]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - libctf/ctf-hash.c
libctf, next, hash: add dynhash and dynset _next iteration
[thirdparty/binutils-gdb.git] / libctf / ctf-hash.c
1 /* Interface to hashtable implementations.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include "libiberty.h"
23 #include "hashtab.h"
24
25 /* We have three hashtable implementations:
26
27 - ctf_hash_* is an interface to a fixed-size hash from const char * ->
28 ctf_id_t with number of elements specified at creation time, that should
29 support addition of items but need not support removal.
30
31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with
32 unknown size that should support addition of large numbers of items, and
33 removal as well, and is used only at type-insertion time and during
34 linking.
35
36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
37 only keys: no values.
38
39 These can be implemented by the same underlying hashmap if you wish. */
40
41 /* The helem is used for general key/value mappings in both the ctf_hash and
42 ctf_dynhash: the owner may not have space allocated for it, and will be
43 garbage (not NULL!) in that case. */
44
45 typedef struct ctf_helem
46 {
47 void *key; /* Either a pointer, or a coerced ctf_id_t. */
48 void *value; /* The value (possibly a coerced int). */
49 ctf_dynhash_t *owner; /* The hash that owns us. */
50 } ctf_helem_t;
51
52 /* Equally, the key_free and value_free may not exist. */
53
54 struct ctf_dynhash
55 {
56 struct htab *htab;
57 ctf_hash_free_fun key_free;
58 ctf_hash_free_fun value_free;
59 };
60
61 /* Hash and eq functions for the dynhash and hash. */
62
63 unsigned int
64 ctf_hash_integer (const void *ptr)
65 {
66 ctf_helem_t *hep = (ctf_helem_t *) ptr;
67
68 return htab_hash_pointer (hep->key);
69 }
70
71 int
72 ctf_hash_eq_integer (const void *a, const void *b)
73 {
74 ctf_helem_t *hep_a = (ctf_helem_t *) a;
75 ctf_helem_t *hep_b = (ctf_helem_t *) b;
76
77 return htab_eq_pointer (hep_a->key, hep_b->key);
78 }
79
80 unsigned int
81 ctf_hash_string (const void *ptr)
82 {
83 ctf_helem_t *hep = (ctf_helem_t *) ptr;
84
85 return htab_hash_string (hep->key);
86 }
87
88 int
89 ctf_hash_eq_string (const void *a, const void *b)
90 {
91 ctf_helem_t *hep_a = (ctf_helem_t *) a;
92 ctf_helem_t *hep_b = (ctf_helem_t *) b;
93
94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
95 }
96
97 /* Hash a type_mapping_key. */
98 unsigned int
99 ctf_hash_type_mapping_key (const void *ptr)
100 {
101 ctf_helem_t *hep = (ctf_helem_t *) ptr;
102 ctf_link_type_mapping_key_t *k = (ctf_link_type_mapping_key_t *) hep->key;
103
104 return htab_hash_pointer (k->cltm_fp) + 59 * htab_hash_pointer ((void *) k->cltm_idx);
105 }
106
107 int
108 ctf_hash_eq_type_mapping_key (const void *a, const void *b)
109 {
110 ctf_helem_t *hep_a = (ctf_helem_t *) a;
111 ctf_helem_t *hep_b = (ctf_helem_t *) b;
112 ctf_link_type_mapping_key_t *key_a = (ctf_link_type_mapping_key_t *) hep_a->key;
113 ctf_link_type_mapping_key_t *key_b = (ctf_link_type_mapping_key_t *) hep_b->key;
114
115 return (key_a->cltm_fp == key_b->cltm_fp)
116 && (key_a->cltm_idx == key_b->cltm_idx);
117 }
118
119
120 /* Hash and eq functions for the dynset. Most of these can just use the
121 underlying hashtab functions directly. */
122
123 int
124 ctf_dynset_eq_string (const void *a, const void *b)
125 {
126 return !strcmp((const char *) a, (const char *) b);
127 }
128
129 /* The dynhash, used for hashes whose size is not known at creation time. */
130
131 /* Free a single ctf_helem with arbitrary key/value functions. */
132
133 static void
134 ctf_dynhash_item_free (void *item)
135 {
136 ctf_helem_t *helem = item;
137
138 if (helem->owner->key_free && helem->key)
139 helem->owner->key_free (helem->key);
140 if (helem->owner->value_free && helem->value)
141 helem->owner->value_free (helem->value);
142 free (helem);
143 }
144
145 ctf_dynhash_t *
146 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
147 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
148 {
149 ctf_dynhash_t *dynhash;
150 htab_del del = ctf_dynhash_item_free;
151
152 if (key_free || value_free)
153 dynhash = malloc (sizeof (ctf_dynhash_t));
154 else
155 dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
156 if (!dynhash)
157 return NULL;
158
159 if (key_free == NULL && value_free == NULL)
160 del = free;
161
162 /* 7 is arbitrary and untested for now. */
163 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
164 del, xcalloc, free)) == NULL)
165 {
166 free (dynhash);
167 return NULL;
168 }
169
170 if (key_free || value_free)
171 {
172 dynhash->key_free = key_free;
173 dynhash->value_free = value_free;
174 }
175
176 return dynhash;
177 }
178
179 static ctf_helem_t **
180 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
181 {
182 ctf_helem_t tmp = { .key = (void *) key };
183 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
184 }
185
186 static ctf_helem_t *
187 ctf_hashtab_insert (struct htab *htab, void *key, void *value,
188 ctf_hash_free_fun key_free,
189 ctf_hash_free_fun value_free)
190 {
191 ctf_helem_t **slot;
192
193 slot = ctf_hashtab_lookup (htab, key, INSERT);
194
195 if (!slot)
196 {
197 errno = ENOMEM;
198 return NULL;
199 }
200
201 if (!*slot)
202 {
203 /* Only spend space on the owner if we're going to use it: if there is a
204 key or value freeing function. */
205 if (key_free || value_free)
206 *slot = malloc (sizeof (ctf_helem_t));
207 else
208 *slot = malloc (offsetof (ctf_helem_t, owner));
209 if (!*slot)
210 return NULL;
211 (*slot)->key = key;
212 }
213 else
214 {
215 if (key_free)
216 key_free (key);
217 if (value_free)
218 value_free ((*slot)->value);
219 }
220 (*slot)->value = value;
221 return *slot;
222 }
223
224 int
225 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
226 {
227 ctf_helem_t *slot;
228 ctf_hash_free_fun key_free = NULL, value_free = NULL;
229
230 if (hp->htab->del_f == ctf_dynhash_item_free)
231 {
232 key_free = hp->key_free;
233 value_free = hp->value_free;
234 }
235 slot = ctf_hashtab_insert (hp->htab, key, value,
236 key_free, value_free);
237
238 if (!slot)
239 return errno;
240
241 /* Keep track of the owner, so that the del function can get at the key_free
242 and value_free functions. Only do this if one of those functions is set:
243 if not, the owner is not even present in the helem. */
244
245 if (key_free || value_free)
246 slot->owner = hp;
247
248 return 0;
249 }
250
251 void
252 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
253 {
254 ctf_helem_t hep = { (void *) key, NULL, NULL };
255 htab_remove_elt (hp->htab, &hep);
256 }
257
258 void
259 ctf_dynhash_empty (ctf_dynhash_t *hp)
260 {
261 htab_empty (hp->htab);
262 }
263
264 size_t
265 ctf_dynhash_elements (ctf_dynhash_t *hp)
266 {
267 return htab_elements (hp->htab);
268 }
269
270 void *
271 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
272 {
273 ctf_helem_t **slot;
274
275 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
276
277 if (slot)
278 return (*slot)->value;
279
280 return NULL;
281 }
282
283 /* TRUE/FALSE return. */
284 int
285 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
286 const void **orig_key, void **value)
287 {
288 ctf_helem_t **slot;
289
290 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
291
292 if (slot)
293 {
294 if (orig_key)
295 *orig_key = (*slot)->key;
296 if (value)
297 *value = (*slot)->value;
298 return 1;
299 }
300 return 0;
301 }
302
303 typedef struct ctf_traverse_cb_arg
304 {
305 ctf_hash_iter_f fun;
306 void *arg;
307 } ctf_traverse_cb_arg_t;
308
309 static int
310 ctf_hashtab_traverse (void **slot, void *arg_)
311 {
312 ctf_helem_t *helem = *((ctf_helem_t **) slot);
313 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
314
315 arg->fun (helem->key, helem->value, arg->arg);
316 return 1;
317 }
318
319 void
320 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
321 {
322 ctf_traverse_cb_arg_t arg = { fun, arg_ };
323 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
324 }
325
326 typedef struct ctf_traverse_find_cb_arg
327 {
328 ctf_hash_iter_find_f fun;
329 void *arg;
330 void *found_key;
331 } ctf_traverse_find_cb_arg_t;
332
333 static int
334 ctf_hashtab_traverse_find (void **slot, void *arg_)
335 {
336 ctf_helem_t *helem = *((ctf_helem_t **) slot);
337 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
338
339 if (arg->fun (helem->key, helem->value, arg->arg))
340 {
341 arg->found_key = helem->key;
342 return 0;
343 }
344 return 1;
345 }
346
347 void *
348 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
349 {
350 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
351 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
352 return arg.found_key;
353 }
354
355 typedef struct ctf_traverse_remove_cb_arg
356 {
357 struct htab *htab;
358 ctf_hash_iter_remove_f fun;
359 void *arg;
360 } ctf_traverse_remove_cb_arg_t;
361
362 static int
363 ctf_hashtab_traverse_remove (void **slot, void *arg_)
364 {
365 ctf_helem_t *helem = *((ctf_helem_t **) slot);
366 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
367
368 if (arg->fun (helem->key, helem->value, arg->arg))
369 htab_clear_slot (arg->htab, slot);
370 return 1;
371 }
372
373 void
374 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
375 void *arg_)
376 {
377 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
378 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
379 }
380
381 /* Traverse a dynhash in arbitrary order, in _next iterator form.
382
383 Mutating the dynhash while iterating is not supported (just as it isn't for
384 htab_traverse).
385
386 Note: unusually, this returns zero on success and a *positive* value on
387 error, because it does not take an fp, taking an error pointer would be
388 incredibly clunky, and nearly all error-handling ends up stuffing the result
389 of this into some sort of errno or ctf_errno, which is invariably
390 positive. So doing this simplifies essentially all callers. */
391 int
392 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
393 {
394 ctf_next_t *i = *it;
395 ctf_helem_t *slot;
396
397 if (!i)
398 {
399 size_t size = htab_size (h->htab);
400
401 /* If the table has too many entries to fit in an ssize_t, just give up.
402 This might be spurious, but if any type-related hashtable has ever been
403 nearly as large as that then something very odd is going on. */
404 if (((ssize_t) size) < 0)
405 return EDOM;
406
407 if ((i = ctf_next_create ()) == NULL)
408 return ENOMEM;
409
410 i->u.ctn_hash_slot = h->htab->entries;
411 i->cu.ctn_h = h;
412 i->ctn_n = 0;
413 i->ctn_size = (ssize_t) size;
414 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
415 *it = i;
416 }
417
418 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
419 return ECTF_NEXT_WRONGFUN;
420
421 if (h != i->cu.ctn_h)
422 return ECTF_NEXT_WRONGFP;
423
424 if ((ssize_t) i->ctn_n == i->ctn_size)
425 goto hash_end;
426
427 while ((ssize_t) i->ctn_n < i->ctn_size
428 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
429 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
430 {
431 i->u.ctn_hash_slot++;
432 i->ctn_n++;
433 }
434
435 if ((ssize_t) i->ctn_n == i->ctn_size)
436 goto hash_end;
437
438 slot = *i->u.ctn_hash_slot;
439
440 if (key)
441 *key = slot->key;
442 if (value)
443 *value = slot->value;
444
445 i->u.ctn_hash_slot++;
446 i->ctn_n++;
447
448 return 0;
449
450 hash_end:
451 ctf_next_destroy (i);
452 *it = NULL;
453 return ECTF_NEXT_END;
454 }
455
456 /* Traverse a sorted dynhash, in _next iterator form.
457
458 See ctf_dynhash_next for notes on error returns, etc.
459
460 Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
461
462 If SORT_FUN is null, thunks to ctf_dynhash_next. */
463 int
464 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
465 void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
466 {
467 ctf_next_t *i = *it;
468
469 if (sort_fun == NULL)
470 return ctf_dynhash_next (h, it, key, value);
471
472 if (!i)
473 {
474 size_t els = ctf_dynhash_elements (h);
475 ctf_next_t *accum_i = NULL;
476 void *key, *value;
477 int err;
478 ctf_next_hkv_t *walk;
479
480 if (((ssize_t) els) < 0)
481 return EDOM;
482
483 if ((i = ctf_next_create ()) == NULL)
484 return ENOMEM;
485
486 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
487 {
488 ctf_next_destroy (i);
489 return ENOMEM;
490 }
491 walk = i->u.ctn_sorted_hkv;
492
493 i->cu.ctn_h = h;
494
495 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
496 {
497 walk->hkv_key = key;
498 walk->hkv_value = value;
499 walk++;
500 }
501 if (err != ECTF_NEXT_END)
502 {
503 ctf_next_destroy (i);
504 return err;
505 }
506
507 if (sort_fun)
508 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
509 (int (*) (const void *, const void *, void *)) sort_fun,
510 sort_arg);
511 i->ctn_n = 0;
512 i->ctn_size = (ssize_t) els;
513 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
514 *it = i;
515 }
516
517 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
518 return ECTF_NEXT_WRONGFUN;
519
520 if (h != i->cu.ctn_h)
521 return ECTF_NEXT_WRONGFP;
522
523 if ((ssize_t) i->ctn_n == i->ctn_size)
524 {
525 ctf_next_destroy (i);
526 *it = NULL;
527 return ECTF_NEXT_END;
528 }
529
530 if (key)
531 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
532 if (value)
533 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
534 i->ctn_n++;
535 return 0;
536 }
537
538 void
539 ctf_dynhash_destroy (ctf_dynhash_t *hp)
540 {
541 if (hp != NULL)
542 htab_delete (hp->htab);
543 free (hp);
544 }
545
546 /* The dynset, used for sets of keys with no value. The implementation of this
547 can be much simpler, because without a value the slot can simply be the
548 stored key, which means we don't need to store the freeing functions and the
549 dynset itself is just a htab. */
550
551 ctf_dynset_t *
552 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
553 ctf_hash_free_fun key_free)
554 {
555 /* 7 is arbitrary and untested for now. */
556 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
557 key_free, xcalloc, free);
558 }
559
560 /* The dynset has one complexity: the underlying implementation reserves two
561 values for internal hash table implementation details (empty versus deleted
562 entries). These values are otherwise very useful for pointers cast to ints,
563 so transform the ctf_dynset_inserted value to allow for it. (This
564 introduces an ambiguity in that one can no longer store these two values in
565 the dynset, but if we pick high enough values this is very unlikely to be a
566 problem.)
567
568 We leak this implementation detail to the freeing functions on the grounds
569 that any use of these functions is overwhelmingly likely to be in sets using
570 real pointers, which will be unaffected. */
571
572 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
573 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
574
575 static void *
576 key_to_internal (const void *key)
577 {
578 if (key == HTAB_EMPTY_ENTRY)
579 return DYNSET_EMPTY_ENTRY_REPLACEMENT;
580 else if (key == HTAB_DELETED_ENTRY)
581 return DYNSET_DELETED_ENTRY_REPLACEMENT;
582
583 return (void *) key;
584 }
585
586 static void *
587 internal_to_key (const void *internal)
588 {
589 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
590 return HTAB_EMPTY_ENTRY;
591 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
592 return HTAB_DELETED_ENTRY;
593 return (void *) internal;
594 }
595
596 int
597 ctf_dynset_insert (ctf_dynset_t *hp, void *key)
598 {
599 struct htab *htab = (struct htab *) hp;
600 void **slot;
601
602 slot = htab_find_slot (htab, key, INSERT);
603
604 if (!slot)
605 {
606 errno = ENOMEM;
607 return -errno;
608 }
609
610 if (*slot)
611 {
612 if (htab->del_f)
613 (*htab->del_f) (*slot);
614 }
615
616 *slot = key_to_internal (key);
617
618 return 0;
619 }
620
621 void
622 ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
623 {
624 htab_remove_elt ((struct htab *) hp, key_to_internal (key));
625 }
626
627 void
628 ctf_dynset_destroy (ctf_dynset_t *hp)
629 {
630 if (hp != NULL)
631 htab_delete ((struct htab *) hp);
632 }
633
634 void *
635 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
636 {
637 void **slot = htab_find_slot ((struct htab *) hp,
638 key_to_internal (key), NO_INSERT);
639
640 if (slot)
641 return internal_to_key (*slot);
642 return NULL;
643 }
644
645 /* TRUE/FALSE return. */
646 int
647 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
648 {
649 void **slot = htab_find_slot ((struct htab *) hp,
650 key_to_internal (key), NO_INSERT);
651
652 if (orig_key && slot)
653 *orig_key = internal_to_key (*slot);
654 return (slot != NULL);
655 }
656
657 /* Look up a completely random value from the set, if any exist.
658 Keys with value zero cannot be distinguished from a nonexistent key. */
659 void *
660 ctf_dynset_lookup_any (ctf_dynset_t *hp)
661 {
662 struct htab *htab = (struct htab *) hp;
663 void **slot = htab->entries;
664 void **limit = slot + htab_size (htab);
665
666 while (slot < limit
667 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
668 slot++;
669
670 if (slot < limit)
671 return internal_to_key (*slot);
672 return NULL;
673 }
674
675 /* Traverse a dynset in arbitrary order, in _next iterator form.
676
677 Otherwise, just like ctf_dynhash_next. */
678 int
679 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
680 {
681 struct htab *htab = (struct htab *) hp;
682 ctf_next_t *i = *it;
683 void *slot;
684
685 if (!i)
686 {
687 size_t size = htab_size (htab);
688
689 /* If the table has too many entries to fit in an ssize_t, just give up.
690 This might be spurious, but if any type-related hashtable has ever been
691 nearly as large as that then somthing very odd is going on. */
692
693 if (((ssize_t) size) < 0)
694 return EDOM;
695
696 if ((i = ctf_next_create ()) == NULL)
697 return ENOMEM;
698
699 i->u.ctn_hash_slot = htab->entries;
700 i->cu.ctn_s = hp;
701 i->ctn_n = 0;
702 i->ctn_size = (ssize_t) size;
703 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
704 *it = i;
705 }
706
707 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
708 return ECTF_NEXT_WRONGFUN;
709
710 if (hp != i->cu.ctn_s)
711 return ECTF_NEXT_WRONGFP;
712
713 if ((ssize_t) i->ctn_n == i->ctn_size)
714 goto set_end;
715
716 while ((ssize_t) i->ctn_n < i->ctn_size
717 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
718 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
719 {
720 i->u.ctn_hash_slot++;
721 i->ctn_n++;
722 }
723
724 if ((ssize_t) i->ctn_n == i->ctn_size)
725 goto set_end;
726
727 slot = *i->u.ctn_hash_slot;
728
729 if (key)
730 *key = internal_to_key (slot);
731
732 i->u.ctn_hash_slot++;
733 i->ctn_n++;
734
735 return 0;
736
737 set_end:
738 ctf_next_destroy (i);
739 *it = NULL;
740 return ECTF_NEXT_END;
741 }
742
743 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
744 removal. This is a straight cast of a hashtab. */
745
746 ctf_hash_t *
747 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
748 ctf_hash_eq_fun eq_fun)
749 {
750 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
751 eq_fun, free, xcalloc, free);
752 }
753
754 uint32_t
755 ctf_hash_size (const ctf_hash_t *hp)
756 {
757 return htab_elements ((struct htab *) hp);
758 }
759
760 int
761 ctf_hash_insert_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
762 uint32_t name)
763 {
764 const char *str = ctf_strraw (fp, name);
765
766 if (type == 0)
767 return EINVAL;
768
769 if (str == NULL
770 && CTF_NAME_STID (name) == CTF_STRTAB_1
771 && fp->ctf_syn_ext_strtab == NULL
772 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
773 return ECTF_STRTAB;
774
775 if (str == NULL)
776 return ECTF_BADNAME;
777
778 if (str[0] == '\0')
779 return 0; /* Just ignore empty strings on behalf of caller. */
780
781 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
782 (void *) (ptrdiff_t) type, NULL, NULL) != NULL)
783 return 0;
784 return errno;
785 }
786
787 /* if the key is already in the hash, override the previous definition with
788 this new official definition. If the key is not present, then call
789 ctf_hash_insert_type and hash it in. */
790 int
791 ctf_hash_define_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
792 uint32_t name)
793 {
794 /* This matches the semantics of ctf_hash_insert_type in this
795 implementation anyway. */
796
797 return ctf_hash_insert_type (hp, fp, type, name);
798 }
799
800 ctf_id_t
801 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_file_t *fp __attribute__ ((__unused__)),
802 const char *key)
803 {
804 ctf_helem_t **slot;
805
806 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
807
808 if (slot)
809 return (ctf_id_t) ((*slot)->value);
810
811 return 0;
812 }
813
814 void
815 ctf_hash_destroy (ctf_hash_t *hp)
816 {
817 if (hp != NULL)
818 htab_delete ((struct htab *) hp);
819 }