]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/compaction.c
mm, migration: add destination page freeing callback
[people/arne_f/kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
95
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
99
100 cond_resched();
101
102 if (!pfn_valid(pfn))
103 continue;
104
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
108
109 clear_pageblock_skip(page);
110 }
111 }
112
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 int zoneid;
116
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
121
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
125 }
126 }
127
128 /*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
135 {
136 struct zone *zone = cc->zone;
137
138 if (cc->ignore_skip_hint)
139 return;
140
141 if (!page)
142 return;
143
144 if (!nr_isolated) {
145 unsigned long pfn = page_to_pfn(page);
146 set_pageblock_skip(page);
147
148 /* Update where compaction should restart */
149 if (migrate_scanner) {
150 if (!cc->finished_update_migrate &&
151 pfn > zone->compact_cached_migrate_pfn)
152 zone->compact_cached_migrate_pfn = pfn;
153 } else {
154 if (!cc->finished_update_free &&
155 pfn < zone->compact_cached_free_pfn)
156 zone->compact_cached_free_pfn = pfn;
157 }
158 }
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 struct page *page)
163 {
164 return true;
165 }
166
167 static void update_pageblock_skip(struct compact_control *cc,
168 struct page *page, unsigned long nr_isolated,
169 bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 return need_resched() || spin_is_contended(lock);
177 }
178
179 /*
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
184 *
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
187 */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 bool locked, struct compact_control *cc)
190 {
191 if (should_release_lock(lock)) {
192 if (locked) {
193 spin_unlock_irqrestore(lock, *flags);
194 locked = false;
195 }
196
197 /* async aborts if taking too long or contended */
198 if (!cc->sync) {
199 cc->contended = true;
200 return false;
201 }
202
203 cond_resched();
204 }
205
206 if (!locked)
207 spin_lock_irqsave(lock, *flags);
208 return true;
209 }
210
211 /* Returns true if the page is within a block suitable for migration to */
212 static bool suitable_migration_target(struct page *page)
213 {
214 /* If the page is a large free page, then disallow migration */
215 if (PageBuddy(page) && page_order(page) >= pageblock_order)
216 return false;
217
218 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
219 if (migrate_async_suitable(get_pageblock_migratetype(page)))
220 return true;
221
222 /* Otherwise skip the block */
223 return false;
224 }
225
226 /*
227 * Isolate free pages onto a private freelist. If @strict is true, will abort
228 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
229 * (even though it may still end up isolating some pages).
230 */
231 static unsigned long isolate_freepages_block(struct compact_control *cc,
232 unsigned long blockpfn,
233 unsigned long end_pfn,
234 struct list_head *freelist,
235 bool strict)
236 {
237 int nr_scanned = 0, total_isolated = 0;
238 struct page *cursor, *valid_page = NULL;
239 unsigned long flags;
240 bool locked = false;
241 bool checked_pageblock = false;
242
243 cursor = pfn_to_page(blockpfn);
244
245 /* Isolate free pages. */
246 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
247 int isolated, i;
248 struct page *page = cursor;
249
250 nr_scanned++;
251 if (!pfn_valid_within(blockpfn))
252 goto isolate_fail;
253
254 if (!valid_page)
255 valid_page = page;
256 if (!PageBuddy(page))
257 goto isolate_fail;
258
259 /*
260 * The zone lock must be held to isolate freepages.
261 * Unfortunately this is a very coarse lock and can be
262 * heavily contended if there are parallel allocations
263 * or parallel compactions. For async compaction do not
264 * spin on the lock and we acquire the lock as late as
265 * possible.
266 */
267 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
268 locked, cc);
269 if (!locked)
270 break;
271
272 /* Recheck this is a suitable migration target under lock */
273 if (!strict && !checked_pageblock) {
274 /*
275 * We need to check suitability of pageblock only once
276 * and this isolate_freepages_block() is called with
277 * pageblock range, so just check once is sufficient.
278 */
279 checked_pageblock = true;
280 if (!suitable_migration_target(page))
281 break;
282 }
283
284 /* Recheck this is a buddy page under lock */
285 if (!PageBuddy(page))
286 goto isolate_fail;
287
288 /* Found a free page, break it into order-0 pages */
289 isolated = split_free_page(page);
290 total_isolated += isolated;
291 for (i = 0; i < isolated; i++) {
292 list_add(&page->lru, freelist);
293 page++;
294 }
295
296 /* If a page was split, advance to the end of it */
297 if (isolated) {
298 blockpfn += isolated - 1;
299 cursor += isolated - 1;
300 continue;
301 }
302
303 isolate_fail:
304 if (strict)
305 break;
306 else
307 continue;
308
309 }
310
311 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
312
313 /*
314 * If strict isolation is requested by CMA then check that all the
315 * pages requested were isolated. If there were any failures, 0 is
316 * returned and CMA will fail.
317 */
318 if (strict && blockpfn < end_pfn)
319 total_isolated = 0;
320
321 if (locked)
322 spin_unlock_irqrestore(&cc->zone->lock, flags);
323
324 /* Update the pageblock-skip if the whole pageblock was scanned */
325 if (blockpfn == end_pfn)
326 update_pageblock_skip(cc, valid_page, total_isolated, false);
327
328 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
329 if (total_isolated)
330 count_compact_events(COMPACTISOLATED, total_isolated);
331 return total_isolated;
332 }
333
334 /**
335 * isolate_freepages_range() - isolate free pages.
336 * @start_pfn: The first PFN to start isolating.
337 * @end_pfn: The one-past-last PFN.
338 *
339 * Non-free pages, invalid PFNs, or zone boundaries within the
340 * [start_pfn, end_pfn) range are considered errors, cause function to
341 * undo its actions and return zero.
342 *
343 * Otherwise, function returns one-past-the-last PFN of isolated page
344 * (which may be greater then end_pfn if end fell in a middle of
345 * a free page).
346 */
347 unsigned long
348 isolate_freepages_range(struct compact_control *cc,
349 unsigned long start_pfn, unsigned long end_pfn)
350 {
351 unsigned long isolated, pfn, block_end_pfn;
352 LIST_HEAD(freelist);
353
354 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
355 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
356 break;
357
358 /*
359 * On subsequent iterations ALIGN() is actually not needed,
360 * but we keep it that we not to complicate the code.
361 */
362 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
363 block_end_pfn = min(block_end_pfn, end_pfn);
364
365 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
366 &freelist, true);
367
368 /*
369 * In strict mode, isolate_freepages_block() returns 0 if
370 * there are any holes in the block (ie. invalid PFNs or
371 * non-free pages).
372 */
373 if (!isolated)
374 break;
375
376 /*
377 * If we managed to isolate pages, it is always (1 << n) *
378 * pageblock_nr_pages for some non-negative n. (Max order
379 * page may span two pageblocks).
380 */
381 }
382
383 /* split_free_page does not map the pages */
384 map_pages(&freelist);
385
386 if (pfn < end_pfn) {
387 /* Loop terminated early, cleanup. */
388 release_freepages(&freelist);
389 return 0;
390 }
391
392 /* We don't use freelists for anything. */
393 return pfn;
394 }
395
396 /* Update the number of anon and file isolated pages in the zone */
397 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
398 {
399 struct page *page;
400 unsigned int count[2] = { 0, };
401
402 list_for_each_entry(page, &cc->migratepages, lru)
403 count[!!page_is_file_cache(page)]++;
404
405 /* If locked we can use the interrupt unsafe versions */
406 if (locked) {
407 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
408 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
409 } else {
410 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
411 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
412 }
413 }
414
415 /* Similar to reclaim, but different enough that they don't share logic */
416 static bool too_many_isolated(struct zone *zone)
417 {
418 unsigned long active, inactive, isolated;
419
420 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
421 zone_page_state(zone, NR_INACTIVE_ANON);
422 active = zone_page_state(zone, NR_ACTIVE_FILE) +
423 zone_page_state(zone, NR_ACTIVE_ANON);
424 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
425 zone_page_state(zone, NR_ISOLATED_ANON);
426
427 return isolated > (inactive + active) / 2;
428 }
429
430 /**
431 * isolate_migratepages_range() - isolate all migrate-able pages in range.
432 * @zone: Zone pages are in.
433 * @cc: Compaction control structure.
434 * @low_pfn: The first PFN of the range.
435 * @end_pfn: The one-past-the-last PFN of the range.
436 * @unevictable: true if it allows to isolate unevictable pages
437 *
438 * Isolate all pages that can be migrated from the range specified by
439 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
440 * pending), otherwise PFN of the first page that was not scanned
441 * (which may be both less, equal to or more then end_pfn).
442 *
443 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
444 * zero.
445 *
446 * Apart from cc->migratepages and cc->nr_migratetypes this function
447 * does not modify any cc's fields, in particular it does not modify
448 * (or read for that matter) cc->migrate_pfn.
449 */
450 unsigned long
451 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
452 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
453 {
454 unsigned long last_pageblock_nr = 0, pageblock_nr;
455 unsigned long nr_scanned = 0, nr_isolated = 0;
456 struct list_head *migratelist = &cc->migratepages;
457 struct lruvec *lruvec;
458 unsigned long flags;
459 bool locked = false;
460 struct page *page = NULL, *valid_page = NULL;
461 bool skipped_async_unsuitable = false;
462 const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
463 (unevictable ? ISOLATE_UNEVICTABLE : 0);
464
465 /*
466 * Ensure that there are not too many pages isolated from the LRU
467 * list by either parallel reclaimers or compaction. If there are,
468 * delay for some time until fewer pages are isolated
469 */
470 while (unlikely(too_many_isolated(zone))) {
471 /* async migration should just abort */
472 if (!cc->sync)
473 return 0;
474
475 congestion_wait(BLK_RW_ASYNC, HZ/10);
476
477 if (fatal_signal_pending(current))
478 return 0;
479 }
480
481 /* Time to isolate some pages for migration */
482 cond_resched();
483 for (; low_pfn < end_pfn; low_pfn++) {
484 /* give a chance to irqs before checking need_resched() */
485 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
486 if (should_release_lock(&zone->lru_lock)) {
487 spin_unlock_irqrestore(&zone->lru_lock, flags);
488 locked = false;
489 }
490 }
491
492 /*
493 * migrate_pfn does not necessarily start aligned to a
494 * pageblock. Ensure that pfn_valid is called when moving
495 * into a new MAX_ORDER_NR_PAGES range in case of large
496 * memory holes within the zone
497 */
498 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
499 if (!pfn_valid(low_pfn)) {
500 low_pfn += MAX_ORDER_NR_PAGES - 1;
501 continue;
502 }
503 }
504
505 if (!pfn_valid_within(low_pfn))
506 continue;
507 nr_scanned++;
508
509 /*
510 * Get the page and ensure the page is within the same zone.
511 * See the comment in isolate_freepages about overlapping
512 * nodes. It is deliberate that the new zone lock is not taken
513 * as memory compaction should not move pages between nodes.
514 */
515 page = pfn_to_page(low_pfn);
516 if (page_zone(page) != zone)
517 continue;
518
519 if (!valid_page)
520 valid_page = page;
521
522 /* If isolation recently failed, do not retry */
523 pageblock_nr = low_pfn >> pageblock_order;
524 if (last_pageblock_nr != pageblock_nr) {
525 int mt;
526
527 last_pageblock_nr = pageblock_nr;
528 if (!isolation_suitable(cc, page))
529 goto next_pageblock;
530
531 /*
532 * For async migration, also only scan in MOVABLE
533 * blocks. Async migration is optimistic to see if
534 * the minimum amount of work satisfies the allocation
535 */
536 mt = get_pageblock_migratetype(page);
537 if (!cc->sync && !migrate_async_suitable(mt)) {
538 cc->finished_update_migrate = true;
539 skipped_async_unsuitable = true;
540 goto next_pageblock;
541 }
542 }
543
544 /*
545 * Skip if free. page_order cannot be used without zone->lock
546 * as nothing prevents parallel allocations or buddy merging.
547 */
548 if (PageBuddy(page))
549 continue;
550
551 /*
552 * Check may be lockless but that's ok as we recheck later.
553 * It's possible to migrate LRU pages and balloon pages
554 * Skip any other type of page
555 */
556 if (!PageLRU(page)) {
557 if (unlikely(balloon_page_movable(page))) {
558 if (locked && balloon_page_isolate(page)) {
559 /* Successfully isolated */
560 goto isolate_success;
561 }
562 }
563 continue;
564 }
565
566 /*
567 * PageLRU is set. lru_lock normally excludes isolation
568 * splitting and collapsing (collapsing has already happened
569 * if PageLRU is set) but the lock is not necessarily taken
570 * here and it is wasteful to take it just to check transhuge.
571 * Check TransHuge without lock and skip the whole pageblock if
572 * it's either a transhuge or hugetlbfs page, as calling
573 * compound_order() without preventing THP from splitting the
574 * page underneath us may return surprising results.
575 */
576 if (PageTransHuge(page)) {
577 if (!locked)
578 goto next_pageblock;
579 low_pfn += (1 << compound_order(page)) - 1;
580 continue;
581 }
582
583 /*
584 * Migration will fail if an anonymous page is pinned in memory,
585 * so avoid taking lru_lock and isolating it unnecessarily in an
586 * admittedly racy check.
587 */
588 if (!page_mapping(page) &&
589 page_count(page) > page_mapcount(page))
590 continue;
591
592 /* Check if it is ok to still hold the lock */
593 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
594 locked, cc);
595 if (!locked || fatal_signal_pending(current))
596 break;
597
598 /* Recheck PageLRU and PageTransHuge under lock */
599 if (!PageLRU(page))
600 continue;
601 if (PageTransHuge(page)) {
602 low_pfn += (1 << compound_order(page)) - 1;
603 continue;
604 }
605
606 lruvec = mem_cgroup_page_lruvec(page, zone);
607
608 /* Try isolate the page */
609 if (__isolate_lru_page(page, mode) != 0)
610 continue;
611
612 VM_BUG_ON_PAGE(PageTransCompound(page), page);
613
614 /* Successfully isolated */
615 del_page_from_lru_list(page, lruvec, page_lru(page));
616
617 isolate_success:
618 cc->finished_update_migrate = true;
619 list_add(&page->lru, migratelist);
620 cc->nr_migratepages++;
621 nr_isolated++;
622
623 /* Avoid isolating too much */
624 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
625 ++low_pfn;
626 break;
627 }
628
629 continue;
630
631 next_pageblock:
632 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
633 }
634
635 acct_isolated(zone, locked, cc);
636
637 if (locked)
638 spin_unlock_irqrestore(&zone->lru_lock, flags);
639
640 /*
641 * Update the pageblock-skip information and cached scanner pfn,
642 * if the whole pageblock was scanned without isolating any page.
643 * This is not done when pageblock was skipped due to being unsuitable
644 * for async compaction, so that eventual sync compaction can try.
645 */
646 if (low_pfn == end_pfn && !skipped_async_unsuitable)
647 update_pageblock_skip(cc, valid_page, nr_isolated, true);
648
649 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
650
651 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
652 if (nr_isolated)
653 count_compact_events(COMPACTISOLATED, nr_isolated);
654
655 return low_pfn;
656 }
657
658 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
659 #ifdef CONFIG_COMPACTION
660 /*
661 * Based on information in the current compact_control, find blocks
662 * suitable for isolating free pages from and then isolate them.
663 */
664 static void isolate_freepages(struct zone *zone,
665 struct compact_control *cc)
666 {
667 struct page *page;
668 unsigned long block_start_pfn; /* start of current pageblock */
669 unsigned long block_end_pfn; /* end of current pageblock */
670 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
671 unsigned long next_free_pfn; /* start pfn for scaning at next round */
672 int nr_freepages = cc->nr_freepages;
673 struct list_head *freelist = &cc->freepages;
674
675 /*
676 * Initialise the free scanner. The starting point is where we last
677 * successfully isolated from, zone-cached value, or the end of the
678 * zone when isolating for the first time. We need this aligned to
679 * the pageblock boundary, because we do
680 * block_start_pfn -= pageblock_nr_pages in the for loop.
681 * For ending point, take care when isolating in last pageblock of a
682 * a zone which ends in the middle of a pageblock.
683 * The low boundary is the end of the pageblock the migration scanner
684 * is using.
685 */
686 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
687 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
688 zone_end_pfn(zone));
689 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
690
691 /*
692 * If no pages are isolated, the block_start_pfn < low_pfn check
693 * will kick in.
694 */
695 next_free_pfn = 0;
696
697 /*
698 * Isolate free pages until enough are available to migrate the
699 * pages on cc->migratepages. We stop searching if the migrate
700 * and free page scanners meet or enough free pages are isolated.
701 */
702 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
703 block_end_pfn = block_start_pfn,
704 block_start_pfn -= pageblock_nr_pages) {
705 unsigned long isolated;
706
707 /*
708 * This can iterate a massively long zone without finding any
709 * suitable migration targets, so periodically check if we need
710 * to schedule.
711 */
712 cond_resched();
713
714 if (!pfn_valid(block_start_pfn))
715 continue;
716
717 /*
718 * Check for overlapping nodes/zones. It's possible on some
719 * configurations to have a setup like
720 * node0 node1 node0
721 * i.e. it's possible that all pages within a zones range of
722 * pages do not belong to a single zone.
723 */
724 page = pfn_to_page(block_start_pfn);
725 if (page_zone(page) != zone)
726 continue;
727
728 /* Check the block is suitable for migration */
729 if (!suitable_migration_target(page))
730 continue;
731
732 /* If isolation recently failed, do not retry */
733 if (!isolation_suitable(cc, page))
734 continue;
735
736 /* Found a block suitable for isolating free pages from */
737 isolated = isolate_freepages_block(cc, block_start_pfn,
738 block_end_pfn, freelist, false);
739 nr_freepages += isolated;
740
741 /*
742 * Record the highest PFN we isolated pages from. When next
743 * looking for free pages, the search will restart here as
744 * page migration may have returned some pages to the allocator
745 */
746 if (isolated && next_free_pfn == 0) {
747 cc->finished_update_free = true;
748 next_free_pfn = block_start_pfn;
749 }
750 }
751
752 /* split_free_page does not map the pages */
753 map_pages(freelist);
754
755 /*
756 * If we crossed the migrate scanner, we want to keep it that way
757 * so that compact_finished() may detect this
758 */
759 if (block_start_pfn < low_pfn)
760 next_free_pfn = cc->migrate_pfn;
761
762 cc->free_pfn = next_free_pfn;
763 cc->nr_freepages = nr_freepages;
764 }
765
766 /*
767 * This is a migrate-callback that "allocates" freepages by taking pages
768 * from the isolated freelists in the block we are migrating to.
769 */
770 static struct page *compaction_alloc(struct page *migratepage,
771 unsigned long data,
772 int **result)
773 {
774 struct compact_control *cc = (struct compact_control *)data;
775 struct page *freepage;
776
777 /* Isolate free pages if necessary */
778 if (list_empty(&cc->freepages)) {
779 isolate_freepages(cc->zone, cc);
780
781 if (list_empty(&cc->freepages))
782 return NULL;
783 }
784
785 freepage = list_entry(cc->freepages.next, struct page, lru);
786 list_del(&freepage->lru);
787 cc->nr_freepages--;
788
789 return freepage;
790 }
791
792 /*
793 * We cannot control nr_migratepages and nr_freepages fully when migration is
794 * running as migrate_pages() has no knowledge of compact_control. When
795 * migration is complete, we count the number of pages on the lists by hand.
796 */
797 static void update_nr_listpages(struct compact_control *cc)
798 {
799 int nr_migratepages = 0;
800 int nr_freepages = 0;
801 struct page *page;
802
803 list_for_each_entry(page, &cc->migratepages, lru)
804 nr_migratepages++;
805 list_for_each_entry(page, &cc->freepages, lru)
806 nr_freepages++;
807
808 cc->nr_migratepages = nr_migratepages;
809 cc->nr_freepages = nr_freepages;
810 }
811
812 /* possible outcome of isolate_migratepages */
813 typedef enum {
814 ISOLATE_ABORT, /* Abort compaction now */
815 ISOLATE_NONE, /* No pages isolated, continue scanning */
816 ISOLATE_SUCCESS, /* Pages isolated, migrate */
817 } isolate_migrate_t;
818
819 /*
820 * Isolate all pages that can be migrated from the block pointed to by
821 * the migrate scanner within compact_control.
822 */
823 static isolate_migrate_t isolate_migratepages(struct zone *zone,
824 struct compact_control *cc)
825 {
826 unsigned long low_pfn, end_pfn;
827
828 /* Do not scan outside zone boundaries */
829 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
830
831 /* Only scan within a pageblock boundary */
832 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
833
834 /* Do not cross the free scanner or scan within a memory hole */
835 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
836 cc->migrate_pfn = end_pfn;
837 return ISOLATE_NONE;
838 }
839
840 /* Perform the isolation */
841 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
842 if (!low_pfn || cc->contended)
843 return ISOLATE_ABORT;
844
845 cc->migrate_pfn = low_pfn;
846
847 return ISOLATE_SUCCESS;
848 }
849
850 static int compact_finished(struct zone *zone,
851 struct compact_control *cc)
852 {
853 unsigned int order;
854 unsigned long watermark;
855
856 if (fatal_signal_pending(current))
857 return COMPACT_PARTIAL;
858
859 /* Compaction run completes if the migrate and free scanner meet */
860 if (cc->free_pfn <= cc->migrate_pfn) {
861 /* Let the next compaction start anew. */
862 zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
863 zone->compact_cached_free_pfn = zone_end_pfn(zone);
864
865 /*
866 * Mark that the PG_migrate_skip information should be cleared
867 * by kswapd when it goes to sleep. kswapd does not set the
868 * flag itself as the decision to be clear should be directly
869 * based on an allocation request.
870 */
871 if (!current_is_kswapd())
872 zone->compact_blockskip_flush = true;
873
874 return COMPACT_COMPLETE;
875 }
876
877 /*
878 * order == -1 is expected when compacting via
879 * /proc/sys/vm/compact_memory
880 */
881 if (cc->order == -1)
882 return COMPACT_CONTINUE;
883
884 /* Compaction run is not finished if the watermark is not met */
885 watermark = low_wmark_pages(zone);
886 watermark += (1 << cc->order);
887
888 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
889 return COMPACT_CONTINUE;
890
891 /* Direct compactor: Is a suitable page free? */
892 for (order = cc->order; order < MAX_ORDER; order++) {
893 struct free_area *area = &zone->free_area[order];
894
895 /* Job done if page is free of the right migratetype */
896 if (!list_empty(&area->free_list[cc->migratetype]))
897 return COMPACT_PARTIAL;
898
899 /* Job done if allocation would set block type */
900 if (cc->order >= pageblock_order && area->nr_free)
901 return COMPACT_PARTIAL;
902 }
903
904 return COMPACT_CONTINUE;
905 }
906
907 /*
908 * compaction_suitable: Is this suitable to run compaction on this zone now?
909 * Returns
910 * COMPACT_SKIPPED - If there are too few free pages for compaction
911 * COMPACT_PARTIAL - If the allocation would succeed without compaction
912 * COMPACT_CONTINUE - If compaction should run now
913 */
914 unsigned long compaction_suitable(struct zone *zone, int order)
915 {
916 int fragindex;
917 unsigned long watermark;
918
919 /*
920 * order == -1 is expected when compacting via
921 * /proc/sys/vm/compact_memory
922 */
923 if (order == -1)
924 return COMPACT_CONTINUE;
925
926 /*
927 * Watermarks for order-0 must be met for compaction. Note the 2UL.
928 * This is because during migration, copies of pages need to be
929 * allocated and for a short time, the footprint is higher
930 */
931 watermark = low_wmark_pages(zone) + (2UL << order);
932 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
933 return COMPACT_SKIPPED;
934
935 /*
936 * fragmentation index determines if allocation failures are due to
937 * low memory or external fragmentation
938 *
939 * index of -1000 implies allocations might succeed depending on
940 * watermarks
941 * index towards 0 implies failure is due to lack of memory
942 * index towards 1000 implies failure is due to fragmentation
943 *
944 * Only compact if a failure would be due to fragmentation.
945 */
946 fragindex = fragmentation_index(zone, order);
947 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
948 return COMPACT_SKIPPED;
949
950 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
951 0, 0))
952 return COMPACT_PARTIAL;
953
954 return COMPACT_CONTINUE;
955 }
956
957 static int compact_zone(struct zone *zone, struct compact_control *cc)
958 {
959 int ret;
960 unsigned long start_pfn = zone->zone_start_pfn;
961 unsigned long end_pfn = zone_end_pfn(zone);
962
963 ret = compaction_suitable(zone, cc->order);
964 switch (ret) {
965 case COMPACT_PARTIAL:
966 case COMPACT_SKIPPED:
967 /* Compaction is likely to fail */
968 return ret;
969 case COMPACT_CONTINUE:
970 /* Fall through to compaction */
971 ;
972 }
973
974 /*
975 * Clear pageblock skip if there were failures recently and compaction
976 * is about to be retried after being deferred. kswapd does not do
977 * this reset as it'll reset the cached information when going to sleep.
978 */
979 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
980 __reset_isolation_suitable(zone);
981
982 /*
983 * Setup to move all movable pages to the end of the zone. Used cached
984 * information on where the scanners should start but check that it
985 * is initialised by ensuring the values are within zone boundaries.
986 */
987 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
988 cc->free_pfn = zone->compact_cached_free_pfn;
989 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
990 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
991 zone->compact_cached_free_pfn = cc->free_pfn;
992 }
993 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
994 cc->migrate_pfn = start_pfn;
995 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
996 }
997
998 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
999
1000 migrate_prep_local();
1001
1002 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1003 unsigned long nr_migrate, nr_remaining;
1004 int err;
1005
1006 switch (isolate_migratepages(zone, cc)) {
1007 case ISOLATE_ABORT:
1008 ret = COMPACT_PARTIAL;
1009 putback_movable_pages(&cc->migratepages);
1010 cc->nr_migratepages = 0;
1011 goto out;
1012 case ISOLATE_NONE:
1013 continue;
1014 case ISOLATE_SUCCESS:
1015 ;
1016 }
1017
1018 nr_migrate = cc->nr_migratepages;
1019 err = migrate_pages(&cc->migratepages, compaction_alloc, NULL,
1020 (unsigned long)cc,
1021 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1022 MR_COMPACTION);
1023 update_nr_listpages(cc);
1024 nr_remaining = cc->nr_migratepages;
1025
1026 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1027 nr_remaining);
1028
1029 /* Release isolated pages not migrated */
1030 if (err) {
1031 putback_movable_pages(&cc->migratepages);
1032 cc->nr_migratepages = 0;
1033 /*
1034 * migrate_pages() may return -ENOMEM when scanners meet
1035 * and we want compact_finished() to detect it
1036 */
1037 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1038 ret = COMPACT_PARTIAL;
1039 goto out;
1040 }
1041 }
1042 }
1043
1044 out:
1045 /* Release free pages and check accounting */
1046 cc->nr_freepages -= release_freepages(&cc->freepages);
1047 VM_BUG_ON(cc->nr_freepages != 0);
1048
1049 trace_mm_compaction_end(ret);
1050
1051 return ret;
1052 }
1053
1054 static unsigned long compact_zone_order(struct zone *zone,
1055 int order, gfp_t gfp_mask,
1056 bool sync, bool *contended)
1057 {
1058 unsigned long ret;
1059 struct compact_control cc = {
1060 .nr_freepages = 0,
1061 .nr_migratepages = 0,
1062 .order = order,
1063 .migratetype = allocflags_to_migratetype(gfp_mask),
1064 .zone = zone,
1065 .sync = sync,
1066 };
1067 INIT_LIST_HEAD(&cc.freepages);
1068 INIT_LIST_HEAD(&cc.migratepages);
1069
1070 ret = compact_zone(zone, &cc);
1071
1072 VM_BUG_ON(!list_empty(&cc.freepages));
1073 VM_BUG_ON(!list_empty(&cc.migratepages));
1074
1075 *contended = cc.contended;
1076 return ret;
1077 }
1078
1079 int sysctl_extfrag_threshold = 500;
1080
1081 /**
1082 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1083 * @zonelist: The zonelist used for the current allocation
1084 * @order: The order of the current allocation
1085 * @gfp_mask: The GFP mask of the current allocation
1086 * @nodemask: The allowed nodes to allocate from
1087 * @sync: Whether migration is synchronous or not
1088 * @contended: Return value that is true if compaction was aborted due to lock contention
1089 * @page: Optionally capture a free page of the requested order during compaction
1090 *
1091 * This is the main entry point for direct page compaction.
1092 */
1093 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1094 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1095 bool sync, bool *contended)
1096 {
1097 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1098 int may_enter_fs = gfp_mask & __GFP_FS;
1099 int may_perform_io = gfp_mask & __GFP_IO;
1100 struct zoneref *z;
1101 struct zone *zone;
1102 int rc = COMPACT_SKIPPED;
1103 int alloc_flags = 0;
1104
1105 /* Check if the GFP flags allow compaction */
1106 if (!order || !may_enter_fs || !may_perform_io)
1107 return rc;
1108
1109 count_compact_event(COMPACTSTALL);
1110
1111 #ifdef CONFIG_CMA
1112 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1113 alloc_flags |= ALLOC_CMA;
1114 #endif
1115 /* Compact each zone in the list */
1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1117 nodemask) {
1118 int status;
1119
1120 status = compact_zone_order(zone, order, gfp_mask, sync,
1121 contended);
1122 rc = max(status, rc);
1123
1124 /* If a normal allocation would succeed, stop compacting */
1125 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1126 alloc_flags))
1127 break;
1128 }
1129
1130 return rc;
1131 }
1132
1133
1134 /* Compact all zones within a node */
1135 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1136 {
1137 int zoneid;
1138 struct zone *zone;
1139
1140 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1141
1142 zone = &pgdat->node_zones[zoneid];
1143 if (!populated_zone(zone))
1144 continue;
1145
1146 cc->nr_freepages = 0;
1147 cc->nr_migratepages = 0;
1148 cc->zone = zone;
1149 INIT_LIST_HEAD(&cc->freepages);
1150 INIT_LIST_HEAD(&cc->migratepages);
1151
1152 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1153 compact_zone(zone, cc);
1154
1155 if (cc->order > 0) {
1156 if (zone_watermark_ok(zone, cc->order,
1157 low_wmark_pages(zone), 0, 0))
1158 compaction_defer_reset(zone, cc->order, false);
1159 }
1160
1161 VM_BUG_ON(!list_empty(&cc->freepages));
1162 VM_BUG_ON(!list_empty(&cc->migratepages));
1163 }
1164 }
1165
1166 void compact_pgdat(pg_data_t *pgdat, int order)
1167 {
1168 struct compact_control cc = {
1169 .order = order,
1170 .sync = false,
1171 };
1172
1173 if (!order)
1174 return;
1175
1176 __compact_pgdat(pgdat, &cc);
1177 }
1178
1179 static void compact_node(int nid)
1180 {
1181 struct compact_control cc = {
1182 .order = -1,
1183 .sync = true,
1184 .ignore_skip_hint = true,
1185 };
1186
1187 __compact_pgdat(NODE_DATA(nid), &cc);
1188 }
1189
1190 /* Compact all nodes in the system */
1191 static void compact_nodes(void)
1192 {
1193 int nid;
1194
1195 /* Flush pending updates to the LRU lists */
1196 lru_add_drain_all();
1197
1198 for_each_online_node(nid)
1199 compact_node(nid);
1200 }
1201
1202 /* The written value is actually unused, all memory is compacted */
1203 int sysctl_compact_memory;
1204
1205 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1206 int sysctl_compaction_handler(struct ctl_table *table, int write,
1207 void __user *buffer, size_t *length, loff_t *ppos)
1208 {
1209 if (write)
1210 compact_nodes();
1211
1212 return 0;
1213 }
1214
1215 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1216 void __user *buffer, size_t *length, loff_t *ppos)
1217 {
1218 proc_dointvec_minmax(table, write, buffer, length, ppos);
1219
1220 return 0;
1221 }
1222
1223 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1224 ssize_t sysfs_compact_node(struct device *dev,
1225 struct device_attribute *attr,
1226 const char *buf, size_t count)
1227 {
1228 int nid = dev->id;
1229
1230 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1231 /* Flush pending updates to the LRU lists */
1232 lru_add_drain_all();
1233
1234 compact_node(nid);
1235 }
1236
1237 return count;
1238 }
1239 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1240
1241 int compaction_register_node(struct node *node)
1242 {
1243 return device_create_file(&node->dev, &dev_attr_compact);
1244 }
1245
1246 void compaction_unregister_node(struct node *node)
1247 {
1248 return device_remove_file(&node->dev, &dev_attr_compact);
1249 }
1250 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1251
1252 #endif /* CONFIG_COMPACTION */