]> git.ipfire.org Git - thirdparty/systemd.git/blob - man/systemd.resource-control.xml
Merge pull request #28064 from bluca/test_oomd_swap
[thirdparty/systemd.git] / man / systemd.resource-control.xml
1 <?xml version='1.0'?>
2 <!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
4 <!-- SPDX-License-Identifier: LGPL-2.1-or-later -->
5
6 <refentry id="systemd.resource-control" xmlns:xi="http://www.w3.org/2001/XInclude">
7 <refentryinfo>
8 <title>systemd.resource-control</title>
9 <productname>systemd</productname>
10 </refentryinfo>
11
12 <refmeta>
13 <refentrytitle>systemd.resource-control</refentrytitle>
14 <manvolnum>5</manvolnum>
15 </refmeta>
16
17 <refnamediv>
18 <refname>systemd.resource-control</refname>
19 <refpurpose>Resource control unit settings</refpurpose>
20 </refnamediv>
21
22 <refsynopsisdiv>
23 <para>
24 <filename><replaceable>slice</replaceable>.slice</filename>,
25 <filename><replaceable>scope</replaceable>.scope</filename>,
26 <filename><replaceable>service</replaceable>.service</filename>,
27 <filename><replaceable>socket</replaceable>.socket</filename>,
28 <filename><replaceable>mount</replaceable>.mount</filename>,
29 <filename><replaceable>swap</replaceable>.swap</filename>
30 </para>
31 </refsynopsisdiv>
32
33 <refsect1>
34 <title>Description</title>
35
36 <para>Unit configuration files for services, slices, scopes, sockets, mount points, and swap devices share a subset
37 of configuration options for resource control of spawned processes. Internally, this relies on the Linux Control
38 Groups (cgroups) kernel concept for organizing processes in a hierarchical tree of named groups for the purpose of
39 resource management.</para>
40
41 <para>This man page lists the configuration options shared by
42 those six unit types. See
43 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
44 for the common options of all unit configuration files, and
45 <citerefentry><refentrytitle>systemd.slice</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
46 <citerefentry><refentrytitle>systemd.scope</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
47 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
48 <citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
49 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
50 and
51 <citerefentry><refentrytitle>systemd.swap</refentrytitle><manvolnum>5</manvolnum></citerefentry>
52 for more information on the specific unit configuration files. The
53 resource control configuration options are configured in the
54 [Slice], [Scope], [Service], [Socket], [Mount], or [Swap]
55 sections, depending on the unit type.</para>
56
57 <para>In addition, options which control resources available to programs
58 <emphasis>executed</emphasis> by systemd are listed in
59 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
60 Those options complement options listed here.</para>
61
62 <refsect2>
63 <title>Enabling and disabling controllers</title>
64
65 <para>Controllers in the cgroup hierarchy are hierarchical, and resource control is realized by
66 distributing resource assignments between siblings in branches of the cgroup hierarchy. There is no
67 need to explicitly <emphasis>enable</emphasis> a cgroup controller for a unit.
68 <command>systemd</command> will instruct the kernel to enable a controller for a given unit when this
69 unit has configuration for a given controller. For example, when <varname>CPUWeight=</varname> is set,
70 the <option>cpu</option> controller will be enabled, and when <varname>TasksMax=</varname> are set, the
71 <option>pids</option> controller will be enabled. In addition, various controllers may be also be
72 enabled explicitly via the
73 <varname>MemoryAccounting=</varname>/<varname>TasksAccounting=</varname>/<varname>IOAccounting=</varname>
74 settings. Because of how the cgroup hierarchy works, controllers will be automatically enabled for all
75 parent units and for any sibling units starting with the lowest level at which a controller is enabled.
76 Units for which a controller is enabled may be subject to resource control even if they don't have any
77 explicit configuration.</para>
78
79 <para>Setting <varname>Delegate=</varname> enables any delegated controllers for that unit (see below).
80 The delegatee may then enable controllers for its children as appropriate. In particular, if the
81 delegatee is <command>systemd</command> (in the <filename>user@.service</filename> unit), it will
82 repeat the same logic as the system instance and enable controllers for user units which have resource
83 limits configured, and their siblings and parents and parents' siblings.</para>
84
85 <para>Controllers may be <emphasis>disabled</emphasis> for parts of the cgroup hierarchy with
86 <varname>DisableControllers=</varname> (see below).</para>
87
88 <example>
89 <title>Enabling and disabling controllers</title>
90
91 <programlisting>
92 -.slice
93 / \
94 /-----/ \--------------\
95 / \
96 system.slice user.slice
97 / \ / \
98 / \ / \
99 / \ user@42.service user@1000.service
100 / \ Delegate= Delegate=yes
101 a.service b.slice / \
102 CPUWeight=20 DisableControllers=cpu / \
103 / \ app.slice session.slice
104 / \ CPUWeight=100 CPUWeight=100
105 / \
106 b1.service b2.service
107 CPUWeight=1000
108 </programlisting>
109
110 <para>In this hierarchy, the <option>cpu</option> controller is enabled for all units shown except
111 <filename>b1.service</filename> and <filename>b2.service</filename>. Because there is no explicit
112 configuration for <filename>system.slice</filename> and <filename>user.slice</filename>, CPU
113 resources will be split equally between them. Similarly, resources are allocated equally between
114 children of <filename>user.slice</filename> and between the child slices beneath
115 <filename>user@1000.service</filename>. Assuming that there is no further configuration of resources
116 or delegation below slices <filename>app.slice</filename> or <filename>session.slice</filename>, the
117 <option>cpu</option> controller would not be enabled for units in those slices and CPU resources
118 would be further allocated using other mechanisms, e.g. based on nice levels. The manager for user
119 42 has delegation enabled without any controllers, i.e. it can manipulate its subtree of the cgroup
120 hierarchy, but without resource control.</para>
121
122 <para>In the slice <filename>system.slice</filename>, CPU resources are split 1:6 for service
123 <filename>a.service</filename>, and 5:6 for slice <filename>b.slice</filename>, because slice
124 <filename>b.slice</filename> gets the default value of 100 for <filename>cpu.weight</filename> when
125 <varname>CPUWeight=</varname> is not set.</para>
126
127 <para><varname>CPUWeight=</varname> setting in service <filename>b2.service</filename> is neutralized
128 by <varname>DisableControllers=</varname> in slice <filename>b.slice</filename>, so the
129 <option>cpu</option> controller would not be enabled for services <filename>b1.service</filename> and
130 <filename>b2.service</filename>, and CPU resources would be further allocated using other mechanisms,
131 e.g. based on nice levels.</para>
132 </example>
133 </refsect2>
134
135 <refsect2>
136 <title>Setting resource controls for a group of related units</title>
137
138 <para>As described in
139 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>, the
140 settings listed here may be set through the main file of a unit and drop-in snippets in
141 <filename index="false">*.d/</filename> directories. The list of directories searched for drop-ins
142 includes names formed by repeatedly truncating the unit name after all dashes. This is particularly
143 convenient to set resource limits for a group of units with similar names.</para>
144
145 <para>For example, every user gets their own slice
146 <filename>user-<replaceable>nnn</replaceable>.slice</filename>. Drop-ins with local configuration that
147 affect user 1000 may be placed in
148 <filename index="false">/etc/systemd/system/user-1000.slice</filename>,
149 <filename index="false">/etc/systemd/system/user-1000.slice.d/*.conf</filename>, but also
150 <filename index="false">/etc/systemd/system/user-.slice.d/*.conf</filename>. This last directory
151 applies to all user slices.</para>
152 </refsect2>
153
154 <para>See the <ulink
155 url="https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface">New
156 Control Group Interfaces</ulink> for an introduction on how to make
157 use of resource control APIs from programs.</para>
158 </refsect1>
159
160 <refsect1>
161 <title>Implicit Dependencies</title>
162
163 <para>The following dependencies are implicitly added:</para>
164
165 <itemizedlist>
166 <listitem><para>Units with the <varname>Slice=</varname> setting set automatically acquire
167 <varname>Requires=</varname> and <varname>After=</varname> dependencies on the specified
168 slice unit.</para></listitem>
169 </itemizedlist>
170 </refsect1>
171
172 <!-- We don't have any default dependency here. -->
173
174 <refsect1>
175 <title>Options</title>
176
177 <para>Units of the types listed above can have settings for resource control configuration:</para>
178
179 <refsect2><title>CPU Accounting and Control</title>
180
181 <variablelist class='unit-directives'>
182
183 <varlistentry>
184 <term><varname>CPUAccounting=</varname></term>
185
186 <listitem>
187 <para>Turn on CPU usage accounting for this unit. Takes a
188 boolean argument. Note that turning on CPU accounting for
189 one unit will also implicitly turn it on for all units
190 contained in the same slice and for all its parent slices
191 and the units contained therein. The system default for this
192 setting may be controlled with
193 <varname>DefaultCPUAccounting=</varname> in
194 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
195
196 <para>Under the unified cgroup hierarchy, CPU accounting is available for all units and this
197 setting has no effect.</para>
198 </listitem>
199 </varlistentry>
200
201 <varlistentry>
202 <term><varname>CPUWeight=<replaceable>weight</replaceable></varname></term>
203 <term><varname>StartupCPUWeight=<replaceable>weight</replaceable></varname></term>
204
205 <listitem>
206 <para>These settings control the <option>cpu</option> controller in the unified hierarchy.</para>
207
208 <para>These options accept an integer value or a the special string "idle":</para>
209 <itemizedlist>
210 <listitem>
211 <para>If set to an integer value, assign the specified CPU time weight to the processes
212 executed, if the unified control group hierarchy is used on the system. These options control
213 the <literal>cpu.weight</literal> control group attribute. The allowed range is 1 to 10000.
214 Defaults to unset, but the kernel default is 100. For details about this control group
215 attribute, see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups
216 v2</ulink> and <ulink url="https://docs.kernel.org/scheduler/sched-design-CFS.html">CFS
217 Scheduler</ulink>. The available CPU time is split up among all units within one slice
218 relative to their CPU time weight. A higher weight means more CPU time, a lower weight means
219 less.</para>
220 </listitem>
221 <listitem>
222 <para>If set to the special string "idle", mark the cgroup for "idle scheduling", which means
223 that it will get CPU resources only when there are no processes not marked in this way to execute in this
224 cgroup or its siblings. This setting corresponds to the <literal>cpu.idle</literal> cgroup attribute.</para>
225
226 <para>Note that this value only has an effect on cgroup-v2, for cgroup-v1 it is equivalent to the minimum weight.</para>
227 </listitem>
228 </itemizedlist>
229
230 <para>While <varname>StartupCPUWeight=</varname> applies to the startup and shutdown phases of the system,
231 <varname>CPUWeight=</varname> applies to normal runtime of the system, and if the former is not set also to
232 the startup and shutdown phases. Using <varname>StartupCPUWeight=</varname> allows prioritizing specific services at
233 boot-up and shutdown differently than during normal runtime.</para>
234
235 <para>In addition to the resource allocation performed by the <option>cpu</option> controller, the
236 kernel may automatically divide resources based on session-id grouping, see "The autogroup feature"
237 in <citerefentry
238 project='man-pages'><refentrytitle>sched</refentrytitle><manvolnum>7</manvolnum></citerefentry>.
239 The effect of this feature is similar to the <option>cpu</option> controller with no explicit
240 configuration, so users should be careful to not mistake one for the other.</para>
241 </listitem>
242 </varlistentry>
243
244 <varlistentry>
245 <term><varname>CPUQuota=</varname></term>
246
247 <listitem>
248 <para>This setting controls the <option>cpu</option> controller in the unified hierarchy.</para>
249
250 <para>Assign the specified CPU time quota to the processes executed. Takes a percentage value, suffixed with
251 "%". The percentage specifies how much CPU time the unit shall get at maximum, relative to the total CPU time
252 available on one CPU. Use values &gt; 100% for allotting CPU time on more than one CPU. This controls the
253 <literal>cpu.max</literal> attribute on the unified control group hierarchy and
254 <literal>cpu.cfs_quota_us</literal> on legacy. For details about these control group attributes, see <ulink
255 url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink> and <ulink
256 url="https://docs.kernel.org/scheduler/sched-bwc.html">CFS Bandwidth Control</ulink>.
257 Setting <varname>CPUQuota=</varname> to an empty value unsets the quota.</para>
258
259 <para>Example: <varname>CPUQuota=20%</varname> ensures that the executed processes will never get more than
260 20% CPU time on one CPU.</para>
261
262 </listitem>
263 </varlistentry>
264
265 <varlistentry>
266 <term><varname>CPUQuotaPeriodSec=</varname></term>
267
268 <listitem>
269 <para>This setting controls the <option>cpu</option> controller in the unified hierarchy.</para>
270
271 <para>Assign the duration over which the CPU time quota specified by <varname>CPUQuota=</varname> is measured.
272 Takes a time duration value in seconds, with an optional suffix such as "ms" for milliseconds (or "s" for seconds.)
273 The default setting is 100ms. The period is clamped to the range supported by the kernel, which is [1ms, 1000ms].
274 Additionally, the period is adjusted up so that the quota interval is also at least 1ms.
275 Setting <varname>CPUQuotaPeriodSec=</varname> to an empty value resets it to the default.</para>
276
277 <para>This controls the second field of <literal>cpu.max</literal> attribute on the unified control group hierarchy
278 and <literal>cpu.cfs_period_us</literal> on legacy. For details about these control group attributes, see
279 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink> and
280 <ulink url="https://docs.kernel.org/scheduler/sched-design-CFS.html">CFS Scheduler</ulink>.</para>
281
282 <para>Example: <varname>CPUQuotaPeriodSec=10ms</varname> to request that the CPU quota is measured in periods of 10ms.</para>
283 </listitem>
284 </varlistentry>
285
286 <varlistentry>
287 <term><varname>AllowedCPUs=</varname></term>
288 <term><varname>StartupAllowedCPUs=</varname></term>
289
290 <listitem>
291 <para>This setting controls the <option>cpuset</option> controller in the unified hierarchy.</para>
292
293 <para>Restrict processes to be executed on specific CPUs. Takes a list of CPU indices or ranges separated by either
294 whitespace or commas. CPU ranges are specified by the lower and upper CPU indices separated by a dash.</para>
295
296 <para>Setting <varname>AllowedCPUs=</varname> or <varname>StartupAllowedCPUs=</varname> doesn't guarantee that all
297 of the CPUs will be used by the processes as it may be limited by parent units. The effective configuration is
298 reported as <varname>EffectiveCPUs=</varname>.</para>
299
300 <para>While <varname>StartupAllowedCPUs=</varname> applies to the startup and shutdown phases of the system,
301 <varname>AllowedCPUs=</varname> applies to normal runtime of the system, and if the former is not set also to
302 the startup and shutdown phases. Using <varname>StartupAllowedCPUs=</varname> allows prioritizing specific services at
303 boot-up and shutdown differently than during normal runtime.</para>
304
305 <para>This setting is supported only with the unified control group hierarchy.</para>
306 </listitem>
307 </varlistentry>
308
309 </variablelist>
310
311 </refsect2><refsect2><title>Memory Accounting and Control</title>
312
313 <variablelist class='unit-directives'>
314
315 <varlistentry>
316 <term><varname>MemoryAccounting=</varname></term>
317
318 <listitem>
319 <para>This setting controls the <option>memory</option> controller in the unified hierarchy.</para>
320
321 <para>Turn on process and kernel memory accounting for this
322 unit. Takes a boolean argument. Note that turning on memory
323 accounting for one unit will also implicitly turn it on for
324 all units contained in the same slice and for all its parent
325 slices and the units contained therein. The system default
326 for this setting may be controlled with
327 <varname>DefaultMemoryAccounting=</varname> in
328 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
329 </listitem>
330 </varlistentry>
331
332 <varlistentry>
333 <term><varname>MemoryMin=<replaceable>bytes</replaceable></varname>, <varname>MemoryLow=<replaceable>bytes</replaceable></varname></term>
334 <term><varname>StartupMemoryLow=<replaceable>bytes</replaceable></varname>, <varname>DefaultStartupMemoryLow=<replaceable>bytes</replaceable></varname></term>
335
336 <listitem>
337 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
338
339 <para>Specify the memory usage protection of the executed processes in this unit.
340 When reclaiming memory, the unit is treated as if it was using less memory resulting in memory
341 to be preferentially reclaimed from unprotected units.
342 Using <varname>MemoryLow=</varname> results in a weaker protection where memory may still
343 be reclaimed to avoid invoking the OOM killer in case there is no other reclaimable memory.</para>
344 <para>
345 For a protection to be effective, it is generally required to set a corresponding
346 allocation on all ancestors, which is then distributed between children
347 (with the exception of the root slice).
348 Any <varname>MemoryMin=</varname> or <varname>MemoryLow=</varname> allocation that is not
349 explicitly distributed to specific children is used to create a shared protection for all children.
350 As this is a shared protection, the children will freely compete for the memory.</para>
351
352 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
353 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
354 percentage value may be specified, which is taken relative to the installed physical memory on the
355 system. If assigned the special value <literal>infinity</literal>, all available memory is protected, which may be
356 useful in order to always inherit all of the protection afforded by ancestors.
357 This controls the <literal>memory.min</literal> or <literal>memory.low</literal> control group attribute.
358 For details about this control group attribute, see <ulink
359 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
360
361 <para>Units may have their children use a default <literal>memory.min</literal> or
362 <literal>memory.low</literal> value by specifying <varname>DefaultMemoryMin=</varname> or
363 <varname>DefaultMemoryLow=</varname>, which has the same semantics as
364 <varname>MemoryMin=</varname> and <varname>MemoryLow=</varname>, or <varname>DefaultStartupMemoryLow=</varname>
365 which has the same semantics as <varname>StartupMemoryLow=</varname>.
366 This setting does not affect <literal>memory.min</literal> or <literal>memory.low</literal>
367 in the unit itself.
368 Using it to set a default child allocation is only useful on kernels older than 5.7,
369 which do not support the <literal>memory_recursiveprot</literal> cgroup2 mount option.</para>
370
371 <para>While <varname>StartupMemoryLow=</varname> applies to the startup and shutdown phases of the system,
372 <varname>MemoryMin=</varname> applies to normal runtime of the system, and if the former is not set also to
373 the startup and shutdown phases. Using <varname>StartupMemoryLow=</varname> allows prioritizing specific services at
374 boot-up and shutdown differently than during normal runtime.</para>
375 </listitem>
376 </varlistentry>
377
378 <varlistentry>
379 <term><varname>MemoryHigh=<replaceable>bytes</replaceable></varname></term>
380 <term><varname>StartupMemoryHigh=<replaceable>bytes</replaceable></varname></term>
381
382 <listitem>
383 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
384
385 <para>Specify the throttling limit on memory usage of the executed processes in this unit. Memory usage may go
386 above the limit if unavoidable, but the processes are heavily slowed down and memory is taken away
387 aggressively in such cases. This is the main mechanism to control memory usage of a unit.</para>
388
389 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
390 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
391 percentage value may be specified, which is taken relative to the installed physical memory on the
392 system. If assigned the
393 special value <literal>infinity</literal>, no memory throttling is applied. This controls the
394 <literal>memory.high</literal> control group attribute. For details about this control group attribute, see
395 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
396
397 <para>While <varname>StartupMemoryHigh=</varname> applies to the startup and shutdown phases of the system,
398 <varname>MemoryHigh=</varname> applies to normal runtime of the system, and if the former is not set also to
399 the startup and shutdown phases. Using <varname>StartupMemoryHigh=</varname> allows prioritizing specific services at
400 boot-up and shutdown differently than during normal runtime.</para>
401 </listitem>
402 </varlistentry>
403
404 <varlistentry>
405 <term><varname>MemoryMax=<replaceable>bytes</replaceable></varname></term>
406 <term><varname>StartupMemoryMax=<replaceable>bytes</replaceable></varname></term>
407
408 <listitem>
409 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
410
411 <para>Specify the absolute limit on memory usage of the executed processes in this unit. If memory usage
412 cannot be contained under the limit, out-of-memory killer is invoked inside the unit. It is recommended to
413 use <varname>MemoryHigh=</varname> as the main control mechanism and use <varname>MemoryMax=</varname> as the
414 last line of defense.</para>
415
416 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
417 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
418 percentage value may be specified, which is taken relative to the installed physical memory on the system. If
419 assigned the special value <literal>infinity</literal>, no memory limit is applied. This controls the
420 <literal>memory.max</literal> control group attribute. For details about this control group attribute, see
421 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
422
423 <para>While <varname>StartupMemoryMax=</varname> applies to the startup and shutdown phases of the system,
424 <varname>MemoryMax=</varname> applies to normal runtime of the system, and if the former is not set also to
425 the startup and shutdown phases. Using <varname>StartupMemoryMax=</varname> allows prioritizing specific services at
426 boot-up and shutdown differently than during normal runtime.</para>
427 </listitem>
428 </varlistentry>
429
430 <varlistentry>
431 <term><varname>MemorySwapMax=<replaceable>bytes</replaceable></varname></term>
432 <term><varname>StartupMemorySwapMax=<replaceable>bytes</replaceable></varname></term>
433
434 <listitem>
435 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
436
437 <para>Specify the absolute limit on swap usage of the executed processes in this unit.</para>
438
439 <para>Takes a swap size in bytes. If the value is suffixed with K, M, G or T, the specified swap size is
440 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. If assigned the
441 special value <literal>infinity</literal>, no swap limit is applied. These settings control the
442 <literal>memory.swap.max</literal> control group attribute. For details about this control group attribute,
443 see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
444
445 <para>While <varname>StartupMemorySwapMax=</varname> applies to the startup and shutdown phases of the system,
446 <varname>MemorySwapMax=</varname> applies to normal runtime of the system, and if the former is not set also to
447 the startup and shutdown phases. Using <varname>StartupMemorySwapMax=</varname> allows prioritizing specific services at
448 boot-up and shutdown differently than during normal runtime.</para>
449 </listitem>
450 </varlistentry>
451
452 <varlistentry>
453 <term><varname>MemoryZSwapMax=<replaceable>bytes</replaceable></varname></term>
454 <term><varname>StartupMemoryZSwapMax=<replaceable>bytes</replaceable></varname></term>
455
456 <listitem>
457 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
458
459 <para>Specify the absolute limit on zswap usage of the processes in this unit. Zswap is a lightweight compressed
460 cache for swap pages. It takes pages that are in the process of being swapped out and attempts to compress them into a
461 dynamically allocated RAM-based memory pool. If the limit specified is hit, no entries from this unit will be
462 stored in the pool until existing entries are faulted back or written out to disk. See the kernel's
463 <ulink url="https://www.kernel.org/doc/html/latest/admin-guide/mm/zswap.html">Zswap</ulink> documentation for more details.</para>
464
465 <para>Takes a size in bytes. If the value is suffixed with K, M, G or T, the specified size is
466 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. If assigned the
467 special value <literal>infinity</literal>, no limit is applied. These settings control the
468 <literal>memory.zswap.max</literal> control group attribute. For details about this control group attribute,
469 see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
470
471 <para>While <varname>StartupMemoryZSwapMax=</varname> applies to the startup and shutdown phases of the system,
472 <varname>MemoryZSwapMax=</varname> applies to normal runtime of the system, and if the former is not set also to
473 the startup and shutdown phases. Using <varname>StartupMemoryZSwapMax=</varname> allows prioritizing specific services at
474 boot-up and shutdown differently than during normal runtime.</para>
475 </listitem>
476 </varlistentry>
477
478 <varlistentry>
479 <term><varname>AllowedMemoryNodes=</varname></term>
480 <term><varname>StartupAllowedMemoryNodes=</varname></term>
481
482 <listitem>
483 <para>These settings control the <option>cpuset</option> controller in the unified hierarchy.</para>
484
485 <para>Restrict processes to be executed on specific memory NUMA nodes. Takes a list of memory NUMA nodes indices
486 or ranges separated by either whitespace or commas. Memory NUMA nodes ranges are specified by the lower and upper
487 NUMA nodes indices separated by a dash.</para>
488
489 <para>Setting <varname>AllowedMemoryNodes=</varname> or <varname>StartupAllowedMemoryNodes=</varname> doesn't
490 guarantee that all of the memory NUMA nodes will be used by the processes as it may be limited by parent units.
491 The effective configuration is reported as <varname>EffectiveMemoryNodes=</varname>.</para>
492
493 <para>While <varname>StartupAllowedMemoryNodes=</varname> applies to the startup and shutdown phases of the system,
494 <varname>AllowedMemoryNodes=</varname> applies to normal runtime of the system, and if the former is not set also to
495 the startup and shutdown phases. Using <varname>StartupAllowedMemoryNodes=</varname> allows prioritizing specific services at
496 boot-up and shutdown differently than during normal runtime.</para>
497
498 <para>This setting is supported only with the unified control group hierarchy.</para>
499 </listitem>
500 </varlistentry>
501
502 </variablelist>
503
504 </refsect2><refsect2><title>Process Accounting and Control</title>
505
506 <variablelist class='unit-directives'>
507
508 <varlistentry>
509 <term><varname>TasksAccounting=</varname></term>
510
511 <listitem>
512 <para>This setting controls the <option>pids</option> controller in the unified hierarchy.</para>
513
514 <para>Turn on task accounting for this unit. Takes a boolean argument. If enabled, the kernel will
515 keep track of the total number of tasks in the unit and its children. This number includes both
516 kernel threads and userspace processes, with each thread counted individually. Note that turning on
517 tasks accounting for one unit will also implicitly turn it on for all units contained in the same
518 slice and for all its parent slices and the units contained therein. The system default for this
519 setting may be controlled with <varname>DefaultTasksAccounting=</varname> in
520 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
521 </listitem>
522 </varlistentry>
523
524 <varlistentry>
525 <term><varname>TasksMax=<replaceable>N</replaceable></varname></term>
526
527 <listitem>
528 <para>This setting controls the <option>pids</option> controller in the unified hierarchy.</para>
529
530 <para>Specify the maximum number of tasks that may be created in the unit. This ensures that the
531 number of tasks accounted for the unit (see above) stays below a specific limit. This either takes
532 an absolute number of tasks or a percentage value that is taken relative to the configured maximum
533 number of tasks on the system. If assigned the special value <literal>infinity</literal>, no tasks
534 limit is applied. This controls the <literal>pids.max</literal> control group attribute. For
535 details about this control group attribute, the
536 <ulink url="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#pid">pids controller
537 </ulink>.</para>
538
539 <para>The system default for this setting may be controlled with
540 <varname>DefaultTasksMax=</varname> in
541 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
542 </listitem>
543 </varlistentry>
544
545 </variablelist>
546
547 </refsect2><refsect2><title>IO Accounting and Control</title>
548
549 <variablelist class='unit-directives'>
550
551 <varlistentry>
552 <term><varname>IOAccounting=</varname></term>
553
554 <listitem>
555 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
556
557 <para>Turn on Block I/O accounting for this unit, if the unified control group hierarchy is used on the
558 system. Takes a boolean argument. Note that turning on block I/O accounting for one unit will also implicitly
559 turn it on for all units contained in the same slice and all for its parent slices and the units contained
560 therein. The system default for this setting may be controlled with <varname>DefaultIOAccounting=</varname>
561 in
562 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
563 </listitem>
564 </varlistentry>
565
566 <varlistentry>
567 <term><varname>IOWeight=<replaceable>weight</replaceable></varname></term>
568 <term><varname>StartupIOWeight=<replaceable>weight</replaceable></varname></term>
569
570 <listitem>
571 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
572
573 <para>Set the default overall block I/O weight for the executed processes, if the unified control
574 group hierarchy is used on the system. Takes a single weight value (between 1 and 10000) to set the
575 default block I/O weight. This controls the <literal>io.weight</literal> control group attribute,
576 which defaults to 100. For details about this control group attribute, see <ulink
577 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO
578 Interface Files</ulink>. The available I/O bandwidth is split up among all units within one slice
579 relative to their block I/O weight. A higher weight means more I/O bandwidth, a lower weight means
580 less.</para>
581
582 <para>While <varname>StartupIOWeight=</varname> applies
583 to the startup and shutdown phases of the system,
584 <varname>IOWeight=</varname> applies to the later runtime of
585 the system, and if the former is not set also to the startup
586 and shutdown phases. This allows prioritizing specific services at boot-up
587 and shutdown differently than during runtime.</para>
588 </listitem>
589 </varlistentry>
590
591 <varlistentry>
592 <term><varname>IODeviceWeight=<replaceable>device</replaceable> <replaceable>weight</replaceable></varname></term>
593
594 <listitem>
595 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
596
597 <para>Set the per-device overall block I/O weight for the executed processes, if the unified control group
598 hierarchy is used on the system. Takes a space-separated pair of a file path and a weight value to specify
599 the device specific weight value, between 1 and 10000. (Example: <literal>/dev/sda 1000</literal>). The file
600 path may be specified as path to a block device node or as any other file, in which case the backing block
601 device of the file system of the file is determined. This controls the <literal>io.weight</literal> control
602 group attribute, which defaults to 100. Use this option multiple times to set weights for multiple devices.
603 For details about this control group attribute, see <ulink
604 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.</para>
605
606 <para>The specified device node should reference a block device that has an I/O scheduler
607 associated, i.e. should not refer to partition or loopback block devices, but to the originating,
608 physical device. When a path to a regular file or directory is specified it is attempted to
609 discover the correct originating device backing the file system of the specified path. This works
610 correctly only for simpler cases, where the file system is directly placed on a partition or
611 physical block device, or where simple 1:1 encryption using dm-crypt/LUKS is used. This discovery
612 does not cover complex storage and in particular RAID and volume management storage devices.</para>
613 </listitem>
614 </varlistentry>
615
616 <varlistentry>
617 <term><varname>IOReadBandwidthMax=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname></term>
618 <term><varname>IOWriteBandwidthMax=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname></term>
619
620 <listitem>
621 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
622
623 <para>Set the per-device overall block I/O bandwidth maximum limit for the executed processes, if the unified
624 control group hierarchy is used on the system. This limit is not work-conserving and the executed processes
625 are not allowed to use more even if the device has idle capacity. Takes a space-separated pair of a file
626 path and a bandwidth value (in bytes per second) to specify the device specific bandwidth. The file path may
627 be a path to a block device node, or as any other file in which case the backing block device of the file
628 system of the file is used. If the bandwidth is suffixed with K, M, G, or T, the specified bandwidth is
629 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively, to the base of 1000. (Example:
630 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 5M"). This controls the <literal>io.max</literal> control
631 group attributes. Use this option multiple times to set bandwidth limits for multiple devices. For details
632 about this control group attribute, see <ulink
633 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.
634 </para>
635
636 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
637 </listitem>
638 </varlistentry>
639
640 <varlistentry>
641 <term><varname>IOReadIOPSMax=<replaceable>device</replaceable> <replaceable>IOPS</replaceable></varname></term>
642 <term><varname>IOWriteIOPSMax=<replaceable>device</replaceable> <replaceable>IOPS</replaceable></varname></term>
643
644 <listitem>
645 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
646
647 <para>Set the per-device overall block I/O IOs-Per-Second maximum limit for the executed processes, if the
648 unified control group hierarchy is used on the system. This limit is not work-conserving and the executed
649 processes are not allowed to use more even if the device has idle capacity. Takes a space-separated pair of
650 a file path and an IOPS value to specify the device specific IOPS. The file path may be a path to a block
651 device node, or as any other file in which case the backing block device of the file system of the file is
652 used. If the IOPS is suffixed with K, M, G, or T, the specified IOPS is parsed as KiloIOPS, MegaIOPS,
653 GigaIOPS, or TeraIOPS, respectively, to the base of 1000. (Example:
654 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 1K"). This controls the <literal>io.max</literal> control
655 group attributes. Use this option multiple times to set IOPS limits for multiple devices. For details about
656 this control group attribute, see <ulink
657 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.
658 </para>
659
660 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
661 </listitem>
662 </varlistentry>
663
664 <varlistentry>
665 <term><varname>IODeviceLatencyTargetSec=<replaceable>device</replaceable> <replaceable>target</replaceable></varname></term>
666
667 <listitem>
668 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
669
670 <para>Set the per-device average target I/O latency for the executed processes, if the unified control group
671 hierarchy is used on the system. Takes a file path and a timespan separated by a space to specify
672 the device specific latency target. (Example: "/dev/sda 25ms"). The file path may be specified
673 as path to a block device node or as any other file, in which case the backing block device of the file
674 system of the file is determined. This controls the <literal>io.latency</literal> control group
675 attribute. Use this option multiple times to set latency target for multiple devices. For details about this
676 control group attribute, see <ulink
677 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.</para>
678
679 <para>Implies <literal>IOAccounting=yes</literal>.</para>
680
681 <para>These settings are supported only if the unified control group hierarchy is used.</para>
682
683 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
684 </listitem>
685 </varlistentry>
686
687 </variablelist>
688
689 </refsect2><refsect2><title>Network Accounting and Control</title>
690
691 <variablelist class='unit-directives'>
692
693 <varlistentry>
694 <term><varname>IPAccounting=</varname></term>
695
696 <listitem>
697 <para>Takes a boolean argument. If true, turns on IPv4 and IPv6 network traffic accounting for packets sent
698 or received by the unit. When this option is turned on, all IPv4 and IPv6 sockets created by any process of
699 the unit are accounted for.</para>
700
701 <para>When this option is used in socket units, it applies to all IPv4 and IPv6 sockets
702 associated with it (including both listening and connection sockets where this applies). Note that for
703 socket-activated services, this configuration setting and the accounting data of the service unit and the
704 socket unit are kept separate, and displayed separately. No propagation of the setting and the collected
705 statistics is done, in either direction. Moreover, any traffic sent or received on any of the socket unit's
706 sockets is accounted to the socket unit — and never to the service unit it might have activated, even if the
707 socket is used by it.</para>
708
709 <para>The system default for this setting may be controlled with <varname>DefaultIPAccounting=</varname> in
710 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
711 </listitem>
712 </varlistentry>
713
714 <varlistentry>
715 <term><varname>IPAddressAllow=<replaceable>ADDRESS[/PREFIXLENGTH]…</replaceable></varname></term>
716 <term><varname>IPAddressDeny=<replaceable>ADDRESS[/PREFIXLENGTH]…</replaceable></varname></term>
717
718 <listitem>
719 <para>Turn on network traffic filtering for IP packets sent and received over
720 <constant>AF_INET</constant> and <constant>AF_INET6</constant> sockets. Both directives take a
721 space separated list of IPv4 or IPv6 addresses, each optionally suffixed with an address prefix
722 length in bits after a <literal>/</literal> character. If the suffix is omitted, the address is
723 considered a host address, i.e. the filter covers the whole address (32 bits for IPv4, 128 bits for
724 IPv6).</para>
725
726 <para>The access lists configured with this option are applied to all sockets created by processes
727 of this unit (or in the case of socket units, associated with it). The lists are implicitly
728 combined with any lists configured for any of the parent slice units this unit might be a member
729 of. By default both access lists are empty. Both ingress and egress traffic is filtered by these
730 settings. In case of ingress traffic the source IP address is checked against these access lists,
731 in case of egress traffic the destination IP address is checked. The following rules are applied in
732 turn:</para>
733
734 <itemizedlist>
735 <listitem><para>Access is granted when the checked IP address matches an entry in the
736 <varname>IPAddressAllow=</varname> list.</para></listitem>
737
738 <listitem><para>Otherwise, access is denied when the checked IP address matches an entry in the
739 <varname>IPAddressDeny=</varname> list.</para></listitem>
740
741 <listitem><para>Otherwise, access is granted.</para></listitem>
742 </itemizedlist>
743
744 <para>In order to implement an allow-listing IP firewall, it is recommended to use a
745 <varname>IPAddressDeny=</varname><constant>any</constant> setting on an upper-level slice unit
746 (such as the root slice <filename>-.slice</filename> or the slice containing all system services
747 <filename>system.slice</filename> – see
748 <citerefentry><refentrytitle>systemd.special</refentrytitle><manvolnum>7</manvolnum></citerefentry>
749 for details on these slice units), plus individual per-service <varname>IPAddressAllow=</varname>
750 lines permitting network access to relevant services, and only them.</para>
751
752 <para>Note that for socket-activated services, the IP access list configured on the socket unit
753 applies to all sockets associated with it directly, but not to any sockets created by the
754 ultimately activated services for it. Conversely, the IP access list configured for the service is
755 not applied to any sockets passed into the service via socket activation. Thus, it is usually a
756 good idea to replicate the IP access lists on both the socket and the service unit. Nevertheless,
757 it may make sense to maintain one list more open and the other one more restricted, depending on
758 the usecase.</para>
759
760 <para>If these settings are used multiple times in the same unit the specified lists are combined. If an
761 empty string is assigned to these settings the specific access list is reset and all previous settings undone.</para>
762
763 <para>In place of explicit IPv4 or IPv6 address and prefix length specifications a small set of symbolic
764 names may be used. The following names are defined:</para>
765
766 <table>
767 <title>Special address/network names</title>
768
769 <tgroup cols='3'>
770 <colspec colname='name'/>
771 <colspec colname='definition'/>
772 <colspec colname='meaning'/>
773
774 <thead>
775 <row>
776 <entry>Symbolic Name</entry>
777 <entry>Definition</entry>
778 <entry>Meaning</entry>
779 </row>
780 </thead>
781
782 <tbody>
783 <row>
784 <entry><constant>any</constant></entry>
785 <entry>0.0.0.0/0 ::/0</entry>
786 <entry>Any host</entry>
787 </row>
788
789 <row>
790 <entry><constant>localhost</constant></entry>
791 <entry>127.0.0.0/8 ::1/128</entry>
792 <entry>All addresses on the local loopback</entry>
793 </row>
794
795 <row>
796 <entry><constant>link-local</constant></entry>
797 <entry>169.254.0.0/16 fe80::/64</entry>
798 <entry>All link-local IP addresses</entry>
799 </row>
800
801 <row>
802 <entry><constant>multicast</constant></entry>
803 <entry>224.0.0.0/4 ff00::/8</entry>
804 <entry>All IP multicasting addresses</entry>
805 </row>
806 </tbody>
807 </tgroup>
808 </table>
809
810 <para>Note that these settings might not be supported on some systems (for example if eBPF control group
811 support is not enabled in the underlying kernel or container manager). These settings will have no effect in
812 that case. If compatibility with such systems is desired it is hence recommended to not exclusively rely on
813 them for IP security.</para>
814
815 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
816 </listitem>
817 </varlistentry>
818
819 <varlistentry>
820 <term><varname>SocketBindAllow=<replaceable>bind-rule</replaceable></varname></term>
821 <term><varname>SocketBindDeny=<replaceable>bind-rule</replaceable></varname></term>
822
823 <listitem>
824 <para>Allow or deny binding a socket address to a socket by matching it with the <replaceable>bind-rule</replaceable> and
825 applying a corresponding action if there is a match.</para>
826
827 <para><replaceable>bind-rule</replaceable> describes socket properties such as <replaceable>address-family</replaceable>,
828 <replaceable>transport-protocol</replaceable> and <replaceable>ip-ports</replaceable>.</para>
829
830 <para><replaceable>bind-rule</replaceable> :=
831 { [<replaceable>address-family</replaceable><constant>:</constant>][<replaceable>transport-protocol</replaceable><constant>:</constant>][<replaceable>ip-ports</replaceable>] | <constant>any</constant> }</para>
832
833 <para><replaceable>address-family</replaceable> := { <constant>ipv4</constant> | <constant>ipv6</constant> }</para>
834
835 <para><replaceable>transport-protocol</replaceable> := { <constant>tcp</constant> | <constant>udp</constant> }</para>
836
837 <para><replaceable>ip-ports</replaceable> := { <replaceable>ip-port</replaceable> | <replaceable>ip-port-range</replaceable> }</para>
838
839 <para>An optional <replaceable>address-family</replaceable> expects <constant>ipv4</constant> or <constant>ipv6</constant> values.
840 If not specified, a rule will be matched for both IPv4 and IPv6 addresses and applied depending on other socket fields, e.g. <replaceable>transport-protocol</replaceable>,
841 <replaceable>ip-port</replaceable>.</para>
842
843 <para>An optional <replaceable>transport-protocol</replaceable> expects <constant>tcp</constant> or <constant>udp</constant> transport protocol names.
844 If not specified, a rule will be matched for any transport protocol.</para>
845
846 <para>An optional <replaceable>ip-port</replaceable> value must lie within 165535 interval inclusively, i.e.
847 dynamic port <constant>0</constant> is not allowed. A range of sequential ports is described by
848 <replaceable>ip-port-range</replaceable> := <replaceable>ip-port-low</replaceable><constant>-</constant><replaceable>ip-port-high</replaceable>,
849 where <replaceable>ip-port-low</replaceable> is smaller than or equal to <replaceable>ip-port-high</replaceable>
850 and both are within 165535 inclusively.</para>
851
852 <para>A special value <constant>any</constant> can be used to apply a rule to any address family, transport protocol and any port with a positive value.</para>
853
854 <para>To allow multiple rules assign <varname>SocketBindAllow=</varname> or <varname>SocketBindDeny=</varname> multiple times.
855 To clear the existing assignments pass an empty <varname>SocketBindAllow=</varname> or <varname>SocketBindDeny=</varname>
856 assignment.</para>
857
858 <para>For each of <varname>SocketBindAllow=</varname> and <varname>SocketBindDeny=</varname>, maximum allowed number of assignments is
859 <constant>128</constant>.</para>
860
861 <itemizedlist>
862 <listitem><para>Binding to a socket is allowed when a socket address matches an entry in the
863 <varname>SocketBindAllow=</varname> list.</para></listitem>
864
865 <listitem><para>Otherwise, binding is denied when the socket address matches an entry in the
866 <varname>SocketBindDeny=</varname> list.</para></listitem>
867
868 <listitem><para>Otherwise, binding is allowed.</para></listitem>
869 </itemizedlist>
870
871 <para>The feature is implemented with <constant>cgroup/bind4</constant> and <constant>cgroup/bind6</constant> cgroup-bpf hooks.</para>
872 <para>Examples:<programlisting>
873 # Allow binding IPv6 socket addresses with a port greater than or equal to 10000.
874 [Service]
875 SocketBindAllow=ipv6:10000-65535
876 SocketBindDeny=any
877
878 # Allow binding IPv4 and IPv6 socket addresses with 1234 and 4321 ports.
879 [Service]
880 SocketBindAllow=1234
881 SocketBindAllow=4321
882 SocketBindDeny=any
883
884 # Deny binding IPv6 socket addresses.
885 [Service]
886 SocketBindDeny=ipv6
887
888 # Deny binding IPv4 and IPv6 socket addresses.
889 [Service]
890 SocketBindDeny=any
891
892 # Allow binding only over TCP
893 [Service]
894 SocketBindAllow=tcp
895 SocketBindDeny=any
896
897 # Allow binding only over IPv6/TCP
898 [Service]
899 SocketBindAllow=ipv6:tcp
900 SocketBindDeny=any
901
902 # Allow binding ports within 10000-65535 range over IPv4/UDP.
903 [Service]
904 SocketBindAllow=ipv4:udp:10000-65535
905 SocketBindDeny=any
906</programlisting></para>
907
908 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
909 </listitem>
910 </varlistentry>
911
912 <varlistentry>
913 <term><varname>RestrictNetworkInterfaces=</varname></term>
914
915 <listitem>
916 <para>Takes a list of space-separated network interface names. This option restricts the network
917 interfaces that processes of this unit can use. By default processes can only use the network interfaces
918 listed (allow-list). If the first character of the rule is <literal>~</literal>, the effect is inverted:
919 the processes can only use network interfaces not listed (deny-list).
920 </para>
921
922 <para>This option can appear multiple times, in which case the network interface names are merged. If the
923 empty string is assigned the set is reset, all prior assignments will have not effect.
924 </para>
925
926 <para>If you specify both types of this option (i.e. allow-listing and deny-listing), the first encountered
927 will take precedence and will dictate the default action (allow vs deny). Then the next occurrences of this
928 option will add or delete the listed network interface names from the set, depending of its type and the
929 default action.
930 </para>
931
932 <para>The loopback interface ("lo") is not treated in any special way, you have to configure it explicitly
933 in the unit file.
934 </para>
935 <para>Example 1: allow-list
936 <programlisting>
937 RestrictNetworkInterfaces=eth1
938 RestrictNetworkInterfaces=eth2</programlisting>
939 Programs in the unit will be only able to use the eth1 and eth2 network
940 interfaces.
941 </para>
942
943 <para>Example 2: deny-list
944 <programlisting>
945 RestrictNetworkInterfaces=~eth1 eth2</programlisting>
946 Programs in the unit will be able to use any network interface but eth1 and eth2.
947 </para>
948
949 <para>Example 3: mixed
950 <programlisting>
951 RestrictNetworkInterfaces=eth1 eth2
952 RestrictNetworkInterfaces=~eth1</programlisting>
953 Programs in the unit will be only able to use the eth2 network interface.
954 </para>
955
956 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
957 </listitem>
958 </varlistentry>
959
960 </variablelist>
961
962 </refsect2><refsect2><title>BPF Programs</title>
963
964 <variablelist class='unit-directives'>
965
966 <varlistentry>
967 <term><varname>IPIngressFilterPath=<replaceable>BPF_FS_PROGRAM_PATH</replaceable></varname></term>
968 <term><varname>IPEgressFilterPath=<replaceable>BPF_FS_PROGRAM_PATH</replaceable></varname></term>
969
970 <listitem>
971 <para>Add custom network traffic filters implemented as BPF programs, applying to all IP packets
972 sent and received over <constant>AF_INET</constant> and <constant>AF_INET6</constant> sockets.
973 Takes an absolute path to a pinned BPF program in the BPF virtual filesystem (<filename>/sys/fs/bpf/</filename>).
974 </para>
975
976 <para>The filters configured with this option are applied to all sockets created by processes
977 of this unit (or in the case of socket units, associated with it). The filters are loaded in addition
978 to filters any of the parent slice units this unit might be a member of as well as any
979 <varname>IPAddressAllow=</varname> and <varname>IPAddressDeny=</varname> filters in any of these units.
980 By default there are no filters specified.</para>
981
982 <para>If these settings are used multiple times in the same unit all the specified programs are attached. If an
983 empty string is assigned to these settings the program list is reset and all previous specified programs ignored.</para>
984
985 <para>If the path <replaceable>BPF_FS_PROGRAM_PATH</replaceable> in <varname>IPIngressFilterPath=</varname> assignment
986 is already being handled by <varname>BPFProgram=</varname> ingress hook, e.g.
987 <varname>BPFProgram=</varname><constant>ingress</constant>:<replaceable>BPF_FS_PROGRAM_PATH</replaceable>,
988 the assignment will be still considered valid and the program will be attached to a cgroup. Same for
989 <varname>IPEgressFilterPath=</varname> path and <constant>egress</constant> hook.</para>
990
991 <para>Note that for socket-activated services, the IP filter programs configured on the socket unit apply to
992 all sockets associated with it directly, but not to any sockets created by the ultimately activated services
993 for it. Conversely, the IP filter programs configured for the service are not applied to any sockets passed into
994 the service via socket activation. Thus, it is usually a good idea, to replicate the IP filter programs on both
995 the socket and the service unit, however it often makes sense to maintain one configuration more open and the other
996 one more restricted, depending on the usecase.</para>
997
998 <para>Note that these settings might not be supported on some systems (for example if eBPF control group
999 support is not enabled in the underlying kernel or container manager). These settings will fail the service in
1000 that case. If compatibility with such systems is desired it is hence recommended to attach your filter manually
1001 (requires <varname>Delegate=</varname><constant>yes</constant>) instead of using this setting.</para>
1002 </listitem>
1003 </varlistentry>
1004
1005 <varlistentry>
1006 <term><varname>BPFProgram=<replaceable>type</replaceable>:<replaceable>program-path</replaceable></varname></term>
1007 <listitem>
1008 <para><varname>BPFProgram=</varname> allows attaching custom BPF programs to the cgroup of a
1009 unit. (This generalizes the functionality exposed via <varname>IPEgressFilterPath=</varname> and
1010 and <varname>IPIngressFilterPath=</varname> for other hooks.) Cgroup-bpf hooks in the form of BPF
1011 programs loaded to the BPF filesystem are attached with cgroup-bpf attach flags determined by the
1012 unit. For details about attachment types and flags see <ulink
1013 url="https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/include/uapi/linux/bpf.h"><filename>bpf.h</filename></ulink>. Also
1014 refer to the general <ulink url="https://docs.kernel.org/bpf/">BPF documentation</ulink>.</para>
1015
1016 <para>The specification of BPF program consists of a pair of BPF program type and program path in
1017 the file system, with <literal>:</literal> as the separator:
1018 <replaceable>type</replaceable>:<replaceable>program-path</replaceable>.</para>
1019
1020 <para>The BPF program type is equivalent to the BPF attach type used in
1021 <command>bpftool</command>. It may be one of <constant>egress</constant>,
1022 <constant>ingress</constant>, <constant>sock_create</constant>, <constant>sock_ops</constant>,
1023 <constant>device</constant>, <constant>bind4</constant>, <constant>bind6</constant>,
1024 <constant>connect4</constant>, <constant>connect6</constant>, <constant>post_bind4</constant>,
1025 <constant>post_bind6</constant>, <constant>sendmsg4</constant>, <constant>sendmsg6</constant>,
1026 <constant>sysctl</constant>, <constant>recvmsg4</constant>, <constant>recvmsg6</constant>,
1027 <constant>getsockopt</constant>, <constant>setsockopt</constant>.</para>
1028
1029 <para>The specified program path must be an absolute path referencing a BPF program inode in the
1030 bpffs file system (which generally means it must begin with <filename>/sys/fs/bpf/</filename>). If
1031 a specified program does not exist (i.e. has not been uploaded to the BPF subsystem of the kernel
1032 yet), it will not be installed but unit activation will continue (a warning will be printed to the
1033 logs).</para>
1034
1035 <para>Setting <varname>BPFProgram=</varname> to an empty value makes previous assignments
1036 ineffective.</para>
1037
1038 <para>Multiple assignments of the same program type/path pair have the same effect as a single
1039 assignment: the program will be attached just once.</para>
1040
1041 <para>If BPF <constant>egress</constant> pinned to <replaceable>program-path</replaceable> path is already being
1042 handled by <varname>IPEgressFilterPath=</varname>, <varname>BPFProgram=</varname>
1043 assignment will be considered valid and <varname>BPFProgram=</varname> will be attached to a cgroup.
1044 Similarly for <constant>ingress</constant> hook and <varname>IPIngressFilterPath=</varname> assignment.</para>
1045
1046 <para>BPF programs passed with <varname>BPFProgram=</varname> are attached to the cgroup of a unit
1047 with BPF attach flag <constant>multi</constant>, that allows further attachments of the same
1048 <replaceable>type</replaceable> within cgroup hierarchy topped by the unit cgroup.</para>
1049
1050 <para>Examples:<programlisting>BPFProgram=egress:/sys/fs/bpf/egress-hook
1051 BPFProgram=bind6:/sys/fs/bpf/sock-addr-hook
1052 </programlisting></para>
1053 </listitem>
1054 </varlistentry>
1055
1056 </variablelist>
1057
1058 </refsect2><refsect2><title>Device Access</title>
1059
1060 <variablelist class='unit-directives'>
1061
1062 <varlistentry>
1063 <term><varname>DeviceAllow=</varname></term>
1064
1065 <listitem>
1066 <para>Control access to specific device nodes by the executed processes. Takes two space-separated
1067 strings: a device node specifier followed by a combination of <constant>r</constant>,
1068 <constant>w</constant>, <constant>m</constant> to control <emphasis>r</emphasis>eading,
1069 <emphasis>w</emphasis>riting, or creation of the specific device nodes by the unit
1070 (<emphasis>m</emphasis>knod), respectively. This functionality is implemented using eBPF
1071 filtering.</para>
1072
1073 <para>When access to <emphasis>all</emphasis> physical devices should be disallowed,
1074 <varname>PrivateDevices=</varname> may be used instead. See
1075 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1076 </para>
1077
1078 <para>The device node specifier is either a path to a device node in the file system, starting with
1079 <filename>/dev/</filename>, or a string starting with either <literal>char-</literal> or
1080 <literal>block-</literal> followed by a device group name, as listed in
1081 <filename>/proc/devices</filename>. The latter is useful to allow-list all current and future
1082 devices belonging to a specific device group at once. The device group is matched according to
1083 filename globbing rules, you may hence use the <literal>*</literal> and <literal>?</literal>
1084 wildcards. (Note that such globbing wildcards are not available for device node path
1085 specifications!) In order to match device nodes by numeric major/minor, use device node paths in
1086 the <filename>/dev/char/</filename> and <filename>/dev/block/</filename> directories. However,
1087 matching devices by major/minor is generally not recommended as assignments are neither stable nor
1088 portable between systems or different kernel versions.</para>
1089
1090 <para>Examples: <filename>/dev/sda5</filename> is a path to a device node, referring to an ATA or
1091 SCSI block device. <literal>char-pts</literal> and <literal>char-alsa</literal> are specifiers for
1092 all pseudo TTYs and all ALSA sound devices, respectively. <literal>char-cpu/*</literal> is a
1093 specifier matching all CPU related device groups.</para>
1094
1095 <para>Note that allow lists defined this way should only reference device groups which are
1096 resolvable at the time the unit is started. Any device groups not resolvable then are not added to
1097 the device allow list. In order to work around this limitation, consider extending service units
1098 with a pair of <command>After=modprobe@xyz.service</command> and
1099 <command>Wants=modprobe@xyz.service</command> lines that load the necessary kernel module
1100 implementing the device group if missing.
1101 Example: <programlisting>
1102 [Unit]
1103 Wants=modprobe@loop.service
1104 After=modprobe@loop.service
1105
1106 [Service]
1107 DeviceAllow=block-loop
1108 DeviceAllow=/dev/loop-control
1109</programlisting></para>
1110
1111 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
1112 </listitem>
1113 </varlistentry>
1114
1115 <varlistentry>
1116 <term><varname>DevicePolicy=auto|closed|strict</varname></term>
1117
1118 <listitem>
1119 <para>
1120 Control the policy for allowing device access:
1121 </para>
1122 <variablelist>
1123 <varlistentry>
1124 <term><option>strict</option></term>
1125 <listitem>
1126 <para>means to only allow types of access that are
1127 explicitly specified.</para>
1128 </listitem>
1129 </varlistentry>
1130
1131 <varlistentry>
1132 <term><option>closed</option></term>
1133 <listitem>
1134 <para>in addition, allows access to standard pseudo
1135 devices including
1136 <filename>/dev/null</filename>,
1137 <filename>/dev/zero</filename>,
1138 <filename>/dev/full</filename>,
1139 <filename>/dev/random</filename>, and
1140 <filename>/dev/urandom</filename>.
1141 </para>
1142 </listitem>
1143 </varlistentry>
1144
1145 <varlistentry>
1146 <term><option>auto</option></term>
1147 <listitem>
1148 <para>
1149 in addition, allows access to all devices if no
1150 explicit <varname>DeviceAllow=</varname> is present.
1151 This is the default.
1152 </para>
1153 </listitem>
1154 </varlistentry>
1155 </variablelist>
1156
1157 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
1158 </listitem>
1159 </varlistentry>
1160
1161 </variablelist>
1162
1163 </refsect2><refsect2><title>Control Group Management</title>
1164
1165 <variablelist class='unit-directives'>
1166
1167 <varlistentry>
1168 <term><varname>Slice=</varname></term>
1169
1170 <listitem>
1171 <para>The name of the slice unit to place the unit
1172 in. Defaults to <filename>system.slice</filename> for all
1173 non-instantiated units of all unit types (except for slice
1174 units themselves see below). Instance units are by default
1175 placed in a subslice of <filename>system.slice</filename>
1176 that is named after the template name.</para>
1177
1178 <para>This option may be used to arrange systemd units in a
1179 hierarchy of slices each of which might have resource
1180 settings applied.</para>
1181
1182 <para>For units of type slice, the only accepted value for
1183 this setting is the parent slice. Since the name of a slice
1184 unit implies the parent slice, it is hence redundant to ever
1185 set this parameter directly for slice units.</para>
1186
1187 <para>Special care should be taken when relying on the default slice assignment in templated service units
1188 that have <varname>DefaultDependencies=no</varname> set, see
1189 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>, section
1190 "Default Dependencies" for details.</para>
1191
1192 </listitem>
1193 </varlistentry>
1194
1195 <varlistentry>
1196 <term><varname>Delegate=</varname></term>
1197
1198 <listitem>
1199 <para>Turns on delegation of further resource control partitioning to processes of the unit. Units
1200 where this is enabled may create and manage their own private subhierarchy of control groups below
1201 the control group of the unit itself. For unprivileged services (i.e. those using the
1202 <varname>User=</varname> setting) the unit's control group will be made accessible to the relevant
1203 user.</para>
1204
1205 <para>When enabled the service manager will refrain from manipulating control groups or moving
1206 processes below the unit's control group, so that a clear concept of ownership is established: the
1207 control group tree at the level of the unit's control group and above (i.e. towards the root
1208 control group) is owned and managed by the service manager of the host, while the control group
1209 tree below the unit's control group is owned and managed by the unit itself.</para>
1210
1211 <para>Takes either a boolean argument or a (possibly empty) list of control group controller names.
1212 If true, delegation is turned on, and all supported controllers are enabled for the unit, making
1213 them available to the unit's processes for management. If false, delegation is turned off entirely
1214 (and no additional controllers are enabled). If set to a list of controllers, delegation is turned
1215 on, and the specified controllers are enabled for the unit. Assigning the empty string will enable
1216 delegation, but reset the list of controllers, and all assignments prior to this will have no
1217 effect. Note that additional controllers other than the ones specified might be made available as
1218 well, depending on configuration of the containing slice unit or other units contained in it.
1219 Defaults to false.</para>
1220
1221 <para>Note that controller delegation to less privileged code is only safe on the unified control
1222 group hierarchy. Accordingly, access to the specified controllers will not be granted to
1223 unprivileged services on the legacy hierarchy, even when requested.</para>
1224
1225 <xi:include href="supported-controllers.xml" xpointer="controllers-text" />
1226
1227 <para>Not all of these controllers are available on all kernels however, and some are specific to
1228 the unified hierarchy while others are specific to the legacy hierarchy. Also note that the kernel
1229 might support further controllers, which aren't covered here yet as delegation is either not
1230 supported at all for them or not defined cleanly.</para>
1231
1232 <para>Note that because of the hierarchical nature of cgroup hierarchy, any controllers that are
1233 delegated will be enabled for the parent and sibling units of the unit with delegation.</para>
1234
1235 <para>For further details on the delegation model consult <ulink
1236 url="https://systemd.io/CGROUP_DELEGATION">Control Group APIs and Delegation</ulink>.</para>
1237 </listitem>
1238 </varlistentry>
1239
1240 <varlistentry>
1241 <term><varname>DelegateSubgroup=</varname></term>
1242
1243 <listitem>
1244 <para>Place unit processes in the specified subgroup of the unit's control group. Takes a valid
1245 control group name (not a path!) as parameter, or an empty string to turn this feature
1246 off. Defaults to off. The control group name must be usable as filename and avoid conflicts with
1247 the kernel's control group attribute files (i.e. <filename>cgroup.procs</filename> is not an
1248 acceptable name, since the kernel exposes a native control group attribute file by that name). This
1249 option has no effect unless control group delegation is turned on via <varname>Delegate=</varname>,
1250 see above. Note that this setting only applies to "main" processes of a unit, i.e. for services to
1251 <varname>ExecStart=</varname>, but not for <varname>ExecReload=</varname> and similar. If
1252 delegation is enabled, the latter are always placed inside a subgroup named
1253 <filename>.control</filename>. The specified subgroup is automatically created (and potentially
1254 ownership is passed to the unit's configured user/group) when a process is started in it.</para>
1255
1256 <para>This option is useful to avoid manually moving the invoked process into a subgroup after it
1257 has been started. Since no processes should live in inner nodes of the control group tree it's
1258 almost always necessary to run the main ("supervising") process of a unit that has delegation
1259 turned on in a subgroup.</para>
1260 </listitem>
1261 </varlistentry>
1262
1263 <varlistentry>
1264 <term><varname>DisableControllers=</varname></term>
1265
1266 <listitem>
1267 <para>Disables controllers from being enabled for a unit's children. If a controller listed is
1268 already in use in its subtree, the controller will be removed from the subtree. This can be used to
1269 avoid configuration in child units from being able to implicitly or explicitly enable a controller.
1270 Defaults to empty.</para>
1271
1272 <para>Multiple controllers may be specified, separated by spaces. You may also pass
1273 <varname>DisableControllers=</varname> multiple times, in which case each new instance adds another controller
1274 to disable. Passing <varname>DisableControllers=</varname> by itself with no controller name present resets
1275 the disabled controller list.</para>
1276
1277 <para>It may not be possible to disable a controller after units have been started, if the unit or
1278 any child of the unit in question delegates controllers to its children, as any delegated subtree
1279 of the cgroup hierarchy is unmanaged by systemd.</para>
1280
1281 <xi:include href="supported-controllers.xml" xpointer="controllers-text" />
1282 </listitem>
1283 </varlistentry>
1284
1285 </variablelist>
1286
1287 </refsect2><refsect2><title>Memory Pressure Control</title>
1288
1289 <variablelist class='unit-directives'>
1290
1291 <varlistentry>
1292 <term><varname>ManagedOOMSwap=auto|kill</varname></term>
1293 <term><varname>ManagedOOMMemoryPressure=auto|kill</varname></term>
1294
1295 <listitem>
1296 <para>Specifies how
1297 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1298 will act on this unit's cgroups. Defaults to <option>auto</option>.</para>
1299
1300 <para>When set to <option>kill</option>, the unit becomes a candidate for monitoring by
1301 <command>systemd-oomd</command>. If the cgroup passes the limits set by
1302 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry> or
1303 the unit configuration, <command>systemd-oomd</command> will select a descendant cgroup and send
1304 <constant>SIGKILL</constant> to all of the processes under it. You can find more details on
1305 candidates and kill behavior at
1306 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1307 and
1308 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1309
1310 <para>Setting either of these properties to <option>kill</option> will also result in
1311 <varname>After=</varname> and <varname>Wants=</varname> dependencies on
1312 <filename>systemd-oomd.service</filename> unless <varname>DefaultDependencies=no</varname>.</para>
1313
1314 <para>When set to <option>auto</option>, <command>systemd-oomd</command> will not actively use this
1315 cgroup's data for monitoring and detection. However, if an ancestor cgroup has one of these
1316 properties set to <option>kill</option>, a unit with <option>auto</option> can still be a candidate
1317 for <command>systemd-oomd</command> to terminate.</para>
1318 </listitem>
1319 </varlistentry>
1320
1321 <varlistentry>
1322 <term><varname>ManagedOOMMemoryPressureLimit=</varname></term>
1323
1324 <listitem>
1325 <para>Overrides the default memory pressure limit set by
1326 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry> for
1327 this unit (cgroup). Takes a percentage value between 0% and 100%, inclusive. This property is
1328 ignored unless <varname>ManagedOOMMemoryPressure=</varname><option>kill</option>. Defaults to 0%,
1329 which means to use the default set by
1330 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1331 </para>
1332 </listitem>
1333 </varlistentry>
1334
1335 <varlistentry>
1336 <term><varname>ManagedOOMPreference=none|avoid|omit</varname></term>
1337
1338 <listitem>
1339 <para>Allows deprioritizing or omitting this unit's cgroup as a candidate when
1340 <command>systemd-oomd</command> needs to act. Requires support for extended attributes (see
1341 <citerefentry project='man-pages'><refentrytitle>xattr</refentrytitle><manvolnum>7</manvolnum></citerefentry>)
1342 in order to use <option>avoid</option> or <option>omit</option>.</para>
1343
1344 <para>When calculating candidates to relieve swap usage, <command>systemd-oomd</command> will
1345 only respect these extended attributes if the unit's cgroup is owned by root.</para>
1346
1347 <para>When calculating candidates to relieve memory pressure, <command>systemd-oomd</command>
1348 will only respect these extended attributes if the unit's cgroup is owned by root, or if the
1349 unit's cgroup owner, and the owner of the monitored ancestor cgroup are the same. For example,
1350 if <command>systemd-oomd</command> is calculating candidates for <filename>-.slice</filename>,
1351 then extended attributes set on descendants of <filename>/user.slice/user-1000.slice/user@1000.service/</filename>
1352 will be ignored because the descendants are owned by UID 1000, and <filename>-.slice</filename>
1353 is owned by UID 0. But, if calculating candidates for
1354 <filename>/user.slice/user-1000.slice/user@1000.service/</filename>, then extended attributes set
1355 on the descendants would be respected.</para>
1356
1357 <para>If this property is set to <option>avoid</option>, the service manager will convey this to
1358 <command>systemd-oomd</command>, which will only select this cgroup if there are no other viable
1359 candidates.</para>
1360
1361 <para>If this property is set to <option>omit</option>, the service manager will convey this to
1362 <command>systemd-oomd</command>, which will ignore this cgroup as a candidate and will not perform
1363 any actions on it.</para>
1364
1365 <para>It is recommended to use <option>avoid</option> and <option>omit</option> sparingly, as it
1366 can adversely affect <command>systemd-oomd</command>'s kill behavior. Also note that these extended
1367 attributes are not applied recursively to cgroups under this unit's cgroup.</para>
1368
1369 <para>Defaults to <option>none</option> which means <command>systemd-oomd</command> will rank this
1370 unit's cgroup as defined in
1371 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1372 and <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1373 </para>
1374 </listitem>
1375 </varlistentry>
1376
1377 <varlistentry>
1378 <term><varname>MemoryPressureWatch=</varname></term>
1379
1380 <listitem><para>Controls memory pressure monitoring for invoked processes. Takes one of
1381 <literal>off</literal>, <literal>on</literal>, <literal>auto</literal> or <literal>skip</literal>. If
1382 <literal>off</literal> tells the service not to watch for memory pressure events, by setting the
1383 <varname>$MEMORY_PRESSURE_WATCH</varname> environment variable to the literal string
1384 <filename>/dev/null</filename>. If <literal>on</literal> tells the service to watch for memory
1385 pressure events. This enables memory accounting for the service, and ensures the
1386 <filename>memory.pressure</filename> cgroup attribute files is accessible for read and write to the
1387 service's user. It then sets the <varname>$MEMORY_PRESSURE_WATCH</varname> environment variable for
1388 processes invoked by the unit to the file system path to this file. The threshold information
1389 configured with <varname>MemoryPressureThresholdSec=</varname> is encoded in the
1390 <varname>$MEMORY_PRESSURE_WRITE</varname> environment variable. If the <literal>auto</literal> value
1391 is set the protocol is enabled if memory accounting is anyway enabled for the unit, and disabled
1392 otherwise. If set to <literal>skip</literal> the logic is neither enabled, nor disabled and the two
1393 environment variables are not set.</para>
1394
1395 <para>Note that services are free to use the two environment variables, but it's unproblematic if
1396 they ignore them. Memory pressure handling must be implemented individually in each service, and
1397 usually means different things for different software. For further details on memory pressure
1398 handling see <ulink url="https://systemd.io/MEMORY_PRESSURE">Memory Pressure Handling in
1399 systemd</ulink>.</para>
1400
1401 <para>Services implemented using
1402 <citerefentry><refentrytitle>sd-event</refentrytitle><manvolnum>3</manvolnum></citerefentry> may use
1403 <citerefentry><refentrytitle>sd_event_add_memory_pressure</refentrytitle><manvolnum>3</manvolnum></citerefentry>
1404 to watch for and handle memory pressure events.</para>
1405
1406 <para>If not explicit set, defaults to the <varname>DefaultMemoryPressureWatch=</varname> setting in
1407 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para></listitem>
1408 </varlistentry>
1409
1410 <varlistentry>
1411 <term><varname>MemoryPressureThresholdSec=</varname></term>
1412
1413 <listitem><para>Sets the memory pressure threshold time for memory pressure monitor as configured via
1414 <varname>MemoryPressureWatch=</varname>. Specifies the maximum allocation latency before a memory
1415 pressure event is signalled to the service, per 2s window. If not specified defaults to the
1416 <varname>DefaultMemoryPressureThresholdSec=</varname> setting in
1417 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>
1418 (which in turn defaults to 200ms). The specified value expects a time unit such as
1419 <literal>ms</literal> or <literal>μs</literal>, see
1420 <citerefentry><refentrytitle>systemd.time</refentrytitle><manvolnum>7</manvolnum></citerefentry> for
1421 details on the permitted syntax.</para></listitem>
1422 </varlistentry>
1423 </variablelist>
1424 </refsect2>
1425 </refsect1>
1426
1427 <refsect1>
1428 <title>History</title>
1429
1430 <variablelist>
1431 <varlistentry>
1432 <term>systemd 252</term>
1433 <listitem><para> Options for controlling the Legacy Control Group Hierarchy (<ulink
1434 url="https://docs.kernel.org/admin-guide/cgroup-v1/index.html">Control Groups version 1</ulink>)
1435 are now fully deprecated:
1436 <varname>CPUShares=<replaceable>weight</replaceable></varname>,
1437 <varname>StartupCPUShares=<replaceable>weight</replaceable></varname>,
1438 <varname>MemoryLimit=<replaceable>bytes</replaceable></varname>,
1439 <varname>BlockIOAccounting=</varname>,
1440 <varname>BlockIOWeight=<replaceable>weight</replaceable></varname>,
1441 <varname>StartupBlockIOWeight=<replaceable>weight</replaceable></varname>,
1442 <varname>BlockIODeviceWeight=<replaceable>device</replaceable>
1443 <replaceable>weight</replaceable></varname>,
1444 <varname>BlockIOReadBandwidth=<replaceable>device</replaceable>
1445 <replaceable>bytes</replaceable></varname>,
1446 <varname>BlockIOWriteBandwidth=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname>.
1447 Please switch to the unified cgroup hierarchy.</para></listitem>
1448 </varlistentry>
1449 </variablelist>
1450 </refsect1>
1451
1452 <refsect1>
1453 <title>See Also</title>
1454 <para>
1455 <citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
1456 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1457 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1458 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1459 <citerefentry><refentrytitle>systemd.slice</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1460 <citerefentry><refentrytitle>systemd.scope</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1461 <citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1462 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1463 <citerefentry><refentrytitle>systemd.swap</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1464 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1465 <citerefentry><refentrytitle>systemd.directives</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
1466 <citerefentry><refentrytitle>systemd.special</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
1467 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
1468 The documentation for control groups and specific controllers in the Linux kernel:
1469 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink>.
1470 </para>
1471 </refsect1>
1472 </refentry>