]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
reftable/block: avoid decoding keys when searching restart points
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "git-compat-util.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "advice.h"
22 #include "attr.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "environment.h"
30 #include "gettext.h"
31 #include "hex.h"
32 #include "entry.h"
33 #include "merge-ll.h"
34 #include "match-trees.h"
35 #include "mem-pool.h"
36 #include "object-name.h"
37 #include "object-store-ll.h"
38 #include "oid-array.h"
39 #include "path.h"
40 #include "promisor-remote.h"
41 #include "read-cache-ll.h"
42 #include "refs.h"
43 #include "revision.h"
44 #include "sparse-index.h"
45 #include "strmap.h"
46 #include "trace2.h"
47 #include "tree.h"
48 #include "unpack-trees.h"
49 #include "xdiff-interface.h"
50
51 /*
52 * We have many arrays of size 3. Whenever we have such an array, the
53 * indices refer to one of the sides of the three-way merge. This is so
54 * pervasive that the constants 0, 1, and 2 are used in many places in the
55 * code (especially in arithmetic operations to find the other side's index
56 * or to compute a relevant mask), but sometimes these enum names are used
57 * to aid code clarity.
58 *
59 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
60 * referred to there is one of these three sides.
61 */
62 enum merge_side {
63 MERGE_BASE = 0,
64 MERGE_SIDE1 = 1,
65 MERGE_SIDE2 = 2
66 };
67
68 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
69
70 struct traversal_callback_data {
71 unsigned long mask;
72 unsigned long dirmask;
73 struct name_entry names[3];
74 };
75
76 struct deferred_traversal_data {
77 /*
78 * possible_trivial_merges: directories to be explored only when needed
79 *
80 * possible_trivial_merges is a map of directory names to
81 * dir_rename_mask. When we detect that a directory is unchanged on
82 * one side, we can sometimes resolve the directory without recursing
83 * into it. Renames are the only things that can prevent such an
84 * optimization. However, for rename sources:
85 * - If no parent directory needed directory rename detection, then
86 * no path under such a directory can be a relevant_source.
87 * and for rename destinations:
88 * - If no cached rename has a target path under the directory AND
89 * - If there are no unpaired relevant_sources elsewhere in the
90 * repository
91 * then we don't need any path under this directory for a rename
92 * destination. The only way to know the last item above is to defer
93 * handling such directories until the end of collect_merge_info(),
94 * in handle_deferred_entries().
95 *
96 * For each we store dir_rename_mask, since that's the only bit of
97 * information we need, other than the path, to resume the recursive
98 * traversal.
99 */
100 struct strintmap possible_trivial_merges;
101
102 /*
103 * trivial_merges_okay: if trivial directory merges are okay
104 *
105 * See possible_trivial_merges above. The "no unpaired
106 * relevant_sources elsewhere in the repository" is a single boolean
107 * per merge side, which we store here. Note that while 0 means no,
108 * 1 only means "maybe" rather than "yes"; we optimistically set it
109 * to 1 initially and only clear when we determine it is unsafe to
110 * do trivial directory merges.
111 */
112 unsigned trivial_merges_okay;
113
114 /*
115 * target_dirs: ancestor directories of rename targets
116 *
117 * target_dirs contains all directory names that are an ancestor of
118 * any rename destination.
119 */
120 struct strset target_dirs;
121 };
122
123 struct rename_info {
124 /*
125 * All variables that are arrays of size 3 correspond to data tracked
126 * for the sides in enum merge_side. Index 0 is almost always unused
127 * because we often only need to track information for MERGE_SIDE1 and
128 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
129 * are determined relative to what changed since the MERGE_BASE).
130 */
131
132 /*
133 * pairs: pairing of filenames from diffcore_rename()
134 */
135 struct diff_queue_struct pairs[3];
136
137 /*
138 * dirs_removed: directories removed on a given side of history.
139 *
140 * The keys of dirs_removed[side] are the directories that were removed
141 * on the given side of history. The value of the strintmap for each
142 * directory is a value from enum dir_rename_relevance.
143 */
144 struct strintmap dirs_removed[3];
145
146 /*
147 * dir_rename_count: tracking where parts of a directory were renamed to
148 *
149 * When files in a directory are renamed, they may not all go to the
150 * same location. Each strmap here tracks:
151 * old_dir => {new_dir => int}
152 * That is, dir_rename_count[side] is a strmap to a strintmap.
153 */
154 struct strmap dir_rename_count[3];
155
156 /*
157 * dir_renames: computed directory renames
158 *
159 * This is a map of old_dir => new_dir and is derived in part from
160 * dir_rename_count.
161 */
162 struct strmap dir_renames[3];
163
164 /*
165 * relevant_sources: deleted paths wanted in rename detection, and why
166 *
167 * relevant_sources is a set of deleted paths on each side of
168 * history for which we need rename detection. If a path is deleted
169 * on one side of history, we need to detect if it is part of a
170 * rename if either
171 * * the file is modified/deleted on the other side of history
172 * * we need to detect renames for an ancestor directory
173 * If neither of those are true, we can skip rename detection for
174 * that path. The reason is stored as a value from enum
175 * file_rename_relevance, as the reason can inform the algorithm in
176 * diffcore_rename_extended().
177 */
178 struct strintmap relevant_sources[3];
179
180 struct deferred_traversal_data deferred[3];
181
182 /*
183 * dir_rename_mask:
184 * 0: optimization removing unmodified potential rename source okay
185 * 2 or 4: optimization okay, but must check for files added to dir
186 * 7: optimization forbidden; need rename source in case of dir rename
187 */
188 unsigned dir_rename_mask:3;
189
190 /*
191 * callback_data_*: supporting data structures for alternate traversal
192 *
193 * We sometimes need to be able to traverse through all the files
194 * in a given tree before all immediate subdirectories within that
195 * tree. Since traverse_trees() doesn't do that naturally, we have
196 * a traverse_trees_wrapper() that stores any immediate
197 * subdirectories while traversing files, then traverses the
198 * immediate subdirectories later. These callback_data* variables
199 * store the information for the subdirectories so that we can do
200 * that traversal order.
201 */
202 struct traversal_callback_data *callback_data;
203 int callback_data_nr, callback_data_alloc;
204 char *callback_data_traverse_path;
205
206 /*
207 * merge_trees: trees passed to the merge algorithm for the merge
208 *
209 * merge_trees records the trees passed to the merge algorithm. But,
210 * this data also is stored in merge_result->priv. If a sequence of
211 * merges are being done (such as when cherry-picking or rebasing),
212 * the next merge can look at this and re-use information from
213 * previous merges under certain circumstances.
214 *
215 * See also all the cached_* variables.
216 */
217 struct tree *merge_trees[3];
218
219 /*
220 * cached_pairs_valid_side: which side's cached info can be reused
221 *
222 * See the description for merge_trees. For repeated merges, at most
223 * only one side's cached information can be used. Valid values:
224 * MERGE_SIDE2: cached data from side2 can be reused
225 * MERGE_SIDE1: cached data from side1 can be reused
226 * 0: no cached data can be reused
227 * -1: See redo_after_renames; both sides can be reused.
228 */
229 int cached_pairs_valid_side;
230
231 /*
232 * cached_pairs: Caching of renames and deletions.
233 *
234 * These are mappings recording renames and deletions of individual
235 * files (not directories). They are thus a map from an old
236 * filename to either NULL (for deletions) or a new filename (for
237 * renames).
238 */
239 struct strmap cached_pairs[3];
240
241 /*
242 * cached_target_names: just the destinations from cached_pairs
243 *
244 * We sometimes want a fast lookup to determine if a given filename
245 * is one of the destinations in cached_pairs. cached_target_names
246 * is thus duplicative information, but it provides a fast lookup.
247 */
248 struct strset cached_target_names[3];
249
250 /*
251 * cached_irrelevant: Caching of rename_sources that aren't relevant.
252 *
253 * If we try to detect a rename for a source path and succeed, it's
254 * part of a rename. If we try to detect a rename for a source path
255 * and fail, then it's a delete. If we do not try to detect a rename
256 * for a path, then we don't know if it's a rename or a delete. If
257 * merge-ort doesn't think the path is relevant, then we just won't
258 * cache anything for that path. But there's a slight problem in
259 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
260 * commit 9bd342137e ("diffcore-rename: determine which
261 * relevant_sources are no longer relevant", 2021-03-13),
262 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
263 * avoid excessive calls to diffcore_rename_extended() we still need
264 * to cache such paths, though we cannot record them as either
265 * renames or deletes. So we cache them here as a "turned out to be
266 * irrelevant *for this commit*" as they are often also irrelevant
267 * for subsequent commits, though we will have to do some extra
268 * checking to see whether such paths become relevant for rename
269 * detection when cherry-picking/rebasing subsequent commits.
270 */
271 struct strset cached_irrelevant[3];
272
273 /*
274 * redo_after_renames: optimization flag for "restarting" the merge
275 *
276 * Sometimes it pays to detect renames, cache them, and then
277 * restart the merge operation from the beginning. The reason for
278 * this is that when we know where all the renames are, we know
279 * whether a certain directory has any paths under it affected --
280 * and if a directory is not affected then it permits us to do
281 * trivial tree merging in more cases. Doing trivial tree merging
282 * prevents the need to run process_entry() on every path
283 * underneath trees that can be trivially merged, and
284 * process_entry() is more expensive than collect_merge_info() --
285 * plus, the second collect_merge_info() will be much faster since
286 * it doesn't have to recurse into the relevant trees.
287 *
288 * Values for this flag:
289 * 0 = don't bother, not worth it (or conditions not yet checked)
290 * 1 = conditions for optimization met, optimization worthwhile
291 * 2 = we already did it (don't restart merge yet again)
292 */
293 unsigned redo_after_renames;
294
295 /*
296 * needed_limit: value needed for inexact rename detection to run
297 *
298 * If the current rename limit wasn't high enough for inexact
299 * rename detection to run, this records the limit needed. Otherwise,
300 * this value remains 0.
301 */
302 int needed_limit;
303 };
304
305 struct merge_options_internal {
306 /*
307 * paths: primary data structure in all of merge ort.
308 *
309 * The keys of paths:
310 * * are full relative paths from the toplevel of the repository
311 * (e.g. "drivers/firmware/raspberrypi.c").
312 * * store all relevant paths in the repo, both directories and
313 * files (e.g. drivers, drivers/firmware would also be included)
314 * * these keys serve to intern all the path strings, which allows
315 * us to do pointer comparison on directory names instead of
316 * strcmp; we just have to be careful to use the interned strings.
317 *
318 * The values of paths:
319 * * either a pointer to a merged_info, or a conflict_info struct
320 * * merged_info contains all relevant information for a
321 * non-conflicted entry.
322 * * conflict_info contains a merged_info, plus any additional
323 * information about a conflict such as the higher orders stages
324 * involved and the names of the paths those came from (handy
325 * once renames get involved).
326 * * a path may start "conflicted" (i.e. point to a conflict_info)
327 * and then a later step (e.g. three-way content merge) determines
328 * it can be cleanly merged, at which point it'll be marked clean
329 * and the algorithm will ignore any data outside the contained
330 * merged_info for that entry
331 * * If an entry remains conflicted, the merged_info portion of a
332 * conflict_info will later be filled with whatever version of
333 * the file should be placed in the working directory (e.g. an
334 * as-merged-as-possible variation that contains conflict markers).
335 */
336 struct strmap paths;
337
338 /*
339 * conflicted: a subset of keys->values from "paths"
340 *
341 * conflicted is basically an optimization between process_entries()
342 * and record_conflicted_index_entries(); the latter could loop over
343 * ALL the entries in paths AGAIN and look for the ones that are
344 * still conflicted, but since process_entries() has to loop over
345 * all of them, it saves the ones it couldn't resolve in this strmap
346 * so that record_conflicted_index_entries() can iterate just the
347 * relevant entries.
348 */
349 struct strmap conflicted;
350
351 /*
352 * pool: memory pool for fast allocation/deallocation
353 *
354 * We allocate room for lots of filenames and auxiliary data
355 * structures in merge_options_internal, and it tends to all be
356 * freed together too. Using a memory pool for these provides a
357 * nice speedup.
358 */
359 struct mem_pool pool;
360
361 /*
362 * conflicts: logical conflicts and messages stored by _primary_ path
363 *
364 * This is a map of pathnames (a subset of the keys in "paths" above)
365 * to struct string_list, with each item's `util` containing a
366 * `struct logical_conflict_info`. Note, though, that for each path,
367 * it only stores the logical conflicts for which that path is the
368 * primary path; the path might be part of additional conflicts.
369 */
370 struct strmap conflicts;
371
372 /*
373 * renames: various data relating to rename detection
374 */
375 struct rename_info renames;
376
377 /*
378 * attr_index: hacky minimal index used for renormalization
379 *
380 * renormalization code _requires_ an index, though it only needs to
381 * find a .gitattributes file within the index. So, when
382 * renormalization is important, we create a special index with just
383 * that one file.
384 */
385 struct index_state attr_index;
386
387 /*
388 * current_dir_name, toplevel_dir: temporary vars
389 *
390 * These are used in collect_merge_info_callback(), and will set the
391 * various merged_info.directory_name for the various paths we get;
392 * see documentation for that variable and the requirements placed on
393 * that field.
394 */
395 const char *current_dir_name;
396 const char *toplevel_dir;
397
398 /* call_depth: recursion level counter for merging merge bases */
399 int call_depth;
400
401 /* field that holds submodule conflict information */
402 struct string_list conflicted_submodules;
403 };
404
405 struct conflicted_submodule_item {
406 char *abbrev;
407 int flag;
408 };
409
410 static void conflicted_submodule_item_free(void *util, const char *str UNUSED)
411 {
412 struct conflicted_submodule_item *item = util;
413
414 free(item->abbrev);
415 free(item);
416 }
417
418 struct version_info {
419 struct object_id oid;
420 unsigned short mode;
421 };
422
423 struct merged_info {
424 /* if is_null, ignore result. otherwise result has oid & mode */
425 struct version_info result;
426 unsigned is_null:1;
427
428 /*
429 * clean: whether the path in question is cleanly merged.
430 *
431 * see conflict_info.merged for more details.
432 */
433 unsigned clean:1;
434
435 /*
436 * basename_offset: offset of basename of path.
437 *
438 * perf optimization to avoid recomputing offset of final '/'
439 * character in pathname (0 if no '/' in pathname).
440 */
441 size_t basename_offset;
442
443 /*
444 * directory_name: containing directory name.
445 *
446 * Note that we assume directory_name is constructed such that
447 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
448 * i.e. string equality is equivalent to pointer equality. For this
449 * to hold, we have to be careful setting directory_name.
450 */
451 const char *directory_name;
452 };
453
454 struct conflict_info {
455 /*
456 * merged: the version of the path that will be written to working tree
457 *
458 * WARNING: It is critical to check merged.clean and ensure it is 0
459 * before reading any conflict_info fields outside of merged.
460 * Allocated merge_info structs will always have clean set to 1.
461 * Allocated conflict_info structs will have merged.clean set to 0
462 * initially. The merged.clean field is how we know if it is safe
463 * to access other parts of conflict_info besides merged; if a
464 * conflict_info's merged.clean is changed to 1, the rest of the
465 * algorithm is not allowed to look at anything outside of the
466 * merged member anymore.
467 */
468 struct merged_info merged;
469
470 /* oids & modes from each of the three trees for this path */
471 struct version_info stages[3];
472
473 /* pathnames for each stage; may differ due to rename detection */
474 const char *pathnames[3];
475
476 /* Whether this path is/was involved in a directory/file conflict */
477 unsigned df_conflict:1;
478
479 /*
480 * Whether this path is/was involved in a non-content conflict other
481 * than a directory/file conflict (e.g. rename/rename, rename/delete,
482 * file location based on possible directory rename).
483 */
484 unsigned path_conflict:1;
485
486 /*
487 * For filemask and dirmask, the ith bit corresponds to whether the
488 * ith entry is a file (filemask) or a directory (dirmask). Thus,
489 * filemask & dirmask is always zero, and filemask | dirmask is at
490 * most 7 but can be less when a path does not appear as either a
491 * file or a directory on at least one side of history.
492 *
493 * Note that these masks are related to enum merge_side, as the ith
494 * entry corresponds to side i.
495 *
496 * These values come from a traverse_trees() call; more info may be
497 * found looking at tree-walk.h's struct traverse_info,
498 * particularly the documentation above the "fn" member (note that
499 * filemask = mask & ~dirmask from that documentation).
500 */
501 unsigned filemask:3;
502 unsigned dirmask:3;
503
504 /*
505 * Optimization to track which stages match, to avoid the need to
506 * recompute it in multiple steps. Either 0 or at least 2 bits are
507 * set; if at least 2 bits are set, their corresponding stages match.
508 */
509 unsigned match_mask:3;
510 };
511
512 enum conflict_and_info_types {
513 /* "Simple" conflicts and informational messages */
514 INFO_AUTO_MERGING = 0,
515 CONFLICT_CONTENTS, /* text file that failed to merge */
516 CONFLICT_BINARY,
517 CONFLICT_FILE_DIRECTORY,
518 CONFLICT_DISTINCT_MODES,
519 CONFLICT_MODIFY_DELETE,
520
521 /* Regular rename */
522 CONFLICT_RENAME_RENAME, /* same file renamed differently */
523 CONFLICT_RENAME_COLLIDES, /* rename/add or two files renamed to 1 */
524 CONFLICT_RENAME_DELETE,
525
526 /* Basic directory rename */
527 CONFLICT_DIR_RENAME_SUGGESTED,
528 INFO_DIR_RENAME_APPLIED,
529
530 /* Special directory rename cases */
531 INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME,
532 CONFLICT_DIR_RENAME_FILE_IN_WAY,
533 CONFLICT_DIR_RENAME_COLLISION,
534 CONFLICT_DIR_RENAME_SPLIT,
535
536 /* Basic submodule */
537 INFO_SUBMODULE_FAST_FORWARDING,
538 CONFLICT_SUBMODULE_FAILED_TO_MERGE,
539
540 /* Special submodule cases broken out from FAILED_TO_MERGE */
541 CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION,
542 CONFLICT_SUBMODULE_NOT_INITIALIZED,
543 CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE,
544 CONFLICT_SUBMODULE_MAY_HAVE_REWINDS,
545 CONFLICT_SUBMODULE_NULL_MERGE_BASE,
546 CONFLICT_SUBMODULE_CORRUPT,
547
548 /* Keep this entry _last_ in the list */
549 NB_CONFLICT_TYPES,
550 };
551
552 /*
553 * Short description of conflict type, relied upon by external tools.
554 *
555 * We can add more entries, but DO NOT change any of these strings. Also,
556 * Order MUST match conflict_info_and_types.
557 */
558 static const char *type_short_descriptions[] = {
559 /*** "Simple" conflicts and informational messages ***/
560 [INFO_AUTO_MERGING] = "Auto-merging",
561 [CONFLICT_CONTENTS] = "CONFLICT (contents)",
562 [CONFLICT_BINARY] = "CONFLICT (binary)",
563 [CONFLICT_FILE_DIRECTORY] = "CONFLICT (file/directory)",
564 [CONFLICT_DISTINCT_MODES] = "CONFLICT (distinct modes)",
565 [CONFLICT_MODIFY_DELETE] = "CONFLICT (modify/delete)",
566
567 /*** Regular rename ***/
568 [CONFLICT_RENAME_RENAME] = "CONFLICT (rename/rename)",
569 [CONFLICT_RENAME_COLLIDES] = "CONFLICT (rename involved in collision)",
570 [CONFLICT_RENAME_DELETE] = "CONFLICT (rename/delete)",
571
572 /*** Basic directory rename ***/
573 [CONFLICT_DIR_RENAME_SUGGESTED] =
574 "CONFLICT (directory rename suggested)",
575 [INFO_DIR_RENAME_APPLIED] = "Path updated due to directory rename",
576
577 /*** Special directory rename cases ***/
578 [INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME] =
579 "Directory rename skipped since directory was renamed on both sides",
580 [CONFLICT_DIR_RENAME_FILE_IN_WAY] =
581 "CONFLICT (file in way of directory rename)",
582 [CONFLICT_DIR_RENAME_COLLISION] = "CONFLICT(directory rename collision)",
583 [CONFLICT_DIR_RENAME_SPLIT] = "CONFLICT(directory rename unclear split)",
584
585 /*** Basic submodule ***/
586 [INFO_SUBMODULE_FAST_FORWARDING] = "Fast forwarding submodule",
587 [CONFLICT_SUBMODULE_FAILED_TO_MERGE] = "CONFLICT (submodule)",
588
589 /*** Special submodule cases broken out from FAILED_TO_MERGE ***/
590 [CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION] =
591 "CONFLICT (submodule with possible resolution)",
592 [CONFLICT_SUBMODULE_NOT_INITIALIZED] =
593 "CONFLICT (submodule not initialized)",
594 [CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE] =
595 "CONFLICT (submodule history not available)",
596 [CONFLICT_SUBMODULE_MAY_HAVE_REWINDS] =
597 "CONFLICT (submodule may have rewinds)",
598 [CONFLICT_SUBMODULE_NULL_MERGE_BASE] =
599 "CONFLICT (submodule lacks merge base)",
600 [CONFLICT_SUBMODULE_CORRUPT] =
601 "CONFLICT (submodule corrupt)"
602 };
603
604 struct logical_conflict_info {
605 enum conflict_and_info_types type;
606 struct strvec paths;
607 };
608
609 /*** Function Grouping: various utility functions ***/
610
611 /*
612 * For the next three macros, see warning for conflict_info.merged.
613 *
614 * In each of the below, mi is a struct merged_info*, and ci was defined
615 * as a struct conflict_info* (but we need to verify ci isn't actually
616 * pointed at a struct merged_info*).
617 *
618 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
619 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
620 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
621 */
622 #define INITIALIZE_CI(ci, mi) do { \
623 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
624 } while (0)
625 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
626 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
627 (ci) = (struct conflict_info *)(mi); \
628 assert((ci) && !(mi)->clean); \
629 } while (0)
630
631 static void free_strmap_strings(struct strmap *map)
632 {
633 struct hashmap_iter iter;
634 struct strmap_entry *entry;
635
636 strmap_for_each_entry(map, &iter, entry) {
637 free((char*)entry->key);
638 }
639 }
640
641 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
642 int reinitialize)
643 {
644 struct rename_info *renames = &opti->renames;
645 int i;
646 void (*strmap_clear_func)(struct strmap *, int) =
647 reinitialize ? strmap_partial_clear : strmap_clear;
648 void (*strintmap_clear_func)(struct strintmap *) =
649 reinitialize ? strintmap_partial_clear : strintmap_clear;
650 void (*strset_clear_func)(struct strset *) =
651 reinitialize ? strset_partial_clear : strset_clear;
652
653 strmap_clear_func(&opti->paths, 0);
654
655 /*
656 * All keys and values in opti->conflicted are a subset of those in
657 * opti->paths. We don't want to deallocate anything twice, so we
658 * don't free the keys and we pass 0 for free_values.
659 */
660 strmap_clear_func(&opti->conflicted, 0);
661
662 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
663 discard_index(&opti->attr_index);
664
665 /* Free memory used by various renames maps */
666 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
667 strintmap_clear_func(&renames->dirs_removed[i]);
668 strmap_clear_func(&renames->dir_renames[i], 0);
669 strintmap_clear_func(&renames->relevant_sources[i]);
670 if (!reinitialize)
671 assert(renames->cached_pairs_valid_side == 0);
672 if (i != renames->cached_pairs_valid_side &&
673 -1 != renames->cached_pairs_valid_side) {
674 strset_clear_func(&renames->cached_target_names[i]);
675 strmap_clear_func(&renames->cached_pairs[i], 1);
676 strset_clear_func(&renames->cached_irrelevant[i]);
677 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
678 if (!reinitialize)
679 strmap_clear(&renames->dir_rename_count[i], 1);
680 }
681 }
682 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
683 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
684 strset_clear_func(&renames->deferred[i].target_dirs);
685 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
686 }
687 renames->cached_pairs_valid_side = 0;
688 renames->dir_rename_mask = 0;
689
690 if (!reinitialize) {
691 struct hashmap_iter iter;
692 struct strmap_entry *e;
693
694 /* Release and free each strbuf found in output */
695 strmap_for_each_entry(&opti->conflicts, &iter, e) {
696 struct string_list *list = e->value;
697 for (int i = 0; i < list->nr; i++) {
698 struct logical_conflict_info *info =
699 list->items[i].util;
700 strvec_clear(&info->paths);
701 }
702 /*
703 * While strictly speaking we don't need to
704 * free(conflicts) here because we could pass
705 * free_values=1 when calling strmap_clear() on
706 * opti->conflicts, that would require strmap_clear
707 * to do another strmap_for_each_entry() loop, so we
708 * just free it while we're iterating anyway.
709 */
710 string_list_clear(list, 1);
711 free(list);
712 }
713 strmap_clear(&opti->conflicts, 0);
714 }
715
716 mem_pool_discard(&opti->pool, 0);
717
718 string_list_clear_func(&opti->conflicted_submodules,
719 conflicted_submodule_item_free);
720
721 /* Clean out callback_data as well. */
722 FREE_AND_NULL(renames->callback_data);
723 renames->callback_data_nr = renames->callback_data_alloc = 0;
724 }
725
726 static void format_commit(struct strbuf *sb,
727 int indent,
728 struct repository *repo,
729 struct commit *commit)
730 {
731 struct merge_remote_desc *desc;
732 struct pretty_print_context ctx = {0};
733 ctx.abbrev = DEFAULT_ABBREV;
734
735 strbuf_addchars(sb, ' ', indent);
736 desc = merge_remote_util(commit);
737 if (desc) {
738 strbuf_addf(sb, "virtual %s\n", desc->name);
739 return;
740 }
741
742 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
743 strbuf_addch(sb, '\n');
744 }
745
746 __attribute__((format (printf, 8, 9)))
747 static void path_msg(struct merge_options *opt,
748 enum conflict_and_info_types type,
749 int omittable_hint, /* skippable under --remerge-diff */
750 const char *primary_path,
751 const char *other_path_1, /* may be NULL */
752 const char *other_path_2, /* may be NULL */
753 struct string_list *other_paths, /* may be NULL */
754 const char *fmt, ...)
755 {
756 va_list ap;
757 struct string_list *path_conflicts;
758 struct logical_conflict_info *info;
759 struct strbuf buf = STRBUF_INIT;
760 struct strbuf *dest;
761 struct strbuf tmp = STRBUF_INIT;
762
763 /* Sanity checks */
764 assert(omittable_hint ==
765 !starts_with(type_short_descriptions[type], "CONFLICT") ||
766 type == CONFLICT_DIR_RENAME_SUGGESTED);
767 if (opt->record_conflict_msgs_as_headers && omittable_hint)
768 return; /* Do not record mere hints in headers */
769 if (opt->priv->call_depth && opt->verbosity < 5)
770 return; /* Ignore messages from inner merges */
771
772 /* Ensure path_conflicts (ptr to array of logical_conflict) allocated */
773 path_conflicts = strmap_get(&opt->priv->conflicts, primary_path);
774 if (!path_conflicts) {
775 path_conflicts = xmalloc(sizeof(*path_conflicts));
776 string_list_init_dup(path_conflicts);
777 strmap_put(&opt->priv->conflicts, primary_path, path_conflicts);
778 }
779
780 /* Add a logical_conflict at the end to store info from this call */
781 info = xcalloc(1, sizeof(*info));
782 info->type = type;
783 strvec_init(&info->paths);
784
785 /* Handle the list of paths */
786 strvec_push(&info->paths, primary_path);
787 if (other_path_1)
788 strvec_push(&info->paths, other_path_1);
789 if (other_path_2)
790 strvec_push(&info->paths, other_path_2);
791 if (other_paths)
792 for (int i = 0; i < other_paths->nr; i++)
793 strvec_push(&info->paths, other_paths->items[i].string);
794
795 /* Handle message and its format, in normal case */
796 dest = (opt->record_conflict_msgs_as_headers ? &tmp : &buf);
797
798 va_start(ap, fmt);
799 if (opt->priv->call_depth) {
800 strbuf_addchars(dest, ' ', 2);
801 strbuf_addstr(dest, "From inner merge:");
802 strbuf_addchars(dest, ' ', opt->priv->call_depth * 2);
803 }
804 strbuf_vaddf(dest, fmt, ap);
805 va_end(ap);
806
807 /* Handle specialized formatting of message under --remerge-diff */
808 if (opt->record_conflict_msgs_as_headers) {
809 int i_sb = 0, i_tmp = 0;
810
811 /* Start with the specified prefix */
812 if (opt->msg_header_prefix)
813 strbuf_addf(&buf, "%s ", opt->msg_header_prefix);
814
815 /* Copy tmp to sb, adding spaces after newlines */
816 strbuf_grow(&buf, buf.len + 2*tmp.len); /* more than sufficient */
817 for (; i_tmp < tmp.len; i_tmp++, i_sb++) {
818 /* Copy next character from tmp to sb */
819 buf.buf[buf.len + i_sb] = tmp.buf[i_tmp];
820
821 /* If we copied a newline, add a space */
822 if (tmp.buf[i_tmp] == '\n')
823 buf.buf[++i_sb] = ' ';
824 }
825 /* Update length and ensure it's NUL-terminated */
826 buf.len += i_sb;
827 buf.buf[buf.len] = '\0';
828
829 strbuf_release(&tmp);
830 }
831 string_list_append_nodup(path_conflicts, strbuf_detach(&buf, NULL))
832 ->util = info;
833 }
834
835 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
836 const char *path)
837 {
838 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
839 struct diff_filespec *spec;
840
841 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
842 spec->path = (char*)path; /* spec won't modify it */
843
844 spec->count = 1;
845 spec->is_binary = -1;
846 return spec;
847 }
848
849 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
850 struct diff_queue_struct *queue,
851 struct diff_filespec *one,
852 struct diff_filespec *two)
853 {
854 /* Same code as diff_queue(), except allocate from pool */
855 struct diff_filepair *dp;
856
857 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
858 dp->one = one;
859 dp->two = two;
860 if (queue)
861 diff_q(queue, dp);
862 return dp;
863 }
864
865 /* add a string to a strbuf, but converting "/" to "_" */
866 static void add_flattened_path(struct strbuf *out, const char *s)
867 {
868 size_t i = out->len;
869 strbuf_addstr(out, s);
870 for (; i < out->len; i++)
871 if (out->buf[i] == '/')
872 out->buf[i] = '_';
873 }
874
875 static char *unique_path(struct merge_options *opt,
876 const char *path,
877 const char *branch)
878 {
879 char *ret = NULL;
880 struct strbuf newpath = STRBUF_INIT;
881 int suffix = 0;
882 size_t base_len;
883 struct strmap *existing_paths = &opt->priv->paths;
884
885 strbuf_addf(&newpath, "%s~", path);
886 add_flattened_path(&newpath, branch);
887
888 base_len = newpath.len;
889 while (strmap_contains(existing_paths, newpath.buf)) {
890 strbuf_setlen(&newpath, base_len);
891 strbuf_addf(&newpath, "_%d", suffix++);
892 }
893
894 /* Track the new path in our memory pool */
895 ret = mem_pool_alloc(&opt->priv->pool, newpath.len + 1);
896 memcpy(ret, newpath.buf, newpath.len + 1);
897 strbuf_release(&newpath);
898 return ret;
899 }
900
901 /*** Function Grouping: functions related to collect_merge_info() ***/
902
903 static int traverse_trees_wrapper_callback(int n,
904 unsigned long mask,
905 unsigned long dirmask,
906 struct name_entry *names,
907 struct traverse_info *info)
908 {
909 struct merge_options *opt = info->data;
910 struct rename_info *renames = &opt->priv->renames;
911 unsigned filemask = mask & ~dirmask;
912
913 assert(n==3);
914
915 if (!renames->callback_data_traverse_path)
916 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
917
918 if (filemask && filemask == renames->dir_rename_mask)
919 renames->dir_rename_mask = 0x07;
920
921 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
922 renames->callback_data_alloc);
923 renames->callback_data[renames->callback_data_nr].mask = mask;
924 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
925 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
926 names, 3);
927 renames->callback_data_nr++;
928
929 return mask;
930 }
931
932 /*
933 * Much like traverse_trees(), BUT:
934 * - read all the tree entries FIRST, saving them
935 * - note that the above step provides an opportunity to compute necessary
936 * additional details before the "real" traversal
937 * - loop through the saved entries and call the original callback on them
938 */
939 static int traverse_trees_wrapper(struct index_state *istate,
940 int n,
941 struct tree_desc *t,
942 struct traverse_info *info)
943 {
944 int ret, i, old_offset;
945 traverse_callback_t old_fn;
946 char *old_callback_data_traverse_path;
947 struct merge_options *opt = info->data;
948 struct rename_info *renames = &opt->priv->renames;
949
950 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
951
952 old_callback_data_traverse_path = renames->callback_data_traverse_path;
953 old_fn = info->fn;
954 old_offset = renames->callback_data_nr;
955
956 renames->callback_data_traverse_path = NULL;
957 info->fn = traverse_trees_wrapper_callback;
958 ret = traverse_trees(istate, n, t, info);
959 if (ret < 0)
960 return ret;
961
962 info->traverse_path = renames->callback_data_traverse_path;
963 info->fn = old_fn;
964 for (i = old_offset; i < renames->callback_data_nr; ++i) {
965 info->fn(n,
966 renames->callback_data[i].mask,
967 renames->callback_data[i].dirmask,
968 renames->callback_data[i].names,
969 info);
970 }
971
972 renames->callback_data_nr = old_offset;
973 free(renames->callback_data_traverse_path);
974 renames->callback_data_traverse_path = old_callback_data_traverse_path;
975 info->traverse_path = NULL;
976 return 0;
977 }
978
979 static void setup_path_info(struct merge_options *opt,
980 struct string_list_item *result,
981 const char *current_dir_name,
982 int current_dir_name_len,
983 char *fullpath, /* we'll take over ownership */
984 struct name_entry *names,
985 struct name_entry *merged_version,
986 unsigned is_null, /* boolean */
987 unsigned df_conflict, /* boolean */
988 unsigned filemask,
989 unsigned dirmask,
990 int resolved /* boolean */)
991 {
992 /* result->util is void*, so mi is a convenience typed variable */
993 struct merged_info *mi;
994
995 assert(!is_null || resolved);
996 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
997 assert(resolved == (merged_version != NULL));
998
999 mi = mem_pool_calloc(&opt->priv->pool, 1,
1000 resolved ? sizeof(struct merged_info) :
1001 sizeof(struct conflict_info));
1002 mi->directory_name = current_dir_name;
1003 mi->basename_offset = current_dir_name_len;
1004 mi->clean = !!resolved;
1005 if (resolved) {
1006 mi->result.mode = merged_version->mode;
1007 oidcpy(&mi->result.oid, &merged_version->oid);
1008 mi->is_null = !!is_null;
1009 } else {
1010 int i;
1011 struct conflict_info *ci;
1012
1013 ASSIGN_AND_VERIFY_CI(ci, mi);
1014 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1015 ci->pathnames[i] = fullpath;
1016 ci->stages[i].mode = names[i].mode;
1017 oidcpy(&ci->stages[i].oid, &names[i].oid);
1018 }
1019 ci->filemask = filemask;
1020 ci->dirmask = dirmask;
1021 ci->df_conflict = !!df_conflict;
1022 if (dirmask)
1023 /*
1024 * Assume is_null for now, but if we have entries
1025 * under the directory then when it is complete in
1026 * write_completed_directory() it'll update this.
1027 * Also, for D/F conflicts, we have to handle the
1028 * directory first, then clear this bit and process
1029 * the file to see how it is handled -- that occurs
1030 * near the top of process_entry().
1031 */
1032 mi->is_null = 1;
1033 }
1034 strmap_put(&opt->priv->paths, fullpath, mi);
1035 result->string = fullpath;
1036 result->util = mi;
1037 }
1038
1039 static void add_pair(struct merge_options *opt,
1040 struct name_entry *names,
1041 const char *pathname,
1042 unsigned side,
1043 unsigned is_add /* if false, is_delete */,
1044 unsigned match_mask,
1045 unsigned dir_rename_mask)
1046 {
1047 struct diff_filespec *one, *two;
1048 struct rename_info *renames = &opt->priv->renames;
1049 int names_idx = is_add ? side : 0;
1050
1051 if (is_add) {
1052 assert(match_mask == 0 || match_mask == 6);
1053 if (strset_contains(&renames->cached_target_names[side],
1054 pathname))
1055 return;
1056 } else {
1057 unsigned content_relevant = (match_mask == 0);
1058 unsigned location_relevant = (dir_rename_mask == 0x07);
1059
1060 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
1061
1062 /*
1063 * If pathname is found in cached_irrelevant[side] due to
1064 * previous pick but for this commit content is relevant,
1065 * then we need to remove it from cached_irrelevant.
1066 */
1067 if (content_relevant)
1068 /* strset_remove is no-op if strset doesn't have key */
1069 strset_remove(&renames->cached_irrelevant[side],
1070 pathname);
1071
1072 /*
1073 * We do not need to re-detect renames for paths that we already
1074 * know the pairing, i.e. for cached_pairs (or
1075 * cached_irrelevant). However, handle_deferred_entries() needs
1076 * to loop over the union of keys from relevant_sources[side] and
1077 * cached_pairs[side], so for simplicity we set relevant_sources
1078 * for all the cached_pairs too and then strip them back out in
1079 * prune_cached_from_relevant() at the beginning of
1080 * detect_regular_renames().
1081 */
1082 if (content_relevant || location_relevant) {
1083 /* content_relevant trumps location_relevant */
1084 strintmap_set(&renames->relevant_sources[side], pathname,
1085 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
1086 }
1087
1088 /*
1089 * Avoid creating pair if we've already cached rename results.
1090 * Note that we do this after setting relevant_sources[side]
1091 * as noted in the comment above.
1092 */
1093 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
1094 strset_contains(&renames->cached_irrelevant[side], pathname))
1095 return;
1096 }
1097
1098 one = pool_alloc_filespec(&opt->priv->pool, pathname);
1099 two = pool_alloc_filespec(&opt->priv->pool, pathname);
1100 fill_filespec(is_add ? two : one,
1101 &names[names_idx].oid, 1, names[names_idx].mode);
1102 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
1103 }
1104
1105 static void collect_rename_info(struct merge_options *opt,
1106 struct name_entry *names,
1107 const char *dirname,
1108 const char *fullname,
1109 unsigned filemask,
1110 unsigned dirmask,
1111 unsigned match_mask)
1112 {
1113 struct rename_info *renames = &opt->priv->renames;
1114 unsigned side;
1115
1116 /*
1117 * Update dir_rename_mask (determines ignore-rename-source validity)
1118 *
1119 * dir_rename_mask helps us keep track of when directory rename
1120 * detection may be relevant. Basically, whenver a directory is
1121 * removed on one side of history, and a file is added to that
1122 * directory on the other side of history, directory rename
1123 * detection is relevant (meaning we have to detect renames for all
1124 * files within that directory to deduce where the directory
1125 * moved). Also, whenever a directory needs directory rename
1126 * detection, due to the "majority rules" choice for where to move
1127 * it (see t6423 testcase 1f), we also need to detect renames for
1128 * all files within subdirectories of that directory as well.
1129 *
1130 * Here we haven't looked at files within the directory yet, we are
1131 * just looking at the directory itself. So, if we aren't yet in
1132 * a case where a parent directory needed directory rename detection
1133 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
1134 * on one side of history, record the mask of the other side of
1135 * history in dir_rename_mask.
1136 */
1137 if (renames->dir_rename_mask != 0x07 &&
1138 (dirmask == 3 || dirmask == 5)) {
1139 /* simple sanity check */
1140 assert(renames->dir_rename_mask == 0 ||
1141 renames->dir_rename_mask == (dirmask & ~1));
1142 /* update dir_rename_mask; have it record mask of new side */
1143 renames->dir_rename_mask = (dirmask & ~1);
1144 }
1145
1146 /* Update dirs_removed, as needed */
1147 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
1148 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
1149 unsigned sides = (0x07 - dirmask)/2;
1150 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
1151 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
1152 /*
1153 * Record relevance of this directory. However, note that
1154 * when collect_merge_info_callback() recurses into this
1155 * directory and calls collect_rename_info() on paths
1156 * within that directory, if we find a path that was added
1157 * to this directory on the other side of history, we will
1158 * upgrade this value to RELEVANT_FOR_SELF; see below.
1159 */
1160 if (sides & 1)
1161 strintmap_set(&renames->dirs_removed[1], fullname,
1162 relevance);
1163 if (sides & 2)
1164 strintmap_set(&renames->dirs_removed[2], fullname,
1165 relevance);
1166 }
1167
1168 /*
1169 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
1170 * When we run across a file added to a directory. In such a case,
1171 * find the directory of the file and upgrade its relevance.
1172 */
1173 if (renames->dir_rename_mask == 0x07 &&
1174 (filemask == 2 || filemask == 4)) {
1175 /*
1176 * Need directory rename for parent directory on other side
1177 * of history from added file. Thus
1178 * side = (~filemask & 0x06) >> 1
1179 * or
1180 * side = 3 - (filemask/2).
1181 */
1182 unsigned side = 3 - (filemask >> 1);
1183 strintmap_set(&renames->dirs_removed[side], dirname,
1184 RELEVANT_FOR_SELF);
1185 }
1186
1187 if (filemask == 0 || filemask == 7)
1188 return;
1189
1190 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1191 unsigned side_mask = (1 << side);
1192
1193 /* Check for deletion on side */
1194 if ((filemask & 1) && !(filemask & side_mask))
1195 add_pair(opt, names, fullname, side, 0 /* delete */,
1196 match_mask & filemask,
1197 renames->dir_rename_mask);
1198
1199 /* Check for addition on side */
1200 if (!(filemask & 1) && (filemask & side_mask))
1201 add_pair(opt, names, fullname, side, 1 /* add */,
1202 match_mask & filemask,
1203 renames->dir_rename_mask);
1204 }
1205 }
1206
1207 static int collect_merge_info_callback(int n,
1208 unsigned long mask,
1209 unsigned long dirmask,
1210 struct name_entry *names,
1211 struct traverse_info *info)
1212 {
1213 /*
1214 * n is 3. Always.
1215 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1216 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1217 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1218 */
1219 struct merge_options *opt = info->data;
1220 struct merge_options_internal *opti = opt->priv;
1221 struct rename_info *renames = &opt->priv->renames;
1222 struct string_list_item pi; /* Path Info */
1223 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1224 struct name_entry *p;
1225 size_t len;
1226 char *fullpath;
1227 const char *dirname = opti->current_dir_name;
1228 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1229 unsigned filemask = mask & ~dirmask;
1230 unsigned match_mask = 0; /* will be updated below */
1231 unsigned mbase_null = !(mask & 1);
1232 unsigned side1_null = !(mask & 2);
1233 unsigned side2_null = !(mask & 4);
1234 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1235 names[0].mode == names[1].mode &&
1236 oideq(&names[0].oid, &names[1].oid));
1237 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1238 names[0].mode == names[2].mode &&
1239 oideq(&names[0].oid, &names[2].oid));
1240 unsigned sides_match = (!side1_null && !side2_null &&
1241 names[1].mode == names[2].mode &&
1242 oideq(&names[1].oid, &names[2].oid));
1243
1244 /*
1245 * Note: When a path is a file on one side of history and a directory
1246 * in another, we have a directory/file conflict. In such cases, if
1247 * the conflict doesn't resolve from renames and deletions, then we
1248 * always leave directories where they are and move files out of the
1249 * way. Thus, while struct conflict_info has a df_conflict field to
1250 * track such conflicts, we ignore that field for any directories at
1251 * a path and only pay attention to it for files at the given path.
1252 * The fact that we leave directories were they are also means that
1253 * we do not need to worry about getting additional df_conflict
1254 * information propagated from parent directories down to children
1255 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1256 * sets a newinfo.df_conflicts field specifically to propagate it).
1257 */
1258 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1259
1260 /* n = 3 is a fundamental assumption. */
1261 if (n != 3)
1262 BUG("Called collect_merge_info_callback wrong");
1263
1264 /*
1265 * A bunch of sanity checks verifying that traverse_trees() calls
1266 * us the way I expect. Could just remove these at some point,
1267 * though maybe they are helpful to future code readers.
1268 */
1269 assert(mbase_null == is_null_oid(&names[0].oid));
1270 assert(side1_null == is_null_oid(&names[1].oid));
1271 assert(side2_null == is_null_oid(&names[2].oid));
1272 assert(!mbase_null || !side1_null || !side2_null);
1273 assert(mask > 0 && mask < 8);
1274
1275 /* Determine match_mask */
1276 if (side1_matches_mbase)
1277 match_mask = (side2_matches_mbase ? 7 : 3);
1278 else if (side2_matches_mbase)
1279 match_mask = 5;
1280 else if (sides_match)
1281 match_mask = 6;
1282
1283 /*
1284 * Get the name of the relevant filepath, which we'll pass to
1285 * setup_path_info() for tracking.
1286 */
1287 p = names;
1288 while (!p->mode)
1289 p++;
1290 len = traverse_path_len(info, p->pathlen);
1291
1292 /* +1 in both of the following lines to include the NUL byte */
1293 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1294 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1295
1296 /*
1297 * If mbase, side1, and side2 all match, we can resolve early. Even
1298 * if these are trees, there will be no renames or anything
1299 * underneath.
1300 */
1301 if (side1_matches_mbase && side2_matches_mbase) {
1302 /* mbase, side1, & side2 all match; use mbase as resolution */
1303 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1304 names, names+0, mbase_null, 0 /* df_conflict */,
1305 filemask, dirmask, 1 /* resolved */);
1306 return mask;
1307 }
1308
1309 /*
1310 * If the sides match, and all three paths are present and are
1311 * files, then we can take either as the resolution. We can't do
1312 * this with trees, because there may be rename sources from the
1313 * merge_base.
1314 */
1315 if (sides_match && filemask == 0x07) {
1316 /* use side1 (== side2) version as resolution */
1317 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1318 names, names+1, side1_null, 0,
1319 filemask, dirmask, 1);
1320 return mask;
1321 }
1322
1323 /*
1324 * If side1 matches mbase and all three paths are present and are
1325 * files, then we can use side2 as the resolution. We cannot
1326 * necessarily do so this for trees, because there may be rename
1327 * destinations within side2.
1328 */
1329 if (side1_matches_mbase && filemask == 0x07) {
1330 /* use side2 version as resolution */
1331 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1332 names, names+2, side2_null, 0,
1333 filemask, dirmask, 1);
1334 return mask;
1335 }
1336
1337 /* Similar to above but swapping sides 1 and 2 */
1338 if (side2_matches_mbase && filemask == 0x07) {
1339 /* use side1 version as resolution */
1340 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1341 names, names+1, side1_null, 0,
1342 filemask, dirmask, 1);
1343 return mask;
1344 }
1345
1346 /*
1347 * Sometimes we can tell that a source path need not be included in
1348 * rename detection -- namely, whenever either
1349 * side1_matches_mbase && side2_null
1350 * or
1351 * side2_matches_mbase && side1_null
1352 * However, we call collect_rename_info() even in those cases,
1353 * because exact renames are cheap and would let us remove both a
1354 * source and destination path. We'll cull the unneeded sources
1355 * later.
1356 */
1357 collect_rename_info(opt, names, dirname, fullpath,
1358 filemask, dirmask, match_mask);
1359
1360 /*
1361 * None of the special cases above matched, so we have a
1362 * provisional conflict. (Rename detection might allow us to
1363 * unconflict some more cases, but that comes later so all we can
1364 * do now is record the different non-null file hashes.)
1365 */
1366 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1367 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1368
1369 ci = pi.util;
1370 VERIFY_CI(ci);
1371 ci->match_mask = match_mask;
1372
1373 /* If dirmask, recurse into subdirectories */
1374 if (dirmask) {
1375 struct traverse_info newinfo;
1376 struct tree_desc t[3];
1377 void *buf[3] = {NULL, NULL, NULL};
1378 const char *original_dir_name;
1379 int i, ret, side;
1380
1381 /*
1382 * Check for whether we can avoid recursing due to one side
1383 * matching the merge base. The side that does NOT match is
1384 * the one that might have a rename destination we need.
1385 */
1386 assert(!side1_matches_mbase || !side2_matches_mbase);
1387 side = side1_matches_mbase ? MERGE_SIDE2 :
1388 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1389 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1390 /*
1391 * Also defer recursing into new directories; set up a
1392 * few variables to let us do so.
1393 */
1394 ci->match_mask = (7 - dirmask);
1395 side = dirmask / 2;
1396 }
1397 if (renames->dir_rename_mask != 0x07 &&
1398 side != MERGE_BASE &&
1399 renames->deferred[side].trivial_merges_okay &&
1400 !strset_contains(&renames->deferred[side].target_dirs,
1401 pi.string)) {
1402 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1403 pi.string, renames->dir_rename_mask);
1404 renames->dir_rename_mask = prev_dir_rename_mask;
1405 return mask;
1406 }
1407
1408 /* We need to recurse */
1409 ci->match_mask &= filemask;
1410 newinfo = *info;
1411 newinfo.prev = info;
1412 newinfo.name = p->path;
1413 newinfo.namelen = p->pathlen;
1414 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1415 /*
1416 * If this directory we are about to recurse into cared about
1417 * its parent directory (the current directory) having a D/F
1418 * conflict, then we'd propagate the masks in this way:
1419 * newinfo.df_conflicts |= (mask & ~dirmask);
1420 * But we don't worry about propagating D/F conflicts. (See
1421 * comment near setting of local df_conflict variable near
1422 * the beginning of this function).
1423 */
1424
1425 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1426 if (i == 1 && side1_matches_mbase)
1427 t[1] = t[0];
1428 else if (i == 2 && side2_matches_mbase)
1429 t[2] = t[0];
1430 else if (i == 2 && sides_match)
1431 t[2] = t[1];
1432 else {
1433 const struct object_id *oid = NULL;
1434 if (dirmask & 1)
1435 oid = &names[i].oid;
1436 buf[i] = fill_tree_descriptor(opt->repo,
1437 t + i, oid);
1438 }
1439 dirmask >>= 1;
1440 }
1441
1442 original_dir_name = opti->current_dir_name;
1443 opti->current_dir_name = pi.string;
1444 if (renames->dir_rename_mask == 0 ||
1445 renames->dir_rename_mask == 0x07)
1446 ret = traverse_trees(NULL, 3, t, &newinfo);
1447 else
1448 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1449 opti->current_dir_name = original_dir_name;
1450 renames->dir_rename_mask = prev_dir_rename_mask;
1451
1452 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1453 free(buf[i]);
1454
1455 if (ret < 0)
1456 return -1;
1457 }
1458
1459 return mask;
1460 }
1461
1462 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1463 {
1464 VERIFY_CI(ci);
1465 assert((side == 1 && ci->match_mask == 5) ||
1466 (side == 2 && ci->match_mask == 3));
1467 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1468 ci->merged.result.mode = ci->stages[side].mode;
1469 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1470 ci->match_mask = 0;
1471 ci->merged.clean = 1; /* (ci->filemask == 0); */
1472 }
1473
1474 static int handle_deferred_entries(struct merge_options *opt,
1475 struct traverse_info *info)
1476 {
1477 struct rename_info *renames = &opt->priv->renames;
1478 struct hashmap_iter iter;
1479 struct strmap_entry *entry;
1480 int side, ret = 0;
1481 int path_count_before, path_count_after = 0;
1482
1483 path_count_before = strmap_get_size(&opt->priv->paths);
1484 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1485 unsigned optimization_okay = 1;
1486 struct strintmap copy;
1487
1488 /* Loop over the set of paths we need to know rename info for */
1489 strset_for_each_entry(&renames->relevant_sources[side],
1490 &iter, entry) {
1491 char *rename_target, *dir, *dir_marker;
1492 struct strmap_entry *e;
1493
1494 /*
1495 * If we don't know delete/rename info for this path,
1496 * then we need to recurse into all trees to get all
1497 * adds to make sure we have it.
1498 */
1499 if (strset_contains(&renames->cached_irrelevant[side],
1500 entry->key))
1501 continue;
1502 e = strmap_get_entry(&renames->cached_pairs[side],
1503 entry->key);
1504 if (!e) {
1505 optimization_okay = 0;
1506 break;
1507 }
1508
1509 /* If this is a delete, we have enough info already */
1510 rename_target = e->value;
1511 if (!rename_target)
1512 continue;
1513
1514 /* If we already walked the rename target, we're good */
1515 if (strmap_contains(&opt->priv->paths, rename_target))
1516 continue;
1517
1518 /*
1519 * Otherwise, we need to get a list of directories that
1520 * will need to be recursed into to get this
1521 * rename_target.
1522 */
1523 dir = xstrdup(rename_target);
1524 while ((dir_marker = strrchr(dir, '/'))) {
1525 *dir_marker = '\0';
1526 if (strset_contains(&renames->deferred[side].target_dirs,
1527 dir))
1528 break;
1529 strset_add(&renames->deferred[side].target_dirs,
1530 dir);
1531 }
1532 free(dir);
1533 }
1534 renames->deferred[side].trivial_merges_okay = optimization_okay;
1535 /*
1536 * We need to recurse into any directories in
1537 * possible_trivial_merges[side] found in target_dirs[side].
1538 * But when we recurse, we may need to queue up some of the
1539 * subdirectories for possible_trivial_merges[side]. Since
1540 * we can't safely iterate through a hashmap while also adding
1541 * entries, move the entries into 'copy', iterate over 'copy',
1542 * and then we'll also iterate anything added into
1543 * possible_trivial_merges[side] once this loop is done.
1544 */
1545 copy = renames->deferred[side].possible_trivial_merges;
1546 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1547 0,
1548 &opt->priv->pool,
1549 0);
1550 strintmap_for_each_entry(&copy, &iter, entry) {
1551 const char *path = entry->key;
1552 unsigned dir_rename_mask = (intptr_t)entry->value;
1553 struct conflict_info *ci;
1554 unsigned dirmask;
1555 struct tree_desc t[3];
1556 void *buf[3] = {NULL,};
1557 int i;
1558
1559 ci = strmap_get(&opt->priv->paths, path);
1560 VERIFY_CI(ci);
1561 dirmask = ci->dirmask;
1562
1563 if (optimization_okay &&
1564 !strset_contains(&renames->deferred[side].target_dirs,
1565 path)) {
1566 resolve_trivial_directory_merge(ci, side);
1567 continue;
1568 }
1569
1570 info->name = path;
1571 info->namelen = strlen(path);
1572 info->pathlen = info->namelen + 1;
1573
1574 for (i = 0; i < 3; i++, dirmask >>= 1) {
1575 if (i == 1 && ci->match_mask == 3)
1576 t[1] = t[0];
1577 else if (i == 2 && ci->match_mask == 5)
1578 t[2] = t[0];
1579 else if (i == 2 && ci->match_mask == 6)
1580 t[2] = t[1];
1581 else {
1582 const struct object_id *oid = NULL;
1583 if (dirmask & 1)
1584 oid = &ci->stages[i].oid;
1585 buf[i] = fill_tree_descriptor(opt->repo,
1586 t+i, oid);
1587 }
1588 }
1589
1590 ci->match_mask &= ci->filemask;
1591 opt->priv->current_dir_name = path;
1592 renames->dir_rename_mask = dir_rename_mask;
1593 if (renames->dir_rename_mask == 0 ||
1594 renames->dir_rename_mask == 0x07)
1595 ret = traverse_trees(NULL, 3, t, info);
1596 else
1597 ret = traverse_trees_wrapper(NULL, 3, t, info);
1598
1599 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1600 free(buf[i]);
1601
1602 if (ret < 0)
1603 return ret;
1604 }
1605 strintmap_clear(&copy);
1606 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1607 &iter, entry) {
1608 const char *path = entry->key;
1609 struct conflict_info *ci;
1610
1611 ci = strmap_get(&opt->priv->paths, path);
1612 VERIFY_CI(ci);
1613
1614 assert(renames->deferred[side].trivial_merges_okay &&
1615 !strset_contains(&renames->deferred[side].target_dirs,
1616 path));
1617 resolve_trivial_directory_merge(ci, side);
1618 }
1619 if (!optimization_okay || path_count_after)
1620 path_count_after = strmap_get_size(&opt->priv->paths);
1621 }
1622 if (path_count_after) {
1623 /*
1624 * The choice of wanted_factor here does not affect
1625 * correctness, only performance. When the
1626 * path_count_after / path_count_before
1627 * ratio is high, redoing after renames is a big
1628 * performance boost. I suspect that redoing is a wash
1629 * somewhere near a value of 2, and below that redoing will
1630 * slow things down. I applied a fudge factor and picked
1631 * 3; see the commit message when this was introduced for
1632 * back of the envelope calculations for this ratio.
1633 */
1634 const int wanted_factor = 3;
1635
1636 /* We should only redo collect_merge_info one time */
1637 assert(renames->redo_after_renames == 0);
1638
1639 if (path_count_after / path_count_before >= wanted_factor) {
1640 renames->redo_after_renames = 1;
1641 renames->cached_pairs_valid_side = -1;
1642 }
1643 } else if (renames->redo_after_renames == 2)
1644 renames->redo_after_renames = 0;
1645 return ret;
1646 }
1647
1648 static int collect_merge_info(struct merge_options *opt,
1649 struct tree *merge_base,
1650 struct tree *side1,
1651 struct tree *side2)
1652 {
1653 int ret;
1654 struct tree_desc t[3];
1655 struct traverse_info info;
1656
1657 opt->priv->toplevel_dir = "";
1658 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1659 setup_traverse_info(&info, opt->priv->toplevel_dir);
1660 info.fn = collect_merge_info_callback;
1661 info.data = opt;
1662 info.show_all_errors = 1;
1663
1664 if (parse_tree(merge_base) < 0 ||
1665 parse_tree(side1) < 0 ||
1666 parse_tree(side2) < 0)
1667 return -1;
1668 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1669 init_tree_desc(t + 1, side1->buffer, side1->size);
1670 init_tree_desc(t + 2, side2->buffer, side2->size);
1671
1672 trace2_region_enter("merge", "traverse_trees", opt->repo);
1673 ret = traverse_trees(NULL, 3, t, &info);
1674 if (ret == 0)
1675 ret = handle_deferred_entries(opt, &info);
1676 trace2_region_leave("merge", "traverse_trees", opt->repo);
1677
1678 return ret;
1679 }
1680
1681 /*** Function Grouping: functions related to threeway content merges ***/
1682
1683 static int find_first_merges(struct repository *repo,
1684 const char *path,
1685 struct commit *a,
1686 struct commit *b,
1687 struct object_array *result)
1688 {
1689 int i, j;
1690 struct object_array merges = OBJECT_ARRAY_INIT;
1691 struct commit *commit;
1692 int contains_another;
1693
1694 char merged_revision[GIT_MAX_HEXSZ + 2];
1695 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1696 "--all", merged_revision, NULL };
1697 struct rev_info revs;
1698 struct setup_revision_opt rev_opts;
1699
1700 memset(result, 0, sizeof(struct object_array));
1701 memset(&rev_opts, 0, sizeof(rev_opts));
1702
1703 /* get all revisions that merge commit a */
1704 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1705 oid_to_hex(&a->object.oid));
1706 repo_init_revisions(repo, &revs, NULL);
1707 /* FIXME: can't handle linked worktrees in submodules yet */
1708 revs.single_worktree = path != NULL;
1709 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1710
1711 /* save all revisions from the above list that contain b */
1712 if (prepare_revision_walk(&revs))
1713 die("revision walk setup failed");
1714 while ((commit = get_revision(&revs)) != NULL) {
1715 struct object *o = &(commit->object);
1716 int ret = repo_in_merge_bases(repo, b, commit);
1717
1718 if (ret < 0) {
1719 object_array_clear(&merges);
1720 release_revisions(&revs);
1721 return ret;
1722 }
1723 if (ret > 0)
1724 add_object_array(o, NULL, &merges);
1725 }
1726 reset_revision_walk();
1727
1728 /* Now we've got all merges that contain a and b. Prune all
1729 * merges that contain another found merge and save them in
1730 * result.
1731 */
1732 for (i = 0; i < merges.nr; i++) {
1733 struct commit *m1 = (struct commit *) merges.objects[i].item;
1734
1735 contains_another = 0;
1736 for (j = 0; j < merges.nr; j++) {
1737 struct commit *m2 = (struct commit *) merges.objects[j].item;
1738 if (i != j) {
1739 int ret = repo_in_merge_bases(repo, m2, m1);
1740 if (ret < 0) {
1741 object_array_clear(&merges);
1742 release_revisions(&revs);
1743 return ret;
1744 }
1745 if (ret > 0) {
1746 contains_another = 1;
1747 break;
1748 }
1749 }
1750 }
1751
1752 if (!contains_another)
1753 add_object_array(merges.objects[i].item, NULL, result);
1754 }
1755
1756 object_array_clear(&merges);
1757 release_revisions(&revs);
1758 return result->nr;
1759 }
1760
1761 static int merge_submodule(struct merge_options *opt,
1762 const char *path,
1763 const struct object_id *o,
1764 const struct object_id *a,
1765 const struct object_id *b,
1766 struct object_id *result)
1767 {
1768 struct repository subrepo;
1769 struct strbuf sb = STRBUF_INIT;
1770 int ret = 0, ret2;
1771 struct commit *commit_o, *commit_a, *commit_b;
1772 int parent_count;
1773 struct object_array merges;
1774
1775 int i;
1776 int search = !opt->priv->call_depth;
1777 int sub_not_initialized = 1;
1778 int sub_flag = CONFLICT_SUBMODULE_FAILED_TO_MERGE;
1779
1780 /* store fallback answer in result in case we fail */
1781 oidcpy(result, opt->priv->call_depth ? o : a);
1782
1783 /* we can not handle deletion conflicts */
1784 if (is_null_oid(a) || is_null_oid(b))
1785 BUG("submodule deleted on one side; this should be handled outside of merge_submodule()");
1786
1787 if ((sub_not_initialized = repo_submodule_init(&subrepo,
1788 opt->repo, path, null_oid()))) {
1789 path_msg(opt, CONFLICT_SUBMODULE_NOT_INITIALIZED, 0,
1790 path, NULL, NULL, NULL,
1791 _("Failed to merge submodule %s (not checked out)"),
1792 path);
1793 sub_flag = CONFLICT_SUBMODULE_NOT_INITIALIZED;
1794 goto cleanup;
1795 }
1796
1797 if (is_null_oid(o)) {
1798 path_msg(opt, CONFLICT_SUBMODULE_NULL_MERGE_BASE, 0,
1799 path, NULL, NULL, NULL,
1800 _("Failed to merge submodule %s (no merge base)"),
1801 path);
1802 goto cleanup;
1803 }
1804
1805 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1806 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1807 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1808 path_msg(opt, CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE, 0,
1809 path, NULL, NULL, NULL,
1810 _("Failed to merge submodule %s (commits not present)"),
1811 path);
1812 sub_flag = CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE;
1813 goto cleanup;
1814 }
1815
1816 /* check whether both changes are forward */
1817 ret2 = repo_in_merge_bases(&subrepo, commit_o, commit_a);
1818 if (ret2 < 0) {
1819 path_msg(opt, CONFLICT_SUBMODULE_CORRUPT, 0,
1820 path, NULL, NULL, NULL,
1821 _("Failed to merge submodule %s "
1822 "(repository corrupt)"),
1823 path);
1824 ret = -1;
1825 goto cleanup;
1826 }
1827 if (ret2 > 0)
1828 ret2 = repo_in_merge_bases(&subrepo, commit_o, commit_b);
1829 if (ret2 < 0) {
1830 path_msg(opt, CONFLICT_SUBMODULE_CORRUPT, 0,
1831 path, NULL, NULL, NULL,
1832 _("Failed to merge submodule %s "
1833 "(repository corrupt)"),
1834 path);
1835 ret = -1;
1836 goto cleanup;
1837 }
1838 if (!ret2) {
1839 path_msg(opt, CONFLICT_SUBMODULE_MAY_HAVE_REWINDS, 0,
1840 path, NULL, NULL, NULL,
1841 _("Failed to merge submodule %s "
1842 "(commits don't follow merge-base)"),
1843 path);
1844 goto cleanup;
1845 }
1846
1847 /* Case #1: a is contained in b or vice versa */
1848 ret2 = repo_in_merge_bases(&subrepo, commit_a, commit_b);
1849 if (ret2 < 0) {
1850 path_msg(opt, CONFLICT_SUBMODULE_CORRUPT, 0,
1851 path, NULL, NULL, NULL,
1852 _("Failed to merge submodule %s "
1853 "(repository corrupt)"),
1854 path);
1855 ret = -1;
1856 goto cleanup;
1857 }
1858 if (ret2 > 0) {
1859 oidcpy(result, b);
1860 path_msg(opt, INFO_SUBMODULE_FAST_FORWARDING, 1,
1861 path, NULL, NULL, NULL,
1862 _("Note: Fast-forwarding submodule %s to %s"),
1863 path, oid_to_hex(b));
1864 ret = 1;
1865 goto cleanup;
1866 }
1867 ret2 = repo_in_merge_bases(&subrepo, commit_b, commit_a);
1868 if (ret2 < 0) {
1869 path_msg(opt, CONFLICT_SUBMODULE_CORRUPT, 0,
1870 path, NULL, NULL, NULL,
1871 _("Failed to merge submodule %s "
1872 "(repository corrupt)"),
1873 path);
1874 ret = -1;
1875 goto cleanup;
1876 }
1877 if (ret2 > 0) {
1878 oidcpy(result, a);
1879 path_msg(opt, INFO_SUBMODULE_FAST_FORWARDING, 1,
1880 path, NULL, NULL, NULL,
1881 _("Note: Fast-forwarding submodule %s to %s"),
1882 path, oid_to_hex(a));
1883 ret = 1;
1884 goto cleanup;
1885 }
1886
1887 /*
1888 * Case #2: There are one or more merges that contain a and b in
1889 * the submodule. If there is only one, then present it as a
1890 * suggestion to the user, but leave it marked unmerged so the
1891 * user needs to confirm the resolution.
1892 */
1893
1894 /* Skip the search if makes no sense to the calling context. */
1895 if (!search)
1896 goto cleanup;
1897
1898 /* find commit which merges them */
1899 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1900 &merges);
1901 switch (parent_count) {
1902 case -1:
1903 path_msg(opt, CONFLICT_SUBMODULE_CORRUPT, 0,
1904 path, NULL, NULL, NULL,
1905 _("Failed to merge submodule %s "
1906 "(repository corrupt)"),
1907 path);
1908 ret = -1;
1909 break;
1910 case 0:
1911 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE, 0,
1912 path, NULL, NULL, NULL,
1913 _("Failed to merge submodule %s"), path);
1914 break;
1915
1916 case 1:
1917 format_commit(&sb, 4, &subrepo,
1918 (struct commit *)merges.objects[0].item);
1919 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION, 0,
1920 path, NULL, NULL, NULL,
1921 _("Failed to merge submodule %s, but a possible merge "
1922 "resolution exists: %s"),
1923 path, sb.buf);
1924 strbuf_release(&sb);
1925 break;
1926 default:
1927 for (i = 0; i < merges.nr; i++)
1928 format_commit(&sb, 4, &subrepo,
1929 (struct commit *)merges.objects[i].item);
1930 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION, 0,
1931 path, NULL, NULL, NULL,
1932 _("Failed to merge submodule %s, but multiple "
1933 "possible merges exist:\n%s"), path, sb.buf);
1934 strbuf_release(&sb);
1935 }
1936
1937 object_array_clear(&merges);
1938 cleanup:
1939 if (!opt->priv->call_depth && !ret) {
1940 struct string_list *csub = &opt->priv->conflicted_submodules;
1941 struct conflicted_submodule_item *util;
1942 const char *abbrev;
1943
1944 util = xmalloc(sizeof(*util));
1945 util->flag = sub_flag;
1946 util->abbrev = NULL;
1947 if (!sub_not_initialized) {
1948 abbrev = repo_find_unique_abbrev(&subrepo, b, DEFAULT_ABBREV);
1949 util->abbrev = xstrdup(abbrev);
1950 }
1951 string_list_append(csub, path)->util = util;
1952 }
1953
1954 if (!sub_not_initialized)
1955 repo_clear(&subrepo);
1956 return ret;
1957 }
1958
1959 static void initialize_attr_index(struct merge_options *opt)
1960 {
1961 /*
1962 * The renormalize_buffer() functions require attributes, and
1963 * annoyingly those can only be read from the working tree or from
1964 * an index_state. merge-ort doesn't have an index_state, so we
1965 * generate a fake one containing only attribute information.
1966 */
1967 struct merged_info *mi;
1968 struct index_state *attr_index = &opt->priv->attr_index;
1969 struct cache_entry *ce;
1970
1971 attr_index->repo = opt->repo;
1972 attr_index->initialized = 1;
1973
1974 if (!opt->renormalize)
1975 return;
1976
1977 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1978 if (!mi)
1979 return;
1980
1981 if (mi->clean) {
1982 int len = strlen(GITATTRIBUTES_FILE);
1983 ce = make_empty_cache_entry(attr_index, len);
1984 ce->ce_mode = create_ce_mode(mi->result.mode);
1985 ce->ce_flags = create_ce_flags(0);
1986 ce->ce_namelen = len;
1987 oidcpy(&ce->oid, &mi->result.oid);
1988 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1989 add_index_entry(attr_index, ce,
1990 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1991 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1992 } else {
1993 int stage, len;
1994 struct conflict_info *ci;
1995
1996 ASSIGN_AND_VERIFY_CI(ci, mi);
1997 for (stage = 0; stage < 3; stage++) {
1998 unsigned stage_mask = (1 << stage);
1999
2000 if (!(ci->filemask & stage_mask))
2001 continue;
2002 len = strlen(GITATTRIBUTES_FILE);
2003 ce = make_empty_cache_entry(attr_index, len);
2004 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
2005 ce->ce_flags = create_ce_flags(stage);
2006 ce->ce_namelen = len;
2007 oidcpy(&ce->oid, &ci->stages[stage].oid);
2008 memcpy(ce->name, GITATTRIBUTES_FILE, len);
2009 add_index_entry(attr_index, ce,
2010 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
2011 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
2012 &ce->oid);
2013 }
2014 }
2015 }
2016
2017 static int merge_3way(struct merge_options *opt,
2018 const char *path,
2019 const struct object_id *o,
2020 const struct object_id *a,
2021 const struct object_id *b,
2022 const char *pathnames[3],
2023 const int extra_marker_size,
2024 mmbuffer_t *result_buf)
2025 {
2026 mmfile_t orig, src1, src2;
2027 struct ll_merge_options ll_opts = {0};
2028 char *base, *name1, *name2;
2029 enum ll_merge_result merge_status;
2030
2031 if (!opt->priv->attr_index.initialized)
2032 initialize_attr_index(opt);
2033
2034 ll_opts.renormalize = opt->renormalize;
2035 ll_opts.extra_marker_size = extra_marker_size;
2036 ll_opts.xdl_opts = opt->xdl_opts;
2037
2038 if (opt->priv->call_depth) {
2039 ll_opts.virtual_ancestor = 1;
2040 ll_opts.variant = 0;
2041 } else {
2042 switch (opt->recursive_variant) {
2043 case MERGE_VARIANT_OURS:
2044 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
2045 break;
2046 case MERGE_VARIANT_THEIRS:
2047 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
2048 break;
2049 default:
2050 ll_opts.variant = 0;
2051 break;
2052 }
2053 }
2054
2055 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
2056 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
2057 base = mkpathdup("%s", opt->ancestor);
2058 name1 = mkpathdup("%s", opt->branch1);
2059 name2 = mkpathdup("%s", opt->branch2);
2060 } else {
2061 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
2062 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
2063 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
2064 }
2065
2066 read_mmblob(&orig, o);
2067 read_mmblob(&src1, a);
2068 read_mmblob(&src2, b);
2069
2070 merge_status = ll_merge(result_buf, path, &orig, base,
2071 &src1, name1, &src2, name2,
2072 &opt->priv->attr_index, &ll_opts);
2073 if (merge_status == LL_MERGE_BINARY_CONFLICT)
2074 path_msg(opt, CONFLICT_BINARY, 0,
2075 path, NULL, NULL, NULL,
2076 "warning: Cannot merge binary files: %s (%s vs. %s)",
2077 path, name1, name2);
2078
2079 free(base);
2080 free(name1);
2081 free(name2);
2082 free(orig.ptr);
2083 free(src1.ptr);
2084 free(src2.ptr);
2085 return merge_status;
2086 }
2087
2088 static int handle_content_merge(struct merge_options *opt,
2089 const char *path,
2090 const struct version_info *o,
2091 const struct version_info *a,
2092 const struct version_info *b,
2093 const char *pathnames[3],
2094 const int extra_marker_size,
2095 struct version_info *result)
2096 {
2097 /*
2098 * path is the target location where we want to put the file, and
2099 * is used to determine any normalization rules in ll_merge.
2100 *
2101 * The normal case is that path and all entries in pathnames are
2102 * identical, though renames can affect which path we got one of
2103 * the three blobs to merge on various sides of history.
2104 *
2105 * extra_marker_size is the amount to extend conflict markers in
2106 * ll_merge; this is needed if we have content merges of content
2107 * merges, which happens for example with rename/rename(2to1) and
2108 * rename/add conflicts.
2109 */
2110 unsigned clean = 1;
2111
2112 /*
2113 * handle_content_merge() needs both files to be of the same type, i.e.
2114 * both files OR both submodules OR both symlinks. Conflicting types
2115 * needs to be handled elsewhere.
2116 */
2117 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
2118
2119 /* Merge modes */
2120 if (a->mode == b->mode || a->mode == o->mode)
2121 result->mode = b->mode;
2122 else {
2123 /* must be the 100644/100755 case */
2124 assert(S_ISREG(a->mode));
2125 result->mode = a->mode;
2126 clean = (b->mode == o->mode);
2127 /*
2128 * FIXME: If opt->priv->call_depth && !clean, then we really
2129 * should not make result->mode match either a->mode or
2130 * b->mode; that causes t6036 "check conflicting mode for
2131 * regular file" to fail. It would be best to use some other
2132 * mode, but we'll confuse all kinds of stuff if we use one
2133 * where S_ISREG(result->mode) isn't true, and if we use
2134 * something like 0100666, then tree-walk.c's calls to
2135 * canon_mode() will just normalize that to 100644 for us and
2136 * thus not solve anything.
2137 *
2138 * Figure out if there's some kind of way we can work around
2139 * this...
2140 */
2141 }
2142
2143 /*
2144 * Trivial oid merge.
2145 *
2146 * Note: While one might assume that the next four lines would
2147 * be unnecessary due to the fact that match_mask is often
2148 * setup and already handled, renames don't always take care
2149 * of that.
2150 */
2151 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
2152 oidcpy(&result->oid, &b->oid);
2153 else if (oideq(&b->oid, &o->oid))
2154 oidcpy(&result->oid, &a->oid);
2155
2156 /* Remaining rules depend on file vs. submodule vs. symlink. */
2157 else if (S_ISREG(a->mode)) {
2158 mmbuffer_t result_buf;
2159 int ret = 0, merge_status;
2160 int two_way;
2161
2162 /*
2163 * If 'o' is different type, treat it as null so we do a
2164 * two-way merge.
2165 */
2166 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
2167
2168 merge_status = merge_3way(opt, path,
2169 two_way ? null_oid() : &o->oid,
2170 &a->oid, &b->oid,
2171 pathnames, extra_marker_size,
2172 &result_buf);
2173
2174 if ((merge_status < 0) || !result_buf.ptr)
2175 ret = error(_("failed to execute internal merge"));
2176
2177 if (!ret &&
2178 write_object_file(result_buf.ptr, result_buf.size,
2179 OBJ_BLOB, &result->oid))
2180 ret = error(_("unable to add %s to database"), path);
2181
2182 free(result_buf.ptr);
2183 if (ret)
2184 return -1;
2185 clean &= (merge_status == 0);
2186 path_msg(opt, INFO_AUTO_MERGING, 1, path, NULL, NULL, NULL,
2187 _("Auto-merging %s"), path);
2188 } else if (S_ISGITLINK(a->mode)) {
2189 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
2190 clean = merge_submodule(opt, pathnames[0],
2191 two_way ? null_oid() : &o->oid,
2192 &a->oid, &b->oid, &result->oid);
2193 if (opt->priv->call_depth && two_way && !clean) {
2194 result->mode = o->mode;
2195 oidcpy(&result->oid, &o->oid);
2196 }
2197 } else if (S_ISLNK(a->mode)) {
2198 if (opt->priv->call_depth) {
2199 clean = 0;
2200 result->mode = o->mode;
2201 oidcpy(&result->oid, &o->oid);
2202 } else {
2203 switch (opt->recursive_variant) {
2204 case MERGE_VARIANT_NORMAL:
2205 clean = 0;
2206 oidcpy(&result->oid, &a->oid);
2207 break;
2208 case MERGE_VARIANT_OURS:
2209 oidcpy(&result->oid, &a->oid);
2210 break;
2211 case MERGE_VARIANT_THEIRS:
2212 oidcpy(&result->oid, &b->oid);
2213 break;
2214 }
2215 }
2216 } else
2217 BUG("unsupported object type in the tree: %06o for %s",
2218 a->mode, path);
2219
2220 return clean;
2221 }
2222
2223 /*** Function Grouping: functions related to detect_and_process_renames(), ***
2224 *** which are split into directory and regular rename detection sections. ***/
2225
2226 /*** Function Grouping: functions related to directory rename detection ***/
2227
2228 struct collision_info {
2229 struct string_list source_files;
2230 unsigned reported_already:1;
2231 };
2232
2233 /*
2234 * Return a new string that replaces the beginning portion (which matches
2235 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
2236 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
2237 * NOTE:
2238 * Caller must ensure that old_path starts with rename_info->key + '/'.
2239 */
2240 static char *apply_dir_rename(struct strmap_entry *rename_info,
2241 const char *old_path)
2242 {
2243 struct strbuf new_path = STRBUF_INIT;
2244 const char *old_dir = rename_info->key;
2245 const char *new_dir = rename_info->value;
2246 int oldlen, newlen, new_dir_len;
2247
2248 oldlen = strlen(old_dir);
2249 if (*new_dir == '\0')
2250 /*
2251 * If someone renamed/merged a subdirectory into the root
2252 * directory (e.g. 'some/subdir' -> ''), then we want to
2253 * avoid returning
2254 * '' + '/filename'
2255 * as the rename; we need to make old_path + oldlen advance
2256 * past the '/' character.
2257 */
2258 oldlen++;
2259 new_dir_len = strlen(new_dir);
2260 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
2261 strbuf_grow(&new_path, newlen);
2262 strbuf_add(&new_path, new_dir, new_dir_len);
2263 strbuf_addstr(&new_path, &old_path[oldlen]);
2264
2265 return strbuf_detach(&new_path, NULL);
2266 }
2267
2268 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
2269 {
2270 struct merged_info *mi = strmap_get(paths, path);
2271 struct conflict_info *ci;
2272 if (!mi)
2273 return 0;
2274 INITIALIZE_CI(ci, mi);
2275 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2276 }
2277
2278 /*
2279 * See if there is a directory rename for path, and if there are any file
2280 * level conflicts on the given side for the renamed location. If there is
2281 * a rename and there are no conflicts, return the new name. Otherwise,
2282 * return NULL.
2283 */
2284 static char *handle_path_level_conflicts(struct merge_options *opt,
2285 const char *path,
2286 unsigned side_index,
2287 struct strmap_entry *rename_info,
2288 struct strmap *collisions)
2289 {
2290 char *new_path = NULL;
2291 struct collision_info *c_info;
2292 int clean = 1;
2293 struct strbuf collision_paths = STRBUF_INIT;
2294
2295 /*
2296 * entry has the mapping of old directory name to new directory name
2297 * that we want to apply to path.
2298 */
2299 new_path = apply_dir_rename(rename_info, path);
2300 if (!new_path)
2301 BUG("Failed to apply directory rename!");
2302
2303 /*
2304 * The caller needs to have ensured that it has pre-populated
2305 * collisions with all paths that map to new_path. Do a quick check
2306 * to ensure that's the case.
2307 */
2308 c_info = strmap_get(collisions, new_path);
2309 if (!c_info)
2310 BUG("c_info is NULL");
2311
2312 /*
2313 * Check for one-sided add/add/.../add conflicts, i.e.
2314 * where implicit renames from the other side doing
2315 * directory rename(s) can affect this side of history
2316 * to put multiple paths into the same location. Warn
2317 * and bail on directory renames for such paths.
2318 */
2319 if (c_info->reported_already) {
2320 clean = 0;
2321 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2322 c_info->reported_already = 1;
2323 strbuf_add_separated_string_list(&collision_paths, ", ",
2324 &c_info->source_files);
2325 path_msg(opt, CONFLICT_DIR_RENAME_FILE_IN_WAY, 0,
2326 new_path, NULL, NULL, &c_info->source_files,
2327 _("CONFLICT (implicit dir rename): Existing "
2328 "file/dir at %s in the way of implicit "
2329 "directory rename(s) putting the following "
2330 "path(s) there: %s."),
2331 new_path, collision_paths.buf);
2332 clean = 0;
2333 } else if (c_info->source_files.nr > 1) {
2334 c_info->reported_already = 1;
2335 strbuf_add_separated_string_list(&collision_paths, ", ",
2336 &c_info->source_files);
2337 path_msg(opt, CONFLICT_DIR_RENAME_COLLISION, 0,
2338 new_path, NULL, NULL, &c_info->source_files,
2339 _("CONFLICT (implicit dir rename): Cannot map "
2340 "more than one path to %s; implicit directory "
2341 "renames tried to put these paths there: %s"),
2342 new_path, collision_paths.buf);
2343 clean = 0;
2344 }
2345
2346 /* Free memory we no longer need */
2347 strbuf_release(&collision_paths);
2348 if (!clean && new_path) {
2349 free(new_path);
2350 return NULL;
2351 }
2352
2353 return new_path;
2354 }
2355
2356 static void get_provisional_directory_renames(struct merge_options *opt,
2357 unsigned side,
2358 int *clean)
2359 {
2360 struct hashmap_iter iter;
2361 struct strmap_entry *entry;
2362 struct rename_info *renames = &opt->priv->renames;
2363
2364 /*
2365 * Collapse
2366 * dir_rename_count: old_directory -> {new_directory -> count}
2367 * down to
2368 * dir_renames: old_directory -> best_new_directory
2369 * where best_new_directory is the one with the unique highest count.
2370 */
2371 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2372 const char *source_dir = entry->key;
2373 struct strintmap *counts = entry->value;
2374 struct hashmap_iter count_iter;
2375 struct strmap_entry *count_entry;
2376 int max = 0;
2377 int bad_max = 0;
2378 const char *best = NULL;
2379
2380 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2381 const char *target_dir = count_entry->key;
2382 intptr_t count = (intptr_t)count_entry->value;
2383
2384 if (count == max)
2385 bad_max = max;
2386 else if (count > max) {
2387 max = count;
2388 best = target_dir;
2389 }
2390 }
2391
2392 if (max == 0)
2393 continue;
2394
2395 if (bad_max == max) {
2396 path_msg(opt, CONFLICT_DIR_RENAME_SPLIT, 0,
2397 source_dir, NULL, NULL, NULL,
2398 _("CONFLICT (directory rename split): "
2399 "Unclear where to rename %s to; it was "
2400 "renamed to multiple other directories, "
2401 "with no destination getting a majority of "
2402 "the files."),
2403 source_dir);
2404 *clean = 0;
2405 } else {
2406 strmap_put(&renames->dir_renames[side],
2407 source_dir, (void*)best);
2408 }
2409 }
2410 }
2411
2412 static void handle_directory_level_conflicts(struct merge_options *opt)
2413 {
2414 struct hashmap_iter iter;
2415 struct strmap_entry *entry;
2416 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2417 struct rename_info *renames = &opt->priv->renames;
2418 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2419 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2420 int i;
2421
2422 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2423 if (strmap_contains(side2_dir_renames, entry->key))
2424 string_list_append(&duplicated, entry->key);
2425 }
2426
2427 for (i = 0; i < duplicated.nr; i++) {
2428 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2429 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2430 }
2431 string_list_clear(&duplicated, 0);
2432 }
2433
2434 static struct strmap_entry *check_dir_renamed(const char *path,
2435 struct strmap *dir_renames)
2436 {
2437 char *temp = xstrdup(path);
2438 char *end;
2439 struct strmap_entry *e = NULL;
2440
2441 while ((end = strrchr(temp, '/'))) {
2442 *end = '\0';
2443 e = strmap_get_entry(dir_renames, temp);
2444 if (e)
2445 break;
2446 }
2447 free(temp);
2448 return e;
2449 }
2450
2451 static void compute_collisions(struct strmap *collisions,
2452 struct strmap *dir_renames,
2453 struct diff_queue_struct *pairs)
2454 {
2455 int i;
2456
2457 strmap_init_with_options(collisions, NULL, 0);
2458 if (strmap_empty(dir_renames))
2459 return;
2460
2461 /*
2462 * Multiple files can be mapped to the same path due to directory
2463 * renames done by the other side of history. Since that other
2464 * side of history could have merged multiple directories into one,
2465 * if our side of history added the same file basename to each of
2466 * those directories, then all N of them would get implicitly
2467 * renamed by the directory rename detection into the same path,
2468 * and we'd get an add/add/.../add conflict, and all those adds
2469 * from *this* side of history. This is not representable in the
2470 * index, and users aren't going to easily be able to make sense of
2471 * it. So we need to provide a good warning about what's
2472 * happening, and fall back to no-directory-rename detection
2473 * behavior for those paths.
2474 *
2475 * See testcases 9e and all of section 5 from t6043 for examples.
2476 */
2477 for (i = 0; i < pairs->nr; ++i) {
2478 struct strmap_entry *rename_info;
2479 struct collision_info *collision_info;
2480 char *new_path;
2481 struct diff_filepair *pair = pairs->queue[i];
2482
2483 if (pair->status != 'A' && pair->status != 'R')
2484 continue;
2485 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2486 if (!rename_info)
2487 continue;
2488
2489 new_path = apply_dir_rename(rename_info, pair->two->path);
2490 assert(new_path);
2491 collision_info = strmap_get(collisions, new_path);
2492 if (collision_info) {
2493 free(new_path);
2494 } else {
2495 CALLOC_ARRAY(collision_info, 1);
2496 string_list_init_nodup(&collision_info->source_files);
2497 strmap_put(collisions, new_path, collision_info);
2498 }
2499 string_list_insert(&collision_info->source_files,
2500 pair->two->path);
2501 }
2502 }
2503
2504 static void free_collisions(struct strmap *collisions)
2505 {
2506 struct hashmap_iter iter;
2507 struct strmap_entry *entry;
2508
2509 /* Free each value in the collisions map */
2510 strmap_for_each_entry(collisions, &iter, entry) {
2511 struct collision_info *info = entry->value;
2512 string_list_clear(&info->source_files, 0);
2513 }
2514 /*
2515 * In compute_collisions(), we set collisions.strdup_strings to 0
2516 * so that we wouldn't have to make another copy of the new_path
2517 * allocated by apply_dir_rename(). But now that we've used them
2518 * and have no other references to these strings, it is time to
2519 * deallocate them.
2520 */
2521 free_strmap_strings(collisions);
2522 strmap_clear(collisions, 1);
2523 }
2524
2525 static char *check_for_directory_rename(struct merge_options *opt,
2526 const char *path,
2527 unsigned side_index,
2528 struct strmap *dir_renames,
2529 struct strmap *dir_rename_exclusions,
2530 struct strmap *collisions,
2531 int *clean_merge)
2532 {
2533 char *new_path;
2534 struct strmap_entry *rename_info;
2535 struct strmap_entry *otherinfo;
2536 const char *new_dir;
2537 int other_side = 3 - side_index;
2538
2539 /*
2540 * Cases where we don't have or don't want a directory rename for
2541 * this path.
2542 */
2543 if (strmap_empty(dir_renames))
2544 return NULL;
2545 if (strmap_get(&collisions[other_side], path))
2546 return NULL;
2547 rename_info = check_dir_renamed(path, dir_renames);
2548 if (!rename_info)
2549 return NULL;
2550
2551 /*
2552 * This next part is a little weird. We do not want to do an
2553 * implicit rename into a directory we renamed on our side, because
2554 * that will result in a spurious rename/rename(1to2) conflict. An
2555 * example:
2556 * Base commit: dumbdir/afile, otherdir/bfile
2557 * Side 1: smrtdir/afile, otherdir/bfile
2558 * Side 2: dumbdir/afile, dumbdir/bfile
2559 * Here, while working on Side 1, we could notice that otherdir was
2560 * renamed/merged to dumbdir, and change the diff_filepair for
2561 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2562 * 2 will notice the rename from dumbdir to smrtdir, and do the
2563 * transitive rename to move it from dumbdir/bfile to
2564 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2565 * smrtdir, a rename/rename(1to2) conflict. We really just want
2566 * the file to end up in smrtdir. And the way to achieve that is
2567 * to not let Side1 do the rename to dumbdir, since we know that is
2568 * the source of one of our directory renames.
2569 *
2570 * That's why otherinfo and dir_rename_exclusions is here.
2571 *
2572 * As it turns out, this also prevents N-way transient rename
2573 * confusion; See testcases 9c and 9d of t6043.
2574 */
2575 new_dir = rename_info->value; /* old_dir = rename_info->key; */
2576 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2577 if (otherinfo) {
2578 path_msg(opt, INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME, 1,
2579 rename_info->key, path, new_dir, NULL,
2580 _("WARNING: Avoiding applying %s -> %s rename "
2581 "to %s, because %s itself was renamed."),
2582 rename_info->key, new_dir, path, new_dir);
2583 return NULL;
2584 }
2585
2586 new_path = handle_path_level_conflicts(opt, path, side_index,
2587 rename_info,
2588 &collisions[side_index]);
2589 *clean_merge &= (new_path != NULL);
2590
2591 return new_path;
2592 }
2593
2594 static void apply_directory_rename_modifications(struct merge_options *opt,
2595 struct diff_filepair *pair,
2596 char *new_path)
2597 {
2598 /*
2599 * The basic idea is to get the conflict_info from opt->priv->paths
2600 * at old path, and insert it into new_path; basically just this:
2601 * ci = strmap_get(&opt->priv->paths, old_path);
2602 * strmap_remove(&opt->priv->paths, old_path, 0);
2603 * strmap_put(&opt->priv->paths, new_path, ci);
2604 * However, there are some factors complicating this:
2605 * - opt->priv->paths may already have an entry at new_path
2606 * - Each ci tracks its containing directory, so we need to
2607 * update that
2608 * - If another ci has the same containing directory, then
2609 * the two char*'s MUST point to the same location. See the
2610 * comment in struct merged_info. strcmp equality is not
2611 * enough; we need pointer equality.
2612 * - opt->priv->paths must hold the parent directories of any
2613 * entries that are added. So, if this directory rename
2614 * causes entirely new directories, we must recursively add
2615 * parent directories.
2616 * - For each parent directory added to opt->priv->paths, we
2617 * also need to get its parent directory stored in its
2618 * conflict_info->merged.directory_name with all the same
2619 * requirements about pointer equality.
2620 */
2621 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2622 struct conflict_info *ci, *new_ci;
2623 struct strmap_entry *entry;
2624 const char *branch_with_new_path, *branch_with_dir_rename;
2625 const char *old_path = pair->two->path;
2626 const char *parent_name;
2627 const char *cur_path;
2628 int i, len;
2629
2630 entry = strmap_get_entry(&opt->priv->paths, old_path);
2631 old_path = entry->key;
2632 ci = entry->value;
2633 VERIFY_CI(ci);
2634
2635 /* Find parent directories missing from opt->priv->paths */
2636 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2637 free((char*)new_path);
2638 new_path = (char *)cur_path;
2639
2640 while (1) {
2641 /* Find the parent directory of cur_path */
2642 char *last_slash = strrchr(cur_path, '/');
2643 if (last_slash) {
2644 parent_name = mem_pool_strndup(&opt->priv->pool,
2645 cur_path,
2646 last_slash - cur_path);
2647 } else {
2648 parent_name = opt->priv->toplevel_dir;
2649 break;
2650 }
2651
2652 /* Look it up in opt->priv->paths */
2653 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2654 if (entry) {
2655 parent_name = entry->key; /* reuse known pointer */
2656 break;
2657 }
2658
2659 /* Record this is one of the directories we need to insert */
2660 string_list_append(&dirs_to_insert, parent_name);
2661 cur_path = parent_name;
2662 }
2663
2664 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2665 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2666 struct conflict_info *dir_ci;
2667 char *cur_dir = dirs_to_insert.items[i].string;
2668
2669 CALLOC_ARRAY(dir_ci, 1);
2670
2671 dir_ci->merged.directory_name = parent_name;
2672 len = strlen(parent_name);
2673 /* len+1 because of trailing '/' character */
2674 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2675 dir_ci->dirmask = ci->filemask;
2676 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2677
2678 parent_name = cur_dir;
2679 }
2680
2681 assert(ci->filemask == 2 || ci->filemask == 4);
2682 assert(ci->dirmask == 0 || ci->dirmask == 1);
2683 if (ci->dirmask == 0)
2684 strmap_remove(&opt->priv->paths, old_path, 0);
2685 else {
2686 /*
2687 * This file exists on one side, but we still had a directory
2688 * at the old location that we can't remove until after
2689 * processing all paths below it. So, make a copy of ci in
2690 * new_ci and only put the file information into it.
2691 */
2692 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
2693 memcpy(new_ci, ci, sizeof(*ci));
2694 assert(!new_ci->match_mask);
2695 new_ci->dirmask = 0;
2696 new_ci->stages[1].mode = 0;
2697 oidcpy(&new_ci->stages[1].oid, null_oid());
2698
2699 /*
2700 * Now that we have the file information in new_ci, make sure
2701 * ci only has the directory information.
2702 */
2703 ci->filemask = 0;
2704 ci->merged.clean = 1;
2705 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
2706 if (ci->dirmask & (1 << i))
2707 continue;
2708 /* zero out any entries related to files */
2709 ci->stages[i].mode = 0;
2710 oidcpy(&ci->stages[i].oid, null_oid());
2711 }
2712
2713 /* Now we want to focus on new_ci, so reassign ci to it. */
2714 ci = new_ci;
2715 }
2716
2717 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2718 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2719
2720 /* Now, finally update ci and stick it into opt->priv->paths */
2721 ci->merged.directory_name = parent_name;
2722 len = strlen(parent_name);
2723 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2724 new_ci = strmap_get(&opt->priv->paths, new_path);
2725 if (!new_ci) {
2726 /* Place ci back into opt->priv->paths, but at new_path */
2727 strmap_put(&opt->priv->paths, new_path, ci);
2728 } else {
2729 int index;
2730
2731 /* A few sanity checks */
2732 VERIFY_CI(new_ci);
2733 assert(ci->filemask == 2 || ci->filemask == 4);
2734 assert((new_ci->filemask & ci->filemask) == 0);
2735 assert(!new_ci->merged.clean);
2736
2737 /* Copy stuff from ci into new_ci */
2738 new_ci->filemask |= ci->filemask;
2739 if (new_ci->dirmask)
2740 new_ci->df_conflict = 1;
2741 index = (ci->filemask >> 1);
2742 new_ci->pathnames[index] = ci->pathnames[index];
2743 new_ci->stages[index].mode = ci->stages[index].mode;
2744 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2745
2746 ci = new_ci;
2747 }
2748
2749 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2750 /* Notify user of updated path */
2751 if (pair->status == 'A')
2752 path_msg(opt, INFO_DIR_RENAME_APPLIED, 1,
2753 new_path, old_path, NULL, NULL,
2754 _("Path updated: %s added in %s inside a "
2755 "directory that was renamed in %s; moving "
2756 "it to %s."),
2757 old_path, branch_with_new_path,
2758 branch_with_dir_rename, new_path);
2759 else
2760 path_msg(opt, INFO_DIR_RENAME_APPLIED, 1,
2761 new_path, old_path, NULL, NULL,
2762 _("Path updated: %s renamed to %s in %s, "
2763 "inside a directory that was renamed in %s; "
2764 "moving it to %s."),
2765 pair->one->path, old_path, branch_with_new_path,
2766 branch_with_dir_rename, new_path);
2767 } else {
2768 /*
2769 * opt->detect_directory_renames has the value
2770 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2771 */
2772 ci->path_conflict = 1;
2773 if (pair->status == 'A')
2774 path_msg(opt, CONFLICT_DIR_RENAME_SUGGESTED, 1,
2775 new_path, old_path, NULL, NULL,
2776 _("CONFLICT (file location): %s added in %s "
2777 "inside a directory that was renamed in %s, "
2778 "suggesting it should perhaps be moved to "
2779 "%s."),
2780 old_path, branch_with_new_path,
2781 branch_with_dir_rename, new_path);
2782 else
2783 path_msg(opt, CONFLICT_DIR_RENAME_SUGGESTED, 1,
2784 new_path, old_path, NULL, NULL,
2785 _("CONFLICT (file location): %s renamed to %s "
2786 "in %s, inside a directory that was renamed "
2787 "in %s, suggesting it should perhaps be "
2788 "moved to %s."),
2789 pair->one->path, old_path, branch_with_new_path,
2790 branch_with_dir_rename, new_path);
2791 }
2792
2793 /*
2794 * Finally, record the new location.
2795 */
2796 pair->two->path = new_path;
2797 }
2798
2799 /*** Function Grouping: functions related to regular rename detection ***/
2800
2801 static int process_renames(struct merge_options *opt,
2802 struct diff_queue_struct *renames)
2803 {
2804 int clean_merge = 1, i;
2805
2806 for (i = 0; i < renames->nr; ++i) {
2807 const char *oldpath = NULL, *newpath;
2808 struct diff_filepair *pair = renames->queue[i];
2809 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2810 struct strmap_entry *old_ent, *new_ent;
2811 unsigned int old_sidemask;
2812 int target_index, other_source_index;
2813 int source_deleted, collision, type_changed;
2814 const char *rename_branch = NULL, *delete_branch = NULL;
2815
2816 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2817 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2818 if (old_ent) {
2819 oldpath = old_ent->key;
2820 oldinfo = old_ent->value;
2821 }
2822 newpath = pair->two->path;
2823 if (new_ent) {
2824 newpath = new_ent->key;
2825 newinfo = new_ent->value;
2826 }
2827
2828 /*
2829 * If pair->one->path isn't in opt->priv->paths, that means
2830 * that either directory rename detection removed that
2831 * path, or a parent directory of oldpath was resolved and
2832 * we don't even need the rename; in either case, we can
2833 * skip it. If oldinfo->merged.clean, then the other side
2834 * of history had no changes to oldpath and we don't need
2835 * the rename and can skip it.
2836 */
2837 if (!oldinfo || oldinfo->merged.clean)
2838 continue;
2839
2840 /*
2841 * diff_filepairs have copies of pathnames, thus we have to
2842 * use standard 'strcmp()' (negated) instead of '=='.
2843 */
2844 if (i + 1 < renames->nr &&
2845 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2846 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2847 const char *pathnames[3];
2848 struct version_info merged;
2849 struct conflict_info *base, *side1, *side2;
2850 unsigned was_binary_blob = 0;
2851
2852 pathnames[0] = oldpath;
2853 pathnames[1] = newpath;
2854 pathnames[2] = renames->queue[i+1]->two->path;
2855
2856 base = strmap_get(&opt->priv->paths, pathnames[0]);
2857 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2858 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2859
2860 VERIFY_CI(base);
2861 VERIFY_CI(side1);
2862 VERIFY_CI(side2);
2863
2864 if (!strcmp(pathnames[1], pathnames[2])) {
2865 struct rename_info *ri = &opt->priv->renames;
2866 int j;
2867
2868 /* Both sides renamed the same way */
2869 assert(side1 == side2);
2870 memcpy(&side1->stages[0], &base->stages[0],
2871 sizeof(merged));
2872 side1->filemask |= (1 << MERGE_BASE);
2873 /* Mark base as resolved by removal */
2874 base->merged.is_null = 1;
2875 base->merged.clean = 1;
2876
2877 /*
2878 * Disable remembering renames optimization;
2879 * rename/rename(1to1) is incredibly rare, and
2880 * just disabling the optimization is easier
2881 * than purging cached_pairs,
2882 * cached_target_names, and dir_rename_counts.
2883 */
2884 for (j = 0; j < 3; j++)
2885 ri->merge_trees[j] = NULL;
2886
2887 /* We handled both renames, i.e. i+1 handled */
2888 i++;
2889 /* Move to next rename */
2890 continue;
2891 }
2892
2893 /* This is a rename/rename(1to2) */
2894 clean_merge = handle_content_merge(opt,
2895 pair->one->path,
2896 &base->stages[0],
2897 &side1->stages[1],
2898 &side2->stages[2],
2899 pathnames,
2900 1 + 2 * opt->priv->call_depth,
2901 &merged);
2902 if (clean_merge < 0)
2903 return -1;
2904 if (!clean_merge &&
2905 merged.mode == side1->stages[1].mode &&
2906 oideq(&merged.oid, &side1->stages[1].oid))
2907 was_binary_blob = 1;
2908 memcpy(&side1->stages[1], &merged, sizeof(merged));
2909 if (was_binary_blob) {
2910 /*
2911 * Getting here means we were attempting to
2912 * merge a binary blob.
2913 *
2914 * Since we can't merge binaries,
2915 * handle_content_merge() just takes one
2916 * side. But we don't want to copy the
2917 * contents of one side to both paths. We
2918 * used the contents of side1 above for
2919 * side1->stages, let's use the contents of
2920 * side2 for side2->stages below.
2921 */
2922 oidcpy(&merged.oid, &side2->stages[2].oid);
2923 merged.mode = side2->stages[2].mode;
2924 }
2925 memcpy(&side2->stages[2], &merged, sizeof(merged));
2926
2927 side1->path_conflict = 1;
2928 side2->path_conflict = 1;
2929 /*
2930 * TODO: For renames we normally remove the path at the
2931 * old name. It would thus seem consistent to do the
2932 * same for rename/rename(1to2) cases, but we haven't
2933 * done so traditionally and a number of the regression
2934 * tests now encode an expectation that the file is
2935 * left there at stage 1. If we ever decide to change
2936 * this, add the following two lines here:
2937 * base->merged.is_null = 1;
2938 * base->merged.clean = 1;
2939 * and remove the setting of base->path_conflict to 1.
2940 */
2941 base->path_conflict = 1;
2942 path_msg(opt, CONFLICT_RENAME_RENAME, 0,
2943 pathnames[0], pathnames[1], pathnames[2], NULL,
2944 _("CONFLICT (rename/rename): %s renamed to "
2945 "%s in %s and to %s in %s."),
2946 pathnames[0],
2947 pathnames[1], opt->branch1,
2948 pathnames[2], opt->branch2);
2949
2950 i++; /* We handled both renames, i.e. i+1 handled */
2951 continue;
2952 }
2953
2954 VERIFY_CI(oldinfo);
2955 VERIFY_CI(newinfo);
2956 target_index = pair->score; /* from collect_renames() */
2957 assert(target_index == 1 || target_index == 2);
2958 other_source_index = 3 - target_index;
2959 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2960 source_deleted = (oldinfo->filemask == 1);
2961 collision = ((newinfo->filemask & old_sidemask) != 0);
2962 type_changed = !source_deleted &&
2963 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2964 S_ISREG(newinfo->stages[target_index].mode));
2965 if (type_changed && collision) {
2966 /*
2967 * special handling so later blocks can handle this...
2968 *
2969 * if type_changed && collision are both true, then this
2970 * was really a double rename, but one side wasn't
2971 * detected due to lack of break detection. I.e.
2972 * something like
2973 * orig: has normal file 'foo'
2974 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2975 * side2: renames 'foo' to 'bar'
2976 * In this case, the foo->bar rename on side1 won't be
2977 * detected because the new symlink named 'foo' is
2978 * there and we don't do break detection. But we detect
2979 * this here because we don't want to merge the content
2980 * of the foo symlink with the foo->bar file, so we
2981 * have some logic to handle this special case. The
2982 * easiest way to do that is make 'bar' on side1 not
2983 * be considered a colliding file but the other part
2984 * of a normal rename. If the file is very different,
2985 * well we're going to get content merge conflicts
2986 * anyway so it doesn't hurt. And if the colliding
2987 * file also has a different type, that'll be handled
2988 * by the content merge logic in process_entry() too.
2989 *
2990 * See also t6430, 'rename vs. rename/symlink'
2991 */
2992 collision = 0;
2993 }
2994 if (source_deleted) {
2995 if (target_index == 1) {
2996 rename_branch = opt->branch1;
2997 delete_branch = opt->branch2;
2998 } else {
2999 rename_branch = opt->branch2;
3000 delete_branch = opt->branch1;
3001 }
3002 }
3003
3004 assert(source_deleted || oldinfo->filemask & old_sidemask);
3005
3006 /* Need to check for special types of rename conflicts... */
3007 if (collision && !source_deleted) {
3008 /* collision: rename/add or rename/rename(2to1) */
3009 const char *pathnames[3];
3010 struct version_info merged;
3011
3012 struct conflict_info *base, *side1, *side2;
3013 int clean;
3014
3015 pathnames[0] = oldpath;
3016 pathnames[other_source_index] = oldpath;
3017 pathnames[target_index] = newpath;
3018
3019 base = strmap_get(&opt->priv->paths, pathnames[0]);
3020 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
3021 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
3022
3023 VERIFY_CI(base);
3024 VERIFY_CI(side1);
3025 VERIFY_CI(side2);
3026
3027 clean = handle_content_merge(opt, pair->one->path,
3028 &base->stages[0],
3029 &side1->stages[1],
3030 &side2->stages[2],
3031 pathnames,
3032 1 + 2 * opt->priv->call_depth,
3033 &merged);
3034 if (clean < 0)
3035 return -1;
3036
3037 memcpy(&newinfo->stages[target_index], &merged,
3038 sizeof(merged));
3039 if (!clean) {
3040 path_msg(opt, CONFLICT_RENAME_COLLIDES, 0,
3041 newpath, oldpath, NULL, NULL,
3042 _("CONFLICT (rename involved in "
3043 "collision): rename of %s -> %s has "
3044 "content conflicts AND collides "
3045 "with another path; this may result "
3046 "in nested conflict markers."),
3047 oldpath, newpath);
3048 }
3049 } else if (collision && source_deleted) {
3050 /*
3051 * rename/add/delete or rename/rename(2to1)/delete:
3052 * since oldpath was deleted on the side that didn't
3053 * do the rename, there's not much of a content merge
3054 * we can do for the rename. oldinfo->merged.is_null
3055 * was already set, so we just leave things as-is so
3056 * they look like an add/add conflict.
3057 */
3058
3059 newinfo->path_conflict = 1;
3060 path_msg(opt, CONFLICT_RENAME_DELETE, 0,
3061 newpath, oldpath, NULL, NULL,
3062 _("CONFLICT (rename/delete): %s renamed "
3063 "to %s in %s, but deleted in %s."),
3064 oldpath, newpath, rename_branch, delete_branch);
3065 } else {
3066 /*
3067 * a few different cases...start by copying the
3068 * existing stage(s) from oldinfo over the newinfo
3069 * and update the pathname(s).
3070 */
3071 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
3072 sizeof(newinfo->stages[0]));
3073 newinfo->filemask |= (1 << MERGE_BASE);
3074 newinfo->pathnames[0] = oldpath;
3075 if (type_changed) {
3076 /* rename vs. typechange */
3077 /* Mark the original as resolved by removal */
3078 memcpy(&oldinfo->stages[0].oid, null_oid(),
3079 sizeof(oldinfo->stages[0].oid));
3080 oldinfo->stages[0].mode = 0;
3081 oldinfo->filemask &= 0x06;
3082 } else if (source_deleted) {
3083 /* rename/delete */
3084 newinfo->path_conflict = 1;
3085 path_msg(opt, CONFLICT_RENAME_DELETE, 0,
3086 newpath, oldpath, NULL, NULL,
3087 _("CONFLICT (rename/delete): %s renamed"
3088 " to %s in %s, but deleted in %s."),
3089 oldpath, newpath,
3090 rename_branch, delete_branch);
3091 } else {
3092 /* normal rename */
3093 memcpy(&newinfo->stages[other_source_index],
3094 &oldinfo->stages[other_source_index],
3095 sizeof(newinfo->stages[0]));
3096 newinfo->filemask |= (1 << other_source_index);
3097 newinfo->pathnames[other_source_index] = oldpath;
3098 }
3099 }
3100
3101 if (!type_changed) {
3102 /* Mark the original as resolved by removal */
3103 oldinfo->merged.is_null = 1;
3104 oldinfo->merged.clean = 1;
3105 }
3106
3107 }
3108
3109 return clean_merge;
3110 }
3111
3112 static inline int possible_side_renames(struct rename_info *renames,
3113 unsigned side_index)
3114 {
3115 return renames->pairs[side_index].nr > 0 &&
3116 !strintmap_empty(&renames->relevant_sources[side_index]);
3117 }
3118
3119 static inline int possible_renames(struct rename_info *renames)
3120 {
3121 return possible_side_renames(renames, 1) ||
3122 possible_side_renames(renames, 2) ||
3123 !strmap_empty(&renames->cached_pairs[1]) ||
3124 !strmap_empty(&renames->cached_pairs[2]);
3125 }
3126
3127 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
3128 {
3129 /*
3130 * A simplified version of diff_resolve_rename_copy(); would probably
3131 * just use that function but it's static...
3132 */
3133 int i;
3134 struct diff_filepair *p;
3135
3136 for (i = 0; i < q->nr; ++i) {
3137 p = q->queue[i];
3138 p->status = 0; /* undecided */
3139 if (!DIFF_FILE_VALID(p->one))
3140 p->status = DIFF_STATUS_ADDED;
3141 else if (!DIFF_FILE_VALID(p->two))
3142 p->status = DIFF_STATUS_DELETED;
3143 else if (DIFF_PAIR_RENAME(p))
3144 p->status = DIFF_STATUS_RENAMED;
3145 }
3146 }
3147
3148 static void prune_cached_from_relevant(struct rename_info *renames,
3149 unsigned side)
3150 {
3151 /* Reason for this function described in add_pair() */
3152 struct hashmap_iter iter;
3153 struct strmap_entry *entry;
3154
3155 /* Remove from relevant_sources all entries in cached_pairs[side] */
3156 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
3157 strintmap_remove(&renames->relevant_sources[side],
3158 entry->key);
3159 }
3160 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
3161 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
3162 strintmap_remove(&renames->relevant_sources[side],
3163 entry->key);
3164 }
3165 }
3166
3167 static void use_cached_pairs(struct merge_options *opt,
3168 struct strmap *cached_pairs,
3169 struct diff_queue_struct *pairs)
3170 {
3171 struct hashmap_iter iter;
3172 struct strmap_entry *entry;
3173
3174 /*
3175 * Add to side_pairs all entries from renames->cached_pairs[side_index].
3176 * (Info in cached_irrelevant[side_index] is not relevant here.)
3177 */
3178 strmap_for_each_entry(cached_pairs, &iter, entry) {
3179 struct diff_filespec *one, *two;
3180 const char *old_name = entry->key;
3181 const char *new_name = entry->value;
3182 if (!new_name)
3183 new_name = old_name;
3184
3185 /*
3186 * cached_pairs has *copies* of old_name and new_name,
3187 * because it has to persist across merges. Since
3188 * pool_alloc_filespec() will just re-use the existing
3189 * filenames, which will also get re-used by
3190 * opt->priv->paths if they become renames, and then
3191 * get freed at the end of the merge, that would leave
3192 * the copy in cached_pairs dangling. Avoid this by
3193 * making a copy here.
3194 */
3195 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
3196 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
3197
3198 /* We don't care about oid/mode, only filenames and status */
3199 one = pool_alloc_filespec(&opt->priv->pool, old_name);
3200 two = pool_alloc_filespec(&opt->priv->pool, new_name);
3201 pool_diff_queue(&opt->priv->pool, pairs, one, two);
3202 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
3203 }
3204 }
3205
3206 static void cache_new_pair(struct rename_info *renames,
3207 int side,
3208 char *old_path,
3209 char *new_path,
3210 int free_old_value)
3211 {
3212 char *old_value;
3213 new_path = xstrdup(new_path);
3214 old_value = strmap_put(&renames->cached_pairs[side],
3215 old_path, new_path);
3216 strset_add(&renames->cached_target_names[side], new_path);
3217 if (free_old_value)
3218 free(old_value);
3219 else
3220 assert(!old_value);
3221 }
3222
3223 static void possibly_cache_new_pair(struct rename_info *renames,
3224 struct diff_filepair *p,
3225 unsigned side,
3226 char *new_path)
3227 {
3228 int dir_renamed_side = 0;
3229
3230 if (new_path) {
3231 /*
3232 * Directory renames happen on the other side of history from
3233 * the side that adds new files to the old directory.
3234 */
3235 dir_renamed_side = 3 - side;
3236 } else {
3237 int val = strintmap_get(&renames->relevant_sources[side],
3238 p->one->path);
3239 if (val == RELEVANT_NO_MORE) {
3240 assert(p->status == 'D');
3241 strset_add(&renames->cached_irrelevant[side],
3242 p->one->path);
3243 }
3244 if (val <= 0)
3245 return;
3246 }
3247
3248 if (p->status == 'D') {
3249 /*
3250 * If we already had this delete, we'll just set it's value
3251 * to NULL again, so no harm.
3252 */
3253 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
3254 } else if (p->status == 'R') {
3255 if (!new_path)
3256 new_path = p->two->path;
3257 else
3258 cache_new_pair(renames, dir_renamed_side,
3259 p->two->path, new_path, 0);
3260 cache_new_pair(renames, side, p->one->path, new_path, 1);
3261 } else if (p->status == 'A' && new_path) {
3262 cache_new_pair(renames, dir_renamed_side,
3263 p->two->path, new_path, 0);
3264 }
3265 }
3266
3267 static int compare_pairs(const void *a_, const void *b_)
3268 {
3269 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
3270 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
3271
3272 return strcmp(a->one->path, b->one->path);
3273 }
3274
3275 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
3276 static int detect_regular_renames(struct merge_options *opt,
3277 unsigned side_index)
3278 {
3279 struct diff_options diff_opts;
3280 struct rename_info *renames = &opt->priv->renames;
3281
3282 prune_cached_from_relevant(renames, side_index);
3283 if (!possible_side_renames(renames, side_index)) {
3284 /*
3285 * No rename detection needed for this side, but we still need
3286 * to make sure 'adds' are marked correctly in case the other
3287 * side had directory renames.
3288 */
3289 resolve_diffpair_statuses(&renames->pairs[side_index]);
3290 return 0;
3291 }
3292
3293 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
3294 repo_diff_setup(opt->repo, &diff_opts);
3295 diff_opts.flags.recursive = 1;
3296 diff_opts.flags.rename_empty = 0;
3297 diff_opts.detect_rename = DIFF_DETECT_RENAME;
3298 diff_opts.rename_limit = opt->rename_limit;
3299 if (opt->rename_limit <= 0)
3300 diff_opts.rename_limit = 7000;
3301 diff_opts.rename_score = opt->rename_score;
3302 diff_opts.show_rename_progress = opt->show_rename_progress;
3303 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3304 diff_setup_done(&diff_opts);
3305
3306 diff_queued_diff = renames->pairs[side_index];
3307 trace2_region_enter("diff", "diffcore_rename", opt->repo);
3308 diffcore_rename_extended(&diff_opts,
3309 &opt->priv->pool,
3310 &renames->relevant_sources[side_index],
3311 &renames->dirs_removed[side_index],
3312 &renames->dir_rename_count[side_index],
3313 &renames->cached_pairs[side_index]);
3314 trace2_region_leave("diff", "diffcore_rename", opt->repo);
3315 resolve_diffpair_statuses(&diff_queued_diff);
3316
3317 if (diff_opts.needed_rename_limit > 0)
3318 renames->redo_after_renames = 0;
3319 if (diff_opts.needed_rename_limit > renames->needed_limit)
3320 renames->needed_limit = diff_opts.needed_rename_limit;
3321
3322 renames->pairs[side_index] = diff_queued_diff;
3323
3324 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3325 diff_queued_diff.nr = 0;
3326 diff_queued_diff.queue = NULL;
3327 diff_flush(&diff_opts);
3328
3329 return 1;
3330 }
3331
3332 /*
3333 * Get information of all renames which occurred in 'side_pairs', making use
3334 * of any implicit directory renames in side_dir_renames (also making use of
3335 * implicit directory renames rename_exclusions as needed by
3336 * check_for_directory_rename()). Add all (updated) renames into result.
3337 */
3338 static int collect_renames(struct merge_options *opt,
3339 struct diff_queue_struct *result,
3340 unsigned side_index,
3341 struct strmap *collisions,
3342 struct strmap *dir_renames_for_side,
3343 struct strmap *rename_exclusions)
3344 {
3345 int i, clean = 1;
3346 struct diff_queue_struct *side_pairs;
3347 struct rename_info *renames = &opt->priv->renames;
3348
3349 side_pairs = &renames->pairs[side_index];
3350
3351 for (i = 0; i < side_pairs->nr; ++i) {
3352 struct diff_filepair *p = side_pairs->queue[i];
3353 char *new_path; /* non-NULL only with directory renames */
3354
3355 if (p->status != 'A' && p->status != 'R') {
3356 possibly_cache_new_pair(renames, p, side_index, NULL);
3357 pool_diff_free_filepair(&opt->priv->pool, p);
3358 continue;
3359 }
3360
3361 new_path = check_for_directory_rename(opt, p->two->path,
3362 side_index,
3363 dir_renames_for_side,
3364 rename_exclusions,
3365 collisions,
3366 &clean);
3367
3368 possibly_cache_new_pair(renames, p, side_index, new_path);
3369 if (p->status != 'R' && !new_path) {
3370 pool_diff_free_filepair(&opt->priv->pool, p);
3371 continue;
3372 }
3373
3374 if (new_path)
3375 apply_directory_rename_modifications(opt, p, new_path);
3376
3377 /*
3378 * p->score comes back from diffcore_rename_extended() with
3379 * the similarity of the renamed file. The similarity is
3380 * was used to determine that the two files were related
3381 * and are a rename, which we have already used, but beyond
3382 * that we have no use for the similarity. So p->score is
3383 * now irrelevant. However, process_renames() will need to
3384 * know which side of the merge this rename was associated
3385 * with, so overwrite p->score with that value.
3386 */
3387 p->score = side_index;
3388 result->queue[result->nr++] = p;
3389 }
3390
3391 return clean;
3392 }
3393
3394 static int detect_and_process_renames(struct merge_options *opt)
3395 {
3396 struct diff_queue_struct combined = { 0 };
3397 struct rename_info *renames = &opt->priv->renames;
3398 struct strmap collisions[3];
3399 int need_dir_renames, s, i, clean = 1;
3400 unsigned detection_run = 0;
3401
3402 if (!possible_renames(renames))
3403 goto cleanup;
3404
3405 trace2_region_enter("merge", "regular renames", opt->repo);
3406 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3407 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3408 if (renames->needed_limit) {
3409 renames->cached_pairs_valid_side = 0;
3410 renames->redo_after_renames = 0;
3411 }
3412 if (renames->redo_after_renames && detection_run) {
3413 int i, side;
3414 struct diff_filepair *p;
3415
3416 /* Cache the renames, we found */
3417 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3418 for (i = 0; i < renames->pairs[side].nr; ++i) {
3419 p = renames->pairs[side].queue[i];
3420 possibly_cache_new_pair(renames, p, side, NULL);
3421 }
3422 }
3423
3424 /* Restart the merge with the cached renames */
3425 renames->redo_after_renames = 2;
3426 trace2_region_leave("merge", "regular renames", opt->repo);
3427 goto cleanup;
3428 }
3429 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3430 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3431 trace2_region_leave("merge", "regular renames", opt->repo);
3432
3433 trace2_region_enter("merge", "directory renames", opt->repo);
3434 need_dir_renames =
3435 !opt->priv->call_depth &&
3436 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3437 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3438
3439 if (need_dir_renames) {
3440 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3441 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3442 handle_directory_level_conflicts(opt);
3443 }
3444
3445 ALLOC_GROW(combined.queue,
3446 renames->pairs[1].nr + renames->pairs[2].nr,
3447 combined.alloc);
3448 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
3449 int other_side = 3 - i;
3450 compute_collisions(&collisions[i],
3451 &renames->dir_renames[other_side],
3452 &renames->pairs[i]);
3453 }
3454 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3455 collisions,
3456 &renames->dir_renames[2],
3457 &renames->dir_renames[1]);
3458 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3459 collisions,
3460 &renames->dir_renames[1],
3461 &renames->dir_renames[2]);
3462 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++)
3463 free_collisions(&collisions[i]);
3464 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3465 trace2_region_leave("merge", "directory renames", opt->repo);
3466
3467 trace2_region_enter("merge", "process renames", opt->repo);
3468 clean &= process_renames(opt, &combined);
3469 trace2_region_leave("merge", "process renames", opt->repo);
3470
3471 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3472
3473 cleanup:
3474 /*
3475 * Free now unneeded filepairs, which would have been handled
3476 * in collect_renames() normally but we skipped that code.
3477 */
3478 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3479 struct diff_queue_struct *side_pairs;
3480 int i;
3481
3482 side_pairs = &renames->pairs[s];
3483 for (i = 0; i < side_pairs->nr; ++i) {
3484 struct diff_filepair *p = side_pairs->queue[i];
3485 pool_diff_free_filepair(&opt->priv->pool, p);
3486 }
3487 }
3488
3489 simple_cleanup:
3490 /* Free memory for renames->pairs[] and combined */
3491 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3492 free(renames->pairs[s].queue);
3493 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3494 }
3495 for (i = 0; i < combined.nr; i++)
3496 pool_diff_free_filepair(&opt->priv->pool, combined.queue[i]);
3497 free(combined.queue);
3498
3499 return clean;
3500 }
3501
3502 /*** Function Grouping: functions related to process_entries() ***/
3503
3504 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3505 {
3506 unsigned char c1, c2;
3507
3508 /*
3509 * Here we only care that entries for directories appear adjacent
3510 * to and before files underneath the directory. We can achieve
3511 * that by pretending to add a trailing slash to every file and
3512 * then sorting. In other words, we do not want the natural
3513 * sorting of
3514 * foo
3515 * foo.txt
3516 * foo/bar
3517 * Instead, we want "foo" to sort as though it were "foo/", so that
3518 * we instead get
3519 * foo.txt
3520 * foo
3521 * foo/bar
3522 * To achieve this, we basically implement our own strcmp, except that
3523 * if we get to the end of either string instead of comparing NUL to
3524 * another character, we compare '/' to it.
3525 *
3526 * If this unusual "sort as though '/' were appended" perplexes
3527 * you, perhaps it will help to note that this is not the final
3528 * sort. write_tree() will sort again without the trailing slash
3529 * magic, but just on paths immediately under a given tree.
3530 *
3531 * The reason to not use df_name_compare directly was that it was
3532 * just too expensive (we don't have the string lengths handy), so
3533 * it was reimplemented.
3534 */
3535
3536 /*
3537 * NOTE: This function will never be called with two equal strings,
3538 * because it is used to sort the keys of a strmap, and strmaps have
3539 * unique keys by construction. That simplifies our c1==c2 handling
3540 * below.
3541 */
3542
3543 while (*one && (*one == *two)) {
3544 one++;
3545 two++;
3546 }
3547
3548 c1 = *one ? *one : '/';
3549 c2 = *two ? *two : '/';
3550
3551 if (c1 == c2) {
3552 /* Getting here means one is a leading directory of the other */
3553 return (*one) ? 1 : -1;
3554 } else
3555 return c1 - c2;
3556 }
3557
3558 static int read_oid_strbuf(const struct object_id *oid,
3559 struct strbuf *dst)
3560 {
3561 void *buf;
3562 enum object_type type;
3563 unsigned long size;
3564 buf = repo_read_object_file(the_repository, oid, &type, &size);
3565 if (!buf)
3566 return error(_("cannot read object %s"), oid_to_hex(oid));
3567 if (type != OBJ_BLOB) {
3568 free(buf);
3569 return error(_("object %s is not a blob"), oid_to_hex(oid));
3570 }
3571 strbuf_attach(dst, buf, size, size + 1);
3572 return 0;
3573 }
3574
3575 static int blob_unchanged(struct merge_options *opt,
3576 const struct version_info *base,
3577 const struct version_info *side,
3578 const char *path)
3579 {
3580 struct strbuf basebuf = STRBUF_INIT;
3581 struct strbuf sidebuf = STRBUF_INIT;
3582 int ret = 0; /* assume changed for safety */
3583 struct index_state *idx = &opt->priv->attr_index;
3584
3585 if (!idx->initialized)
3586 initialize_attr_index(opt);
3587
3588 if (base->mode != side->mode)
3589 return 0;
3590 if (oideq(&base->oid, &side->oid))
3591 return 1;
3592
3593 if (read_oid_strbuf(&base->oid, &basebuf) ||
3594 read_oid_strbuf(&side->oid, &sidebuf))
3595 goto error_return;
3596 /*
3597 * Note: binary | is used so that both renormalizations are
3598 * performed. Comparison can be skipped if both files are
3599 * unchanged since their sha1s have already been compared.
3600 */
3601 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3602 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3603 ret = (basebuf.len == sidebuf.len &&
3604 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3605
3606 error_return:
3607 strbuf_release(&basebuf);
3608 strbuf_release(&sidebuf);
3609 return ret;
3610 }
3611
3612 struct directory_versions {
3613 /*
3614 * versions: list of (basename -> version_info)
3615 *
3616 * The basenames are in reverse lexicographic order of full pathnames,
3617 * as processed in process_entries(). This puts all entries within
3618 * a directory together, and covers the directory itself after
3619 * everything within it, allowing us to write subtrees before needing
3620 * to record information for the tree itself.
3621 */
3622 struct string_list versions;
3623
3624 /*
3625 * offsets: list of (full relative path directories -> integer offsets)
3626 *
3627 * Since versions contains basenames from files in multiple different
3628 * directories, we need to know which entries in versions correspond
3629 * to which directories. Values of e.g.
3630 * "" 0
3631 * src 2
3632 * src/moduleA 5
3633 * Would mean that entries 0-1 of versions are files in the toplevel
3634 * directory, entries 2-4 are files under src/, and the remaining
3635 * entries starting at index 5 are files under src/moduleA/.
3636 */
3637 struct string_list offsets;
3638
3639 /*
3640 * last_directory: directory that previously processed file found in
3641 *
3642 * last_directory starts NULL, but records the directory in which the
3643 * previous file was found within. As soon as
3644 * directory(current_file) != last_directory
3645 * then we need to start updating accounting in versions & offsets.
3646 * Note that last_directory is always the last path in "offsets" (or
3647 * NULL if "offsets" is empty) so this exists just for quick access.
3648 */
3649 const char *last_directory;
3650
3651 /* last_directory_len: cached computation of strlen(last_directory) */
3652 unsigned last_directory_len;
3653 };
3654
3655 static int tree_entry_order(const void *a_, const void *b_)
3656 {
3657 const struct string_list_item *a = a_;
3658 const struct string_list_item *b = b_;
3659
3660 const struct merged_info *ami = a->util;
3661 const struct merged_info *bmi = b->util;
3662 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3663 b->string, strlen(b->string), bmi->result.mode);
3664 }
3665
3666 static int write_tree(struct object_id *result_oid,
3667 struct string_list *versions,
3668 unsigned int offset,
3669 size_t hash_size)
3670 {
3671 size_t maxlen = 0, extra;
3672 unsigned int nr;
3673 struct strbuf buf = STRBUF_INIT;
3674 int i, ret = 0;
3675
3676 assert(offset <= versions->nr);
3677 nr = versions->nr - offset;
3678 if (versions->nr)
3679 /* No need for STABLE_QSORT -- filenames must be unique */
3680 QSORT(versions->items + offset, nr, tree_entry_order);
3681
3682 /* Pre-allocate some space in buf */
3683 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3684 for (i = 0; i < nr; i++) {
3685 maxlen += strlen(versions->items[offset+i].string) + extra;
3686 }
3687 strbuf_grow(&buf, maxlen);
3688
3689 /* Write each entry out to buf */
3690 for (i = 0; i < nr; i++) {
3691 struct merged_info *mi = versions->items[offset+i].util;
3692 struct version_info *ri = &mi->result;
3693 strbuf_addf(&buf, "%o %s%c",
3694 ri->mode,
3695 versions->items[offset+i].string, '\0');
3696 strbuf_add(&buf, ri->oid.hash, hash_size);
3697 }
3698
3699 /* Write this object file out, and record in result_oid */
3700 if (write_object_file(buf.buf, buf.len, OBJ_TREE, result_oid))
3701 ret = -1;
3702 strbuf_release(&buf);
3703 return ret;
3704 }
3705
3706 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3707 const char *path,
3708 struct merged_info *mi)
3709 {
3710 const char *basename;
3711
3712 if (mi->is_null)
3713 /* nothing to record */
3714 return;
3715
3716 basename = path + mi->basename_offset;
3717 assert(strchr(basename, '/') == NULL);
3718 string_list_append(&dir_metadata->versions,
3719 basename)->util = &mi->result;
3720 }
3721
3722 static int write_completed_directory(struct merge_options *opt,
3723 const char *new_directory_name,
3724 struct directory_versions *info)
3725 {
3726 const char *prev_dir;
3727 struct merged_info *dir_info = NULL;
3728 unsigned int offset, ret = 0;
3729
3730 /*
3731 * Some explanation of info->versions and info->offsets...
3732 *
3733 * process_entries() iterates over all relevant files AND
3734 * directories in reverse lexicographic order, and calls this
3735 * function. Thus, an example of the paths that process_entries()
3736 * could operate on (along with the directories for those paths
3737 * being shown) is:
3738 *
3739 * xtract.c ""
3740 * tokens.txt ""
3741 * src/moduleB/umm.c src/moduleB
3742 * src/moduleB/stuff.h src/moduleB
3743 * src/moduleB/baz.c src/moduleB
3744 * src/moduleB src
3745 * src/moduleA/foo.c src/moduleA
3746 * src/moduleA/bar.c src/moduleA
3747 * src/moduleA src
3748 * src ""
3749 * Makefile ""
3750 *
3751 * info->versions:
3752 *
3753 * always contains the unprocessed entries and their
3754 * version_info information. For example, after the first five
3755 * entries above, info->versions would be:
3756 *
3757 * xtract.c <xtract.c's version_info>
3758 * token.txt <token.txt's version_info>
3759 * umm.c <src/moduleB/umm.c's version_info>
3760 * stuff.h <src/moduleB/stuff.h's version_info>
3761 * baz.c <src/moduleB/baz.c's version_info>
3762 *
3763 * Once a subdirectory is completed we remove the entries in
3764 * that subdirectory from info->versions, writing it as a tree
3765 * (write_tree()). Thus, as soon as we get to src/moduleB,
3766 * info->versions would be updated to
3767 *
3768 * xtract.c <xtract.c's version_info>
3769 * token.txt <token.txt's version_info>
3770 * moduleB <src/moduleB's version_info>
3771 *
3772 * info->offsets:
3773 *
3774 * helps us track which entries in info->versions correspond to
3775 * which directories. When we are N directories deep (e.g. 4
3776 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3777 * directories (+1 because of toplevel dir). Corresponding to
3778 * the info->versions example above, after processing five entries
3779 * info->offsets will be:
3780 *
3781 * "" 0
3782 * src/moduleB 2
3783 *
3784 * which is used to know that xtract.c & token.txt are from the
3785 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3786 * src/moduleB directory. Again, following the example above,
3787 * once we need to process src/moduleB, then info->offsets is
3788 * updated to
3789 *
3790 * "" 0
3791 * src 2
3792 *
3793 * which says that moduleB (and only moduleB so far) is in the
3794 * src directory.
3795 *
3796 * One unique thing to note about info->offsets here is that
3797 * "src" was not added to info->offsets until there was a path
3798 * (a file OR directory) immediately below src/ that got
3799 * processed.
3800 *
3801 * Since process_entry() just appends new entries to info->versions,
3802 * write_completed_directory() only needs to do work if the next path
3803 * is in a directory that is different than the last directory found
3804 * in info->offsets.
3805 */
3806
3807 /*
3808 * If we are working with the same directory as the last entry, there
3809 * is no work to do. (See comments above the directory_name member of
3810 * struct merged_info for why we can use pointer comparison instead of
3811 * strcmp here.)
3812 */
3813 if (new_directory_name == info->last_directory)
3814 return 0;
3815
3816 /*
3817 * If we are just starting (last_directory is NULL), or last_directory
3818 * is a prefix of the current directory, then we can just update
3819 * info->offsets to record the offset where we started this directory
3820 * and update last_directory to have quick access to it.
3821 */
3822 if (info->last_directory == NULL ||
3823 !strncmp(new_directory_name, info->last_directory,
3824 info->last_directory_len)) {
3825 uintptr_t offset = info->versions.nr;
3826
3827 info->last_directory = new_directory_name;
3828 info->last_directory_len = strlen(info->last_directory);
3829 /*
3830 * Record the offset into info->versions where we will
3831 * start recording basenames of paths found within
3832 * new_directory_name.
3833 */
3834 string_list_append(&info->offsets,
3835 info->last_directory)->util = (void*)offset;
3836 return 0;
3837 }
3838
3839 /*
3840 * The next entry that will be processed will be within
3841 * new_directory_name. Since at this point we know that
3842 * new_directory_name is within a different directory than
3843 * info->last_directory, we have all entries for info->last_directory
3844 * in info->versions and we need to create a tree object for them.
3845 */
3846 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3847 assert(dir_info);
3848 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3849 if (offset == info->versions.nr) {
3850 /*
3851 * Actually, we don't need to create a tree object in this
3852 * case. Whenever all files within a directory disappear
3853 * during the merge (e.g. unmodified on one side and
3854 * deleted on the other, or files were renamed elsewhere),
3855 * then we get here and the directory itself needs to be
3856 * omitted from its parent tree as well.
3857 */
3858 dir_info->is_null = 1;
3859 } else {
3860 /*
3861 * Write out the tree to the git object directory, and also
3862 * record the mode and oid in dir_info->result.
3863 */
3864 dir_info->is_null = 0;
3865 dir_info->result.mode = S_IFDIR;
3866 if (write_tree(&dir_info->result.oid, &info->versions, offset,
3867 opt->repo->hash_algo->rawsz) < 0)
3868 ret = -1;
3869 }
3870
3871 /*
3872 * We've now used several entries from info->versions and one entry
3873 * from info->offsets, so we get rid of those values.
3874 */
3875 info->offsets.nr--;
3876 info->versions.nr = offset;
3877
3878 /*
3879 * Now we've taken care of the completed directory, but we need to
3880 * prepare things since future entries will be in
3881 * new_directory_name. (In particular, process_entry() will be
3882 * appending new entries to info->versions.) So, we need to make
3883 * sure new_directory_name is the last entry in info->offsets.
3884 */
3885 prev_dir = info->offsets.nr == 0 ? NULL :
3886 info->offsets.items[info->offsets.nr-1].string;
3887 if (new_directory_name != prev_dir) {
3888 uintptr_t c = info->versions.nr;
3889 string_list_append(&info->offsets,
3890 new_directory_name)->util = (void*)c;
3891 }
3892
3893 /* And, of course, we need to update last_directory to match. */
3894 info->last_directory = new_directory_name;
3895 info->last_directory_len = strlen(info->last_directory);
3896
3897 return ret;
3898 }
3899
3900 /* Per entry merge function */
3901 static int process_entry(struct merge_options *opt,
3902 const char *path,
3903 struct conflict_info *ci,
3904 struct directory_versions *dir_metadata)
3905 {
3906 int df_file_index = 0;
3907
3908 VERIFY_CI(ci);
3909 assert(ci->filemask >= 0 && ci->filemask <= 7);
3910 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3911 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3912 ci->match_mask == 5 || ci->match_mask == 6);
3913
3914 if (ci->dirmask) {
3915 record_entry_for_tree(dir_metadata, path, &ci->merged);
3916 if (ci->filemask == 0)
3917 /* nothing else to handle */
3918 return 0;
3919 assert(ci->df_conflict);
3920 }
3921
3922 if (ci->df_conflict && ci->merged.result.mode == 0) {
3923 int i;
3924
3925 /*
3926 * directory no longer in the way, but we do have a file we
3927 * need to place here so we need to clean away the "directory
3928 * merges to nothing" result.
3929 */
3930 ci->df_conflict = 0;
3931 assert(ci->filemask != 0);
3932 ci->merged.clean = 0;
3933 ci->merged.is_null = 0;
3934 /* and we want to zero out any directory-related entries */
3935 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3936 ci->dirmask = 0;
3937 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3938 if (ci->filemask & (1 << i))
3939 continue;
3940 ci->stages[i].mode = 0;
3941 oidcpy(&ci->stages[i].oid, null_oid());
3942 }
3943 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3944 /*
3945 * This started out as a D/F conflict, and the entries in
3946 * the competing directory were not removed by the merge as
3947 * evidenced by write_completed_directory() writing a value
3948 * to ci->merged.result.mode.
3949 */
3950 struct conflict_info *new_ci;
3951 const char *branch;
3952 const char *old_path = path;
3953 int i;
3954
3955 assert(ci->merged.result.mode == S_IFDIR);
3956
3957 /*
3958 * If filemask is 1, we can just ignore the file as having
3959 * been deleted on both sides. We do not want to overwrite
3960 * ci->merged.result, since it stores the tree for all the
3961 * files under it.
3962 */
3963 if (ci->filemask == 1) {
3964 ci->filemask = 0;
3965 return 0;
3966 }
3967
3968 /*
3969 * This file still exists on at least one side, and we want
3970 * the directory to remain here, so we need to move this
3971 * path to some new location.
3972 */
3973 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3974
3975 /* We don't really want new_ci->merged.result copied, but it'll
3976 * be overwritten below so it doesn't matter. We also don't
3977 * want any directory mode/oid values copied, but we'll zero
3978 * those out immediately. We do want the rest of ci copied.
3979 */
3980 memcpy(new_ci, ci, sizeof(*ci));
3981 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3982 new_ci->dirmask = 0;
3983 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3984 if (new_ci->filemask & (1 << i))
3985 continue;
3986 /* zero out any entries related to directories */
3987 new_ci->stages[i].mode = 0;
3988 oidcpy(&new_ci->stages[i].oid, null_oid());
3989 }
3990
3991 /*
3992 * Find out which side this file came from; note that we
3993 * cannot just use ci->filemask, because renames could cause
3994 * the filemask to go back to 7. So we use dirmask, then
3995 * pick the opposite side's index.
3996 */
3997 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3998 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3999 path = unique_path(opt, path, branch);
4000 strmap_put(&opt->priv->paths, path, new_ci);
4001
4002 path_msg(opt, CONFLICT_FILE_DIRECTORY, 0,
4003 path, old_path, NULL, NULL,
4004 _("CONFLICT (file/directory): directory in the way "
4005 "of %s from %s; moving it to %s instead."),
4006 old_path, branch, path);
4007
4008 /*
4009 * Zero out the filemask for the old ci. At this point, ci
4010 * was just an entry for a directory, so we don't need to
4011 * do anything more with it.
4012 */
4013 ci->filemask = 0;
4014
4015 /*
4016 * Now note that we're working on the new entry (path was
4017 * updated above.
4018 */
4019 ci = new_ci;
4020 }
4021
4022 /*
4023 * NOTE: Below there is a long switch-like if-elseif-elseif... block
4024 * which the code goes through even for the df_conflict cases
4025 * above.
4026 */
4027 if (ci->match_mask) {
4028 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
4029 if (ci->match_mask == 6) {
4030 /* stages[1] == stages[2] */
4031 ci->merged.result.mode = ci->stages[1].mode;
4032 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
4033 } else {
4034 /* determine the mask of the side that didn't match */
4035 unsigned int othermask = 7 & ~ci->match_mask;
4036 int side = (othermask == 4) ? 2 : 1;
4037
4038 ci->merged.result.mode = ci->stages[side].mode;
4039 ci->merged.is_null = !ci->merged.result.mode;
4040 if (ci->merged.is_null)
4041 ci->merged.clean = 1;
4042 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
4043
4044 assert(othermask == 2 || othermask == 4);
4045 assert(ci->merged.is_null ==
4046 (ci->filemask == ci->match_mask));
4047 }
4048 } else if (ci->filemask >= 6 &&
4049 (S_IFMT & ci->stages[1].mode) !=
4050 (S_IFMT & ci->stages[2].mode)) {
4051 /* Two different items from (file/submodule/symlink) */
4052 if (opt->priv->call_depth) {
4053 /* Just use the version from the merge base */
4054 ci->merged.clean = 0;
4055 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
4056 ci->merged.result.mode = ci->stages[0].mode;
4057 ci->merged.is_null = (ci->merged.result.mode == 0);
4058 } else {
4059 /* Handle by renaming one or both to separate paths. */
4060 unsigned o_mode = ci->stages[0].mode;
4061 unsigned a_mode = ci->stages[1].mode;
4062 unsigned b_mode = ci->stages[2].mode;
4063 struct conflict_info *new_ci;
4064 const char *a_path = NULL, *b_path = NULL;
4065 int rename_a = 0, rename_b = 0;
4066
4067 new_ci = mem_pool_alloc(&opt->priv->pool,
4068 sizeof(*new_ci));
4069
4070 if (S_ISREG(a_mode))
4071 rename_a = 1;
4072 else if (S_ISREG(b_mode))
4073 rename_b = 1;
4074 else {
4075 rename_a = 1;
4076 rename_b = 1;
4077 }
4078
4079 if (rename_a)
4080 a_path = unique_path(opt, path, opt->branch1);
4081 if (rename_b)
4082 b_path = unique_path(opt, path, opt->branch2);
4083
4084 if (rename_a && rename_b) {
4085 path_msg(opt, CONFLICT_DISTINCT_MODES, 0,
4086 path, a_path, b_path, NULL,
4087 _("CONFLICT (distinct types): %s had "
4088 "different types on each side; "
4089 "renamed both of them so each can "
4090 "be recorded somewhere."),
4091 path);
4092 } else {
4093 path_msg(opt, CONFLICT_DISTINCT_MODES, 0,
4094 path, rename_a ? a_path : b_path,
4095 NULL, NULL,
4096 _("CONFLICT (distinct types): %s had "
4097 "different types on each side; "
4098 "renamed one of them so each can be "
4099 "recorded somewhere."),
4100 path);
4101 }
4102
4103 ci->merged.clean = 0;
4104 memcpy(new_ci, ci, sizeof(*new_ci));
4105
4106 /* Put b into new_ci, removing a from stages */
4107 new_ci->merged.result.mode = ci->stages[2].mode;
4108 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
4109 new_ci->stages[1].mode = 0;
4110 oidcpy(&new_ci->stages[1].oid, null_oid());
4111 new_ci->filemask = 5;
4112 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
4113 new_ci->stages[0].mode = 0;
4114 oidcpy(&new_ci->stages[0].oid, null_oid());
4115 new_ci->filemask = 4;
4116 }
4117
4118 /* Leave only a in ci, fixing stages. */
4119 ci->merged.result.mode = ci->stages[1].mode;
4120 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
4121 ci->stages[2].mode = 0;
4122 oidcpy(&ci->stages[2].oid, null_oid());
4123 ci->filemask = 3;
4124 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
4125 ci->stages[0].mode = 0;
4126 oidcpy(&ci->stages[0].oid, null_oid());
4127 ci->filemask = 2;
4128 }
4129
4130 /* Insert entries into opt->priv_paths */
4131 assert(rename_a || rename_b);
4132 if (rename_a)
4133 strmap_put(&opt->priv->paths, a_path, ci);
4134
4135 if (!rename_b)
4136 b_path = path;
4137 strmap_put(&opt->priv->paths, b_path, new_ci);
4138
4139 if (rename_a && rename_b)
4140 strmap_remove(&opt->priv->paths, path, 0);
4141
4142 /*
4143 * Do special handling for b_path since process_entry()
4144 * won't be called on it specially.
4145 */
4146 strmap_put(&opt->priv->conflicted, b_path, new_ci);
4147 record_entry_for_tree(dir_metadata, b_path,
4148 &new_ci->merged);
4149
4150 /*
4151 * Remaining code for processing this entry should
4152 * think in terms of processing a_path.
4153 */
4154 if (a_path)
4155 path = a_path;
4156 }
4157 } else if (ci->filemask >= 6) {
4158 /* Need a two-way or three-way content merge */
4159 struct version_info merged_file;
4160 int clean_merge;
4161 struct version_info *o = &ci->stages[0];
4162 struct version_info *a = &ci->stages[1];
4163 struct version_info *b = &ci->stages[2];
4164
4165 clean_merge = handle_content_merge(opt, path, o, a, b,
4166 ci->pathnames,
4167 opt->priv->call_depth * 2,
4168 &merged_file);
4169 if (clean_merge < 0)
4170 return -1;
4171 ci->merged.clean = clean_merge &&
4172 !ci->df_conflict && !ci->path_conflict;
4173 ci->merged.result.mode = merged_file.mode;
4174 ci->merged.is_null = (merged_file.mode == 0);
4175 oidcpy(&ci->merged.result.oid, &merged_file.oid);
4176 if (clean_merge && ci->df_conflict) {
4177 assert(df_file_index == 1 || df_file_index == 2);
4178 ci->filemask = 1 << df_file_index;
4179 ci->stages[df_file_index].mode = merged_file.mode;
4180 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
4181 }
4182 if (!clean_merge) {
4183 const char *reason = _("content");
4184 if (ci->filemask == 6)
4185 reason = _("add/add");
4186 if (S_ISGITLINK(merged_file.mode))
4187 reason = _("submodule");
4188 path_msg(opt, CONFLICT_CONTENTS, 0,
4189 path, NULL, NULL, NULL,
4190 _("CONFLICT (%s): Merge conflict in %s"),
4191 reason, path);
4192 }
4193 } else if (ci->filemask == 3 || ci->filemask == 5) {
4194 /* Modify/delete */
4195 const char *modify_branch, *delete_branch;
4196 int side = (ci->filemask == 5) ? 2 : 1;
4197 int index = opt->priv->call_depth ? 0 : side;
4198
4199 ci->merged.result.mode = ci->stages[index].mode;
4200 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
4201 ci->merged.clean = 0;
4202
4203 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
4204 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
4205
4206 if (opt->renormalize &&
4207 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
4208 path)) {
4209 if (!ci->path_conflict) {
4210 /*
4211 * Blob unchanged after renormalization, so
4212 * there's no modify/delete conflict after all;
4213 * we can just remove the file.
4214 */
4215 ci->merged.is_null = 1;
4216 ci->merged.clean = 1;
4217 /*
4218 * file goes away => even if there was a
4219 * directory/file conflict there isn't one now.
4220 */
4221 ci->df_conflict = 0;
4222 } else {
4223 /* rename/delete, so conflict remains */
4224 }
4225 } else if (ci->path_conflict &&
4226 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
4227 /*
4228 * This came from a rename/delete; no action to take,
4229 * but avoid printing "modify/delete" conflict notice
4230 * since the contents were not modified.
4231 */
4232 } else {
4233 path_msg(opt, CONFLICT_MODIFY_DELETE, 0,
4234 path, NULL, NULL, NULL,
4235 _("CONFLICT (modify/delete): %s deleted in %s "
4236 "and modified in %s. Version %s of %s left "
4237 "in tree."),
4238 path, delete_branch, modify_branch,
4239 modify_branch, path);
4240 }
4241 } else if (ci->filemask == 2 || ci->filemask == 4) {
4242 /* Added on one side */
4243 int side = (ci->filemask == 4) ? 2 : 1;
4244 ci->merged.result.mode = ci->stages[side].mode;
4245 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
4246 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
4247 } else if (ci->filemask == 1) {
4248 /* Deleted on both sides */
4249 ci->merged.is_null = 1;
4250 ci->merged.result.mode = 0;
4251 oidcpy(&ci->merged.result.oid, null_oid());
4252 assert(!ci->df_conflict);
4253 ci->merged.clean = !ci->path_conflict;
4254 }
4255
4256 /*
4257 * If still conflicted, record it separately. This allows us to later
4258 * iterate over just conflicted entries when updating the index instead
4259 * of iterating over all entries.
4260 */
4261 if (!ci->merged.clean)
4262 strmap_put(&opt->priv->conflicted, path, ci);
4263
4264 /* Record metadata for ci->merged in dir_metadata */
4265 record_entry_for_tree(dir_metadata, path, &ci->merged);
4266 return 0;
4267 }
4268
4269 static void prefetch_for_content_merges(struct merge_options *opt,
4270 struct string_list *plist)
4271 {
4272 struct string_list_item *e;
4273 struct oid_array to_fetch = OID_ARRAY_INIT;
4274
4275 if (opt->repo != the_repository || !repo_has_promisor_remote(the_repository))
4276 return;
4277
4278 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
4279 /* char *path = e->string; */
4280 struct conflict_info *ci = e->util;
4281 int i;
4282
4283 /* Ignore clean entries */
4284 if (ci->merged.clean)
4285 continue;
4286
4287 /* Ignore entries that don't need a content merge */
4288 if (ci->match_mask || ci->filemask < 6 ||
4289 !S_ISREG(ci->stages[1].mode) ||
4290 !S_ISREG(ci->stages[2].mode) ||
4291 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
4292 continue;
4293
4294 /* Also don't need content merge if base matches either side */
4295 if (ci->filemask == 7 &&
4296 S_ISREG(ci->stages[0].mode) &&
4297 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
4298 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
4299 continue;
4300
4301 for (i = 0; i < 3; i++) {
4302 unsigned side_mask = (1 << i);
4303 struct version_info *vi = &ci->stages[i];
4304
4305 if ((ci->filemask & side_mask) &&
4306 S_ISREG(vi->mode) &&
4307 oid_object_info_extended(opt->repo, &vi->oid, NULL,
4308 OBJECT_INFO_FOR_PREFETCH))
4309 oid_array_append(&to_fetch, &vi->oid);
4310 }
4311 }
4312
4313 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
4314 oid_array_clear(&to_fetch);
4315 }
4316
4317 static int process_entries(struct merge_options *opt,
4318 struct object_id *result_oid)
4319 {
4320 struct hashmap_iter iter;
4321 struct strmap_entry *e;
4322 struct string_list plist = STRING_LIST_INIT_NODUP;
4323 struct string_list_item *entry;
4324 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
4325 STRING_LIST_INIT_NODUP,
4326 NULL, 0 };
4327 int ret = 0;
4328
4329 trace2_region_enter("merge", "process_entries setup", opt->repo);
4330 if (strmap_empty(&opt->priv->paths)) {
4331 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
4332 return 0;
4333 }
4334
4335 /* Hack to pre-allocate plist to the desired size */
4336 trace2_region_enter("merge", "plist grow", opt->repo);
4337 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
4338 trace2_region_leave("merge", "plist grow", opt->repo);
4339
4340 /* Put every entry from paths into plist, then sort */
4341 trace2_region_enter("merge", "plist copy", opt->repo);
4342 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
4343 string_list_append(&plist, e->key)->util = e->value;
4344 }
4345 trace2_region_leave("merge", "plist copy", opt->repo);
4346
4347 trace2_region_enter("merge", "plist special sort", opt->repo);
4348 plist.cmp = sort_dirs_next_to_their_children;
4349 string_list_sort(&plist);
4350 trace2_region_leave("merge", "plist special sort", opt->repo);
4351
4352 trace2_region_leave("merge", "process_entries setup", opt->repo);
4353
4354 /*
4355 * Iterate over the items in reverse order, so we can handle paths
4356 * below a directory before needing to handle the directory itself.
4357 *
4358 * This allows us to write subtrees before we need to write trees,
4359 * and it also enables sane handling of directory/file conflicts
4360 * (because it allows us to know whether the directory is still in
4361 * the way when it is time to process the file at the same path).
4362 */
4363 trace2_region_enter("merge", "processing", opt->repo);
4364 prefetch_for_content_merges(opt, &plist);
4365 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
4366 char *path = entry->string;
4367 /*
4368 * NOTE: mi may actually be a pointer to a conflict_info, but
4369 * we have to check mi->clean first to see if it's safe to
4370 * reassign to such a pointer type.
4371 */
4372 struct merged_info *mi = entry->util;
4373
4374 if (write_completed_directory(opt, mi->directory_name,
4375 &dir_metadata) < 0) {
4376 ret = -1;
4377 goto cleanup;
4378 }
4379 if (mi->clean)
4380 record_entry_for_tree(&dir_metadata, path, mi);
4381 else {
4382 struct conflict_info *ci = (struct conflict_info *)mi;
4383 if (process_entry(opt, path, ci, &dir_metadata) < 0) {
4384 ret = -1;
4385 goto cleanup;
4386 };
4387 }
4388 }
4389 trace2_region_leave("merge", "processing", opt->repo);
4390
4391 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4392 if (dir_metadata.offsets.nr != 1 ||
4393 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4394 printf("dir_metadata.offsets.nr = %"PRIuMAX" (should be 1)\n",
4395 (uintmax_t)dir_metadata.offsets.nr);
4396 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4397 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4398 fflush(stdout);
4399 BUG("dir_metadata accounting completely off; shouldn't happen");
4400 }
4401 if (write_tree(result_oid, &dir_metadata.versions, 0,
4402 opt->repo->hash_algo->rawsz) < 0)
4403 ret = -1;
4404 cleanup:
4405 string_list_clear(&plist, 0);
4406 string_list_clear(&dir_metadata.versions, 0);
4407 string_list_clear(&dir_metadata.offsets, 0);
4408 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4409
4410 return ret;
4411 }
4412
4413 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4414
4415 static int checkout(struct merge_options *opt,
4416 struct tree *prev,
4417 struct tree *next)
4418 {
4419 /* Switch the index/working copy from old to new */
4420 int ret;
4421 struct tree_desc trees[2];
4422 struct unpack_trees_options unpack_opts;
4423
4424 memset(&unpack_opts, 0, sizeof(unpack_opts));
4425 unpack_opts.head_idx = -1;
4426 unpack_opts.src_index = opt->repo->index;
4427 unpack_opts.dst_index = opt->repo->index;
4428
4429 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4430
4431 /*
4432 * NOTE: if this were just "git checkout" code, we would probably
4433 * read or refresh the cache and check for a conflicted index, but
4434 * builtin/merge.c or sequencer.c really needs to read the index
4435 * and check for conflicted entries before starting merging for a
4436 * good user experience (no sense waiting for merges/rebases before
4437 * erroring out), so there's no reason to duplicate that work here.
4438 */
4439
4440 /* 2-way merge to the new branch */
4441 unpack_opts.update = 1;
4442 unpack_opts.merge = 1;
4443 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4444 unpack_opts.verbose_update = (opt->verbosity > 2);
4445 unpack_opts.fn = twoway_merge;
4446 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4447 if (parse_tree(prev) < 0)
4448 return -1;
4449 init_tree_desc(&trees[0], prev->buffer, prev->size);
4450 if (parse_tree(next) < 0)
4451 return -1;
4452 init_tree_desc(&trees[1], next->buffer, next->size);
4453
4454 ret = unpack_trees(2, trees, &unpack_opts);
4455 clear_unpack_trees_porcelain(&unpack_opts);
4456 return ret;
4457 }
4458
4459 static int record_conflicted_index_entries(struct merge_options *opt)
4460 {
4461 struct hashmap_iter iter;
4462 struct strmap_entry *e;
4463 struct index_state *index = opt->repo->index;
4464 struct checkout state = CHECKOUT_INIT;
4465 int errs = 0;
4466 int original_cache_nr;
4467
4468 if (strmap_empty(&opt->priv->conflicted))
4469 return 0;
4470
4471 /*
4472 * We are in a conflicted state. These conflicts might be inside
4473 * sparse-directory entries, so check if any entries are outside
4474 * of the sparse-checkout cone preemptively.
4475 *
4476 * We set original_cache_nr below, but that might change if
4477 * index_name_pos() calls ask for paths within sparse directories.
4478 */
4479 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4480 if (!path_in_sparse_checkout(e->key, index)) {
4481 ensure_full_index(index);
4482 break;
4483 }
4484 }
4485
4486 /* If any entries have skip_worktree set, we'll have to check 'em out */
4487 state.force = 1;
4488 state.quiet = 1;
4489 state.refresh_cache = 1;
4490 state.istate = index;
4491 original_cache_nr = index->cache_nr;
4492
4493 /* Append every entry from conflicted into index, then sort */
4494 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4495 const char *path = e->key;
4496 struct conflict_info *ci = e->value;
4497 int pos;
4498 struct cache_entry *ce;
4499 int i;
4500
4501 VERIFY_CI(ci);
4502
4503 /*
4504 * The index will already have a stage=0 entry for this path,
4505 * because we created an as-merged-as-possible version of the
4506 * file and checkout() moved the working copy and index over
4507 * to that version.
4508 *
4509 * However, previous iterations through this loop will have
4510 * added unstaged entries to the end of the cache which
4511 * ignore the standard alphabetical ordering of cache
4512 * entries and break invariants needed for index_name_pos()
4513 * to work. However, we know the entry we want is before
4514 * those appended cache entries, so do a temporary swap on
4515 * cache_nr to only look through entries of interest.
4516 */
4517 SWAP(index->cache_nr, original_cache_nr);
4518 pos = index_name_pos(index, path, strlen(path));
4519 SWAP(index->cache_nr, original_cache_nr);
4520 if (pos < 0) {
4521 if (ci->filemask != 1)
4522 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4523 cache_tree_invalidate_path(index, path);
4524 } else {
4525 ce = index->cache[pos];
4526
4527 /*
4528 * Clean paths with CE_SKIP_WORKTREE set will not be
4529 * written to the working tree by the unpack_trees()
4530 * call in checkout(). Our conflicted entries would
4531 * have appeared clean to that code since we ignored
4532 * the higher order stages. Thus, we need override
4533 * the CE_SKIP_WORKTREE bit and manually write those
4534 * files to the working disk here.
4535 */
4536 if (ce_skip_worktree(ce))
4537 errs |= checkout_entry(ce, &state, NULL, NULL);
4538
4539 /*
4540 * Mark this cache entry for removal and instead add
4541 * new stage>0 entries corresponding to the
4542 * conflicts. If there are many conflicted entries, we
4543 * want to avoid memmove'ing O(NM) entries by
4544 * inserting the new entries one at a time. So,
4545 * instead, we just add the new cache entries to the
4546 * end (ignoring normal index requirements on sort
4547 * order) and sort the index once we're all done.
4548 */
4549 ce->ce_flags |= CE_REMOVE;
4550 }
4551
4552 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4553 struct version_info *vi;
4554 if (!(ci->filemask & (1ul << i)))
4555 continue;
4556 vi = &ci->stages[i];
4557 ce = make_cache_entry(index, vi->mode, &vi->oid,
4558 path, i+1, 0);
4559 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4560 }
4561 }
4562
4563 /*
4564 * Remove the unused cache entries (and invalidate the relevant
4565 * cache-trees), then sort the index entries to get the conflicted
4566 * entries we added to the end into their right locations.
4567 */
4568 remove_marked_cache_entries(index, 1);
4569 /*
4570 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4571 * on filename and secondarily on stage, and (name, stage #) are a
4572 * unique tuple.
4573 */
4574 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4575
4576 return errs;
4577 }
4578
4579 static void print_submodule_conflict_suggestion(struct string_list *csub) {
4580 struct string_list_item *item;
4581 struct strbuf msg = STRBUF_INIT;
4582 struct strbuf tmp = STRBUF_INIT;
4583 struct strbuf subs = STRBUF_INIT;
4584
4585 if (!csub->nr)
4586 return;
4587
4588 strbuf_add_separated_string_list(&subs, " ", csub);
4589 for_each_string_list_item(item, csub) {
4590 struct conflicted_submodule_item *util = item->util;
4591
4592 /*
4593 * NEEDSWORK: The steps to resolve these errors deserve a more
4594 * detailed explanation than what is currently printed below.
4595 */
4596 if (util->flag == CONFLICT_SUBMODULE_NOT_INITIALIZED ||
4597 util->flag == CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE)
4598 continue;
4599
4600 /*
4601 * TRANSLATORS: This is a line of advice to resolve a merge
4602 * conflict in a submodule. The first argument is the submodule
4603 * name, and the second argument is the abbreviated id of the
4604 * commit that needs to be merged. For example:
4605 * - go to submodule (mysubmodule), and either merge commit abc1234"
4606 */
4607 strbuf_addf(&tmp, _(" - go to submodule (%s), and either merge commit %s\n"
4608 " or update to an existing commit which has merged those changes\n"),
4609 item->string, util->abbrev);
4610 }
4611
4612 /*
4613 * TRANSLATORS: This is a detailed message for resolving submodule
4614 * conflicts. The first argument is string containing one step per
4615 * submodule. The second is a space-separated list of submodule names.
4616 */
4617 strbuf_addf(&msg,
4618 _("Recursive merging with submodules currently only supports trivial cases.\n"
4619 "Please manually handle the merging of each conflicted submodule.\n"
4620 "This can be accomplished with the following steps:\n"
4621 "%s"
4622 " - come back to superproject and run:\n\n"
4623 " git add %s\n\n"
4624 " to record the above merge or update\n"
4625 " - resolve any other conflicts in the superproject\n"
4626 " - commit the resulting index in the superproject\n"),
4627 tmp.buf, subs.buf);
4628
4629 advise_if_enabled(ADVICE_SUBMODULE_MERGE_CONFLICT, "%s", msg.buf);
4630
4631 strbuf_release(&subs);
4632 strbuf_release(&tmp);
4633 strbuf_release(&msg);
4634 }
4635
4636 void merge_display_update_messages(struct merge_options *opt,
4637 int detailed,
4638 struct merge_result *result)
4639 {
4640 struct merge_options_internal *opti = result->priv;
4641 struct hashmap_iter iter;
4642 struct strmap_entry *e;
4643 struct string_list olist = STRING_LIST_INIT_NODUP;
4644
4645 if (opt->record_conflict_msgs_as_headers)
4646 BUG("Either display conflict messages or record them as headers, not both");
4647
4648 trace2_region_enter("merge", "display messages", opt->repo);
4649
4650 /* Hack to pre-allocate olist to the desired size */
4651 ALLOC_GROW(olist.items, strmap_get_size(&opti->conflicts),
4652 olist.alloc);
4653
4654 /* Put every entry from output into olist, then sort */
4655 strmap_for_each_entry(&opti->conflicts, &iter, e) {
4656 string_list_append(&olist, e->key)->util = e->value;
4657 }
4658 string_list_sort(&olist);
4659
4660 /* Iterate over the items, printing them */
4661 for (int path_nr = 0; path_nr < olist.nr; ++path_nr) {
4662 struct string_list *conflicts = olist.items[path_nr].util;
4663 for (int i = 0; i < conflicts->nr; i++) {
4664 struct logical_conflict_info *info =
4665 conflicts->items[i].util;
4666
4667 if (detailed) {
4668 printf("%lu", (unsigned long)info->paths.nr);
4669 putchar('\0');
4670 for (int n = 0; n < info->paths.nr; n++) {
4671 fputs(info->paths.v[n], stdout);
4672 putchar('\0');
4673 }
4674 fputs(type_short_descriptions[info->type],
4675 stdout);
4676 putchar('\0');
4677 }
4678 puts(conflicts->items[i].string);
4679 if (detailed)
4680 putchar('\0');
4681 }
4682 }
4683 string_list_clear(&olist, 0);
4684
4685 print_submodule_conflict_suggestion(&opti->conflicted_submodules);
4686
4687 /* Also include needed rename limit adjustment now */
4688 diff_warn_rename_limit("merge.renamelimit",
4689 opti->renames.needed_limit, 0);
4690
4691 trace2_region_leave("merge", "display messages", opt->repo);
4692 }
4693
4694 void merge_get_conflicted_files(struct merge_result *result,
4695 struct string_list *conflicted_files)
4696 {
4697 struct hashmap_iter iter;
4698 struct strmap_entry *e;
4699 struct merge_options_internal *opti = result->priv;
4700
4701 strmap_for_each_entry(&opti->conflicted, &iter, e) {
4702 const char *path = e->key;
4703 struct conflict_info *ci = e->value;
4704 int i;
4705
4706 VERIFY_CI(ci);
4707
4708 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4709 struct stage_info *si;
4710
4711 if (!(ci->filemask & (1ul << i)))
4712 continue;
4713
4714 si = xmalloc(sizeof(*si));
4715 si->stage = i+1;
4716 si->mode = ci->stages[i].mode;
4717 oidcpy(&si->oid, &ci->stages[i].oid);
4718 string_list_append(conflicted_files, path)->util = si;
4719 }
4720 }
4721 /* string_list_sort() uses a stable sort, so we're good */
4722 string_list_sort(conflicted_files);
4723 }
4724
4725 void merge_switch_to_result(struct merge_options *opt,
4726 struct tree *head,
4727 struct merge_result *result,
4728 int update_worktree_and_index,
4729 int display_update_msgs)
4730 {
4731 assert(opt->priv == NULL);
4732 if (result->clean >= 0 && update_worktree_and_index) {
4733 trace2_region_enter("merge", "checkout", opt->repo);
4734 if (checkout(opt, head, result->tree)) {
4735 /* failure to function */
4736 result->clean = -1;
4737 merge_finalize(opt, result);
4738 trace2_region_leave("merge", "checkout", opt->repo);
4739 return;
4740 }
4741 trace2_region_leave("merge", "checkout", opt->repo);
4742
4743 trace2_region_enter("merge", "record_conflicted", opt->repo);
4744 opt->priv = result->priv;
4745 if (record_conflicted_index_entries(opt)) {
4746 /* failure to function */
4747 opt->priv = NULL;
4748 result->clean = -1;
4749 merge_finalize(opt, result);
4750 trace2_region_leave("merge", "record_conflicted",
4751 opt->repo);
4752 return;
4753 }
4754 opt->priv = NULL;
4755 trace2_region_leave("merge", "record_conflicted", opt->repo);
4756
4757 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4758 if (refs_update_ref(get_main_ref_store(opt->repo), "", "AUTO_MERGE",
4759 &result->tree->object.oid, NULL, REF_NO_DEREF,
4760 UPDATE_REFS_MSG_ON_ERR)) {
4761 /* failure to function */
4762 opt->priv = NULL;
4763 result->clean = -1;
4764 merge_finalize(opt, result);
4765 trace2_region_leave("merge", "write_auto_merge",
4766 opt->repo);
4767 return;
4768 }
4769 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4770 }
4771 if (display_update_msgs)
4772 merge_display_update_messages(opt, /* detailed */ 0, result);
4773
4774 merge_finalize(opt, result);
4775 }
4776
4777 void merge_finalize(struct merge_options *opt,
4778 struct merge_result *result)
4779 {
4780 if (opt->renormalize)
4781 git_attr_set_direction(GIT_ATTR_CHECKIN);
4782 assert(opt->priv == NULL);
4783
4784 if (result->priv) {
4785 clear_or_reinit_internal_opts(result->priv, 0);
4786 FREE_AND_NULL(result->priv);
4787 }
4788 }
4789
4790 /*** Function Grouping: helper functions for merge_incore_*() ***/
4791
4792 static struct tree *shift_tree_object(struct repository *repo,
4793 struct tree *one, struct tree *two,
4794 const char *subtree_shift)
4795 {
4796 struct object_id shifted;
4797
4798 if (!*subtree_shift) {
4799 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4800 } else {
4801 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4802 subtree_shift);
4803 }
4804 if (oideq(&two->object.oid, &shifted))
4805 return two;
4806 return lookup_tree(repo, &shifted);
4807 }
4808
4809 static inline void set_commit_tree(struct commit *c, struct tree *t)
4810 {
4811 c->maybe_tree = t;
4812 }
4813
4814 static struct commit *make_virtual_commit(struct repository *repo,
4815 struct tree *tree,
4816 const char *comment)
4817 {
4818 struct commit *commit = alloc_commit_node(repo);
4819
4820 set_merge_remote_desc(commit, comment, (struct object *)commit);
4821 set_commit_tree(commit, tree);
4822 commit->object.parsed = 1;
4823 return commit;
4824 }
4825
4826 static void merge_start(struct merge_options *opt, struct merge_result *result)
4827 {
4828 struct rename_info *renames;
4829 int i;
4830 struct mem_pool *pool = NULL;
4831
4832 /* Sanity checks on opt */
4833 trace2_region_enter("merge", "sanity checks", opt->repo);
4834 assert(opt->repo);
4835
4836 assert(opt->branch1 && opt->branch2);
4837
4838 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4839 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4840 assert(opt->rename_limit >= -1);
4841 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4842 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4843
4844 assert(opt->xdl_opts >= 0);
4845 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4846 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4847
4848 if (opt->msg_header_prefix)
4849 assert(opt->record_conflict_msgs_as_headers);
4850
4851 /*
4852 * detect_renames, verbosity, buffer_output, and obuf are ignored
4853 * fields that were used by "recursive" rather than "ort" -- but
4854 * sanity check them anyway.
4855 */
4856 assert(opt->detect_renames >= -1 &&
4857 opt->detect_renames <= DIFF_DETECT_COPY);
4858 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4859 assert(opt->buffer_output <= 2);
4860 assert(opt->obuf.len == 0);
4861
4862 assert(opt->priv == NULL);
4863 if (result->_properly_initialized != 0 &&
4864 result->_properly_initialized != RESULT_INITIALIZED)
4865 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4866 assert(!!result->priv == !!result->_properly_initialized);
4867 if (result->priv) {
4868 opt->priv = result->priv;
4869 result->priv = NULL;
4870 /*
4871 * opt->priv non-NULL means we had results from a previous
4872 * run; do a few sanity checks that user didn't mess with
4873 * it in an obvious fashion.
4874 */
4875 assert(opt->priv->call_depth == 0);
4876 assert(!opt->priv->toplevel_dir ||
4877 0 == strlen(opt->priv->toplevel_dir));
4878 }
4879 trace2_region_leave("merge", "sanity checks", opt->repo);
4880
4881 /* Default to histogram diff. Actually, just hardcode it...for now. */
4882 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4883
4884 /* Handle attr direction stuff for renormalization */
4885 if (opt->renormalize)
4886 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4887
4888 /* Initialization of opt->priv, our internal merge data */
4889 trace2_region_enter("merge", "allocate/init", opt->repo);
4890 if (opt->priv) {
4891 clear_or_reinit_internal_opts(opt->priv, 1);
4892 string_list_init_nodup(&opt->priv->conflicted_submodules);
4893 trace2_region_leave("merge", "allocate/init", opt->repo);
4894 return;
4895 }
4896 opt->priv = xcalloc(1, sizeof(*opt->priv));
4897
4898 /* Initialization of various renames fields */
4899 renames = &opt->priv->renames;
4900 mem_pool_init(&opt->priv->pool, 0);
4901 pool = &opt->priv->pool;
4902 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4903 strintmap_init_with_options(&renames->dirs_removed[i],
4904 NOT_RELEVANT, pool, 0);
4905 strmap_init_with_options(&renames->dir_rename_count[i],
4906 NULL, 1);
4907 strmap_init_with_options(&renames->dir_renames[i],
4908 NULL, 0);
4909 /*
4910 * relevant_sources uses -1 for the default, because we need
4911 * to be able to distinguish not-in-strintmap from valid
4912 * relevant_source values from enum file_rename_relevance.
4913 * In particular, possibly_cache_new_pair() expects a negative
4914 * value for not-found entries.
4915 */
4916 strintmap_init_with_options(&renames->relevant_sources[i],
4917 -1 /* explicitly invalid */,
4918 pool, 0);
4919 strmap_init_with_options(&renames->cached_pairs[i],
4920 NULL, 1);
4921 strset_init_with_options(&renames->cached_irrelevant[i],
4922 NULL, 1);
4923 strset_init_with_options(&renames->cached_target_names[i],
4924 NULL, 0);
4925 }
4926 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4927 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4928 0, pool, 0);
4929 strset_init_with_options(&renames->deferred[i].target_dirs,
4930 pool, 1);
4931 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4932 }
4933
4934 /*
4935 * Although we initialize opt->priv->paths with strdup_strings=0,
4936 * that's just to avoid making yet another copy of an allocated
4937 * string. Putting the entry into paths means we are taking
4938 * ownership, so we will later free it.
4939 *
4940 * In contrast, conflicted just has a subset of keys from paths, so
4941 * we don't want to free those (it'd be a duplicate free).
4942 */
4943 strmap_init_with_options(&opt->priv->paths, pool, 0);
4944 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4945
4946 /*
4947 * keys & string_lists in conflicts will sometimes need to outlive
4948 * "paths", so it will have a copy of relevant keys. It's probably
4949 * a small subset of the overall paths that have special output.
4950 */
4951 strmap_init(&opt->priv->conflicts);
4952
4953 trace2_region_leave("merge", "allocate/init", opt->repo);
4954 }
4955
4956 static void merge_check_renames_reusable(struct merge_result *result,
4957 struct tree *merge_base,
4958 struct tree *side1,
4959 struct tree *side2)
4960 {
4961 struct rename_info *renames;
4962 struct tree **merge_trees;
4963 struct merge_options_internal *opti = result->priv;
4964
4965 if (!opti)
4966 return;
4967
4968 renames = &opti->renames;
4969 merge_trees = renames->merge_trees;
4970
4971 /*
4972 * Handle case where previous merge operation did not want cache to
4973 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4974 */
4975 if (!merge_trees[0]) {
4976 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4977 renames->cached_pairs_valid_side = 0; /* neither side valid */
4978 return;
4979 }
4980
4981 /*
4982 * Handle other cases; note that merge_trees[0..2] will only
4983 * be NULL if opti is, or if all three were manually set to
4984 * NULL by e.g. rename/rename(1to1) handling.
4985 */
4986 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4987
4988 /* Check if we meet a condition for re-using cached_pairs */
4989 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4990 oideq(&side1->object.oid, &result->tree->object.oid))
4991 renames->cached_pairs_valid_side = MERGE_SIDE1;
4992 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4993 oideq(&side2->object.oid, &result->tree->object.oid))
4994 renames->cached_pairs_valid_side = MERGE_SIDE2;
4995 else
4996 renames->cached_pairs_valid_side = 0; /* neither side valid */
4997 }
4998
4999 /*** Function Grouping: merge_incore_*() and their internal variants ***/
5000
5001 /*
5002 * Originally from merge_trees_internal(); heavily adapted, though.
5003 */
5004 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
5005 struct tree *merge_base,
5006 struct tree *side1,
5007 struct tree *side2,
5008 struct merge_result *result)
5009 {
5010 struct object_id working_tree_oid;
5011
5012 if (opt->subtree_shift) {
5013 side2 = shift_tree_object(opt->repo, side1, side2,
5014 opt->subtree_shift);
5015 merge_base = shift_tree_object(opt->repo, side1, merge_base,
5016 opt->subtree_shift);
5017 }
5018
5019 redo:
5020 trace2_region_enter("merge", "collect_merge_info", opt->repo);
5021 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
5022 /*
5023 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
5024 * base, and 2-3) the trees for the two trees we're merging.
5025 */
5026 error(_("collecting merge info failed for trees %s, %s, %s"),
5027 oid_to_hex(&merge_base->object.oid),
5028 oid_to_hex(&side1->object.oid),
5029 oid_to_hex(&side2->object.oid));
5030 result->clean = -1;
5031 return;
5032 }
5033 trace2_region_leave("merge", "collect_merge_info", opt->repo);
5034
5035 trace2_region_enter("merge", "renames", opt->repo);
5036 result->clean = detect_and_process_renames(opt);
5037 trace2_region_leave("merge", "renames", opt->repo);
5038 if (opt->priv->renames.redo_after_renames == 2) {
5039 trace2_region_enter("merge", "reset_maps", opt->repo);
5040 clear_or_reinit_internal_opts(opt->priv, 1);
5041 trace2_region_leave("merge", "reset_maps", opt->repo);
5042 goto redo;
5043 }
5044
5045 trace2_region_enter("merge", "process_entries", opt->repo);
5046 if (process_entries(opt, &working_tree_oid) < 0)
5047 result->clean = -1;
5048 trace2_region_leave("merge", "process_entries", opt->repo);
5049
5050 /* Set return values */
5051 result->path_messages = &opt->priv->conflicts;
5052
5053 if (result->clean >= 0) {
5054 result->tree = parse_tree_indirect(&working_tree_oid);
5055 if (!result->tree)
5056 die(_("unable to read tree (%s)"),
5057 oid_to_hex(&working_tree_oid));
5058 /* existence of conflicted entries implies unclean */
5059 result->clean &= strmap_empty(&opt->priv->conflicted);
5060 }
5061 if (!opt->priv->call_depth) {
5062 result->priv = opt->priv;
5063 result->_properly_initialized = RESULT_INITIALIZED;
5064 opt->priv = NULL;
5065 }
5066 }
5067
5068 /*
5069 * Originally from merge_recursive_internal(); somewhat adapted, though.
5070 */
5071 static void merge_ort_internal(struct merge_options *opt,
5072 struct commit_list *merge_bases,
5073 struct commit *h1,
5074 struct commit *h2,
5075 struct merge_result *result)
5076 {
5077 struct commit *next;
5078 struct commit *merged_merge_bases;
5079 const char *ancestor_name;
5080 struct strbuf merge_base_abbrev = STRBUF_INIT;
5081
5082 if (!merge_bases) {
5083 if (repo_get_merge_bases(the_repository, h1, h2,
5084 &merge_bases) < 0) {
5085 result->clean = -1;
5086 return;
5087 }
5088 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
5089 merge_bases = reverse_commit_list(merge_bases);
5090 }
5091
5092 merged_merge_bases = pop_commit(&merge_bases);
5093 if (!merged_merge_bases) {
5094 /* if there is no common ancestor, use an empty tree */
5095 struct tree *tree;
5096
5097 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
5098 merged_merge_bases = make_virtual_commit(opt->repo, tree,
5099 "ancestor");
5100 ancestor_name = "empty tree";
5101 } else if (merge_bases) {
5102 ancestor_name = "merged common ancestors";
5103 } else {
5104 strbuf_add_unique_abbrev(&merge_base_abbrev,
5105 &merged_merge_bases->object.oid,
5106 DEFAULT_ABBREV);
5107 ancestor_name = merge_base_abbrev.buf;
5108 }
5109
5110 for (next = pop_commit(&merge_bases); next;
5111 next = pop_commit(&merge_bases)) {
5112 const char *saved_b1, *saved_b2;
5113 struct commit *prev = merged_merge_bases;
5114
5115 opt->priv->call_depth++;
5116 /*
5117 * When the merge fails, the result contains files
5118 * with conflict markers. The cleanness flag is
5119 * ignored (unless indicating an error), it was never
5120 * actually used, as result of merge_trees has always
5121 * overwritten it: the committed "conflicts" were
5122 * already resolved.
5123 */
5124 saved_b1 = opt->branch1;
5125 saved_b2 = opt->branch2;
5126 opt->branch1 = "Temporary merge branch 1";
5127 opt->branch2 = "Temporary merge branch 2";
5128 merge_ort_internal(opt, NULL, prev, next, result);
5129 if (result->clean < 0)
5130 return;
5131 opt->branch1 = saved_b1;
5132 opt->branch2 = saved_b2;
5133 opt->priv->call_depth--;
5134
5135 merged_merge_bases = make_virtual_commit(opt->repo,
5136 result->tree,
5137 "merged tree");
5138 commit_list_insert(prev, &merged_merge_bases->parents);
5139 commit_list_insert(next, &merged_merge_bases->parents->next);
5140
5141 clear_or_reinit_internal_opts(opt->priv, 1);
5142 }
5143
5144 opt->ancestor = ancestor_name;
5145 merge_ort_nonrecursive_internal(opt,
5146 repo_get_commit_tree(opt->repo,
5147 merged_merge_bases),
5148 repo_get_commit_tree(opt->repo, h1),
5149 repo_get_commit_tree(opt->repo, h2),
5150 result);
5151 strbuf_release(&merge_base_abbrev);
5152 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
5153 }
5154
5155 void merge_incore_nonrecursive(struct merge_options *opt,
5156 struct tree *merge_base,
5157 struct tree *side1,
5158 struct tree *side2,
5159 struct merge_result *result)
5160 {
5161 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
5162
5163 trace2_region_enter("merge", "merge_start", opt->repo);
5164 assert(opt->ancestor != NULL);
5165 merge_check_renames_reusable(result, merge_base, side1, side2);
5166 merge_start(opt, result);
5167 /*
5168 * Record the trees used in this merge, so if there's a next merge in
5169 * a cherry-pick or rebase sequence it might be able to take advantage
5170 * of the cached_pairs in that next merge.
5171 */
5172 opt->priv->renames.merge_trees[0] = merge_base;
5173 opt->priv->renames.merge_trees[1] = side1;
5174 opt->priv->renames.merge_trees[2] = side2;
5175 trace2_region_leave("merge", "merge_start", opt->repo);
5176
5177 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
5178 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
5179 }
5180
5181 void merge_incore_recursive(struct merge_options *opt,
5182 struct commit_list *merge_bases,
5183 struct commit *side1,
5184 struct commit *side2,
5185 struct merge_result *result)
5186 {
5187 trace2_region_enter("merge", "incore_recursive", opt->repo);
5188
5189 /* We set the ancestor label based on the merge_bases */
5190 assert(opt->ancestor == NULL);
5191
5192 trace2_region_enter("merge", "merge_start", opt->repo);
5193 merge_start(opt, result);
5194 trace2_region_leave("merge", "merge_start", opt->repo);
5195
5196 merge_ort_internal(opt, merge_bases, side1, side2, result);
5197 trace2_region_leave("merge", "incore_recursive", opt->repo);
5198 }