]> git.ipfire.org Git - thirdparty/systemd.git/blob - man/crypttab.xml
tree-wide: use the term "initrd" at most places we so far used "initramfs"
[thirdparty/systemd.git] / man / crypttab.xml
1 <?xml version="1.0"?>
2 <!--*-nxml-*-->
3 <!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
4 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
5 <!--
6 SPDX-License-Identifier: LGPL-2.1-or-later
7
8 This is based on crypttab(5) from Fedora's initscripts package, which in
9 turn is based on Debian's version.
10
11 The Red Hat version has been written by Miloslav Trmac <mitr@redhat.com>.
12 -->
13 <refentry id="crypttab" conditional='HAVE_LIBCRYPTSETUP' xmlns:xi="http://www.w3.org/2001/XInclude">
14
15 <refentryinfo>
16 <title>crypttab</title>
17 <productname>systemd</productname>
18 </refentryinfo>
19
20 <refmeta>
21 <refentrytitle>crypttab</refentrytitle>
22 <manvolnum>5</manvolnum>
23 </refmeta>
24
25 <refnamediv>
26 <refname>crypttab</refname>
27 <refpurpose>Configuration for encrypted block devices</refpurpose>
28 </refnamediv>
29
30 <refsynopsisdiv>
31 <para><filename>/etc/crypttab</filename></para>
32 </refsynopsisdiv>
33
34 <refsect1>
35 <title>Description</title>
36
37 <para>The <filename>/etc/crypttab</filename> file describes
38 encrypted block devices that are set up during system boot.</para>
39
40 <para>Empty lines and lines starting with the <literal>#</literal>
41 character are ignored. Each of the remaining lines describes one
42 encrypted block device. Fields are delimited by white space.</para>
43
44 <para>Each line is in the form<programlisting><replaceable>volume-name</replaceable> <replaceable>encrypted-device</replaceable> <replaceable>key-file</replaceable> <replaceable>options</replaceable></programlisting>
45 The first two fields are mandatory, the remaining two are
46 optional.</para>
47
48 <para>Setting up encrypted block devices using this file supports four encryption modes: LUKS, TrueCrypt,
49 BitLocker and plain. See <citerefentry
50 project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry> for
51 more information about each mode. When no mode is specified in the options field and the block device
52 contains a LUKS signature, it is opened as a LUKS device; otherwise, it is assumed to be in raw dm-crypt
53 (plain mode) format.</para>
54
55 <para>The four fields of <filename>/etc/crypttab</filename> are defined as follows:</para>
56
57 <orderedlist>
58
59 <listitem><para>The first field contains the name of the resulting volume with decrypted data; its
60 block device is set up below <filename>/dev/mapper/</filename>.</para></listitem>
61
62 <listitem><para>The second field contains a path to the underlying block
63 device or file, or a specification of a block device via
64 <literal>UUID=</literal> followed by the UUID.</para></listitem>
65
66 <listitem><para>The third field specifies an absolute path to a file with the encryption
67 key. Optionally, the path may be followed by <literal>:</literal> and an
68 <filename>/etc/fstab</filename> style device specification (e.g. starting with
69 <literal>LABEL=</literal> or similar); in which case the path is taken relative to the specified
70 device's file system root. If the field is not present or is <literal>none</literal> or
71 <literal>-</literal>, a key file named after the volume to unlock (i.e. the first column of the line),
72 suffixed with <filename>.key</filename> is automatically loaded from the
73 <filename>/etc/cryptsetup-keys.d/</filename> and <filename>/run/cryptsetup-keys.d/</filename>
74 directories, if present. Otherwise, the password has to be manually entered during system boot. For
75 swap encryption, <filename>/dev/urandom</filename> may be used as key file, resulting in a randomized
76 key.</para>
77
78 <para>If the specified key file path refers to an <constant>AF_UNIX</constant> stream socket in the
79 file system, the key is acquired by connecting to the socket and reading it from the connection. This
80 allows the implementation of a service to provide key information dynamically, at the moment when it is
81 needed. For details see below.</para></listitem>
82
83 <listitem><para>The fourth field, if present, is a comma-delimited list of options. The supported
84 options are listed below.</para></listitem>
85 </orderedlist>
86 </refsect1>
87
88 <refsect1>
89 <title>Key Acquisition</title>
90
91 <para>Six different mechanisms for acquiring the decryption key or passphrase unlocking the encrypted
92 volume are supported. Specifically:</para>
93
94 <orderedlist>
95
96 <listitem><para>Most prominently, the user may be queried interactively during volume activation
97 (i.e. typically at boot), asking them to type in the necessary passphrase(s).</para></listitem>
98
99 <listitem><para>The (unencrypted) key may be read from a file on disk, possibly on removable media. The third field
100 of each line encodes the location, for details see above.</para></listitem>
101
102 <listitem><para>The (unencrypted) key may be requested from another service, by specifying an
103 <constant>AF_UNIX</constant> file system socket in place of a key file in the third field. For details
104 see above and below.</para></listitem>
105
106 <listitem><para>The key may be acquired via a PKCS#11 compatible hardware security token or
107 smartcard. In this case an encrypted key is stored on disk/removable media, acquired via
108 <constant>AF_UNIX</constant>, or stored in the LUKS2 JSON token metadata header. The encrypted key is
109 then decrypted by the PKCS#11 token with an RSA key stored on it, and then used to unlock the encrypted
110 volume. Use the <option>pkcs11-uri=</option> option described below to use this mechanism.</para></listitem>
111
112 <listitem><para>Similarly, the key may be acquired via a FIDO2 compatible hardware security token
113 (which must implement the "hmac-secret" extension). In this case a key generated randomly during
114 enrollment is stored on disk/removable media, acquired via <constant>AF_UNIX</constant>, or stored in
115 the LUKS2 JSON token metadata header. The random key is hashed via a keyed hash function (HMAC) on the
116 FIDO2 token, using a secret key stored on the token that never leaves it. The resulting hash value is
117 then used as key to unlock the encrypted volume. Use the <option>fido2-device=</option> option
118 described below to use this mechanism.</para></listitem>
119
120 <listitem><para>Similarly, the key may be acquired via a TPM2 security chip. In this case a (during
121 enrollment) randomly generated key — encrypted by an asymmetric key derived from the TPM2 chip's seed
122 key — is stored on disk/removable media, acquired via <constant>AF_UNIX</constant>, or stored in the
123 LUKS2 JSON token metadata header. Use the <option>tpm2-device=</option> option described below to use
124 this mechanism.</para></listitem>
125 </orderedlist>
126
127 <para>For the latter five mechanisms the source for the key material used for unlocking the volume is
128 primarily configured in the third field of each <filename>/etc/crypttab</filename> line, but may also
129 configured in <filename>/etc/cryptsetup-keys.d/</filename> and
130 <filename>/run/cryptsetup-keys.d/</filename> (see above) or in the LUKS2 JSON token header (in case of
131 the latter three). Use the
132 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
133 tool to enroll PKCS#11, FIDO2 and TPM2 devices in LUKS2 volumes.</para>
134 </refsect1>
135
136 <refsect1>
137 <title>Supported Options</title>
138
139 <para>The following options may be used in the fourth field of each line:</para>
140
141 <variablelist class='fstab-options'>
142
143 <varlistentry>
144 <term><option>cipher=</option></term>
145
146 <listitem><para>Specifies the cipher to use. See <citerefentry
147 project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
148 for possible values and the default value of this option. A cipher with unpredictable IV values, such
149 as <literal>aes-cbc-essiv:sha256</literal>, is recommended. Embedded commas in the cipher
150 specification need to be escaped by preceding them with a backslash, see example below.</para>
151 </listitem>
152 </varlistentry>
153
154 <varlistentry>
155 <term><option>discard</option></term>
156
157 <listitem><para>Allow discard requests to be passed through the encrypted block
158 device. This improves performance on SSD storage but has security implications.
159 </para></listitem>
160 </varlistentry>
161
162 <varlistentry>
163 <term><option>hash=</option></term>
164
165 <listitem><para>Specifies the hash to use for password
166 hashing. See
167 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
168 for possible values and the default value of this
169 option.</para></listitem>
170 </varlistentry>
171
172 <varlistentry>
173 <term><option>header=</option></term>
174
175 <listitem><para>Use a detached (separated) metadata device or
176 file where the LUKS header is stored. This option is only
177 relevant for LUKS devices. See
178 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
179 for possible values and the default value of this
180 option.</para>
181
182 <para>Optionally, the path may be followed by <literal>:</literal> and an
183 <filename>/etc/fstab</filename> device specification (e.g. starting with <literal>UUID=</literal> or
184 similar); in which case, the path is relative to the device file system root. The device gets mounted
185 automatically for LUKS device activation duration only.</para></listitem>
186 </varlistentry>
187
188 <varlistentry>
189 <term><option>keyfile-offset=</option></term>
190
191 <listitem><para>Specifies the number of bytes to skip at the
192 start of the key file. See
193 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
194 for possible values and the default value of this
195 option.</para></listitem>
196 </varlistentry>
197
198 <varlistentry>
199 <term><option>keyfile-size=</option></term>
200
201 <listitem><para>Specifies the maximum number of bytes to read
202 from the key file. See
203 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
204 for possible values and the default value of this option. This
205 option is ignored in plain encryption mode, as the key file
206 size is then given by the key size.</para></listitem>
207 </varlistentry>
208
209 <varlistentry>
210 <term><option>keyfile-erase</option></term>
211
212 <listitem><para>If enabled, the specified key file is erased after the volume is activated or when
213 activation fails. This is in particular useful when the key file is only acquired transiently before
214 activation (e.g. via a file in <filename>/run/</filename>, generated by a service running before
215 activation), and shall be removed after use. Defaults to off.</para></listitem>
216 </varlistentry>
217
218 <varlistentry>
219 <term><option>key-slot=</option></term>
220
221 <listitem><para>Specifies the key slot to compare the
222 passphrase or key against. If the key slot does not match the
223 given passphrase or key, but another would, the setup of the
224 device will fail regardless. This option implies
225 <option>luks</option>. See
226 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
227 for possible values. The default is to try all key slots in
228 sequential order.</para></listitem>
229 </varlistentry>
230
231 <varlistentry>
232 <term><option>keyfile-timeout=</option></term>
233
234 <listitem><para> Specifies the timeout for the device on
235 which the key file resides or the device used as the key file,
236 and falls back to a password if it could not be accessed. See
237 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>
238 for key files on external devices.
239 </para></listitem>
240 </varlistentry>
241
242 <varlistentry>
243 <term><option>luks</option></term>
244
245 <listitem><para>Force LUKS mode. When this mode is used, the
246 following options are ignored since they are provided by the
247 LUKS header on the device: <option>cipher=</option>,
248 <option>hash=</option>,
249 <option>size=</option>.</para></listitem>
250 </varlistentry>
251
252 <varlistentry>
253 <term><option>bitlk</option></term>
254
255 <listitem><para>Decrypt BitLocker drive. Encryption parameters
256 are deduced by cryptsetup from BitLocker header.</para></listitem>
257 </varlistentry>
258
259 <varlistentry>
260 <term><option>_netdev</option></term>
261
262 <listitem><para>Marks this cryptsetup device as requiring network. It will be
263 started after the network is available, similarly to
264 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>
265 units marked with <option>_netdev</option>. The service unit to set up this device
266 will be ordered between <filename>remote-fs-pre.target</filename> and
267 <filename>remote-cryptsetup.target</filename>, instead of
268 <filename>cryptsetup-pre.target</filename> and
269 <filename>cryptsetup.target</filename>.</para>
270
271 <para>Hint: if this device is used for a mount point that is specified in
272 <citerefentry project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
273 the <option>_netdev</option> option should also be used for the mount
274 point. Otherwise, a dependency loop might be created where the mount point
275 will be pulled in by <filename>local-fs.target</filename>, while the
276 service to configure the network is usually only started <emphasis>after</emphasis>
277 the local file system has been mounted.</para>
278 </listitem>
279 </varlistentry>
280
281 <varlistentry>
282 <term><option>noauto</option></term>
283
284 <listitem><para>This device will not be added to <filename>cryptsetup.target</filename>.
285 This means that it will not be automatically unlocked on boot, unless something else pulls
286 it in. In particular, if the device is used for a mount point, it'll be unlocked
287 automatically during boot, unless the mount point itself is also disabled with
288 <option>noauto</option>.</para></listitem>
289 </varlistentry>
290
291 <varlistentry>
292 <term><option>nofail</option></term>
293
294 <listitem><para>This device will not be a hard dependency of
295 <filename>cryptsetup.target</filename>. It'll still be pulled in and started, but the system
296 will not wait for the device to show up and be unlocked, and boot will not fail if this is
297 unsuccessful. Note that other units that depend on the unlocked device may still fail. In
298 particular, if the device is used for a mount point, the mount point itself also needs to
299 have the <option>nofail</option> option, or the boot will fail if the device is not unlocked
300 successfully.</para></listitem>
301 </varlistentry>
302
303 <varlistentry>
304 <term><option>offset=</option></term>
305
306 <listitem><para>Start offset in the backend device, in 512-byte sectors. This
307 option is only relevant for plain devices.</para></listitem>
308 </varlistentry>
309
310 <varlistentry>
311 <term><option>plain</option></term>
312
313 <listitem><para>Force plain encryption mode.</para></listitem>
314 </varlistentry>
315
316 <varlistentry>
317 <term><option>read-only</option></term><term><option>readonly</option></term>
318
319 <listitem><para>Set up the encrypted block device in read-only
320 mode.</para></listitem>
321 </varlistentry>
322
323 <varlistentry>
324 <term><option>same-cpu-crypt</option></term>
325
326 <listitem><para>Perform encryption using the same CPU that IO was submitted on. The default is to use
327 an unbound workqueue so that encryption work is automatically balanced between available CPUs.</para>
328
329 <para>This requires kernel 4.0 or newer.</para>
330 </listitem>
331 </varlistentry>
332
333 <varlistentry>
334 <term><option>submit-from-crypt-cpus</option></term>
335
336 <listitem><para>Disable offloading writes to a separate thread after encryption. There are some
337 situations where offloading write requests from the encryption threads to a dedicated thread degrades
338 performance significantly. The default is to offload write requests to a dedicated thread because it
339 benefits the CFQ scheduler to have writes submitted using the same context.</para>
340
341 <para>This requires kernel 4.0 or newer.</para>
342 </listitem>
343 </varlistentry>
344
345 <varlistentry>
346 <term><option>no-read-workqueue</option></term>
347
348 <listitem><para>Bypass dm-crypt internal workqueue and process read requests synchronously. The
349 default is to queue these requests and process them asynchronously.</para>
350
351 <para>This requires kernel 5.9 or newer.</para>
352 </listitem>
353 </varlistentry>
354 <varlistentry>
355 <term><option>no-write-workqueue</option></term>
356
357 <listitem><para>Bypass dm-crypt internal workqueue and process write requests synchronously. The
358 default is to queue these requests and process them asynchronously.</para>
359
360 <para>This requires kernel 5.9 or newer.</para>
361 </listitem>
362 </varlistentry>
363
364 <varlistentry>
365 <term><option>skip=</option></term>
366
367 <listitem><para>How many 512-byte sectors of the encrypted data to skip at the
368 beginning. This is different from the <option>offset=</option> option with respect
369 to the sector numbers used in initialization vector (IV) calculation. Using
370 <option>offset=</option> will shift the IV calculation by the same negative
371 amount. Hence, if <option>offset=<replaceable>n</replaceable></option> is given,
372 sector <replaceable>n</replaceable> will get a sector number of 0 for the IV
373 calculation. Using <option>skip=</option> causes sector
374 <replaceable>n</replaceable> to also be the first sector of the mapped device, but
375 with its number for IV generation being <replaceable>n</replaceable>.</para>
376
377 <para>This option is only relevant for plain devices.</para>
378 </listitem>
379 </varlistentry>
380
381 <varlistentry>
382 <term><option>size=</option></term>
383
384 <listitem><para>Specifies the key size in bits. See
385 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
386 for possible values and the default value of this
387 option.</para></listitem>
388 </varlistentry>
389
390 <varlistentry>
391 <term><option>sector-size=</option></term>
392
393 <listitem><para>Specifies the sector size in bytes. See
394 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
395 for possible values and the default value of this
396 option.</para></listitem>
397 </varlistentry>
398
399 <varlistentry>
400 <term><option>swap</option></term>
401
402 <listitem><para>The encrypted block device will be used as a
403 swap device, and will be formatted accordingly after setting
404 up the encrypted block device, with
405 <citerefentry project='man-pages'><refentrytitle>mkswap</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
406 This option implies <option>plain</option>.</para>
407
408 <para>WARNING: Using the <option>swap</option> option will
409 destroy the contents of the named partition during every boot,
410 so make sure the underlying block device is specified
411 correctly.</para></listitem>
412 </varlistentry>
413
414 <varlistentry>
415 <term><option>tcrypt</option></term>
416
417 <listitem><para>Use TrueCrypt encryption mode. When this mode
418 is used, the following options are ignored since they are
419 provided by the TrueCrypt header on the device or do not
420 apply:
421 <option>cipher=</option>,
422 <option>hash=</option>,
423 <option>keyfile-offset=</option>,
424 <option>keyfile-size=</option>,
425 <option>size=</option>.</para>
426
427 <para>When this mode is used, the passphrase is read from the
428 key file given in the third field. Only the first line of this
429 file is read, excluding the new line character.</para>
430
431 <para>Note that the TrueCrypt format uses both passphrase and
432 key files to derive a password for the volume. Therefore, the
433 passphrase and all key files need to be provided. Use
434 <option>tcrypt-keyfile=</option> to provide the absolute path
435 to all key files. When using an empty passphrase in
436 combination with one or more key files, use
437 <literal>/dev/null</literal> as the password file in the third
438 field.</para></listitem>
439 </varlistentry>
440
441 <varlistentry>
442 <term><option>tcrypt-hidden</option></term>
443
444 <listitem><para>Use the hidden TrueCrypt volume. This option
445 implies <option>tcrypt</option>.</para>
446
447 <para>This will map the hidden volume that is inside of the
448 volume provided in the second field. Please note that there is
449 no protection for the hidden volume if the outer volume is
450 mounted instead. See
451 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
452 for more information on this limitation.</para></listitem>
453 </varlistentry>
454
455 <varlistentry>
456 <term><option>tcrypt-keyfile=</option></term>
457
458 <listitem><para>Specifies the absolute path to a key file to
459 use for a TrueCrypt volume. This implies
460 <option>tcrypt</option> and can be used more than once to
461 provide several key files.</para>
462
463 <para>See the entry for <option>tcrypt</option> on the
464 behavior of the passphrase and key files when using TrueCrypt
465 encryption mode.</para></listitem>
466 </varlistentry>
467
468 <varlistentry>
469 <term><option>tcrypt-system</option></term>
470
471 <listitem><para>Use TrueCrypt in system encryption mode. This
472 option implies <option>tcrypt</option>.</para></listitem>
473 </varlistentry>
474
475 <varlistentry>
476 <term><option>tcrypt-veracrypt</option></term>
477
478 <listitem><para>Check for a VeraCrypt volume. VeraCrypt is a fork of
479 TrueCrypt that is mostly compatible, but uses different, stronger key
480 derivation algorithms that cannot be detected without this flag.
481 Enabling this option could substantially slow down unlocking, because
482 VeraCrypt's key derivation takes much longer than TrueCrypt's. This
483 option implies <option>tcrypt</option>.</para></listitem>
484 </varlistentry>
485
486 <varlistentry>
487 <term><option>timeout=</option></term>
488
489 <listitem><para>Specifies the timeout for querying for a
490 password. If no unit is specified, seconds is used. Supported
491 units are s, ms, us, min, h, d. A timeout of 0 waits
492 indefinitely (which is the default).</para></listitem>
493 </varlistentry>
494
495 <varlistentry>
496 <term><option>tmp=</option></term>
497
498 <listitem><para>The encrypted block device will be prepared for using it as
499 <filename>/tmp/</filename>; it will be formatted using <citerefentry
500 project='man-pages'><refentrytitle>mkfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>. Takes
501 a file system type as argument, such as <literal>ext4</literal>, <literal>xfs</literal> or
502 <literal>btrfs</literal>. If no argument is specified defaults to <literal>ext4</literal>. This
503 option implies <option>plain</option>.</para>
504
505 <para>WARNING: Using the <option>tmp</option> option will destroy the contents of the named partition
506 during every boot, so make sure the underlying block device is specified correctly.</para></listitem>
507 </varlistentry>
508
509 <varlistentry>
510 <term><option>tries=</option></term>
511
512 <listitem><para>Specifies the maximum number of times the user
513 is queried for a password. The default is 3. If set to 0, the
514 user is queried for a password indefinitely.</para></listitem>
515 </varlistentry>
516
517 <varlistentry>
518 <term><option>headless=</option></term>
519
520 <listitem><para>Takes a boolean argument, defaults to false. If true, never query interactively
521 for the password/PIN. Useful for headless systems.</para></listitem>
522 </varlistentry>
523
524 <varlistentry>
525 <term><option>verify</option></term>
526
527 <listitem><para>If the encryption password is read from console, it has to be entered twice to
528 prevent typos.</para></listitem>
529 </varlistentry>
530
531 <varlistentry>
532 <term><option>password-echo=yes|no|masked</option></term>
533
534 <listitem><para>Controls whether to echo passwords or security token PINs
535 that are read from console. Takes a boolean or the special string <literal>masked</literal>.
536 The default is <option>password-echo=masked</option>.</para>
537
538 <para>If enabled, the typed characters are echoed literally. If disabled,
539 the typed characters are not echoed in any form, the user will not get
540 feedback on their input. If set to <literal>masked</literal>, an asterisk
541 (<literal>*</literal>) is echoed for each character typed. Regardless of
542 which mode is chosen, if the user hits the tabulator key (<literal></literal>)
543 at any time, or the backspace key (<literal></literal>) before any other
544 data has been entered, then echo is turned off.</para></listitem>
545 </varlistentry>
546
547 <varlistentry>
548 <term><option>pkcs11-uri=</option></term>
549
550 <listitem><para>Takes either the special value <literal>auto</literal> or an <ulink
551 url="https://tools.ietf.org/html/rfc7512">RFC7512 PKCS#11 URI</ulink> pointing to a private RSA key
552 which is used to decrypt the encrypted key specified in the third column of the line. This is useful
553 for unlocking encrypted volumes through PKCS#11 compatible security tokens or smartcards. See below
554 for an example how to set up this mechanism for unlocking a LUKS2 volume with a YubiKey security
555 token.</para>
556
557 <para>If specified as <literal>auto</literal> the volume must be of type LUKS2 and must carry PKCS#11
558 security token metadata in its LUKS2 JSON token section. In this mode the URI and the encrypted key
559 are automatically read from the LUKS2 JSON token header. Use
560 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
561 as simple tool for enrolling PKCS#11 security tokens or smartcards in a way compatible with
562 <literal>auto</literal>. In this mode the third column of the line should remain empty (that is,
563 specified as <literal>-</literal>).</para>
564
565 <para>The specified URI can refer directly to a private RSA key stored on a token or alternatively
566 just to a slot or token, in which case a search for a suitable private RSA key will be performed. In
567 this case if multiple suitable objects are found the token is refused. The encrypted key configured
568 in the third column of the line is passed as is (i.e. in binary form, unprocessed) to RSA
569 decryption. The resulting decrypted key is then Base64 encoded before it is used to unlock the LUKS
570 volume.</para>
571
572 <para>Use <command>systemd-cryptenroll --pkcs11-token-uri=list</command> to list all suitable PKCS#11
573 security tokens currently plugged in, along with their URIs.</para>
574
575 <para>Note that many newer security tokens that may be used as PKCS#11 security token typically also
576 implement the newer and simpler FIDO2 standard. Consider using <option>fido2-device=</option>
577 (described below) to enroll it via FIDO2 instead. Note that a security token enrolled via PKCS#11
578 cannot be used to unlock the volume via FIDO2, unless also enrolled via FIDO2, and vice
579 versa.</para></listitem>
580 </varlistentry>
581
582 <varlistentry>
583 <term><option>fido2-device=</option></term>
584
585 <listitem><para>Takes either the special value <literal>auto</literal> or the path to a
586 <literal>hidraw</literal> device node (e.g. <filename>/dev/hidraw1</filename>) referring to a FIDO2
587 security token that implements the <literal>hmac-secret</literal> extension (most current hardware
588 security tokens do). See below for an example how to set up this mechanism for unlocking an encrypted
589 volume with a FIDO2 security token.</para>
590
591 <para>If specified as <literal>auto</literal> the FIDO2 token device is automatically discovered, as
592 it is plugged in.</para>
593
594 <para>FIDO2 volume unlocking requires a client ID hash (CID) to be configured via
595 <option>fido2-cid=</option> (see below) and a key to pass to the security token's HMAC functionality
596 (configured in the line's third column) to operate. If not configured and the volume is of type
597 LUKS2, the CID and the key are read from LUKS2 JSON token metadata instead. Use
598 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
599 as simple tool for enrolling FIDO2 security tokens, compatible with this automatic mode, which is
600 only available for LUKS2 volumes.</para>
601
602 <para>Use <command>systemd-cryptenroll --fido2-device=list</command> to list all suitable FIDO2
603 security tokens currently plugged in, along with their device nodes.</para>
604
605 <para>This option implements the following mechanism: the configured key is hashed via they HMAC
606 keyed hash function the FIDO2 device implements, keyed by a secret key embedded on the device. The
607 resulting hash value is Base64 encoded and used to unlock the LUKS2 volume. As it should not be
608 possible to extract the secret from the hardware token, it should not be possible to retrieve the
609 hashed key given the configured key — without possessing the hardware token.</para>
610
611 <para>Note that many security tokens that implement FIDO2 also implement PKCS#11, suitable for
612 unlocking volumes via the <option>pkcs11-uri=</option> option described above. Typically the newer,
613 simpler FIDO2 standard is preferable.</para></listitem>
614 </varlistentry>
615
616 <varlistentry>
617 <term><option>fido2-cid=</option></term>
618
619 <listitem><para>Takes a Base64 encoded FIDO2 client ID to use for the FIDO2 unlock operation. If
620 specified, but <option>fido2-device=</option> is not, <option>fido2-device=auto</option> is
621 implied. If <option>fido2-device=</option> is used but <option>fido2-cid=</option> is not, the volume
622 must be of LUKS2 type, and the CID is read from the LUKS2 JSON token header. Use
623 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
624 for enrolling a FIDO2 token in the LUKS2 header compatible with this automatic
625 mode.</para></listitem>
626 </varlistentry>
627
628 <varlistentry>
629 <term><option>fido2-rp=</option></term>
630
631 <listitem><para>Takes a string, configuring the FIDO2 Relying Party (rp) for the FIDO2 unlock
632 operation. If not specified <literal>io.systemd.cryptsetup</literal> is used, except if the LUKS2
633 JSON token header contains a different value. It should normally not be necessary to override
634 this.</para></listitem>
635 </varlistentry>
636
637 <varlistentry>
638 <term><option>tpm2-device=</option></term>
639
640 <listitem><para>Takes either the special value <literal>auto</literal> or the path to a device node
641 (e.g. <filename>/dev/tpmrm0</filename>) referring to a TPM2 security chip. See below for an example
642 how to set up this mechanism for unlocking an encrypted volume with a TPM2 chip.</para>
643
644 <para>Use <option>tpm2-pcrs=</option> (see below) to configure the set of TPM2 PCRs to bind the
645 volume unlocking to. Use
646 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
647 as simple tool for enrolling TPM2 security chips in LUKS2 volumes.</para>
648
649 <para>If specified as <literal>auto</literal> the TPM2 device is automatically discovered. Use
650 <command>systemd-cryptenroll --tpm2-device=list</command> to list all suitable TPM2 devices currently
651 available, along with their device nodes.</para>
652
653 <para>This option implements the following mechanism: when enrolling a TPM2 device via
654 <command>systemd-cryptenroll</command> on a LUKS2 volume, a randomized key unlocking the volume is
655 generated on the host and loaded into the TPM2 chip where it is encrypted with an asymmetric
656 "primary" key pair derived from the TPM2's internal "seed" key. Neither the seed key nor the primary
657 key are permitted to ever leave the TPM2 chip — however, the now encrypted randomized key may. It is
658 saved in the LUKS2 volume JSON token header. When unlocking the encrypted volume, the primary key
659 pair is generated on the TPM2 chip again (which works as long as the chip's seed key is correctly
660 maintained by the TPM2 chip), which is then used to decrypt (on the TPM2 chip) the encrypted key from
661 the LUKS2 volume JSON token header saved there during enrollment. The resulting decrypted key is then
662 used to unlock the volume. When the randomized key is encrypted the current values of the selected
663 PCRs (see below) are included in the operation, so that different PCR state results in different
664 encrypted keys and the decrypted key can only be recovered if the same PCR state is
665 reproduced.</para></listitem>
666 </varlistentry>
667
668 <varlistentry>
669 <term><option>tpm2-pcrs=</option></term>
670
671 <listitem><para>Takes a <literal>+</literal> separated list of numeric TPM2 PCR (i.e. "Platform
672 Configuration Register") indexes to bind the TPM2 volume unlocking to. This option is only useful
673 when TPM2 enrollment metadata is not available in the LUKS2 JSON token header already, the way
674 <command>systemd-cryptenroll</command> writes it there. If not used (and no metadata in the LUKS2
675 JSON token header defines it), defaults to a list of a single entry: PCR 7. Assign an empty string to
676 encode a policy that binds the key to no PCRs, making the key accessible to local programs regardless
677 of the current PCR state.</para></listitem>
678 </varlistentry>
679
680 <varlistentry>
681 <term><option>tpm2-pin=</option></term>
682
683 <listitem><para>Takes a boolean argument, defaults to <literal>false</literal>. Controls whether
684 TPM2 volume unlocking is bound to a PIN in addition to PCRs. Similarly, this option is only useful
685 when TPM2 enrollment metadata is not available.</para></listitem>
686 </varlistentry>
687
688 <varlistentry>
689 <term><option>tpm2-signature=</option></term>
690
691 <listitem><para>Takes an absolute path to a TPM2 PCR JSON signature file, as produced by the
692 <citerefentry><refentrytitle>systemd-measure</refentrytitle><manvolnum>1</manvolnum></citerefentry>
693 tool. This permits locking LUKS2 volumes to any PCR values for which a valid signature matching a
694 public key specified at key enrollment time can be provided. See
695 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
696 for details on enrolling TPM2 PCR public keys. If this option is not specified but it is attempted to
697 unlock a LUKS2 volume with a signed TPM2 PCR enrollment a suitable signature file
698 <filename>tpm2-pcr-signature.json</filename> is searched for in <filename>/etc/systemd/</filename>,
699 <filename>/run/systemd/</filename>, <filename>/usr/lib/systemd/</filename> (in this
700 order).</para></listitem>
701 </varlistentry>
702
703 <varlistentry>
704 <term><option>token-timeout=</option></term>
705
706 <listitem><para>Specifies how long to wait at most for configured security devices (i.e. FIDO2,
707 PKCS#11, TPM2) to show up. Takes a time value in seconds (but other time units may be specified too,
708 see <citerefentry><refentrytitle>systemd.time</refentrytitle><manvolnum>7</manvolnum></citerefentry>
709 for supported formats). Defaults to 30s. Once the specified timeout elapsed authentication via
710 password is attempted. Note that this timeout applies to waiting for the security device to show up —
711 it does not apply to the PIN prompt for the device (should one be needed) or similar. Pass 0 to turn
712 off the time-out and wait forever.</para></listitem>
713 </varlistentry>
714
715 <varlistentry>
716 <term><option>try-empty-password=</option></term>
717
718 <listitem><para>Takes a boolean argument. If enabled, right before asking the user for a password it
719 is first attempted to unlock the volume with an empty password. This is useful for systems that are
720 initialized with an encrypted volume with only an empty password set, which shall be replaced with a
721 suitable password during first boot, but after activation.</para></listitem>
722 </varlistentry>
723
724 <varlistentry>
725 <term><option>x-systemd.device-timeout=</option></term>
726
727 <listitem><para>Specifies how long systemd should wait for a block device to show up before
728 giving up on the entry. The argument is a time in seconds or explicitly specified units of
729 <literal>s</literal>, <literal>min</literal>, <literal>h</literal>, <literal>ms</literal>.
730 </para></listitem>
731 </varlistentry>
732
733 <varlistentry>
734 <term><option>x-initrd.attach</option></term>
735
736 <listitem><para>Setup this encrypted block device in the initrd, similarly to
737 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>
738 units marked with <option>x-initrd.mount</option>.</para>
739
740 <para>Although it's not necessary to mark the mount entry for the root file system with
741 <option>x-initrd.mount</option>, <option>x-initrd.attach</option> is still recommended with
742 the encrypted block device containing the root file system as otherwise systemd will
743 attempt to detach the device during the regular system shutdown while it's still in
744 use. With this option the device will still be detached but later after the root file
745 system is unmounted.</para>
746
747 <para>All other encrypted block devices that contain file systems mounted in the initrd should use
748 this option.</para>
749 </listitem>
750 </varlistentry>
751
752 </variablelist>
753
754 <para>At early boot and when the system manager configuration is
755 reloaded, this file is translated into native systemd units by
756 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
757 </refsect1>
758
759 <refsect1>
760 <title><constant>AF_UNIX</constant> Key Files</title>
761
762 <para>If the key file path (as specified in the third column of <filename>/etc/crypttab</filename>
763 entries, see above) refers to an <constant>AF_UNIX</constant> stream socket in the file system, the key
764 is acquired by connecting to the socket and reading the key from the connection. The connection is made
765 from an <constant>AF_UNIX</constant> socket name in the abstract namespace, see <citerefentry
766 project='man-pages'><refentrytitle>unix</refentrytitle><manvolnum>7</manvolnum></citerefentry> for
767 details. The source socket name is chosen according the following format:</para>
768
769 <programlisting><constant>NUL</constant> <replaceable>RANDOM</replaceable> /cryptsetup/ <replaceable>VOLUME</replaceable></programlisting>
770
771 <para>In other words: a <constant>NUL</constant> byte (as required for abstract namespace sockets),
772 followed by a random string (consisting of alphanumeric characters only), followed by the literal
773 string <literal>/cryptsetup/</literal>, followed by the name of the volume to acquire they key
774 for. For example, for the volume <literal>myvol</literal>:</para>
775
776 <programlisting>\0d7067f78d9827418/cryptsetup/myvol</programlisting>
777
778 <para>Services listening on the <constant>AF_UNIX</constant> stream socket may query the source socket
779 name with <citerefentry
780 project='man-pages'><refentrytitle>getpeername</refentrytitle><manvolnum>2</manvolnum></citerefentry>,
781 and use this to determine which key to send, allowing a single listening socket to serve keys for
782 multiple volumes. If the PKCS#11 logic is used (see above), the socket source name is picked in similar
783 fashion, except that the literal string <literal>/cryptsetup-pkcs11/</literal> is used. And similarly for
784 FIDO2 (<literal>/cryptsetup-fido2/</literal>) and TPM2 (<literal>/cryptsetup-tpm2/</literal>). A diffent
785 path component is used so that services providing key material know that the secret key was not requested
786 directly, but instead an encrypted key that will be decrypted via the PKCS#11/FIDO2/TPM2 logic to acquire
787 the final secret key.</para>
788 </refsect1>
789
790 <refsect1>
791 <title>Examples</title>
792 <example>
793 <title>/etc/crypttab example</title>
794 <para>Set up four encrypted block devices. One using LUKS for normal storage, another one for usage as
795 a swap device and two TrueCrypt volumes. For the fourth device, the option string is interpreted as two
796 options <literal>cipher=xchacha12,aes-adiantum-plain64</literal>,
797 <literal>keyfile-timeout=10s</literal>.</para>
798
799 <programlisting>luks UUID=2505567a-9e27-4efe-a4d5-15ad146c258b
800 swap /dev/sda7 /dev/urandom swap
801 truecrypt /dev/sda2 /etc/container_password tcrypt
802 hidden /mnt/tc_hidden /dev/null tcrypt-hidden,tcrypt-keyfile=/etc/keyfile
803 external /dev/sda3 keyfile:LABEL=keydev keyfile-timeout=10s,cipher=xchacha12\,aes-adiantum-plain64
804 </programlisting>
805 </example>
806
807 <example>
808 <title>Yubikey-based PKCS#11 Volume Unlocking Example</title>
809
810 <para>The PKCS#11 logic allows hooking up any compatible security token that is capable of storing RSA
811 decryption keys for unlocking an encrypted volume. Here's an example how to set up a Yubikey security
812 token for this purpose on a LUKS2 volume, using <citerefentry
813 project='debian'><refentrytitle>ykmap</refentrytitle><manvolnum>1</manvolnum></citerefentry> from the
814 yubikey-manager project to initialize the token and
815 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
816 to add it in the LUKS2 volume:</para>
817
818 <programlisting><xi:include href="yubikey-crypttab.sh" parse="text" /></programlisting>
819
820 <para>A few notes on the above:</para>
821
822 <itemizedlist>
823 <listitem><para>We use RSA2048, which is the longest key size current Yubikeys support</para></listitem>
824 <listitem><para>We use Yubikey key slot 9d, since that's apparently the keyslot to use for decryption purposes,
825 <ulink url="https://developers.yubico.com/PIV/Introduction/Certificate_slots.html">see
826 documentation</ulink>.</para></listitem>
827 </itemizedlist>
828 </example>
829
830 <example>
831 <title>FIDO2 Volume Unlocking Example</title>
832
833 <para>The FIDO2 logic allows using any compatible FIDO2 security token that implements the
834 <literal>hmac-secret</literal> extension for unlocking an encrypted volume. Here's an example how to
835 set up a FIDO2 security token for this purpose for a LUKS2 volume, using
836 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>:</para>
837
838 <programlisting><xi:include href="fido2-crypttab.sh" parse="text" /></programlisting>
839 </example>
840
841 <example>
842 <title>TPM2 Volume Unlocking Example</title>
843
844 <para>The TPM2 logic allows using any TPM2 chip supported by the Linux kernel for unlocking an
845 encrypted volume. Here's an example how to set up a TPM2 chip for this purpose for a LUKS2 volume,
846 using
847 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>:</para>
848
849 <programlisting><xi:include href="tpm2-crypttab.sh" parse="text" /></programlisting>
850 </example>
851 </refsect1>
852
853 <refsect1>
854 <title>See Also</title>
855 <para>
856 <citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
857 <citerefentry><refentrytitle>systemd-cryptsetup@.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
858 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
859 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
860 <citerefentry project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
861 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
862 <citerefentry project='man-pages'><refentrytitle>mkswap</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
863 <citerefentry project='man-pages'><refentrytitle>mke2fs</refentrytitle><manvolnum>8</manvolnum></citerefentry>
864 </para>
865 </refsect1>
866
867 </refentry>