctf_dynhash
55 {
56 struct htab *htab;
57 ctf_hash_free_fun key_free;
58 ctf_hash_free_fun value_free;
59 };
60
61 /* Hash and eq functions for the dynhash and hash. */
62
63 unsigned int
64 ctf_hash_integer (const void *ptr)
65 {
66 ctf_helem_t *hep = (ctf_helem_t *) ptr;
67
68 return htab_hash_pointer (hep->key);
69 }
70
71 int
72 ctf_hash_eq_integer (const void *a, const void *b)
73 {
74 ctf_helem_t *hep_a = (ctf_helem_t *) a;
75 ctf_helem_t *hep_b = (ctf_helem_t *) b;
76
77 return htab_eq_pointer (hep_a->key, hep_b->key);
78 }
79
80 unsigned int
81 ctf_hash_string (const void *ptr)
82 {
83 ctf_helem_t *hep = (ctf_helem_t *) ptr;
84
85 return htab_hash_string (hep->key);
86 }
87
88 int
89 ctf_hash_eq_string (const void *a, const void *b)
90 {
91 ctf_helem_t *hep_a = (ctf_helem_t *) a;
92 ctf_helem_t *hep_b = (ctf_helem_t *) b;
93
94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
95 }
96
97 /* Hash a type_key. */
98 unsigned int
99 ctf_hash_type_key (const void *ptr)
100 {
101 ctf_helem_t *hep = (ctf_helem_t *) ptr;
102 ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
103
104 return htab_hash_pointer (k->cltk_fp) + 59
105 * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
106 }
107
108 int
109 ctf_hash_eq_type_key (const void *a, const void *b)
110 {
111 ctf_helem_t *hep_a = (ctf_helem_t *) a;
112 ctf_helem_t *hep_b = (ctf_helem_t *) b;
113 ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
114 ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
115
116 return (key_a->cltk_fp == key_b->cltk_fp)
117 && (key_a->cltk_idx == key_b->cltk_idx);
118 }
119
120 /* Hash a type_id_key. */
121 unsigned int
122 ctf_hash_type_id_key (const void *ptr)
123 {
124 ctf_helem_t *hep = (ctf_helem_t *) ptr;
125 ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
126
127 return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
129 }
130
131 int
132 ctf_hash_eq_type_id_key (const void *a, const void *b)
133 {
134 ctf_helem_t *hep_a = (ctf_helem_t *) a;
135 ctf_helem_t *hep_b = (ctf_helem_t *) b;
136 ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
137 ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
138
139 return (key_a->ctii_input_num == key_b->ctii_input_num)
140 && (key_a->ctii_type == key_b->ctii_type);
141 }
142
143 /* Hash and eq functions for the dynset. Most of these can just use the
144 underlying hashtab functions directly. */
145
146 int
147 ctf_dynset_eq_string (const void *a, const void *b)
148 {
149 return !strcmp((const char *) a, (const char *) b);
150 }
151
152 /* The dynhash, used for hashes whose size is not known at creation time. */
153
154 /* Free a single ctf_helem with arbitrary key/value functions. */
155
156 static void
157 ctf_dynhash_item_free (void *item)
158 {
159 ctf_helem_t *helem = item;
160
161 if (helem->owner->key_free && helem->key)
162 helem->owner->key_free (helem->key);
163 if (helem->owner->value_free && helem->value)
164 helem->owner->value_free (helem->value);
165 free (helem);
166 }
167
168 ctf_dynhash_t *
169 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
170 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
171 {
172 ctf_dynhash_t *dynhash;
173 htab_del del = ctf_dynhash_item_free;
174
175 if (key_free || value_free)
176 dynhash = malloc (sizeof (ctf_dynhash_t));
177 else
178 dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
179 if (!dynhash)
180 return NULL;
181
182 if (key_free == NULL && value_free == NULL)
183 del = free;
184
185 /* 7 is arbitrary and untested for now. */
186 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
187 del, xcalloc, free)) == NULL)
188 {
189 free (dynhash);
190 return NULL;
191 }
192
193 if (key_free || value_free)
194 {
195 dynhash->key_free = key_free;
196 dynhash->value_free = value_free;
197 }
198
199 return dynhash;
200 }
201
202 static ctf_helem_t **
203 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
204 {
205 ctf_helem_t tmp = { .key = (void *) key };
206 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
207 }
208
209 static ctf_helem_t *
210 ctf_hashtab_insert (struct htab *htab, void *key, void *value,
211 ctf_hash_free_fun key_free,
212 ctf_hash_free_fun value_free)
213 {
214 ctf_helem_t **slot;
215
216 slot = ctf_hashtab_lookup (htab, key, INSERT);
217
218 if (!slot)
219 {
220 errno = ENOMEM;
221 return NULL;
222 }
223
224 if (!*slot)
225 {
226 /* Only spend space on the owner if we're going to use it: if there is a
227 key or value freeing function. */
228 if (key_free || value_free)
229 *slot = malloc (sizeof (ctf_helem_t));
230 else
231 *slot = malloc (offsetof (ctf_helem_t, owner));
232 if (!*slot)
233 return NULL;
234 (*slot)->key = key;
235 }
236 else
237 {
238 if (key_free)
239 key_free (key);
240 if (value_free)
241 value_free ((*slot)->value);
242 }
243 (*slot)->value = value;
244 return *slot;
245 }
246
247 int
248 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
249 {
250 ctf_helem_t *slot;
251 ctf_hash_free_fun key_free = NULL, value_free = NULL;
252
253 if (hp->htab->del_f == ctf_dynhash_item_free)
254 {
255 key_free = hp->key_free;
256 value_free = hp->value_free;
257 }
258 slot = ctf_hashtab_insert (hp->htab, key, value,
259 key_free, value_free);
260
261 if (!slot)
262 return errno;
263
264 /* Keep track of the owner, so that the del function can get at the key_free
265 and value_free functions. Only do this if one of those functions is set:
266 if not, the owner is not even present in the helem. */
267
268 if (key_free || value_free)
269 slot->owner = hp;
270
271 return 0;
272 }
273
274 void
275 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
276 {
277 ctf_helem_t hep = { (void *) key, NULL, NULL };
278 htab_remove_elt (hp->htab, &hep);
279 }
280
281 void
282 ctf_dynhash_empty (ctf_dynhash_t *hp)
283 {
284 htab_empty (hp->htab);
285 }
286
287 size_t
288 ctf_dynhash_elements (ctf_dynhash_t *hp)
289 {
290 return htab_elements (hp->htab);
291 }
292
293 void *
294 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
295 {
296 ctf_helem_t **slot;
297
298 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
299
300 if (slot)
301 return (*slot)->value;
302
303 return NULL;
304 }
305
306 /* TRUE/FALSE return. */
307 int
308 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
309 const void **orig_key, void **value)
310 {
311 ctf_helem_t **slot;
312
313 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
314
315 if (slot)
316 {
317 if (orig_key)
318 *orig_key = (*slot)->key;
319 if (value)
320 *value = (*slot)->value;
321 return 1;
322 }
323 return 0;
324 }
325
326 typedef struct ctf_traverse_cb_arg
327 {
328 ctf_hash_iter_f fun;
329 void *arg;
330 } ctf_traverse_cb_arg_t;
331
332 static int
333 ctf_hashtab_traverse (void **slot, void *arg_)
334 {
335 ctf_helem_t *helem = *((ctf_helem_t **) slot);
336 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
337
338 arg->fun (helem->key, helem->value, arg->arg);
339 return 1;
340 }
341
342 void
343 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
344 {
345 ctf_traverse_cb_arg_t arg = { fun, arg_ };
346 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
347 }
348
349 typedef struct ctf_traverse_find_cb_arg
350 {
351 ctf_hash_iter_find_f fun;
352 void *arg;
353 void *found_key;
354 } ctf_traverse_find_cb_arg_t;
355
356 static int
357 ctf_hashtab_traverse_find (void **slot, void *arg_)
358 {
359 ctf_helem_t *helem = *((ctf_helem_t **) slot);
360 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
361
362 if (arg->fun (helem->key, helem->value, arg->arg))
363 {
364 arg->found_key = helem->key;
365 return 0;
366 }
367 return 1;
368 }
369
370 void *
371 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
372 {
373 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
374 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
375 return arg.found_key;
376 }
377
378 typedef struct ctf_traverse_remove_cb_arg
379 {
380 struct htab *htab;
381 ctf_hash_iter_remove_f fun;
382 void *arg;
383 } ctf_traverse_remove_cb_arg_t;
384
385 static int
386 ctf_hashtab_traverse_remove (void **slot, void *arg_)
387 {
388 ctf_helem_t *helem = *((ctf_helem_t **) slot);
389 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
390
391 if (arg->fun (helem->key, helem->value, arg->arg))
392 htab_clear_slot (arg->htab, slot);
393 return 1;
394 }
395
396 void
397 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
398 void *arg_)
399 {
400 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
401 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
402 }
403
404 /* Traverse a dynhash in arbitrary order, in _next iterator form.
405
406 Mutating the dynhash while iterating is not supported (just as it isn't for
407 htab_traverse).
408
409 Note: unusually, this returns zero on success and a *positive* value on
410 error, because it does not take an fp, taking an error pointer would be
411 incredibly clunky, and nearly all error-handling ends up stuffing the result
412 of this into some sort of errno or ctf_errno, which is invariably
413 positive. So doing this simplifies essentially all callers. */
414 int
415 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
416 {
417 ctf_next_t *i = *it;
418 ctf_helem_t *slot;
419
420 if (!i)
421 {
422 size_t size = htab_size (h->htab);
423
424 /* If the table has too many entries to fit in an ssize_t, just give up.
425 This might be spurious, but if any type-related hashtable has ever been
426 nearly as large as that then something very odd is going on. */
427 if (((ssize_t) size) < 0)
428 return EDOM;
429
430 if ((i = ctf_next_create ()) == NULL)
431 return ENOMEM;
432
433 i->u.ctn_hash_slot = h->htab->entries;
434 i->cu.ctn_h = h;
435 i->ctn_n = 0;
436 i->ctn_size = (ssize_t) size;
437 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
438 *it = i;
439 }
440
441 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
442 return ECTF_NEXT_WRONGFUN;
443
444 if (h != i->cu.ctn_h)
445 return ECTF_NEXT_WRONGFP;
446
447 if ((ssize_t) i->ctn_n == i->ctn_size)
448 goto hash_end;
449
450 while ((ssize_t) i->ctn_n < i->ctn_size
451 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
452 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
453 {
454 i->u.ctn_hash_slot++;
455 i->ctn_n++;
456 }
457
458 if ((ssize_t) i->ctn_n == i->ctn_size)
459 goto hash_end;
460
461 slot = *i->u.ctn_hash_slot;
462
463 if (key)
464 *key = slot->key;
465 if (value)
466 *value = slot->value;
467
468 i->u.ctn_hash_slot++;
469 i->ctn_n++;
470
471 return 0;
472
473 hash_end:
474 ctf_next_destroy (i);
475 *it = NULL;
476 return ECTF_NEXT_END;
477 }
478
479 int
480 ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
481 void *unused _libctf_unused_)
482 {
483 return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
484 }
485
486 /* Traverse a sorted dynhash, in _next iterator form.
487
488 See ctf_dynhash_next for notes on error returns, etc.
489
490 Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
491
492 If SORT_FUN is null, thunks to ctf_dynhash_next. */
493 int
494 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
495 void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
496 {
497 ctf_next_t *i = *it;
498
499 if (sort_fun == NULL)
500 return ctf_dynhash_next (h, it, key, value);
501
502 if (!i)
503 {
504 size_t els = ctf_dynhash_elements (h);
505 ctf_next_t *accum_i = NULL;
506 void *key, *value;
507 int err;
508 ctf_next_hkv_t *walk;
509
510 if (((ssize_t) els) < 0)
511 return EDOM;
512
513 if ((i = ctf_next_create ()) == NULL)
514 return ENOMEM;
515
516 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
517 {
518 ctf_next_destroy (i);
519 return ENOMEM;
520 }
521 walk = i->u.ctn_sorted_hkv;
522
523 i->cu.ctn_h = h;
524
525 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
526 {
527 walk->hkv_key = key;
528 walk->hkv_value = value;
529 walk++;
530 }
531 if (err != ECTF_NEXT_END)
532 {
533 ctf_next_destroy (i);
534 return err;
535 }
536
537 if (sort_fun)
538 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
539 (int (*) (const void *, const void *, void *)) sort_fun,
540 sort_arg);
541 i->ctn_n = 0;
542 i->ctn_size = (ssize_t) els;
543 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
544 *it = i;
545 }
546
547 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
548 return ECTF_NEXT_WRONGFUN;
549
550 if (h != i->cu.ctn_h)
551 return ECTF_NEXT_WRONGFP;
552
553 if ((ssize_t) i->ctn_n == i->ctn_size)
554 {
555 ctf_next_destroy (i);
556 *it = NULL;
557 return ECTF_NEXT_END;
558 }
559
560 if (key)
561 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
562 if (value)
563 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
564 i->ctn_n++;
565 return 0;
566 }
567
568 void
569 ctf_dynhash_destroy (ctf_dynhash_t *hp)
570 {
571 if (hp != NULL)
572 htab_delete (hp->htab);
573 free (hp);
574 }
575
576 /* The dynset, used for sets of keys with no value. The implementation of this
577 can be much simpler, because without a value the slot can simply be the
578 stored key, which means we don't need to store the freeing functions and the
579 dynset itself is just a htab. */
580
581 ctf_dynset_t *
582 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
583 ctf_hash_free_fun key_free)
584 {
585 /* 7 is arbitrary and untested for now. */
586 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
587 key_free, xcalloc, free);
588 }
589
590 /* The dynset has one complexity: the underlying implementation reserves two
591 values for internal hash table implementation details (empty versus deleted
592 entries). These values are otherwise very useful for pointers cast to ints,
593 so transform the ctf_dynset_inserted value to allow for it. (This
594 introduces an ambiguity in that one can no longer store these two values in
595 the dynset, but if we pick high enough values this is very unlikely to be a
596 problem.)
597
598 We leak this implementation detail to the freeing functions on the grounds
599 that any use of these functions is overwhelmingly likely to be in sets using
600 real pointers, which will be unaffected. */
601
602 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
603 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
604
605 static void *
606 key_to_internal (const void *key)
607 {
608 if (key == HTAB_EMPTY_ENTRY)
609 return DYNSET_EMPTY_ENTRY_REPLACEMENT;
610 else if (key == HTAB_DELETED_ENTRY)
611 return DYNSET_DELETED_ENTRY_REPLACEMENT;
612
613 return (void *) key;
614 }
615
616 static void *
617 internal_to_key (const void *internal)
618 {
619 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
620 return HTAB_EMPTY_ENTRY;
621 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
622 return HTAB_DELETED_ENTRY;
623 return (void *) internal;
624 }
625
626 int
627 ctf_dynset_insert (ctf_dynset_t *hp, void *key)
628 {
629 struct htab *htab = (struct htab *) hp;
630 void **slot;
631
632 slot = htab_find_slot (htab, key, INSERT);
633
634 if (!slot)
635 {
636 errno = ENOMEM;
637 return -errno;
638 }
639
640 if (*slot)
641 {
642 if (htab->del_f)
643 (*htab->del_f) (*slot);
644 }
645
646 *slot = key_to_internal (key);
647
648 return 0;
649 }
650
651 void
652 ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
653 {
654 htab_remove_elt ((struct htab *) hp, key_to_internal (key));
655 }
656
657 void
658 ctf_dynset_destroy (ctf_dynset_t *hp)
659 {
660 if (hp != NULL)
661 htab_delete ((struct htab *) hp);
662 }
663
664 void *
665 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
666 {
667 void **slot = htab_find_slot ((struct htab *) hp,
668 key_to_internal (key), NO_INSERT);
669
670 if (slot)
671 return internal_to_key (*slot);
672 return NULL;
673 }
674
675 /* TRUE/FALSE return. */
676 int
677 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
678 {
679 void **slot = htab_find_slot ((struct htab *) hp,
680 key_to_internal (key), NO_INSERT);
681
682 if (orig_key && slot)
683 *orig_key = internal_to_key (*slot);
684 return (slot != NULL);
685 }
686
687 /* Look up a completely random value from the set, if any exist.
688 Keys with value zero cannot be distinguished from a nonexistent key. */
689 void *
690 ctf_dynset_lookup_any (ctf_dynset_t *hp)
691 {
692 struct htab *htab = (struct htab *) hp;
693 void **slot = htab->entries;
694 void **limit = slot + htab_size (htab);
695
696 while (slot < limit
697 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
698 slot++;
699
700 if (slot < limit)
701 return internal_to_key (*slot);
702 return NULL;
703 }
704
705 /* Traverse a dynset in arbitrary order, in _next iterator form.
706
707 Otherwise, just like ctf_dynhash_next. */
708 int
709 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
710 {
711 struct htab *htab = (struct htab *) hp;
712 ctf_next_t *i = *it;
713 void *slot;
714
715 if (!i)
716 {
717 size_t size = htab_size (htab);
718
719 /* If the table has too many entries to fit in an ssize_t, just give up.
720 This might be spurious, but if any type-related hashtable has ever been
721 nearly as large as that then somthing very odd is going on. */
722
723 if (((ssize_t) size) < 0)
724 return EDOM;
725
726 if ((i = ctf_next_create ()) == NULL)
727 return ENOMEM;
728
729 i->u.ctn_hash_slot = htab->entries;
730 i->cu.ctn_s = hp;
731 i->ctn_n = 0;
732 i->ctn_size = (ssize_t) size;
733 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
734 *it = i;
735 }
736
737 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
738 return ECTF_NEXT_WRONGFUN;
739
740 if (hp != i->cu.ctn_s)
741 return ECTF_NEXT_WRONGFP;
742
743 if ((ssize_t) i->ctn_n == i->ctn_size)
744 goto set_end;
745
746 while ((ssize_t) i->ctn_n < i->ctn_size
747 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
748 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
749 {
750 i->u.ctn_hash_slot++;
751 i->ctn_n++;
752 }
753
754 if ((ssize_t) i->ctn_n == i->ctn_size)
755 goto set_end;
756
757 slot = *i->u.ctn_hash_slot;
758
759 if (key)
760 *key = internal_to_key (slot);
761
762 i->u.ctn_hash_slot++;
763 i->ctn_n++;
764
765 return 0;
766
767 set_end:
768 ctf_next_destroy (i);
769 *it = NULL;
770 return ECTF_NEXT_END;
771 }
772
773 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
774 removal. This is a straight cast of a hashtab. */
775
776 ctf_hash_t *
777 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
778 ctf_hash_eq_fun eq_fun)
779 {
780 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
781 eq_fun, free, xcalloc, free);
782 }
783
784 uint32_t
785 ctf_hash_size (const ctf_hash_t *hp)
786 {
787 return htab_elements ((struct htab *) hp);
788 }
789
790 int
791 ctf_hash_insert_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
792 uint32_t name)
793 {
794 const char *str = ctf_strraw (fp, name);
795
796 if (type == 0)
797 return EINVAL;
798
799 if (str == NULL
800 && CTF_NAME_STID (name) == CTF_STRTAB_1
801 && fp->ctf_syn_ext_strtab == NULL
802 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
803 return ECTF_STRTAB;
804
805 if (str == NULL)
806 return ECTF_BADNAME;
807
808 if (str[0] == '\0')
809 return 0; /* Just ignore empty strings on behalf of caller. */
810
811 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
812 (void *) (ptrdiff_t) type, NULL, NULL) != NULL)
813 return 0;
814 return errno;
815 }
816
817 /* if the key is already in the hash, override the previous definition with
818 this new official definition. If the key is not present, then call
819 ctf_hash_insert_type and hash it in. */
820 int
821 ctf_hash_define_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
822 uint32_t name)
823 {
824 /* This matches the semantics of ctf_hash_insert_type in this
825 implementation anyway. */
826
827 return ctf_hash_insert_type (hp, fp, type, name);
828 }
829
830 ctf_id_t
831 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_dict_t *fp __attribute__ ((__unused__)),
832 const char *key)
833 {
834 ctf_helem_t **slot;
835
836 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
837
838 if (slot)
839 return (ctf_id_t) (uintptr_t) ((*slot)->value);
840
841 return 0;
842 }
843
844 void
845 ctf_hash_destroy (ctf_hash_t *hp)
846 {
847 if (hp != NULL)
848 htab_delete ((struct htab *) hp);
849 }