]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - libctf/ctf-hash.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / libctf / ctf-hash.c
1 /* Interface to hashtable implementations.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include "libiberty.h"
23 #include "hashtab.h"
24
25 /* We have three hashtable implementations:
26
27 - ctf_hash_* is an interface to a fixed-size hash from const char * ->
28 ctf_id_t with number of elements specified at creation time, that should
29 support addition of items but need not support removal.
30
31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with
32 unknown size that should support addition of large numbers of items, and
33 removal as well, and is used only at type-insertion time and during
34 linking.
35
36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
37 only keys: no values.
38
39 These can be implemented by the same underlying hashmap if you wish. */
40
41 /* The helem is used for general key/value mappings in both the ctf_hash and
42 ctf_dynhash: the owner may not have space allocated for it, and will be
43 garbage (not NULL!) in that case. */
44
45 typedef struct ctf_helem
46 {
47 void *key; /* Either a pointer, or a coerced ctf_id_t. */
48 void *value; /* The value (possibly a coerced int). */
49 ctf_dynhash_t *owner; /* The hash that owns us. */
50 } ctf_helem_t;
51
52 /* Equally, the key_free and value_free may not exist. */
53
54 struct ctf_dynhash
55 {
56 struct htab *htab;
57 ctf_hash_free_fun key_free;
58 ctf_hash_free_fun value_free;
59 };
60
61 /* Hash and eq functions for the dynhash and hash. */
62
63 unsigned int
64 ctf_hash_integer (const void *ptr)
65 {
66 ctf_helem_t *hep = (ctf_helem_t *) ptr;
67
68 return htab_hash_pointer (hep->key);
69 }
70
71 int
72 ctf_hash_eq_integer (const void *a, const void *b)
73 {
74 ctf_helem_t *hep_a = (ctf_helem_t *) a;
75 ctf_helem_t *hep_b = (ctf_helem_t *) b;
76
77 return htab_eq_pointer (hep_a->key, hep_b->key);
78 }
79
80 unsigned int
81 ctf_hash_string (const void *ptr)
82 {
83 ctf_helem_t *hep = (ctf_helem_t *) ptr;
84
85 return htab_hash_string (hep->key);
86 }
87
88 int
89 ctf_hash_eq_string (const void *a, const void *b)
90 {
91 ctf_helem_t *hep_a = (ctf_helem_t *) a;
92 ctf_helem_t *hep_b = (ctf_helem_t *) b;
93
94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
95 }
96
97 /* Hash a type_key. */
98 unsigned int
99 ctf_hash_type_key (const void *ptr)
100 {
101 ctf_helem_t *hep = (ctf_helem_t *) ptr;
102 ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
103
104 return htab_hash_pointer (k->cltk_fp) + 59
105 * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
106 }
107
108 int
109 ctf_hash_eq_type_key (const void *a, const void *b)
110 {
111 ctf_helem_t *hep_a = (ctf_helem_t *) a;
112 ctf_helem_t *hep_b = (ctf_helem_t *) b;
113 ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
114 ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
115
116 return (key_a->cltk_fp == key_b->cltk_fp)
117 && (key_a->cltk_idx == key_b->cltk_idx);
118 }
119
120 /* Hash a type_id_key. */
121 unsigned int
122 ctf_hash_type_id_key (const void *ptr)
123 {
124 ctf_helem_t *hep = (ctf_helem_t *) ptr;
125 ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
126
127 return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
129 }
130
131 int
132 ctf_hash_eq_type_id_key (const void *a, const void *b)
133 {
134 ctf_helem_t *hep_a = (ctf_helem_t *) a;
135 ctf_helem_t *hep_b = (ctf_helem_t *) b;
136 ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
137 ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
138
139 return (key_a->ctii_input_num == key_b->ctii_input_num)
140 && (key_a->ctii_type == key_b->ctii_type);
141 }
142
143 /* The dynhash, used for hashes whose size is not known at creation time. */
144
145 /* Free a single ctf_helem with arbitrary key/value functions. */
146
147 static void
148 ctf_dynhash_item_free (void *item)
149 {
150 ctf_helem_t *helem = item;
151
152 if (helem->owner->key_free && helem->key)
153 helem->owner->key_free (helem->key);
154 if (helem->owner->value_free && helem->value)
155 helem->owner->value_free (helem->value);
156 free (helem);
157 }
158
159 ctf_dynhash_t *
160 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
161 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
162 {
163 ctf_dynhash_t *dynhash;
164 htab_del del = ctf_dynhash_item_free;
165
166 if (key_free || value_free)
167 dynhash = malloc (sizeof (ctf_dynhash_t));
168 else
169 dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
170 if (!dynhash)
171 return NULL;
172
173 if (key_free == NULL && value_free == NULL)
174 del = free;
175
176 /* 7 is arbitrary and untested for now. */
177 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
178 del, xcalloc, free)) == NULL)
179 {
180 free (dynhash);
181 return NULL;
182 }
183
184 if (key_free || value_free)
185 {
186 dynhash->key_free = key_free;
187 dynhash->value_free = value_free;
188 }
189
190 return dynhash;
191 }
192
193 static ctf_helem_t **
194 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
195 {
196 ctf_helem_t tmp = { .key = (void *) key };
197 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
198 }
199
200 static ctf_helem_t *
201 ctf_hashtab_insert (struct htab *htab, void *key, void *value,
202 ctf_hash_free_fun key_free,
203 ctf_hash_free_fun value_free)
204 {
205 ctf_helem_t **slot;
206
207 slot = ctf_hashtab_lookup (htab, key, INSERT);
208
209 if (!slot)
210 {
211 errno = ENOMEM;
212 return NULL;
213 }
214
215 if (!*slot)
216 {
217 /* Only spend space on the owner if we're going to use it: if there is a
218 key or value freeing function. */
219 if (key_free || value_free)
220 *slot = malloc (sizeof (ctf_helem_t));
221 else
222 *slot = malloc (offsetof (ctf_helem_t, owner));
223 if (!*slot)
224 return NULL;
225 (*slot)->key = key;
226 }
227 else
228 {
229 if (key_free)
230 key_free (key);
231 if (value_free)
232 value_free ((*slot)->value);
233 }
234 (*slot)->value = value;
235 return *slot;
236 }
237
238 int
239 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
240 {
241 ctf_helem_t *slot;
242 ctf_hash_free_fun key_free = NULL, value_free = NULL;
243
244 if (hp->htab->del_f == ctf_dynhash_item_free)
245 {
246 key_free = hp->key_free;
247 value_free = hp->value_free;
248 }
249 slot = ctf_hashtab_insert (hp->htab, key, value,
250 key_free, value_free);
251
252 if (!slot)
253 return errno;
254
255 /* Keep track of the owner, so that the del function can get at the key_free
256 and value_free functions. Only do this if one of those functions is set:
257 if not, the owner is not even present in the helem. */
258
259 if (key_free || value_free)
260 slot->owner = hp;
261
262 return 0;
263 }
264
265 void
266 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
267 {
268 ctf_helem_t hep = { (void *) key, NULL, NULL };
269 htab_remove_elt (hp->htab, &hep);
270 }
271
272 void
273 ctf_dynhash_empty (ctf_dynhash_t *hp)
274 {
275 htab_empty (hp->htab);
276 }
277
278 size_t
279 ctf_dynhash_elements (ctf_dynhash_t *hp)
280 {
281 return htab_elements (hp->htab);
282 }
283
284 void *
285 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
286 {
287 ctf_helem_t **slot;
288
289 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
290
291 if (slot)
292 return (*slot)->value;
293
294 return NULL;
295 }
296
297 /* TRUE/FALSE return. */
298 int
299 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
300 const void **orig_key, void **value)
301 {
302 ctf_helem_t **slot;
303
304 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
305
306 if (slot)
307 {
308 if (orig_key)
309 *orig_key = (*slot)->key;
310 if (value)
311 *value = (*slot)->value;
312 return 1;
313 }
314 return 0;
315 }
316
317 typedef struct ctf_traverse_cb_arg
318 {
319 ctf_hash_iter_f fun;
320 void *arg;
321 } ctf_traverse_cb_arg_t;
322
323 static int
324 ctf_hashtab_traverse (void **slot, void *arg_)
325 {
326 ctf_helem_t *helem = *((ctf_helem_t **) slot);
327 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
328
329 arg->fun (helem->key, helem->value, arg->arg);
330 return 1;
331 }
332
333 void
334 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
335 {
336 ctf_traverse_cb_arg_t arg = { fun, arg_ };
337 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
338 }
339
340 typedef struct ctf_traverse_find_cb_arg
341 {
342 ctf_hash_iter_find_f fun;
343 void *arg;
344 void *found_key;
345 } ctf_traverse_find_cb_arg_t;
346
347 static int
348 ctf_hashtab_traverse_find (void **slot, void *arg_)
349 {
350 ctf_helem_t *helem = *((ctf_helem_t **) slot);
351 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
352
353 if (arg->fun (helem->key, helem->value, arg->arg))
354 {
355 arg->found_key = helem->key;
356 return 0;
357 }
358 return 1;
359 }
360
361 void *
362 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
363 {
364 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
365 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
366 return arg.found_key;
367 }
368
369 typedef struct ctf_traverse_remove_cb_arg
370 {
371 struct htab *htab;
372 ctf_hash_iter_remove_f fun;
373 void *arg;
374 } ctf_traverse_remove_cb_arg_t;
375
376 static int
377 ctf_hashtab_traverse_remove (void **slot, void *arg_)
378 {
379 ctf_helem_t *helem = *((ctf_helem_t **) slot);
380 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
381
382 if (arg->fun (helem->key, helem->value, arg->arg))
383 htab_clear_slot (arg->htab, slot);
384 return 1;
385 }
386
387 void
388 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
389 void *arg_)
390 {
391 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
392 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
393 }
394
395 /* Traverse a dynhash in arbitrary order, in _next iterator form.
396
397 Mutating the dynhash while iterating is not supported (just as it isn't for
398 htab_traverse).
399
400 Note: unusually, this returns zero on success and a *positive* value on
401 error, because it does not take an fp, taking an error pointer would be
402 incredibly clunky, and nearly all error-handling ends up stuffing the result
403 of this into some sort of errno or ctf_errno, which is invariably
404 positive. So doing this simplifies essentially all callers. */
405 int
406 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
407 {
408 ctf_next_t *i = *it;
409 ctf_helem_t *slot;
410
411 if (!i)
412 {
413 size_t size = htab_size (h->htab);
414
415 /* If the table has too many entries to fit in an ssize_t, just give up.
416 This might be spurious, but if any type-related hashtable has ever been
417 nearly as large as that then something very odd is going on. */
418 if (((ssize_t) size) < 0)
419 return EDOM;
420
421 if ((i = ctf_next_create ()) == NULL)
422 return ENOMEM;
423
424 i->u.ctn_hash_slot = h->htab->entries;
425 i->cu.ctn_h = h;
426 i->ctn_n = 0;
427 i->ctn_size = (ssize_t) size;
428 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
429 *it = i;
430 }
431
432 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
433 return ECTF_NEXT_WRONGFUN;
434
435 if (h != i->cu.ctn_h)
436 return ECTF_NEXT_WRONGFP;
437
438 if ((ssize_t) i->ctn_n == i->ctn_size)
439 goto hash_end;
440
441 while ((ssize_t) i->ctn_n < i->ctn_size
442 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
443 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
444 {
445 i->u.ctn_hash_slot++;
446 i->ctn_n++;
447 }
448
449 if ((ssize_t) i->ctn_n == i->ctn_size)
450 goto hash_end;
451
452 slot = *i->u.ctn_hash_slot;
453
454 if (key)
455 *key = slot->key;
456 if (value)
457 *value = slot->value;
458
459 i->u.ctn_hash_slot++;
460 i->ctn_n++;
461
462 return 0;
463
464 hash_end:
465 ctf_next_destroy (i);
466 *it = NULL;
467 return ECTF_NEXT_END;
468 }
469
470 int
471 ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
472 void *unused _libctf_unused_)
473 {
474 return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
475 }
476
477 /* Traverse a sorted dynhash, in _next iterator form.
478
479 See ctf_dynhash_next for notes on error returns, etc.
480
481 Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
482
483 If SORT_FUN is null, thunks to ctf_dynhash_next. */
484 int
485 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
486 void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
487 {
488 ctf_next_t *i = *it;
489
490 if (sort_fun == NULL)
491 return ctf_dynhash_next (h, it, key, value);
492
493 if (!i)
494 {
495 size_t els = ctf_dynhash_elements (h);
496 ctf_next_t *accum_i = NULL;
497 void *key, *value;
498 int err;
499 ctf_next_hkv_t *walk;
500
501 if (((ssize_t) els) < 0)
502 return EDOM;
503
504 if ((i = ctf_next_create ()) == NULL)
505 return ENOMEM;
506
507 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
508 {
509 ctf_next_destroy (i);
510 return ENOMEM;
511 }
512 walk = i->u.ctn_sorted_hkv;
513
514 i->cu.ctn_h = h;
515
516 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
517 {
518 walk->hkv_key = key;
519 walk->hkv_value = value;
520 walk++;
521 }
522 if (err != ECTF_NEXT_END)
523 {
524 ctf_next_destroy (i);
525 return err;
526 }
527
528 if (sort_fun)
529 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
530 (int (*) (const void *, const void *, void *)) sort_fun,
531 sort_arg);
532 i->ctn_n = 0;
533 i->ctn_size = (ssize_t) els;
534 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
535 *it = i;
536 }
537
538 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
539 return ECTF_NEXT_WRONGFUN;
540
541 if (h != i->cu.ctn_h)
542 return ECTF_NEXT_WRONGFP;
543
544 if ((ssize_t) i->ctn_n == i->ctn_size)
545 {
546 ctf_next_destroy (i);
547 *it = NULL;
548 return ECTF_NEXT_END;
549 }
550
551 if (key)
552 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
553 if (value)
554 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
555 i->ctn_n++;
556 return 0;
557 }
558
559 void
560 ctf_dynhash_destroy (ctf_dynhash_t *hp)
561 {
562 if (hp != NULL)
563 htab_delete (hp->htab);
564 free (hp);
565 }
566
567 /* The dynset, used for sets of keys with no value. The implementation of this
568 can be much simpler, because without a value the slot can simply be the
569 stored key, which means we don't need to store the freeing functions and the
570 dynset itself is just a htab. */
571
572 ctf_dynset_t *
573 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
574 ctf_hash_free_fun key_free)
575 {
576 /* 7 is arbitrary and untested for now. */
577 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
578 key_free, xcalloc, free);
579 }
580
581 /* The dynset has one complexity: the underlying implementation reserves two
582 values for internal hash table implementation details (empty versus deleted
583 entries). These values are otherwise very useful for pointers cast to ints,
584 so transform the ctf_dynset_inserted value to allow for it. (This
585 introduces an ambiguity in that one can no longer store these two values in
586 the dynset, but if we pick high enough values this is very unlikely to be a
587 problem.)
588
589 We leak this implementation detail to the freeing functions on the grounds
590 that any use of these functions is overwhelmingly likely to be in sets using
591 real pointers, which will be unaffected. */
592
593 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
594 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
595
596 static void *
597 key_to_internal (const void *key)
598 {
599 if (key == HTAB_EMPTY_ENTRY)
600 return DYNSET_EMPTY_ENTRY_REPLACEMENT;
601 else if (key == HTAB_DELETED_ENTRY)
602 return DYNSET_DELETED_ENTRY_REPLACEMENT;
603
604 return (void *) key;
605 }
606
607 static void *
608 internal_to_key (const void *internal)
609 {
610 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
611 return HTAB_EMPTY_ENTRY;
612 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
613 return HTAB_DELETED_ENTRY;
614 return (void *) internal;
615 }
616
617 int
618 ctf_dynset_insert (ctf_dynset_t *hp, void *key)
619 {
620 struct htab *htab = (struct htab *) hp;
621 void **slot;
622
623 slot = htab_find_slot (htab, key, INSERT);
624
625 if (!slot)
626 {
627 errno = ENOMEM;
628 return -errno;
629 }
630
631 if (*slot)
632 {
633 if (htab->del_f)
634 (*htab->del_f) (*slot);
635 }
636
637 *slot = key_to_internal (key);
638
639 return 0;
640 }
641
642 void
643 ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
644 {
645 htab_remove_elt ((struct htab *) hp, key_to_internal (key));
646 }
647
648 void
649 ctf_dynset_destroy (ctf_dynset_t *hp)
650 {
651 if (hp != NULL)
652 htab_delete ((struct htab *) hp);
653 }
654
655 void *
656 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
657 {
658 void **slot = htab_find_slot ((struct htab *) hp,
659 key_to_internal (key), NO_INSERT);
660
661 if (slot)
662 return internal_to_key (*slot);
663 return NULL;
664 }
665
666 size_t
667 ctf_dynset_elements (ctf_dynset_t *hp)
668 {
669 return htab_elements ((struct htab *) hp);
670 }
671
672 /* TRUE/FALSE return. */
673 int
674 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
675 {
676 void **slot = htab_find_slot ((struct htab *) hp,
677 key_to_internal (key), NO_INSERT);
678
679 if (orig_key && slot)
680 *orig_key = internal_to_key (*slot);
681 return (slot != NULL);
682 }
683
684 /* Look up a completely random value from the set, if any exist.
685 Keys with value zero cannot be distinguished from a nonexistent key. */
686 void *
687 ctf_dynset_lookup_any (ctf_dynset_t *hp)
688 {
689 struct htab *htab = (struct htab *) hp;
690 void **slot = htab->entries;
691 void **limit = slot + htab_size (htab);
692
693 while (slot < limit
694 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
695 slot++;
696
697 if (slot < limit)
698 return internal_to_key (*slot);
699 return NULL;
700 }
701
702 /* Traverse a dynset in arbitrary order, in _next iterator form.
703
704 Otherwise, just like ctf_dynhash_next. */
705 int
706 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
707 {
708 struct htab *htab = (struct htab *) hp;
709 ctf_next_t *i = *it;
710 void *slot;
711
712 if (!i)
713 {
714 size_t size = htab_size (htab);
715
716 /* If the table has too many entries to fit in an ssize_t, just give up.
717 This might be spurious, but if any type-related hashtable has ever been
718 nearly as large as that then somthing very odd is going on. */
719
720 if (((ssize_t) size) < 0)
721 return EDOM;
722
723 if ((i = ctf_next_create ()) == NULL)
724 return ENOMEM;
725
726 i->u.ctn_hash_slot = htab->entries;
727 i->cu.ctn_s = hp;
728 i->ctn_n = 0;
729 i->ctn_size = (ssize_t) size;
730 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
731 *it = i;
732 }
733
734 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
735 return ECTF_NEXT_WRONGFUN;
736
737 if (hp != i->cu.ctn_s)
738 return ECTF_NEXT_WRONGFP;
739
740 if ((ssize_t) i->ctn_n == i->ctn_size)
741 goto set_end;
742
743 while ((ssize_t) i->ctn_n < i->ctn_size
744 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
745 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
746 {
747 i->u.ctn_hash_slot++;
748 i->ctn_n++;
749 }
750
751 if ((ssize_t) i->ctn_n == i->ctn_size)
752 goto set_end;
753
754 slot = *i->u.ctn_hash_slot;
755
756 if (key)
757 *key = internal_to_key (slot);
758
759 i->u.ctn_hash_slot++;
760 i->ctn_n++;
761
762 return 0;
763
764 set_end:
765 ctf_next_destroy (i);
766 *it = NULL;
767 return ECTF_NEXT_END;
768 }
769
770 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
771 removal. This is a straight cast of a hashtab. */
772
773 ctf_hash_t *
774 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
775 ctf_hash_eq_fun eq_fun)
776 {
777 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
778 eq_fun, free, xcalloc, free);
779 }
780
781 uint32_t
782 ctf_hash_size (const ctf_hash_t *hp)
783 {
784 return htab_elements ((struct htab *) hp);
785 }
786
787 int
788 ctf_hash_insert_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
789 uint32_t name)
790 {
791 const char *str = ctf_strraw (fp, name);
792
793 if (type == 0)
794 return EINVAL;
795
796 if (str == NULL
797 && CTF_NAME_STID (name) == CTF_STRTAB_1
798 && fp->ctf_syn_ext_strtab == NULL
799 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
800 return ECTF_STRTAB;
801
802 if (str == NULL)
803 return ECTF_BADNAME;
804
805 if (str[0] == '\0')
806 return 0; /* Just ignore empty strings on behalf of caller. */
807
808 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
809 (void *) (ptrdiff_t) type, NULL, NULL) != NULL)
810 return 0;
811 return errno;
812 }
813
814 /* if the key is already in the hash, override the previous definition with
815 this new official definition. If the key is not present, then call
816 ctf_hash_insert_type and hash it in. */
817 int
818 ctf_hash_define_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
819 uint32_t name)
820 {
821 /* This matches the semantics of ctf_hash_insert_type in this
822 implementation anyway. */
823
824 return ctf_hash_insert_type (hp, fp, type, name);
825 }
826
827 ctf_id_t
828 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_dict_t *fp __attribute__ ((__unused__)),
829 const char *key)
830 {
831 ctf_helem_t **slot;
832
833 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
834
835 if (slot)
836 return (ctf_id_t) (uintptr_t) ((*slot)->value);
837
838 return 0;
839 }
840
841 void
842 ctf_hash_destroy (ctf_hash_t *hp)
843 {
844 if (hp != NULL)
845 htab_delete ((struct htab *) hp);
846 }