]> git.ipfire.org Git - people/ms/linux.git/blob - mm/memory_hotplug.c
mm/migration: return errno when isolate_huge_page failed
[people/ms/linux.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
46 static int memmap_on_memory_set(const char *val, const struct kernel_param *kp)
47 {
48 if (hugetlb_optimize_vmemmap_enabled())
49 return 0;
50 return param_set_bool(val, kp);
51 }
52
53 static const struct kernel_param_ops memmap_on_memory_ops = {
54 .flags = KERNEL_PARAM_OPS_FL_NOARG,
55 .set = memmap_on_memory_set,
56 .get = param_get_bool,
57 };
58
59 /*
60 * memory_hotplug.memmap_on_memory parameter
61 */
62 static bool memmap_on_memory __ro_after_init;
63 module_param_cb(memmap_on_memory, &memmap_on_memory_ops, &memmap_on_memory, 0444);
64 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
65
66 bool mhp_memmap_on_memory(void)
67 {
68 return memmap_on_memory;
69 }
70 #endif
71
72 enum {
73 ONLINE_POLICY_CONTIG_ZONES = 0,
74 ONLINE_POLICY_AUTO_MOVABLE,
75 };
76
77 static const char * const online_policy_to_str[] = {
78 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
79 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
80 };
81
82 static int set_online_policy(const char *val, const struct kernel_param *kp)
83 {
84 int ret = sysfs_match_string(online_policy_to_str, val);
85
86 if (ret < 0)
87 return ret;
88 *((int *)kp->arg) = ret;
89 return 0;
90 }
91
92 static int get_online_policy(char *buffer, const struct kernel_param *kp)
93 {
94 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
95 }
96
97 /*
98 * memory_hotplug.online_policy: configure online behavior when onlining without
99 * specifying a zone (MMOP_ONLINE)
100 *
101 * "contig-zones": keep zone contiguous
102 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
103 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
104 */
105 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
106 static const struct kernel_param_ops online_policy_ops = {
107 .set = set_online_policy,
108 .get = get_online_policy,
109 };
110 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
111 MODULE_PARM_DESC(online_policy,
112 "Set the online policy (\"contig-zones\", \"auto-movable\") "
113 "Default: \"contig-zones\"");
114
115 /*
116 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
117 *
118 * The ratio represent an upper limit and the kernel might decide to not
119 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
120 * doesn't allow for more MOVABLE memory.
121 */
122 static unsigned int auto_movable_ratio __read_mostly = 301;
123 module_param(auto_movable_ratio, uint, 0644);
124 MODULE_PARM_DESC(auto_movable_ratio,
125 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
126 "in percent for \"auto-movable\" online policy. Default: 301");
127
128 /*
129 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
130 */
131 #ifdef CONFIG_NUMA
132 static bool auto_movable_numa_aware __read_mostly = true;
133 module_param(auto_movable_numa_aware, bool, 0644);
134 MODULE_PARM_DESC(auto_movable_numa_aware,
135 "Consider numa node stats in addition to global stats in "
136 "\"auto-movable\" online policy. Default: true");
137 #endif /* CONFIG_NUMA */
138
139 /*
140 * online_page_callback contains pointer to current page onlining function.
141 * Initially it is generic_online_page(). If it is required it could be
142 * changed by calling set_online_page_callback() for callback registration
143 * and restore_online_page_callback() for generic callback restore.
144 */
145
146 static online_page_callback_t online_page_callback = generic_online_page;
147 static DEFINE_MUTEX(online_page_callback_lock);
148
149 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
150
151 void get_online_mems(void)
152 {
153 percpu_down_read(&mem_hotplug_lock);
154 }
155
156 void put_online_mems(void)
157 {
158 percpu_up_read(&mem_hotplug_lock);
159 }
160
161 bool movable_node_enabled = false;
162
163 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
164 int mhp_default_online_type = MMOP_OFFLINE;
165 #else
166 int mhp_default_online_type = MMOP_ONLINE;
167 #endif
168
169 static int __init setup_memhp_default_state(char *str)
170 {
171 const int online_type = mhp_online_type_from_str(str);
172
173 if (online_type >= 0)
174 mhp_default_online_type = online_type;
175
176 return 1;
177 }
178 __setup("memhp_default_state=", setup_memhp_default_state);
179
180 void mem_hotplug_begin(void)
181 {
182 cpus_read_lock();
183 percpu_down_write(&mem_hotplug_lock);
184 }
185
186 void mem_hotplug_done(void)
187 {
188 percpu_up_write(&mem_hotplug_lock);
189 cpus_read_unlock();
190 }
191
192 u64 max_mem_size = U64_MAX;
193
194 /* add this memory to iomem resource */
195 static struct resource *register_memory_resource(u64 start, u64 size,
196 const char *resource_name)
197 {
198 struct resource *res;
199 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
200
201 if (strcmp(resource_name, "System RAM"))
202 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
203
204 if (!mhp_range_allowed(start, size, true))
205 return ERR_PTR(-E2BIG);
206
207 /*
208 * Make sure value parsed from 'mem=' only restricts memory adding
209 * while booting, so that memory hotplug won't be impacted. Please
210 * refer to document of 'mem=' in kernel-parameters.txt for more
211 * details.
212 */
213 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
214 return ERR_PTR(-E2BIG);
215
216 /*
217 * Request ownership of the new memory range. This might be
218 * a child of an existing resource that was present but
219 * not marked as busy.
220 */
221 res = __request_region(&iomem_resource, start, size,
222 resource_name, flags);
223
224 if (!res) {
225 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
226 start, start + size);
227 return ERR_PTR(-EEXIST);
228 }
229 return res;
230 }
231
232 static void release_memory_resource(struct resource *res)
233 {
234 if (!res)
235 return;
236 release_resource(res);
237 kfree(res);
238 }
239
240 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
241 {
242 /*
243 * Disallow all operations smaller than a sub-section and only
244 * allow operations smaller than a section for
245 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
246 * enforces a larger memory_block_size_bytes() granularity for
247 * memory that will be marked online, so this check should only
248 * fire for direct arch_{add,remove}_memory() users outside of
249 * add_memory_resource().
250 */
251 unsigned long min_align;
252
253 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
254 min_align = PAGES_PER_SUBSECTION;
255 else
256 min_align = PAGES_PER_SECTION;
257 if (!IS_ALIGNED(pfn | nr_pages, min_align))
258 return -EINVAL;
259 return 0;
260 }
261
262 /*
263 * Return page for the valid pfn only if the page is online. All pfn
264 * walkers which rely on the fully initialized page->flags and others
265 * should use this rather than pfn_valid && pfn_to_page
266 */
267 struct page *pfn_to_online_page(unsigned long pfn)
268 {
269 unsigned long nr = pfn_to_section_nr(pfn);
270 struct dev_pagemap *pgmap;
271 struct mem_section *ms;
272
273 if (nr >= NR_MEM_SECTIONS)
274 return NULL;
275
276 ms = __nr_to_section(nr);
277 if (!online_section(ms))
278 return NULL;
279
280 /*
281 * Save some code text when online_section() +
282 * pfn_section_valid() are sufficient.
283 */
284 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
285 return NULL;
286
287 if (!pfn_section_valid(ms, pfn))
288 return NULL;
289
290 if (!online_device_section(ms))
291 return pfn_to_page(pfn);
292
293 /*
294 * Slowpath: when ZONE_DEVICE collides with
295 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
296 * the section may be 'offline' but 'valid'. Only
297 * get_dev_pagemap() can determine sub-section online status.
298 */
299 pgmap = get_dev_pagemap(pfn, NULL);
300 put_dev_pagemap(pgmap);
301
302 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
303 if (pgmap)
304 return NULL;
305
306 return pfn_to_page(pfn);
307 }
308 EXPORT_SYMBOL_GPL(pfn_to_online_page);
309
310 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
311 struct mhp_params *params)
312 {
313 const unsigned long end_pfn = pfn + nr_pages;
314 unsigned long cur_nr_pages;
315 int err;
316 struct vmem_altmap *altmap = params->altmap;
317
318 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
319 return -EINVAL;
320
321 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
322
323 if (altmap) {
324 /*
325 * Validate altmap is within bounds of the total request
326 */
327 if (altmap->base_pfn != pfn
328 || vmem_altmap_offset(altmap) > nr_pages) {
329 pr_warn_once("memory add fail, invalid altmap\n");
330 return -EINVAL;
331 }
332 altmap->alloc = 0;
333 }
334
335 if (check_pfn_span(pfn, nr_pages)) {
336 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
337 return -EINVAL;
338 }
339
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
345 params->pgmap);
346 if (err)
347 break;
348 cond_resched();
349 }
350 vmemmap_populate_print_last();
351 return err;
352 }
353
354 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
355 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
356 unsigned long start_pfn,
357 unsigned long end_pfn)
358 {
359 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
360 if (unlikely(!pfn_to_online_page(start_pfn)))
361 continue;
362
363 if (unlikely(pfn_to_nid(start_pfn) != nid))
364 continue;
365
366 if (zone != page_zone(pfn_to_page(start_pfn)))
367 continue;
368
369 return start_pfn;
370 }
371
372 return 0;
373 }
374
375 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
376 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
377 unsigned long start_pfn,
378 unsigned long end_pfn)
379 {
380 unsigned long pfn;
381
382 /* pfn is the end pfn of a memory section. */
383 pfn = end_pfn - 1;
384 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
385 if (unlikely(!pfn_to_online_page(pfn)))
386 continue;
387
388 if (unlikely(pfn_to_nid(pfn) != nid))
389 continue;
390
391 if (zone != page_zone(pfn_to_page(pfn)))
392 continue;
393
394 return pfn;
395 }
396
397 return 0;
398 }
399
400 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
401 unsigned long end_pfn)
402 {
403 unsigned long pfn;
404 int nid = zone_to_nid(zone);
405
406 if (zone->zone_start_pfn == start_pfn) {
407 /*
408 * If the section is smallest section in the zone, it need
409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
410 * In this case, we find second smallest valid mem_section
411 * for shrinking zone.
412 */
413 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
414 zone_end_pfn(zone));
415 if (pfn) {
416 zone->spanned_pages = zone_end_pfn(zone) - pfn;
417 zone->zone_start_pfn = pfn;
418 } else {
419 zone->zone_start_pfn = 0;
420 zone->spanned_pages = 0;
421 }
422 } else if (zone_end_pfn(zone) == end_pfn) {
423 /*
424 * If the section is biggest section in the zone, it need
425 * shrink zone->spanned_pages.
426 * In this case, we find second biggest valid mem_section for
427 * shrinking zone.
428 */
429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
430 start_pfn);
431 if (pfn)
432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
433 else {
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 }
437 }
438 }
439
440 static void update_pgdat_span(struct pglist_data *pgdat)
441 {
442 unsigned long node_start_pfn = 0, node_end_pfn = 0;
443 struct zone *zone;
444
445 for (zone = pgdat->node_zones;
446 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
447 unsigned long end_pfn = zone_end_pfn(zone);
448
449 /* No need to lock the zones, they can't change. */
450 if (!zone->spanned_pages)
451 continue;
452 if (!node_end_pfn) {
453 node_start_pfn = zone->zone_start_pfn;
454 node_end_pfn = end_pfn;
455 continue;
456 }
457
458 if (end_pfn > node_end_pfn)
459 node_end_pfn = end_pfn;
460 if (zone->zone_start_pfn < node_start_pfn)
461 node_start_pfn = zone->zone_start_pfn;
462 }
463
464 pgdat->node_start_pfn = node_start_pfn;
465 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
466 }
467
468 void __ref remove_pfn_range_from_zone(struct zone *zone,
469 unsigned long start_pfn,
470 unsigned long nr_pages)
471 {
472 const unsigned long end_pfn = start_pfn + nr_pages;
473 struct pglist_data *pgdat = zone->zone_pgdat;
474 unsigned long pfn, cur_nr_pages;
475
476 /* Poison struct pages because they are now uninitialized again. */
477 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
478 cond_resched();
479
480 /* Select all remaining pages up to the next section boundary */
481 cur_nr_pages =
482 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
483 page_init_poison(pfn_to_page(pfn),
484 sizeof(struct page) * cur_nr_pages);
485 }
486
487 /*
488 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
489 * we will not try to shrink the zones - which is okay as
490 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
491 */
492 if (zone_is_zone_device(zone))
493 return;
494
495 clear_zone_contiguous(zone);
496
497 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
498 update_pgdat_span(pgdat);
499
500 set_zone_contiguous(zone);
501 }
502
503 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
504 unsigned long map_offset,
505 struct vmem_altmap *altmap)
506 {
507 struct mem_section *ms = __pfn_to_section(pfn);
508
509 if (WARN_ON_ONCE(!valid_section(ms)))
510 return;
511
512 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
513 }
514
515 /**
516 * __remove_pages() - remove sections of pages
517 * @pfn: starting pageframe (must be aligned to start of a section)
518 * @nr_pages: number of pages to remove (must be multiple of section size)
519 * @altmap: alternative device page map or %NULL if default memmap is used
520 *
521 * Generic helper function to remove section mappings and sysfs entries
522 * for the section of the memory we are removing. Caller needs to make
523 * sure that pages are marked reserved and zones are adjust properly by
524 * calling offline_pages().
525 */
526 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
527 struct vmem_altmap *altmap)
528 {
529 const unsigned long end_pfn = pfn + nr_pages;
530 unsigned long cur_nr_pages;
531 unsigned long map_offset = 0;
532
533 map_offset = vmem_altmap_offset(altmap);
534
535 if (check_pfn_span(pfn, nr_pages)) {
536 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
537 return;
538 }
539
540 for (; pfn < end_pfn; pfn += cur_nr_pages) {
541 cond_resched();
542 /* Select all remaining pages up to the next section boundary */
543 cur_nr_pages = min(end_pfn - pfn,
544 SECTION_ALIGN_UP(pfn + 1) - pfn);
545 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
546 map_offset = 0;
547 }
548 }
549
550 int set_online_page_callback(online_page_callback_t callback)
551 {
552 int rc = -EINVAL;
553
554 get_online_mems();
555 mutex_lock(&online_page_callback_lock);
556
557 if (online_page_callback == generic_online_page) {
558 online_page_callback = callback;
559 rc = 0;
560 }
561
562 mutex_unlock(&online_page_callback_lock);
563 put_online_mems();
564
565 return rc;
566 }
567 EXPORT_SYMBOL_GPL(set_online_page_callback);
568
569 int restore_online_page_callback(online_page_callback_t callback)
570 {
571 int rc = -EINVAL;
572
573 get_online_mems();
574 mutex_lock(&online_page_callback_lock);
575
576 if (online_page_callback == callback) {
577 online_page_callback = generic_online_page;
578 rc = 0;
579 }
580
581 mutex_unlock(&online_page_callback_lock);
582 put_online_mems();
583
584 return rc;
585 }
586 EXPORT_SYMBOL_GPL(restore_online_page_callback);
587
588 void generic_online_page(struct page *page, unsigned int order)
589 {
590 /*
591 * Freeing the page with debug_pagealloc enabled will try to unmap it,
592 * so we should map it first. This is better than introducing a special
593 * case in page freeing fast path.
594 */
595 debug_pagealloc_map_pages(page, 1 << order);
596 __free_pages_core(page, order);
597 totalram_pages_add(1UL << order);
598 }
599 EXPORT_SYMBOL_GPL(generic_online_page);
600
601 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
602 {
603 const unsigned long end_pfn = start_pfn + nr_pages;
604 unsigned long pfn;
605
606 /*
607 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
608 * decide to not expose all pages to the buddy (e.g., expose them
609 * later). We account all pages as being online and belonging to this
610 * zone ("present").
611 * When using memmap_on_memory, the range might not be aligned to
612 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
613 * this and the first chunk to online will be pageblock_nr_pages.
614 */
615 for (pfn = start_pfn; pfn < end_pfn;) {
616 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
617
618 (*online_page_callback)(pfn_to_page(pfn), order);
619 pfn += (1UL << order);
620 }
621
622 /* mark all involved sections as online */
623 online_mem_sections(start_pfn, end_pfn);
624 }
625
626 /* check which state of node_states will be changed when online memory */
627 static void node_states_check_changes_online(unsigned long nr_pages,
628 struct zone *zone, struct memory_notify *arg)
629 {
630 int nid = zone_to_nid(zone);
631
632 arg->status_change_nid = NUMA_NO_NODE;
633 arg->status_change_nid_normal = NUMA_NO_NODE;
634
635 if (!node_state(nid, N_MEMORY))
636 arg->status_change_nid = nid;
637 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
638 arg->status_change_nid_normal = nid;
639 }
640
641 static void node_states_set_node(int node, struct memory_notify *arg)
642 {
643 if (arg->status_change_nid_normal >= 0)
644 node_set_state(node, N_NORMAL_MEMORY);
645
646 if (arg->status_change_nid >= 0)
647 node_set_state(node, N_MEMORY);
648 }
649
650 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
651 unsigned long nr_pages)
652 {
653 unsigned long old_end_pfn = zone_end_pfn(zone);
654
655 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
656 zone->zone_start_pfn = start_pfn;
657
658 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
659 }
660
661 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
662 unsigned long nr_pages)
663 {
664 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
665
666 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
667 pgdat->node_start_pfn = start_pfn;
668
669 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
670
671 }
672
673 static void section_taint_zone_device(unsigned long pfn)
674 {
675 struct mem_section *ms = __pfn_to_section(pfn);
676
677 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
678 }
679
680 /*
681 * Associate the pfn range with the given zone, initializing the memmaps
682 * and resizing the pgdat/zone data to span the added pages. After this
683 * call, all affected pages are PG_reserved.
684 *
685 * All aligned pageblocks are initialized to the specified migratetype
686 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
687 * zone stats (e.g., nr_isolate_pageblock) are touched.
688 */
689 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
690 unsigned long nr_pages,
691 struct vmem_altmap *altmap, int migratetype)
692 {
693 struct pglist_data *pgdat = zone->zone_pgdat;
694 int nid = pgdat->node_id;
695
696 clear_zone_contiguous(zone);
697
698 if (zone_is_empty(zone))
699 init_currently_empty_zone(zone, start_pfn, nr_pages);
700 resize_zone_range(zone, start_pfn, nr_pages);
701 resize_pgdat_range(pgdat, start_pfn, nr_pages);
702
703 /*
704 * Subsection population requires care in pfn_to_online_page().
705 * Set the taint to enable the slow path detection of
706 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
707 * section.
708 */
709 if (zone_is_zone_device(zone)) {
710 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
711 section_taint_zone_device(start_pfn);
712 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
713 section_taint_zone_device(start_pfn + nr_pages);
714 }
715
716 /*
717 * TODO now we have a visible range of pages which are not associated
718 * with their zone properly. Not nice but set_pfnblock_flags_mask
719 * expects the zone spans the pfn range. All the pages in the range
720 * are reserved so nobody should be touching them so we should be safe
721 */
722 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
723 MEMINIT_HOTPLUG, altmap, migratetype);
724
725 set_zone_contiguous(zone);
726 }
727
728 struct auto_movable_stats {
729 unsigned long kernel_early_pages;
730 unsigned long movable_pages;
731 };
732
733 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
734 struct zone *zone)
735 {
736 if (zone_idx(zone) == ZONE_MOVABLE) {
737 stats->movable_pages += zone->present_pages;
738 } else {
739 stats->kernel_early_pages += zone->present_early_pages;
740 #ifdef CONFIG_CMA
741 /*
742 * CMA pages (never on hotplugged memory) behave like
743 * ZONE_MOVABLE.
744 */
745 stats->movable_pages += zone->cma_pages;
746 stats->kernel_early_pages -= zone->cma_pages;
747 #endif /* CONFIG_CMA */
748 }
749 }
750 struct auto_movable_group_stats {
751 unsigned long movable_pages;
752 unsigned long req_kernel_early_pages;
753 };
754
755 static int auto_movable_stats_account_group(struct memory_group *group,
756 void *arg)
757 {
758 const int ratio = READ_ONCE(auto_movable_ratio);
759 struct auto_movable_group_stats *stats = arg;
760 long pages;
761
762 /*
763 * We don't support modifying the config while the auto-movable online
764 * policy is already enabled. Just avoid the division by zero below.
765 */
766 if (!ratio)
767 return 0;
768
769 /*
770 * Calculate how many early kernel pages this group requires to
771 * satisfy the configured zone ratio.
772 */
773 pages = group->present_movable_pages * 100 / ratio;
774 pages -= group->present_kernel_pages;
775
776 if (pages > 0)
777 stats->req_kernel_early_pages += pages;
778 stats->movable_pages += group->present_movable_pages;
779 return 0;
780 }
781
782 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
783 unsigned long nr_pages)
784 {
785 unsigned long kernel_early_pages, movable_pages;
786 struct auto_movable_group_stats group_stats = {};
787 struct auto_movable_stats stats = {};
788 pg_data_t *pgdat = NODE_DATA(nid);
789 struct zone *zone;
790 int i;
791
792 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
793 if (nid == NUMA_NO_NODE) {
794 /* TODO: cache values */
795 for_each_populated_zone(zone)
796 auto_movable_stats_account_zone(&stats, zone);
797 } else {
798 for (i = 0; i < MAX_NR_ZONES; i++) {
799 zone = pgdat->node_zones + i;
800 if (populated_zone(zone))
801 auto_movable_stats_account_zone(&stats, zone);
802 }
803 }
804
805 kernel_early_pages = stats.kernel_early_pages;
806 movable_pages = stats.movable_pages;
807
808 /*
809 * Kernel memory inside dynamic memory group allows for more MOVABLE
810 * memory within the same group. Remove the effect of all but the
811 * current group from the stats.
812 */
813 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
814 group, &group_stats);
815 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
816 return false;
817 kernel_early_pages -= group_stats.req_kernel_early_pages;
818 movable_pages -= group_stats.movable_pages;
819
820 if (group && group->is_dynamic)
821 kernel_early_pages += group->present_kernel_pages;
822
823 /*
824 * Test if we could online the given number of pages to ZONE_MOVABLE
825 * and still stay in the configured ratio.
826 */
827 movable_pages += nr_pages;
828 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
829 }
830
831 /*
832 * Returns a default kernel memory zone for the given pfn range.
833 * If no kernel zone covers this pfn range it will automatically go
834 * to the ZONE_NORMAL.
835 */
836 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
837 unsigned long nr_pages)
838 {
839 struct pglist_data *pgdat = NODE_DATA(nid);
840 int zid;
841
842 for (zid = 0; zid < ZONE_NORMAL; zid++) {
843 struct zone *zone = &pgdat->node_zones[zid];
844
845 if (zone_intersects(zone, start_pfn, nr_pages))
846 return zone;
847 }
848
849 return &pgdat->node_zones[ZONE_NORMAL];
850 }
851
852 /*
853 * Determine to which zone to online memory dynamically based on user
854 * configuration and system stats. We care about the following ratio:
855 *
856 * MOVABLE : KERNEL
857 *
858 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
859 * one of the kernel zones. CMA pages inside one of the kernel zones really
860 * behaves like ZONE_MOVABLE, so we treat them accordingly.
861 *
862 * We don't allow for hotplugged memory in a KERNEL zone to increase the
863 * amount of MOVABLE memory we can have, so we end up with:
864 *
865 * MOVABLE : KERNEL_EARLY
866 *
867 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
868 * boot. We base our calculation on KERNEL_EARLY internally, because:
869 *
870 * a) Hotplugged memory in one of the kernel zones can sometimes still get
871 * hotunplugged, especially when hot(un)plugging individual memory blocks.
872 * There is no coordination across memory devices, therefore "automatic"
873 * hotunplugging, as implemented in hypervisors, could result in zone
874 * imbalances.
875 * b) Early/boot memory in one of the kernel zones can usually not get
876 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
877 * with unmovable allocations). While there are corner cases where it might
878 * still work, it is barely relevant in practice.
879 *
880 * Exceptions are dynamic memory groups, which allow for more MOVABLE
881 * memory within the same memory group -- because in that case, there is
882 * coordination within the single memory device managed by a single driver.
883 *
884 * We rely on "present pages" instead of "managed pages", as the latter is
885 * highly unreliable and dynamic in virtualized environments, and does not
886 * consider boot time allocations. For example, memory ballooning adjusts the
887 * managed pages when inflating/deflating the balloon, and balloon compaction
888 * can even migrate inflated pages between zones.
889 *
890 * Using "present pages" is better but some things to keep in mind are:
891 *
892 * a) Some memblock allocations, such as for the crashkernel area, are
893 * effectively unused by the kernel, yet they account to "present pages".
894 * Fortunately, these allocations are comparatively small in relevant setups
895 * (e.g., fraction of system memory).
896 * b) Some hotplugged memory blocks in virtualized environments, esecially
897 * hotplugged by virtio-mem, look like they are completely present, however,
898 * only parts of the memory block are actually currently usable.
899 * "present pages" is an upper limit that can get reached at runtime. As
900 * we base our calculations on KERNEL_EARLY, this is not an issue.
901 */
902 static struct zone *auto_movable_zone_for_pfn(int nid,
903 struct memory_group *group,
904 unsigned long pfn,
905 unsigned long nr_pages)
906 {
907 unsigned long online_pages = 0, max_pages, end_pfn;
908 struct page *page;
909
910 if (!auto_movable_ratio)
911 goto kernel_zone;
912
913 if (group && !group->is_dynamic) {
914 max_pages = group->s.max_pages;
915 online_pages = group->present_movable_pages;
916
917 /* If anything is !MOVABLE online the rest !MOVABLE. */
918 if (group->present_kernel_pages)
919 goto kernel_zone;
920 } else if (!group || group->d.unit_pages == nr_pages) {
921 max_pages = nr_pages;
922 } else {
923 max_pages = group->d.unit_pages;
924 /*
925 * Take a look at all online sections in the current unit.
926 * We can safely assume that all pages within a section belong
927 * to the same zone, because dynamic memory groups only deal
928 * with hotplugged memory.
929 */
930 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
931 end_pfn = pfn + group->d.unit_pages;
932 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
933 page = pfn_to_online_page(pfn);
934 if (!page)
935 continue;
936 /* If anything is !MOVABLE online the rest !MOVABLE. */
937 if (page_zonenum(page) != ZONE_MOVABLE)
938 goto kernel_zone;
939 online_pages += PAGES_PER_SECTION;
940 }
941 }
942
943 /*
944 * Online MOVABLE if we could *currently* online all remaining parts
945 * MOVABLE. We expect to (add+) online them immediately next, so if
946 * nobody interferes, all will be MOVABLE if possible.
947 */
948 nr_pages = max_pages - online_pages;
949 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
950 goto kernel_zone;
951
952 #ifdef CONFIG_NUMA
953 if (auto_movable_numa_aware &&
954 !auto_movable_can_online_movable(nid, group, nr_pages))
955 goto kernel_zone;
956 #endif /* CONFIG_NUMA */
957
958 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
959 kernel_zone:
960 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
961 }
962
963 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
964 unsigned long nr_pages)
965 {
966 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
967 nr_pages);
968 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
969 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
970 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
971
972 /*
973 * We inherit the existing zone in a simple case where zones do not
974 * overlap in the given range
975 */
976 if (in_kernel ^ in_movable)
977 return (in_kernel) ? kernel_zone : movable_zone;
978
979 /*
980 * If the range doesn't belong to any zone or two zones overlap in the
981 * given range then we use movable zone only if movable_node is
982 * enabled because we always online to a kernel zone by default.
983 */
984 return movable_node_enabled ? movable_zone : kernel_zone;
985 }
986
987 struct zone *zone_for_pfn_range(int online_type, int nid,
988 struct memory_group *group, unsigned long start_pfn,
989 unsigned long nr_pages)
990 {
991 if (online_type == MMOP_ONLINE_KERNEL)
992 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
993
994 if (online_type == MMOP_ONLINE_MOVABLE)
995 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
996
997 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
998 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
999
1000 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1001 }
1002
1003 /*
1004 * This function should only be called by memory_block_{online,offline},
1005 * and {online,offline}_pages.
1006 */
1007 void adjust_present_page_count(struct page *page, struct memory_group *group,
1008 long nr_pages)
1009 {
1010 struct zone *zone = page_zone(page);
1011 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1012
1013 /*
1014 * We only support onlining/offlining/adding/removing of complete
1015 * memory blocks; therefore, either all is either early or hotplugged.
1016 */
1017 if (early_section(__pfn_to_section(page_to_pfn(page))))
1018 zone->present_early_pages += nr_pages;
1019 zone->present_pages += nr_pages;
1020 zone->zone_pgdat->node_present_pages += nr_pages;
1021
1022 if (group && movable)
1023 group->present_movable_pages += nr_pages;
1024 else if (group && !movable)
1025 group->present_kernel_pages += nr_pages;
1026 }
1027
1028 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1029 struct zone *zone)
1030 {
1031 unsigned long end_pfn = pfn + nr_pages;
1032 int ret;
1033
1034 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1035 if (ret)
1036 return ret;
1037
1038 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1039
1040 /*
1041 * It might be that the vmemmap_pages fully span sections. If that is
1042 * the case, mark those sections online here as otherwise they will be
1043 * left offline.
1044 */
1045 if (nr_pages >= PAGES_PER_SECTION)
1046 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1047
1048 return ret;
1049 }
1050
1051 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1052 {
1053 unsigned long end_pfn = pfn + nr_pages;
1054
1055 /*
1056 * It might be that the vmemmap_pages fully span sections. If that is
1057 * the case, mark those sections offline here as otherwise they will be
1058 * left online.
1059 */
1060 if (nr_pages >= PAGES_PER_SECTION)
1061 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1062
1063 /*
1064 * The pages associated with this vmemmap have been offlined, so
1065 * we can reset its state here.
1066 */
1067 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1068 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1069 }
1070
1071 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1072 struct zone *zone, struct memory_group *group)
1073 {
1074 unsigned long flags;
1075 int need_zonelists_rebuild = 0;
1076 const int nid = zone_to_nid(zone);
1077 int ret;
1078 struct memory_notify arg;
1079
1080 /*
1081 * {on,off}lining is constrained to full memory sections (or more
1082 * precisely to memory blocks from the user space POV).
1083 * memmap_on_memory is an exception because it reserves initial part
1084 * of the physical memory space for vmemmaps. That space is pageblock
1085 * aligned.
1086 */
1087 if (WARN_ON_ONCE(!nr_pages ||
1088 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1089 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1090 return -EINVAL;
1091
1092 mem_hotplug_begin();
1093
1094 /* associate pfn range with the zone */
1095 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1096
1097 arg.start_pfn = pfn;
1098 arg.nr_pages = nr_pages;
1099 node_states_check_changes_online(nr_pages, zone, &arg);
1100
1101 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1102 ret = notifier_to_errno(ret);
1103 if (ret)
1104 goto failed_addition;
1105
1106 /*
1107 * Fixup the number of isolated pageblocks before marking the sections
1108 * onlining, such that undo_isolate_page_range() works correctly.
1109 */
1110 spin_lock_irqsave(&zone->lock, flags);
1111 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1112 spin_unlock_irqrestore(&zone->lock, flags);
1113
1114 /*
1115 * If this zone is not populated, then it is not in zonelist.
1116 * This means the page allocator ignores this zone.
1117 * So, zonelist must be updated after online.
1118 */
1119 if (!populated_zone(zone)) {
1120 need_zonelists_rebuild = 1;
1121 setup_zone_pageset(zone);
1122 }
1123
1124 online_pages_range(pfn, nr_pages);
1125 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1126
1127 node_states_set_node(nid, &arg);
1128 if (need_zonelists_rebuild)
1129 build_all_zonelists(NULL);
1130
1131 /* Basic onlining is complete, allow allocation of onlined pages. */
1132 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1133
1134 /*
1135 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1136 * the tail of the freelist when undoing isolation). Shuffle the whole
1137 * zone to make sure the just onlined pages are properly distributed
1138 * across the whole freelist - to create an initial shuffle.
1139 */
1140 shuffle_zone(zone);
1141
1142 /* reinitialise watermarks and update pcp limits */
1143 init_per_zone_wmark_min();
1144
1145 kswapd_run(nid);
1146 kcompactd_run(nid);
1147
1148 writeback_set_ratelimit();
1149
1150 memory_notify(MEM_ONLINE, &arg);
1151 mem_hotplug_done();
1152 return 0;
1153
1154 failed_addition:
1155 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1156 (unsigned long long) pfn << PAGE_SHIFT,
1157 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1158 memory_notify(MEM_CANCEL_ONLINE, &arg);
1159 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1160 mem_hotplug_done();
1161 return ret;
1162 }
1163
1164 static void reset_node_present_pages(pg_data_t *pgdat)
1165 {
1166 struct zone *z;
1167
1168 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1169 z->present_pages = 0;
1170
1171 pgdat->node_present_pages = 0;
1172 }
1173
1174 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1175 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1176 {
1177 struct pglist_data *pgdat;
1178
1179 /*
1180 * NODE_DATA is preallocated (free_area_init) but its internal
1181 * state is not allocated completely. Add missing pieces.
1182 * Completely offline nodes stay around and they just need
1183 * reintialization.
1184 */
1185 pgdat = NODE_DATA(nid);
1186
1187 /* init node's zones as empty zones, we don't have any present pages.*/
1188 free_area_init_core_hotplug(pgdat);
1189
1190 /*
1191 * The node we allocated has no zone fallback lists. For avoiding
1192 * to access not-initialized zonelist, build here.
1193 */
1194 build_all_zonelists(pgdat);
1195
1196 /*
1197 * When memory is hot-added, all the memory is in offline state. So
1198 * clear all zones' present_pages because they will be updated in
1199 * online_pages() and offline_pages().
1200 * TODO: should be in free_area_init_core_hotplug?
1201 */
1202 reset_node_managed_pages(pgdat);
1203 reset_node_present_pages(pgdat);
1204
1205 return pgdat;
1206 }
1207
1208 /*
1209 * __try_online_node - online a node if offlined
1210 * @nid: the node ID
1211 * @set_node_online: Whether we want to online the node
1212 * called by cpu_up() to online a node without onlined memory.
1213 *
1214 * Returns:
1215 * 1 -> a new node has been allocated
1216 * 0 -> the node is already online
1217 * -ENOMEM -> the node could not be allocated
1218 */
1219 static int __try_online_node(int nid, bool set_node_online)
1220 {
1221 pg_data_t *pgdat;
1222 int ret = 1;
1223
1224 if (node_online(nid))
1225 return 0;
1226
1227 pgdat = hotadd_init_pgdat(nid);
1228 if (!pgdat) {
1229 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1230 ret = -ENOMEM;
1231 goto out;
1232 }
1233
1234 if (set_node_online) {
1235 node_set_online(nid);
1236 ret = register_one_node(nid);
1237 BUG_ON(ret);
1238 }
1239 out:
1240 return ret;
1241 }
1242
1243 /*
1244 * Users of this function always want to online/register the node
1245 */
1246 int try_online_node(int nid)
1247 {
1248 int ret;
1249
1250 mem_hotplug_begin();
1251 ret = __try_online_node(nid, true);
1252 mem_hotplug_done();
1253 return ret;
1254 }
1255
1256 static int check_hotplug_memory_range(u64 start, u64 size)
1257 {
1258 /* memory range must be block size aligned */
1259 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1260 !IS_ALIGNED(size, memory_block_size_bytes())) {
1261 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1262 memory_block_size_bytes(), start, size);
1263 return -EINVAL;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int online_memory_block(struct memory_block *mem, void *arg)
1270 {
1271 mem->online_type = mhp_default_online_type;
1272 return device_online(&mem->dev);
1273 }
1274
1275 bool mhp_supports_memmap_on_memory(unsigned long size)
1276 {
1277 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1278 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1279 unsigned long remaining_size = size - vmemmap_size;
1280
1281 /*
1282 * Besides having arch support and the feature enabled at runtime, we
1283 * need a few more assumptions to hold true:
1284 *
1285 * a) We span a single memory block: memory onlining/offlinin;g happens
1286 * in memory block granularity. We don't want the vmemmap of online
1287 * memory blocks to reside on offline memory blocks. In the future,
1288 * we might want to support variable-sized memory blocks to make the
1289 * feature more versatile.
1290 *
1291 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1292 * to populate memory from the altmap for unrelated parts (i.e.,
1293 * other memory blocks)
1294 *
1295 * c) The vmemmap pages (and thereby the pages that will be exposed to
1296 * the buddy) have to cover full pageblocks: memory onlining/offlining
1297 * code requires applicable ranges to be page-aligned, for example, to
1298 * set the migratetypes properly.
1299 *
1300 * TODO: Although we have a check here to make sure that vmemmap pages
1301 * fully populate a PMD, it is not the right place to check for
1302 * this. A much better solution involves improving vmemmap code
1303 * to fallback to base pages when trying to populate vmemmap using
1304 * altmap as an alternative source of memory, and we do not exactly
1305 * populate a single PMD.
1306 */
1307 return mhp_memmap_on_memory() &&
1308 size == memory_block_size_bytes() &&
1309 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1310 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1311 }
1312
1313 /*
1314 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1315 * and online/offline operations (triggered e.g. by sysfs).
1316 *
1317 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1318 */
1319 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1320 {
1321 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1322 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1323 struct vmem_altmap mhp_altmap = {};
1324 struct memory_group *group = NULL;
1325 u64 start, size;
1326 bool new_node = false;
1327 int ret;
1328
1329 start = res->start;
1330 size = resource_size(res);
1331
1332 ret = check_hotplug_memory_range(start, size);
1333 if (ret)
1334 return ret;
1335
1336 if (mhp_flags & MHP_NID_IS_MGID) {
1337 group = memory_group_find_by_id(nid);
1338 if (!group)
1339 return -EINVAL;
1340 nid = group->nid;
1341 }
1342
1343 if (!node_possible(nid)) {
1344 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1345 return -EINVAL;
1346 }
1347
1348 mem_hotplug_begin();
1349
1350 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1351 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1352 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1353 ret = memblock_add_node(start, size, nid, memblock_flags);
1354 if (ret)
1355 goto error_mem_hotplug_end;
1356 }
1357
1358 ret = __try_online_node(nid, false);
1359 if (ret < 0)
1360 goto error;
1361 new_node = ret;
1362
1363 /*
1364 * Self hosted memmap array
1365 */
1366 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1367 if (!mhp_supports_memmap_on_memory(size)) {
1368 ret = -EINVAL;
1369 goto error;
1370 }
1371 mhp_altmap.free = PHYS_PFN(size);
1372 mhp_altmap.base_pfn = PHYS_PFN(start);
1373 params.altmap = &mhp_altmap;
1374 }
1375
1376 /* call arch's memory hotadd */
1377 ret = arch_add_memory(nid, start, size, &params);
1378 if (ret < 0)
1379 goto error;
1380
1381 /* create memory block devices after memory was added */
1382 ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1383 group);
1384 if (ret) {
1385 arch_remove_memory(start, size, NULL);
1386 goto error;
1387 }
1388
1389 if (new_node) {
1390 /* If sysfs file of new node can't be created, cpu on the node
1391 * can't be hot-added. There is no rollback way now.
1392 * So, check by BUG_ON() to catch it reluctantly..
1393 * We online node here. We can't roll back from here.
1394 */
1395 node_set_online(nid);
1396 ret = __register_one_node(nid);
1397 BUG_ON(ret);
1398 }
1399
1400 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1401 PFN_UP(start + size - 1),
1402 MEMINIT_HOTPLUG);
1403
1404 /* create new memmap entry */
1405 if (!strcmp(res->name, "System RAM"))
1406 firmware_map_add_hotplug(start, start + size, "System RAM");
1407
1408 /* device_online() will take the lock when calling online_pages() */
1409 mem_hotplug_done();
1410
1411 /*
1412 * In case we're allowed to merge the resource, flag it and trigger
1413 * merging now that adding succeeded.
1414 */
1415 if (mhp_flags & MHP_MERGE_RESOURCE)
1416 merge_system_ram_resource(res);
1417
1418 /* online pages if requested */
1419 if (mhp_default_online_type != MMOP_OFFLINE)
1420 walk_memory_blocks(start, size, NULL, online_memory_block);
1421
1422 return ret;
1423 error:
1424 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1425 memblock_remove(start, size);
1426 error_mem_hotplug_end:
1427 mem_hotplug_done();
1428 return ret;
1429 }
1430
1431 /* requires device_hotplug_lock, see add_memory_resource() */
1432 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1433 {
1434 struct resource *res;
1435 int ret;
1436
1437 res = register_memory_resource(start, size, "System RAM");
1438 if (IS_ERR(res))
1439 return PTR_ERR(res);
1440
1441 ret = add_memory_resource(nid, res, mhp_flags);
1442 if (ret < 0)
1443 release_memory_resource(res);
1444 return ret;
1445 }
1446
1447 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1448 {
1449 int rc;
1450
1451 lock_device_hotplug();
1452 rc = __add_memory(nid, start, size, mhp_flags);
1453 unlock_device_hotplug();
1454
1455 return rc;
1456 }
1457 EXPORT_SYMBOL_GPL(add_memory);
1458
1459 /*
1460 * Add special, driver-managed memory to the system as system RAM. Such
1461 * memory is not exposed via the raw firmware-provided memmap as system
1462 * RAM, instead, it is detected and added by a driver - during cold boot,
1463 * after a reboot, and after kexec.
1464 *
1465 * Reasons why this memory should not be used for the initial memmap of a
1466 * kexec kernel or for placing kexec images:
1467 * - The booting kernel is in charge of determining how this memory will be
1468 * used (e.g., use persistent memory as system RAM)
1469 * - Coordination with a hypervisor is required before this memory
1470 * can be used (e.g., inaccessible parts).
1471 *
1472 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1473 * memory map") are created. Also, the created memory resource is flagged
1474 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1475 * this memory as well (esp., not place kexec images onto it).
1476 *
1477 * The resource_name (visible via /proc/iomem) has to have the format
1478 * "System RAM ($DRIVER)".
1479 */
1480 int add_memory_driver_managed(int nid, u64 start, u64 size,
1481 const char *resource_name, mhp_t mhp_flags)
1482 {
1483 struct resource *res;
1484 int rc;
1485
1486 if (!resource_name ||
1487 strstr(resource_name, "System RAM (") != resource_name ||
1488 resource_name[strlen(resource_name) - 1] != ')')
1489 return -EINVAL;
1490
1491 lock_device_hotplug();
1492
1493 res = register_memory_resource(start, size, resource_name);
1494 if (IS_ERR(res)) {
1495 rc = PTR_ERR(res);
1496 goto out_unlock;
1497 }
1498
1499 rc = add_memory_resource(nid, res, mhp_flags);
1500 if (rc < 0)
1501 release_memory_resource(res);
1502
1503 out_unlock:
1504 unlock_device_hotplug();
1505 return rc;
1506 }
1507 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1508
1509 /*
1510 * Platforms should define arch_get_mappable_range() that provides
1511 * maximum possible addressable physical memory range for which the
1512 * linear mapping could be created. The platform returned address
1513 * range must adhere to these following semantics.
1514 *
1515 * - range.start <= range.end
1516 * - Range includes both end points [range.start..range.end]
1517 *
1518 * There is also a fallback definition provided here, allowing the
1519 * entire possible physical address range in case any platform does
1520 * not define arch_get_mappable_range().
1521 */
1522 struct range __weak arch_get_mappable_range(void)
1523 {
1524 struct range mhp_range = {
1525 .start = 0UL,
1526 .end = -1ULL,
1527 };
1528 return mhp_range;
1529 }
1530
1531 struct range mhp_get_pluggable_range(bool need_mapping)
1532 {
1533 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1534 struct range mhp_range;
1535
1536 if (need_mapping) {
1537 mhp_range = arch_get_mappable_range();
1538 if (mhp_range.start > max_phys) {
1539 mhp_range.start = 0;
1540 mhp_range.end = 0;
1541 }
1542 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1543 } else {
1544 mhp_range.start = 0;
1545 mhp_range.end = max_phys;
1546 }
1547 return mhp_range;
1548 }
1549 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1550
1551 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1552 {
1553 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1554 u64 end = start + size;
1555
1556 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1557 return true;
1558
1559 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1560 start, end, mhp_range.start, mhp_range.end);
1561 return false;
1562 }
1563
1564 #ifdef CONFIG_MEMORY_HOTREMOVE
1565 /*
1566 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1567 * non-lru movable pages and hugepages). Will skip over most unmovable
1568 * pages (esp., pages that can be skipped when offlining), but bail out on
1569 * definitely unmovable pages.
1570 *
1571 * Returns:
1572 * 0 in case a movable page is found and movable_pfn was updated.
1573 * -ENOENT in case no movable page was found.
1574 * -EBUSY in case a definitely unmovable page was found.
1575 */
1576 static int scan_movable_pages(unsigned long start, unsigned long end,
1577 unsigned long *movable_pfn)
1578 {
1579 unsigned long pfn;
1580
1581 for (pfn = start; pfn < end; pfn++) {
1582 struct page *page, *head;
1583 unsigned long skip;
1584
1585 if (!pfn_valid(pfn))
1586 continue;
1587 page = pfn_to_page(pfn);
1588 if (PageLRU(page))
1589 goto found;
1590 if (__PageMovable(page))
1591 goto found;
1592
1593 /*
1594 * PageOffline() pages that are not marked __PageMovable() and
1595 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1596 * definitely unmovable. If their reference count would be 0,
1597 * they could at least be skipped when offlining memory.
1598 */
1599 if (PageOffline(page) && page_count(page))
1600 return -EBUSY;
1601
1602 if (!PageHuge(page))
1603 continue;
1604 head = compound_head(page);
1605 /*
1606 * This test is racy as we hold no reference or lock. The
1607 * hugetlb page could have been free'ed and head is no longer
1608 * a hugetlb page before the following check. In such unlikely
1609 * cases false positives and negatives are possible. Calling
1610 * code must deal with these scenarios.
1611 */
1612 if (HPageMigratable(head))
1613 goto found;
1614 skip = compound_nr(head) - (page - head);
1615 pfn += skip - 1;
1616 }
1617 return -ENOENT;
1618 found:
1619 *movable_pfn = pfn;
1620 return 0;
1621 }
1622
1623 static int
1624 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1625 {
1626 unsigned long pfn;
1627 struct page *page, *head;
1628 int ret = 0;
1629 LIST_HEAD(source);
1630 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1631 DEFAULT_RATELIMIT_BURST);
1632
1633 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1634 struct folio *folio;
1635
1636 if (!pfn_valid(pfn))
1637 continue;
1638 page = pfn_to_page(pfn);
1639 folio = page_folio(page);
1640 head = &folio->page;
1641
1642 if (PageHuge(page)) {
1643 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1644 isolate_hugetlb(head, &source);
1645 continue;
1646 } else if (PageTransHuge(page))
1647 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1648
1649 /*
1650 * HWPoison pages have elevated reference counts so the migration would
1651 * fail on them. It also doesn't make any sense to migrate them in the
1652 * first place. Still try to unmap such a page in case it is still mapped
1653 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1654 * the unmap as the catch all safety net).
1655 */
1656 if (PageHWPoison(page)) {
1657 if (WARN_ON(folio_test_lru(folio)))
1658 folio_isolate_lru(folio);
1659 if (folio_mapped(folio))
1660 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1661 continue;
1662 }
1663
1664 if (!get_page_unless_zero(page))
1665 continue;
1666 /*
1667 * We can skip free pages. And we can deal with pages on
1668 * LRU and non-lru movable pages.
1669 */
1670 if (PageLRU(page))
1671 ret = isolate_lru_page(page);
1672 else
1673 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1674 if (!ret) { /* Success */
1675 list_add_tail(&page->lru, &source);
1676 if (!__PageMovable(page))
1677 inc_node_page_state(page, NR_ISOLATED_ANON +
1678 page_is_file_lru(page));
1679
1680 } else {
1681 if (__ratelimit(&migrate_rs)) {
1682 pr_warn("failed to isolate pfn %lx\n", pfn);
1683 dump_page(page, "isolation failed");
1684 }
1685 }
1686 put_page(page);
1687 }
1688 if (!list_empty(&source)) {
1689 nodemask_t nmask = node_states[N_MEMORY];
1690 struct migration_target_control mtc = {
1691 .nmask = &nmask,
1692 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1693 };
1694
1695 /*
1696 * We have checked that migration range is on a single zone so
1697 * we can use the nid of the first page to all the others.
1698 */
1699 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1700
1701 /*
1702 * try to allocate from a different node but reuse this node
1703 * if there are no other online nodes to be used (e.g. we are
1704 * offlining a part of the only existing node)
1705 */
1706 node_clear(mtc.nid, nmask);
1707 if (nodes_empty(nmask))
1708 node_set(mtc.nid, nmask);
1709 ret = migrate_pages(&source, alloc_migration_target, NULL,
1710 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1711 if (ret) {
1712 list_for_each_entry(page, &source, lru) {
1713 if (__ratelimit(&migrate_rs)) {
1714 pr_warn("migrating pfn %lx failed ret:%d\n",
1715 page_to_pfn(page), ret);
1716 dump_page(page, "migration failure");
1717 }
1718 }
1719 putback_movable_pages(&source);
1720 }
1721 }
1722
1723 return ret;
1724 }
1725
1726 static int __init cmdline_parse_movable_node(char *p)
1727 {
1728 movable_node_enabled = true;
1729 return 0;
1730 }
1731 early_param("movable_node", cmdline_parse_movable_node);
1732
1733 /* check which state of node_states will be changed when offline memory */
1734 static void node_states_check_changes_offline(unsigned long nr_pages,
1735 struct zone *zone, struct memory_notify *arg)
1736 {
1737 struct pglist_data *pgdat = zone->zone_pgdat;
1738 unsigned long present_pages = 0;
1739 enum zone_type zt;
1740
1741 arg->status_change_nid = NUMA_NO_NODE;
1742 arg->status_change_nid_normal = NUMA_NO_NODE;
1743
1744 /*
1745 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1746 * If the memory to be offline is within the range
1747 * [0..ZONE_NORMAL], and it is the last present memory there,
1748 * the zones in that range will become empty after the offlining,
1749 * thus we can determine that we need to clear the node from
1750 * node_states[N_NORMAL_MEMORY].
1751 */
1752 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1753 present_pages += pgdat->node_zones[zt].present_pages;
1754 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1755 arg->status_change_nid_normal = zone_to_nid(zone);
1756
1757 /*
1758 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1759 * does not apply as we don't support 32bit.
1760 * Here we count the possible pages from ZONE_MOVABLE.
1761 * If after having accounted all the pages, we see that the nr_pages
1762 * to be offlined is over or equal to the accounted pages,
1763 * we know that the node will become empty, and so, we can clear
1764 * it for N_MEMORY as well.
1765 */
1766 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1767
1768 if (nr_pages >= present_pages)
1769 arg->status_change_nid = zone_to_nid(zone);
1770 }
1771
1772 static void node_states_clear_node(int node, struct memory_notify *arg)
1773 {
1774 if (arg->status_change_nid_normal >= 0)
1775 node_clear_state(node, N_NORMAL_MEMORY);
1776
1777 if (arg->status_change_nid >= 0)
1778 node_clear_state(node, N_MEMORY);
1779 }
1780
1781 static int count_system_ram_pages_cb(unsigned long start_pfn,
1782 unsigned long nr_pages, void *data)
1783 {
1784 unsigned long *nr_system_ram_pages = data;
1785
1786 *nr_system_ram_pages += nr_pages;
1787 return 0;
1788 }
1789
1790 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1791 struct zone *zone, struct memory_group *group)
1792 {
1793 const unsigned long end_pfn = start_pfn + nr_pages;
1794 unsigned long pfn, system_ram_pages = 0;
1795 const int node = zone_to_nid(zone);
1796 unsigned long flags;
1797 struct memory_notify arg;
1798 char *reason;
1799 int ret;
1800
1801 /*
1802 * {on,off}lining is constrained to full memory sections (or more
1803 * precisely to memory blocks from the user space POV).
1804 * memmap_on_memory is an exception because it reserves initial part
1805 * of the physical memory space for vmemmaps. That space is pageblock
1806 * aligned.
1807 */
1808 if (WARN_ON_ONCE(!nr_pages ||
1809 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1810 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1811 return -EINVAL;
1812
1813 mem_hotplug_begin();
1814
1815 /*
1816 * Don't allow to offline memory blocks that contain holes.
1817 * Consequently, memory blocks with holes can never get onlined
1818 * via the hotplug path - online_pages() - as hotplugged memory has
1819 * no holes. This way, we e.g., don't have to worry about marking
1820 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1821 * avoid using walk_system_ram_range() later.
1822 */
1823 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1824 count_system_ram_pages_cb);
1825 if (system_ram_pages != nr_pages) {
1826 ret = -EINVAL;
1827 reason = "memory holes";
1828 goto failed_removal;
1829 }
1830
1831 /*
1832 * We only support offlining of memory blocks managed by a single zone,
1833 * checked by calling code. This is just a sanity check that we might
1834 * want to remove in the future.
1835 */
1836 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1837 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1838 ret = -EINVAL;
1839 reason = "multizone range";
1840 goto failed_removal;
1841 }
1842
1843 /*
1844 * Disable pcplists so that page isolation cannot race with freeing
1845 * in a way that pages from isolated pageblock are left on pcplists.
1846 */
1847 zone_pcp_disable(zone);
1848 lru_cache_disable();
1849
1850 /* set above range as isolated */
1851 ret = start_isolate_page_range(start_pfn, end_pfn,
1852 MIGRATE_MOVABLE,
1853 MEMORY_OFFLINE | REPORT_FAILURE,
1854 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1855 if (ret) {
1856 reason = "failure to isolate range";
1857 goto failed_removal_pcplists_disabled;
1858 }
1859
1860 arg.start_pfn = start_pfn;
1861 arg.nr_pages = nr_pages;
1862 node_states_check_changes_offline(nr_pages, zone, &arg);
1863
1864 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1865 ret = notifier_to_errno(ret);
1866 if (ret) {
1867 reason = "notifier failure";
1868 goto failed_removal_isolated;
1869 }
1870
1871 do {
1872 pfn = start_pfn;
1873 do {
1874 if (signal_pending(current)) {
1875 ret = -EINTR;
1876 reason = "signal backoff";
1877 goto failed_removal_isolated;
1878 }
1879
1880 cond_resched();
1881
1882 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1883 if (!ret) {
1884 /*
1885 * TODO: fatal migration failures should bail
1886 * out
1887 */
1888 do_migrate_range(pfn, end_pfn);
1889 }
1890 } while (!ret);
1891
1892 if (ret != -ENOENT) {
1893 reason = "unmovable page";
1894 goto failed_removal_isolated;
1895 }
1896
1897 /*
1898 * Dissolve free hugepages in the memory block before doing
1899 * offlining actually in order to make hugetlbfs's object
1900 * counting consistent.
1901 */
1902 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1903 if (ret) {
1904 reason = "failure to dissolve huge pages";
1905 goto failed_removal_isolated;
1906 }
1907
1908 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1909
1910 } while (ret);
1911
1912 /* Mark all sections offline and remove free pages from the buddy. */
1913 __offline_isolated_pages(start_pfn, end_pfn);
1914 pr_debug("Offlined Pages %ld\n", nr_pages);
1915
1916 /*
1917 * The memory sections are marked offline, and the pageblock flags
1918 * effectively stale; nobody should be touching them. Fixup the number
1919 * of isolated pageblocks, memory onlining will properly revert this.
1920 */
1921 spin_lock_irqsave(&zone->lock, flags);
1922 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1923 spin_unlock_irqrestore(&zone->lock, flags);
1924
1925 lru_cache_enable();
1926 zone_pcp_enable(zone);
1927
1928 /* removal success */
1929 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1930 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1931
1932 /* reinitialise watermarks and update pcp limits */
1933 init_per_zone_wmark_min();
1934
1935 if (!populated_zone(zone)) {
1936 zone_pcp_reset(zone);
1937 build_all_zonelists(NULL);
1938 }
1939
1940 node_states_clear_node(node, &arg);
1941 if (arg.status_change_nid >= 0) {
1942 kswapd_stop(node);
1943 kcompactd_stop(node);
1944 }
1945
1946 writeback_set_ratelimit();
1947
1948 memory_notify(MEM_OFFLINE, &arg);
1949 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1950 mem_hotplug_done();
1951 return 0;
1952
1953 failed_removal_isolated:
1954 /* pushback to free area */
1955 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1956 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1957 failed_removal_pcplists_disabled:
1958 lru_cache_enable();
1959 zone_pcp_enable(zone);
1960 failed_removal:
1961 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1962 (unsigned long long) start_pfn << PAGE_SHIFT,
1963 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1964 reason);
1965 mem_hotplug_done();
1966 return ret;
1967 }
1968
1969 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1970 {
1971 int ret = !is_memblock_offlined(mem);
1972 int *nid = arg;
1973
1974 *nid = mem->nid;
1975 if (unlikely(ret)) {
1976 phys_addr_t beginpa, endpa;
1977
1978 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1979 endpa = beginpa + memory_block_size_bytes() - 1;
1980 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1981 &beginpa, &endpa);
1982
1983 return -EBUSY;
1984 }
1985 return 0;
1986 }
1987
1988 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1989 {
1990 /*
1991 * If not set, continue with the next block.
1992 */
1993 return mem->nr_vmemmap_pages;
1994 }
1995
1996 static int check_cpu_on_node(int nid)
1997 {
1998 int cpu;
1999
2000 for_each_present_cpu(cpu) {
2001 if (cpu_to_node(cpu) == nid)
2002 /*
2003 * the cpu on this node isn't removed, and we can't
2004 * offline this node.
2005 */
2006 return -EBUSY;
2007 }
2008
2009 return 0;
2010 }
2011
2012 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2013 {
2014 int nid = *(int *)arg;
2015
2016 /*
2017 * If a memory block belongs to multiple nodes, the stored nid is not
2018 * reliable. However, such blocks are always online (e.g., cannot get
2019 * offlined) and, therefore, are still spanned by the node.
2020 */
2021 return mem->nid == nid ? -EEXIST : 0;
2022 }
2023
2024 /**
2025 * try_offline_node
2026 * @nid: the node ID
2027 *
2028 * Offline a node if all memory sections and cpus of the node are removed.
2029 *
2030 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2031 * and online/offline operations before this call.
2032 */
2033 void try_offline_node(int nid)
2034 {
2035 int rc;
2036
2037 /*
2038 * If the node still spans pages (especially ZONE_DEVICE), don't
2039 * offline it. A node spans memory after move_pfn_range_to_zone(),
2040 * e.g., after the memory block was onlined.
2041 */
2042 if (node_spanned_pages(nid))
2043 return;
2044
2045 /*
2046 * Especially offline memory blocks might not be spanned by the
2047 * node. They will get spanned by the node once they get onlined.
2048 * However, they link to the node in sysfs and can get onlined later.
2049 */
2050 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2051 if (rc)
2052 return;
2053
2054 if (check_cpu_on_node(nid))
2055 return;
2056
2057 /*
2058 * all memory/cpu of this node are removed, we can offline this
2059 * node now.
2060 */
2061 node_set_offline(nid);
2062 unregister_one_node(nid);
2063 }
2064 EXPORT_SYMBOL(try_offline_node);
2065
2066 static int __ref try_remove_memory(u64 start, u64 size)
2067 {
2068 struct vmem_altmap mhp_altmap = {};
2069 struct vmem_altmap *altmap = NULL;
2070 unsigned long nr_vmemmap_pages;
2071 int rc = 0, nid = NUMA_NO_NODE;
2072
2073 BUG_ON(check_hotplug_memory_range(start, size));
2074
2075 /*
2076 * All memory blocks must be offlined before removing memory. Check
2077 * whether all memory blocks in question are offline and return error
2078 * if this is not the case.
2079 *
2080 * While at it, determine the nid. Note that if we'd have mixed nodes,
2081 * we'd only try to offline the last determined one -- which is good
2082 * enough for the cases we care about.
2083 */
2084 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2085 if (rc)
2086 return rc;
2087
2088 /*
2089 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2090 * the same granularity it was added - a single memory block.
2091 */
2092 if (mhp_memmap_on_memory()) {
2093 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2094 get_nr_vmemmap_pages_cb);
2095 if (nr_vmemmap_pages) {
2096 if (size != memory_block_size_bytes()) {
2097 pr_warn("Refuse to remove %#llx - %#llx,"
2098 "wrong granularity\n",
2099 start, start + size);
2100 return -EINVAL;
2101 }
2102
2103 /*
2104 * Let remove_pmd_table->free_hugepage_table do the
2105 * right thing if we used vmem_altmap when hot-adding
2106 * the range.
2107 */
2108 mhp_altmap.alloc = nr_vmemmap_pages;
2109 altmap = &mhp_altmap;
2110 }
2111 }
2112
2113 /* remove memmap entry */
2114 firmware_map_remove(start, start + size, "System RAM");
2115
2116 /*
2117 * Memory block device removal under the device_hotplug_lock is
2118 * a barrier against racing online attempts.
2119 */
2120 remove_memory_block_devices(start, size);
2121
2122 mem_hotplug_begin();
2123
2124 arch_remove_memory(start, size, altmap);
2125
2126 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2127 memblock_phys_free(start, size);
2128 memblock_remove(start, size);
2129 }
2130
2131 release_mem_region_adjustable(start, size);
2132
2133 if (nid != NUMA_NO_NODE)
2134 try_offline_node(nid);
2135
2136 mem_hotplug_done();
2137 return 0;
2138 }
2139
2140 /**
2141 * __remove_memory - Remove memory if every memory block is offline
2142 * @start: physical address of the region to remove
2143 * @size: size of the region to remove
2144 *
2145 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2146 * and online/offline operations before this call, as required by
2147 * try_offline_node().
2148 */
2149 void __remove_memory(u64 start, u64 size)
2150 {
2151
2152 /*
2153 * trigger BUG() if some memory is not offlined prior to calling this
2154 * function
2155 */
2156 if (try_remove_memory(start, size))
2157 BUG();
2158 }
2159
2160 /*
2161 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2162 * some memory is not offline
2163 */
2164 int remove_memory(u64 start, u64 size)
2165 {
2166 int rc;
2167
2168 lock_device_hotplug();
2169 rc = try_remove_memory(start, size);
2170 unlock_device_hotplug();
2171
2172 return rc;
2173 }
2174 EXPORT_SYMBOL_GPL(remove_memory);
2175
2176 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2177 {
2178 uint8_t online_type = MMOP_ONLINE_KERNEL;
2179 uint8_t **online_types = arg;
2180 struct page *page;
2181 int rc;
2182
2183 /*
2184 * Sense the online_type via the zone of the memory block. Offlining
2185 * with multiple zones within one memory block will be rejected
2186 * by offlining code ... so we don't care about that.
2187 */
2188 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2189 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2190 online_type = MMOP_ONLINE_MOVABLE;
2191
2192 rc = device_offline(&mem->dev);
2193 /*
2194 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2195 * so try_reonline_memory_block() can do the right thing.
2196 */
2197 if (!rc)
2198 **online_types = online_type;
2199
2200 (*online_types)++;
2201 /* Ignore if already offline. */
2202 return rc < 0 ? rc : 0;
2203 }
2204
2205 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2206 {
2207 uint8_t **online_types = arg;
2208 int rc;
2209
2210 if (**online_types != MMOP_OFFLINE) {
2211 mem->online_type = **online_types;
2212 rc = device_online(&mem->dev);
2213 if (rc < 0)
2214 pr_warn("%s: Failed to re-online memory: %d",
2215 __func__, rc);
2216 }
2217
2218 /* Continue processing all remaining memory blocks. */
2219 (*online_types)++;
2220 return 0;
2221 }
2222
2223 /*
2224 * Try to offline and remove memory. Might take a long time to finish in case
2225 * memory is still in use. Primarily useful for memory devices that logically
2226 * unplugged all memory (so it's no longer in use) and want to offline + remove
2227 * that memory.
2228 */
2229 int offline_and_remove_memory(u64 start, u64 size)
2230 {
2231 const unsigned long mb_count = size / memory_block_size_bytes();
2232 uint8_t *online_types, *tmp;
2233 int rc;
2234
2235 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2236 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2237 return -EINVAL;
2238
2239 /*
2240 * We'll remember the old online type of each memory block, so we can
2241 * try to revert whatever we did when offlining one memory block fails
2242 * after offlining some others succeeded.
2243 */
2244 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2245 GFP_KERNEL);
2246 if (!online_types)
2247 return -ENOMEM;
2248 /*
2249 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2250 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2251 * try_reonline_memory_block().
2252 */
2253 memset(online_types, MMOP_OFFLINE, mb_count);
2254
2255 lock_device_hotplug();
2256
2257 tmp = online_types;
2258 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2259
2260 /*
2261 * In case we succeeded to offline all memory, remove it.
2262 * This cannot fail as it cannot get onlined in the meantime.
2263 */
2264 if (!rc) {
2265 rc = try_remove_memory(start, size);
2266 if (rc)
2267 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2268 }
2269
2270 /*
2271 * Rollback what we did. While memory onlining might theoretically fail
2272 * (nacked by a notifier), it barely ever happens.
2273 */
2274 if (rc) {
2275 tmp = online_types;
2276 walk_memory_blocks(start, size, &tmp,
2277 try_reonline_memory_block);
2278 }
2279 unlock_device_hotplug();
2280
2281 kfree(online_types);
2282 return rc;
2283 }
2284 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2285 #endif /* CONFIG_MEMORY_HOTREMOVE */