]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/testsuite/ext/pb_ds/example/priority_queue_dijkstra.cc
Update copyright years.
[thirdparty/gcc.git] / libstdc++-v3 / testsuite / ext / pb_ds / example / priority_queue_dijkstra.cc
1 // -*- C++ -*-
2
3 // Copyright (C) 2005-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the terms
7 // of the GNU General Public License as published by the Free Software
8 // Foundation; either version 3, or (at your option) any later
9 // version.
10
11 // This library is distributed in the hope that it will be useful, but
12 // WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License
17 // along with this library; see the file COPYING3. If not see
18 // <http://www.gnu.org/licenses/>.
19
20
21 // Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL.
22
23 // Permission to use, copy, modify, sell, and distribute this software
24 // is hereby granted without fee, provided that the above copyright
25 // notice appears in all copies, and that both that copyright notice
26 // and this permission notice appear in supporting documentation. None
27 // of the above authors, nor IBM Haifa Research Laboratories, make any
28 // representation about the suitability of this software for any
29 // purpose. It is provided "as is" without express or implied
30 // warranty.
31
32 /**
33 * @file priority_queue_dijkstra_example.cpp
34 * A basic example showing how to cross reference a vector and a
35 * priority-queue for modify.
36 */
37
38 /**
39 * This example shows how to cross-reference priority queues
40 * and a vector. I.e., using a vector to
41 * map keys to entries in a priority queue, and using the priority
42 * queue to map entries to the vector. The combination
43 * can be used for fast modification of keys.
44 *
45 * As an example, a very simple form of Diskstra's algorithm is used. The graph
46 * is represented by an adjacency matrix. Nodes and vertices are size_ts, and
47 * it is assumed that the minimal path between any two nodes is less than 1000.
48 */
49
50
51
52 #include <vector>
53 #include <iostream>
54 #include <ext/pb_ds/priority_queue.hpp>
55
56 using namespace std;
57 using namespace __gnu_pbds;
58
59 // The value type of the priority queue.
60 // The first entry is the node's id, and the second is the distance.
61 typedef std::pair<size_t, size_t> pq_value;
62
63 // Comparison functor used to compare priority-queue value types.
64 struct pq_value_cmp : public binary_function<pq_value, pq_value, bool>
65 {
66 inline bool
67 operator()(const pq_value& r_lhs, const pq_value& r_rhs) const
68 {
69 // Note that a value is considered smaller than a different value
70 // if its distance is* larger*. This is because by STL
71 // conventions, "larger" entries are nearer the top of the
72 // priority queue.
73 return r_rhs.second < r_lhs.second;
74 }
75 };
76
77 int main()
78 {
79 enum
80 {
81 // Number of vertices is hard-coded in this example.
82 num_vertices = 5,
83 // "Infinity".
84 graph_inf = 1000
85 };
86
87 // The edge-distance matrix.
88 // For example, the distance from node 0 to node 1 is 5, and the
89 // distance from node 1 to node 0 is 2.
90 const size_t a_a_edge_legnth[num_vertices][num_vertices] =
91 {
92 {0, 5, 3, 7, 6},
93 {2, 0, 2, 8, 9},
94 {2, 1, 0, 8, 0},
95 {1, 8, 3, 0, 2},
96 {2, 3, 4, 2, 0}
97 };
98
99 // The priority queue type.
100 typedef __gnu_pbds::priority_queue< pq_value, pq_value_cmp> pq_t;
101
102 // The priority queue object.
103 pq_t p;
104
105 // This vector contains for each node, a find-iterator into the
106 // priority queue.
107 vector<pq_t::point_iterator> a_it;
108
109 // First we initialize the data structures.
110
111 // For each node, we push into the priority queue a value
112 // identifying it with a distance of infinity.
113 for (size_t i = 0; i < num_vertices; ++i)
114 a_it.push_back(p.push(pq_value(i, graph_inf)));
115
116 // Now we take the initial node, in this case 0, and modify its
117 // distance to 0.
118 p.modify(a_it[0], pq_value(0, 0));
119
120 // The priority queue contains all vertices whose final distance has
121 // not been determined, so to finish the algorithm, we must loop
122 // until it is empty.
123 while (!p.empty())
124 {
125 // First we find the node whose distance is smallest.
126 const pq_value& r_v = p.top();
127 const size_t node_id = r_v.first;
128 const size_t dist = r_v.second;
129
130 // This is the node's final distance, so we can print it out.
131 cout << "The distance from 0 to " << node_id
132 << " is " << dist << endl;
133
134 // Now we go over the node's neighbors and "relax" the
135 // distances, if applicable.
136 for (size_t neighbor_i = 0; neighbor_i < num_vertices; ++neighbor_i)
137 {
138 // Potentially, the distance to the neighbor is the distance
139 // to the currently-considered node + the distance from this
140 // node to the neighbor.
141 const size_t pot_dist = dist + a_a_edge_legnth[node_id][neighbor_i];
142
143 if (a_it[neighbor_i] == a_it[0])
144 continue;
145
146 // "Relax" the distance (if appropriate) through modify.
147 if (pot_dist < a_it[neighbor_i]->second)
148 p.modify(a_it[neighbor_i], pq_value(neighbor_i, pot_dist));
149 }
150
151 // Done with the node, so we pop it.
152 a_it[node_id] = a_it[0];
153 p.pop();
154 }
155
156 return 0;
157 }