]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/cpp_type_traits.h
Update copyright years.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / cpp_type_traits.h
1 // The -*- C++ -*- type traits classes for internal use in libstdc++
2
3 // Copyright (C) 2000-2024 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/cpp_type_traits.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{ext/type_traits}
28 */
29
30 // Written by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
31
32 #ifndef _CPP_TYPE_TRAITS_H
33 #define _CPP_TYPE_TRAITS_H 1
34
35 #pragma GCC system_header
36
37 #include <bits/c++config.h>
38
39 //
40 // This file provides some compile-time information about various types.
41 // These representations were designed, on purpose, to be constant-expressions
42 // and not types as found in <bits/type_traits.h>. In particular, they
43 // can be used in control structures and the optimizer hopefully will do
44 // the obvious thing.
45 //
46 // Why integral expressions, and not functions nor types?
47 // Firstly, these compile-time entities are used as template-arguments
48 // so function return values won't work: We need compile-time entities.
49 // We're left with types and constant integral expressions.
50 // Secondly, from the point of view of ease of use, type-based compile-time
51 // information is -not- *that* convenient. One has to write lots of
52 // overloaded functions and to hope that the compiler will select the right
53 // one. As a net effect, the overall structure isn't very clear at first
54 // glance.
55 // Thirdly, partial ordering and overload resolution (of function templates)
56 // is highly costly in terms of compiler-resource. It is a Good Thing to
57 // keep these resource consumption as least as possible.
58 //
59 // See valarray_array.h for a case use.
60 //
61 // -- Gaby (dosreis@cmla.ens-cachan.fr) 2000-03-06.
62 //
63 // Update 2005: types are also provided and <bits/type_traits.h> has been
64 // removed.
65 //
66
67 extern "C++" {
68
69 namespace std _GLIBCXX_VISIBILITY(default)
70 {
71 _GLIBCXX_BEGIN_NAMESPACE_VERSION
72
73 struct __true_type { };
74 struct __false_type { };
75
76 template<bool>
77 struct __truth_type
78 { typedef __false_type __type; };
79
80 template<>
81 struct __truth_type<true>
82 { typedef __true_type __type; };
83
84 // N.B. The conversions to bool are needed due to the issue
85 // explained in c++/19404.
86 template<class _Sp, class _Tp>
87 struct __traitor
88 {
89 enum { __value = bool(_Sp::__value) || bool(_Tp::__value) };
90 typedef typename __truth_type<__value>::__type __type;
91 };
92
93 // Compare for equality of types.
94 template<typename, typename>
95 struct __are_same
96 {
97 enum { __value = 0 };
98 typedef __false_type __type;
99 };
100
101 template<typename _Tp>
102 struct __are_same<_Tp, _Tp>
103 {
104 enum { __value = 1 };
105 typedef __true_type __type;
106 };
107
108 // Holds if the template-argument is a void type.
109 template<typename _Tp>
110 struct __is_void
111 {
112 enum { __value = 0 };
113 typedef __false_type __type;
114 };
115
116 template<>
117 struct __is_void<void>
118 {
119 enum { __value = 1 };
120 typedef __true_type __type;
121 };
122
123 //
124 // Integer types
125 //
126 template<typename _Tp>
127 struct __is_integer
128 {
129 enum { __value = 0 };
130 typedef __false_type __type;
131 };
132
133 // Thirteen specializations (yes there are eleven standard integer
134 // types; <em>long long</em> and <em>unsigned long long</em> are
135 // supported as extensions). Up to four target-specific __int<N>
136 // types are supported as well.
137 template<>
138 struct __is_integer<bool>
139 {
140 enum { __value = 1 };
141 typedef __true_type __type;
142 };
143
144 template<>
145 struct __is_integer<char>
146 {
147 enum { __value = 1 };
148 typedef __true_type __type;
149 };
150
151 template<>
152 struct __is_integer<signed char>
153 {
154 enum { __value = 1 };
155 typedef __true_type __type;
156 };
157
158 template<>
159 struct __is_integer<unsigned char>
160 {
161 enum { __value = 1 };
162 typedef __true_type __type;
163 };
164
165 # ifdef __WCHAR_TYPE__
166 template<>
167 struct __is_integer<wchar_t>
168 {
169 enum { __value = 1 };
170 typedef __true_type __type;
171 };
172 # endif
173
174 #ifdef _GLIBCXX_USE_CHAR8_T
175 template<>
176 struct __is_integer<char8_t>
177 {
178 enum { __value = 1 };
179 typedef __true_type __type;
180 };
181 #endif
182
183 #if __cplusplus >= 201103L
184 template<>
185 struct __is_integer<char16_t>
186 {
187 enum { __value = 1 };
188 typedef __true_type __type;
189 };
190
191 template<>
192 struct __is_integer<char32_t>
193 {
194 enum { __value = 1 };
195 typedef __true_type __type;
196 };
197 #endif
198
199 template<>
200 struct __is_integer<short>
201 {
202 enum { __value = 1 };
203 typedef __true_type __type;
204 };
205
206 template<>
207 struct __is_integer<unsigned short>
208 {
209 enum { __value = 1 };
210 typedef __true_type __type;
211 };
212
213 template<>
214 struct __is_integer<int>
215 {
216 enum { __value = 1 };
217 typedef __true_type __type;
218 };
219
220 template<>
221 struct __is_integer<unsigned int>
222 {
223 enum { __value = 1 };
224 typedef __true_type __type;
225 };
226
227 template<>
228 struct __is_integer<long>
229 {
230 enum { __value = 1 };
231 typedef __true_type __type;
232 };
233
234 template<>
235 struct __is_integer<unsigned long>
236 {
237 enum { __value = 1 };
238 typedef __true_type __type;
239 };
240
241 template<>
242 struct __is_integer<long long>
243 {
244 enum { __value = 1 };
245 typedef __true_type __type;
246 };
247
248 template<>
249 struct __is_integer<unsigned long long>
250 {
251 enum { __value = 1 };
252 typedef __true_type __type;
253 };
254
255 #define __INT_N(TYPE) \
256 __extension__ \
257 template<> \
258 struct __is_integer<TYPE> \
259 { \
260 enum { __value = 1 }; \
261 typedef __true_type __type; \
262 }; \
263 __extension__ \
264 template<> \
265 struct __is_integer<unsigned TYPE> \
266 { \
267 enum { __value = 1 }; \
268 typedef __true_type __type; \
269 };
270
271 #ifdef __GLIBCXX_TYPE_INT_N_0
272 __INT_N(__GLIBCXX_TYPE_INT_N_0)
273 #endif
274 #ifdef __GLIBCXX_TYPE_INT_N_1
275 __INT_N(__GLIBCXX_TYPE_INT_N_1)
276 #endif
277 #ifdef __GLIBCXX_TYPE_INT_N_2
278 __INT_N(__GLIBCXX_TYPE_INT_N_2)
279 #endif
280 #ifdef __GLIBCXX_TYPE_INT_N_3
281 __INT_N(__GLIBCXX_TYPE_INT_N_3)
282 #endif
283
284 #undef __INT_N
285
286 //
287 // Floating point types
288 //
289 template<typename _Tp>
290 struct __is_floating
291 {
292 enum { __value = 0 };
293 typedef __false_type __type;
294 };
295
296 // three specializations (float, double and 'long double')
297 template<>
298 struct __is_floating<float>
299 {
300 enum { __value = 1 };
301 typedef __true_type __type;
302 };
303
304 template<>
305 struct __is_floating<double>
306 {
307 enum { __value = 1 };
308 typedef __true_type __type;
309 };
310
311 template<>
312 struct __is_floating<long double>
313 {
314 enum { __value = 1 };
315 typedef __true_type __type;
316 };
317
318 #ifdef __STDCPP_FLOAT16_T__
319 template<>
320 struct __is_floating<_Float16>
321 {
322 enum { __value = 1 };
323 typedef __true_type __type;
324 };
325 #endif
326
327 #ifdef __STDCPP_FLOAT32_T__
328 template<>
329 struct __is_floating<_Float32>
330 {
331 enum { __value = 1 };
332 typedef __true_type __type;
333 };
334 #endif
335
336 #ifdef __STDCPP_FLOAT64_T__
337 template<>
338 struct __is_floating<_Float64>
339 {
340 enum { __value = 1 };
341 typedef __true_type __type;
342 };
343 #endif
344
345 #ifdef __STDCPP_FLOAT128_T__
346 template<>
347 struct __is_floating<_Float128>
348 {
349 enum { __value = 1 };
350 typedef __true_type __type;
351 };
352 #endif
353
354 #ifdef __STDCPP_BFLOAT16_T__
355 template<>
356 struct __is_floating<__gnu_cxx::__bfloat16_t>
357 {
358 enum { __value = 1 };
359 typedef __true_type __type;
360 };
361 #endif
362
363 //
364 // Pointer types
365 //
366 template<typename _Tp>
367 struct __is_pointer
368 {
369 enum { __value = 0 };
370 typedef __false_type __type;
371 };
372
373 template<typename _Tp>
374 struct __is_pointer<_Tp*>
375 {
376 enum { __value = 1 };
377 typedef __true_type __type;
378 };
379
380 //
381 // An arithmetic type is an integer type or a floating point type
382 //
383 template<typename _Tp>
384 struct __is_arithmetic
385 : public __traitor<__is_integer<_Tp>, __is_floating<_Tp> >
386 { };
387
388 //
389 // A scalar type is an arithmetic type or a pointer type
390 //
391 template<typename _Tp>
392 struct __is_scalar
393 : public __traitor<__is_arithmetic<_Tp>, __is_pointer<_Tp> >
394 { };
395
396 //
397 // For use in std::copy and std::find overloads for streambuf iterators.
398 //
399 template<typename _Tp>
400 struct __is_char
401 {
402 enum { __value = 0 };
403 typedef __false_type __type;
404 };
405
406 template<>
407 struct __is_char<char>
408 {
409 enum { __value = 1 };
410 typedef __true_type __type;
411 };
412
413 #ifdef __WCHAR_TYPE__
414 template<>
415 struct __is_char<wchar_t>
416 {
417 enum { __value = 1 };
418 typedef __true_type __type;
419 };
420 #endif
421
422 template<typename _Tp>
423 struct __is_byte
424 {
425 enum { __value = 0 };
426 typedef __false_type __type;
427 };
428
429 template<>
430 struct __is_byte<char>
431 {
432 enum { __value = 1 };
433 typedef __true_type __type;
434 };
435
436 template<>
437 struct __is_byte<signed char>
438 {
439 enum { __value = 1 };
440 typedef __true_type __type;
441 };
442
443 template<>
444 struct __is_byte<unsigned char>
445 {
446 enum { __value = 1 };
447 typedef __true_type __type;
448 };
449
450 #if __cplusplus >= 201703L
451 enum class byte : unsigned char;
452
453 template<>
454 struct __is_byte<byte>
455 {
456 enum { __value = 1 };
457 typedef __true_type __type;
458 };
459 #endif // C++17
460
461 #ifdef _GLIBCXX_USE_CHAR8_T
462 template<>
463 struct __is_byte<char8_t>
464 {
465 enum { __value = 1 };
466 typedef __true_type __type;
467 };
468 #endif
469
470 template<typename> struct iterator_traits;
471
472 // A type that is safe for use with memcpy, memmove, memcmp etc.
473 template<typename _Tp>
474 struct __is_nonvolatile_trivially_copyable
475 {
476 enum { __value = __is_trivially_copyable(_Tp) };
477 };
478
479 // Cannot use memcpy/memmove/memcmp on volatile types even if they are
480 // trivially copyable, so ensure __memcpyable<volatile int*, volatile int*>
481 // and similar will be false.
482 template<typename _Tp>
483 struct __is_nonvolatile_trivially_copyable<volatile _Tp>
484 {
485 enum { __value = 0 };
486 };
487
488 // Whether two iterator types can be used with memcpy/memmove.
489 template<typename _OutputIter, typename _InputIter>
490 struct __memcpyable
491 {
492 enum { __value = 0 };
493 };
494
495 template<typename _Tp>
496 struct __memcpyable<_Tp*, _Tp*>
497 : __is_nonvolatile_trivially_copyable<_Tp>
498 { };
499
500 template<typename _Tp>
501 struct __memcpyable<_Tp*, const _Tp*>
502 : __is_nonvolatile_trivially_copyable<_Tp>
503 { };
504
505 // Whether two iterator types can be used with memcmp.
506 // This trait only says it's well-formed to use memcmp, not that it
507 // gives the right answer for a given algorithm. So for example, std::equal
508 // needs to add additional checks that the types are integers or pointers,
509 // because other trivially copyable types can overload operator==.
510 template<typename _Iter1, typename _Iter2>
511 struct __memcmpable
512 {
513 enum { __value = 0 };
514 };
515
516 // OK to use memcmp with pointers to trivially copyable types.
517 template<typename _Tp>
518 struct __memcmpable<_Tp*, _Tp*>
519 : __is_nonvolatile_trivially_copyable<_Tp>
520 { };
521
522 template<typename _Tp>
523 struct __memcmpable<const _Tp*, _Tp*>
524 : __is_nonvolatile_trivially_copyable<_Tp>
525 { };
526
527 template<typename _Tp>
528 struct __memcmpable<_Tp*, const _Tp*>
529 : __is_nonvolatile_trivially_copyable<_Tp>
530 { };
531
532 // Whether memcmp can be used to determine ordering for a type
533 // e.g. in std::lexicographical_compare or three-way comparisons.
534 // True for unsigned integer-like types where comparing each byte in turn
535 // as an unsigned char yields the right result. This is true for all
536 // unsigned integers on big endian targets, but only unsigned narrow
537 // character types (and std::byte) on little endian targets.
538 template<typename _Tp, bool _TreatAsBytes =
539 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
540 __is_integer<_Tp>::__value
541 #else
542 __is_byte<_Tp>::__value
543 #endif
544 >
545 struct __is_memcmp_ordered
546 {
547 static const bool __value = _Tp(-1) > _Tp(1); // is unsigned
548 };
549
550 template<typename _Tp>
551 struct __is_memcmp_ordered<_Tp, false>
552 {
553 static const bool __value = false;
554 };
555
556 // Whether two types can be compared using memcmp.
557 template<typename _Tp, typename _Up, bool = sizeof(_Tp) == sizeof(_Up)>
558 struct __is_memcmp_ordered_with
559 {
560 static const bool __value = __is_memcmp_ordered<_Tp>::__value
561 && __is_memcmp_ordered<_Up>::__value;
562 };
563
564 template<typename _Tp, typename _Up>
565 struct __is_memcmp_ordered_with<_Tp, _Up, false>
566 {
567 static const bool __value = false;
568 };
569
570 #if __cplusplus >= 201703L
571 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
572 // std::byte is not an integer, but it can be compared using memcmp.
573 template<>
574 struct __is_memcmp_ordered<std::byte, false>
575 { static constexpr bool __value = true; };
576 #endif
577
578 // std::byte can only be compared to itself, not to other types.
579 template<>
580 struct __is_memcmp_ordered_with<std::byte, std::byte, true>
581 { static constexpr bool __value = true; };
582
583 template<typename _Tp, bool _SameSize>
584 struct __is_memcmp_ordered_with<_Tp, std::byte, _SameSize>
585 { static constexpr bool __value = false; };
586
587 template<typename _Up, bool _SameSize>
588 struct __is_memcmp_ordered_with<std::byte, _Up, _SameSize>
589 { static constexpr bool __value = false; };
590 #endif
591
592 //
593 // Move iterator type
594 //
595 template<typename _Tp>
596 struct __is_move_iterator
597 {
598 enum { __value = 0 };
599 typedef __false_type __type;
600 };
601
602 // Fallback implementation of the function in bits/stl_iterator.h used to
603 // remove the move_iterator wrapper.
604 template<typename _Iterator>
605 _GLIBCXX20_CONSTEXPR
606 inline _Iterator
607 __miter_base(_Iterator __it)
608 { return __it; }
609
610 _GLIBCXX_END_NAMESPACE_VERSION
611 } // namespace
612 } // extern "C++"
613
614 #endif //_CPP_TYPE_TRAITS_H