]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
diffcore-rename: avoid doing basename comparisons for irrelevant sources
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "blob.h"
22 #include "cache-tree.h"
23 #include "commit.h"
24 #include "commit-reach.h"
25 #include "diff.h"
26 #include "diffcore.h"
27 #include "dir.h"
28 #include "ll-merge.h"
29 #include "object-store.h"
30 #include "revision.h"
31 #include "strmap.h"
32 #include "submodule.h"
33 #include "tree.h"
34 #include "unpack-trees.h"
35 #include "xdiff-interface.h"
36
37 /*
38 * We have many arrays of size 3. Whenever we have such an array, the
39 * indices refer to one of the sides of the three-way merge. This is so
40 * pervasive that the constants 0, 1, and 2 are used in many places in the
41 * code (especially in arithmetic operations to find the other side's index
42 * or to compute a relevant mask), but sometimes these enum names are used
43 * to aid code clarity.
44 *
45 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
46 * referred to there is one of these three sides.
47 */
48 enum merge_side {
49 MERGE_BASE = 0,
50 MERGE_SIDE1 = 1,
51 MERGE_SIDE2 = 2
52 };
53
54 struct traversal_callback_data {
55 unsigned long mask;
56 unsigned long dirmask;
57 struct name_entry names[3];
58 };
59
60 struct rename_info {
61 /*
62 * All variables that are arrays of size 3 correspond to data tracked
63 * for the sides in enum merge_side. Index 0 is almost always unused
64 * because we often only need to track information for MERGE_SIDE1 and
65 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
66 * are determined relative to what changed since the MERGE_BASE).
67 */
68
69 /*
70 * pairs: pairing of filenames from diffcore_rename()
71 */
72 struct diff_queue_struct pairs[3];
73
74 /*
75 * dirs_removed: directories removed on a given side of history.
76 */
77 struct strset dirs_removed[3];
78
79 /*
80 * dir_rename_count: tracking where parts of a directory were renamed to
81 *
82 * When files in a directory are renamed, they may not all go to the
83 * same location. Each strmap here tracks:
84 * old_dir => {new_dir => int}
85 * That is, dir_rename_count[side] is a strmap to a strintmap.
86 */
87 struct strmap dir_rename_count[3];
88
89 /*
90 * dir_renames: computed directory renames
91 *
92 * This is a map of old_dir => new_dir and is derived in part from
93 * dir_rename_count.
94 */
95 struct strmap dir_renames[3];
96
97 /*
98 * relevant_sources: deleted paths for which we need rename detection
99 *
100 * relevant_sources is a set of deleted paths on each side of
101 * history for which we need rename detection. If a path is deleted
102 * on one side of history, we need to detect if it is part of a
103 * rename if either
104 * * we need to detect renames for an ancestor directory
105 * * the file is modified/deleted on the other side of history
106 * If neither of those are true, we can skip rename detection for
107 * that path.
108 */
109 struct strset relevant_sources[3];
110
111 /*
112 * dir_rename_mask:
113 * 0: optimization removing unmodified potential rename source okay
114 * 2 or 4: optimization okay, but must check for files added to dir
115 * 7: optimization forbidden; need rename source in case of dir rename
116 */
117 unsigned dir_rename_mask:3;
118
119 /*
120 * callback_data_*: supporting data structures for alternate traversal
121 *
122 * We sometimes need to be able to traverse through all the files
123 * in a given tree before all immediate subdirectories within that
124 * tree. Since traverse_trees() doesn't do that naturally, we have
125 * a traverse_trees_wrapper() that stores any immediate
126 * subdirectories while traversing files, then traverses the
127 * immediate subdirectories later. These callback_data* variables
128 * store the information for the subdirectories so that we can do
129 * that traversal order.
130 */
131 struct traversal_callback_data *callback_data;
132 int callback_data_nr, callback_data_alloc;
133 char *callback_data_traverse_path;
134
135 /*
136 * needed_limit: value needed for inexact rename detection to run
137 *
138 * If the current rename limit wasn't high enough for inexact
139 * rename detection to run, this records the limit needed. Otherwise,
140 * this value remains 0.
141 */
142 int needed_limit;
143 };
144
145 struct merge_options_internal {
146 /*
147 * paths: primary data structure in all of merge ort.
148 *
149 * The keys of paths:
150 * * are full relative paths from the toplevel of the repository
151 * (e.g. "drivers/firmware/raspberrypi.c").
152 * * store all relevant paths in the repo, both directories and
153 * files (e.g. drivers, drivers/firmware would also be included)
154 * * these keys serve to intern all the path strings, which allows
155 * us to do pointer comparison on directory names instead of
156 * strcmp; we just have to be careful to use the interned strings.
157 * (Technically paths_to_free may track some strings that were
158 * removed from froms paths.)
159 *
160 * The values of paths:
161 * * either a pointer to a merged_info, or a conflict_info struct
162 * * merged_info contains all relevant information for a
163 * non-conflicted entry.
164 * * conflict_info contains a merged_info, plus any additional
165 * information about a conflict such as the higher orders stages
166 * involved and the names of the paths those came from (handy
167 * once renames get involved).
168 * * a path may start "conflicted" (i.e. point to a conflict_info)
169 * and then a later step (e.g. three-way content merge) determines
170 * it can be cleanly merged, at which point it'll be marked clean
171 * and the algorithm will ignore any data outside the contained
172 * merged_info for that entry
173 * * If an entry remains conflicted, the merged_info portion of a
174 * conflict_info will later be filled with whatever version of
175 * the file should be placed in the working directory (e.g. an
176 * as-merged-as-possible variation that contains conflict markers).
177 */
178 struct strmap paths;
179
180 /*
181 * conflicted: a subset of keys->values from "paths"
182 *
183 * conflicted is basically an optimization between process_entries()
184 * and record_conflicted_index_entries(); the latter could loop over
185 * ALL the entries in paths AGAIN and look for the ones that are
186 * still conflicted, but since process_entries() has to loop over
187 * all of them, it saves the ones it couldn't resolve in this strmap
188 * so that record_conflicted_index_entries() can iterate just the
189 * relevant entries.
190 */
191 struct strmap conflicted;
192
193 /*
194 * paths_to_free: additional list of strings to free
195 *
196 * If keys are removed from "paths", they are added to paths_to_free
197 * to ensure they are later freed. We avoid free'ing immediately since
198 * other places (e.g. conflict_info.pathnames[]) may still be
199 * referencing these paths.
200 */
201 struct string_list paths_to_free;
202
203 /*
204 * output: special messages and conflict notices for various paths
205 *
206 * This is a map of pathnames (a subset of the keys in "paths" above)
207 * to strbufs. It gathers various warning/conflict/notice messages
208 * for later processing.
209 */
210 struct strmap output;
211
212 /*
213 * renames: various data relating to rename detection
214 */
215 struct rename_info renames;
216
217 /*
218 * current_dir_name, toplevel_dir: temporary vars
219 *
220 * These are used in collect_merge_info_callback(), and will set the
221 * various merged_info.directory_name for the various paths we get;
222 * see documentation for that variable and the requirements placed on
223 * that field.
224 */
225 const char *current_dir_name;
226 const char *toplevel_dir;
227
228 /* call_depth: recursion level counter for merging merge bases */
229 int call_depth;
230 };
231
232 struct version_info {
233 struct object_id oid;
234 unsigned short mode;
235 };
236
237 struct merged_info {
238 /* if is_null, ignore result. otherwise result has oid & mode */
239 struct version_info result;
240 unsigned is_null:1;
241
242 /*
243 * clean: whether the path in question is cleanly merged.
244 *
245 * see conflict_info.merged for more details.
246 */
247 unsigned clean:1;
248
249 /*
250 * basename_offset: offset of basename of path.
251 *
252 * perf optimization to avoid recomputing offset of final '/'
253 * character in pathname (0 if no '/' in pathname).
254 */
255 size_t basename_offset;
256
257 /*
258 * directory_name: containing directory name.
259 *
260 * Note that we assume directory_name is constructed such that
261 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
262 * i.e. string equality is equivalent to pointer equality. For this
263 * to hold, we have to be careful setting directory_name.
264 */
265 const char *directory_name;
266 };
267
268 struct conflict_info {
269 /*
270 * merged: the version of the path that will be written to working tree
271 *
272 * WARNING: It is critical to check merged.clean and ensure it is 0
273 * before reading any conflict_info fields outside of merged.
274 * Allocated merge_info structs will always have clean set to 1.
275 * Allocated conflict_info structs will have merged.clean set to 0
276 * initially. The merged.clean field is how we know if it is safe
277 * to access other parts of conflict_info besides merged; if a
278 * conflict_info's merged.clean is changed to 1, the rest of the
279 * algorithm is not allowed to look at anything outside of the
280 * merged member anymore.
281 */
282 struct merged_info merged;
283
284 /* oids & modes from each of the three trees for this path */
285 struct version_info stages[3];
286
287 /* pathnames for each stage; may differ due to rename detection */
288 const char *pathnames[3];
289
290 /* Whether this path is/was involved in a directory/file conflict */
291 unsigned df_conflict:1;
292
293 /*
294 * Whether this path is/was involved in a non-content conflict other
295 * than a directory/file conflict (e.g. rename/rename, rename/delete,
296 * file location based on possible directory rename).
297 */
298 unsigned path_conflict:1;
299
300 /*
301 * For filemask and dirmask, the ith bit corresponds to whether the
302 * ith entry is a file (filemask) or a directory (dirmask). Thus,
303 * filemask & dirmask is always zero, and filemask | dirmask is at
304 * most 7 but can be less when a path does not appear as either a
305 * file or a directory on at least one side of history.
306 *
307 * Note that these masks are related to enum merge_side, as the ith
308 * entry corresponds to side i.
309 *
310 * These values come from a traverse_trees() call; more info may be
311 * found looking at tree-walk.h's struct traverse_info,
312 * particularly the documentation above the "fn" member (note that
313 * filemask = mask & ~dirmask from that documentation).
314 */
315 unsigned filemask:3;
316 unsigned dirmask:3;
317
318 /*
319 * Optimization to track which stages match, to avoid the need to
320 * recompute it in multiple steps. Either 0 or at least 2 bits are
321 * set; if at least 2 bits are set, their corresponding stages match.
322 */
323 unsigned match_mask:3;
324 };
325
326 /*** Function Grouping: various utility functions ***/
327
328 /*
329 * For the next three macros, see warning for conflict_info.merged.
330 *
331 * In each of the below, mi is a struct merged_info*, and ci was defined
332 * as a struct conflict_info* (but we need to verify ci isn't actually
333 * pointed at a struct merged_info*).
334 *
335 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
336 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
337 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
338 */
339 #define INITIALIZE_CI(ci, mi) do { \
340 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
341 } while (0)
342 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
343 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
344 (ci) = (struct conflict_info *)(mi); \
345 assert((ci) && !(mi)->clean); \
346 } while (0)
347
348 static void free_strmap_strings(struct strmap *map)
349 {
350 struct hashmap_iter iter;
351 struct strmap_entry *entry;
352
353 strmap_for_each_entry(map, &iter, entry) {
354 free((char*)entry->key);
355 }
356 }
357
358 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
359 int reinitialize)
360 {
361 struct rename_info *renames = &opti->renames;
362 int i;
363 void (*strmap_func)(struct strmap *, int) =
364 reinitialize ? strmap_partial_clear : strmap_clear;
365 void (*strset_func)(struct strset *) =
366 reinitialize ? strset_partial_clear : strset_clear;
367
368 /*
369 * We marked opti->paths with strdup_strings = 0, so that we
370 * wouldn't have to make another copy of the fullpath created by
371 * make_traverse_path from setup_path_info(). But, now that we've
372 * used it and have no other references to these strings, it is time
373 * to deallocate them.
374 */
375 free_strmap_strings(&opti->paths);
376 strmap_func(&opti->paths, 1);
377
378 /*
379 * All keys and values in opti->conflicted are a subset of those in
380 * opti->paths. We don't want to deallocate anything twice, so we
381 * don't free the keys and we pass 0 for free_values.
382 */
383 strmap_func(&opti->conflicted, 0);
384
385 /*
386 * opti->paths_to_free is similar to opti->paths; we created it with
387 * strdup_strings = 0 to avoid making _another_ copy of the fullpath
388 * but now that we've used it and have no other references to these
389 * strings, it is time to deallocate them. We do so by temporarily
390 * setting strdup_strings to 1.
391 */
392 opti->paths_to_free.strdup_strings = 1;
393 string_list_clear(&opti->paths_to_free, 0);
394 opti->paths_to_free.strdup_strings = 0;
395
396 /* Free memory used by various renames maps */
397 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
398 strset_func(&renames->dirs_removed[i]);
399
400 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
401 if (!reinitialize)
402 strmap_clear(&renames->dir_rename_count[i], 1);
403
404 strmap_func(&renames->dir_renames[i], 0);
405
406 strset_func(&renames->relevant_sources[i]);
407 }
408
409 if (!reinitialize) {
410 struct hashmap_iter iter;
411 struct strmap_entry *e;
412
413 /* Release and free each strbuf found in output */
414 strmap_for_each_entry(&opti->output, &iter, e) {
415 struct strbuf *sb = e->value;
416 strbuf_release(sb);
417 /*
418 * While strictly speaking we don't need to free(sb)
419 * here because we could pass free_values=1 when
420 * calling strmap_clear() on opti->output, that would
421 * require strmap_clear to do another
422 * strmap_for_each_entry() loop, so we just free it
423 * while we're iterating anyway.
424 */
425 free(sb);
426 }
427 strmap_clear(&opti->output, 0);
428 }
429
430 renames->dir_rename_mask = 0;
431
432 /* Clean out callback_data as well. */
433 FREE_AND_NULL(renames->callback_data);
434 renames->callback_data_nr = renames->callback_data_alloc = 0;
435 }
436
437 static int err(struct merge_options *opt, const char *err, ...)
438 {
439 va_list params;
440 struct strbuf sb = STRBUF_INIT;
441
442 strbuf_addstr(&sb, "error: ");
443 va_start(params, err);
444 strbuf_vaddf(&sb, err, params);
445 va_end(params);
446
447 error("%s", sb.buf);
448 strbuf_release(&sb);
449
450 return -1;
451 }
452
453 static void format_commit(struct strbuf *sb,
454 int indent,
455 struct commit *commit)
456 {
457 struct merge_remote_desc *desc;
458 struct pretty_print_context ctx = {0};
459 ctx.abbrev = DEFAULT_ABBREV;
460
461 strbuf_addchars(sb, ' ', indent);
462 desc = merge_remote_util(commit);
463 if (desc) {
464 strbuf_addf(sb, "virtual %s\n", desc->name);
465 return;
466 }
467
468 format_commit_message(commit, "%h %s", sb, &ctx);
469 strbuf_addch(sb, '\n');
470 }
471
472 __attribute__((format (printf, 4, 5)))
473 static void path_msg(struct merge_options *opt,
474 const char *path,
475 int omittable_hint, /* skippable under --remerge-diff */
476 const char *fmt, ...)
477 {
478 va_list ap;
479 struct strbuf *sb = strmap_get(&opt->priv->output, path);
480 if (!sb) {
481 sb = xmalloc(sizeof(*sb));
482 strbuf_init(sb, 0);
483 strmap_put(&opt->priv->output, path, sb);
484 }
485
486 va_start(ap, fmt);
487 strbuf_vaddf(sb, fmt, ap);
488 va_end(ap);
489
490 strbuf_addch(sb, '\n');
491 }
492
493 /* add a string to a strbuf, but converting "/" to "_" */
494 static void add_flattened_path(struct strbuf *out, const char *s)
495 {
496 size_t i = out->len;
497 strbuf_addstr(out, s);
498 for (; i < out->len; i++)
499 if (out->buf[i] == '/')
500 out->buf[i] = '_';
501 }
502
503 static char *unique_path(struct strmap *existing_paths,
504 const char *path,
505 const char *branch)
506 {
507 struct strbuf newpath = STRBUF_INIT;
508 int suffix = 0;
509 size_t base_len;
510
511 strbuf_addf(&newpath, "%s~", path);
512 add_flattened_path(&newpath, branch);
513
514 base_len = newpath.len;
515 while (strmap_contains(existing_paths, newpath.buf)) {
516 strbuf_setlen(&newpath, base_len);
517 strbuf_addf(&newpath, "_%d", suffix++);
518 }
519
520 return strbuf_detach(&newpath, NULL);
521 }
522
523 /*** Function Grouping: functions related to collect_merge_info() ***/
524
525 static int traverse_trees_wrapper_callback(int n,
526 unsigned long mask,
527 unsigned long dirmask,
528 struct name_entry *names,
529 struct traverse_info *info)
530 {
531 struct merge_options *opt = info->data;
532 struct rename_info *renames = &opt->priv->renames;
533 unsigned filemask = mask & ~dirmask;
534
535 assert(n==3);
536
537 if (!renames->callback_data_traverse_path)
538 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
539
540 if (filemask && filemask == renames->dir_rename_mask)
541 renames->dir_rename_mask = 0x07;
542
543 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
544 renames->callback_data_alloc);
545 renames->callback_data[renames->callback_data_nr].mask = mask;
546 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
547 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
548 names, 3);
549 renames->callback_data_nr++;
550
551 return mask;
552 }
553
554 /*
555 * Much like traverse_trees(), BUT:
556 * - read all the tree entries FIRST, saving them
557 * - note that the above step provides an opportunity to compute necessary
558 * additional details before the "real" traversal
559 * - loop through the saved entries and call the original callback on them
560 */
561 static int traverse_trees_wrapper(struct index_state *istate,
562 int n,
563 struct tree_desc *t,
564 struct traverse_info *info)
565 {
566 int ret, i, old_offset;
567 traverse_callback_t old_fn;
568 char *old_callback_data_traverse_path;
569 struct merge_options *opt = info->data;
570 struct rename_info *renames = &opt->priv->renames;
571
572 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
573
574 old_callback_data_traverse_path = renames->callback_data_traverse_path;
575 old_fn = info->fn;
576 old_offset = renames->callback_data_nr;
577
578 renames->callback_data_traverse_path = NULL;
579 info->fn = traverse_trees_wrapper_callback;
580 ret = traverse_trees(istate, n, t, info);
581 if (ret < 0)
582 return ret;
583
584 info->traverse_path = renames->callback_data_traverse_path;
585 info->fn = old_fn;
586 for (i = old_offset; i < renames->callback_data_nr; ++i) {
587 info->fn(n,
588 renames->callback_data[i].mask,
589 renames->callback_data[i].dirmask,
590 renames->callback_data[i].names,
591 info);
592 }
593
594 renames->callback_data_nr = old_offset;
595 free(renames->callback_data_traverse_path);
596 renames->callback_data_traverse_path = old_callback_data_traverse_path;
597 info->traverse_path = NULL;
598 return 0;
599 }
600
601 static void setup_path_info(struct merge_options *opt,
602 struct string_list_item *result,
603 const char *current_dir_name,
604 int current_dir_name_len,
605 char *fullpath, /* we'll take over ownership */
606 struct name_entry *names,
607 struct name_entry *merged_version,
608 unsigned is_null, /* boolean */
609 unsigned df_conflict, /* boolean */
610 unsigned filemask,
611 unsigned dirmask,
612 int resolved /* boolean */)
613 {
614 /* result->util is void*, so mi is a convenience typed variable */
615 struct merged_info *mi;
616
617 assert(!is_null || resolved);
618 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
619 assert(resolved == (merged_version != NULL));
620
621 mi = xcalloc(1, resolved ? sizeof(struct merged_info) :
622 sizeof(struct conflict_info));
623 mi->directory_name = current_dir_name;
624 mi->basename_offset = current_dir_name_len;
625 mi->clean = !!resolved;
626 if (resolved) {
627 mi->result.mode = merged_version->mode;
628 oidcpy(&mi->result.oid, &merged_version->oid);
629 mi->is_null = !!is_null;
630 } else {
631 int i;
632 struct conflict_info *ci;
633
634 ASSIGN_AND_VERIFY_CI(ci, mi);
635 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
636 ci->pathnames[i] = fullpath;
637 ci->stages[i].mode = names[i].mode;
638 oidcpy(&ci->stages[i].oid, &names[i].oid);
639 }
640 ci->filemask = filemask;
641 ci->dirmask = dirmask;
642 ci->df_conflict = !!df_conflict;
643 if (dirmask)
644 /*
645 * Assume is_null for now, but if we have entries
646 * under the directory then when it is complete in
647 * write_completed_directory() it'll update this.
648 * Also, for D/F conflicts, we have to handle the
649 * directory first, then clear this bit and process
650 * the file to see how it is handled -- that occurs
651 * near the top of process_entry().
652 */
653 mi->is_null = 1;
654 }
655 strmap_put(&opt->priv->paths, fullpath, mi);
656 result->string = fullpath;
657 result->util = mi;
658 }
659
660 static void add_pair(struct merge_options *opt,
661 struct name_entry *names,
662 const char *pathname,
663 unsigned side,
664 unsigned is_add /* if false, is_delete */,
665 unsigned match_mask,
666 unsigned dir_rename_mask)
667 {
668 struct diff_filespec *one, *two;
669 struct rename_info *renames = &opt->priv->renames;
670 int names_idx = is_add ? side : 0;
671
672 if (!is_add) {
673 unsigned content_relevant = (match_mask == 0);
674 unsigned location_relevant = (dir_rename_mask == 0x07);
675
676 if (content_relevant || location_relevant)
677 strset_add(&renames->relevant_sources[side], pathname);
678 }
679
680 one = alloc_filespec(pathname);
681 two = alloc_filespec(pathname);
682 fill_filespec(is_add ? two : one,
683 &names[names_idx].oid, 1, names[names_idx].mode);
684 diff_queue(&renames->pairs[side], one, two);
685 }
686
687 static void collect_rename_info(struct merge_options *opt,
688 struct name_entry *names,
689 const char *dirname,
690 const char *fullname,
691 unsigned filemask,
692 unsigned dirmask,
693 unsigned match_mask)
694 {
695 struct rename_info *renames = &opt->priv->renames;
696 unsigned side;
697
698 /*
699 * Update dir_rename_mask (determines ignore-rename-source validity)
700 *
701 * dir_rename_mask helps us keep track of when directory rename
702 * detection may be relevant. Basically, whenver a directory is
703 * removed on one side of history, and a file is added to that
704 * directory on the other side of history, directory rename
705 * detection is relevant (meaning we have to detect renames for all
706 * files within that directory to deduce where the directory
707 * moved). Also, whenever a directory needs directory rename
708 * detection, due to the "majority rules" choice for where to move
709 * it (see t6423 testcase 1f), we also need to detect renames for
710 * all files within subdirectories of that directory as well.
711 *
712 * Here we haven't looked at files within the directory yet, we are
713 * just looking at the directory itself. So, if we aren't yet in
714 * a case where a parent directory needed directory rename detection
715 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
716 * on one side of history, record the mask of the other side of
717 * history in dir_rename_mask.
718 */
719 if (renames->dir_rename_mask != 0x07 &&
720 (dirmask == 3 || dirmask == 5)) {
721 /* simple sanity check */
722 assert(renames->dir_rename_mask == 0 ||
723 renames->dir_rename_mask == (dirmask & ~1));
724 /* update dir_rename_mask; have it record mask of new side */
725 renames->dir_rename_mask = (dirmask & ~1);
726 }
727
728 /* Update dirs_removed, as needed */
729 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
730 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
731 unsigned sides = (0x07 - dirmask)/2;
732 if (sides & 1)
733 strset_add(&renames->dirs_removed[1], fullname);
734 if (sides & 2)
735 strset_add(&renames->dirs_removed[2], fullname);
736 }
737
738 if (filemask == 0 || filemask == 7)
739 return;
740
741 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
742 unsigned side_mask = (1 << side);
743
744 /* Check for deletion on side */
745 if ((filemask & 1) && !(filemask & side_mask))
746 add_pair(opt, names, fullname, side, 0 /* delete */,
747 match_mask & filemask,
748 renames->dir_rename_mask);
749
750 /* Check for addition on side */
751 if (!(filemask & 1) && (filemask & side_mask))
752 add_pair(opt, names, fullname, side, 1 /* add */,
753 match_mask & filemask,
754 renames->dir_rename_mask);
755 }
756 }
757
758 static int collect_merge_info_callback(int n,
759 unsigned long mask,
760 unsigned long dirmask,
761 struct name_entry *names,
762 struct traverse_info *info)
763 {
764 /*
765 * n is 3. Always.
766 * common ancestor (mbase) has mask 1, and stored in index 0 of names
767 * head of side 1 (side1) has mask 2, and stored in index 1 of names
768 * head of side 2 (side2) has mask 4, and stored in index 2 of names
769 */
770 struct merge_options *opt = info->data;
771 struct merge_options_internal *opti = opt->priv;
772 struct rename_info *renames = &opt->priv->renames;
773 struct string_list_item pi; /* Path Info */
774 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
775 struct name_entry *p;
776 size_t len;
777 char *fullpath;
778 const char *dirname = opti->current_dir_name;
779 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
780 unsigned filemask = mask & ~dirmask;
781 unsigned match_mask = 0; /* will be updated below */
782 unsigned mbase_null = !(mask & 1);
783 unsigned side1_null = !(mask & 2);
784 unsigned side2_null = !(mask & 4);
785 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
786 names[0].mode == names[1].mode &&
787 oideq(&names[0].oid, &names[1].oid));
788 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
789 names[0].mode == names[2].mode &&
790 oideq(&names[0].oid, &names[2].oid));
791 unsigned sides_match = (!side1_null && !side2_null &&
792 names[1].mode == names[2].mode &&
793 oideq(&names[1].oid, &names[2].oid));
794
795 /*
796 * Note: When a path is a file on one side of history and a directory
797 * in another, we have a directory/file conflict. In such cases, if
798 * the conflict doesn't resolve from renames and deletions, then we
799 * always leave directories where they are and move files out of the
800 * way. Thus, while struct conflict_info has a df_conflict field to
801 * track such conflicts, we ignore that field for any directories at
802 * a path and only pay attention to it for files at the given path.
803 * The fact that we leave directories were they are also means that
804 * we do not need to worry about getting additional df_conflict
805 * information propagated from parent directories down to children
806 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
807 * sets a newinfo.df_conflicts field specifically to propagate it).
808 */
809 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
810
811 /* n = 3 is a fundamental assumption. */
812 if (n != 3)
813 BUG("Called collect_merge_info_callback wrong");
814
815 /*
816 * A bunch of sanity checks verifying that traverse_trees() calls
817 * us the way I expect. Could just remove these at some point,
818 * though maybe they are helpful to future code readers.
819 */
820 assert(mbase_null == is_null_oid(&names[0].oid));
821 assert(side1_null == is_null_oid(&names[1].oid));
822 assert(side2_null == is_null_oid(&names[2].oid));
823 assert(!mbase_null || !side1_null || !side2_null);
824 assert(mask > 0 && mask < 8);
825
826 /* Determine match_mask */
827 if (side1_matches_mbase)
828 match_mask = (side2_matches_mbase ? 7 : 3);
829 else if (side2_matches_mbase)
830 match_mask = 5;
831 else if (sides_match)
832 match_mask = 6;
833
834 /*
835 * Get the name of the relevant filepath, which we'll pass to
836 * setup_path_info() for tracking.
837 */
838 p = names;
839 while (!p->mode)
840 p++;
841 len = traverse_path_len(info, p->pathlen);
842
843 /* +1 in both of the following lines to include the NUL byte */
844 fullpath = xmalloc(len + 1);
845 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
846
847 /*
848 * If mbase, side1, and side2 all match, we can resolve early. Even
849 * if these are trees, there will be no renames or anything
850 * underneath.
851 */
852 if (side1_matches_mbase && side2_matches_mbase) {
853 /* mbase, side1, & side2 all match; use mbase as resolution */
854 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
855 names, names+0, mbase_null, 0,
856 filemask, dirmask, 1);
857 return mask;
858 }
859
860 /*
861 * Gather additional information used in rename detection.
862 */
863 collect_rename_info(opt, names, dirname, fullpath,
864 filemask, dirmask, match_mask);
865
866 /*
867 * Record information about the path so we can resolve later in
868 * process_entries.
869 */
870 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
871 names, NULL, 0, df_conflict, filemask, dirmask, 0);
872
873 ci = pi.util;
874 VERIFY_CI(ci);
875 ci->match_mask = match_mask;
876
877 /* If dirmask, recurse into subdirectories */
878 if (dirmask) {
879 struct traverse_info newinfo;
880 struct tree_desc t[3];
881 void *buf[3] = {NULL, NULL, NULL};
882 const char *original_dir_name;
883 int i, ret;
884
885 ci->match_mask &= filemask;
886 newinfo = *info;
887 newinfo.prev = info;
888 newinfo.name = p->path;
889 newinfo.namelen = p->pathlen;
890 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
891 /*
892 * If this directory we are about to recurse into cared about
893 * its parent directory (the current directory) having a D/F
894 * conflict, then we'd propagate the masks in this way:
895 * newinfo.df_conflicts |= (mask & ~dirmask);
896 * But we don't worry about propagating D/F conflicts. (See
897 * comment near setting of local df_conflict variable near
898 * the beginning of this function).
899 */
900
901 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
902 if (i == 1 && side1_matches_mbase)
903 t[1] = t[0];
904 else if (i == 2 && side2_matches_mbase)
905 t[2] = t[0];
906 else if (i == 2 && sides_match)
907 t[2] = t[1];
908 else {
909 const struct object_id *oid = NULL;
910 if (dirmask & 1)
911 oid = &names[i].oid;
912 buf[i] = fill_tree_descriptor(opt->repo,
913 t + i, oid);
914 }
915 dirmask >>= 1;
916 }
917
918 original_dir_name = opti->current_dir_name;
919 opti->current_dir_name = pi.string;
920 if (renames->dir_rename_mask == 0 ||
921 renames->dir_rename_mask == 0x07)
922 ret = traverse_trees(NULL, 3, t, &newinfo);
923 else
924 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
925 opti->current_dir_name = original_dir_name;
926 renames->dir_rename_mask = prev_dir_rename_mask;
927
928 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
929 free(buf[i]);
930
931 if (ret < 0)
932 return -1;
933 }
934
935 return mask;
936 }
937
938 static int collect_merge_info(struct merge_options *opt,
939 struct tree *merge_base,
940 struct tree *side1,
941 struct tree *side2)
942 {
943 int ret;
944 struct tree_desc t[3];
945 struct traverse_info info;
946
947 opt->priv->toplevel_dir = "";
948 opt->priv->current_dir_name = opt->priv->toplevel_dir;
949 setup_traverse_info(&info, opt->priv->toplevel_dir);
950 info.fn = collect_merge_info_callback;
951 info.data = opt;
952 info.show_all_errors = 1;
953
954 parse_tree(merge_base);
955 parse_tree(side1);
956 parse_tree(side2);
957 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
958 init_tree_desc(t + 1, side1->buffer, side1->size);
959 init_tree_desc(t + 2, side2->buffer, side2->size);
960
961 trace2_region_enter("merge", "traverse_trees", opt->repo);
962 ret = traverse_trees(NULL, 3, t, &info);
963 trace2_region_leave("merge", "traverse_trees", opt->repo);
964
965 return ret;
966 }
967
968 /*** Function Grouping: functions related to threeway content merges ***/
969
970 static int find_first_merges(struct repository *repo,
971 const char *path,
972 struct commit *a,
973 struct commit *b,
974 struct object_array *result)
975 {
976 int i, j;
977 struct object_array merges = OBJECT_ARRAY_INIT;
978 struct commit *commit;
979 int contains_another;
980
981 char merged_revision[GIT_MAX_HEXSZ + 2];
982 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
983 "--all", merged_revision, NULL };
984 struct rev_info revs;
985 struct setup_revision_opt rev_opts;
986
987 memset(result, 0, sizeof(struct object_array));
988 memset(&rev_opts, 0, sizeof(rev_opts));
989
990 /* get all revisions that merge commit a */
991 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
992 oid_to_hex(&a->object.oid));
993 repo_init_revisions(repo, &revs, NULL);
994 rev_opts.submodule = path;
995 /* FIXME: can't handle linked worktrees in submodules yet */
996 revs.single_worktree = path != NULL;
997 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
998
999 /* save all revisions from the above list that contain b */
1000 if (prepare_revision_walk(&revs))
1001 die("revision walk setup failed");
1002 while ((commit = get_revision(&revs)) != NULL) {
1003 struct object *o = &(commit->object);
1004 if (in_merge_bases(b, commit))
1005 add_object_array(o, NULL, &merges);
1006 }
1007 reset_revision_walk();
1008
1009 /* Now we've got all merges that contain a and b. Prune all
1010 * merges that contain another found merge and save them in
1011 * result.
1012 */
1013 for (i = 0; i < merges.nr; i++) {
1014 struct commit *m1 = (struct commit *) merges.objects[i].item;
1015
1016 contains_another = 0;
1017 for (j = 0; j < merges.nr; j++) {
1018 struct commit *m2 = (struct commit *) merges.objects[j].item;
1019 if (i != j && in_merge_bases(m2, m1)) {
1020 contains_another = 1;
1021 break;
1022 }
1023 }
1024
1025 if (!contains_another)
1026 add_object_array(merges.objects[i].item, NULL, result);
1027 }
1028
1029 object_array_clear(&merges);
1030 return result->nr;
1031 }
1032
1033 static int merge_submodule(struct merge_options *opt,
1034 const char *path,
1035 const struct object_id *o,
1036 const struct object_id *a,
1037 const struct object_id *b,
1038 struct object_id *result)
1039 {
1040 struct commit *commit_o, *commit_a, *commit_b;
1041 int parent_count;
1042 struct object_array merges;
1043 struct strbuf sb = STRBUF_INIT;
1044
1045 int i;
1046 int search = !opt->priv->call_depth;
1047
1048 /* store fallback answer in result in case we fail */
1049 oidcpy(result, opt->priv->call_depth ? o : a);
1050
1051 /* we can not handle deletion conflicts */
1052 if (is_null_oid(o))
1053 return 0;
1054 if (is_null_oid(a))
1055 return 0;
1056 if (is_null_oid(b))
1057 return 0;
1058
1059 if (add_submodule_odb(path)) {
1060 path_msg(opt, path, 0,
1061 _("Failed to merge submodule %s (not checked out)"),
1062 path);
1063 return 0;
1064 }
1065
1066 if (!(commit_o = lookup_commit_reference(opt->repo, o)) ||
1067 !(commit_a = lookup_commit_reference(opt->repo, a)) ||
1068 !(commit_b = lookup_commit_reference(opt->repo, b))) {
1069 path_msg(opt, path, 0,
1070 _("Failed to merge submodule %s (commits not present)"),
1071 path);
1072 return 0;
1073 }
1074
1075 /* check whether both changes are forward */
1076 if (!in_merge_bases(commit_o, commit_a) ||
1077 !in_merge_bases(commit_o, commit_b)) {
1078 path_msg(opt, path, 0,
1079 _("Failed to merge submodule %s "
1080 "(commits don't follow merge-base)"),
1081 path);
1082 return 0;
1083 }
1084
1085 /* Case #1: a is contained in b or vice versa */
1086 if (in_merge_bases(commit_a, commit_b)) {
1087 oidcpy(result, b);
1088 path_msg(opt, path, 1,
1089 _("Note: Fast-forwarding submodule %s to %s"),
1090 path, oid_to_hex(b));
1091 return 1;
1092 }
1093 if (in_merge_bases(commit_b, commit_a)) {
1094 oidcpy(result, a);
1095 path_msg(opt, path, 1,
1096 _("Note: Fast-forwarding submodule %s to %s"),
1097 path, oid_to_hex(a));
1098 return 1;
1099 }
1100
1101 /*
1102 * Case #2: There are one or more merges that contain a and b in
1103 * the submodule. If there is only one, then present it as a
1104 * suggestion to the user, but leave it marked unmerged so the
1105 * user needs to confirm the resolution.
1106 */
1107
1108 /* Skip the search if makes no sense to the calling context. */
1109 if (!search)
1110 return 0;
1111
1112 /* find commit which merges them */
1113 parent_count = find_first_merges(opt->repo, path, commit_a, commit_b,
1114 &merges);
1115 switch (parent_count) {
1116 case 0:
1117 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1118 break;
1119
1120 case 1:
1121 format_commit(&sb, 4,
1122 (struct commit *)merges.objects[0].item);
1123 path_msg(opt, path, 0,
1124 _("Failed to merge submodule %s, but a possible merge "
1125 "resolution exists:\n%s\n"),
1126 path, sb.buf);
1127 path_msg(opt, path, 1,
1128 _("If this is correct simply add it to the index "
1129 "for example\n"
1130 "by using:\n\n"
1131 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1132 "which will accept this suggestion.\n"),
1133 oid_to_hex(&merges.objects[0].item->oid), path);
1134 strbuf_release(&sb);
1135 break;
1136 default:
1137 for (i = 0; i < merges.nr; i++)
1138 format_commit(&sb, 4,
1139 (struct commit *)merges.objects[i].item);
1140 path_msg(opt, path, 0,
1141 _("Failed to merge submodule %s, but multiple "
1142 "possible merges exist:\n%s"), path, sb.buf);
1143 strbuf_release(&sb);
1144 }
1145
1146 object_array_clear(&merges);
1147 return 0;
1148 }
1149
1150 static int merge_3way(struct merge_options *opt,
1151 const char *path,
1152 const struct object_id *o,
1153 const struct object_id *a,
1154 const struct object_id *b,
1155 const char *pathnames[3],
1156 const int extra_marker_size,
1157 mmbuffer_t *result_buf)
1158 {
1159 mmfile_t orig, src1, src2;
1160 struct ll_merge_options ll_opts = {0};
1161 char *base, *name1, *name2;
1162 int merge_status;
1163
1164 ll_opts.renormalize = opt->renormalize;
1165 ll_opts.extra_marker_size = extra_marker_size;
1166 ll_opts.xdl_opts = opt->xdl_opts;
1167
1168 if (opt->priv->call_depth) {
1169 ll_opts.virtual_ancestor = 1;
1170 ll_opts.variant = 0;
1171 } else {
1172 switch (opt->recursive_variant) {
1173 case MERGE_VARIANT_OURS:
1174 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1175 break;
1176 case MERGE_VARIANT_THEIRS:
1177 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1178 break;
1179 default:
1180 ll_opts.variant = 0;
1181 break;
1182 }
1183 }
1184
1185 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1186 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1187 base = mkpathdup("%s", opt->ancestor);
1188 name1 = mkpathdup("%s", opt->branch1);
1189 name2 = mkpathdup("%s", opt->branch2);
1190 } else {
1191 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1192 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1193 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1194 }
1195
1196 read_mmblob(&orig, o);
1197 read_mmblob(&src1, a);
1198 read_mmblob(&src2, b);
1199
1200 merge_status = ll_merge(result_buf, path, &orig, base,
1201 &src1, name1, &src2, name2,
1202 opt->repo->index, &ll_opts);
1203
1204 free(base);
1205 free(name1);
1206 free(name2);
1207 free(orig.ptr);
1208 free(src1.ptr);
1209 free(src2.ptr);
1210 return merge_status;
1211 }
1212
1213 static int handle_content_merge(struct merge_options *opt,
1214 const char *path,
1215 const struct version_info *o,
1216 const struct version_info *a,
1217 const struct version_info *b,
1218 const char *pathnames[3],
1219 const int extra_marker_size,
1220 struct version_info *result)
1221 {
1222 /*
1223 * path is the target location where we want to put the file, and
1224 * is used to determine any normalization rules in ll_merge.
1225 *
1226 * The normal case is that path and all entries in pathnames are
1227 * identical, though renames can affect which path we got one of
1228 * the three blobs to merge on various sides of history.
1229 *
1230 * extra_marker_size is the amount to extend conflict markers in
1231 * ll_merge; this is neeed if we have content merges of content
1232 * merges, which happens for example with rename/rename(2to1) and
1233 * rename/add conflicts.
1234 */
1235 unsigned clean = 1;
1236
1237 /*
1238 * handle_content_merge() needs both files to be of the same type, i.e.
1239 * both files OR both submodules OR both symlinks. Conflicting types
1240 * needs to be handled elsewhere.
1241 */
1242 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1243
1244 /* Merge modes */
1245 if (a->mode == b->mode || a->mode == o->mode)
1246 result->mode = b->mode;
1247 else {
1248 /* must be the 100644/100755 case */
1249 assert(S_ISREG(a->mode));
1250 result->mode = a->mode;
1251 clean = (b->mode == o->mode);
1252 /*
1253 * FIXME: If opt->priv->call_depth && !clean, then we really
1254 * should not make result->mode match either a->mode or
1255 * b->mode; that causes t6036 "check conflicting mode for
1256 * regular file" to fail. It would be best to use some other
1257 * mode, but we'll confuse all kinds of stuff if we use one
1258 * where S_ISREG(result->mode) isn't true, and if we use
1259 * something like 0100666, then tree-walk.c's calls to
1260 * canon_mode() will just normalize that to 100644 for us and
1261 * thus not solve anything.
1262 *
1263 * Figure out if there's some kind of way we can work around
1264 * this...
1265 */
1266 }
1267
1268 /*
1269 * Trivial oid merge.
1270 *
1271 * Note: While one might assume that the next four lines would
1272 * be unnecessary due to the fact that match_mask is often
1273 * setup and already handled, renames don't always take care
1274 * of that.
1275 */
1276 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1277 oidcpy(&result->oid, &b->oid);
1278 else if (oideq(&b->oid, &o->oid))
1279 oidcpy(&result->oid, &a->oid);
1280
1281 /* Remaining rules depend on file vs. submodule vs. symlink. */
1282 else if (S_ISREG(a->mode)) {
1283 mmbuffer_t result_buf;
1284 int ret = 0, merge_status;
1285 int two_way;
1286
1287 /*
1288 * If 'o' is different type, treat it as null so we do a
1289 * two-way merge.
1290 */
1291 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1292
1293 merge_status = merge_3way(opt, path,
1294 two_way ? &null_oid : &o->oid,
1295 &a->oid, &b->oid,
1296 pathnames, extra_marker_size,
1297 &result_buf);
1298
1299 if ((merge_status < 0) || !result_buf.ptr)
1300 ret = err(opt, _("Failed to execute internal merge"));
1301
1302 if (!ret &&
1303 write_object_file(result_buf.ptr, result_buf.size,
1304 blob_type, &result->oid))
1305 ret = err(opt, _("Unable to add %s to database"),
1306 path);
1307
1308 free(result_buf.ptr);
1309 if (ret)
1310 return -1;
1311 clean &= (merge_status == 0);
1312 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1313 } else if (S_ISGITLINK(a->mode)) {
1314 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1315 clean = merge_submodule(opt, pathnames[0],
1316 two_way ? &null_oid : &o->oid,
1317 &a->oid, &b->oid, &result->oid);
1318 if (opt->priv->call_depth && two_way && !clean) {
1319 result->mode = o->mode;
1320 oidcpy(&result->oid, &o->oid);
1321 }
1322 } else if (S_ISLNK(a->mode)) {
1323 if (opt->priv->call_depth) {
1324 clean = 0;
1325 result->mode = o->mode;
1326 oidcpy(&result->oid, &o->oid);
1327 } else {
1328 switch (opt->recursive_variant) {
1329 case MERGE_VARIANT_NORMAL:
1330 clean = 0;
1331 oidcpy(&result->oid, &a->oid);
1332 break;
1333 case MERGE_VARIANT_OURS:
1334 oidcpy(&result->oid, &a->oid);
1335 break;
1336 case MERGE_VARIANT_THEIRS:
1337 oidcpy(&result->oid, &b->oid);
1338 break;
1339 }
1340 }
1341 } else
1342 BUG("unsupported object type in the tree: %06o for %s",
1343 a->mode, path);
1344
1345 return clean;
1346 }
1347
1348 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1349 *** which are split into directory and regular rename detection sections. ***/
1350
1351 /*** Function Grouping: functions related to directory rename detection ***/
1352
1353 struct collision_info {
1354 struct string_list source_files;
1355 unsigned reported_already:1;
1356 };
1357
1358 /*
1359 * Return a new string that replaces the beginning portion (which matches
1360 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1361 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1362 * NOTE:
1363 * Caller must ensure that old_path starts with rename_info->key + '/'.
1364 */
1365 static char *apply_dir_rename(struct strmap_entry *rename_info,
1366 const char *old_path)
1367 {
1368 struct strbuf new_path = STRBUF_INIT;
1369 const char *old_dir = rename_info->key;
1370 const char *new_dir = rename_info->value;
1371 int oldlen, newlen, new_dir_len;
1372
1373 oldlen = strlen(old_dir);
1374 if (*new_dir == '\0')
1375 /*
1376 * If someone renamed/merged a subdirectory into the root
1377 * directory (e.g. 'some/subdir' -> ''), then we want to
1378 * avoid returning
1379 * '' + '/filename'
1380 * as the rename; we need to make old_path + oldlen advance
1381 * past the '/' character.
1382 */
1383 oldlen++;
1384 new_dir_len = strlen(new_dir);
1385 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1386 strbuf_grow(&new_path, newlen);
1387 strbuf_add(&new_path, new_dir, new_dir_len);
1388 strbuf_addstr(&new_path, &old_path[oldlen]);
1389
1390 return strbuf_detach(&new_path, NULL);
1391 }
1392
1393 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
1394 {
1395 struct merged_info *mi = strmap_get(paths, path);
1396 struct conflict_info *ci;
1397 if (!mi)
1398 return 0;
1399 INITIALIZE_CI(ci, mi);
1400 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
1401 }
1402
1403 /*
1404 * See if there is a directory rename for path, and if there are any file
1405 * level conflicts on the given side for the renamed location. If there is
1406 * a rename and there are no conflicts, return the new name. Otherwise,
1407 * return NULL.
1408 */
1409 static char *handle_path_level_conflicts(struct merge_options *opt,
1410 const char *path,
1411 unsigned side_index,
1412 struct strmap_entry *rename_info,
1413 struct strmap *collisions)
1414 {
1415 char *new_path = NULL;
1416 struct collision_info *c_info;
1417 int clean = 1;
1418 struct strbuf collision_paths = STRBUF_INIT;
1419
1420 /*
1421 * entry has the mapping of old directory name to new directory name
1422 * that we want to apply to path.
1423 */
1424 new_path = apply_dir_rename(rename_info, path);
1425 if (!new_path)
1426 BUG("Failed to apply directory rename!");
1427
1428 /*
1429 * The caller needs to have ensured that it has pre-populated
1430 * collisions with all paths that map to new_path. Do a quick check
1431 * to ensure that's the case.
1432 */
1433 c_info = strmap_get(collisions, new_path);
1434 if (c_info == NULL)
1435 BUG("c_info is NULL");
1436
1437 /*
1438 * Check for one-sided add/add/.../add conflicts, i.e.
1439 * where implicit renames from the other side doing
1440 * directory rename(s) can affect this side of history
1441 * to put multiple paths into the same location. Warn
1442 * and bail on directory renames for such paths.
1443 */
1444 if (c_info->reported_already) {
1445 clean = 0;
1446 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
1447 c_info->reported_already = 1;
1448 strbuf_add_separated_string_list(&collision_paths, ", ",
1449 &c_info->source_files);
1450 path_msg(opt, new_path, 0,
1451 _("CONFLICT (implicit dir rename): Existing file/dir "
1452 "at %s in the way of implicit directory rename(s) "
1453 "putting the following path(s) there: %s."),
1454 new_path, collision_paths.buf);
1455 clean = 0;
1456 } else if (c_info->source_files.nr > 1) {
1457 c_info->reported_already = 1;
1458 strbuf_add_separated_string_list(&collision_paths, ", ",
1459 &c_info->source_files);
1460 path_msg(opt, new_path, 0,
1461 _("CONFLICT (implicit dir rename): Cannot map more "
1462 "than one path to %s; implicit directory renames "
1463 "tried to put these paths there: %s"),
1464 new_path, collision_paths.buf);
1465 clean = 0;
1466 }
1467
1468 /* Free memory we no longer need */
1469 strbuf_release(&collision_paths);
1470 if (!clean && new_path) {
1471 free(new_path);
1472 return NULL;
1473 }
1474
1475 return new_path;
1476 }
1477
1478 static void get_provisional_directory_renames(struct merge_options *opt,
1479 unsigned side,
1480 int *clean)
1481 {
1482 struct hashmap_iter iter;
1483 struct strmap_entry *entry;
1484 struct rename_info *renames = &opt->priv->renames;
1485
1486 /*
1487 * Collapse
1488 * dir_rename_count: old_directory -> {new_directory -> count}
1489 * down to
1490 * dir_renames: old_directory -> best_new_directory
1491 * where best_new_directory is the one with the unique highest count.
1492 */
1493 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
1494 const char *source_dir = entry->key;
1495 struct strintmap *counts = entry->value;
1496 struct hashmap_iter count_iter;
1497 struct strmap_entry *count_entry;
1498 int max = 0;
1499 int bad_max = 0;
1500 const char *best = NULL;
1501
1502 strintmap_for_each_entry(counts, &count_iter, count_entry) {
1503 const char *target_dir = count_entry->key;
1504 intptr_t count = (intptr_t)count_entry->value;
1505
1506 if (count == max)
1507 bad_max = max;
1508 else if (count > max) {
1509 max = count;
1510 best = target_dir;
1511 }
1512 }
1513
1514 if (bad_max == max) {
1515 path_msg(opt, source_dir, 0,
1516 _("CONFLICT (directory rename split): "
1517 "Unclear where to rename %s to; it was "
1518 "renamed to multiple other directories, with "
1519 "no destination getting a majority of the "
1520 "files."),
1521 source_dir);
1522 /*
1523 * We should mark this as unclean IF something attempts
1524 * to use this rename. We do not yet have the logic
1525 * in place to detect if this directory rename is being
1526 * used, and optimizations that reduce the number of
1527 * renames cause this to falsely trigger. For now,
1528 * just disable it, causing t6423 testcase 2a to break.
1529 * We'll later fix the detection, and when we do we
1530 * will re-enable setting *clean to 0 (and thereby fix
1531 * t6423 testcase 2a).
1532 */
1533 /* *clean = 0; */
1534 } else {
1535 strmap_put(&renames->dir_renames[side],
1536 source_dir, (void*)best);
1537 }
1538 }
1539 }
1540
1541 static void handle_directory_level_conflicts(struct merge_options *opt)
1542 {
1543 struct hashmap_iter iter;
1544 struct strmap_entry *entry;
1545 struct string_list duplicated = STRING_LIST_INIT_NODUP;
1546 struct rename_info *renames = &opt->priv->renames;
1547 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
1548 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
1549 int i;
1550
1551 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
1552 if (strmap_contains(side2_dir_renames, entry->key))
1553 string_list_append(&duplicated, entry->key);
1554 }
1555
1556 for (i = 0; i < duplicated.nr; i++) {
1557 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
1558 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
1559 }
1560 string_list_clear(&duplicated, 0);
1561 }
1562
1563 static struct strmap_entry *check_dir_renamed(const char *path,
1564 struct strmap *dir_renames)
1565 {
1566 char *temp = xstrdup(path);
1567 char *end;
1568 struct strmap_entry *e = NULL;
1569
1570 while ((end = strrchr(temp, '/'))) {
1571 *end = '\0';
1572 e = strmap_get_entry(dir_renames, temp);
1573 if (e)
1574 break;
1575 }
1576 free(temp);
1577 return e;
1578 }
1579
1580 static void compute_collisions(struct strmap *collisions,
1581 struct strmap *dir_renames,
1582 struct diff_queue_struct *pairs)
1583 {
1584 int i;
1585
1586 strmap_init_with_options(collisions, NULL, 0);
1587 if (strmap_empty(dir_renames))
1588 return;
1589
1590 /*
1591 * Multiple files can be mapped to the same path due to directory
1592 * renames done by the other side of history. Since that other
1593 * side of history could have merged multiple directories into one,
1594 * if our side of history added the same file basename to each of
1595 * those directories, then all N of them would get implicitly
1596 * renamed by the directory rename detection into the same path,
1597 * and we'd get an add/add/.../add conflict, and all those adds
1598 * from *this* side of history. This is not representable in the
1599 * index, and users aren't going to easily be able to make sense of
1600 * it. So we need to provide a good warning about what's
1601 * happening, and fall back to no-directory-rename detection
1602 * behavior for those paths.
1603 *
1604 * See testcases 9e and all of section 5 from t6043 for examples.
1605 */
1606 for (i = 0; i < pairs->nr; ++i) {
1607 struct strmap_entry *rename_info;
1608 struct collision_info *collision_info;
1609 char *new_path;
1610 struct diff_filepair *pair = pairs->queue[i];
1611
1612 if (pair->status != 'A' && pair->status != 'R')
1613 continue;
1614 rename_info = check_dir_renamed(pair->two->path, dir_renames);
1615 if (!rename_info)
1616 continue;
1617
1618 new_path = apply_dir_rename(rename_info, pair->two->path);
1619 assert(new_path);
1620 collision_info = strmap_get(collisions, new_path);
1621 if (collision_info) {
1622 free(new_path);
1623 } else {
1624 collision_info = xcalloc(1,
1625 sizeof(struct collision_info));
1626 string_list_init(&collision_info->source_files, 0);
1627 strmap_put(collisions, new_path, collision_info);
1628 }
1629 string_list_insert(&collision_info->source_files,
1630 pair->two->path);
1631 }
1632 }
1633
1634 static char *check_for_directory_rename(struct merge_options *opt,
1635 const char *path,
1636 unsigned side_index,
1637 struct strmap *dir_renames,
1638 struct strmap *dir_rename_exclusions,
1639 struct strmap *collisions,
1640 int *clean_merge)
1641 {
1642 char *new_path = NULL;
1643 struct strmap_entry *rename_info;
1644 struct strmap_entry *otherinfo = NULL;
1645 const char *new_dir;
1646
1647 if (strmap_empty(dir_renames))
1648 return new_path;
1649 rename_info = check_dir_renamed(path, dir_renames);
1650 if (!rename_info)
1651 return new_path;
1652 /* old_dir = rename_info->key; */
1653 new_dir = rename_info->value;
1654
1655 /*
1656 * This next part is a little weird. We do not want to do an
1657 * implicit rename into a directory we renamed on our side, because
1658 * that will result in a spurious rename/rename(1to2) conflict. An
1659 * example:
1660 * Base commit: dumbdir/afile, otherdir/bfile
1661 * Side 1: smrtdir/afile, otherdir/bfile
1662 * Side 2: dumbdir/afile, dumbdir/bfile
1663 * Here, while working on Side 1, we could notice that otherdir was
1664 * renamed/merged to dumbdir, and change the diff_filepair for
1665 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
1666 * 2 will notice the rename from dumbdir to smrtdir, and do the
1667 * transitive rename to move it from dumbdir/bfile to
1668 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
1669 * smrtdir, a rename/rename(1to2) conflict. We really just want
1670 * the file to end up in smrtdir. And the way to achieve that is
1671 * to not let Side1 do the rename to dumbdir, since we know that is
1672 * the source of one of our directory renames.
1673 *
1674 * That's why otherinfo and dir_rename_exclusions is here.
1675 *
1676 * As it turns out, this also prevents N-way transient rename
1677 * confusion; See testcases 9c and 9d of t6043.
1678 */
1679 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
1680 if (otherinfo) {
1681 path_msg(opt, rename_info->key, 1,
1682 _("WARNING: Avoiding applying %s -> %s rename "
1683 "to %s, because %s itself was renamed."),
1684 rename_info->key, new_dir, path, new_dir);
1685 return NULL;
1686 }
1687
1688 new_path = handle_path_level_conflicts(opt, path, side_index,
1689 rename_info, collisions);
1690 *clean_merge &= (new_path != NULL);
1691
1692 return new_path;
1693 }
1694
1695 static void apply_directory_rename_modifications(struct merge_options *opt,
1696 struct diff_filepair *pair,
1697 char *new_path)
1698 {
1699 /*
1700 * The basic idea is to get the conflict_info from opt->priv->paths
1701 * at old path, and insert it into new_path; basically just this:
1702 * ci = strmap_get(&opt->priv->paths, old_path);
1703 * strmap_remove(&opt->priv->paths, old_path, 0);
1704 * strmap_put(&opt->priv->paths, new_path, ci);
1705 * However, there are some factors complicating this:
1706 * - opt->priv->paths may already have an entry at new_path
1707 * - Each ci tracks its containing directory, so we need to
1708 * update that
1709 * - If another ci has the same containing directory, then
1710 * the two char*'s MUST point to the same location. See the
1711 * comment in struct merged_info. strcmp equality is not
1712 * enough; we need pointer equality.
1713 * - opt->priv->paths must hold the parent directories of any
1714 * entries that are added. So, if this directory rename
1715 * causes entirely new directories, we must recursively add
1716 * parent directories.
1717 * - For each parent directory added to opt->priv->paths, we
1718 * also need to get its parent directory stored in its
1719 * conflict_info->merged.directory_name with all the same
1720 * requirements about pointer equality.
1721 */
1722 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
1723 struct conflict_info *ci, *new_ci;
1724 struct strmap_entry *entry;
1725 const char *branch_with_new_path, *branch_with_dir_rename;
1726 const char *old_path = pair->two->path;
1727 const char *parent_name;
1728 const char *cur_path;
1729 int i, len;
1730
1731 entry = strmap_get_entry(&opt->priv->paths, old_path);
1732 old_path = entry->key;
1733 ci = entry->value;
1734 VERIFY_CI(ci);
1735
1736 /* Find parent directories missing from opt->priv->paths */
1737 cur_path = new_path;
1738 while (1) {
1739 /* Find the parent directory of cur_path */
1740 char *last_slash = strrchr(cur_path, '/');
1741 if (last_slash) {
1742 parent_name = xstrndup(cur_path, last_slash - cur_path);
1743 } else {
1744 parent_name = opt->priv->toplevel_dir;
1745 break;
1746 }
1747
1748 /* Look it up in opt->priv->paths */
1749 entry = strmap_get_entry(&opt->priv->paths, parent_name);
1750 if (entry) {
1751 free((char*)parent_name);
1752 parent_name = entry->key; /* reuse known pointer */
1753 break;
1754 }
1755
1756 /* Record this is one of the directories we need to insert */
1757 string_list_append(&dirs_to_insert, parent_name);
1758 cur_path = parent_name;
1759 }
1760
1761 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
1762 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
1763 struct conflict_info *dir_ci;
1764 char *cur_dir = dirs_to_insert.items[i].string;
1765
1766 dir_ci = xcalloc(1, sizeof(*dir_ci));
1767
1768 dir_ci->merged.directory_name = parent_name;
1769 len = strlen(parent_name);
1770 /* len+1 because of trailing '/' character */
1771 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
1772 dir_ci->dirmask = ci->filemask;
1773 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
1774
1775 parent_name = cur_dir;
1776 }
1777
1778 /*
1779 * We are removing old_path from opt->priv->paths. old_path also will
1780 * eventually need to be freed, but it may still be used by e.g.
1781 * ci->pathnames. So, store it in another string-list for now.
1782 */
1783 string_list_append(&opt->priv->paths_to_free, old_path);
1784
1785 assert(ci->filemask == 2 || ci->filemask == 4);
1786 assert(ci->dirmask == 0);
1787 strmap_remove(&opt->priv->paths, old_path, 0);
1788
1789 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
1790 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
1791
1792 /* Now, finally update ci and stick it into opt->priv->paths */
1793 ci->merged.directory_name = parent_name;
1794 len = strlen(parent_name);
1795 ci->merged.basename_offset = (len > 0 ? len+1 : len);
1796 new_ci = strmap_get(&opt->priv->paths, new_path);
1797 if (!new_ci) {
1798 /* Place ci back into opt->priv->paths, but at new_path */
1799 strmap_put(&opt->priv->paths, new_path, ci);
1800 } else {
1801 int index;
1802
1803 /* A few sanity checks */
1804 VERIFY_CI(new_ci);
1805 assert(ci->filemask == 2 || ci->filemask == 4);
1806 assert((new_ci->filemask & ci->filemask) == 0);
1807 assert(!new_ci->merged.clean);
1808
1809 /* Copy stuff from ci into new_ci */
1810 new_ci->filemask |= ci->filemask;
1811 if (new_ci->dirmask)
1812 new_ci->df_conflict = 1;
1813 index = (ci->filemask >> 1);
1814 new_ci->pathnames[index] = ci->pathnames[index];
1815 new_ci->stages[index].mode = ci->stages[index].mode;
1816 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
1817
1818 free(ci);
1819 ci = new_ci;
1820 }
1821
1822 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
1823 /* Notify user of updated path */
1824 if (pair->status == 'A')
1825 path_msg(opt, new_path, 1,
1826 _("Path updated: %s added in %s inside a "
1827 "directory that was renamed in %s; moving "
1828 "it to %s."),
1829 old_path, branch_with_new_path,
1830 branch_with_dir_rename, new_path);
1831 else
1832 path_msg(opt, new_path, 1,
1833 _("Path updated: %s renamed to %s in %s, "
1834 "inside a directory that was renamed in %s; "
1835 "moving it to %s."),
1836 pair->one->path, old_path, branch_with_new_path,
1837 branch_with_dir_rename, new_path);
1838 } else {
1839 /*
1840 * opt->detect_directory_renames has the value
1841 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
1842 */
1843 ci->path_conflict = 1;
1844 if (pair->status == 'A')
1845 path_msg(opt, new_path, 0,
1846 _("CONFLICT (file location): %s added in %s "
1847 "inside a directory that was renamed in %s, "
1848 "suggesting it should perhaps be moved to "
1849 "%s."),
1850 old_path, branch_with_new_path,
1851 branch_with_dir_rename, new_path);
1852 else
1853 path_msg(opt, new_path, 0,
1854 _("CONFLICT (file location): %s renamed to %s "
1855 "in %s, inside a directory that was renamed "
1856 "in %s, suggesting it should perhaps be "
1857 "moved to %s."),
1858 pair->one->path, old_path, branch_with_new_path,
1859 branch_with_dir_rename, new_path);
1860 }
1861
1862 /*
1863 * Finally, record the new location.
1864 */
1865 pair->two->path = new_path;
1866 }
1867
1868 /*** Function Grouping: functions related to regular rename detection ***/
1869
1870 static int process_renames(struct merge_options *opt,
1871 struct diff_queue_struct *renames)
1872 {
1873 int clean_merge = 1, i;
1874
1875 for (i = 0; i < renames->nr; ++i) {
1876 const char *oldpath = NULL, *newpath;
1877 struct diff_filepair *pair = renames->queue[i];
1878 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
1879 struct strmap_entry *old_ent, *new_ent;
1880 unsigned int old_sidemask;
1881 int target_index, other_source_index;
1882 int source_deleted, collision, type_changed;
1883 const char *rename_branch = NULL, *delete_branch = NULL;
1884
1885 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
1886 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
1887 if (old_ent) {
1888 oldpath = old_ent->key;
1889 oldinfo = old_ent->value;
1890 }
1891 newpath = pair->two->path;
1892 if (new_ent) {
1893 newpath = new_ent->key;
1894 newinfo = new_ent->value;
1895 }
1896
1897 /*
1898 * If pair->one->path isn't in opt->priv->paths, that means
1899 * that either directory rename detection removed that
1900 * path, or a parent directory of oldpath was resolved and
1901 * we don't even need the rename; in either case, we can
1902 * skip it. If oldinfo->merged.clean, then the other side
1903 * of history had no changes to oldpath and we don't need
1904 * the rename and can skip it.
1905 */
1906 if (!oldinfo || oldinfo->merged.clean)
1907 continue;
1908
1909 /*
1910 * diff_filepairs have copies of pathnames, thus we have to
1911 * use standard 'strcmp()' (negated) instead of '=='.
1912 */
1913 if (i + 1 < renames->nr &&
1914 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
1915 /* Handle rename/rename(1to2) or rename/rename(1to1) */
1916 const char *pathnames[3];
1917 struct version_info merged;
1918 struct conflict_info *base, *side1, *side2;
1919 unsigned was_binary_blob = 0;
1920
1921 pathnames[0] = oldpath;
1922 pathnames[1] = newpath;
1923 pathnames[2] = renames->queue[i+1]->two->path;
1924
1925 base = strmap_get(&opt->priv->paths, pathnames[0]);
1926 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
1927 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
1928
1929 VERIFY_CI(base);
1930 VERIFY_CI(side1);
1931 VERIFY_CI(side2);
1932
1933 if (!strcmp(pathnames[1], pathnames[2])) {
1934 /* Both sides renamed the same way */
1935 assert(side1 == side2);
1936 memcpy(&side1->stages[0], &base->stages[0],
1937 sizeof(merged));
1938 side1->filemask |= (1 << MERGE_BASE);
1939 /* Mark base as resolved by removal */
1940 base->merged.is_null = 1;
1941 base->merged.clean = 1;
1942
1943 /* We handled both renames, i.e. i+1 handled */
1944 i++;
1945 /* Move to next rename */
1946 continue;
1947 }
1948
1949 /* This is a rename/rename(1to2) */
1950 clean_merge = handle_content_merge(opt,
1951 pair->one->path,
1952 &base->stages[0],
1953 &side1->stages[1],
1954 &side2->stages[2],
1955 pathnames,
1956 1 + 2 * opt->priv->call_depth,
1957 &merged);
1958 if (!clean_merge &&
1959 merged.mode == side1->stages[1].mode &&
1960 oideq(&merged.oid, &side1->stages[1].oid))
1961 was_binary_blob = 1;
1962 memcpy(&side1->stages[1], &merged, sizeof(merged));
1963 if (was_binary_blob) {
1964 /*
1965 * Getting here means we were attempting to
1966 * merge a binary blob.
1967 *
1968 * Since we can't merge binaries,
1969 * handle_content_merge() just takes one
1970 * side. But we don't want to copy the
1971 * contents of one side to both paths. We
1972 * used the contents of side1 above for
1973 * side1->stages, let's use the contents of
1974 * side2 for side2->stages below.
1975 */
1976 oidcpy(&merged.oid, &side2->stages[2].oid);
1977 merged.mode = side2->stages[2].mode;
1978 }
1979 memcpy(&side2->stages[2], &merged, sizeof(merged));
1980
1981 side1->path_conflict = 1;
1982 side2->path_conflict = 1;
1983 /*
1984 * TODO: For renames we normally remove the path at the
1985 * old name. It would thus seem consistent to do the
1986 * same for rename/rename(1to2) cases, but we haven't
1987 * done so traditionally and a number of the regression
1988 * tests now encode an expectation that the file is
1989 * left there at stage 1. If we ever decide to change
1990 * this, add the following two lines here:
1991 * base->merged.is_null = 1;
1992 * base->merged.clean = 1;
1993 * and remove the setting of base->path_conflict to 1.
1994 */
1995 base->path_conflict = 1;
1996 path_msg(opt, oldpath, 0,
1997 _("CONFLICT (rename/rename): %s renamed to "
1998 "%s in %s and to %s in %s."),
1999 pathnames[0],
2000 pathnames[1], opt->branch1,
2001 pathnames[2], opt->branch2);
2002
2003 i++; /* We handled both renames, i.e. i+1 handled */
2004 continue;
2005 }
2006
2007 VERIFY_CI(oldinfo);
2008 VERIFY_CI(newinfo);
2009 target_index = pair->score; /* from collect_renames() */
2010 assert(target_index == 1 || target_index == 2);
2011 other_source_index = 3 - target_index;
2012 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2013 source_deleted = (oldinfo->filemask == 1);
2014 collision = ((newinfo->filemask & old_sidemask) != 0);
2015 type_changed = !source_deleted &&
2016 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2017 S_ISREG(newinfo->stages[target_index].mode));
2018 if (type_changed && collision) {
2019 /*
2020 * special handling so later blocks can handle this...
2021 *
2022 * if type_changed && collision are both true, then this
2023 * was really a double rename, but one side wasn't
2024 * detected due to lack of break detection. I.e.
2025 * something like
2026 * orig: has normal file 'foo'
2027 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2028 * side2: renames 'foo' to 'bar'
2029 * In this case, the foo->bar rename on side1 won't be
2030 * detected because the new symlink named 'foo' is
2031 * there and we don't do break detection. But we detect
2032 * this here because we don't want to merge the content
2033 * of the foo symlink with the foo->bar file, so we
2034 * have some logic to handle this special case. The
2035 * easiest way to do that is make 'bar' on side1 not
2036 * be considered a colliding file but the other part
2037 * of a normal rename. If the file is very different,
2038 * well we're going to get content merge conflicts
2039 * anyway so it doesn't hurt. And if the colliding
2040 * file also has a different type, that'll be handled
2041 * by the content merge logic in process_entry() too.
2042 *
2043 * See also t6430, 'rename vs. rename/symlink'
2044 */
2045 collision = 0;
2046 }
2047 if (source_deleted) {
2048 if (target_index == 1) {
2049 rename_branch = opt->branch1;
2050 delete_branch = opt->branch2;
2051 } else {
2052 rename_branch = opt->branch2;
2053 delete_branch = opt->branch1;
2054 }
2055 }
2056
2057 assert(source_deleted || oldinfo->filemask & old_sidemask);
2058
2059 /* Need to check for special types of rename conflicts... */
2060 if (collision && !source_deleted) {
2061 /* collision: rename/add or rename/rename(2to1) */
2062 const char *pathnames[3];
2063 struct version_info merged;
2064
2065 struct conflict_info *base, *side1, *side2;
2066 unsigned clean;
2067
2068 pathnames[0] = oldpath;
2069 pathnames[other_source_index] = oldpath;
2070 pathnames[target_index] = newpath;
2071
2072 base = strmap_get(&opt->priv->paths, pathnames[0]);
2073 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2074 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2075
2076 VERIFY_CI(base);
2077 VERIFY_CI(side1);
2078 VERIFY_CI(side2);
2079
2080 clean = handle_content_merge(opt, pair->one->path,
2081 &base->stages[0],
2082 &side1->stages[1],
2083 &side2->stages[2],
2084 pathnames,
2085 1 + 2 * opt->priv->call_depth,
2086 &merged);
2087
2088 memcpy(&newinfo->stages[target_index], &merged,
2089 sizeof(merged));
2090 if (!clean) {
2091 path_msg(opt, newpath, 0,
2092 _("CONFLICT (rename involved in "
2093 "collision): rename of %s -> %s has "
2094 "content conflicts AND collides "
2095 "with another path; this may result "
2096 "in nested conflict markers."),
2097 oldpath, newpath);
2098 }
2099 } else if (collision && source_deleted) {
2100 /*
2101 * rename/add/delete or rename/rename(2to1)/delete:
2102 * since oldpath was deleted on the side that didn't
2103 * do the rename, there's not much of a content merge
2104 * we can do for the rename. oldinfo->merged.is_null
2105 * was already set, so we just leave things as-is so
2106 * they look like an add/add conflict.
2107 */
2108
2109 newinfo->path_conflict = 1;
2110 path_msg(opt, newpath, 0,
2111 _("CONFLICT (rename/delete): %s renamed "
2112 "to %s in %s, but deleted in %s."),
2113 oldpath, newpath, rename_branch, delete_branch);
2114 } else {
2115 /*
2116 * a few different cases...start by copying the
2117 * existing stage(s) from oldinfo over the newinfo
2118 * and update the pathname(s).
2119 */
2120 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2121 sizeof(newinfo->stages[0]));
2122 newinfo->filemask |= (1 << MERGE_BASE);
2123 newinfo->pathnames[0] = oldpath;
2124 if (type_changed) {
2125 /* rename vs. typechange */
2126 /* Mark the original as resolved by removal */
2127 memcpy(&oldinfo->stages[0].oid, &null_oid,
2128 sizeof(oldinfo->stages[0].oid));
2129 oldinfo->stages[0].mode = 0;
2130 oldinfo->filemask &= 0x06;
2131 } else if (source_deleted) {
2132 /* rename/delete */
2133 newinfo->path_conflict = 1;
2134 path_msg(opt, newpath, 0,
2135 _("CONFLICT (rename/delete): %s renamed"
2136 " to %s in %s, but deleted in %s."),
2137 oldpath, newpath,
2138 rename_branch, delete_branch);
2139 } else {
2140 /* normal rename */
2141 memcpy(&newinfo->stages[other_source_index],
2142 &oldinfo->stages[other_source_index],
2143 sizeof(newinfo->stages[0]));
2144 newinfo->filemask |= (1 << other_source_index);
2145 newinfo->pathnames[other_source_index] = oldpath;
2146 }
2147 }
2148
2149 if (!type_changed) {
2150 /* Mark the original as resolved by removal */
2151 oldinfo->merged.is_null = 1;
2152 oldinfo->merged.clean = 1;
2153 }
2154
2155 }
2156
2157 return clean_merge;
2158 }
2159
2160 static inline int possible_side_renames(struct rename_info *renames,
2161 unsigned side_index)
2162 {
2163 return renames->pairs[side_index].nr > 0 &&
2164 !strset_empty(&renames->relevant_sources[side_index]);
2165 }
2166
2167 static inline int possible_renames(struct rename_info *renames)
2168 {
2169 return possible_side_renames(renames, 1) ||
2170 possible_side_renames(renames, 2);
2171 }
2172
2173 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2174 {
2175 /*
2176 * A simplified version of diff_resolve_rename_copy(); would probably
2177 * just use that function but it's static...
2178 */
2179 int i;
2180 struct diff_filepair *p;
2181
2182 for (i = 0; i < q->nr; ++i) {
2183 p = q->queue[i];
2184 p->status = 0; /* undecided */
2185 if (!DIFF_FILE_VALID(p->one))
2186 p->status = DIFF_STATUS_ADDED;
2187 else if (!DIFF_FILE_VALID(p->two))
2188 p->status = DIFF_STATUS_DELETED;
2189 else if (DIFF_PAIR_RENAME(p))
2190 p->status = DIFF_STATUS_RENAMED;
2191 }
2192 }
2193
2194 static int compare_pairs(const void *a_, const void *b_)
2195 {
2196 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2197 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2198
2199 return strcmp(a->one->path, b->one->path);
2200 }
2201
2202 /* Call diffcore_rename() to compute which files have changed on given side */
2203 static void detect_regular_renames(struct merge_options *opt,
2204 unsigned side_index)
2205 {
2206 struct diff_options diff_opts;
2207 struct rename_info *renames = &opt->priv->renames;
2208
2209 if (!possible_side_renames(renames, side_index)) {
2210 /*
2211 * No rename detection needed for this side, but we still need
2212 * to make sure 'adds' are marked correctly in case the other
2213 * side had directory renames.
2214 */
2215 resolve_diffpair_statuses(&renames->pairs[side_index]);
2216 return;
2217 }
2218
2219 repo_diff_setup(opt->repo, &diff_opts);
2220 diff_opts.flags.recursive = 1;
2221 diff_opts.flags.rename_empty = 0;
2222 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2223 diff_opts.rename_limit = opt->rename_limit;
2224 if (opt->rename_limit <= 0)
2225 diff_opts.rename_limit = 1000;
2226 diff_opts.rename_score = opt->rename_score;
2227 diff_opts.show_rename_progress = opt->show_rename_progress;
2228 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2229 diff_setup_done(&diff_opts);
2230
2231 diff_queued_diff = renames->pairs[side_index];
2232 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2233 diffcore_rename_extended(&diff_opts,
2234 &renames->relevant_sources[side_index],
2235 &renames->dirs_removed[side_index],
2236 &renames->dir_rename_count[side_index]);
2237 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2238 resolve_diffpair_statuses(&diff_queued_diff);
2239
2240 if (diff_opts.needed_rename_limit > renames->needed_limit)
2241 renames->needed_limit = diff_opts.needed_rename_limit;
2242
2243 renames->pairs[side_index] = diff_queued_diff;
2244
2245 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2246 diff_queued_diff.nr = 0;
2247 diff_queued_diff.queue = NULL;
2248 diff_flush(&diff_opts);
2249 }
2250
2251 /*
2252 * Get information of all renames which occurred in 'side_pairs', discarding
2253 * non-renames.
2254 */
2255 static int collect_renames(struct merge_options *opt,
2256 struct diff_queue_struct *result,
2257 unsigned side_index,
2258 struct strmap *dir_renames_for_side,
2259 struct strmap *rename_exclusions)
2260 {
2261 int i, clean = 1;
2262 struct strmap collisions;
2263 struct diff_queue_struct *side_pairs;
2264 struct hashmap_iter iter;
2265 struct strmap_entry *entry;
2266 struct rename_info *renames = &opt->priv->renames;
2267
2268 side_pairs = &renames->pairs[side_index];
2269 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
2270
2271 for (i = 0; i < side_pairs->nr; ++i) {
2272 struct diff_filepair *p = side_pairs->queue[i];
2273 char *new_path; /* non-NULL only with directory renames */
2274
2275 if (p->status != 'A' && p->status != 'R') {
2276 diff_free_filepair(p);
2277 continue;
2278 }
2279
2280 new_path = check_for_directory_rename(opt, p->two->path,
2281 side_index,
2282 dir_renames_for_side,
2283 rename_exclusions,
2284 &collisions,
2285 &clean);
2286
2287 if (p->status != 'R' && !new_path) {
2288 diff_free_filepair(p);
2289 continue;
2290 }
2291
2292 if (new_path)
2293 apply_directory_rename_modifications(opt, p, new_path);
2294
2295 /*
2296 * p->score comes back from diffcore_rename_extended() with
2297 * the similarity of the renamed file. The similarity is
2298 * was used to determine that the two files were related
2299 * and are a rename, which we have already used, but beyond
2300 * that we have no use for the similarity. So p->score is
2301 * now irrelevant. However, process_renames() will need to
2302 * know which side of the merge this rename was associated
2303 * with, so overwrite p->score with that value.
2304 */
2305 p->score = side_index;
2306 result->queue[result->nr++] = p;
2307 }
2308
2309 /* Free each value in the collisions map */
2310 strmap_for_each_entry(&collisions, &iter, entry) {
2311 struct collision_info *info = entry->value;
2312 string_list_clear(&info->source_files, 0);
2313 }
2314 /*
2315 * In compute_collisions(), we set collisions.strdup_strings to 0
2316 * so that we wouldn't have to make another copy of the new_path
2317 * allocated by apply_dir_rename(). But now that we've used them
2318 * and have no other references to these strings, it is time to
2319 * deallocate them.
2320 */
2321 free_strmap_strings(&collisions);
2322 strmap_clear(&collisions, 1);
2323 return clean;
2324 }
2325
2326 static int detect_and_process_renames(struct merge_options *opt,
2327 struct tree *merge_base,
2328 struct tree *side1,
2329 struct tree *side2)
2330 {
2331 struct diff_queue_struct combined;
2332 struct rename_info *renames = &opt->priv->renames;
2333 int need_dir_renames, s, clean = 1;
2334
2335 memset(&combined, 0, sizeof(combined));
2336 if (!possible_renames(renames))
2337 goto cleanup;
2338
2339 trace2_region_enter("merge", "regular renames", opt->repo);
2340 detect_regular_renames(opt, MERGE_SIDE1);
2341 detect_regular_renames(opt, MERGE_SIDE2);
2342 trace2_region_leave("merge", "regular renames", opt->repo);
2343
2344 trace2_region_enter("merge", "directory renames", opt->repo);
2345 need_dir_renames =
2346 !opt->priv->call_depth &&
2347 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
2348 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
2349
2350 if (need_dir_renames) {
2351 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
2352 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
2353 handle_directory_level_conflicts(opt);
2354 }
2355
2356 ALLOC_GROW(combined.queue,
2357 renames->pairs[1].nr + renames->pairs[2].nr,
2358 combined.alloc);
2359 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
2360 &renames->dir_renames[2],
2361 &renames->dir_renames[1]);
2362 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
2363 &renames->dir_renames[1],
2364 &renames->dir_renames[2]);
2365 QSORT(combined.queue, combined.nr, compare_pairs);
2366 trace2_region_leave("merge", "directory renames", opt->repo);
2367
2368 trace2_region_enter("merge", "process renames", opt->repo);
2369 clean &= process_renames(opt, &combined);
2370 trace2_region_leave("merge", "process renames", opt->repo);
2371
2372 goto simple_cleanup; /* collect_renames() handles some of cleanup */
2373
2374 cleanup:
2375 /*
2376 * Free now unneeded filepairs, which would have been handled
2377 * in collect_renames() normally but we skipped that code.
2378 */
2379 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
2380 struct diff_queue_struct *side_pairs;
2381 int i;
2382
2383 side_pairs = &renames->pairs[s];
2384 for (i = 0; i < side_pairs->nr; ++i) {
2385 struct diff_filepair *p = side_pairs->queue[i];
2386 diff_free_filepair(p);
2387 }
2388 }
2389
2390 simple_cleanup:
2391 /* Free memory for renames->pairs[] and combined */
2392 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
2393 free(renames->pairs[s].queue);
2394 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
2395 }
2396 if (combined.nr) {
2397 int i;
2398 for (i = 0; i < combined.nr; i++)
2399 diff_free_filepair(combined.queue[i]);
2400 free(combined.queue);
2401 }
2402
2403 return clean;
2404 }
2405
2406 /*** Function Grouping: functions related to process_entries() ***/
2407
2408 static int string_list_df_name_compare(const char *one, const char *two)
2409 {
2410 int onelen = strlen(one);
2411 int twolen = strlen(two);
2412 /*
2413 * Here we only care that entries for D/F conflicts are
2414 * adjacent, in particular with the file of the D/F conflict
2415 * appearing before files below the corresponding directory.
2416 * The order of the rest of the list is irrelevant for us.
2417 *
2418 * To achieve this, we sort with df_name_compare and provide
2419 * the mode S_IFDIR so that D/F conflicts will sort correctly.
2420 * We use the mode S_IFDIR for everything else for simplicity,
2421 * since in other cases any changes in their order due to
2422 * sorting cause no problems for us.
2423 */
2424 int cmp = df_name_compare(one, onelen, S_IFDIR,
2425 two, twolen, S_IFDIR);
2426 /*
2427 * Now that 'foo' and 'foo/bar' compare equal, we have to make sure
2428 * that 'foo' comes before 'foo/bar'.
2429 */
2430 if (cmp)
2431 return cmp;
2432 return onelen - twolen;
2433 }
2434
2435 struct directory_versions {
2436 /*
2437 * versions: list of (basename -> version_info)
2438 *
2439 * The basenames are in reverse lexicographic order of full pathnames,
2440 * as processed in process_entries(). This puts all entries within
2441 * a directory together, and covers the directory itself after
2442 * everything within it, allowing us to write subtrees before needing
2443 * to record information for the tree itself.
2444 */
2445 struct string_list versions;
2446
2447 /*
2448 * offsets: list of (full relative path directories -> integer offsets)
2449 *
2450 * Since versions contains basenames from files in multiple different
2451 * directories, we need to know which entries in versions correspond
2452 * to which directories. Values of e.g.
2453 * "" 0
2454 * src 2
2455 * src/moduleA 5
2456 * Would mean that entries 0-1 of versions are files in the toplevel
2457 * directory, entries 2-4 are files under src/, and the remaining
2458 * entries starting at index 5 are files under src/moduleA/.
2459 */
2460 struct string_list offsets;
2461
2462 /*
2463 * last_directory: directory that previously processed file found in
2464 *
2465 * last_directory starts NULL, but records the directory in which the
2466 * previous file was found within. As soon as
2467 * directory(current_file) != last_directory
2468 * then we need to start updating accounting in versions & offsets.
2469 * Note that last_directory is always the last path in "offsets" (or
2470 * NULL if "offsets" is empty) so this exists just for quick access.
2471 */
2472 const char *last_directory;
2473
2474 /* last_directory_len: cached computation of strlen(last_directory) */
2475 unsigned last_directory_len;
2476 };
2477
2478 static int tree_entry_order(const void *a_, const void *b_)
2479 {
2480 const struct string_list_item *a = a_;
2481 const struct string_list_item *b = b_;
2482
2483 const struct merged_info *ami = a->util;
2484 const struct merged_info *bmi = b->util;
2485 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
2486 b->string, strlen(b->string), bmi->result.mode);
2487 }
2488
2489 static void write_tree(struct object_id *result_oid,
2490 struct string_list *versions,
2491 unsigned int offset,
2492 size_t hash_size)
2493 {
2494 size_t maxlen = 0, extra;
2495 unsigned int nr = versions->nr - offset;
2496 struct strbuf buf = STRBUF_INIT;
2497 struct string_list relevant_entries = STRING_LIST_INIT_NODUP;
2498 int i;
2499
2500 /*
2501 * We want to sort the last (versions->nr-offset) entries in versions.
2502 * Do so by abusing the string_list API a bit: make another string_list
2503 * that contains just those entries and then sort them.
2504 *
2505 * We won't use relevant_entries again and will let it just pop off the
2506 * stack, so there won't be allocation worries or anything.
2507 */
2508 relevant_entries.items = versions->items + offset;
2509 relevant_entries.nr = versions->nr - offset;
2510 QSORT(relevant_entries.items, relevant_entries.nr, tree_entry_order);
2511
2512 /* Pre-allocate some space in buf */
2513 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
2514 for (i = 0; i < nr; i++) {
2515 maxlen += strlen(versions->items[offset+i].string) + extra;
2516 }
2517 strbuf_grow(&buf, maxlen);
2518
2519 /* Write each entry out to buf */
2520 for (i = 0; i < nr; i++) {
2521 struct merged_info *mi = versions->items[offset+i].util;
2522 struct version_info *ri = &mi->result;
2523 strbuf_addf(&buf, "%o %s%c",
2524 ri->mode,
2525 versions->items[offset+i].string, '\0');
2526 strbuf_add(&buf, ri->oid.hash, hash_size);
2527 }
2528
2529 /* Write this object file out, and record in result_oid */
2530 write_object_file(buf.buf, buf.len, tree_type, result_oid);
2531 strbuf_release(&buf);
2532 }
2533
2534 static void record_entry_for_tree(struct directory_versions *dir_metadata,
2535 const char *path,
2536 struct merged_info *mi)
2537 {
2538 const char *basename;
2539
2540 if (mi->is_null)
2541 /* nothing to record */
2542 return;
2543
2544 basename = path + mi->basename_offset;
2545 assert(strchr(basename, '/') == NULL);
2546 string_list_append(&dir_metadata->versions,
2547 basename)->util = &mi->result;
2548 }
2549
2550 static void write_completed_directory(struct merge_options *opt,
2551 const char *new_directory_name,
2552 struct directory_versions *info)
2553 {
2554 const char *prev_dir;
2555 struct merged_info *dir_info = NULL;
2556 unsigned int offset;
2557
2558 /*
2559 * Some explanation of info->versions and info->offsets...
2560 *
2561 * process_entries() iterates over all relevant files AND
2562 * directories in reverse lexicographic order, and calls this
2563 * function. Thus, an example of the paths that process_entries()
2564 * could operate on (along with the directories for those paths
2565 * being shown) is:
2566 *
2567 * xtract.c ""
2568 * tokens.txt ""
2569 * src/moduleB/umm.c src/moduleB
2570 * src/moduleB/stuff.h src/moduleB
2571 * src/moduleB/baz.c src/moduleB
2572 * src/moduleB src
2573 * src/moduleA/foo.c src/moduleA
2574 * src/moduleA/bar.c src/moduleA
2575 * src/moduleA src
2576 * src ""
2577 * Makefile ""
2578 *
2579 * info->versions:
2580 *
2581 * always contains the unprocessed entries and their
2582 * version_info information. For example, after the first five
2583 * entries above, info->versions would be:
2584 *
2585 * xtract.c <xtract.c's version_info>
2586 * token.txt <token.txt's version_info>
2587 * umm.c <src/moduleB/umm.c's version_info>
2588 * stuff.h <src/moduleB/stuff.h's version_info>
2589 * baz.c <src/moduleB/baz.c's version_info>
2590 *
2591 * Once a subdirectory is completed we remove the entries in
2592 * that subdirectory from info->versions, writing it as a tree
2593 * (write_tree()). Thus, as soon as we get to src/moduleB,
2594 * info->versions would be updated to
2595 *
2596 * xtract.c <xtract.c's version_info>
2597 * token.txt <token.txt's version_info>
2598 * moduleB <src/moduleB's version_info>
2599 *
2600 * info->offsets:
2601 *
2602 * helps us track which entries in info->versions correspond to
2603 * which directories. When we are N directories deep (e.g. 4
2604 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
2605 * directories (+1 because of toplevel dir). Corresponding to
2606 * the info->versions example above, after processing five entries
2607 * info->offsets will be:
2608 *
2609 * "" 0
2610 * src/moduleB 2
2611 *
2612 * which is used to know that xtract.c & token.txt are from the
2613 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
2614 * src/moduleB directory. Again, following the example above,
2615 * once we need to process src/moduleB, then info->offsets is
2616 * updated to
2617 *
2618 * "" 0
2619 * src 2
2620 *
2621 * which says that moduleB (and only moduleB so far) is in the
2622 * src directory.
2623 *
2624 * One unique thing to note about info->offsets here is that
2625 * "src" was not added to info->offsets until there was a path
2626 * (a file OR directory) immediately below src/ that got
2627 * processed.
2628 *
2629 * Since process_entry() just appends new entries to info->versions,
2630 * write_completed_directory() only needs to do work if the next path
2631 * is in a directory that is different than the last directory found
2632 * in info->offsets.
2633 */
2634
2635 /*
2636 * If we are working with the same directory as the last entry, there
2637 * is no work to do. (See comments above the directory_name member of
2638 * struct merged_info for why we can use pointer comparison instead of
2639 * strcmp here.)
2640 */
2641 if (new_directory_name == info->last_directory)
2642 return;
2643
2644 /*
2645 * If we are just starting (last_directory is NULL), or last_directory
2646 * is a prefix of the current directory, then we can just update
2647 * info->offsets to record the offset where we started this directory
2648 * and update last_directory to have quick access to it.
2649 */
2650 if (info->last_directory == NULL ||
2651 !strncmp(new_directory_name, info->last_directory,
2652 info->last_directory_len)) {
2653 uintptr_t offset = info->versions.nr;
2654
2655 info->last_directory = new_directory_name;
2656 info->last_directory_len = strlen(info->last_directory);
2657 /*
2658 * Record the offset into info->versions where we will
2659 * start recording basenames of paths found within
2660 * new_directory_name.
2661 */
2662 string_list_append(&info->offsets,
2663 info->last_directory)->util = (void*)offset;
2664 return;
2665 }
2666
2667 /*
2668 * The next entry that will be processed will be within
2669 * new_directory_name. Since at this point we know that
2670 * new_directory_name is within a different directory than
2671 * info->last_directory, we have all entries for info->last_directory
2672 * in info->versions and we need to create a tree object for them.
2673 */
2674 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
2675 assert(dir_info);
2676 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
2677 if (offset == info->versions.nr) {
2678 /*
2679 * Actually, we don't need to create a tree object in this
2680 * case. Whenever all files within a directory disappear
2681 * during the merge (e.g. unmodified on one side and
2682 * deleted on the other, or files were renamed elsewhere),
2683 * then we get here and the directory itself needs to be
2684 * omitted from its parent tree as well.
2685 */
2686 dir_info->is_null = 1;
2687 } else {
2688 /*
2689 * Write out the tree to the git object directory, and also
2690 * record the mode and oid in dir_info->result.
2691 */
2692 dir_info->is_null = 0;
2693 dir_info->result.mode = S_IFDIR;
2694 write_tree(&dir_info->result.oid, &info->versions, offset,
2695 opt->repo->hash_algo->rawsz);
2696 }
2697
2698 /*
2699 * We've now used several entries from info->versions and one entry
2700 * from info->offsets, so we get rid of those values.
2701 */
2702 info->offsets.nr--;
2703 info->versions.nr = offset;
2704
2705 /*
2706 * Now we've taken care of the completed directory, but we need to
2707 * prepare things since future entries will be in
2708 * new_directory_name. (In particular, process_entry() will be
2709 * appending new entries to info->versions.) So, we need to make
2710 * sure new_directory_name is the last entry in info->offsets.
2711 */
2712 prev_dir = info->offsets.nr == 0 ? NULL :
2713 info->offsets.items[info->offsets.nr-1].string;
2714 if (new_directory_name != prev_dir) {
2715 uintptr_t c = info->versions.nr;
2716 string_list_append(&info->offsets,
2717 new_directory_name)->util = (void*)c;
2718 }
2719
2720 /* And, of course, we need to update last_directory to match. */
2721 info->last_directory = new_directory_name;
2722 info->last_directory_len = strlen(info->last_directory);
2723 }
2724
2725 /* Per entry merge function */
2726 static void process_entry(struct merge_options *opt,
2727 const char *path,
2728 struct conflict_info *ci,
2729 struct directory_versions *dir_metadata)
2730 {
2731 int df_file_index = 0;
2732
2733 VERIFY_CI(ci);
2734 assert(ci->filemask >= 0 && ci->filemask <= 7);
2735 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
2736 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
2737 ci->match_mask == 5 || ci->match_mask == 6);
2738
2739 if (ci->dirmask) {
2740 record_entry_for_tree(dir_metadata, path, &ci->merged);
2741 if (ci->filemask == 0)
2742 /* nothing else to handle */
2743 return;
2744 assert(ci->df_conflict);
2745 }
2746
2747 if (ci->df_conflict && ci->merged.result.mode == 0) {
2748 int i;
2749
2750 /*
2751 * directory no longer in the way, but we do have a file we
2752 * need to place here so we need to clean away the "directory
2753 * merges to nothing" result.
2754 */
2755 ci->df_conflict = 0;
2756 assert(ci->filemask != 0);
2757 ci->merged.clean = 0;
2758 ci->merged.is_null = 0;
2759 /* and we want to zero out any directory-related entries */
2760 ci->match_mask = (ci->match_mask & ~ci->dirmask);
2761 ci->dirmask = 0;
2762 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
2763 if (ci->filemask & (1 << i))
2764 continue;
2765 ci->stages[i].mode = 0;
2766 oidcpy(&ci->stages[i].oid, &null_oid);
2767 }
2768 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
2769 /*
2770 * This started out as a D/F conflict, and the entries in
2771 * the competing directory were not removed by the merge as
2772 * evidenced by write_completed_directory() writing a value
2773 * to ci->merged.result.mode.
2774 */
2775 struct conflict_info *new_ci;
2776 const char *branch;
2777 const char *old_path = path;
2778 int i;
2779
2780 assert(ci->merged.result.mode == S_IFDIR);
2781
2782 /*
2783 * If filemask is 1, we can just ignore the file as having
2784 * been deleted on both sides. We do not want to overwrite
2785 * ci->merged.result, since it stores the tree for all the
2786 * files under it.
2787 */
2788 if (ci->filemask == 1) {
2789 ci->filemask = 0;
2790 return;
2791 }
2792
2793 /*
2794 * This file still exists on at least one side, and we want
2795 * the directory to remain here, so we need to move this
2796 * path to some new location.
2797 */
2798 new_ci = xcalloc(1, sizeof(*new_ci));
2799 /* We don't really want new_ci->merged.result copied, but it'll
2800 * be overwritten below so it doesn't matter. We also don't
2801 * want any directory mode/oid values copied, but we'll zero
2802 * those out immediately. We do want the rest of ci copied.
2803 */
2804 memcpy(new_ci, ci, sizeof(*ci));
2805 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
2806 new_ci->dirmask = 0;
2807 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
2808 if (new_ci->filemask & (1 << i))
2809 continue;
2810 /* zero out any entries related to directories */
2811 new_ci->stages[i].mode = 0;
2812 oidcpy(&new_ci->stages[i].oid, &null_oid);
2813 }
2814
2815 /*
2816 * Find out which side this file came from; note that we
2817 * cannot just use ci->filemask, because renames could cause
2818 * the filemask to go back to 7. So we use dirmask, then
2819 * pick the opposite side's index.
2820 */
2821 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
2822 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
2823 path = unique_path(&opt->priv->paths, path, branch);
2824 strmap_put(&opt->priv->paths, path, new_ci);
2825
2826 path_msg(opt, path, 0,
2827 _("CONFLICT (file/directory): directory in the way "
2828 "of %s from %s; moving it to %s instead."),
2829 old_path, branch, path);
2830
2831 /*
2832 * Zero out the filemask for the old ci. At this point, ci
2833 * was just an entry for a directory, so we don't need to
2834 * do anything more with it.
2835 */
2836 ci->filemask = 0;
2837
2838 /*
2839 * Now note that we're working on the new entry (path was
2840 * updated above.
2841 */
2842 ci = new_ci;
2843 }
2844
2845 /*
2846 * NOTE: Below there is a long switch-like if-elseif-elseif... block
2847 * which the code goes through even for the df_conflict cases
2848 * above.
2849 */
2850 if (ci->match_mask) {
2851 ci->merged.clean = 1;
2852 if (ci->match_mask == 6) {
2853 /* stages[1] == stages[2] */
2854 ci->merged.result.mode = ci->stages[1].mode;
2855 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
2856 } else {
2857 /* determine the mask of the side that didn't match */
2858 unsigned int othermask = 7 & ~ci->match_mask;
2859 int side = (othermask == 4) ? 2 : 1;
2860
2861 ci->merged.result.mode = ci->stages[side].mode;
2862 ci->merged.is_null = !ci->merged.result.mode;
2863 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
2864
2865 assert(othermask == 2 || othermask == 4);
2866 assert(ci->merged.is_null ==
2867 (ci->filemask == ci->match_mask));
2868 }
2869 } else if (ci->filemask >= 6 &&
2870 (S_IFMT & ci->stages[1].mode) !=
2871 (S_IFMT & ci->stages[2].mode)) {
2872 /* Two different items from (file/submodule/symlink) */
2873 if (opt->priv->call_depth) {
2874 /* Just use the version from the merge base */
2875 ci->merged.clean = 0;
2876 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
2877 ci->merged.result.mode = ci->stages[0].mode;
2878 ci->merged.is_null = (ci->merged.result.mode == 0);
2879 } else {
2880 /* Handle by renaming one or both to separate paths. */
2881 unsigned o_mode = ci->stages[0].mode;
2882 unsigned a_mode = ci->stages[1].mode;
2883 unsigned b_mode = ci->stages[2].mode;
2884 struct conflict_info *new_ci;
2885 const char *a_path = NULL, *b_path = NULL;
2886 int rename_a = 0, rename_b = 0;
2887
2888 new_ci = xmalloc(sizeof(*new_ci));
2889
2890 if (S_ISREG(a_mode))
2891 rename_a = 1;
2892 else if (S_ISREG(b_mode))
2893 rename_b = 1;
2894 else {
2895 rename_a = 1;
2896 rename_b = 1;
2897 }
2898
2899 path_msg(opt, path, 0,
2900 _("CONFLICT (distinct types): %s had different "
2901 "types on each side; renamed %s of them so "
2902 "each can be recorded somewhere."),
2903 path,
2904 (rename_a && rename_b) ? _("both") : _("one"));
2905
2906 ci->merged.clean = 0;
2907 memcpy(new_ci, ci, sizeof(*new_ci));
2908
2909 /* Put b into new_ci, removing a from stages */
2910 new_ci->merged.result.mode = ci->stages[2].mode;
2911 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
2912 new_ci->stages[1].mode = 0;
2913 oidcpy(&new_ci->stages[1].oid, &null_oid);
2914 new_ci->filemask = 5;
2915 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
2916 new_ci->stages[0].mode = 0;
2917 oidcpy(&new_ci->stages[0].oid, &null_oid);
2918 new_ci->filemask = 4;
2919 }
2920
2921 /* Leave only a in ci, fixing stages. */
2922 ci->merged.result.mode = ci->stages[1].mode;
2923 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
2924 ci->stages[2].mode = 0;
2925 oidcpy(&ci->stages[2].oid, &null_oid);
2926 ci->filemask = 3;
2927 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
2928 ci->stages[0].mode = 0;
2929 oidcpy(&ci->stages[0].oid, &null_oid);
2930 ci->filemask = 2;
2931 }
2932
2933 /* Insert entries into opt->priv_paths */
2934 assert(rename_a || rename_b);
2935 if (rename_a) {
2936 a_path = unique_path(&opt->priv->paths,
2937 path, opt->branch1);
2938 strmap_put(&opt->priv->paths, a_path, ci);
2939 }
2940
2941 if (rename_b)
2942 b_path = unique_path(&opt->priv->paths,
2943 path, opt->branch2);
2944 else
2945 b_path = path;
2946 strmap_put(&opt->priv->paths, b_path, new_ci);
2947
2948 if (rename_a && rename_b) {
2949 strmap_remove(&opt->priv->paths, path, 0);
2950 /*
2951 * We removed path from opt->priv->paths. path
2952 * will also eventually need to be freed, but
2953 * it may still be used by e.g. ci->pathnames.
2954 * So, store it in another string-list for now.
2955 */
2956 string_list_append(&opt->priv->paths_to_free,
2957 path);
2958 }
2959
2960 /*
2961 * Do special handling for b_path since process_entry()
2962 * won't be called on it specially.
2963 */
2964 strmap_put(&opt->priv->conflicted, b_path, new_ci);
2965 record_entry_for_tree(dir_metadata, b_path,
2966 &new_ci->merged);
2967
2968 /*
2969 * Remaining code for processing this entry should
2970 * think in terms of processing a_path.
2971 */
2972 if (a_path)
2973 path = a_path;
2974 }
2975 } else if (ci->filemask >= 6) {
2976 /* Need a two-way or three-way content merge */
2977 struct version_info merged_file;
2978 unsigned clean_merge;
2979 struct version_info *o = &ci->stages[0];
2980 struct version_info *a = &ci->stages[1];
2981 struct version_info *b = &ci->stages[2];
2982
2983 clean_merge = handle_content_merge(opt, path, o, a, b,
2984 ci->pathnames,
2985 opt->priv->call_depth * 2,
2986 &merged_file);
2987 ci->merged.clean = clean_merge &&
2988 !ci->df_conflict && !ci->path_conflict;
2989 ci->merged.result.mode = merged_file.mode;
2990 ci->merged.is_null = (merged_file.mode == 0);
2991 oidcpy(&ci->merged.result.oid, &merged_file.oid);
2992 if (clean_merge && ci->df_conflict) {
2993 assert(df_file_index == 1 || df_file_index == 2);
2994 ci->filemask = 1 << df_file_index;
2995 ci->stages[df_file_index].mode = merged_file.mode;
2996 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
2997 }
2998 if (!clean_merge) {
2999 const char *reason = _("content");
3000 if (ci->filemask == 6)
3001 reason = _("add/add");
3002 if (S_ISGITLINK(merged_file.mode))
3003 reason = _("submodule");
3004 path_msg(opt, path, 0,
3005 _("CONFLICT (%s): Merge conflict in %s"),
3006 reason, path);
3007 }
3008 } else if (ci->filemask == 3 || ci->filemask == 5) {
3009 /* Modify/delete */
3010 const char *modify_branch, *delete_branch;
3011 int side = (ci->filemask == 5) ? 2 : 1;
3012 int index = opt->priv->call_depth ? 0 : side;
3013
3014 ci->merged.result.mode = ci->stages[index].mode;
3015 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3016 ci->merged.clean = 0;
3017
3018 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3019 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3020
3021 if (ci->path_conflict &&
3022 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3023 /*
3024 * This came from a rename/delete; no action to take,
3025 * but avoid printing "modify/delete" conflict notice
3026 * since the contents were not modified.
3027 */
3028 } else {
3029 path_msg(opt, path, 0,
3030 _("CONFLICT (modify/delete): %s deleted in %s "
3031 "and modified in %s. Version %s of %s left "
3032 "in tree."),
3033 path, delete_branch, modify_branch,
3034 modify_branch, path);
3035 }
3036 } else if (ci->filemask == 2 || ci->filemask == 4) {
3037 /* Added on one side */
3038 int side = (ci->filemask == 4) ? 2 : 1;
3039 ci->merged.result.mode = ci->stages[side].mode;
3040 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3041 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3042 } else if (ci->filemask == 1) {
3043 /* Deleted on both sides */
3044 ci->merged.is_null = 1;
3045 ci->merged.result.mode = 0;
3046 oidcpy(&ci->merged.result.oid, &null_oid);
3047 ci->merged.clean = !ci->path_conflict;
3048 }
3049
3050 /*
3051 * If still conflicted, record it separately. This allows us to later
3052 * iterate over just conflicted entries when updating the index instead
3053 * of iterating over all entries.
3054 */
3055 if (!ci->merged.clean)
3056 strmap_put(&opt->priv->conflicted, path, ci);
3057 record_entry_for_tree(dir_metadata, path, &ci->merged);
3058 }
3059
3060 static void process_entries(struct merge_options *opt,
3061 struct object_id *result_oid)
3062 {
3063 struct hashmap_iter iter;
3064 struct strmap_entry *e;
3065 struct string_list plist = STRING_LIST_INIT_NODUP;
3066 struct string_list_item *entry;
3067 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3068 STRING_LIST_INIT_NODUP,
3069 NULL, 0 };
3070
3071 trace2_region_enter("merge", "process_entries setup", opt->repo);
3072 if (strmap_empty(&opt->priv->paths)) {
3073 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3074 return;
3075 }
3076
3077 /* Hack to pre-allocate plist to the desired size */
3078 trace2_region_enter("merge", "plist grow", opt->repo);
3079 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3080 trace2_region_leave("merge", "plist grow", opt->repo);
3081
3082 /* Put every entry from paths into plist, then sort */
3083 trace2_region_enter("merge", "plist copy", opt->repo);
3084 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3085 string_list_append(&plist, e->key)->util = e->value;
3086 }
3087 trace2_region_leave("merge", "plist copy", opt->repo);
3088
3089 trace2_region_enter("merge", "plist special sort", opt->repo);
3090 plist.cmp = string_list_df_name_compare;
3091 string_list_sort(&plist);
3092 trace2_region_leave("merge", "plist special sort", opt->repo);
3093
3094 trace2_region_leave("merge", "process_entries setup", opt->repo);
3095
3096 /*
3097 * Iterate over the items in reverse order, so we can handle paths
3098 * below a directory before needing to handle the directory itself.
3099 *
3100 * This allows us to write subtrees before we need to write trees,
3101 * and it also enables sane handling of directory/file conflicts
3102 * (because it allows us to know whether the directory is still in
3103 * the way when it is time to process the file at the same path).
3104 */
3105 trace2_region_enter("merge", "processing", opt->repo);
3106 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
3107 char *path = entry->string;
3108 /*
3109 * NOTE: mi may actually be a pointer to a conflict_info, but
3110 * we have to check mi->clean first to see if it's safe to
3111 * reassign to such a pointer type.
3112 */
3113 struct merged_info *mi = entry->util;
3114
3115 write_completed_directory(opt, mi->directory_name,
3116 &dir_metadata);
3117 if (mi->clean)
3118 record_entry_for_tree(&dir_metadata, path, mi);
3119 else {
3120 struct conflict_info *ci = (struct conflict_info *)mi;
3121 process_entry(opt, path, ci, &dir_metadata);
3122 }
3123 }
3124 trace2_region_leave("merge", "processing", opt->repo);
3125
3126 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
3127 if (dir_metadata.offsets.nr != 1 ||
3128 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
3129 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
3130 dir_metadata.offsets.nr);
3131 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
3132 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
3133 fflush(stdout);
3134 BUG("dir_metadata accounting completely off; shouldn't happen");
3135 }
3136 write_tree(result_oid, &dir_metadata.versions, 0,
3137 opt->repo->hash_algo->rawsz);
3138 string_list_clear(&plist, 0);
3139 string_list_clear(&dir_metadata.versions, 0);
3140 string_list_clear(&dir_metadata.offsets, 0);
3141 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
3142 }
3143
3144 /*** Function Grouping: functions related to merge_switch_to_result() ***/
3145
3146 static int checkout(struct merge_options *opt,
3147 struct tree *prev,
3148 struct tree *next)
3149 {
3150 /* Switch the index/working copy from old to new */
3151 int ret;
3152 struct tree_desc trees[2];
3153 struct unpack_trees_options unpack_opts;
3154
3155 memset(&unpack_opts, 0, sizeof(unpack_opts));
3156 unpack_opts.head_idx = -1;
3157 unpack_opts.src_index = opt->repo->index;
3158 unpack_opts.dst_index = opt->repo->index;
3159
3160 setup_unpack_trees_porcelain(&unpack_opts, "merge");
3161
3162 /*
3163 * NOTE: if this were just "git checkout" code, we would probably
3164 * read or refresh the cache and check for a conflicted index, but
3165 * builtin/merge.c or sequencer.c really needs to read the index
3166 * and check for conflicted entries before starting merging for a
3167 * good user experience (no sense waiting for merges/rebases before
3168 * erroring out), so there's no reason to duplicate that work here.
3169 */
3170
3171 /* 2-way merge to the new branch */
3172 unpack_opts.update = 1;
3173 unpack_opts.merge = 1;
3174 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
3175 unpack_opts.verbose_update = (opt->verbosity > 2);
3176 unpack_opts.fn = twoway_merge;
3177 if (1/* FIXME: opts->overwrite_ignore*/) {
3178 unpack_opts.dir = xcalloc(1, sizeof(*unpack_opts.dir));
3179 unpack_opts.dir->flags |= DIR_SHOW_IGNORED;
3180 setup_standard_excludes(unpack_opts.dir);
3181 }
3182 parse_tree(prev);
3183 init_tree_desc(&trees[0], prev->buffer, prev->size);
3184 parse_tree(next);
3185 init_tree_desc(&trees[1], next->buffer, next->size);
3186
3187 ret = unpack_trees(2, trees, &unpack_opts);
3188 clear_unpack_trees_porcelain(&unpack_opts);
3189 dir_clear(unpack_opts.dir);
3190 FREE_AND_NULL(unpack_opts.dir);
3191 return ret;
3192 }
3193
3194 static int record_conflicted_index_entries(struct merge_options *opt,
3195 struct index_state *index,
3196 struct strmap *paths,
3197 struct strmap *conflicted)
3198 {
3199 struct hashmap_iter iter;
3200 struct strmap_entry *e;
3201 int errs = 0;
3202 int original_cache_nr;
3203
3204 if (strmap_empty(conflicted))
3205 return 0;
3206
3207 original_cache_nr = index->cache_nr;
3208
3209 /* Put every entry from paths into plist, then sort */
3210 strmap_for_each_entry(conflicted, &iter, e) {
3211 const char *path = e->key;
3212 struct conflict_info *ci = e->value;
3213 int pos;
3214 struct cache_entry *ce;
3215 int i;
3216
3217 VERIFY_CI(ci);
3218
3219 /*
3220 * The index will already have a stage=0 entry for this path,
3221 * because we created an as-merged-as-possible version of the
3222 * file and checkout() moved the working copy and index over
3223 * to that version.
3224 *
3225 * However, previous iterations through this loop will have
3226 * added unstaged entries to the end of the cache which
3227 * ignore the standard alphabetical ordering of cache
3228 * entries and break invariants needed for index_name_pos()
3229 * to work. However, we know the entry we want is before
3230 * those appended cache entries, so do a temporary swap on
3231 * cache_nr to only look through entries of interest.
3232 */
3233 SWAP(index->cache_nr, original_cache_nr);
3234 pos = index_name_pos(index, path, strlen(path));
3235 SWAP(index->cache_nr, original_cache_nr);
3236 if (pos < 0) {
3237 if (ci->filemask != 1)
3238 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
3239 cache_tree_invalidate_path(index, path);
3240 } else {
3241 ce = index->cache[pos];
3242
3243 /*
3244 * Clean paths with CE_SKIP_WORKTREE set will not be
3245 * written to the working tree by the unpack_trees()
3246 * call in checkout(). Our conflicted entries would
3247 * have appeared clean to that code since we ignored
3248 * the higher order stages. Thus, we need override
3249 * the CE_SKIP_WORKTREE bit and manually write those
3250 * files to the working disk here.
3251 *
3252 * TODO: Implement this CE_SKIP_WORKTREE fixup.
3253 */
3254
3255 /*
3256 * Mark this cache entry for removal and instead add
3257 * new stage>0 entries corresponding to the
3258 * conflicts. If there are many conflicted entries, we
3259 * want to avoid memmove'ing O(NM) entries by
3260 * inserting the new entries one at a time. So,
3261 * instead, we just add the new cache entries to the
3262 * end (ignoring normal index requirements on sort
3263 * order) and sort the index once we're all done.
3264 */
3265 ce->ce_flags |= CE_REMOVE;
3266 }
3267
3268 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3269 struct version_info *vi;
3270 if (!(ci->filemask & (1ul << i)))
3271 continue;
3272 vi = &ci->stages[i];
3273 ce = make_cache_entry(index, vi->mode, &vi->oid,
3274 path, i+1, 0);
3275 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
3276 }
3277 }
3278
3279 /*
3280 * Remove the unused cache entries (and invalidate the relevant
3281 * cache-trees), then sort the index entries to get the conflicted
3282 * entries we added to the end into their right locations.
3283 */
3284 remove_marked_cache_entries(index, 1);
3285 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
3286
3287 return errs;
3288 }
3289
3290 void merge_switch_to_result(struct merge_options *opt,
3291 struct tree *head,
3292 struct merge_result *result,
3293 int update_worktree_and_index,
3294 int display_update_msgs)
3295 {
3296 assert(opt->priv == NULL);
3297 if (result->clean >= 0 && update_worktree_and_index) {
3298 struct merge_options_internal *opti = result->priv;
3299
3300 trace2_region_enter("merge", "checkout", opt->repo);
3301 if (checkout(opt, head, result->tree)) {
3302 /* failure to function */
3303 result->clean = -1;
3304 return;
3305 }
3306 trace2_region_leave("merge", "checkout", opt->repo);
3307
3308 trace2_region_enter("merge", "record_conflicted", opt->repo);
3309 if (record_conflicted_index_entries(opt, opt->repo->index,
3310 &opti->paths,
3311 &opti->conflicted)) {
3312 /* failure to function */
3313 result->clean = -1;
3314 return;
3315 }
3316 trace2_region_leave("merge", "record_conflicted", opt->repo);
3317 }
3318
3319 if (display_update_msgs) {
3320 struct merge_options_internal *opti = result->priv;
3321 struct hashmap_iter iter;
3322 struct strmap_entry *e;
3323 struct string_list olist = STRING_LIST_INIT_NODUP;
3324 int i;
3325
3326 trace2_region_enter("merge", "display messages", opt->repo);
3327
3328 /* Hack to pre-allocate olist to the desired size */
3329 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
3330 olist.alloc);
3331
3332 /* Put every entry from output into olist, then sort */
3333 strmap_for_each_entry(&opti->output, &iter, e) {
3334 string_list_append(&olist, e->key)->util = e->value;
3335 }
3336 string_list_sort(&olist);
3337
3338 /* Iterate over the items, printing them */
3339 for (i = 0; i < olist.nr; ++i) {
3340 struct strbuf *sb = olist.items[i].util;
3341
3342 printf("%s", sb->buf);
3343 }
3344 string_list_clear(&olist, 0);
3345
3346 /* Also include needed rename limit adjustment now */
3347 diff_warn_rename_limit("merge.renamelimit",
3348 opti->renames.needed_limit, 0);
3349
3350 trace2_region_leave("merge", "display messages", opt->repo);
3351 }
3352
3353 merge_finalize(opt, result);
3354 }
3355
3356 void merge_finalize(struct merge_options *opt,
3357 struct merge_result *result)
3358 {
3359 struct merge_options_internal *opti = result->priv;
3360
3361 assert(opt->priv == NULL);
3362
3363 clear_or_reinit_internal_opts(opti, 0);
3364 FREE_AND_NULL(opti);
3365 }
3366
3367 /*** Function Grouping: helper functions for merge_incore_*() ***/
3368
3369 static inline void set_commit_tree(struct commit *c, struct tree *t)
3370 {
3371 c->maybe_tree = t;
3372 }
3373
3374 static struct commit *make_virtual_commit(struct repository *repo,
3375 struct tree *tree,
3376 const char *comment)
3377 {
3378 struct commit *commit = alloc_commit_node(repo);
3379
3380 set_merge_remote_desc(commit, comment, (struct object *)commit);
3381 set_commit_tree(commit, tree);
3382 commit->object.parsed = 1;
3383 return commit;
3384 }
3385
3386 static void merge_start(struct merge_options *opt, struct merge_result *result)
3387 {
3388 struct rename_info *renames;
3389 int i;
3390
3391 /* Sanity checks on opt */
3392 trace2_region_enter("merge", "sanity checks", opt->repo);
3393 assert(opt->repo);
3394
3395 assert(opt->branch1 && opt->branch2);
3396
3397 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
3398 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
3399 assert(opt->rename_limit >= -1);
3400 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
3401 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
3402
3403 assert(opt->xdl_opts >= 0);
3404 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
3405 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
3406
3407 /*
3408 * detect_renames, verbosity, buffer_output, and obuf are ignored
3409 * fields that were used by "recursive" rather than "ort" -- but
3410 * sanity check them anyway.
3411 */
3412 assert(opt->detect_renames >= -1 &&
3413 opt->detect_renames <= DIFF_DETECT_COPY);
3414 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
3415 assert(opt->buffer_output <= 2);
3416 assert(opt->obuf.len == 0);
3417
3418 assert(opt->priv == NULL);
3419 if (result->priv) {
3420 opt->priv = result->priv;
3421 result->priv = NULL;
3422 /*
3423 * opt->priv non-NULL means we had results from a previous
3424 * run; do a few sanity checks that user didn't mess with
3425 * it in an obvious fashion.
3426 */
3427 assert(opt->priv->call_depth == 0);
3428 assert(!opt->priv->toplevel_dir ||
3429 0 == strlen(opt->priv->toplevel_dir));
3430 }
3431 trace2_region_leave("merge", "sanity checks", opt->repo);
3432
3433 /* Default to histogram diff. Actually, just hardcode it...for now. */
3434 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
3435
3436 /* Initialization of opt->priv, our internal merge data */
3437 trace2_region_enter("merge", "allocate/init", opt->repo);
3438 if (opt->priv) {
3439 clear_or_reinit_internal_opts(opt->priv, 1);
3440 trace2_region_leave("merge", "allocate/init", opt->repo);
3441 return;
3442 }
3443 opt->priv = xcalloc(1, sizeof(*opt->priv));
3444
3445 /* Initialization of various renames fields */
3446 renames = &opt->priv->renames;
3447 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
3448 strset_init_with_options(&renames->dirs_removed[i],
3449 NULL, 0);
3450 strmap_init_with_options(&renames->dir_rename_count[i],
3451 NULL, 1);
3452 strmap_init_with_options(&renames->dir_renames[i],
3453 NULL, 0);
3454 strset_init_with_options(&renames->relevant_sources[i],
3455 NULL, 0);
3456 }
3457
3458 /*
3459 * Although we initialize opt->priv->paths with strdup_strings=0,
3460 * that's just to avoid making yet another copy of an allocated
3461 * string. Putting the entry into paths means we are taking
3462 * ownership, so we will later free it. paths_to_free is similar.
3463 *
3464 * In contrast, conflicted just has a subset of keys from paths, so
3465 * we don't want to free those (it'd be a duplicate free).
3466 */
3467 strmap_init_with_options(&opt->priv->paths, NULL, 0);
3468 strmap_init_with_options(&opt->priv->conflicted, NULL, 0);
3469 string_list_init(&opt->priv->paths_to_free, 0);
3470
3471 /*
3472 * keys & strbufs in output will sometimes need to outlive "paths",
3473 * so it will have a copy of relevant keys. It's probably a small
3474 * subset of the overall paths that have special output.
3475 */
3476 strmap_init(&opt->priv->output);
3477
3478 trace2_region_leave("merge", "allocate/init", opt->repo);
3479 }
3480
3481 /*** Function Grouping: merge_incore_*() and their internal variants ***/
3482
3483 /*
3484 * Originally from merge_trees_internal(); heavily adapted, though.
3485 */
3486 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
3487 struct tree *merge_base,
3488 struct tree *side1,
3489 struct tree *side2,
3490 struct merge_result *result)
3491 {
3492 struct object_id working_tree_oid;
3493
3494 trace2_region_enter("merge", "collect_merge_info", opt->repo);
3495 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
3496 /*
3497 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
3498 * base, and 2-3) the trees for the two trees we're merging.
3499 */
3500 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
3501 oid_to_hex(&merge_base->object.oid),
3502 oid_to_hex(&side1->object.oid),
3503 oid_to_hex(&side2->object.oid));
3504 result->clean = -1;
3505 return;
3506 }
3507 trace2_region_leave("merge", "collect_merge_info", opt->repo);
3508
3509 trace2_region_enter("merge", "renames", opt->repo);
3510 result->clean = detect_and_process_renames(opt, merge_base,
3511 side1, side2);
3512 trace2_region_leave("merge", "renames", opt->repo);
3513
3514 trace2_region_enter("merge", "process_entries", opt->repo);
3515 process_entries(opt, &working_tree_oid);
3516 trace2_region_leave("merge", "process_entries", opt->repo);
3517
3518 /* Set return values */
3519 result->tree = parse_tree_indirect(&working_tree_oid);
3520 /* existence of conflicted entries implies unclean */
3521 result->clean &= strmap_empty(&opt->priv->conflicted);
3522 if (!opt->priv->call_depth) {
3523 result->priv = opt->priv;
3524 opt->priv = NULL;
3525 }
3526 }
3527
3528 /*
3529 * Originally from merge_recursive_internal(); somewhat adapted, though.
3530 */
3531 static void merge_ort_internal(struct merge_options *opt,
3532 struct commit_list *merge_bases,
3533 struct commit *h1,
3534 struct commit *h2,
3535 struct merge_result *result)
3536 {
3537 struct commit_list *iter;
3538 struct commit *merged_merge_bases;
3539 const char *ancestor_name;
3540 struct strbuf merge_base_abbrev = STRBUF_INIT;
3541
3542 if (!merge_bases) {
3543 merge_bases = get_merge_bases(h1, h2);
3544 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
3545 merge_bases = reverse_commit_list(merge_bases);
3546 }
3547
3548 merged_merge_bases = pop_commit(&merge_bases);
3549 if (merged_merge_bases == NULL) {
3550 /* if there is no common ancestor, use an empty tree */
3551 struct tree *tree;
3552
3553 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
3554 merged_merge_bases = make_virtual_commit(opt->repo, tree,
3555 "ancestor");
3556 ancestor_name = "empty tree";
3557 } else if (merge_bases) {
3558 ancestor_name = "merged common ancestors";
3559 } else {
3560 strbuf_add_unique_abbrev(&merge_base_abbrev,
3561 &merged_merge_bases->object.oid,
3562 DEFAULT_ABBREV);
3563 ancestor_name = merge_base_abbrev.buf;
3564 }
3565
3566 for (iter = merge_bases; iter; iter = iter->next) {
3567 const char *saved_b1, *saved_b2;
3568 struct commit *prev = merged_merge_bases;
3569
3570 opt->priv->call_depth++;
3571 /*
3572 * When the merge fails, the result contains files
3573 * with conflict markers. The cleanness flag is
3574 * ignored (unless indicating an error), it was never
3575 * actually used, as result of merge_trees has always
3576 * overwritten it: the committed "conflicts" were
3577 * already resolved.
3578 */
3579 saved_b1 = opt->branch1;
3580 saved_b2 = opt->branch2;
3581 opt->branch1 = "Temporary merge branch 1";
3582 opt->branch2 = "Temporary merge branch 2";
3583 merge_ort_internal(opt, NULL, prev, iter->item, result);
3584 if (result->clean < 0)
3585 return;
3586 opt->branch1 = saved_b1;
3587 opt->branch2 = saved_b2;
3588 opt->priv->call_depth--;
3589
3590 merged_merge_bases = make_virtual_commit(opt->repo,
3591 result->tree,
3592 "merged tree");
3593 commit_list_insert(prev, &merged_merge_bases->parents);
3594 commit_list_insert(iter->item,
3595 &merged_merge_bases->parents->next);
3596
3597 clear_or_reinit_internal_opts(opt->priv, 1);
3598 }
3599
3600 opt->ancestor = ancestor_name;
3601 merge_ort_nonrecursive_internal(opt,
3602 repo_get_commit_tree(opt->repo,
3603 merged_merge_bases),
3604 repo_get_commit_tree(opt->repo, h1),
3605 repo_get_commit_tree(opt->repo, h2),
3606 result);
3607 strbuf_release(&merge_base_abbrev);
3608 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
3609 }
3610
3611 void merge_incore_nonrecursive(struct merge_options *opt,
3612 struct tree *merge_base,
3613 struct tree *side1,
3614 struct tree *side2,
3615 struct merge_result *result)
3616 {
3617 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
3618
3619 trace2_region_enter("merge", "merge_start", opt->repo);
3620 assert(opt->ancestor != NULL);
3621 merge_start(opt, result);
3622 trace2_region_leave("merge", "merge_start", opt->repo);
3623
3624 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
3625 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
3626 }
3627
3628 void merge_incore_recursive(struct merge_options *opt,
3629 struct commit_list *merge_bases,
3630 struct commit *side1,
3631 struct commit *side2,
3632 struct merge_result *result)
3633 {
3634 trace2_region_enter("merge", "incore_recursive", opt->repo);
3635
3636 /* We set the ancestor label based on the merge_bases */
3637 assert(opt->ancestor == NULL);
3638
3639 trace2_region_enter("merge", "merge_start", opt->repo);
3640 merge_start(opt, result);
3641 trace2_region_leave("merge", "merge_start", opt->repo);
3642
3643 merge_ort_internal(opt, merge_bases, side1, side2, result);
3644 trace2_region_leave("merge", "incore_recursive", opt->repo);
3645 }