]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - libiberty/floatformat.c
merge from gcc
[thirdparty/binutils-gdb.git] / libiberty / floatformat.c
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* This is needed to pick up the NAN macro on some systems. */
22 #define _GNU_SOURCE
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include <math.h>
29
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
33
34 /* On some platforms, <float.h> provides DBL_QNAN. */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
38
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
42
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
50
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
58
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61 enum floatformat_byteorders,
62 unsigned int,
63 unsigned int,
64 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66 const void *from);
67
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70 const void *from ATTRIBUTE_UNUSED)
71 {
72 return 1;
73 }
74
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76 going to bother with trying to muck around with whether it is defined in
77 a system header, what we do if not, etc. */
78 #define FLOATFORMAT_CHAR_BIT 8
79
80 /* floatformats for IEEE single and double, big and little endian. */
81 const struct floatformat floatformat_ieee_single_big =
82 {
83 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
84 floatformat_intbit_no,
85 "floatformat_ieee_single_big",
86 floatformat_always_valid,
87 NULL
88 };
89 const struct floatformat floatformat_ieee_single_little =
90 {
91 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
92 floatformat_intbit_no,
93 "floatformat_ieee_single_little",
94 floatformat_always_valid,
95 NULL
96 };
97 const struct floatformat floatformat_ieee_double_big =
98 {
99 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
100 floatformat_intbit_no,
101 "floatformat_ieee_double_big",
102 floatformat_always_valid,
103 NULL
104 };
105 const struct floatformat floatformat_ieee_double_little =
106 {
107 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
108 floatformat_intbit_no,
109 "floatformat_ieee_double_little",
110 floatformat_always_valid,
111 NULL
112 };
113
114 /* floatformat for IEEE double, little endian byte order, with big endian word
115 ordering, as on the ARM. */
116
117 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
118 {
119 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
120 floatformat_intbit_no,
121 "floatformat_ieee_double_littlebyte_bigword",
122 floatformat_always_valid,
123 NULL
124 };
125
126 /* floatformat for VAX. Not quite IEEE, but close enough. */
127
128 const struct floatformat floatformat_vax_f =
129 {
130 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
131 floatformat_intbit_no,
132 "floatformat_vax_f",
133 floatformat_always_valid,
134 NULL
135 };
136 const struct floatformat floatformat_vax_d =
137 {
138 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
139 floatformat_intbit_no,
140 "floatformat_vax_d",
141 floatformat_always_valid,
142 NULL
143 };
144 const struct floatformat floatformat_vax_g =
145 {
146 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
147 floatformat_intbit_no,
148 "floatformat_vax_g",
149 floatformat_always_valid,
150 NULL
151 };
152
153 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
154 const void *from);
155
156 static int
157 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
158 {
159 /* In the i387 double-extended format, if the exponent is all ones,
160 then the integer bit must be set. If the exponent is neither 0
161 nor ~0, the intbit must also be set. Only if the exponent is
162 zero can it be zero, and then it must be zero. */
163 unsigned long exponent, int_bit;
164 const unsigned char *ufrom = (const unsigned char *) from;
165
166 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
167 fmt->exp_start, fmt->exp_len);
168 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
169 fmt->man_start, 1);
170
171 if ((exponent == 0) != (int_bit == 0))
172 return 0;
173 else
174 return 1;
175 }
176
177 const struct floatformat floatformat_i387_ext =
178 {
179 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
180 floatformat_intbit_yes,
181 "floatformat_i387_ext",
182 floatformat_i387_ext_is_valid,
183 NULL
184 };
185 const struct floatformat floatformat_m68881_ext =
186 {
187 /* Note that the bits from 16 to 31 are unused. */
188 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
189 floatformat_intbit_yes,
190 "floatformat_m68881_ext",
191 floatformat_always_valid,
192 NULL
193 };
194 const struct floatformat floatformat_i960_ext =
195 {
196 /* Note that the bits from 0 to 15 are unused. */
197 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
198 floatformat_intbit_yes,
199 "floatformat_i960_ext",
200 floatformat_always_valid,
201 NULL
202 };
203 const struct floatformat floatformat_m88110_ext =
204 {
205 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
206 floatformat_intbit_yes,
207 "floatformat_m88110_ext",
208 floatformat_always_valid,
209 NULL
210 };
211 const struct floatformat floatformat_m88110_harris_ext =
212 {
213 /* Harris uses raw format 128 bytes long, but the number is just an ieee
214 double, and the last 64 bits are wasted. */
215 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
216 floatformat_intbit_no,
217 "floatformat_m88110_ext_harris",
218 floatformat_always_valid,
219 NULL
220 };
221 const struct floatformat floatformat_arm_ext_big =
222 {
223 /* Bits 1 to 16 are unused. */
224 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
225 floatformat_intbit_yes,
226 "floatformat_arm_ext_big",
227 floatformat_always_valid,
228 NULL
229 };
230 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
231 {
232 /* Bits 1 to 16 are unused. */
233 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
234 floatformat_intbit_yes,
235 "floatformat_arm_ext_littlebyte_bigword",
236 floatformat_always_valid,
237 NULL
238 };
239 const struct floatformat floatformat_ia64_spill_big =
240 {
241 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
242 floatformat_intbit_yes,
243 "floatformat_ia64_spill_big",
244 floatformat_always_valid,
245 NULL
246 };
247 const struct floatformat floatformat_ia64_spill_little =
248 {
249 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
250 floatformat_intbit_yes,
251 "floatformat_ia64_spill_little",
252 floatformat_always_valid,
253 NULL
254 };
255 const struct floatformat floatformat_ia64_quad_big =
256 {
257 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
258 floatformat_intbit_no,
259 "floatformat_ia64_quad_big",
260 floatformat_always_valid,
261 NULL
262 };
263 const struct floatformat floatformat_ia64_quad_little =
264 {
265 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
266 floatformat_intbit_no,
267 "floatformat_ia64_quad_little",
268 floatformat_always_valid,
269 NULL
270 };
271
272 static int
273 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
274 const void *from)
275 {
276 const unsigned char *ufrom = (const unsigned char *) from;
277 const struct floatformat *hfmt = fmt->split_half;
278 long top_exp, bot_exp;
279 int top_nan = 0;
280
281 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
282 hfmt->exp_start, hfmt->exp_len);
283 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
284 hfmt->exp_start, hfmt->exp_len);
285
286 if ((unsigned long) top_exp == hfmt->exp_nan)
287 top_nan = mant_bits_set (hfmt, ufrom);
288
289 /* A NaN is valid with any low part. */
290 if (top_nan)
291 return 1;
292
293 /* An infinity, zero or denormal requires low part 0 (positive or
294 negative). */
295 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
296 {
297 if (bot_exp != 0)
298 return 0;
299
300 return !mant_bits_set (hfmt, ufrom + 8);
301 }
302
303 /* The top part is now a finite normal value. The long double value
304 is the sum of the two parts, and the top part must equal the
305 result of rounding the long double value to nearest double. Thus
306 the bottom part must be <= 0.5ulp of the top part in absolute
307 value, and if it is < 0.5ulp then the long double is definitely
308 valid. */
309 if (bot_exp < top_exp - 53)
310 return 1;
311 if (bot_exp > top_exp - 53 && bot_exp != 0)
312 return 0;
313 if (bot_exp == 0)
314 {
315 /* The bottom part is 0 or denormal. Determine which, and if
316 denormal the first two set bits. */
317 int first_bit = -1, second_bit = -1, cur_bit;
318 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
319 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
320 hfmt->man_start + cur_bit, 1))
321 {
322 if (first_bit == -1)
323 first_bit = cur_bit;
324 else
325 {
326 second_bit = cur_bit;
327 break;
328 }
329 }
330 /* Bottom part 0 is OK. */
331 if (first_bit == -1)
332 return 1;
333 /* The real exponent of the bottom part is -first_bit. */
334 if (-first_bit < top_exp - 53)
335 return 1;
336 if (-first_bit > top_exp - 53)
337 return 0;
338 /* The bottom part is at least 0.5ulp of the top part. For this
339 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
340 more bits set) and the top part must have last bit 0. */
341 if (second_bit != -1)
342 return 0;
343 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
344 hfmt->man_start + hfmt->man_len - 1, 1);
345 }
346 else
347 {
348 /* The bottom part is at least 0.5ulp of the top part. For this
349 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
350 set) and the top part must have last bit 0. */
351 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
352 hfmt->man_start + hfmt->man_len - 1, 1))
353 return 0;
354 return !mant_bits_set (hfmt, ufrom + 8);
355 }
356 }
357
358 const struct floatformat floatformat_ibm_long_double =
359 {
360 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
361 floatformat_intbit_no,
362 "floatformat_ibm_long_double",
363 floatformat_ibm_long_double_is_valid,
364 &floatformat_ieee_double_big
365 };
366 \f
367
368 #ifndef min
369 #define min(a, b) ((a) < (b) ? (a) : (b))
370 #endif
371
372 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
373 format FMT, 0 otherwise. */
374 static int
375 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
376 {
377 unsigned int mant_bits, mant_off;
378 int mant_bits_left;
379
380 mant_off = fmt->man_start;
381 mant_bits_left = fmt->man_len;
382 while (mant_bits_left > 0)
383 {
384 mant_bits = min (mant_bits_left, 32);
385
386 if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
387 mant_off, mant_bits) != 0)
388 return 1;
389
390 mant_off += mant_bits;
391 mant_bits_left -= mant_bits;
392 }
393 return 0;
394 }
395
396 /* Extract a field which starts at START and is LEN bits long. DATA and
397 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
398 static unsigned long
399 get_field (const unsigned char *data, enum floatformat_byteorders order,
400 unsigned int total_len, unsigned int start, unsigned int len)
401 {
402 unsigned long result = 0;
403 unsigned int cur_byte;
404 int lo_bit, hi_bit, cur_bitshift = 0;
405 int nextbyte = (order == floatformat_little) ? 1 : -1;
406
407 /* Start is in big-endian bit order! Fix that first. */
408 start = total_len - (start + len);
409
410 /* Start at the least significant part of the field. */
411 if (order == floatformat_little)
412 cur_byte = start / FLOATFORMAT_CHAR_BIT;
413 else
414 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
415
416 lo_bit = start % FLOATFORMAT_CHAR_BIT;
417 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
418
419 do
420 {
421 unsigned int shifted = *(data + cur_byte) >> lo_bit;
422 unsigned int bits = hi_bit - lo_bit;
423 unsigned int mask = (1 << bits) - 1;
424 result |= (shifted & mask) << cur_bitshift;
425 len -= bits;
426 cur_bitshift += bits;
427 cur_byte += nextbyte;
428 lo_bit = 0;
429 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
430 }
431 while (len != 0);
432
433 return result;
434 }
435
436 /* Convert from FMT to a double.
437 FROM is the address of the extended float.
438 Store the double in *TO. */
439
440 void
441 floatformat_to_double (const struct floatformat *fmt,
442 const void *from, double *to)
443 {
444 const unsigned char *ufrom = (const unsigned char *) from;
445 double dto;
446 long exponent;
447 unsigned long mant;
448 unsigned int mant_bits, mant_off;
449 int mant_bits_left;
450 int special_exponent; /* It's a NaN, denorm or zero */
451
452 /* Split values are not handled specially, since the top half has
453 the correctly rounded double value (in the only supported case of
454 split values). */
455
456 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
457 fmt->exp_start, fmt->exp_len);
458
459 /* If the exponent indicates a NaN, we don't have information to
460 decide what to do. So we handle it like IEEE, except that we
461 don't try to preserve the type of NaN. FIXME. */
462 if ((unsigned long) exponent == fmt->exp_nan)
463 {
464 int nan = mant_bits_set (fmt, ufrom);
465
466 /* On certain systems (such as GNU/Linux), the use of the
467 INFINITY macro below may generate a warning that can not be
468 silenced due to a bug in GCC (PR preprocessor/11931). The
469 preprocessor fails to recognise the __extension__ keyword in
470 conjunction with the GNU/C99 extension for hexadecimal
471 floating point constants and will issue a warning when
472 compiling with -pedantic. */
473 if (nan)
474 dto = NAN;
475 else
476 dto = INFINITY;
477
478 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
479 dto = -dto;
480
481 *to = dto;
482
483 return;
484 }
485
486 mant_bits_left = fmt->man_len;
487 mant_off = fmt->man_start;
488 dto = 0.0;
489
490 special_exponent = exponent == 0 || (unsigned long) exponent == fmt->exp_nan;
491
492 /* Don't bias zero's, denorms or NaNs. */
493 if (!special_exponent)
494 exponent -= fmt->exp_bias;
495
496 /* Build the result algebraically. Might go infinite, underflow, etc;
497 who cares. */
498
499 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
500 increment the exponent by one to account for the integer bit. */
501
502 if (!special_exponent)
503 {
504 if (fmt->intbit == floatformat_intbit_no)
505 dto = ldexp (1.0, exponent);
506 else
507 exponent++;
508 }
509
510 while (mant_bits_left > 0)
511 {
512 mant_bits = min (mant_bits_left, 32);
513
514 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
515 mant_off, mant_bits);
516
517 /* Handle denormalized numbers. FIXME: What should we do for
518 non-IEEE formats? */
519 if (special_exponent && exponent == 0 && mant != 0)
520 dto += ldexp ((double)mant,
521 (- fmt->exp_bias
522 - mant_bits
523 - (mant_off - fmt->man_start)
524 + 1));
525 else
526 dto += ldexp ((double)mant, exponent - mant_bits);
527 if (exponent != 0)
528 exponent -= mant_bits;
529 mant_off += mant_bits;
530 mant_bits_left -= mant_bits;
531 }
532
533 /* Negate it if negative. */
534 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
535 dto = -dto;
536 *to = dto;
537 }
538 \f
539 static void put_field (unsigned char *, enum floatformat_byteorders,
540 unsigned int,
541 unsigned int,
542 unsigned int,
543 unsigned long);
544
545 /* Set a field which starts at START and is LEN bits long. DATA and
546 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
547 static void
548 put_field (unsigned char *data, enum floatformat_byteorders order,
549 unsigned int total_len, unsigned int start, unsigned int len,
550 unsigned long stuff_to_put)
551 {
552 unsigned int cur_byte;
553 int lo_bit, hi_bit;
554 int nextbyte = (order == floatformat_little) ? 1 : -1;
555
556 /* Start is in big-endian bit order! Fix that first. */
557 start = total_len - (start + len);
558
559 /* Start at the least significant part of the field. */
560 if (order == floatformat_little)
561 cur_byte = start / FLOATFORMAT_CHAR_BIT;
562 else
563 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
564
565 lo_bit = start % FLOATFORMAT_CHAR_BIT;
566 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
567
568 do
569 {
570 unsigned char *byte_ptr = data + cur_byte;
571 unsigned int bits = hi_bit - lo_bit;
572 unsigned int mask = ((1 << bits) - 1) << lo_bit;
573 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
574 stuff_to_put >>= bits;
575 len -= bits;
576 cur_byte += nextbyte;
577 lo_bit = 0;
578 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
579 }
580 while (len != 0);
581 }
582
583 /* The converse: convert the double *FROM to an extended float
584 and store where TO points. Neither FROM nor TO have any alignment
585 restrictions. */
586
587 void
588 floatformat_from_double (const struct floatformat *fmt,
589 const double *from, void *to)
590 {
591 double dfrom;
592 int exponent;
593 double mant;
594 unsigned int mant_bits, mant_off;
595 int mant_bits_left;
596 unsigned char *uto = (unsigned char *) to;
597
598 dfrom = *from;
599 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
600
601 /* Split values are not handled specially, since a bottom half of
602 zero is correct for any value representable as double (in the
603 only supported case of split values). */
604
605 /* If negative, set the sign bit. */
606 if (dfrom < 0)
607 {
608 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
609 dfrom = -dfrom;
610 }
611
612 if (dfrom == 0)
613 {
614 /* 0.0. */
615 return;
616 }
617
618 if (dfrom != dfrom)
619 {
620 /* NaN. */
621 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
622 fmt->exp_len, fmt->exp_nan);
623 /* Be sure it's not infinity, but NaN value is irrelevant. */
624 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
625 32, 1);
626 return;
627 }
628
629 if (dfrom + dfrom == dfrom)
630 {
631 /* This can only happen for an infinite value (or zero, which we
632 already handled above). */
633 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
634 fmt->exp_len, fmt->exp_nan);
635 return;
636 }
637
638 mant = frexp (dfrom, &exponent);
639 if (exponent + fmt->exp_bias - 1 > 0)
640 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
641 fmt->exp_len, exponent + fmt->exp_bias - 1);
642 else
643 {
644 /* Handle a denormalized number. FIXME: What should we do for
645 non-IEEE formats? */
646 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
647 fmt->exp_len, 0);
648 mant = ldexp (mant, exponent + fmt->exp_bias - 1);
649 }
650
651 mant_bits_left = fmt->man_len;
652 mant_off = fmt->man_start;
653 while (mant_bits_left > 0)
654 {
655 unsigned long mant_long;
656 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
657
658 mant *= 4294967296.0;
659 mant_long = (unsigned long)mant;
660 mant -= mant_long;
661
662 /* If the integer bit is implicit, and we are not creating a
663 denormalized number, then we need to discard it. */
664 if ((unsigned int) mant_bits_left == fmt->man_len
665 && fmt->intbit == floatformat_intbit_no
666 && exponent + fmt->exp_bias - 1 > 0)
667 {
668 mant_long &= 0x7fffffff;
669 mant_bits -= 1;
670 }
671 else if (mant_bits < 32)
672 {
673 /* The bits we want are in the most significant MANT_BITS bits of
674 mant_long. Move them to the least significant. */
675 mant_long >>= 32 - mant_bits;
676 }
677
678 put_field (uto, fmt->byteorder, fmt->totalsize,
679 mant_off, mant_bits, mant_long);
680 mant_off += mant_bits;
681 mant_bits_left -= mant_bits;
682 }
683 }
684
685 /* Return non-zero iff the data at FROM is a valid number in format FMT. */
686
687 int
688 floatformat_is_valid (const struct floatformat *fmt, const void *from)
689 {
690 return fmt->is_valid (fmt, from);
691 }
692
693
694 #ifdef IEEE_DEBUG
695
696 #include <stdio.h>
697
698 /* This is to be run on a host which uses IEEE floating point. */
699
700 void
701 ieee_test (double n)
702 {
703 double result;
704
705 floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
706 if ((n != result && (! isnan (n) || ! isnan (result)))
707 || (n < 0 && result >= 0)
708 || (n >= 0 && result < 0))
709 printf ("Differ(to): %.20g -> %.20g\n", n, result);
710
711 floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
712 if ((n != result && (! isnan (n) || ! isnan (result)))
713 || (n < 0 && result >= 0)
714 || (n >= 0 && result < 0))
715 printf ("Differ(from): %.20g -> %.20g\n", n, result);
716
717 #if 0
718 {
719 char exten[16];
720
721 floatformat_from_double (&floatformat_m68881_ext, &n, exten);
722 floatformat_to_double (&floatformat_m68881_ext, exten, &result);
723 if (n != result)
724 printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
725 }
726 #endif
727
728 #if IEEE_DEBUG > 1
729 /* This is to be run on a host which uses 68881 format. */
730 {
731 long double ex = *(long double *)exten;
732 if (ex != n)
733 printf ("Differ(from vs. extended): %.20g\n", n);
734 }
735 #endif
736 }
737
738 int
739 main (void)
740 {
741 ieee_test (0.0);
742 ieee_test (0.5);
743 ieee_test (256.0);
744 ieee_test (0.12345);
745 ieee_test (234235.78907234);
746 ieee_test (-512.0);
747 ieee_test (-0.004321);
748 ieee_test (1.2E-70);
749 ieee_test (1.2E-316);
750 ieee_test (4.9406564584124654E-324);
751 ieee_test (- 4.9406564584124654E-324);
752 ieee_test (- 0.0);
753 ieee_test (- INFINITY);
754 ieee_test (- NAN);
755 ieee_test (INFINITY);
756 ieee_test (NAN);
757 return 0;
758 }
759 #endif