]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - libiberty/hashtab.c
* hashtab.c (higher_prime_number): Use a table, rather than a
[thirdparty/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((PTR) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((PTR) 1)
61
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
73
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
76
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
80 {
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static unsigned long primes[] = {
84 2,
85 7,
86 13,
87 31,
88 61,
89 127,
90 251,
91 509,
92 1021,
93 2039,
94 4093,
95 8191,
96 16381,
97 32749,
98 65521,
99 131071,
100 262139,
101 524287,
102 1048573,
103 2097143,
104 4194301,
105 8388593,
106 16777213,
107 33554393,
108 67108859,
109 134217689,
110 268435399,
111 536870909,
112 1073741789,
113 2147483647,
114 4294967291
115 };
116
117 unsigned long* low = &primes[0];
118 unsigned long* high = &primes[sizeof(primes) / sizeof(primes[0])];
119
120 while (low != high)
121 {
122 unsigned long* mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
137 }
138
139 /* Returns a hash code for P. */
140
141 static hashval_t
142 hash_pointer (p)
143 const PTR p;
144 {
145 return (hashval_t) ((long)p >> 3);
146 }
147
148 /* Returns non-zero if P1 and P2 are equal. */
149
150 static int
151 eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
154 {
155 return p1 == p2;
156 }
157
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table. Memory allocation must not fail. */
162
163 htab_t
164 htab_create (size, hash_f, eq_f, del_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
169 {
170 htab_t result;
171
172 size = higher_prime_number (size);
173 result = (htab_t) xcalloc (1, sizeof (struct htab));
174 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
175 result->size = size;
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
179 result->return_allocation_failure = 0;
180 return result;
181 }
182
183 /* This function creates table with length slightly longer than given
184 source length. The created hash table is initiated as empty (all the
185 hash table entries are EMPTY_ENTRY). The function returns the created
186 hash table. Memory allocation may fail; it may return NULL. */
187
188 htab_t
189 htab_try_create (size, hash_f, eq_f, del_f)
190 size_t size;
191 htab_hash hash_f;
192 htab_eq eq_f;
193 htab_del del_f;
194 {
195 htab_t result;
196
197 size = higher_prime_number (size);
198 result = (htab_t) calloc (1, sizeof (struct htab));
199 if (result == NULL)
200 return NULL;
201
202 result->entries = (PTR *) calloc (size, sizeof (PTR));
203 if (result->entries == NULL)
204 {
205 free (result);
206 return NULL;
207 }
208
209 result->size = size;
210 result->hash_f = hash_f;
211 result->eq_f = eq_f;
212 result->del_f = del_f;
213 result->return_allocation_failure = 1;
214 return result;
215 }
216
217 /* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
219
220 void
221 htab_delete (htab)
222 htab_t htab;
223 {
224 int i;
225
226 if (htab->del_f)
227 for (i = htab->size - 1; i >= 0; i--)
228 if (htab->entries[i] != EMPTY_ENTRY
229 && htab->entries[i] != DELETED_ENTRY)
230 (*htab->del_f) (htab->entries[i]);
231
232 free (htab->entries);
233 free (htab);
234 }
235
236 /* This function clears all entries in the given hash table. */
237
238 void
239 htab_empty (htab)
240 htab_t htab;
241 {
242 int i;
243
244 if (htab->del_f)
245 for (i = htab->size - 1; i >= 0; i--)
246 if (htab->entries[i] != EMPTY_ENTRY
247 && htab->entries[i] != DELETED_ENTRY)
248 (*htab->del_f) (htab->entries[i]);
249
250 memset (htab->entries, 0, htab->size * sizeof (PTR));
251 }
252
253 /* Similar to htab_find_slot, but without several unwanted side effects:
254 - Does not call htab->eq_f when it finds an existing entry.
255 - Does not change the count of elements/searches/collisions in the
256 hash table.
257 This function also assumes there are no deleted entries in the table.
258 HASH is the hash value for the element to be inserted. */
259
260 static PTR *
261 find_empty_slot_for_expand (htab, hash)
262 htab_t htab;
263 hashval_t hash;
264 {
265 size_t size = htab->size;
266 hashval_t hash2 = 1 + hash % (size - 2);
267 unsigned int index = hash % size;
268
269 for (;;)
270 {
271 PTR *slot = htab->entries + index;
272
273 if (*slot == EMPTY_ENTRY)
274 return slot;
275 else if (*slot == DELETED_ENTRY)
276 abort ();
277
278 index += hash2;
279 if (index >= size)
280 index -= size;
281 }
282 }
283
284 /* The following function changes size of memory allocated for the
285 entries and repeatedly inserts the table elements. The occupancy
286 of the table after the call will be about 50%. Naturally the hash
287 table must already exist. Remember also that the place of the
288 table entries is changed. If memory allocation failures are allowed,
289 this function will return zero, indicating that the table could not be
290 expanded. If all goes well, it will return a non-zero value. */
291
292 static int
293 htab_expand (htab)
294 htab_t htab;
295 {
296 PTR *oentries;
297 PTR *olimit;
298 PTR *p;
299
300 oentries = htab->entries;
301 olimit = oentries + htab->size;
302
303 htab->size = higher_prime_number (htab->size * 2);
304
305 if (htab->return_allocation_failure)
306 {
307 PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
308 if (nentries == NULL)
309 return 0;
310 htab->entries = nentries;
311 }
312 else
313 htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));
314
315 htab->n_elements -= htab->n_deleted;
316 htab->n_deleted = 0;
317
318 p = oentries;
319 do
320 {
321 PTR x = *p;
322
323 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
324 {
325 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
326
327 *q = x;
328 }
329
330 p++;
331 }
332 while (p < olimit);
333
334 free (oentries);
335 return 1;
336 }
337
338 /* This function searches for a hash table entry equal to the given
339 element. It cannot be used to insert or delete an element. */
340
341 PTR
342 htab_find_with_hash (htab, element, hash)
343 htab_t htab;
344 const PTR element;
345 hashval_t hash;
346 {
347 unsigned int index;
348 hashval_t hash2;
349 size_t size;
350 PTR entry;
351
352 htab->searches++;
353 size = htab->size;
354 index = hash % size;
355
356 entry = htab->entries[index];
357 if (entry == EMPTY_ENTRY
358 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
359 return entry;
360
361 hash2 = 1 + hash % (size - 2);
362
363 for (;;)
364 {
365 htab->collisions++;
366 index += hash2;
367 if (index >= size)
368 index -= size;
369
370 entry = htab->entries[index];
371 if (entry == EMPTY_ENTRY
372 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
373 return entry;
374 }
375 }
376
377 /* Like htab_find_slot_with_hash, but compute the hash value from the
378 element. */
379
380 PTR
381 htab_find (htab, element)
382 htab_t htab;
383 const PTR element;
384 {
385 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
386 }
387
388 /* This function searches for a hash table slot containing an entry
389 equal to the given element. To delete an entry, call this with
390 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
391 after doing some checks). To insert an entry, call this with
392 INSERT = 1, then write the value you want into the returned slot.
393 When inserting an entry, NULL may be returned if memory allocation
394 fails. */
395
396 PTR *
397 htab_find_slot_with_hash (htab, element, hash, insert)
398 htab_t htab;
399 const PTR element;
400 hashval_t hash;
401 enum insert_option insert;
402 {
403 PTR *first_deleted_slot;
404 unsigned int index;
405 hashval_t hash2;
406 size_t size;
407
408 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
409 && htab_expand (htab) == 0)
410 return NULL;
411
412 size = htab->size;
413 hash2 = 1 + hash % (size - 2);
414 index = hash % size;
415
416 htab->searches++;
417 first_deleted_slot = NULL;
418
419 for (;;)
420 {
421 PTR entry = htab->entries[index];
422 if (entry == EMPTY_ENTRY)
423 {
424 if (insert == NO_INSERT)
425 return NULL;
426
427 htab->n_elements++;
428
429 if (first_deleted_slot)
430 {
431 *first_deleted_slot = EMPTY_ENTRY;
432 return first_deleted_slot;
433 }
434
435 return &htab->entries[index];
436 }
437
438 if (entry == DELETED_ENTRY)
439 {
440 if (!first_deleted_slot)
441 first_deleted_slot = &htab->entries[index];
442 }
443 else if ((*htab->eq_f) (entry, element))
444 return &htab->entries[index];
445
446 htab->collisions++;
447 index += hash2;
448 if (index >= size)
449 index -= size;
450 }
451 }
452
453 /* Like htab_find_slot_with_hash, but compute the hash value from the
454 element. */
455
456 PTR *
457 htab_find_slot (htab, element, insert)
458 htab_t htab;
459 const PTR element;
460 enum insert_option insert;
461 {
462 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
463 insert);
464 }
465
466 /* This function deletes an element with the given value from hash
467 table. If there is no matching element in the hash table, this
468 function does nothing. */
469
470 void
471 htab_remove_elt (htab, element)
472 htab_t htab;
473 PTR element;
474 {
475 PTR *slot;
476
477 slot = htab_find_slot (htab, element, NO_INSERT);
478 if (*slot == EMPTY_ENTRY)
479 return;
480
481 if (htab->del_f)
482 (*htab->del_f) (*slot);
483
484 *slot = DELETED_ENTRY;
485 htab->n_deleted++;
486 }
487
488 /* This function clears a specified slot in a hash table. It is
489 useful when you've already done the lookup and don't want to do it
490 again. */
491
492 void
493 htab_clear_slot (htab, slot)
494 htab_t htab;
495 PTR *slot;
496 {
497 if (slot < htab->entries || slot >= htab->entries + htab->size
498 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
499 abort ();
500
501 if (htab->del_f)
502 (*htab->del_f) (*slot);
503
504 *slot = DELETED_ENTRY;
505 htab->n_deleted++;
506 }
507
508 /* This function scans over the entire hash table calling
509 CALLBACK for each live entry. If CALLBACK returns false,
510 the iteration stops. INFO is passed as CALLBACK's second
511 argument. */
512
513 void
514 htab_traverse (htab, callback, info)
515 htab_t htab;
516 htab_trav callback;
517 PTR info;
518 {
519 PTR *slot = htab->entries;
520 PTR *limit = slot + htab->size;
521
522 do
523 {
524 PTR x = *slot;
525
526 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
527 if (!(*callback) (slot, info))
528 break;
529 }
530 while (++slot < limit);
531 }
532
533 /* Return the current size of given hash table. */
534
535 size_t
536 htab_size (htab)
537 htab_t htab;
538 {
539 return htab->size;
540 }
541
542 /* Return the current number of elements in given hash table. */
543
544 size_t
545 htab_elements (htab)
546 htab_t htab;
547 {
548 return htab->n_elements - htab->n_deleted;
549 }
550
551 /* Return the fraction of fixed collisions during all work with given
552 hash table. */
553
554 double
555 htab_collisions (htab)
556 htab_t htab;
557 {
558 if (htab->searches == 0)
559 return 0.0;
560
561 return (double) htab->collisions / (double) htab->searches;
562 }