]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
Merge branch 'en/fetch-negotiation-default-fix'
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule-config.h"
36 #include "submodule.h"
37 #include "tree.h"
38 #include "unpack-trees.h"
39 #include "xdiff-interface.h"
40
41 /*
42 * We have many arrays of size 3. Whenever we have such an array, the
43 * indices refer to one of the sides of the three-way merge. This is so
44 * pervasive that the constants 0, 1, and 2 are used in many places in the
45 * code (especially in arithmetic operations to find the other side's index
46 * or to compute a relevant mask), but sometimes these enum names are used
47 * to aid code clarity.
48 *
49 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
50 * referred to there is one of these three sides.
51 */
52 enum merge_side {
53 MERGE_BASE = 0,
54 MERGE_SIDE1 = 1,
55 MERGE_SIDE2 = 2
56 };
57
58 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
59
60 struct traversal_callback_data {
61 unsigned long mask;
62 unsigned long dirmask;
63 struct name_entry names[3];
64 };
65
66 struct deferred_traversal_data {
67 /*
68 * possible_trivial_merges: directories to be explored only when needed
69 *
70 * possible_trivial_merges is a map of directory names to
71 * dir_rename_mask. When we detect that a directory is unchanged on
72 * one side, we can sometimes resolve the directory without recursing
73 * into it. Renames are the only things that can prevent such an
74 * optimization. However, for rename sources:
75 * - If no parent directory needed directory rename detection, then
76 * no path under such a directory can be a relevant_source.
77 * and for rename destinations:
78 * - If no cached rename has a target path under the directory AND
79 * - If there are no unpaired relevant_sources elsewhere in the
80 * repository
81 * then we don't need any path under this directory for a rename
82 * destination. The only way to know the last item above is to defer
83 * handling such directories until the end of collect_merge_info(),
84 * in handle_deferred_entries().
85 *
86 * For each we store dir_rename_mask, since that's the only bit of
87 * information we need, other than the path, to resume the recursive
88 * traversal.
89 */
90 struct strintmap possible_trivial_merges;
91
92 /*
93 * trivial_merges_okay: if trivial directory merges are okay
94 *
95 * See possible_trivial_merges above. The "no unpaired
96 * relevant_sources elsewhere in the repository" is a single boolean
97 * per merge side, which we store here. Note that while 0 means no,
98 * 1 only means "maybe" rather than "yes"; we optimistically set it
99 * to 1 initially and only clear when we determine it is unsafe to
100 * do trivial directory merges.
101 */
102 unsigned trivial_merges_okay;
103
104 /*
105 * target_dirs: ancestor directories of rename targets
106 *
107 * target_dirs contains all directory names that are an ancestor of
108 * any rename destination.
109 */
110 struct strset target_dirs;
111 };
112
113 struct rename_info {
114 /*
115 * All variables that are arrays of size 3 correspond to data tracked
116 * for the sides in enum merge_side. Index 0 is almost always unused
117 * because we often only need to track information for MERGE_SIDE1 and
118 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
119 * are determined relative to what changed since the MERGE_BASE).
120 */
121
122 /*
123 * pairs: pairing of filenames from diffcore_rename()
124 */
125 struct diff_queue_struct pairs[3];
126
127 /*
128 * dirs_removed: directories removed on a given side of history.
129 *
130 * The keys of dirs_removed[side] are the directories that were removed
131 * on the given side of history. The value of the strintmap for each
132 * directory is a value from enum dir_rename_relevance.
133 */
134 struct strintmap dirs_removed[3];
135
136 /*
137 * dir_rename_count: tracking where parts of a directory were renamed to
138 *
139 * When files in a directory are renamed, they may not all go to the
140 * same location. Each strmap here tracks:
141 * old_dir => {new_dir => int}
142 * That is, dir_rename_count[side] is a strmap to a strintmap.
143 */
144 struct strmap dir_rename_count[3];
145
146 /*
147 * dir_renames: computed directory renames
148 *
149 * This is a map of old_dir => new_dir and is derived in part from
150 * dir_rename_count.
151 */
152 struct strmap dir_renames[3];
153
154 /*
155 * relevant_sources: deleted paths wanted in rename detection, and why
156 *
157 * relevant_sources is a set of deleted paths on each side of
158 * history for which we need rename detection. If a path is deleted
159 * on one side of history, we need to detect if it is part of a
160 * rename if either
161 * * the file is modified/deleted on the other side of history
162 * * we need to detect renames for an ancestor directory
163 * If neither of those are true, we can skip rename detection for
164 * that path. The reason is stored as a value from enum
165 * file_rename_relevance, as the reason can inform the algorithm in
166 * diffcore_rename_extended().
167 */
168 struct strintmap relevant_sources[3];
169
170 struct deferred_traversal_data deferred[3];
171
172 /*
173 * dir_rename_mask:
174 * 0: optimization removing unmodified potential rename source okay
175 * 2 or 4: optimization okay, but must check for files added to dir
176 * 7: optimization forbidden; need rename source in case of dir rename
177 */
178 unsigned dir_rename_mask:3;
179
180 /*
181 * callback_data_*: supporting data structures for alternate traversal
182 *
183 * We sometimes need to be able to traverse through all the files
184 * in a given tree before all immediate subdirectories within that
185 * tree. Since traverse_trees() doesn't do that naturally, we have
186 * a traverse_trees_wrapper() that stores any immediate
187 * subdirectories while traversing files, then traverses the
188 * immediate subdirectories later. These callback_data* variables
189 * store the information for the subdirectories so that we can do
190 * that traversal order.
191 */
192 struct traversal_callback_data *callback_data;
193 int callback_data_nr, callback_data_alloc;
194 char *callback_data_traverse_path;
195
196 /*
197 * merge_trees: trees passed to the merge algorithm for the merge
198 *
199 * merge_trees records the trees passed to the merge algorithm. But,
200 * this data also is stored in merge_result->priv. If a sequence of
201 * merges are being done (such as when cherry-picking or rebasing),
202 * the next merge can look at this and re-use information from
203 * previous merges under certain circumstances.
204 *
205 * See also all the cached_* variables.
206 */
207 struct tree *merge_trees[3];
208
209 /*
210 * cached_pairs_valid_side: which side's cached info can be reused
211 *
212 * See the description for merge_trees. For repeated merges, at most
213 * only one side's cached information can be used. Valid values:
214 * MERGE_SIDE2: cached data from side2 can be reused
215 * MERGE_SIDE1: cached data from side1 can be reused
216 * 0: no cached data can be reused
217 * -1: See redo_after_renames; both sides can be reused.
218 */
219 int cached_pairs_valid_side;
220
221 /*
222 * cached_pairs: Caching of renames and deletions.
223 *
224 * These are mappings recording renames and deletions of individual
225 * files (not directories). They are thus a map from an old
226 * filename to either NULL (for deletions) or a new filename (for
227 * renames).
228 */
229 struct strmap cached_pairs[3];
230
231 /*
232 * cached_target_names: just the destinations from cached_pairs
233 *
234 * We sometimes want a fast lookup to determine if a given filename
235 * is one of the destinations in cached_pairs. cached_target_names
236 * is thus duplicative information, but it provides a fast lookup.
237 */
238 struct strset cached_target_names[3];
239
240 /*
241 * cached_irrelevant: Caching of rename_sources that aren't relevant.
242 *
243 * If we try to detect a rename for a source path and succeed, it's
244 * part of a rename. If we try to detect a rename for a source path
245 * and fail, then it's a delete. If we do not try to detect a rename
246 * for a path, then we don't know if it's a rename or a delete. If
247 * merge-ort doesn't think the path is relevant, then we just won't
248 * cache anything for that path. But there's a slight problem in
249 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
250 * commit 9bd342137e ("diffcore-rename: determine which
251 * relevant_sources are no longer relevant", 2021-03-13),
252 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
253 * avoid excessive calls to diffcore_rename_extended() we still need
254 * to cache such paths, though we cannot record them as either
255 * renames or deletes. So we cache them here as a "turned out to be
256 * irrelevant *for this commit*" as they are often also irrelevant
257 * for subsequent commits, though we will have to do some extra
258 * checking to see whether such paths become relevant for rename
259 * detection when cherry-picking/rebasing subsequent commits.
260 */
261 struct strset cached_irrelevant[3];
262
263 /*
264 * redo_after_renames: optimization flag for "restarting" the merge
265 *
266 * Sometimes it pays to detect renames, cache them, and then
267 * restart the merge operation from the beginning. The reason for
268 * this is that when we know where all the renames are, we know
269 * whether a certain directory has any paths under it affected --
270 * and if a directory is not affected then it permits us to do
271 * trivial tree merging in more cases. Doing trivial tree merging
272 * prevents the need to run process_entry() on every path
273 * underneath trees that can be trivially merged, and
274 * process_entry() is more expensive than collect_merge_info() --
275 * plus, the second collect_merge_info() will be much faster since
276 * it doesn't have to recurse into the relevant trees.
277 *
278 * Values for this flag:
279 * 0 = don't bother, not worth it (or conditions not yet checked)
280 * 1 = conditions for optimization met, optimization worthwhile
281 * 2 = we already did it (don't restart merge yet again)
282 */
283 unsigned redo_after_renames;
284
285 /*
286 * needed_limit: value needed for inexact rename detection to run
287 *
288 * If the current rename limit wasn't high enough for inexact
289 * rename detection to run, this records the limit needed. Otherwise,
290 * this value remains 0.
291 */
292 int needed_limit;
293 };
294
295 struct merge_options_internal {
296 /*
297 * paths: primary data structure in all of merge ort.
298 *
299 * The keys of paths:
300 * * are full relative paths from the toplevel of the repository
301 * (e.g. "drivers/firmware/raspberrypi.c").
302 * * store all relevant paths in the repo, both directories and
303 * files (e.g. drivers, drivers/firmware would also be included)
304 * * these keys serve to intern all the path strings, which allows
305 * us to do pointer comparison on directory names instead of
306 * strcmp; we just have to be careful to use the interned strings.
307 *
308 * The values of paths:
309 * * either a pointer to a merged_info, or a conflict_info struct
310 * * merged_info contains all relevant information for a
311 * non-conflicted entry.
312 * * conflict_info contains a merged_info, plus any additional
313 * information about a conflict such as the higher orders stages
314 * involved and the names of the paths those came from (handy
315 * once renames get involved).
316 * * a path may start "conflicted" (i.e. point to a conflict_info)
317 * and then a later step (e.g. three-way content merge) determines
318 * it can be cleanly merged, at which point it'll be marked clean
319 * and the algorithm will ignore any data outside the contained
320 * merged_info for that entry
321 * * If an entry remains conflicted, the merged_info portion of a
322 * conflict_info will later be filled with whatever version of
323 * the file should be placed in the working directory (e.g. an
324 * as-merged-as-possible variation that contains conflict markers).
325 */
326 struct strmap paths;
327
328 /*
329 * conflicted: a subset of keys->values from "paths"
330 *
331 * conflicted is basically an optimization between process_entries()
332 * and record_conflicted_index_entries(); the latter could loop over
333 * ALL the entries in paths AGAIN and look for the ones that are
334 * still conflicted, but since process_entries() has to loop over
335 * all of them, it saves the ones it couldn't resolve in this strmap
336 * so that record_conflicted_index_entries() can iterate just the
337 * relevant entries.
338 */
339 struct strmap conflicted;
340
341 /*
342 * pool: memory pool for fast allocation/deallocation
343 *
344 * We allocate room for lots of filenames and auxiliary data
345 * structures in merge_options_internal, and it tends to all be
346 * freed together too. Using a memory pool for these provides a
347 * nice speedup.
348 */
349 struct mem_pool pool;
350
351 /*
352 * output: special messages and conflict notices for various paths
353 *
354 * This is a map of pathnames (a subset of the keys in "paths" above)
355 * to strbufs. It gathers various warning/conflict/notice messages
356 * for later processing.
357 */
358 struct strmap output;
359
360 /*
361 * renames: various data relating to rename detection
362 */
363 struct rename_info renames;
364
365 /*
366 * attr_index: hacky minimal index used for renormalization
367 *
368 * renormalization code _requires_ an index, though it only needs to
369 * find a .gitattributes file within the index. So, when
370 * renormalization is important, we create a special index with just
371 * that one file.
372 */
373 struct index_state attr_index;
374
375 /*
376 * current_dir_name, toplevel_dir: temporary vars
377 *
378 * These are used in collect_merge_info_callback(), and will set the
379 * various merged_info.directory_name for the various paths we get;
380 * see documentation for that variable and the requirements placed on
381 * that field.
382 */
383 const char *current_dir_name;
384 const char *toplevel_dir;
385
386 /* call_depth: recursion level counter for merging merge bases */
387 int call_depth;
388 };
389
390 struct version_info {
391 struct object_id oid;
392 unsigned short mode;
393 };
394
395 struct merged_info {
396 /* if is_null, ignore result. otherwise result has oid & mode */
397 struct version_info result;
398 unsigned is_null:1;
399
400 /*
401 * clean: whether the path in question is cleanly merged.
402 *
403 * see conflict_info.merged for more details.
404 */
405 unsigned clean:1;
406
407 /*
408 * basename_offset: offset of basename of path.
409 *
410 * perf optimization to avoid recomputing offset of final '/'
411 * character in pathname (0 if no '/' in pathname).
412 */
413 size_t basename_offset;
414
415 /*
416 * directory_name: containing directory name.
417 *
418 * Note that we assume directory_name is constructed such that
419 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
420 * i.e. string equality is equivalent to pointer equality. For this
421 * to hold, we have to be careful setting directory_name.
422 */
423 const char *directory_name;
424 };
425
426 struct conflict_info {
427 /*
428 * merged: the version of the path that will be written to working tree
429 *
430 * WARNING: It is critical to check merged.clean and ensure it is 0
431 * before reading any conflict_info fields outside of merged.
432 * Allocated merge_info structs will always have clean set to 1.
433 * Allocated conflict_info structs will have merged.clean set to 0
434 * initially. The merged.clean field is how we know if it is safe
435 * to access other parts of conflict_info besides merged; if a
436 * conflict_info's merged.clean is changed to 1, the rest of the
437 * algorithm is not allowed to look at anything outside of the
438 * merged member anymore.
439 */
440 struct merged_info merged;
441
442 /* oids & modes from each of the three trees for this path */
443 struct version_info stages[3];
444
445 /* pathnames for each stage; may differ due to rename detection */
446 const char *pathnames[3];
447
448 /* Whether this path is/was involved in a directory/file conflict */
449 unsigned df_conflict:1;
450
451 /*
452 * Whether this path is/was involved in a non-content conflict other
453 * than a directory/file conflict (e.g. rename/rename, rename/delete,
454 * file location based on possible directory rename).
455 */
456 unsigned path_conflict:1;
457
458 /*
459 * For filemask and dirmask, the ith bit corresponds to whether the
460 * ith entry is a file (filemask) or a directory (dirmask). Thus,
461 * filemask & dirmask is always zero, and filemask | dirmask is at
462 * most 7 but can be less when a path does not appear as either a
463 * file or a directory on at least one side of history.
464 *
465 * Note that these masks are related to enum merge_side, as the ith
466 * entry corresponds to side i.
467 *
468 * These values come from a traverse_trees() call; more info may be
469 * found looking at tree-walk.h's struct traverse_info,
470 * particularly the documentation above the "fn" member (note that
471 * filemask = mask & ~dirmask from that documentation).
472 */
473 unsigned filemask:3;
474 unsigned dirmask:3;
475
476 /*
477 * Optimization to track which stages match, to avoid the need to
478 * recompute it in multiple steps. Either 0 or at least 2 bits are
479 * set; if at least 2 bits are set, their corresponding stages match.
480 */
481 unsigned match_mask:3;
482 };
483
484 /*** Function Grouping: various utility functions ***/
485
486 /*
487 * For the next three macros, see warning for conflict_info.merged.
488 *
489 * In each of the below, mi is a struct merged_info*, and ci was defined
490 * as a struct conflict_info* (but we need to verify ci isn't actually
491 * pointed at a struct merged_info*).
492 *
493 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
494 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
495 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
496 */
497 #define INITIALIZE_CI(ci, mi) do { \
498 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
499 } while (0)
500 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
501 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
502 (ci) = (struct conflict_info *)(mi); \
503 assert((ci) && !(mi)->clean); \
504 } while (0)
505
506 static void free_strmap_strings(struct strmap *map)
507 {
508 struct hashmap_iter iter;
509 struct strmap_entry *entry;
510
511 strmap_for_each_entry(map, &iter, entry) {
512 free((char*)entry->key);
513 }
514 }
515
516 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
517 int reinitialize)
518 {
519 struct rename_info *renames = &opti->renames;
520 int i;
521 void (*strmap_clear_func)(struct strmap *, int) =
522 reinitialize ? strmap_partial_clear : strmap_clear;
523 void (*strintmap_clear_func)(struct strintmap *) =
524 reinitialize ? strintmap_partial_clear : strintmap_clear;
525 void (*strset_clear_func)(struct strset *) =
526 reinitialize ? strset_partial_clear : strset_clear;
527
528 strmap_clear_func(&opti->paths, 0);
529
530 /*
531 * All keys and values in opti->conflicted are a subset of those in
532 * opti->paths. We don't want to deallocate anything twice, so we
533 * don't free the keys and we pass 0 for free_values.
534 */
535 strmap_clear_func(&opti->conflicted, 0);
536
537 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
538 discard_index(&opti->attr_index);
539
540 /* Free memory used by various renames maps */
541 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
542 strintmap_clear_func(&renames->dirs_removed[i]);
543 strmap_clear_func(&renames->dir_renames[i], 0);
544 strintmap_clear_func(&renames->relevant_sources[i]);
545 if (!reinitialize)
546 assert(renames->cached_pairs_valid_side == 0);
547 if (i != renames->cached_pairs_valid_side &&
548 -1 != renames->cached_pairs_valid_side) {
549 strset_clear_func(&renames->cached_target_names[i]);
550 strmap_clear_func(&renames->cached_pairs[i], 1);
551 strset_clear_func(&renames->cached_irrelevant[i]);
552 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
553 if (!reinitialize)
554 strmap_clear(&renames->dir_rename_count[i], 1);
555 }
556 }
557 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
558 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
559 strset_clear_func(&renames->deferred[i].target_dirs);
560 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
561 }
562 renames->cached_pairs_valid_side = 0;
563 renames->dir_rename_mask = 0;
564
565 if (!reinitialize) {
566 struct hashmap_iter iter;
567 struct strmap_entry *e;
568
569 /* Release and free each strbuf found in output */
570 strmap_for_each_entry(&opti->output, &iter, e) {
571 struct strbuf *sb = e->value;
572 strbuf_release(sb);
573 /*
574 * While strictly speaking we don't need to free(sb)
575 * here because we could pass free_values=1 when
576 * calling strmap_clear() on opti->output, that would
577 * require strmap_clear to do another
578 * strmap_for_each_entry() loop, so we just free it
579 * while we're iterating anyway.
580 */
581 free(sb);
582 }
583 strmap_clear(&opti->output, 0);
584 }
585
586 mem_pool_discard(&opti->pool, 0);
587
588 /* Clean out callback_data as well. */
589 FREE_AND_NULL(renames->callback_data);
590 renames->callback_data_nr = renames->callback_data_alloc = 0;
591 }
592
593 __attribute__((format (printf, 2, 3)))
594 static int err(struct merge_options *opt, const char *err, ...)
595 {
596 va_list params;
597 struct strbuf sb = STRBUF_INIT;
598
599 strbuf_addstr(&sb, "error: ");
600 va_start(params, err);
601 strbuf_vaddf(&sb, err, params);
602 va_end(params);
603
604 error("%s", sb.buf);
605 strbuf_release(&sb);
606
607 return -1;
608 }
609
610 static void format_commit(struct strbuf *sb,
611 int indent,
612 struct repository *repo,
613 struct commit *commit)
614 {
615 struct merge_remote_desc *desc;
616 struct pretty_print_context ctx = {0};
617 ctx.abbrev = DEFAULT_ABBREV;
618
619 strbuf_addchars(sb, ' ', indent);
620 desc = merge_remote_util(commit);
621 if (desc) {
622 strbuf_addf(sb, "virtual %s\n", desc->name);
623 return;
624 }
625
626 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
627 strbuf_addch(sb, '\n');
628 }
629
630 __attribute__((format (printf, 4, 5)))
631 static void path_msg(struct merge_options *opt,
632 const char *path,
633 int omittable_hint, /* skippable under --remerge-diff */
634 const char *fmt, ...)
635 {
636 va_list ap;
637 struct strbuf *sb, *dest;
638 struct strbuf tmp = STRBUF_INIT;
639
640 if (opt->record_conflict_msgs_as_headers && omittable_hint)
641 return; /* Do not record mere hints in headers */
642 if (opt->record_conflict_msgs_as_headers && opt->priv->call_depth)
643 return; /* Do not record inner merge issues in headers */
644 sb = strmap_get(&opt->priv->output, path);
645 if (!sb) {
646 sb = xmalloc(sizeof(*sb));
647 strbuf_init(sb, 0);
648 strmap_put(&opt->priv->output, path, sb);
649 }
650
651 dest = (opt->record_conflict_msgs_as_headers ? &tmp : sb);
652
653 va_start(ap, fmt);
654 strbuf_vaddf(dest, fmt, ap);
655 va_end(ap);
656
657 if (opt->record_conflict_msgs_as_headers) {
658 int i_sb = 0, i_tmp = 0;
659
660 /* Start with the specified prefix */
661 if (opt->msg_header_prefix)
662 strbuf_addf(sb, "%s ", opt->msg_header_prefix);
663
664 /* Copy tmp to sb, adding spaces after newlines */
665 strbuf_grow(sb, sb->len + 2*tmp.len); /* more than sufficient */
666 for (; i_tmp < tmp.len; i_tmp++, i_sb++) {
667 /* Copy next character from tmp to sb */
668 sb->buf[sb->len + i_sb] = tmp.buf[i_tmp];
669
670 /* If we copied a newline, add a space */
671 if (tmp.buf[i_tmp] == '\n')
672 sb->buf[++i_sb] = ' ';
673 }
674 /* Update length and ensure it's NUL-terminated */
675 sb->len += i_sb;
676 sb->buf[sb->len] = '\0';
677
678 strbuf_release(&tmp);
679 }
680
681 /* Add final newline character to sb */
682 strbuf_addch(sb, '\n');
683 }
684
685 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
686 const char *path)
687 {
688 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
689 struct diff_filespec *spec;
690
691 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
692 spec->path = (char*)path; /* spec won't modify it */
693
694 spec->count = 1;
695 spec->is_binary = -1;
696 return spec;
697 }
698
699 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
700 struct diff_queue_struct *queue,
701 struct diff_filespec *one,
702 struct diff_filespec *two)
703 {
704 /* Same code as diff_queue(), except allocate from pool */
705 struct diff_filepair *dp;
706
707 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
708 dp->one = one;
709 dp->two = two;
710 if (queue)
711 diff_q(queue, dp);
712 return dp;
713 }
714
715 /* add a string to a strbuf, but converting "/" to "_" */
716 static void add_flattened_path(struct strbuf *out, const char *s)
717 {
718 size_t i = out->len;
719 strbuf_addstr(out, s);
720 for (; i < out->len; i++)
721 if (out->buf[i] == '/')
722 out->buf[i] = '_';
723 }
724
725 static char *unique_path(struct strmap *existing_paths,
726 const char *path,
727 const char *branch)
728 {
729 struct strbuf newpath = STRBUF_INIT;
730 int suffix = 0;
731 size_t base_len;
732
733 strbuf_addf(&newpath, "%s~", path);
734 add_flattened_path(&newpath, branch);
735
736 base_len = newpath.len;
737 while (strmap_contains(existing_paths, newpath.buf)) {
738 strbuf_setlen(&newpath, base_len);
739 strbuf_addf(&newpath, "_%d", suffix++);
740 }
741
742 return strbuf_detach(&newpath, NULL);
743 }
744
745 /*** Function Grouping: functions related to collect_merge_info() ***/
746
747 static int traverse_trees_wrapper_callback(int n,
748 unsigned long mask,
749 unsigned long dirmask,
750 struct name_entry *names,
751 struct traverse_info *info)
752 {
753 struct merge_options *opt = info->data;
754 struct rename_info *renames = &opt->priv->renames;
755 unsigned filemask = mask & ~dirmask;
756
757 assert(n==3);
758
759 if (!renames->callback_data_traverse_path)
760 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
761
762 if (filemask && filemask == renames->dir_rename_mask)
763 renames->dir_rename_mask = 0x07;
764
765 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
766 renames->callback_data_alloc);
767 renames->callback_data[renames->callback_data_nr].mask = mask;
768 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
769 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
770 names, 3);
771 renames->callback_data_nr++;
772
773 return mask;
774 }
775
776 /*
777 * Much like traverse_trees(), BUT:
778 * - read all the tree entries FIRST, saving them
779 * - note that the above step provides an opportunity to compute necessary
780 * additional details before the "real" traversal
781 * - loop through the saved entries and call the original callback on them
782 */
783 static int traverse_trees_wrapper(struct index_state *istate,
784 int n,
785 struct tree_desc *t,
786 struct traverse_info *info)
787 {
788 int ret, i, old_offset;
789 traverse_callback_t old_fn;
790 char *old_callback_data_traverse_path;
791 struct merge_options *opt = info->data;
792 struct rename_info *renames = &opt->priv->renames;
793
794 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
795
796 old_callback_data_traverse_path = renames->callback_data_traverse_path;
797 old_fn = info->fn;
798 old_offset = renames->callback_data_nr;
799
800 renames->callback_data_traverse_path = NULL;
801 info->fn = traverse_trees_wrapper_callback;
802 ret = traverse_trees(istate, n, t, info);
803 if (ret < 0)
804 return ret;
805
806 info->traverse_path = renames->callback_data_traverse_path;
807 info->fn = old_fn;
808 for (i = old_offset; i < renames->callback_data_nr; ++i) {
809 info->fn(n,
810 renames->callback_data[i].mask,
811 renames->callback_data[i].dirmask,
812 renames->callback_data[i].names,
813 info);
814 }
815
816 renames->callback_data_nr = old_offset;
817 free(renames->callback_data_traverse_path);
818 renames->callback_data_traverse_path = old_callback_data_traverse_path;
819 info->traverse_path = NULL;
820 return 0;
821 }
822
823 static void setup_path_info(struct merge_options *opt,
824 struct string_list_item *result,
825 const char *current_dir_name,
826 int current_dir_name_len,
827 char *fullpath, /* we'll take over ownership */
828 struct name_entry *names,
829 struct name_entry *merged_version,
830 unsigned is_null, /* boolean */
831 unsigned df_conflict, /* boolean */
832 unsigned filemask,
833 unsigned dirmask,
834 int resolved /* boolean */)
835 {
836 /* result->util is void*, so mi is a convenience typed variable */
837 struct merged_info *mi;
838
839 assert(!is_null || resolved);
840 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
841 assert(resolved == (merged_version != NULL));
842
843 mi = mem_pool_calloc(&opt->priv->pool, 1,
844 resolved ? sizeof(struct merged_info) :
845 sizeof(struct conflict_info));
846 mi->directory_name = current_dir_name;
847 mi->basename_offset = current_dir_name_len;
848 mi->clean = !!resolved;
849 if (resolved) {
850 mi->result.mode = merged_version->mode;
851 oidcpy(&mi->result.oid, &merged_version->oid);
852 mi->is_null = !!is_null;
853 } else {
854 int i;
855 struct conflict_info *ci;
856
857 ASSIGN_AND_VERIFY_CI(ci, mi);
858 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
859 ci->pathnames[i] = fullpath;
860 ci->stages[i].mode = names[i].mode;
861 oidcpy(&ci->stages[i].oid, &names[i].oid);
862 }
863 ci->filemask = filemask;
864 ci->dirmask = dirmask;
865 ci->df_conflict = !!df_conflict;
866 if (dirmask)
867 /*
868 * Assume is_null for now, but if we have entries
869 * under the directory then when it is complete in
870 * write_completed_directory() it'll update this.
871 * Also, for D/F conflicts, we have to handle the
872 * directory first, then clear this bit and process
873 * the file to see how it is handled -- that occurs
874 * near the top of process_entry().
875 */
876 mi->is_null = 1;
877 }
878 strmap_put(&opt->priv->paths, fullpath, mi);
879 result->string = fullpath;
880 result->util = mi;
881 }
882
883 static void add_pair(struct merge_options *opt,
884 struct name_entry *names,
885 const char *pathname,
886 unsigned side,
887 unsigned is_add /* if false, is_delete */,
888 unsigned match_mask,
889 unsigned dir_rename_mask)
890 {
891 struct diff_filespec *one, *two;
892 struct rename_info *renames = &opt->priv->renames;
893 int names_idx = is_add ? side : 0;
894
895 if (is_add) {
896 assert(match_mask == 0 || match_mask == 6);
897 if (strset_contains(&renames->cached_target_names[side],
898 pathname))
899 return;
900 } else {
901 unsigned content_relevant = (match_mask == 0);
902 unsigned location_relevant = (dir_rename_mask == 0x07);
903
904 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
905
906 /*
907 * If pathname is found in cached_irrelevant[side] due to
908 * previous pick but for this commit content is relevant,
909 * then we need to remove it from cached_irrelevant.
910 */
911 if (content_relevant)
912 /* strset_remove is no-op if strset doesn't have key */
913 strset_remove(&renames->cached_irrelevant[side],
914 pathname);
915
916 /*
917 * We do not need to re-detect renames for paths that we already
918 * know the pairing, i.e. for cached_pairs (or
919 * cached_irrelevant). However, handle_deferred_entries() needs
920 * to loop over the union of keys from relevant_sources[side] and
921 * cached_pairs[side], so for simplicity we set relevant_sources
922 * for all the cached_pairs too and then strip them back out in
923 * prune_cached_from_relevant() at the beginning of
924 * detect_regular_renames().
925 */
926 if (content_relevant || location_relevant) {
927 /* content_relevant trumps location_relevant */
928 strintmap_set(&renames->relevant_sources[side], pathname,
929 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
930 }
931
932 /*
933 * Avoid creating pair if we've already cached rename results.
934 * Note that we do this after setting relevant_sources[side]
935 * as noted in the comment above.
936 */
937 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
938 strset_contains(&renames->cached_irrelevant[side], pathname))
939 return;
940 }
941
942 one = pool_alloc_filespec(&opt->priv->pool, pathname);
943 two = pool_alloc_filespec(&opt->priv->pool, pathname);
944 fill_filespec(is_add ? two : one,
945 &names[names_idx].oid, 1, names[names_idx].mode);
946 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
947 }
948
949 static void collect_rename_info(struct merge_options *opt,
950 struct name_entry *names,
951 const char *dirname,
952 const char *fullname,
953 unsigned filemask,
954 unsigned dirmask,
955 unsigned match_mask)
956 {
957 struct rename_info *renames = &opt->priv->renames;
958 unsigned side;
959
960 /*
961 * Update dir_rename_mask (determines ignore-rename-source validity)
962 *
963 * dir_rename_mask helps us keep track of when directory rename
964 * detection may be relevant. Basically, whenver a directory is
965 * removed on one side of history, and a file is added to that
966 * directory on the other side of history, directory rename
967 * detection is relevant (meaning we have to detect renames for all
968 * files within that directory to deduce where the directory
969 * moved). Also, whenever a directory needs directory rename
970 * detection, due to the "majority rules" choice for where to move
971 * it (see t6423 testcase 1f), we also need to detect renames for
972 * all files within subdirectories of that directory as well.
973 *
974 * Here we haven't looked at files within the directory yet, we are
975 * just looking at the directory itself. So, if we aren't yet in
976 * a case where a parent directory needed directory rename detection
977 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
978 * on one side of history, record the mask of the other side of
979 * history in dir_rename_mask.
980 */
981 if (renames->dir_rename_mask != 0x07 &&
982 (dirmask == 3 || dirmask == 5)) {
983 /* simple sanity check */
984 assert(renames->dir_rename_mask == 0 ||
985 renames->dir_rename_mask == (dirmask & ~1));
986 /* update dir_rename_mask; have it record mask of new side */
987 renames->dir_rename_mask = (dirmask & ~1);
988 }
989
990 /* Update dirs_removed, as needed */
991 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
992 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
993 unsigned sides = (0x07 - dirmask)/2;
994 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
995 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
996 /*
997 * Record relevance of this directory. However, note that
998 * when collect_merge_info_callback() recurses into this
999 * directory and calls collect_rename_info() on paths
1000 * within that directory, if we find a path that was added
1001 * to this directory on the other side of history, we will
1002 * upgrade this value to RELEVANT_FOR_SELF; see below.
1003 */
1004 if (sides & 1)
1005 strintmap_set(&renames->dirs_removed[1], fullname,
1006 relevance);
1007 if (sides & 2)
1008 strintmap_set(&renames->dirs_removed[2], fullname,
1009 relevance);
1010 }
1011
1012 /*
1013 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
1014 * When we run across a file added to a directory. In such a case,
1015 * find the directory of the file and upgrade its relevance.
1016 */
1017 if (renames->dir_rename_mask == 0x07 &&
1018 (filemask == 2 || filemask == 4)) {
1019 /*
1020 * Need directory rename for parent directory on other side
1021 * of history from added file. Thus
1022 * side = (~filemask & 0x06) >> 1
1023 * or
1024 * side = 3 - (filemask/2).
1025 */
1026 unsigned side = 3 - (filemask >> 1);
1027 strintmap_set(&renames->dirs_removed[side], dirname,
1028 RELEVANT_FOR_SELF);
1029 }
1030
1031 if (filemask == 0 || filemask == 7)
1032 return;
1033
1034 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1035 unsigned side_mask = (1 << side);
1036
1037 /* Check for deletion on side */
1038 if ((filemask & 1) && !(filemask & side_mask))
1039 add_pair(opt, names, fullname, side, 0 /* delete */,
1040 match_mask & filemask,
1041 renames->dir_rename_mask);
1042
1043 /* Check for addition on side */
1044 if (!(filemask & 1) && (filemask & side_mask))
1045 add_pair(opt, names, fullname, side, 1 /* add */,
1046 match_mask & filemask,
1047 renames->dir_rename_mask);
1048 }
1049 }
1050
1051 static int collect_merge_info_callback(int n,
1052 unsigned long mask,
1053 unsigned long dirmask,
1054 struct name_entry *names,
1055 struct traverse_info *info)
1056 {
1057 /*
1058 * n is 3. Always.
1059 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1060 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1061 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1062 */
1063 struct merge_options *opt = info->data;
1064 struct merge_options_internal *opti = opt->priv;
1065 struct rename_info *renames = &opt->priv->renames;
1066 struct string_list_item pi; /* Path Info */
1067 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1068 struct name_entry *p;
1069 size_t len;
1070 char *fullpath;
1071 const char *dirname = opti->current_dir_name;
1072 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1073 unsigned filemask = mask & ~dirmask;
1074 unsigned match_mask = 0; /* will be updated below */
1075 unsigned mbase_null = !(mask & 1);
1076 unsigned side1_null = !(mask & 2);
1077 unsigned side2_null = !(mask & 4);
1078 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1079 names[0].mode == names[1].mode &&
1080 oideq(&names[0].oid, &names[1].oid));
1081 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1082 names[0].mode == names[2].mode &&
1083 oideq(&names[0].oid, &names[2].oid));
1084 unsigned sides_match = (!side1_null && !side2_null &&
1085 names[1].mode == names[2].mode &&
1086 oideq(&names[1].oid, &names[2].oid));
1087
1088 /*
1089 * Note: When a path is a file on one side of history and a directory
1090 * in another, we have a directory/file conflict. In such cases, if
1091 * the conflict doesn't resolve from renames and deletions, then we
1092 * always leave directories where they are and move files out of the
1093 * way. Thus, while struct conflict_info has a df_conflict field to
1094 * track such conflicts, we ignore that field for any directories at
1095 * a path and only pay attention to it for files at the given path.
1096 * The fact that we leave directories were they are also means that
1097 * we do not need to worry about getting additional df_conflict
1098 * information propagated from parent directories down to children
1099 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1100 * sets a newinfo.df_conflicts field specifically to propagate it).
1101 */
1102 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1103
1104 /* n = 3 is a fundamental assumption. */
1105 if (n != 3)
1106 BUG("Called collect_merge_info_callback wrong");
1107
1108 /*
1109 * A bunch of sanity checks verifying that traverse_trees() calls
1110 * us the way I expect. Could just remove these at some point,
1111 * though maybe they are helpful to future code readers.
1112 */
1113 assert(mbase_null == is_null_oid(&names[0].oid));
1114 assert(side1_null == is_null_oid(&names[1].oid));
1115 assert(side2_null == is_null_oid(&names[2].oid));
1116 assert(!mbase_null || !side1_null || !side2_null);
1117 assert(mask > 0 && mask < 8);
1118
1119 /* Determine match_mask */
1120 if (side1_matches_mbase)
1121 match_mask = (side2_matches_mbase ? 7 : 3);
1122 else if (side2_matches_mbase)
1123 match_mask = 5;
1124 else if (sides_match)
1125 match_mask = 6;
1126
1127 /*
1128 * Get the name of the relevant filepath, which we'll pass to
1129 * setup_path_info() for tracking.
1130 */
1131 p = names;
1132 while (!p->mode)
1133 p++;
1134 len = traverse_path_len(info, p->pathlen);
1135
1136 /* +1 in both of the following lines to include the NUL byte */
1137 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1138 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1139
1140 /*
1141 * If mbase, side1, and side2 all match, we can resolve early. Even
1142 * if these are trees, there will be no renames or anything
1143 * underneath.
1144 */
1145 if (side1_matches_mbase && side2_matches_mbase) {
1146 /* mbase, side1, & side2 all match; use mbase as resolution */
1147 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1148 names, names+0, mbase_null, 0 /* df_conflict */,
1149 filemask, dirmask, 1 /* resolved */);
1150 return mask;
1151 }
1152
1153 /*
1154 * If the sides match, and all three paths are present and are
1155 * files, then we can take either as the resolution. We can't do
1156 * this with trees, because there may be rename sources from the
1157 * merge_base.
1158 */
1159 if (sides_match && filemask == 0x07) {
1160 /* use side1 (== side2) version as resolution */
1161 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1162 names, names+1, side1_null, 0,
1163 filemask, dirmask, 1);
1164 return mask;
1165 }
1166
1167 /*
1168 * If side1 matches mbase and all three paths are present and are
1169 * files, then we can use side2 as the resolution. We cannot
1170 * necessarily do so this for trees, because there may be rename
1171 * destinations within side2.
1172 */
1173 if (side1_matches_mbase && filemask == 0x07) {
1174 /* use side2 version as resolution */
1175 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1176 names, names+2, side2_null, 0,
1177 filemask, dirmask, 1);
1178 return mask;
1179 }
1180
1181 /* Similar to above but swapping sides 1 and 2 */
1182 if (side2_matches_mbase && filemask == 0x07) {
1183 /* use side1 version as resolution */
1184 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1185 names, names+1, side1_null, 0,
1186 filemask, dirmask, 1);
1187 return mask;
1188 }
1189
1190 /*
1191 * Sometimes we can tell that a source path need not be included in
1192 * rename detection -- namely, whenever either
1193 * side1_matches_mbase && side2_null
1194 * or
1195 * side2_matches_mbase && side1_null
1196 * However, we call collect_rename_info() even in those cases,
1197 * because exact renames are cheap and would let us remove both a
1198 * source and destination path. We'll cull the unneeded sources
1199 * later.
1200 */
1201 collect_rename_info(opt, names, dirname, fullpath,
1202 filemask, dirmask, match_mask);
1203
1204 /*
1205 * None of the special cases above matched, so we have a
1206 * provisional conflict. (Rename detection might allow us to
1207 * unconflict some more cases, but that comes later so all we can
1208 * do now is record the different non-null file hashes.)
1209 */
1210 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1211 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1212
1213 ci = pi.util;
1214 VERIFY_CI(ci);
1215 ci->match_mask = match_mask;
1216
1217 /* If dirmask, recurse into subdirectories */
1218 if (dirmask) {
1219 struct traverse_info newinfo;
1220 struct tree_desc t[3];
1221 void *buf[3] = {NULL, NULL, NULL};
1222 const char *original_dir_name;
1223 int i, ret, side;
1224
1225 /*
1226 * Check for whether we can avoid recursing due to one side
1227 * matching the merge base. The side that does NOT match is
1228 * the one that might have a rename destination we need.
1229 */
1230 assert(!side1_matches_mbase || !side2_matches_mbase);
1231 side = side1_matches_mbase ? MERGE_SIDE2 :
1232 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1233 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1234 /*
1235 * Also defer recursing into new directories; set up a
1236 * few variables to let us do so.
1237 */
1238 ci->match_mask = (7 - dirmask);
1239 side = dirmask / 2;
1240 }
1241 if (renames->dir_rename_mask != 0x07 &&
1242 side != MERGE_BASE &&
1243 renames->deferred[side].trivial_merges_okay &&
1244 !strset_contains(&renames->deferred[side].target_dirs,
1245 pi.string)) {
1246 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1247 pi.string, renames->dir_rename_mask);
1248 renames->dir_rename_mask = prev_dir_rename_mask;
1249 return mask;
1250 }
1251
1252 /* We need to recurse */
1253 ci->match_mask &= filemask;
1254 newinfo = *info;
1255 newinfo.prev = info;
1256 newinfo.name = p->path;
1257 newinfo.namelen = p->pathlen;
1258 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1259 /*
1260 * If this directory we are about to recurse into cared about
1261 * its parent directory (the current directory) having a D/F
1262 * conflict, then we'd propagate the masks in this way:
1263 * newinfo.df_conflicts |= (mask & ~dirmask);
1264 * But we don't worry about propagating D/F conflicts. (See
1265 * comment near setting of local df_conflict variable near
1266 * the beginning of this function).
1267 */
1268
1269 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1270 if (i == 1 && side1_matches_mbase)
1271 t[1] = t[0];
1272 else if (i == 2 && side2_matches_mbase)
1273 t[2] = t[0];
1274 else if (i == 2 && sides_match)
1275 t[2] = t[1];
1276 else {
1277 const struct object_id *oid = NULL;
1278 if (dirmask & 1)
1279 oid = &names[i].oid;
1280 buf[i] = fill_tree_descriptor(opt->repo,
1281 t + i, oid);
1282 }
1283 dirmask >>= 1;
1284 }
1285
1286 original_dir_name = opti->current_dir_name;
1287 opti->current_dir_name = pi.string;
1288 if (renames->dir_rename_mask == 0 ||
1289 renames->dir_rename_mask == 0x07)
1290 ret = traverse_trees(NULL, 3, t, &newinfo);
1291 else
1292 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1293 opti->current_dir_name = original_dir_name;
1294 renames->dir_rename_mask = prev_dir_rename_mask;
1295
1296 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1297 free(buf[i]);
1298
1299 if (ret < 0)
1300 return -1;
1301 }
1302
1303 return mask;
1304 }
1305
1306 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1307 {
1308 VERIFY_CI(ci);
1309 assert((side == 1 && ci->match_mask == 5) ||
1310 (side == 2 && ci->match_mask == 3));
1311 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1312 ci->merged.result.mode = ci->stages[side].mode;
1313 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1314 ci->match_mask = 0;
1315 ci->merged.clean = 1; /* (ci->filemask == 0); */
1316 }
1317
1318 static int handle_deferred_entries(struct merge_options *opt,
1319 struct traverse_info *info)
1320 {
1321 struct rename_info *renames = &opt->priv->renames;
1322 struct hashmap_iter iter;
1323 struct strmap_entry *entry;
1324 int side, ret = 0;
1325 int path_count_before, path_count_after = 0;
1326
1327 path_count_before = strmap_get_size(&opt->priv->paths);
1328 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1329 unsigned optimization_okay = 1;
1330 struct strintmap copy;
1331
1332 /* Loop over the set of paths we need to know rename info for */
1333 strset_for_each_entry(&renames->relevant_sources[side],
1334 &iter, entry) {
1335 char *rename_target, *dir, *dir_marker;
1336 struct strmap_entry *e;
1337
1338 /*
1339 * If we don't know delete/rename info for this path,
1340 * then we need to recurse into all trees to get all
1341 * adds to make sure we have it.
1342 */
1343 if (strset_contains(&renames->cached_irrelevant[side],
1344 entry->key))
1345 continue;
1346 e = strmap_get_entry(&renames->cached_pairs[side],
1347 entry->key);
1348 if (!e) {
1349 optimization_okay = 0;
1350 break;
1351 }
1352
1353 /* If this is a delete, we have enough info already */
1354 rename_target = e->value;
1355 if (!rename_target)
1356 continue;
1357
1358 /* If we already walked the rename target, we're good */
1359 if (strmap_contains(&opt->priv->paths, rename_target))
1360 continue;
1361
1362 /*
1363 * Otherwise, we need to get a list of directories that
1364 * will need to be recursed into to get this
1365 * rename_target.
1366 */
1367 dir = xstrdup(rename_target);
1368 while ((dir_marker = strrchr(dir, '/'))) {
1369 *dir_marker = '\0';
1370 if (strset_contains(&renames->deferred[side].target_dirs,
1371 dir))
1372 break;
1373 strset_add(&renames->deferred[side].target_dirs,
1374 dir);
1375 }
1376 free(dir);
1377 }
1378 renames->deferred[side].trivial_merges_okay = optimization_okay;
1379 /*
1380 * We need to recurse into any directories in
1381 * possible_trivial_merges[side] found in target_dirs[side].
1382 * But when we recurse, we may need to queue up some of the
1383 * subdirectories for possible_trivial_merges[side]. Since
1384 * we can't safely iterate through a hashmap while also adding
1385 * entries, move the entries into 'copy', iterate over 'copy',
1386 * and then we'll also iterate anything added into
1387 * possible_trivial_merges[side] once this loop is done.
1388 */
1389 copy = renames->deferred[side].possible_trivial_merges;
1390 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1391 0,
1392 &opt->priv->pool,
1393 0);
1394 strintmap_for_each_entry(&copy, &iter, entry) {
1395 const char *path = entry->key;
1396 unsigned dir_rename_mask = (intptr_t)entry->value;
1397 struct conflict_info *ci;
1398 unsigned dirmask;
1399 struct tree_desc t[3];
1400 void *buf[3] = {NULL,};
1401 int i;
1402
1403 ci = strmap_get(&opt->priv->paths, path);
1404 VERIFY_CI(ci);
1405 dirmask = ci->dirmask;
1406
1407 if (optimization_okay &&
1408 !strset_contains(&renames->deferred[side].target_dirs,
1409 path)) {
1410 resolve_trivial_directory_merge(ci, side);
1411 continue;
1412 }
1413
1414 info->name = path;
1415 info->namelen = strlen(path);
1416 info->pathlen = info->namelen + 1;
1417
1418 for (i = 0; i < 3; i++, dirmask >>= 1) {
1419 if (i == 1 && ci->match_mask == 3)
1420 t[1] = t[0];
1421 else if (i == 2 && ci->match_mask == 5)
1422 t[2] = t[0];
1423 else if (i == 2 && ci->match_mask == 6)
1424 t[2] = t[1];
1425 else {
1426 const struct object_id *oid = NULL;
1427 if (dirmask & 1)
1428 oid = &ci->stages[i].oid;
1429 buf[i] = fill_tree_descriptor(opt->repo,
1430 t+i, oid);
1431 }
1432 }
1433
1434 ci->match_mask &= ci->filemask;
1435 opt->priv->current_dir_name = path;
1436 renames->dir_rename_mask = dir_rename_mask;
1437 if (renames->dir_rename_mask == 0 ||
1438 renames->dir_rename_mask == 0x07)
1439 ret = traverse_trees(NULL, 3, t, info);
1440 else
1441 ret = traverse_trees_wrapper(NULL, 3, t, info);
1442
1443 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1444 free(buf[i]);
1445
1446 if (ret < 0)
1447 return ret;
1448 }
1449 strintmap_clear(&copy);
1450 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1451 &iter, entry) {
1452 const char *path = entry->key;
1453 struct conflict_info *ci;
1454
1455 ci = strmap_get(&opt->priv->paths, path);
1456 VERIFY_CI(ci);
1457
1458 assert(renames->deferred[side].trivial_merges_okay &&
1459 !strset_contains(&renames->deferred[side].target_dirs,
1460 path));
1461 resolve_trivial_directory_merge(ci, side);
1462 }
1463 if (!optimization_okay || path_count_after)
1464 path_count_after = strmap_get_size(&opt->priv->paths);
1465 }
1466 if (path_count_after) {
1467 /*
1468 * The choice of wanted_factor here does not affect
1469 * correctness, only performance. When the
1470 * path_count_after / path_count_before
1471 * ratio is high, redoing after renames is a big
1472 * performance boost. I suspect that redoing is a wash
1473 * somewhere near a value of 2, and below that redoing will
1474 * slow things down. I applied a fudge factor and picked
1475 * 3; see the commit message when this was introduced for
1476 * back of the envelope calculations for this ratio.
1477 */
1478 const int wanted_factor = 3;
1479
1480 /* We should only redo collect_merge_info one time */
1481 assert(renames->redo_after_renames == 0);
1482
1483 if (path_count_after / path_count_before >= wanted_factor) {
1484 renames->redo_after_renames = 1;
1485 renames->cached_pairs_valid_side = -1;
1486 }
1487 } else if (renames->redo_after_renames == 2)
1488 renames->redo_after_renames = 0;
1489 return ret;
1490 }
1491
1492 static int collect_merge_info(struct merge_options *opt,
1493 struct tree *merge_base,
1494 struct tree *side1,
1495 struct tree *side2)
1496 {
1497 int ret;
1498 struct tree_desc t[3];
1499 struct traverse_info info;
1500
1501 opt->priv->toplevel_dir = "";
1502 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1503 setup_traverse_info(&info, opt->priv->toplevel_dir);
1504 info.fn = collect_merge_info_callback;
1505 info.data = opt;
1506 info.show_all_errors = 1;
1507
1508 parse_tree(merge_base);
1509 parse_tree(side1);
1510 parse_tree(side2);
1511 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1512 init_tree_desc(t + 1, side1->buffer, side1->size);
1513 init_tree_desc(t + 2, side2->buffer, side2->size);
1514
1515 trace2_region_enter("merge", "traverse_trees", opt->repo);
1516 ret = traverse_trees(NULL, 3, t, &info);
1517 if (ret == 0)
1518 ret = handle_deferred_entries(opt, &info);
1519 trace2_region_leave("merge", "traverse_trees", opt->repo);
1520
1521 return ret;
1522 }
1523
1524 /*** Function Grouping: functions related to threeway content merges ***/
1525
1526 static int find_first_merges(struct repository *repo,
1527 const char *path,
1528 struct commit *a,
1529 struct commit *b,
1530 struct object_array *result)
1531 {
1532 int i, j;
1533 struct object_array merges = OBJECT_ARRAY_INIT;
1534 struct commit *commit;
1535 int contains_another;
1536
1537 char merged_revision[GIT_MAX_HEXSZ + 2];
1538 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1539 "--all", merged_revision, NULL };
1540 struct rev_info revs;
1541 struct setup_revision_opt rev_opts;
1542
1543 memset(result, 0, sizeof(struct object_array));
1544 memset(&rev_opts, 0, sizeof(rev_opts));
1545
1546 /* get all revisions that merge commit a */
1547 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1548 oid_to_hex(&a->object.oid));
1549 repo_init_revisions(repo, &revs, NULL);
1550 /* FIXME: can't handle linked worktrees in submodules yet */
1551 revs.single_worktree = path != NULL;
1552 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1553
1554 /* save all revisions from the above list that contain b */
1555 if (prepare_revision_walk(&revs))
1556 die("revision walk setup failed");
1557 while ((commit = get_revision(&revs)) != NULL) {
1558 struct object *o = &(commit->object);
1559 if (repo_in_merge_bases(repo, b, commit))
1560 add_object_array(o, NULL, &merges);
1561 }
1562 reset_revision_walk();
1563
1564 /* Now we've got all merges that contain a and b. Prune all
1565 * merges that contain another found merge and save them in
1566 * result.
1567 */
1568 for (i = 0; i < merges.nr; i++) {
1569 struct commit *m1 = (struct commit *) merges.objects[i].item;
1570
1571 contains_another = 0;
1572 for (j = 0; j < merges.nr; j++) {
1573 struct commit *m2 = (struct commit *) merges.objects[j].item;
1574 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1575 contains_another = 1;
1576 break;
1577 }
1578 }
1579
1580 if (!contains_another)
1581 add_object_array(merges.objects[i].item, NULL, result);
1582 }
1583
1584 object_array_clear(&merges);
1585 return result->nr;
1586 }
1587
1588 static int merge_submodule(struct merge_options *opt,
1589 const char *path,
1590 const struct object_id *o,
1591 const struct object_id *a,
1592 const struct object_id *b,
1593 struct object_id *result)
1594 {
1595 struct repository subrepo;
1596 struct strbuf sb = STRBUF_INIT;
1597 int ret = 0;
1598 struct commit *commit_o, *commit_a, *commit_b;
1599 int parent_count;
1600 struct object_array merges;
1601
1602 int i;
1603 int search = !opt->priv->call_depth;
1604
1605 /* store fallback answer in result in case we fail */
1606 oidcpy(result, opt->priv->call_depth ? o : a);
1607
1608 /* we can not handle deletion conflicts */
1609 if (is_null_oid(o))
1610 return 0;
1611 if (is_null_oid(a))
1612 return 0;
1613 if (is_null_oid(b))
1614 return 0;
1615
1616 if (repo_submodule_init(&subrepo, opt->repo, path, null_oid())) {
1617 path_msg(opt, path, 0,
1618 _("Failed to merge submodule %s (not checked out)"),
1619 path);
1620 return 0;
1621 }
1622
1623 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1624 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1625 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1626 path_msg(opt, path, 0,
1627 _("Failed to merge submodule %s (commits not present)"),
1628 path);
1629 goto cleanup;
1630 }
1631
1632 /* check whether both changes are forward */
1633 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1634 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1635 path_msg(opt, path, 0,
1636 _("Failed to merge submodule %s "
1637 "(commits don't follow merge-base)"),
1638 path);
1639 goto cleanup;
1640 }
1641
1642 /* Case #1: a is contained in b or vice versa */
1643 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1644 oidcpy(result, b);
1645 path_msg(opt, path, 1,
1646 _("Note: Fast-forwarding submodule %s to %s"),
1647 path, oid_to_hex(b));
1648 ret = 1;
1649 goto cleanup;
1650 }
1651 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1652 oidcpy(result, a);
1653 path_msg(opt, path, 1,
1654 _("Note: Fast-forwarding submodule %s to %s"),
1655 path, oid_to_hex(a));
1656 ret = 1;
1657 goto cleanup;
1658 }
1659
1660 /*
1661 * Case #2: There are one or more merges that contain a and b in
1662 * the submodule. If there is only one, then present it as a
1663 * suggestion to the user, but leave it marked unmerged so the
1664 * user needs to confirm the resolution.
1665 */
1666
1667 /* Skip the search if makes no sense to the calling context. */
1668 if (!search)
1669 goto cleanup;
1670
1671 /* find commit which merges them */
1672 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1673 &merges);
1674 switch (parent_count) {
1675 case 0:
1676 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1677 break;
1678
1679 case 1:
1680 format_commit(&sb, 4, &subrepo,
1681 (struct commit *)merges.objects[0].item);
1682 path_msg(opt, path, 0,
1683 _("Failed to merge submodule %s, but a possible merge "
1684 "resolution exists:\n%s\n"),
1685 path, sb.buf);
1686 path_msg(opt, path, 1,
1687 _("If this is correct simply add it to the index "
1688 "for example\n"
1689 "by using:\n\n"
1690 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1691 "which will accept this suggestion.\n"),
1692 oid_to_hex(&merges.objects[0].item->oid), path);
1693 strbuf_release(&sb);
1694 break;
1695 default:
1696 for (i = 0; i < merges.nr; i++)
1697 format_commit(&sb, 4, &subrepo,
1698 (struct commit *)merges.objects[i].item);
1699 path_msg(opt, path, 0,
1700 _("Failed to merge submodule %s, but multiple "
1701 "possible merges exist:\n%s"), path, sb.buf);
1702 strbuf_release(&sb);
1703 }
1704
1705 object_array_clear(&merges);
1706 cleanup:
1707 repo_clear(&subrepo);
1708 return ret;
1709 }
1710
1711 static void initialize_attr_index(struct merge_options *opt)
1712 {
1713 /*
1714 * The renormalize_buffer() functions require attributes, and
1715 * annoyingly those can only be read from the working tree or from
1716 * an index_state. merge-ort doesn't have an index_state, so we
1717 * generate a fake one containing only attribute information.
1718 */
1719 struct merged_info *mi;
1720 struct index_state *attr_index = &opt->priv->attr_index;
1721 struct cache_entry *ce;
1722
1723 attr_index->initialized = 1;
1724
1725 if (!opt->renormalize)
1726 return;
1727
1728 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1729 if (!mi)
1730 return;
1731
1732 if (mi->clean) {
1733 int len = strlen(GITATTRIBUTES_FILE);
1734 ce = make_empty_cache_entry(attr_index, len);
1735 ce->ce_mode = create_ce_mode(mi->result.mode);
1736 ce->ce_flags = create_ce_flags(0);
1737 ce->ce_namelen = len;
1738 oidcpy(&ce->oid, &mi->result.oid);
1739 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1740 add_index_entry(attr_index, ce,
1741 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1742 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1743 } else {
1744 int stage, len;
1745 struct conflict_info *ci;
1746
1747 ASSIGN_AND_VERIFY_CI(ci, mi);
1748 for (stage = 0; stage < 3; stage++) {
1749 unsigned stage_mask = (1 << stage);
1750
1751 if (!(ci->filemask & stage_mask))
1752 continue;
1753 len = strlen(GITATTRIBUTES_FILE);
1754 ce = make_empty_cache_entry(attr_index, len);
1755 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1756 ce->ce_flags = create_ce_flags(stage);
1757 ce->ce_namelen = len;
1758 oidcpy(&ce->oid, &ci->stages[stage].oid);
1759 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1760 add_index_entry(attr_index, ce,
1761 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1762 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1763 &ce->oid);
1764 }
1765 }
1766 }
1767
1768 static int merge_3way(struct merge_options *opt,
1769 const char *path,
1770 const struct object_id *o,
1771 const struct object_id *a,
1772 const struct object_id *b,
1773 const char *pathnames[3],
1774 const int extra_marker_size,
1775 mmbuffer_t *result_buf)
1776 {
1777 mmfile_t orig, src1, src2;
1778 struct ll_merge_options ll_opts = {0};
1779 char *base, *name1, *name2;
1780 enum ll_merge_result merge_status;
1781
1782 if (!opt->priv->attr_index.initialized)
1783 initialize_attr_index(opt);
1784
1785 ll_opts.renormalize = opt->renormalize;
1786 ll_opts.extra_marker_size = extra_marker_size;
1787 ll_opts.xdl_opts = opt->xdl_opts;
1788
1789 if (opt->priv->call_depth) {
1790 ll_opts.virtual_ancestor = 1;
1791 ll_opts.variant = 0;
1792 } else {
1793 switch (opt->recursive_variant) {
1794 case MERGE_VARIANT_OURS:
1795 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1796 break;
1797 case MERGE_VARIANT_THEIRS:
1798 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1799 break;
1800 default:
1801 ll_opts.variant = 0;
1802 break;
1803 }
1804 }
1805
1806 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1807 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1808 base = mkpathdup("%s", opt->ancestor);
1809 name1 = mkpathdup("%s", opt->branch1);
1810 name2 = mkpathdup("%s", opt->branch2);
1811 } else {
1812 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1813 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1814 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1815 }
1816
1817 read_mmblob(&orig, o);
1818 read_mmblob(&src1, a);
1819 read_mmblob(&src2, b);
1820
1821 merge_status = ll_merge(result_buf, path, &orig, base,
1822 &src1, name1, &src2, name2,
1823 &opt->priv->attr_index, &ll_opts);
1824 if (merge_status == LL_MERGE_BINARY_CONFLICT)
1825 path_msg(opt, path, 0,
1826 "warning: Cannot merge binary files: %s (%s vs. %s)",
1827 path, name1, name2);
1828
1829 free(base);
1830 free(name1);
1831 free(name2);
1832 free(orig.ptr);
1833 free(src1.ptr);
1834 free(src2.ptr);
1835 return merge_status;
1836 }
1837
1838 static int handle_content_merge(struct merge_options *opt,
1839 const char *path,
1840 const struct version_info *o,
1841 const struct version_info *a,
1842 const struct version_info *b,
1843 const char *pathnames[3],
1844 const int extra_marker_size,
1845 struct version_info *result)
1846 {
1847 /*
1848 * path is the target location where we want to put the file, and
1849 * is used to determine any normalization rules in ll_merge.
1850 *
1851 * The normal case is that path and all entries in pathnames are
1852 * identical, though renames can affect which path we got one of
1853 * the three blobs to merge on various sides of history.
1854 *
1855 * extra_marker_size is the amount to extend conflict markers in
1856 * ll_merge; this is neeed if we have content merges of content
1857 * merges, which happens for example with rename/rename(2to1) and
1858 * rename/add conflicts.
1859 */
1860 unsigned clean = 1;
1861
1862 /*
1863 * handle_content_merge() needs both files to be of the same type, i.e.
1864 * both files OR both submodules OR both symlinks. Conflicting types
1865 * needs to be handled elsewhere.
1866 */
1867 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1868
1869 /* Merge modes */
1870 if (a->mode == b->mode || a->mode == o->mode)
1871 result->mode = b->mode;
1872 else {
1873 /* must be the 100644/100755 case */
1874 assert(S_ISREG(a->mode));
1875 result->mode = a->mode;
1876 clean = (b->mode == o->mode);
1877 /*
1878 * FIXME: If opt->priv->call_depth && !clean, then we really
1879 * should not make result->mode match either a->mode or
1880 * b->mode; that causes t6036 "check conflicting mode for
1881 * regular file" to fail. It would be best to use some other
1882 * mode, but we'll confuse all kinds of stuff if we use one
1883 * where S_ISREG(result->mode) isn't true, and if we use
1884 * something like 0100666, then tree-walk.c's calls to
1885 * canon_mode() will just normalize that to 100644 for us and
1886 * thus not solve anything.
1887 *
1888 * Figure out if there's some kind of way we can work around
1889 * this...
1890 */
1891 }
1892
1893 /*
1894 * Trivial oid merge.
1895 *
1896 * Note: While one might assume that the next four lines would
1897 * be unnecessary due to the fact that match_mask is often
1898 * setup and already handled, renames don't always take care
1899 * of that.
1900 */
1901 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1902 oidcpy(&result->oid, &b->oid);
1903 else if (oideq(&b->oid, &o->oid))
1904 oidcpy(&result->oid, &a->oid);
1905
1906 /* Remaining rules depend on file vs. submodule vs. symlink. */
1907 else if (S_ISREG(a->mode)) {
1908 mmbuffer_t result_buf;
1909 int ret = 0, merge_status;
1910 int two_way;
1911
1912 /*
1913 * If 'o' is different type, treat it as null so we do a
1914 * two-way merge.
1915 */
1916 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1917
1918 merge_status = merge_3way(opt, path,
1919 two_way ? null_oid() : &o->oid,
1920 &a->oid, &b->oid,
1921 pathnames, extra_marker_size,
1922 &result_buf);
1923
1924 if ((merge_status < 0) || !result_buf.ptr)
1925 ret = err(opt, _("Failed to execute internal merge"));
1926
1927 if (!ret &&
1928 write_object_file(result_buf.ptr, result_buf.size,
1929 blob_type, &result->oid))
1930 ret = err(opt, _("Unable to add %s to database"),
1931 path);
1932
1933 free(result_buf.ptr);
1934 if (ret)
1935 return -1;
1936 clean &= (merge_status == 0);
1937 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1938 } else if (S_ISGITLINK(a->mode)) {
1939 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1940 clean = merge_submodule(opt, pathnames[0],
1941 two_way ? null_oid() : &o->oid,
1942 &a->oid, &b->oid, &result->oid);
1943 if (opt->priv->call_depth && two_way && !clean) {
1944 result->mode = o->mode;
1945 oidcpy(&result->oid, &o->oid);
1946 }
1947 } else if (S_ISLNK(a->mode)) {
1948 if (opt->priv->call_depth) {
1949 clean = 0;
1950 result->mode = o->mode;
1951 oidcpy(&result->oid, &o->oid);
1952 } else {
1953 switch (opt->recursive_variant) {
1954 case MERGE_VARIANT_NORMAL:
1955 clean = 0;
1956 oidcpy(&result->oid, &a->oid);
1957 break;
1958 case MERGE_VARIANT_OURS:
1959 oidcpy(&result->oid, &a->oid);
1960 break;
1961 case MERGE_VARIANT_THEIRS:
1962 oidcpy(&result->oid, &b->oid);
1963 break;
1964 }
1965 }
1966 } else
1967 BUG("unsupported object type in the tree: %06o for %s",
1968 a->mode, path);
1969
1970 return clean;
1971 }
1972
1973 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1974 *** which are split into directory and regular rename detection sections. ***/
1975
1976 /*** Function Grouping: functions related to directory rename detection ***/
1977
1978 struct collision_info {
1979 struct string_list source_files;
1980 unsigned reported_already:1;
1981 };
1982
1983 /*
1984 * Return a new string that replaces the beginning portion (which matches
1985 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1986 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1987 * NOTE:
1988 * Caller must ensure that old_path starts with rename_info->key + '/'.
1989 */
1990 static char *apply_dir_rename(struct strmap_entry *rename_info,
1991 const char *old_path)
1992 {
1993 struct strbuf new_path = STRBUF_INIT;
1994 const char *old_dir = rename_info->key;
1995 const char *new_dir = rename_info->value;
1996 int oldlen, newlen, new_dir_len;
1997
1998 oldlen = strlen(old_dir);
1999 if (*new_dir == '\0')
2000 /*
2001 * If someone renamed/merged a subdirectory into the root
2002 * directory (e.g. 'some/subdir' -> ''), then we want to
2003 * avoid returning
2004 * '' + '/filename'
2005 * as the rename; we need to make old_path + oldlen advance
2006 * past the '/' character.
2007 */
2008 oldlen++;
2009 new_dir_len = strlen(new_dir);
2010 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
2011 strbuf_grow(&new_path, newlen);
2012 strbuf_add(&new_path, new_dir, new_dir_len);
2013 strbuf_addstr(&new_path, &old_path[oldlen]);
2014
2015 return strbuf_detach(&new_path, NULL);
2016 }
2017
2018 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
2019 {
2020 struct merged_info *mi = strmap_get(paths, path);
2021 struct conflict_info *ci;
2022 if (!mi)
2023 return 0;
2024 INITIALIZE_CI(ci, mi);
2025 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2026 }
2027
2028 /*
2029 * See if there is a directory rename for path, and if there are any file
2030 * level conflicts on the given side for the renamed location. If there is
2031 * a rename and there are no conflicts, return the new name. Otherwise,
2032 * return NULL.
2033 */
2034 static char *handle_path_level_conflicts(struct merge_options *opt,
2035 const char *path,
2036 unsigned side_index,
2037 struct strmap_entry *rename_info,
2038 struct strmap *collisions)
2039 {
2040 char *new_path = NULL;
2041 struct collision_info *c_info;
2042 int clean = 1;
2043 struct strbuf collision_paths = STRBUF_INIT;
2044
2045 /*
2046 * entry has the mapping of old directory name to new directory name
2047 * that we want to apply to path.
2048 */
2049 new_path = apply_dir_rename(rename_info, path);
2050 if (!new_path)
2051 BUG("Failed to apply directory rename!");
2052
2053 /*
2054 * The caller needs to have ensured that it has pre-populated
2055 * collisions with all paths that map to new_path. Do a quick check
2056 * to ensure that's the case.
2057 */
2058 c_info = strmap_get(collisions, new_path);
2059 if (c_info == NULL)
2060 BUG("c_info is NULL");
2061
2062 /*
2063 * Check for one-sided add/add/.../add conflicts, i.e.
2064 * where implicit renames from the other side doing
2065 * directory rename(s) can affect this side of history
2066 * to put multiple paths into the same location. Warn
2067 * and bail on directory renames for such paths.
2068 */
2069 if (c_info->reported_already) {
2070 clean = 0;
2071 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2072 c_info->reported_already = 1;
2073 strbuf_add_separated_string_list(&collision_paths, ", ",
2074 &c_info->source_files);
2075 path_msg(opt, new_path, 0,
2076 _("CONFLICT (implicit dir rename): Existing file/dir "
2077 "at %s in the way of implicit directory rename(s) "
2078 "putting the following path(s) there: %s."),
2079 new_path, collision_paths.buf);
2080 clean = 0;
2081 } else if (c_info->source_files.nr > 1) {
2082 c_info->reported_already = 1;
2083 strbuf_add_separated_string_list(&collision_paths, ", ",
2084 &c_info->source_files);
2085 path_msg(opt, new_path, 0,
2086 _("CONFLICT (implicit dir rename): Cannot map more "
2087 "than one path to %s; implicit directory renames "
2088 "tried to put these paths there: %s"),
2089 new_path, collision_paths.buf);
2090 clean = 0;
2091 }
2092
2093 /* Free memory we no longer need */
2094 strbuf_release(&collision_paths);
2095 if (!clean && new_path) {
2096 free(new_path);
2097 return NULL;
2098 }
2099
2100 return new_path;
2101 }
2102
2103 static void get_provisional_directory_renames(struct merge_options *opt,
2104 unsigned side,
2105 int *clean)
2106 {
2107 struct hashmap_iter iter;
2108 struct strmap_entry *entry;
2109 struct rename_info *renames = &opt->priv->renames;
2110
2111 /*
2112 * Collapse
2113 * dir_rename_count: old_directory -> {new_directory -> count}
2114 * down to
2115 * dir_renames: old_directory -> best_new_directory
2116 * where best_new_directory is the one with the unique highest count.
2117 */
2118 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2119 const char *source_dir = entry->key;
2120 struct strintmap *counts = entry->value;
2121 struct hashmap_iter count_iter;
2122 struct strmap_entry *count_entry;
2123 int max = 0;
2124 int bad_max = 0;
2125 const char *best = NULL;
2126
2127 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2128 const char *target_dir = count_entry->key;
2129 intptr_t count = (intptr_t)count_entry->value;
2130
2131 if (count == max)
2132 bad_max = max;
2133 else if (count > max) {
2134 max = count;
2135 best = target_dir;
2136 }
2137 }
2138
2139 if (max == 0)
2140 continue;
2141
2142 if (bad_max == max) {
2143 path_msg(opt, source_dir, 0,
2144 _("CONFLICT (directory rename split): "
2145 "Unclear where to rename %s to; it was "
2146 "renamed to multiple other directories, with "
2147 "no destination getting a majority of the "
2148 "files."),
2149 source_dir);
2150 *clean = 0;
2151 } else {
2152 strmap_put(&renames->dir_renames[side],
2153 source_dir, (void*)best);
2154 }
2155 }
2156 }
2157
2158 static void handle_directory_level_conflicts(struct merge_options *opt)
2159 {
2160 struct hashmap_iter iter;
2161 struct strmap_entry *entry;
2162 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2163 struct rename_info *renames = &opt->priv->renames;
2164 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2165 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2166 int i;
2167
2168 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2169 if (strmap_contains(side2_dir_renames, entry->key))
2170 string_list_append(&duplicated, entry->key);
2171 }
2172
2173 for (i = 0; i < duplicated.nr; i++) {
2174 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2175 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2176 }
2177 string_list_clear(&duplicated, 0);
2178 }
2179
2180 static struct strmap_entry *check_dir_renamed(const char *path,
2181 struct strmap *dir_renames)
2182 {
2183 char *temp = xstrdup(path);
2184 char *end;
2185 struct strmap_entry *e = NULL;
2186
2187 while ((end = strrchr(temp, '/'))) {
2188 *end = '\0';
2189 e = strmap_get_entry(dir_renames, temp);
2190 if (e)
2191 break;
2192 }
2193 free(temp);
2194 return e;
2195 }
2196
2197 static void compute_collisions(struct strmap *collisions,
2198 struct strmap *dir_renames,
2199 struct diff_queue_struct *pairs)
2200 {
2201 int i;
2202
2203 strmap_init_with_options(collisions, NULL, 0);
2204 if (strmap_empty(dir_renames))
2205 return;
2206
2207 /*
2208 * Multiple files can be mapped to the same path due to directory
2209 * renames done by the other side of history. Since that other
2210 * side of history could have merged multiple directories into one,
2211 * if our side of history added the same file basename to each of
2212 * those directories, then all N of them would get implicitly
2213 * renamed by the directory rename detection into the same path,
2214 * and we'd get an add/add/.../add conflict, and all those adds
2215 * from *this* side of history. This is not representable in the
2216 * index, and users aren't going to easily be able to make sense of
2217 * it. So we need to provide a good warning about what's
2218 * happening, and fall back to no-directory-rename detection
2219 * behavior for those paths.
2220 *
2221 * See testcases 9e and all of section 5 from t6043 for examples.
2222 */
2223 for (i = 0; i < pairs->nr; ++i) {
2224 struct strmap_entry *rename_info;
2225 struct collision_info *collision_info;
2226 char *new_path;
2227 struct diff_filepair *pair = pairs->queue[i];
2228
2229 if (pair->status != 'A' && pair->status != 'R')
2230 continue;
2231 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2232 if (!rename_info)
2233 continue;
2234
2235 new_path = apply_dir_rename(rename_info, pair->two->path);
2236 assert(new_path);
2237 collision_info = strmap_get(collisions, new_path);
2238 if (collision_info) {
2239 free(new_path);
2240 } else {
2241 CALLOC_ARRAY(collision_info, 1);
2242 string_list_init_nodup(&collision_info->source_files);
2243 strmap_put(collisions, new_path, collision_info);
2244 }
2245 string_list_insert(&collision_info->source_files,
2246 pair->two->path);
2247 }
2248 }
2249
2250 static char *check_for_directory_rename(struct merge_options *opt,
2251 const char *path,
2252 unsigned side_index,
2253 struct strmap *dir_renames,
2254 struct strmap *dir_rename_exclusions,
2255 struct strmap *collisions,
2256 int *clean_merge)
2257 {
2258 char *new_path = NULL;
2259 struct strmap_entry *rename_info;
2260 struct strmap_entry *otherinfo = NULL;
2261 const char *new_dir;
2262
2263 if (strmap_empty(dir_renames))
2264 return new_path;
2265 rename_info = check_dir_renamed(path, dir_renames);
2266 if (!rename_info)
2267 return new_path;
2268 /* old_dir = rename_info->key; */
2269 new_dir = rename_info->value;
2270
2271 /*
2272 * This next part is a little weird. We do not want to do an
2273 * implicit rename into a directory we renamed on our side, because
2274 * that will result in a spurious rename/rename(1to2) conflict. An
2275 * example:
2276 * Base commit: dumbdir/afile, otherdir/bfile
2277 * Side 1: smrtdir/afile, otherdir/bfile
2278 * Side 2: dumbdir/afile, dumbdir/bfile
2279 * Here, while working on Side 1, we could notice that otherdir was
2280 * renamed/merged to dumbdir, and change the diff_filepair for
2281 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2282 * 2 will notice the rename from dumbdir to smrtdir, and do the
2283 * transitive rename to move it from dumbdir/bfile to
2284 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2285 * smrtdir, a rename/rename(1to2) conflict. We really just want
2286 * the file to end up in smrtdir. And the way to achieve that is
2287 * to not let Side1 do the rename to dumbdir, since we know that is
2288 * the source of one of our directory renames.
2289 *
2290 * That's why otherinfo and dir_rename_exclusions is here.
2291 *
2292 * As it turns out, this also prevents N-way transient rename
2293 * confusion; See testcases 9c and 9d of t6043.
2294 */
2295 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2296 if (otherinfo) {
2297 path_msg(opt, rename_info->key, 1,
2298 _("WARNING: Avoiding applying %s -> %s rename "
2299 "to %s, because %s itself was renamed."),
2300 rename_info->key, new_dir, path, new_dir);
2301 return NULL;
2302 }
2303
2304 new_path = handle_path_level_conflicts(opt, path, side_index,
2305 rename_info, collisions);
2306 *clean_merge &= (new_path != NULL);
2307
2308 return new_path;
2309 }
2310
2311 static void apply_directory_rename_modifications(struct merge_options *opt,
2312 struct diff_filepair *pair,
2313 char *new_path)
2314 {
2315 /*
2316 * The basic idea is to get the conflict_info from opt->priv->paths
2317 * at old path, and insert it into new_path; basically just this:
2318 * ci = strmap_get(&opt->priv->paths, old_path);
2319 * strmap_remove(&opt->priv->paths, old_path, 0);
2320 * strmap_put(&opt->priv->paths, new_path, ci);
2321 * However, there are some factors complicating this:
2322 * - opt->priv->paths may already have an entry at new_path
2323 * - Each ci tracks its containing directory, so we need to
2324 * update that
2325 * - If another ci has the same containing directory, then
2326 * the two char*'s MUST point to the same location. See the
2327 * comment in struct merged_info. strcmp equality is not
2328 * enough; we need pointer equality.
2329 * - opt->priv->paths must hold the parent directories of any
2330 * entries that are added. So, if this directory rename
2331 * causes entirely new directories, we must recursively add
2332 * parent directories.
2333 * - For each parent directory added to opt->priv->paths, we
2334 * also need to get its parent directory stored in its
2335 * conflict_info->merged.directory_name with all the same
2336 * requirements about pointer equality.
2337 */
2338 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2339 struct conflict_info *ci, *new_ci;
2340 struct strmap_entry *entry;
2341 const char *branch_with_new_path, *branch_with_dir_rename;
2342 const char *old_path = pair->two->path;
2343 const char *parent_name;
2344 const char *cur_path;
2345 int i, len;
2346
2347 entry = strmap_get_entry(&opt->priv->paths, old_path);
2348 old_path = entry->key;
2349 ci = entry->value;
2350 VERIFY_CI(ci);
2351
2352 /* Find parent directories missing from opt->priv->paths */
2353 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2354 free((char*)new_path);
2355 new_path = (char *)cur_path;
2356
2357 while (1) {
2358 /* Find the parent directory of cur_path */
2359 char *last_slash = strrchr(cur_path, '/');
2360 if (last_slash) {
2361 parent_name = mem_pool_strndup(&opt->priv->pool,
2362 cur_path,
2363 last_slash - cur_path);
2364 } else {
2365 parent_name = opt->priv->toplevel_dir;
2366 break;
2367 }
2368
2369 /* Look it up in opt->priv->paths */
2370 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2371 if (entry) {
2372 parent_name = entry->key; /* reuse known pointer */
2373 break;
2374 }
2375
2376 /* Record this is one of the directories we need to insert */
2377 string_list_append(&dirs_to_insert, parent_name);
2378 cur_path = parent_name;
2379 }
2380
2381 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2382 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2383 struct conflict_info *dir_ci;
2384 char *cur_dir = dirs_to_insert.items[i].string;
2385
2386 CALLOC_ARRAY(dir_ci, 1);
2387
2388 dir_ci->merged.directory_name = parent_name;
2389 len = strlen(parent_name);
2390 /* len+1 because of trailing '/' character */
2391 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2392 dir_ci->dirmask = ci->filemask;
2393 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2394
2395 parent_name = cur_dir;
2396 }
2397
2398 assert(ci->filemask == 2 || ci->filemask == 4);
2399 assert(ci->dirmask == 0);
2400 strmap_remove(&opt->priv->paths, old_path, 0);
2401
2402 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2403 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2404
2405 /* Now, finally update ci and stick it into opt->priv->paths */
2406 ci->merged.directory_name = parent_name;
2407 len = strlen(parent_name);
2408 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2409 new_ci = strmap_get(&opt->priv->paths, new_path);
2410 if (!new_ci) {
2411 /* Place ci back into opt->priv->paths, but at new_path */
2412 strmap_put(&opt->priv->paths, new_path, ci);
2413 } else {
2414 int index;
2415
2416 /* A few sanity checks */
2417 VERIFY_CI(new_ci);
2418 assert(ci->filemask == 2 || ci->filemask == 4);
2419 assert((new_ci->filemask & ci->filemask) == 0);
2420 assert(!new_ci->merged.clean);
2421
2422 /* Copy stuff from ci into new_ci */
2423 new_ci->filemask |= ci->filemask;
2424 if (new_ci->dirmask)
2425 new_ci->df_conflict = 1;
2426 index = (ci->filemask >> 1);
2427 new_ci->pathnames[index] = ci->pathnames[index];
2428 new_ci->stages[index].mode = ci->stages[index].mode;
2429 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2430
2431 ci = new_ci;
2432 }
2433
2434 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2435 /* Notify user of updated path */
2436 if (pair->status == 'A')
2437 path_msg(opt, new_path, 1,
2438 _("Path updated: %s added in %s inside a "
2439 "directory that was renamed in %s; moving "
2440 "it to %s."),
2441 old_path, branch_with_new_path,
2442 branch_with_dir_rename, new_path);
2443 else
2444 path_msg(opt, new_path, 1,
2445 _("Path updated: %s renamed to %s in %s, "
2446 "inside a directory that was renamed in %s; "
2447 "moving it to %s."),
2448 pair->one->path, old_path, branch_with_new_path,
2449 branch_with_dir_rename, new_path);
2450 } else {
2451 /*
2452 * opt->detect_directory_renames has the value
2453 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2454 */
2455 ci->path_conflict = 1;
2456 if (pair->status == 'A')
2457 path_msg(opt, new_path, 1,
2458 _("CONFLICT (file location): %s added in %s "
2459 "inside a directory that was renamed in %s, "
2460 "suggesting it should perhaps be moved to "
2461 "%s."),
2462 old_path, branch_with_new_path,
2463 branch_with_dir_rename, new_path);
2464 else
2465 path_msg(opt, new_path, 1,
2466 _("CONFLICT (file location): %s renamed to %s "
2467 "in %s, inside a directory that was renamed "
2468 "in %s, suggesting it should perhaps be "
2469 "moved to %s."),
2470 pair->one->path, old_path, branch_with_new_path,
2471 branch_with_dir_rename, new_path);
2472 }
2473
2474 /*
2475 * Finally, record the new location.
2476 */
2477 pair->two->path = new_path;
2478 }
2479
2480 /*** Function Grouping: functions related to regular rename detection ***/
2481
2482 static int process_renames(struct merge_options *opt,
2483 struct diff_queue_struct *renames)
2484 {
2485 int clean_merge = 1, i;
2486
2487 for (i = 0; i < renames->nr; ++i) {
2488 const char *oldpath = NULL, *newpath;
2489 struct diff_filepair *pair = renames->queue[i];
2490 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2491 struct strmap_entry *old_ent, *new_ent;
2492 unsigned int old_sidemask;
2493 int target_index, other_source_index;
2494 int source_deleted, collision, type_changed;
2495 const char *rename_branch = NULL, *delete_branch = NULL;
2496
2497 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2498 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2499 if (old_ent) {
2500 oldpath = old_ent->key;
2501 oldinfo = old_ent->value;
2502 }
2503 newpath = pair->two->path;
2504 if (new_ent) {
2505 newpath = new_ent->key;
2506 newinfo = new_ent->value;
2507 }
2508
2509 /*
2510 * If pair->one->path isn't in opt->priv->paths, that means
2511 * that either directory rename detection removed that
2512 * path, or a parent directory of oldpath was resolved and
2513 * we don't even need the rename; in either case, we can
2514 * skip it. If oldinfo->merged.clean, then the other side
2515 * of history had no changes to oldpath and we don't need
2516 * the rename and can skip it.
2517 */
2518 if (!oldinfo || oldinfo->merged.clean)
2519 continue;
2520
2521 /*
2522 * diff_filepairs have copies of pathnames, thus we have to
2523 * use standard 'strcmp()' (negated) instead of '=='.
2524 */
2525 if (i + 1 < renames->nr &&
2526 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2527 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2528 const char *pathnames[3];
2529 struct version_info merged;
2530 struct conflict_info *base, *side1, *side2;
2531 unsigned was_binary_blob = 0;
2532
2533 pathnames[0] = oldpath;
2534 pathnames[1] = newpath;
2535 pathnames[2] = renames->queue[i+1]->two->path;
2536
2537 base = strmap_get(&opt->priv->paths, pathnames[0]);
2538 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2539 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2540
2541 VERIFY_CI(base);
2542 VERIFY_CI(side1);
2543 VERIFY_CI(side2);
2544
2545 if (!strcmp(pathnames[1], pathnames[2])) {
2546 struct rename_info *ri = &opt->priv->renames;
2547 int j;
2548
2549 /* Both sides renamed the same way */
2550 assert(side1 == side2);
2551 memcpy(&side1->stages[0], &base->stages[0],
2552 sizeof(merged));
2553 side1->filemask |= (1 << MERGE_BASE);
2554 /* Mark base as resolved by removal */
2555 base->merged.is_null = 1;
2556 base->merged.clean = 1;
2557
2558 /*
2559 * Disable remembering renames optimization;
2560 * rename/rename(1to1) is incredibly rare, and
2561 * just disabling the optimization is easier
2562 * than purging cached_pairs,
2563 * cached_target_names, and dir_rename_counts.
2564 */
2565 for (j = 0; j < 3; j++)
2566 ri->merge_trees[j] = NULL;
2567
2568 /* We handled both renames, i.e. i+1 handled */
2569 i++;
2570 /* Move to next rename */
2571 continue;
2572 }
2573
2574 /* This is a rename/rename(1to2) */
2575 clean_merge = handle_content_merge(opt,
2576 pair->one->path,
2577 &base->stages[0],
2578 &side1->stages[1],
2579 &side2->stages[2],
2580 pathnames,
2581 1 + 2 * opt->priv->call_depth,
2582 &merged);
2583 if (!clean_merge &&
2584 merged.mode == side1->stages[1].mode &&
2585 oideq(&merged.oid, &side1->stages[1].oid))
2586 was_binary_blob = 1;
2587 memcpy(&side1->stages[1], &merged, sizeof(merged));
2588 if (was_binary_blob) {
2589 /*
2590 * Getting here means we were attempting to
2591 * merge a binary blob.
2592 *
2593 * Since we can't merge binaries,
2594 * handle_content_merge() just takes one
2595 * side. But we don't want to copy the
2596 * contents of one side to both paths. We
2597 * used the contents of side1 above for
2598 * side1->stages, let's use the contents of
2599 * side2 for side2->stages below.
2600 */
2601 oidcpy(&merged.oid, &side2->stages[2].oid);
2602 merged.mode = side2->stages[2].mode;
2603 }
2604 memcpy(&side2->stages[2], &merged, sizeof(merged));
2605
2606 side1->path_conflict = 1;
2607 side2->path_conflict = 1;
2608 /*
2609 * TODO: For renames we normally remove the path at the
2610 * old name. It would thus seem consistent to do the
2611 * same for rename/rename(1to2) cases, but we haven't
2612 * done so traditionally and a number of the regression
2613 * tests now encode an expectation that the file is
2614 * left there at stage 1. If we ever decide to change
2615 * this, add the following two lines here:
2616 * base->merged.is_null = 1;
2617 * base->merged.clean = 1;
2618 * and remove the setting of base->path_conflict to 1.
2619 */
2620 base->path_conflict = 1;
2621 path_msg(opt, oldpath, 0,
2622 _("CONFLICT (rename/rename): %s renamed to "
2623 "%s in %s and to %s in %s."),
2624 pathnames[0],
2625 pathnames[1], opt->branch1,
2626 pathnames[2], opt->branch2);
2627
2628 i++; /* We handled both renames, i.e. i+1 handled */
2629 continue;
2630 }
2631
2632 VERIFY_CI(oldinfo);
2633 VERIFY_CI(newinfo);
2634 target_index = pair->score; /* from collect_renames() */
2635 assert(target_index == 1 || target_index == 2);
2636 other_source_index = 3 - target_index;
2637 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2638 source_deleted = (oldinfo->filemask == 1);
2639 collision = ((newinfo->filemask & old_sidemask) != 0);
2640 type_changed = !source_deleted &&
2641 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2642 S_ISREG(newinfo->stages[target_index].mode));
2643 if (type_changed && collision) {
2644 /*
2645 * special handling so later blocks can handle this...
2646 *
2647 * if type_changed && collision are both true, then this
2648 * was really a double rename, but one side wasn't
2649 * detected due to lack of break detection. I.e.
2650 * something like
2651 * orig: has normal file 'foo'
2652 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2653 * side2: renames 'foo' to 'bar'
2654 * In this case, the foo->bar rename on side1 won't be
2655 * detected because the new symlink named 'foo' is
2656 * there and we don't do break detection. But we detect
2657 * this here because we don't want to merge the content
2658 * of the foo symlink with the foo->bar file, so we
2659 * have some logic to handle this special case. The
2660 * easiest way to do that is make 'bar' on side1 not
2661 * be considered a colliding file but the other part
2662 * of a normal rename. If the file is very different,
2663 * well we're going to get content merge conflicts
2664 * anyway so it doesn't hurt. And if the colliding
2665 * file also has a different type, that'll be handled
2666 * by the content merge logic in process_entry() too.
2667 *
2668 * See also t6430, 'rename vs. rename/symlink'
2669 */
2670 collision = 0;
2671 }
2672 if (source_deleted) {
2673 if (target_index == 1) {
2674 rename_branch = opt->branch1;
2675 delete_branch = opt->branch2;
2676 } else {
2677 rename_branch = opt->branch2;
2678 delete_branch = opt->branch1;
2679 }
2680 }
2681
2682 assert(source_deleted || oldinfo->filemask & old_sidemask);
2683
2684 /* Need to check for special types of rename conflicts... */
2685 if (collision && !source_deleted) {
2686 /* collision: rename/add or rename/rename(2to1) */
2687 const char *pathnames[3];
2688 struct version_info merged;
2689
2690 struct conflict_info *base, *side1, *side2;
2691 unsigned clean;
2692
2693 pathnames[0] = oldpath;
2694 pathnames[other_source_index] = oldpath;
2695 pathnames[target_index] = newpath;
2696
2697 base = strmap_get(&opt->priv->paths, pathnames[0]);
2698 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2699 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2700
2701 VERIFY_CI(base);
2702 VERIFY_CI(side1);
2703 VERIFY_CI(side2);
2704
2705 clean = handle_content_merge(opt, pair->one->path,
2706 &base->stages[0],
2707 &side1->stages[1],
2708 &side2->stages[2],
2709 pathnames,
2710 1 + 2 * opt->priv->call_depth,
2711 &merged);
2712
2713 memcpy(&newinfo->stages[target_index], &merged,
2714 sizeof(merged));
2715 if (!clean) {
2716 path_msg(opt, newpath, 0,
2717 _("CONFLICT (rename involved in "
2718 "collision): rename of %s -> %s has "
2719 "content conflicts AND collides "
2720 "with another path; this may result "
2721 "in nested conflict markers."),
2722 oldpath, newpath);
2723 }
2724 } else if (collision && source_deleted) {
2725 /*
2726 * rename/add/delete or rename/rename(2to1)/delete:
2727 * since oldpath was deleted on the side that didn't
2728 * do the rename, there's not much of a content merge
2729 * we can do for the rename. oldinfo->merged.is_null
2730 * was already set, so we just leave things as-is so
2731 * they look like an add/add conflict.
2732 */
2733
2734 newinfo->path_conflict = 1;
2735 path_msg(opt, newpath, 0,
2736 _("CONFLICT (rename/delete): %s renamed "
2737 "to %s in %s, but deleted in %s."),
2738 oldpath, newpath, rename_branch, delete_branch);
2739 } else {
2740 /*
2741 * a few different cases...start by copying the
2742 * existing stage(s) from oldinfo over the newinfo
2743 * and update the pathname(s).
2744 */
2745 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2746 sizeof(newinfo->stages[0]));
2747 newinfo->filemask |= (1 << MERGE_BASE);
2748 newinfo->pathnames[0] = oldpath;
2749 if (type_changed) {
2750 /* rename vs. typechange */
2751 /* Mark the original as resolved by removal */
2752 memcpy(&oldinfo->stages[0].oid, null_oid(),
2753 sizeof(oldinfo->stages[0].oid));
2754 oldinfo->stages[0].mode = 0;
2755 oldinfo->filemask &= 0x06;
2756 } else if (source_deleted) {
2757 /* rename/delete */
2758 newinfo->path_conflict = 1;
2759 path_msg(opt, newpath, 0,
2760 _("CONFLICT (rename/delete): %s renamed"
2761 " to %s in %s, but deleted in %s."),
2762 oldpath, newpath,
2763 rename_branch, delete_branch);
2764 } else {
2765 /* normal rename */
2766 memcpy(&newinfo->stages[other_source_index],
2767 &oldinfo->stages[other_source_index],
2768 sizeof(newinfo->stages[0]));
2769 newinfo->filemask |= (1 << other_source_index);
2770 newinfo->pathnames[other_source_index] = oldpath;
2771 }
2772 }
2773
2774 if (!type_changed) {
2775 /* Mark the original as resolved by removal */
2776 oldinfo->merged.is_null = 1;
2777 oldinfo->merged.clean = 1;
2778 }
2779
2780 }
2781
2782 return clean_merge;
2783 }
2784
2785 static inline int possible_side_renames(struct rename_info *renames,
2786 unsigned side_index)
2787 {
2788 return renames->pairs[side_index].nr > 0 &&
2789 !strintmap_empty(&renames->relevant_sources[side_index]);
2790 }
2791
2792 static inline int possible_renames(struct rename_info *renames)
2793 {
2794 return possible_side_renames(renames, 1) ||
2795 possible_side_renames(renames, 2) ||
2796 !strmap_empty(&renames->cached_pairs[1]) ||
2797 !strmap_empty(&renames->cached_pairs[2]);
2798 }
2799
2800 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2801 {
2802 /*
2803 * A simplified version of diff_resolve_rename_copy(); would probably
2804 * just use that function but it's static...
2805 */
2806 int i;
2807 struct diff_filepair *p;
2808
2809 for (i = 0; i < q->nr; ++i) {
2810 p = q->queue[i];
2811 p->status = 0; /* undecided */
2812 if (!DIFF_FILE_VALID(p->one))
2813 p->status = DIFF_STATUS_ADDED;
2814 else if (!DIFF_FILE_VALID(p->two))
2815 p->status = DIFF_STATUS_DELETED;
2816 else if (DIFF_PAIR_RENAME(p))
2817 p->status = DIFF_STATUS_RENAMED;
2818 }
2819 }
2820
2821 static void prune_cached_from_relevant(struct rename_info *renames,
2822 unsigned side)
2823 {
2824 /* Reason for this function described in add_pair() */
2825 struct hashmap_iter iter;
2826 struct strmap_entry *entry;
2827
2828 /* Remove from relevant_sources all entries in cached_pairs[side] */
2829 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2830 strintmap_remove(&renames->relevant_sources[side],
2831 entry->key);
2832 }
2833 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2834 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2835 strintmap_remove(&renames->relevant_sources[side],
2836 entry->key);
2837 }
2838 }
2839
2840 static void use_cached_pairs(struct merge_options *opt,
2841 struct strmap *cached_pairs,
2842 struct diff_queue_struct *pairs)
2843 {
2844 struct hashmap_iter iter;
2845 struct strmap_entry *entry;
2846
2847 /*
2848 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2849 * (Info in cached_irrelevant[side_index] is not relevant here.)
2850 */
2851 strmap_for_each_entry(cached_pairs, &iter, entry) {
2852 struct diff_filespec *one, *two;
2853 const char *old_name = entry->key;
2854 const char *new_name = entry->value;
2855 if (!new_name)
2856 new_name = old_name;
2857
2858 /*
2859 * cached_pairs has *copies* of old_name and new_name,
2860 * because it has to persist across merges. Since
2861 * pool_alloc_filespec() will just re-use the existing
2862 * filenames, which will also get re-used by
2863 * opt->priv->paths if they become renames, and then
2864 * get freed at the end of the merge, that would leave
2865 * the copy in cached_pairs dangling. Avoid this by
2866 * making a copy here.
2867 */
2868 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
2869 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
2870
2871 /* We don't care about oid/mode, only filenames and status */
2872 one = pool_alloc_filespec(&opt->priv->pool, old_name);
2873 two = pool_alloc_filespec(&opt->priv->pool, new_name);
2874 pool_diff_queue(&opt->priv->pool, pairs, one, two);
2875 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2876 }
2877 }
2878
2879 static void cache_new_pair(struct rename_info *renames,
2880 int side,
2881 char *old_path,
2882 char *new_path,
2883 int free_old_value)
2884 {
2885 char *old_value;
2886 new_path = xstrdup(new_path);
2887 old_value = strmap_put(&renames->cached_pairs[side],
2888 old_path, new_path);
2889 strset_add(&renames->cached_target_names[side], new_path);
2890 if (free_old_value)
2891 free(old_value);
2892 else
2893 assert(!old_value);
2894 }
2895
2896 static void possibly_cache_new_pair(struct rename_info *renames,
2897 struct diff_filepair *p,
2898 unsigned side,
2899 char *new_path)
2900 {
2901 int dir_renamed_side = 0;
2902
2903 if (new_path) {
2904 /*
2905 * Directory renames happen on the other side of history from
2906 * the side that adds new files to the old directory.
2907 */
2908 dir_renamed_side = 3 - side;
2909 } else {
2910 int val = strintmap_get(&renames->relevant_sources[side],
2911 p->one->path);
2912 if (val == RELEVANT_NO_MORE) {
2913 assert(p->status == 'D');
2914 strset_add(&renames->cached_irrelevant[side],
2915 p->one->path);
2916 }
2917 if (val <= 0)
2918 return;
2919 }
2920
2921 if (p->status == 'D') {
2922 /*
2923 * If we already had this delete, we'll just set it's value
2924 * to NULL again, so no harm.
2925 */
2926 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2927 } else if (p->status == 'R') {
2928 if (!new_path)
2929 new_path = p->two->path;
2930 else
2931 cache_new_pair(renames, dir_renamed_side,
2932 p->two->path, new_path, 0);
2933 cache_new_pair(renames, side, p->one->path, new_path, 1);
2934 } else if (p->status == 'A' && new_path) {
2935 cache_new_pair(renames, dir_renamed_side,
2936 p->two->path, new_path, 0);
2937 }
2938 }
2939
2940 static int compare_pairs(const void *a_, const void *b_)
2941 {
2942 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2943 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2944
2945 return strcmp(a->one->path, b->one->path);
2946 }
2947
2948 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2949 static int detect_regular_renames(struct merge_options *opt,
2950 unsigned side_index)
2951 {
2952 struct diff_options diff_opts;
2953 struct rename_info *renames = &opt->priv->renames;
2954
2955 prune_cached_from_relevant(renames, side_index);
2956 if (!possible_side_renames(renames, side_index)) {
2957 /*
2958 * No rename detection needed for this side, but we still need
2959 * to make sure 'adds' are marked correctly in case the other
2960 * side had directory renames.
2961 */
2962 resolve_diffpair_statuses(&renames->pairs[side_index]);
2963 return 0;
2964 }
2965
2966 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2967 repo_diff_setup(opt->repo, &diff_opts);
2968 diff_opts.flags.recursive = 1;
2969 diff_opts.flags.rename_empty = 0;
2970 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2971 diff_opts.rename_limit = opt->rename_limit;
2972 if (opt->rename_limit <= 0)
2973 diff_opts.rename_limit = 7000;
2974 diff_opts.rename_score = opt->rename_score;
2975 diff_opts.show_rename_progress = opt->show_rename_progress;
2976 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2977 diff_setup_done(&diff_opts);
2978
2979 diff_queued_diff = renames->pairs[side_index];
2980 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2981 diffcore_rename_extended(&diff_opts,
2982 &opt->priv->pool,
2983 &renames->relevant_sources[side_index],
2984 &renames->dirs_removed[side_index],
2985 &renames->dir_rename_count[side_index],
2986 &renames->cached_pairs[side_index]);
2987 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2988 resolve_diffpair_statuses(&diff_queued_diff);
2989
2990 if (diff_opts.needed_rename_limit > 0)
2991 renames->redo_after_renames = 0;
2992 if (diff_opts.needed_rename_limit > renames->needed_limit)
2993 renames->needed_limit = diff_opts.needed_rename_limit;
2994
2995 renames->pairs[side_index] = diff_queued_diff;
2996
2997 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2998 diff_queued_diff.nr = 0;
2999 diff_queued_diff.queue = NULL;
3000 diff_flush(&diff_opts);
3001
3002 return 1;
3003 }
3004
3005 /*
3006 * Get information of all renames which occurred in 'side_pairs', making use
3007 * of any implicit directory renames in side_dir_renames (also making use of
3008 * implicit directory renames rename_exclusions as needed by
3009 * check_for_directory_rename()). Add all (updated) renames into result.
3010 */
3011 static int collect_renames(struct merge_options *opt,
3012 struct diff_queue_struct *result,
3013 unsigned side_index,
3014 struct strmap *dir_renames_for_side,
3015 struct strmap *rename_exclusions)
3016 {
3017 int i, clean = 1;
3018 struct strmap collisions;
3019 struct diff_queue_struct *side_pairs;
3020 struct hashmap_iter iter;
3021 struct strmap_entry *entry;
3022 struct rename_info *renames = &opt->priv->renames;
3023
3024 side_pairs = &renames->pairs[side_index];
3025 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
3026
3027 for (i = 0; i < side_pairs->nr; ++i) {
3028 struct diff_filepair *p = side_pairs->queue[i];
3029 char *new_path; /* non-NULL only with directory renames */
3030
3031 if (p->status != 'A' && p->status != 'R') {
3032 possibly_cache_new_pair(renames, p, side_index, NULL);
3033 pool_diff_free_filepair(&opt->priv->pool, p);
3034 continue;
3035 }
3036
3037 new_path = check_for_directory_rename(opt, p->two->path,
3038 side_index,
3039 dir_renames_for_side,
3040 rename_exclusions,
3041 &collisions,
3042 &clean);
3043
3044 possibly_cache_new_pair(renames, p, side_index, new_path);
3045 if (p->status != 'R' && !new_path) {
3046 pool_diff_free_filepair(&opt->priv->pool, p);
3047 continue;
3048 }
3049
3050 if (new_path)
3051 apply_directory_rename_modifications(opt, p, new_path);
3052
3053 /*
3054 * p->score comes back from diffcore_rename_extended() with
3055 * the similarity of the renamed file. The similarity is
3056 * was used to determine that the two files were related
3057 * and are a rename, which we have already used, but beyond
3058 * that we have no use for the similarity. So p->score is
3059 * now irrelevant. However, process_renames() will need to
3060 * know which side of the merge this rename was associated
3061 * with, so overwrite p->score with that value.
3062 */
3063 p->score = side_index;
3064 result->queue[result->nr++] = p;
3065 }
3066
3067 /* Free each value in the collisions map */
3068 strmap_for_each_entry(&collisions, &iter, entry) {
3069 struct collision_info *info = entry->value;
3070 string_list_clear(&info->source_files, 0);
3071 }
3072 /*
3073 * In compute_collisions(), we set collisions.strdup_strings to 0
3074 * so that we wouldn't have to make another copy of the new_path
3075 * allocated by apply_dir_rename(). But now that we've used them
3076 * and have no other references to these strings, it is time to
3077 * deallocate them.
3078 */
3079 free_strmap_strings(&collisions);
3080 strmap_clear(&collisions, 1);
3081 return clean;
3082 }
3083
3084 static int detect_and_process_renames(struct merge_options *opt,
3085 struct tree *merge_base,
3086 struct tree *side1,
3087 struct tree *side2)
3088 {
3089 struct diff_queue_struct combined;
3090 struct rename_info *renames = &opt->priv->renames;
3091 int need_dir_renames, s, clean = 1;
3092 unsigned detection_run = 0;
3093
3094 memset(&combined, 0, sizeof(combined));
3095 if (!possible_renames(renames))
3096 goto cleanup;
3097
3098 trace2_region_enter("merge", "regular renames", opt->repo);
3099 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3100 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3101 if (renames->needed_limit) {
3102 renames->cached_pairs_valid_side = 0;
3103 renames->redo_after_renames = 0;
3104 }
3105 if (renames->redo_after_renames && detection_run) {
3106 int i, side;
3107 struct diff_filepair *p;
3108
3109 /* Cache the renames, we found */
3110 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3111 for (i = 0; i < renames->pairs[side].nr; ++i) {
3112 p = renames->pairs[side].queue[i];
3113 possibly_cache_new_pair(renames, p, side, NULL);
3114 }
3115 }
3116
3117 /* Restart the merge with the cached renames */
3118 renames->redo_after_renames = 2;
3119 trace2_region_leave("merge", "regular renames", opt->repo);
3120 goto cleanup;
3121 }
3122 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3123 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3124 trace2_region_leave("merge", "regular renames", opt->repo);
3125
3126 trace2_region_enter("merge", "directory renames", opt->repo);
3127 need_dir_renames =
3128 !opt->priv->call_depth &&
3129 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3130 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3131
3132 if (need_dir_renames) {
3133 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3134 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3135 handle_directory_level_conflicts(opt);
3136 }
3137
3138 ALLOC_GROW(combined.queue,
3139 renames->pairs[1].nr + renames->pairs[2].nr,
3140 combined.alloc);
3141 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3142 &renames->dir_renames[2],
3143 &renames->dir_renames[1]);
3144 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3145 &renames->dir_renames[1],
3146 &renames->dir_renames[2]);
3147 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3148 trace2_region_leave("merge", "directory renames", opt->repo);
3149
3150 trace2_region_enter("merge", "process renames", opt->repo);
3151 clean &= process_renames(opt, &combined);
3152 trace2_region_leave("merge", "process renames", opt->repo);
3153
3154 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3155
3156 cleanup:
3157 /*
3158 * Free now unneeded filepairs, which would have been handled
3159 * in collect_renames() normally but we skipped that code.
3160 */
3161 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3162 struct diff_queue_struct *side_pairs;
3163 int i;
3164
3165 side_pairs = &renames->pairs[s];
3166 for (i = 0; i < side_pairs->nr; ++i) {
3167 struct diff_filepair *p = side_pairs->queue[i];
3168 pool_diff_free_filepair(&opt->priv->pool, p);
3169 }
3170 }
3171
3172 simple_cleanup:
3173 /* Free memory for renames->pairs[] and combined */
3174 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3175 free(renames->pairs[s].queue);
3176 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3177 }
3178 if (combined.nr) {
3179 int i;
3180 for (i = 0; i < combined.nr; i++)
3181 pool_diff_free_filepair(&opt->priv->pool,
3182 combined.queue[i]);
3183 free(combined.queue);
3184 }
3185
3186 return clean;
3187 }
3188
3189 /*** Function Grouping: functions related to process_entries() ***/
3190
3191 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3192 {
3193 unsigned char c1, c2;
3194
3195 /*
3196 * Here we only care that entries for directories appear adjacent
3197 * to and before files underneath the directory. We can achieve
3198 * that by pretending to add a trailing slash to every file and
3199 * then sorting. In other words, we do not want the natural
3200 * sorting of
3201 * foo
3202 * foo.txt
3203 * foo/bar
3204 * Instead, we want "foo" to sort as though it were "foo/", so that
3205 * we instead get
3206 * foo.txt
3207 * foo
3208 * foo/bar
3209 * To achieve this, we basically implement our own strcmp, except that
3210 * if we get to the end of either string instead of comparing NUL to
3211 * another character, we compare '/' to it.
3212 *
3213 * If this unusual "sort as though '/' were appended" perplexes
3214 * you, perhaps it will help to note that this is not the final
3215 * sort. write_tree() will sort again without the trailing slash
3216 * magic, but just on paths immediately under a given tree.
3217 *
3218 * The reason to not use df_name_compare directly was that it was
3219 * just too expensive (we don't have the string lengths handy), so
3220 * it was reimplemented.
3221 */
3222
3223 /*
3224 * NOTE: This function will never be called with two equal strings,
3225 * because it is used to sort the keys of a strmap, and strmaps have
3226 * unique keys by construction. That simplifies our c1==c2 handling
3227 * below.
3228 */
3229
3230 while (*one && (*one == *two)) {
3231 one++;
3232 two++;
3233 }
3234
3235 c1 = *one ? *one : '/';
3236 c2 = *two ? *two : '/';
3237
3238 if (c1 == c2) {
3239 /* Getting here means one is a leading directory of the other */
3240 return (*one) ? 1 : -1;
3241 } else
3242 return c1 - c2;
3243 }
3244
3245 static int read_oid_strbuf(struct merge_options *opt,
3246 const struct object_id *oid,
3247 struct strbuf *dst)
3248 {
3249 void *buf;
3250 enum object_type type;
3251 unsigned long size;
3252 buf = read_object_file(oid, &type, &size);
3253 if (!buf)
3254 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3255 if (type != OBJ_BLOB) {
3256 free(buf);
3257 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3258 }
3259 strbuf_attach(dst, buf, size, size + 1);
3260 return 0;
3261 }
3262
3263 static int blob_unchanged(struct merge_options *opt,
3264 const struct version_info *base,
3265 const struct version_info *side,
3266 const char *path)
3267 {
3268 struct strbuf basebuf = STRBUF_INIT;
3269 struct strbuf sidebuf = STRBUF_INIT;
3270 int ret = 0; /* assume changed for safety */
3271 struct index_state *idx = &opt->priv->attr_index;
3272
3273 if (!idx->initialized)
3274 initialize_attr_index(opt);
3275
3276 if (base->mode != side->mode)
3277 return 0;
3278 if (oideq(&base->oid, &side->oid))
3279 return 1;
3280
3281 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3282 read_oid_strbuf(opt, &side->oid, &sidebuf))
3283 goto error_return;
3284 /*
3285 * Note: binary | is used so that both renormalizations are
3286 * performed. Comparison can be skipped if both files are
3287 * unchanged since their sha1s have already been compared.
3288 */
3289 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3290 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3291 ret = (basebuf.len == sidebuf.len &&
3292 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3293
3294 error_return:
3295 strbuf_release(&basebuf);
3296 strbuf_release(&sidebuf);
3297 return ret;
3298 }
3299
3300 struct directory_versions {
3301 /*
3302 * versions: list of (basename -> version_info)
3303 *
3304 * The basenames are in reverse lexicographic order of full pathnames,
3305 * as processed in process_entries(). This puts all entries within
3306 * a directory together, and covers the directory itself after
3307 * everything within it, allowing us to write subtrees before needing
3308 * to record information for the tree itself.
3309 */
3310 struct string_list versions;
3311
3312 /*
3313 * offsets: list of (full relative path directories -> integer offsets)
3314 *
3315 * Since versions contains basenames from files in multiple different
3316 * directories, we need to know which entries in versions correspond
3317 * to which directories. Values of e.g.
3318 * "" 0
3319 * src 2
3320 * src/moduleA 5
3321 * Would mean that entries 0-1 of versions are files in the toplevel
3322 * directory, entries 2-4 are files under src/, and the remaining
3323 * entries starting at index 5 are files under src/moduleA/.
3324 */
3325 struct string_list offsets;
3326
3327 /*
3328 * last_directory: directory that previously processed file found in
3329 *
3330 * last_directory starts NULL, but records the directory in which the
3331 * previous file was found within. As soon as
3332 * directory(current_file) != last_directory
3333 * then we need to start updating accounting in versions & offsets.
3334 * Note that last_directory is always the last path in "offsets" (or
3335 * NULL if "offsets" is empty) so this exists just for quick access.
3336 */
3337 const char *last_directory;
3338
3339 /* last_directory_len: cached computation of strlen(last_directory) */
3340 unsigned last_directory_len;
3341 };
3342
3343 static int tree_entry_order(const void *a_, const void *b_)
3344 {
3345 const struct string_list_item *a = a_;
3346 const struct string_list_item *b = b_;
3347
3348 const struct merged_info *ami = a->util;
3349 const struct merged_info *bmi = b->util;
3350 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3351 b->string, strlen(b->string), bmi->result.mode);
3352 }
3353
3354 static void write_tree(struct object_id *result_oid,
3355 struct string_list *versions,
3356 unsigned int offset,
3357 size_t hash_size)
3358 {
3359 size_t maxlen = 0, extra;
3360 unsigned int nr;
3361 struct strbuf buf = STRBUF_INIT;
3362 int i;
3363
3364 assert(offset <= versions->nr);
3365 nr = versions->nr - offset;
3366 if (versions->nr)
3367 /* No need for STABLE_QSORT -- filenames must be unique */
3368 QSORT(versions->items + offset, nr, tree_entry_order);
3369
3370 /* Pre-allocate some space in buf */
3371 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3372 for (i = 0; i < nr; i++) {
3373 maxlen += strlen(versions->items[offset+i].string) + extra;
3374 }
3375 strbuf_grow(&buf, maxlen);
3376
3377 /* Write each entry out to buf */
3378 for (i = 0; i < nr; i++) {
3379 struct merged_info *mi = versions->items[offset+i].util;
3380 struct version_info *ri = &mi->result;
3381 strbuf_addf(&buf, "%o %s%c",
3382 ri->mode,
3383 versions->items[offset+i].string, '\0');
3384 strbuf_add(&buf, ri->oid.hash, hash_size);
3385 }
3386
3387 /* Write this object file out, and record in result_oid */
3388 write_object_file(buf.buf, buf.len, tree_type, result_oid);
3389 strbuf_release(&buf);
3390 }
3391
3392 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3393 const char *path,
3394 struct merged_info *mi)
3395 {
3396 const char *basename;
3397
3398 if (mi->is_null)
3399 /* nothing to record */
3400 return;
3401
3402 basename = path + mi->basename_offset;
3403 assert(strchr(basename, '/') == NULL);
3404 string_list_append(&dir_metadata->versions,
3405 basename)->util = &mi->result;
3406 }
3407
3408 static void write_completed_directory(struct merge_options *opt,
3409 const char *new_directory_name,
3410 struct directory_versions *info)
3411 {
3412 const char *prev_dir;
3413 struct merged_info *dir_info = NULL;
3414 unsigned int offset;
3415
3416 /*
3417 * Some explanation of info->versions and info->offsets...
3418 *
3419 * process_entries() iterates over all relevant files AND
3420 * directories in reverse lexicographic order, and calls this
3421 * function. Thus, an example of the paths that process_entries()
3422 * could operate on (along with the directories for those paths
3423 * being shown) is:
3424 *
3425 * xtract.c ""
3426 * tokens.txt ""
3427 * src/moduleB/umm.c src/moduleB
3428 * src/moduleB/stuff.h src/moduleB
3429 * src/moduleB/baz.c src/moduleB
3430 * src/moduleB src
3431 * src/moduleA/foo.c src/moduleA
3432 * src/moduleA/bar.c src/moduleA
3433 * src/moduleA src
3434 * src ""
3435 * Makefile ""
3436 *
3437 * info->versions:
3438 *
3439 * always contains the unprocessed entries and their
3440 * version_info information. For example, after the first five
3441 * entries above, info->versions would be:
3442 *
3443 * xtract.c <xtract.c's version_info>
3444 * token.txt <token.txt's version_info>
3445 * umm.c <src/moduleB/umm.c's version_info>
3446 * stuff.h <src/moduleB/stuff.h's version_info>
3447 * baz.c <src/moduleB/baz.c's version_info>
3448 *
3449 * Once a subdirectory is completed we remove the entries in
3450 * that subdirectory from info->versions, writing it as a tree
3451 * (write_tree()). Thus, as soon as we get to src/moduleB,
3452 * info->versions would be updated to
3453 *
3454 * xtract.c <xtract.c's version_info>
3455 * token.txt <token.txt's version_info>
3456 * moduleB <src/moduleB's version_info>
3457 *
3458 * info->offsets:
3459 *
3460 * helps us track which entries in info->versions correspond to
3461 * which directories. When we are N directories deep (e.g. 4
3462 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3463 * directories (+1 because of toplevel dir). Corresponding to
3464 * the info->versions example above, after processing five entries
3465 * info->offsets will be:
3466 *
3467 * "" 0
3468 * src/moduleB 2
3469 *
3470 * which is used to know that xtract.c & token.txt are from the
3471 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3472 * src/moduleB directory. Again, following the example above,
3473 * once we need to process src/moduleB, then info->offsets is
3474 * updated to
3475 *
3476 * "" 0
3477 * src 2
3478 *
3479 * which says that moduleB (and only moduleB so far) is in the
3480 * src directory.
3481 *
3482 * One unique thing to note about info->offsets here is that
3483 * "src" was not added to info->offsets until there was a path
3484 * (a file OR directory) immediately below src/ that got
3485 * processed.
3486 *
3487 * Since process_entry() just appends new entries to info->versions,
3488 * write_completed_directory() only needs to do work if the next path
3489 * is in a directory that is different than the last directory found
3490 * in info->offsets.
3491 */
3492
3493 /*
3494 * If we are working with the same directory as the last entry, there
3495 * is no work to do. (See comments above the directory_name member of
3496 * struct merged_info for why we can use pointer comparison instead of
3497 * strcmp here.)
3498 */
3499 if (new_directory_name == info->last_directory)
3500 return;
3501
3502 /*
3503 * If we are just starting (last_directory is NULL), or last_directory
3504 * is a prefix of the current directory, then we can just update
3505 * info->offsets to record the offset where we started this directory
3506 * and update last_directory to have quick access to it.
3507 */
3508 if (info->last_directory == NULL ||
3509 !strncmp(new_directory_name, info->last_directory,
3510 info->last_directory_len)) {
3511 uintptr_t offset = info->versions.nr;
3512
3513 info->last_directory = new_directory_name;
3514 info->last_directory_len = strlen(info->last_directory);
3515 /*
3516 * Record the offset into info->versions where we will
3517 * start recording basenames of paths found within
3518 * new_directory_name.
3519 */
3520 string_list_append(&info->offsets,
3521 info->last_directory)->util = (void*)offset;
3522 return;
3523 }
3524
3525 /*
3526 * The next entry that will be processed will be within
3527 * new_directory_name. Since at this point we know that
3528 * new_directory_name is within a different directory than
3529 * info->last_directory, we have all entries for info->last_directory
3530 * in info->versions and we need to create a tree object for them.
3531 */
3532 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3533 assert(dir_info);
3534 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3535 if (offset == info->versions.nr) {
3536 /*
3537 * Actually, we don't need to create a tree object in this
3538 * case. Whenever all files within a directory disappear
3539 * during the merge (e.g. unmodified on one side and
3540 * deleted on the other, or files were renamed elsewhere),
3541 * then we get here and the directory itself needs to be
3542 * omitted from its parent tree as well.
3543 */
3544 dir_info->is_null = 1;
3545 } else {
3546 /*
3547 * Write out the tree to the git object directory, and also
3548 * record the mode and oid in dir_info->result.
3549 */
3550 dir_info->is_null = 0;
3551 dir_info->result.mode = S_IFDIR;
3552 write_tree(&dir_info->result.oid, &info->versions, offset,
3553 opt->repo->hash_algo->rawsz);
3554 }
3555
3556 /*
3557 * We've now used several entries from info->versions and one entry
3558 * from info->offsets, so we get rid of those values.
3559 */
3560 info->offsets.nr--;
3561 info->versions.nr = offset;
3562
3563 /*
3564 * Now we've taken care of the completed directory, but we need to
3565 * prepare things since future entries will be in
3566 * new_directory_name. (In particular, process_entry() will be
3567 * appending new entries to info->versions.) So, we need to make
3568 * sure new_directory_name is the last entry in info->offsets.
3569 */
3570 prev_dir = info->offsets.nr == 0 ? NULL :
3571 info->offsets.items[info->offsets.nr-1].string;
3572 if (new_directory_name != prev_dir) {
3573 uintptr_t c = info->versions.nr;
3574 string_list_append(&info->offsets,
3575 new_directory_name)->util = (void*)c;
3576 }
3577
3578 /* And, of course, we need to update last_directory to match. */
3579 info->last_directory = new_directory_name;
3580 info->last_directory_len = strlen(info->last_directory);
3581 }
3582
3583 /* Per entry merge function */
3584 static void process_entry(struct merge_options *opt,
3585 const char *path,
3586 struct conflict_info *ci,
3587 struct directory_versions *dir_metadata)
3588 {
3589 int df_file_index = 0;
3590
3591 VERIFY_CI(ci);
3592 assert(ci->filemask >= 0 && ci->filemask <= 7);
3593 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3594 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3595 ci->match_mask == 5 || ci->match_mask == 6);
3596
3597 if (ci->dirmask) {
3598 record_entry_for_tree(dir_metadata, path, &ci->merged);
3599 if (ci->filemask == 0)
3600 /* nothing else to handle */
3601 return;
3602 assert(ci->df_conflict);
3603 }
3604
3605 if (ci->df_conflict && ci->merged.result.mode == 0) {
3606 int i;
3607
3608 /*
3609 * directory no longer in the way, but we do have a file we
3610 * need to place here so we need to clean away the "directory
3611 * merges to nothing" result.
3612 */
3613 ci->df_conflict = 0;
3614 assert(ci->filemask != 0);
3615 ci->merged.clean = 0;
3616 ci->merged.is_null = 0;
3617 /* and we want to zero out any directory-related entries */
3618 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3619 ci->dirmask = 0;
3620 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3621 if (ci->filemask & (1 << i))
3622 continue;
3623 ci->stages[i].mode = 0;
3624 oidcpy(&ci->stages[i].oid, null_oid());
3625 }
3626 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3627 /*
3628 * This started out as a D/F conflict, and the entries in
3629 * the competing directory were not removed by the merge as
3630 * evidenced by write_completed_directory() writing a value
3631 * to ci->merged.result.mode.
3632 */
3633 struct conflict_info *new_ci;
3634 const char *branch;
3635 const char *old_path = path;
3636 int i;
3637
3638 assert(ci->merged.result.mode == S_IFDIR);
3639
3640 /*
3641 * If filemask is 1, we can just ignore the file as having
3642 * been deleted on both sides. We do not want to overwrite
3643 * ci->merged.result, since it stores the tree for all the
3644 * files under it.
3645 */
3646 if (ci->filemask == 1) {
3647 ci->filemask = 0;
3648 return;
3649 }
3650
3651 /*
3652 * This file still exists on at least one side, and we want
3653 * the directory to remain here, so we need to move this
3654 * path to some new location.
3655 */
3656 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3657
3658 /* We don't really want new_ci->merged.result copied, but it'll
3659 * be overwritten below so it doesn't matter. We also don't
3660 * want any directory mode/oid values copied, but we'll zero
3661 * those out immediately. We do want the rest of ci copied.
3662 */
3663 memcpy(new_ci, ci, sizeof(*ci));
3664 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3665 new_ci->dirmask = 0;
3666 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3667 if (new_ci->filemask & (1 << i))
3668 continue;
3669 /* zero out any entries related to directories */
3670 new_ci->stages[i].mode = 0;
3671 oidcpy(&new_ci->stages[i].oid, null_oid());
3672 }
3673
3674 /*
3675 * Find out which side this file came from; note that we
3676 * cannot just use ci->filemask, because renames could cause
3677 * the filemask to go back to 7. So we use dirmask, then
3678 * pick the opposite side's index.
3679 */
3680 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3681 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3682 path = unique_path(&opt->priv->paths, path, branch);
3683 strmap_put(&opt->priv->paths, path, new_ci);
3684
3685 path_msg(opt, path, 0,
3686 _("CONFLICT (file/directory): directory in the way "
3687 "of %s from %s; moving it to %s instead."),
3688 old_path, branch, path);
3689
3690 /*
3691 * Zero out the filemask for the old ci. At this point, ci
3692 * was just an entry for a directory, so we don't need to
3693 * do anything more with it.
3694 */
3695 ci->filemask = 0;
3696
3697 /*
3698 * Now note that we're working on the new entry (path was
3699 * updated above.
3700 */
3701 ci = new_ci;
3702 }
3703
3704 /*
3705 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3706 * which the code goes through even for the df_conflict cases
3707 * above.
3708 */
3709 if (ci->match_mask) {
3710 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3711 if (ci->match_mask == 6) {
3712 /* stages[1] == stages[2] */
3713 ci->merged.result.mode = ci->stages[1].mode;
3714 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3715 } else {
3716 /* determine the mask of the side that didn't match */
3717 unsigned int othermask = 7 & ~ci->match_mask;
3718 int side = (othermask == 4) ? 2 : 1;
3719
3720 ci->merged.result.mode = ci->stages[side].mode;
3721 ci->merged.is_null = !ci->merged.result.mode;
3722 if (ci->merged.is_null)
3723 ci->merged.clean = 1;
3724 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3725
3726 assert(othermask == 2 || othermask == 4);
3727 assert(ci->merged.is_null ==
3728 (ci->filemask == ci->match_mask));
3729 }
3730 } else if (ci->filemask >= 6 &&
3731 (S_IFMT & ci->stages[1].mode) !=
3732 (S_IFMT & ci->stages[2].mode)) {
3733 /* Two different items from (file/submodule/symlink) */
3734 if (opt->priv->call_depth) {
3735 /* Just use the version from the merge base */
3736 ci->merged.clean = 0;
3737 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3738 ci->merged.result.mode = ci->stages[0].mode;
3739 ci->merged.is_null = (ci->merged.result.mode == 0);
3740 } else {
3741 /* Handle by renaming one or both to separate paths. */
3742 unsigned o_mode = ci->stages[0].mode;
3743 unsigned a_mode = ci->stages[1].mode;
3744 unsigned b_mode = ci->stages[2].mode;
3745 struct conflict_info *new_ci;
3746 const char *a_path = NULL, *b_path = NULL;
3747 int rename_a = 0, rename_b = 0;
3748
3749 new_ci = mem_pool_alloc(&opt->priv->pool,
3750 sizeof(*new_ci));
3751
3752 if (S_ISREG(a_mode))
3753 rename_a = 1;
3754 else if (S_ISREG(b_mode))
3755 rename_b = 1;
3756 else {
3757 rename_a = 1;
3758 rename_b = 1;
3759 }
3760
3761 if (rename_a && rename_b) {
3762 path_msg(opt, path, 0,
3763 _("CONFLICT (distinct types): %s had "
3764 "different types on each side; "
3765 "renamed both of them so each can "
3766 "be recorded somewhere."),
3767 path);
3768 } else {
3769 path_msg(opt, path, 0,
3770 _("CONFLICT (distinct types): %s had "
3771 "different types on each side; "
3772 "renamed one of them so each can be "
3773 "recorded somewhere."),
3774 path);
3775 }
3776
3777 ci->merged.clean = 0;
3778 memcpy(new_ci, ci, sizeof(*new_ci));
3779
3780 /* Put b into new_ci, removing a from stages */
3781 new_ci->merged.result.mode = ci->stages[2].mode;
3782 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3783 new_ci->stages[1].mode = 0;
3784 oidcpy(&new_ci->stages[1].oid, null_oid());
3785 new_ci->filemask = 5;
3786 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3787 new_ci->stages[0].mode = 0;
3788 oidcpy(&new_ci->stages[0].oid, null_oid());
3789 new_ci->filemask = 4;
3790 }
3791
3792 /* Leave only a in ci, fixing stages. */
3793 ci->merged.result.mode = ci->stages[1].mode;
3794 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3795 ci->stages[2].mode = 0;
3796 oidcpy(&ci->stages[2].oid, null_oid());
3797 ci->filemask = 3;
3798 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3799 ci->stages[0].mode = 0;
3800 oidcpy(&ci->stages[0].oid, null_oid());
3801 ci->filemask = 2;
3802 }
3803
3804 /* Insert entries into opt->priv_paths */
3805 assert(rename_a || rename_b);
3806 if (rename_a) {
3807 a_path = unique_path(&opt->priv->paths,
3808 path, opt->branch1);
3809 strmap_put(&opt->priv->paths, a_path, ci);
3810 }
3811
3812 if (rename_b)
3813 b_path = unique_path(&opt->priv->paths,
3814 path, opt->branch2);
3815 else
3816 b_path = path;
3817 strmap_put(&opt->priv->paths, b_path, new_ci);
3818
3819 if (rename_a && rename_b)
3820 strmap_remove(&opt->priv->paths, path, 0);
3821
3822 /*
3823 * Do special handling for b_path since process_entry()
3824 * won't be called on it specially.
3825 */
3826 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3827 record_entry_for_tree(dir_metadata, b_path,
3828 &new_ci->merged);
3829
3830 /*
3831 * Remaining code for processing this entry should
3832 * think in terms of processing a_path.
3833 */
3834 if (a_path)
3835 path = a_path;
3836 }
3837 } else if (ci->filemask >= 6) {
3838 /* Need a two-way or three-way content merge */
3839 struct version_info merged_file;
3840 unsigned clean_merge;
3841 struct version_info *o = &ci->stages[0];
3842 struct version_info *a = &ci->stages[1];
3843 struct version_info *b = &ci->stages[2];
3844
3845 clean_merge = handle_content_merge(opt, path, o, a, b,
3846 ci->pathnames,
3847 opt->priv->call_depth * 2,
3848 &merged_file);
3849 ci->merged.clean = clean_merge &&
3850 !ci->df_conflict && !ci->path_conflict;
3851 ci->merged.result.mode = merged_file.mode;
3852 ci->merged.is_null = (merged_file.mode == 0);
3853 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3854 if (clean_merge && ci->df_conflict) {
3855 assert(df_file_index == 1 || df_file_index == 2);
3856 ci->filemask = 1 << df_file_index;
3857 ci->stages[df_file_index].mode = merged_file.mode;
3858 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3859 }
3860 if (!clean_merge) {
3861 const char *reason = _("content");
3862 if (ci->filemask == 6)
3863 reason = _("add/add");
3864 if (S_ISGITLINK(merged_file.mode))
3865 reason = _("submodule");
3866 path_msg(opt, path, 0,
3867 _("CONFLICT (%s): Merge conflict in %s"),
3868 reason, path);
3869 }
3870 } else if (ci->filemask == 3 || ci->filemask == 5) {
3871 /* Modify/delete */
3872 const char *modify_branch, *delete_branch;
3873 int side = (ci->filemask == 5) ? 2 : 1;
3874 int index = opt->priv->call_depth ? 0 : side;
3875
3876 ci->merged.result.mode = ci->stages[index].mode;
3877 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3878 ci->merged.clean = 0;
3879
3880 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3881 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3882
3883 if (opt->renormalize &&
3884 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3885 path)) {
3886 if (!ci->path_conflict) {
3887 /*
3888 * Blob unchanged after renormalization, so
3889 * there's no modify/delete conflict after all;
3890 * we can just remove the file.
3891 */
3892 ci->merged.is_null = 1;
3893 ci->merged.clean = 1;
3894 /*
3895 * file goes away => even if there was a
3896 * directory/file conflict there isn't one now.
3897 */
3898 ci->df_conflict = 0;
3899 } else {
3900 /* rename/delete, so conflict remains */
3901 }
3902 } else if (ci->path_conflict &&
3903 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3904 /*
3905 * This came from a rename/delete; no action to take,
3906 * but avoid printing "modify/delete" conflict notice
3907 * since the contents were not modified.
3908 */
3909 } else {
3910 path_msg(opt, path, 0,
3911 _("CONFLICT (modify/delete): %s deleted in %s "
3912 "and modified in %s. Version %s of %s left "
3913 "in tree."),
3914 path, delete_branch, modify_branch,
3915 modify_branch, path);
3916 }
3917 } else if (ci->filemask == 2 || ci->filemask == 4) {
3918 /* Added on one side */
3919 int side = (ci->filemask == 4) ? 2 : 1;
3920 ci->merged.result.mode = ci->stages[side].mode;
3921 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3922 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3923 } else if (ci->filemask == 1) {
3924 /* Deleted on both sides */
3925 ci->merged.is_null = 1;
3926 ci->merged.result.mode = 0;
3927 oidcpy(&ci->merged.result.oid, null_oid());
3928 assert(!ci->df_conflict);
3929 ci->merged.clean = !ci->path_conflict;
3930 }
3931
3932 /*
3933 * If still conflicted, record it separately. This allows us to later
3934 * iterate over just conflicted entries when updating the index instead
3935 * of iterating over all entries.
3936 */
3937 if (!ci->merged.clean)
3938 strmap_put(&opt->priv->conflicted, path, ci);
3939
3940 /* Record metadata for ci->merged in dir_metadata */
3941 record_entry_for_tree(dir_metadata, path, &ci->merged);
3942 }
3943
3944 static void prefetch_for_content_merges(struct merge_options *opt,
3945 struct string_list *plist)
3946 {
3947 struct string_list_item *e;
3948 struct oid_array to_fetch = OID_ARRAY_INIT;
3949
3950 if (opt->repo != the_repository || !has_promisor_remote())
3951 return;
3952
3953 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3954 /* char *path = e->string; */
3955 struct conflict_info *ci = e->util;
3956 int i;
3957
3958 /* Ignore clean entries */
3959 if (ci->merged.clean)
3960 continue;
3961
3962 /* Ignore entries that don't need a content merge */
3963 if (ci->match_mask || ci->filemask < 6 ||
3964 !S_ISREG(ci->stages[1].mode) ||
3965 !S_ISREG(ci->stages[2].mode) ||
3966 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3967 continue;
3968
3969 /* Also don't need content merge if base matches either side */
3970 if (ci->filemask == 7 &&
3971 S_ISREG(ci->stages[0].mode) &&
3972 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3973 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3974 continue;
3975
3976 for (i = 0; i < 3; i++) {
3977 unsigned side_mask = (1 << i);
3978 struct version_info *vi = &ci->stages[i];
3979
3980 if ((ci->filemask & side_mask) &&
3981 S_ISREG(vi->mode) &&
3982 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3983 OBJECT_INFO_FOR_PREFETCH))
3984 oid_array_append(&to_fetch, &vi->oid);
3985 }
3986 }
3987
3988 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3989 oid_array_clear(&to_fetch);
3990 }
3991
3992 static void process_entries(struct merge_options *opt,
3993 struct object_id *result_oid)
3994 {
3995 struct hashmap_iter iter;
3996 struct strmap_entry *e;
3997 struct string_list plist = STRING_LIST_INIT_NODUP;
3998 struct string_list_item *entry;
3999 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
4000 STRING_LIST_INIT_NODUP,
4001 NULL, 0 };
4002
4003 trace2_region_enter("merge", "process_entries setup", opt->repo);
4004 if (strmap_empty(&opt->priv->paths)) {
4005 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
4006 return;
4007 }
4008
4009 /* Hack to pre-allocate plist to the desired size */
4010 trace2_region_enter("merge", "plist grow", opt->repo);
4011 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
4012 trace2_region_leave("merge", "plist grow", opt->repo);
4013
4014 /* Put every entry from paths into plist, then sort */
4015 trace2_region_enter("merge", "plist copy", opt->repo);
4016 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
4017 string_list_append(&plist, e->key)->util = e->value;
4018 }
4019 trace2_region_leave("merge", "plist copy", opt->repo);
4020
4021 trace2_region_enter("merge", "plist special sort", opt->repo);
4022 plist.cmp = sort_dirs_next_to_their_children;
4023 string_list_sort(&plist);
4024 trace2_region_leave("merge", "plist special sort", opt->repo);
4025
4026 trace2_region_leave("merge", "process_entries setup", opt->repo);
4027
4028 /*
4029 * Iterate over the items in reverse order, so we can handle paths
4030 * below a directory before needing to handle the directory itself.
4031 *
4032 * This allows us to write subtrees before we need to write trees,
4033 * and it also enables sane handling of directory/file conflicts
4034 * (because it allows us to know whether the directory is still in
4035 * the way when it is time to process the file at the same path).
4036 */
4037 trace2_region_enter("merge", "processing", opt->repo);
4038 prefetch_for_content_merges(opt, &plist);
4039 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
4040 char *path = entry->string;
4041 /*
4042 * NOTE: mi may actually be a pointer to a conflict_info, but
4043 * we have to check mi->clean first to see if it's safe to
4044 * reassign to such a pointer type.
4045 */
4046 struct merged_info *mi = entry->util;
4047
4048 write_completed_directory(opt, mi->directory_name,
4049 &dir_metadata);
4050 if (mi->clean)
4051 record_entry_for_tree(&dir_metadata, path, mi);
4052 else {
4053 struct conflict_info *ci = (struct conflict_info *)mi;
4054 process_entry(opt, path, ci, &dir_metadata);
4055 }
4056 }
4057 trace2_region_leave("merge", "processing", opt->repo);
4058
4059 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4060 if (dir_metadata.offsets.nr != 1 ||
4061 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4062 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
4063 dir_metadata.offsets.nr);
4064 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4065 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4066 fflush(stdout);
4067 BUG("dir_metadata accounting completely off; shouldn't happen");
4068 }
4069 write_tree(result_oid, &dir_metadata.versions, 0,
4070 opt->repo->hash_algo->rawsz);
4071 string_list_clear(&plist, 0);
4072 string_list_clear(&dir_metadata.versions, 0);
4073 string_list_clear(&dir_metadata.offsets, 0);
4074 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4075 }
4076
4077 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4078
4079 static int checkout(struct merge_options *opt,
4080 struct tree *prev,
4081 struct tree *next)
4082 {
4083 /* Switch the index/working copy from old to new */
4084 int ret;
4085 struct tree_desc trees[2];
4086 struct unpack_trees_options unpack_opts;
4087
4088 memset(&unpack_opts, 0, sizeof(unpack_opts));
4089 unpack_opts.head_idx = -1;
4090 unpack_opts.src_index = opt->repo->index;
4091 unpack_opts.dst_index = opt->repo->index;
4092
4093 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4094
4095 /*
4096 * NOTE: if this were just "git checkout" code, we would probably
4097 * read or refresh the cache and check for a conflicted index, but
4098 * builtin/merge.c or sequencer.c really needs to read the index
4099 * and check for conflicted entries before starting merging for a
4100 * good user experience (no sense waiting for merges/rebases before
4101 * erroring out), so there's no reason to duplicate that work here.
4102 */
4103
4104 /* 2-way merge to the new branch */
4105 unpack_opts.update = 1;
4106 unpack_opts.merge = 1;
4107 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4108 unpack_opts.verbose_update = (opt->verbosity > 2);
4109 unpack_opts.fn = twoway_merge;
4110 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4111 parse_tree(prev);
4112 init_tree_desc(&trees[0], prev->buffer, prev->size);
4113 parse_tree(next);
4114 init_tree_desc(&trees[1], next->buffer, next->size);
4115
4116 ret = unpack_trees(2, trees, &unpack_opts);
4117 clear_unpack_trees_porcelain(&unpack_opts);
4118 return ret;
4119 }
4120
4121 static int record_conflicted_index_entries(struct merge_options *opt)
4122 {
4123 struct hashmap_iter iter;
4124 struct strmap_entry *e;
4125 struct index_state *index = opt->repo->index;
4126 struct checkout state = CHECKOUT_INIT;
4127 int errs = 0;
4128 int original_cache_nr;
4129
4130 if (strmap_empty(&opt->priv->conflicted))
4131 return 0;
4132
4133 /*
4134 * We are in a conflicted state. These conflicts might be inside
4135 * sparse-directory entries, so check if any entries are outside
4136 * of the sparse-checkout cone preemptively.
4137 *
4138 * We set original_cache_nr below, but that might change if
4139 * index_name_pos() calls ask for paths within sparse directories.
4140 */
4141 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4142 if (!path_in_sparse_checkout(e->key, index)) {
4143 ensure_full_index(index);
4144 break;
4145 }
4146 }
4147
4148 /* If any entries have skip_worktree set, we'll have to check 'em out */
4149 state.force = 1;
4150 state.quiet = 1;
4151 state.refresh_cache = 1;
4152 state.istate = index;
4153 original_cache_nr = index->cache_nr;
4154
4155 /* Append every entry from conflicted into index, then sort */
4156 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4157 const char *path = e->key;
4158 struct conflict_info *ci = e->value;
4159 int pos;
4160 struct cache_entry *ce;
4161 int i;
4162
4163 VERIFY_CI(ci);
4164
4165 /*
4166 * The index will already have a stage=0 entry for this path,
4167 * because we created an as-merged-as-possible version of the
4168 * file and checkout() moved the working copy and index over
4169 * to that version.
4170 *
4171 * However, previous iterations through this loop will have
4172 * added unstaged entries to the end of the cache which
4173 * ignore the standard alphabetical ordering of cache
4174 * entries and break invariants needed for index_name_pos()
4175 * to work. However, we know the entry we want is before
4176 * those appended cache entries, so do a temporary swap on
4177 * cache_nr to only look through entries of interest.
4178 */
4179 SWAP(index->cache_nr, original_cache_nr);
4180 pos = index_name_pos(index, path, strlen(path));
4181 SWAP(index->cache_nr, original_cache_nr);
4182 if (pos < 0) {
4183 if (ci->filemask != 1)
4184 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4185 cache_tree_invalidate_path(index, path);
4186 } else {
4187 ce = index->cache[pos];
4188
4189 /*
4190 * Clean paths with CE_SKIP_WORKTREE set will not be
4191 * written to the working tree by the unpack_trees()
4192 * call in checkout(). Our conflicted entries would
4193 * have appeared clean to that code since we ignored
4194 * the higher order stages. Thus, we need override
4195 * the CE_SKIP_WORKTREE bit and manually write those
4196 * files to the working disk here.
4197 */
4198 if (ce_skip_worktree(ce)) {
4199 struct stat st;
4200
4201 if (!lstat(path, &st)) {
4202 char *new_name = unique_path(&opt->priv->paths,
4203 path,
4204 "cruft");
4205
4206 path_msg(opt, path, 1,
4207 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4208 path, new_name);
4209 errs |= rename(path, new_name);
4210 free(new_name);
4211 }
4212 errs |= checkout_entry(ce, &state, NULL, NULL);
4213 }
4214
4215 /*
4216 * Mark this cache entry for removal and instead add
4217 * new stage>0 entries corresponding to the
4218 * conflicts. If there are many conflicted entries, we
4219 * want to avoid memmove'ing O(NM) entries by
4220 * inserting the new entries one at a time. So,
4221 * instead, we just add the new cache entries to the
4222 * end (ignoring normal index requirements on sort
4223 * order) and sort the index once we're all done.
4224 */
4225 ce->ce_flags |= CE_REMOVE;
4226 }
4227
4228 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4229 struct version_info *vi;
4230 if (!(ci->filemask & (1ul << i)))
4231 continue;
4232 vi = &ci->stages[i];
4233 ce = make_cache_entry(index, vi->mode, &vi->oid,
4234 path, i+1, 0);
4235 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4236 }
4237 }
4238
4239 /*
4240 * Remove the unused cache entries (and invalidate the relevant
4241 * cache-trees), then sort the index entries to get the conflicted
4242 * entries we added to the end into their right locations.
4243 */
4244 remove_marked_cache_entries(index, 1);
4245 /*
4246 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4247 * on filename and secondarily on stage, and (name, stage #) are a
4248 * unique tuple.
4249 */
4250 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4251
4252 return errs;
4253 }
4254
4255 void merge_switch_to_result(struct merge_options *opt,
4256 struct tree *head,
4257 struct merge_result *result,
4258 int update_worktree_and_index,
4259 int display_update_msgs)
4260 {
4261 assert(opt->priv == NULL);
4262 if (result->clean >= 0 && update_worktree_and_index) {
4263 const char *filename;
4264 FILE *fp;
4265
4266 trace2_region_enter("merge", "checkout", opt->repo);
4267 if (checkout(opt, head, result->tree)) {
4268 /* failure to function */
4269 result->clean = -1;
4270 return;
4271 }
4272 trace2_region_leave("merge", "checkout", opt->repo);
4273
4274 trace2_region_enter("merge", "record_conflicted", opt->repo);
4275 opt->priv = result->priv;
4276 if (record_conflicted_index_entries(opt)) {
4277 /* failure to function */
4278 opt->priv = NULL;
4279 result->clean = -1;
4280 return;
4281 }
4282 opt->priv = NULL;
4283 trace2_region_leave("merge", "record_conflicted", opt->repo);
4284
4285 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4286 filename = git_path_auto_merge(opt->repo);
4287 fp = xfopen(filename, "w");
4288 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4289 fclose(fp);
4290 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4291 }
4292
4293 if (display_update_msgs) {
4294 struct merge_options_internal *opti = result->priv;
4295 struct hashmap_iter iter;
4296 struct strmap_entry *e;
4297 struct string_list olist = STRING_LIST_INIT_NODUP;
4298 int i;
4299
4300 if (opt->record_conflict_msgs_as_headers)
4301 BUG("Either display conflict messages or record them as headers, not both");
4302
4303 trace2_region_enter("merge", "display messages", opt->repo);
4304
4305 /* Hack to pre-allocate olist to the desired size */
4306 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4307 olist.alloc);
4308
4309 /* Put every entry from output into olist, then sort */
4310 strmap_for_each_entry(&opti->output, &iter, e) {
4311 string_list_append(&olist, e->key)->util = e->value;
4312 }
4313 string_list_sort(&olist);
4314
4315 /* Iterate over the items, printing them */
4316 for (i = 0; i < olist.nr; ++i) {
4317 struct strbuf *sb = olist.items[i].util;
4318
4319 printf("%s", sb->buf);
4320 }
4321 string_list_clear(&olist, 0);
4322
4323 /* Also include needed rename limit adjustment now */
4324 diff_warn_rename_limit("merge.renamelimit",
4325 opti->renames.needed_limit, 0);
4326
4327 trace2_region_leave("merge", "display messages", opt->repo);
4328 }
4329
4330 merge_finalize(opt, result);
4331 }
4332
4333 void merge_finalize(struct merge_options *opt,
4334 struct merge_result *result)
4335 {
4336 struct merge_options_internal *opti = result->priv;
4337
4338 if (opt->renormalize)
4339 git_attr_set_direction(GIT_ATTR_CHECKIN);
4340 assert(opt->priv == NULL);
4341
4342 clear_or_reinit_internal_opts(opti, 0);
4343 FREE_AND_NULL(opti);
4344 }
4345
4346 /*** Function Grouping: helper functions for merge_incore_*() ***/
4347
4348 static struct tree *shift_tree_object(struct repository *repo,
4349 struct tree *one, struct tree *two,
4350 const char *subtree_shift)
4351 {
4352 struct object_id shifted;
4353
4354 if (!*subtree_shift) {
4355 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4356 } else {
4357 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4358 subtree_shift);
4359 }
4360 if (oideq(&two->object.oid, &shifted))
4361 return two;
4362 return lookup_tree(repo, &shifted);
4363 }
4364
4365 static inline void set_commit_tree(struct commit *c, struct tree *t)
4366 {
4367 c->maybe_tree = t;
4368 }
4369
4370 static struct commit *make_virtual_commit(struct repository *repo,
4371 struct tree *tree,
4372 const char *comment)
4373 {
4374 struct commit *commit = alloc_commit_node(repo);
4375
4376 set_merge_remote_desc(commit, comment, (struct object *)commit);
4377 set_commit_tree(commit, tree);
4378 commit->object.parsed = 1;
4379 return commit;
4380 }
4381
4382 static void merge_start(struct merge_options *opt, struct merge_result *result)
4383 {
4384 struct rename_info *renames;
4385 int i;
4386 struct mem_pool *pool = NULL;
4387
4388 /* Sanity checks on opt */
4389 trace2_region_enter("merge", "sanity checks", opt->repo);
4390 assert(opt->repo);
4391
4392 assert(opt->branch1 && opt->branch2);
4393
4394 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4395 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4396 assert(opt->rename_limit >= -1);
4397 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4398 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4399
4400 assert(opt->xdl_opts >= 0);
4401 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4402 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4403
4404 if (opt->msg_header_prefix)
4405 assert(opt->record_conflict_msgs_as_headers);
4406
4407 /*
4408 * detect_renames, verbosity, buffer_output, and obuf are ignored
4409 * fields that were used by "recursive" rather than "ort" -- but
4410 * sanity check them anyway.
4411 */
4412 assert(opt->detect_renames >= -1 &&
4413 opt->detect_renames <= DIFF_DETECT_COPY);
4414 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4415 assert(opt->buffer_output <= 2);
4416 assert(opt->obuf.len == 0);
4417
4418 assert(opt->priv == NULL);
4419 if (result->_properly_initialized != 0 &&
4420 result->_properly_initialized != RESULT_INITIALIZED)
4421 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4422 assert(!!result->priv == !!result->_properly_initialized);
4423 if (result->priv) {
4424 opt->priv = result->priv;
4425 result->priv = NULL;
4426 /*
4427 * opt->priv non-NULL means we had results from a previous
4428 * run; do a few sanity checks that user didn't mess with
4429 * it in an obvious fashion.
4430 */
4431 assert(opt->priv->call_depth == 0);
4432 assert(!opt->priv->toplevel_dir ||
4433 0 == strlen(opt->priv->toplevel_dir));
4434 }
4435 trace2_region_leave("merge", "sanity checks", opt->repo);
4436
4437 /* Default to histogram diff. Actually, just hardcode it...for now. */
4438 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4439
4440 /* Handle attr direction stuff for renormalization */
4441 if (opt->renormalize)
4442 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4443
4444 /* Initialization of opt->priv, our internal merge data */
4445 trace2_region_enter("merge", "allocate/init", opt->repo);
4446 if (opt->priv) {
4447 clear_or_reinit_internal_opts(opt->priv, 1);
4448 trace2_region_leave("merge", "allocate/init", opt->repo);
4449 return;
4450 }
4451 opt->priv = xcalloc(1, sizeof(*opt->priv));
4452
4453 /* Initialization of various renames fields */
4454 renames = &opt->priv->renames;
4455 mem_pool_init(&opt->priv->pool, 0);
4456 pool = &opt->priv->pool;
4457 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4458 strintmap_init_with_options(&renames->dirs_removed[i],
4459 NOT_RELEVANT, pool, 0);
4460 strmap_init_with_options(&renames->dir_rename_count[i],
4461 NULL, 1);
4462 strmap_init_with_options(&renames->dir_renames[i],
4463 NULL, 0);
4464 /*
4465 * relevant_sources uses -1 for the default, because we need
4466 * to be able to distinguish not-in-strintmap from valid
4467 * relevant_source values from enum file_rename_relevance.
4468 * In particular, possibly_cache_new_pair() expects a negative
4469 * value for not-found entries.
4470 */
4471 strintmap_init_with_options(&renames->relevant_sources[i],
4472 -1 /* explicitly invalid */,
4473 pool, 0);
4474 strmap_init_with_options(&renames->cached_pairs[i],
4475 NULL, 1);
4476 strset_init_with_options(&renames->cached_irrelevant[i],
4477 NULL, 1);
4478 strset_init_with_options(&renames->cached_target_names[i],
4479 NULL, 0);
4480 }
4481 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4482 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4483 0, pool, 0);
4484 strset_init_with_options(&renames->deferred[i].target_dirs,
4485 pool, 1);
4486 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4487 }
4488
4489 /*
4490 * Although we initialize opt->priv->paths with strdup_strings=0,
4491 * that's just to avoid making yet another copy of an allocated
4492 * string. Putting the entry into paths means we are taking
4493 * ownership, so we will later free it.
4494 *
4495 * In contrast, conflicted just has a subset of keys from paths, so
4496 * we don't want to free those (it'd be a duplicate free).
4497 */
4498 strmap_init_with_options(&opt->priv->paths, pool, 0);
4499 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4500
4501 /*
4502 * keys & strbufs in output will sometimes need to outlive "paths",
4503 * so it will have a copy of relevant keys. It's probably a small
4504 * subset of the overall paths that have special output.
4505 */
4506 strmap_init(&opt->priv->output);
4507
4508 trace2_region_leave("merge", "allocate/init", opt->repo);
4509 }
4510
4511 static void merge_check_renames_reusable(struct merge_options *opt,
4512 struct merge_result *result,
4513 struct tree *merge_base,
4514 struct tree *side1,
4515 struct tree *side2)
4516 {
4517 struct rename_info *renames;
4518 struct tree **merge_trees;
4519 struct merge_options_internal *opti = result->priv;
4520
4521 if (!opti)
4522 return;
4523
4524 renames = &opti->renames;
4525 merge_trees = renames->merge_trees;
4526
4527 /*
4528 * Handle case where previous merge operation did not want cache to
4529 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4530 */
4531 if (!merge_trees[0]) {
4532 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4533 renames->cached_pairs_valid_side = 0; /* neither side valid */
4534 return;
4535 }
4536
4537 /*
4538 * Handle other cases; note that merge_trees[0..2] will only
4539 * be NULL if opti is, or if all three were manually set to
4540 * NULL by e.g. rename/rename(1to1) handling.
4541 */
4542 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4543
4544 /* Check if we meet a condition for re-using cached_pairs */
4545 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4546 oideq(&side1->object.oid, &result->tree->object.oid))
4547 renames->cached_pairs_valid_side = MERGE_SIDE1;
4548 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4549 oideq(&side2->object.oid, &result->tree->object.oid))
4550 renames->cached_pairs_valid_side = MERGE_SIDE2;
4551 else
4552 renames->cached_pairs_valid_side = 0; /* neither side valid */
4553 }
4554
4555 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4556
4557 /*
4558 * Originally from merge_trees_internal(); heavily adapted, though.
4559 */
4560 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4561 struct tree *merge_base,
4562 struct tree *side1,
4563 struct tree *side2,
4564 struct merge_result *result)
4565 {
4566 struct object_id working_tree_oid;
4567
4568 if (opt->subtree_shift) {
4569 side2 = shift_tree_object(opt->repo, side1, side2,
4570 opt->subtree_shift);
4571 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4572 opt->subtree_shift);
4573 }
4574
4575 redo:
4576 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4577 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4578 /*
4579 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4580 * base, and 2-3) the trees for the two trees we're merging.
4581 */
4582 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4583 oid_to_hex(&merge_base->object.oid),
4584 oid_to_hex(&side1->object.oid),
4585 oid_to_hex(&side2->object.oid));
4586 result->clean = -1;
4587 return;
4588 }
4589 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4590
4591 trace2_region_enter("merge", "renames", opt->repo);
4592 result->clean = detect_and_process_renames(opt, merge_base,
4593 side1, side2);
4594 trace2_region_leave("merge", "renames", opt->repo);
4595 if (opt->priv->renames.redo_after_renames == 2) {
4596 trace2_region_enter("merge", "reset_maps", opt->repo);
4597 clear_or_reinit_internal_opts(opt->priv, 1);
4598 trace2_region_leave("merge", "reset_maps", opt->repo);
4599 goto redo;
4600 }
4601
4602 trace2_region_enter("merge", "process_entries", opt->repo);
4603 process_entries(opt, &working_tree_oid);
4604 trace2_region_leave("merge", "process_entries", opt->repo);
4605
4606 /* Set return values */
4607 result->path_messages = &opt->priv->output;
4608 result->tree = parse_tree_indirect(&working_tree_oid);
4609 /* existence of conflicted entries implies unclean */
4610 result->clean &= strmap_empty(&opt->priv->conflicted);
4611 if (!opt->priv->call_depth) {
4612 result->priv = opt->priv;
4613 result->_properly_initialized = RESULT_INITIALIZED;
4614 opt->priv = NULL;
4615 }
4616 }
4617
4618 /*
4619 * Originally from merge_recursive_internal(); somewhat adapted, though.
4620 */
4621 static void merge_ort_internal(struct merge_options *opt,
4622 struct commit_list *merge_bases,
4623 struct commit *h1,
4624 struct commit *h2,
4625 struct merge_result *result)
4626 {
4627 struct commit *next;
4628 struct commit *merged_merge_bases;
4629 const char *ancestor_name;
4630 struct strbuf merge_base_abbrev = STRBUF_INIT;
4631
4632 if (!merge_bases) {
4633 merge_bases = get_merge_bases(h1, h2);
4634 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4635 merge_bases = reverse_commit_list(merge_bases);
4636 }
4637
4638 merged_merge_bases = pop_commit(&merge_bases);
4639 if (merged_merge_bases == NULL) {
4640 /* if there is no common ancestor, use an empty tree */
4641 struct tree *tree;
4642
4643 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4644 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4645 "ancestor");
4646 ancestor_name = "empty tree";
4647 } else if (merge_bases) {
4648 ancestor_name = "merged common ancestors";
4649 } else {
4650 strbuf_add_unique_abbrev(&merge_base_abbrev,
4651 &merged_merge_bases->object.oid,
4652 DEFAULT_ABBREV);
4653 ancestor_name = merge_base_abbrev.buf;
4654 }
4655
4656 for (next = pop_commit(&merge_bases); next;
4657 next = pop_commit(&merge_bases)) {
4658 const char *saved_b1, *saved_b2;
4659 struct commit *prev = merged_merge_bases;
4660
4661 opt->priv->call_depth++;
4662 /*
4663 * When the merge fails, the result contains files
4664 * with conflict markers. The cleanness flag is
4665 * ignored (unless indicating an error), it was never
4666 * actually used, as result of merge_trees has always
4667 * overwritten it: the committed "conflicts" were
4668 * already resolved.
4669 */
4670 saved_b1 = opt->branch1;
4671 saved_b2 = opt->branch2;
4672 opt->branch1 = "Temporary merge branch 1";
4673 opt->branch2 = "Temporary merge branch 2";
4674 merge_ort_internal(opt, NULL, prev, next, result);
4675 if (result->clean < 0)
4676 return;
4677 opt->branch1 = saved_b1;
4678 opt->branch2 = saved_b2;
4679 opt->priv->call_depth--;
4680
4681 merged_merge_bases = make_virtual_commit(opt->repo,
4682 result->tree,
4683 "merged tree");
4684 commit_list_insert(prev, &merged_merge_bases->parents);
4685 commit_list_insert(next, &merged_merge_bases->parents->next);
4686
4687 clear_or_reinit_internal_opts(opt->priv, 1);
4688 }
4689
4690 opt->ancestor = ancestor_name;
4691 merge_ort_nonrecursive_internal(opt,
4692 repo_get_commit_tree(opt->repo,
4693 merged_merge_bases),
4694 repo_get_commit_tree(opt->repo, h1),
4695 repo_get_commit_tree(opt->repo, h2),
4696 result);
4697 strbuf_release(&merge_base_abbrev);
4698 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4699 }
4700
4701 void merge_incore_nonrecursive(struct merge_options *opt,
4702 struct tree *merge_base,
4703 struct tree *side1,
4704 struct tree *side2,
4705 struct merge_result *result)
4706 {
4707 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4708
4709 trace2_region_enter("merge", "merge_start", opt->repo);
4710 assert(opt->ancestor != NULL);
4711 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4712 merge_start(opt, result);
4713 /*
4714 * Record the trees used in this merge, so if there's a next merge in
4715 * a cherry-pick or rebase sequence it might be able to take advantage
4716 * of the cached_pairs in that next merge.
4717 */
4718 opt->priv->renames.merge_trees[0] = merge_base;
4719 opt->priv->renames.merge_trees[1] = side1;
4720 opt->priv->renames.merge_trees[2] = side2;
4721 trace2_region_leave("merge", "merge_start", opt->repo);
4722
4723 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4724 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4725 }
4726
4727 void merge_incore_recursive(struct merge_options *opt,
4728 struct commit_list *merge_bases,
4729 struct commit *side1,
4730 struct commit *side2,
4731 struct merge_result *result)
4732 {
4733 trace2_region_enter("merge", "incore_recursive", opt->repo);
4734
4735 /* We set the ancestor label based on the merge_bases */
4736 assert(opt->ancestor == NULL);
4737
4738 trace2_region_enter("merge", "merge_start", opt->repo);
4739 merge_start(opt, result);
4740 trace2_region_leave("merge", "merge_start", opt->repo);
4741
4742 merge_ort_internal(opt, merge_bases, side1, side2, result);
4743 trace2_region_leave("merge", "incore_recursive", opt->repo);
4744 }