]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - opcodes/vax-dis.c
update copyright dates
[thirdparty/binutils-gdb.git] / opcodes / vax-dis.c
1 /* Print VAX instructions.
2 Copyright 1995, 1998, 2000, 2001, 2002, 2005, 2007, 2009
3 Free Software Foundation, Inc.
4 Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
5
6 This file is part of the GNU opcodes library.
7
8 This library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 It is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include <setjmp.h>
24 #include <string.h>
25 #include "sysdep.h"
26 #include "opcode/vax.h"
27 #include "dis-asm.h"
28
29 static char *reg_names[] =
30 {
31 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
32 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
33 };
34
35 /* Definitions for the function entry mask bits. */
36 static char *entry_mask_bit[] =
37 {
38 /* Registers 0 and 1 shall not be saved, since they're used to pass back
39 a function's result to its caller... */
40 "~r0~", "~r1~",
41 /* Registers 2 .. 11 are normal registers. */
42 "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
43 /* Registers 12 and 13 are argument and frame pointer and must not
44 be saved by using the entry mask. */
45 "~ap~", "~fp~",
46 /* Bits 14 and 15 control integer and decimal overflow. */
47 "IntOvfl", "DecOvfl",
48 };
49
50 /* Sign-extend an (unsigned char). */
51 #define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
52
53 /* Get a 1 byte signed integer. */
54 #define NEXTBYTE(p) \
55 (p += 1, FETCH_DATA (info, p), \
56 COERCE_SIGNED_CHAR(p[-1]))
57
58 /* Get a 2 byte signed integer. */
59 #define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
60 #define NEXTWORD(p) \
61 (p += 2, FETCH_DATA (info, p), \
62 COERCE16 ((p[-1] << 8) + p[-2]))
63
64 /* Get a 4 byte signed integer. */
65 #define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
66 #define NEXTLONG(p) \
67 (p += 4, FETCH_DATA (info, p), \
68 (COERCE32 ((((((p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
69
70 /* Maximum length of an instruction. */
71 #define MAXLEN 25
72
73 struct private
74 {
75 /* Points to first byte not fetched. */
76 bfd_byte * max_fetched;
77 bfd_byte the_buffer[MAXLEN];
78 bfd_vma insn_start;
79 jmp_buf bailout;
80 };
81
82 /* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
83 to ADDR (exclusive) are valid. Returns 1 for success, longjmps
84 on error. */
85 #define FETCH_DATA(info, addr) \
86 ((addr) <= ((struct private *)(info->private_data))->max_fetched \
87 ? 1 : fetch_data ((info), (addr)))
88
89 static int
90 fetch_data (struct disassemble_info *info, bfd_byte *addr)
91 {
92 int status;
93 struct private *priv = (struct private *) info->private_data;
94 bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
95
96 status = (*info->read_memory_func) (start,
97 priv->max_fetched,
98 addr - priv->max_fetched,
99 info);
100 if (status != 0)
101 {
102 (*info->memory_error_func) (status, start, info);
103 longjmp (priv->bailout, 1);
104 }
105 else
106 priv->max_fetched = addr;
107
108 return 1;
109 }
110
111 /* Entry mask handling. */
112 static unsigned int entry_addr_occupied_slots = 0;
113 static unsigned int entry_addr_total_slots = 0;
114 static bfd_vma * entry_addr = NULL;
115
116 /* Parse the VAX specific disassembler options. These contain function
117 entry addresses, which can be useful to disassemble ROM images, since
118 there's no symbol table. Returns TRUE upon success, FALSE otherwise. */
119
120 static bfd_boolean
121 parse_disassembler_options (char * options)
122 {
123 const char * entry_switch = "entry:";
124
125 while ((options = strstr (options, entry_switch)))
126 {
127 options += strlen (entry_switch);
128
129 /* The greater-than part of the test below is paranoia. */
130 if (entry_addr_occupied_slots >= entry_addr_total_slots)
131 {
132 /* A guesstimate of the number of entries we will have to create. */
133 entry_addr_total_slots +=
134 strlen (options) / (strlen (entry_switch) + 5);
135
136 entry_addr = realloc (entry_addr, sizeof (bfd_vma)
137 * entry_addr_total_slots);
138 }
139
140 if (entry_addr == NULL)
141 return FALSE;
142
143 entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
144 entry_addr_occupied_slots ++;
145 }
146
147 return TRUE;
148 }
149
150 #if 0 /* FIXME: Ideally the disassembler should have target specific
151 initialisation and termination function pointers. Then
152 parse_disassembler_options could be the init function and
153 free_entry_array (below) could be the termination routine.
154 Until then there is no way for the disassembler to tell us
155 that it has finished and that we no longer need the entry
156 array, so this routine is suppressed for now. It does mean
157 that we leak memory, but only to the extent that we do not
158 free it just before the disassembler is about to terminate
159 anyway. */
160
161 /* Free memory allocated to our entry array. */
162
163 static void
164 free_entry_array (void)
165 {
166 if (entry_addr)
167 {
168 free (entry_addr);
169 entry_addr = NULL;
170 entry_addr_occupied_slots = entry_addr_total_slots = 0;
171 }
172 }
173 #endif
174 /* Check if the given address is a known function entry point. This is
175 the case if there is a symbol of the function type at this address.
176 We also check for synthetic symbols as these are used for PLT entries
177 (weak undefined symbols may not have the function type set). Finally
178 the address may have been forced to be treated as an entry point. The
179 latter helps in disassembling ROM images, because there's no symbol
180 table at all. Forced entry points can be given by supplying several
181 -M options to objdump: -M entry:0xffbb7730. */
182
183 static bfd_boolean
184 is_function_entry (struct disassemble_info *info, bfd_vma addr)
185 {
186 unsigned int i;
187
188 /* Check if there's a function or PLT symbol at our address. */
189 if (info->symbols
190 && info->symbols[0]
191 && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
192 && addr == bfd_asymbol_value (info->symbols[0]))
193 return TRUE;
194
195 /* Check for forced function entry address. */
196 for (i = entry_addr_occupied_slots; i--;)
197 if (entry_addr[i] == addr)
198 return TRUE;
199
200 return FALSE;
201 }
202
203 /* Check if the given address is the last longword of a PLT entry.
204 This longword is data and depending on the value it may interfere
205 with disassembly of further PLT entries. We make use of the fact
206 PLT symbols are marked BSF_SYNTHETIC. */
207 static bfd_boolean
208 is_plt_tail (struct disassemble_info *info, bfd_vma addr)
209 {
210 if (info->symbols
211 && info->symbols[0]
212 && (info->symbols[0]->flags & BSF_SYNTHETIC)
213 && addr == bfd_asymbol_value (info->symbols[0]) + 8)
214 return TRUE;
215
216 return FALSE;
217 }
218
219 static int
220 print_insn_mode (const char *d,
221 int size,
222 unsigned char *p0,
223 bfd_vma addr, /* PC for this arg to be relative to. */
224 disassemble_info *info)
225 {
226 unsigned char *p = p0;
227 unsigned char mode, reg;
228
229 /* Fetch and interpret mode byte. */
230 mode = (unsigned char) NEXTBYTE (p);
231 reg = mode & 0xF;
232 switch (mode & 0xF0)
233 {
234 case 0x00:
235 case 0x10:
236 case 0x20:
237 case 0x30: /* Literal mode $number. */
238 if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
239 (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
240 else
241 (*info->fprintf_func) (info->stream, "$0x%x", mode);
242 break;
243 case 0x40: /* Index: base-addr[Rn] */
244 p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
245 (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
246 break;
247 case 0x50: /* Register: Rn */
248 (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
249 break;
250 case 0x60: /* Register deferred: (Rn) */
251 (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
252 break;
253 case 0x70: /* Autodecrement: -(Rn) */
254 (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
255 break;
256 case 0x80: /* Autoincrement: (Rn)+ */
257 if (reg == 0xF)
258 { /* Immediate? */
259 int i;
260
261 FETCH_DATA (info, p + size);
262 (*info->fprintf_func) (info->stream, "$0x");
263 if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
264 {
265 int float_word;
266
267 float_word = p[0] | (p[1] << 8);
268 if ((d[1] == 'd' || d[1] == 'f')
269 && (float_word & 0xff80) == 0x8000)
270 {
271 (*info->fprintf_func) (info->stream, "[invalid %c-float]",
272 d[1]);
273 }
274 else
275 {
276 for (i = 0; i < size; i++)
277 (*info->fprintf_func) (info->stream, "%02x",
278 p[size - i - 1]);
279 (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
280 }
281 }
282 else
283 {
284 for (i = 0; i < size; i++)
285 (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
286 }
287 p += size;
288 }
289 else
290 (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
291 break;
292 case 0x90: /* Autoincrement deferred: @(Rn)+ */
293 if (reg == 0xF)
294 (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
295 else
296 (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
297 break;
298 case 0xB0: /* Displacement byte deferred: *displ(Rn). */
299 (*info->fprintf_func) (info->stream, "*");
300 case 0xA0: /* Displacement byte: displ(Rn). */
301 if (reg == 0xF)
302 (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
303 else
304 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
305 reg_names[reg]);
306 break;
307 case 0xD0: /* Displacement word deferred: *displ(Rn). */
308 (*info->fprintf_func) (info->stream, "*");
309 case 0xC0: /* Displacement word: displ(Rn). */
310 if (reg == 0xF)
311 (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
312 else
313 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
314 reg_names[reg]);
315 break;
316 case 0xF0: /* Displacement long deferred: *displ(Rn). */
317 (*info->fprintf_func) (info->stream, "*");
318 case 0xE0: /* Displacement long: displ(Rn). */
319 if (reg == 0xF)
320 (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
321 else
322 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
323 reg_names[reg]);
324 break;
325 }
326
327 return p - p0;
328 }
329
330 /* Returns number of bytes "eaten" by the operand, or return -1 if an
331 invalid operand was found, or -2 if an opcode tabel error was
332 found. */
333
334 static int
335 print_insn_arg (const char *d,
336 unsigned char *p0,
337 bfd_vma addr, /* PC for this arg to be relative to. */
338 disassemble_info *info)
339 {
340 int arg_len;
341
342 /* Check validity of addressing length. */
343 switch (d[1])
344 {
345 case 'b' : arg_len = 1; break;
346 case 'd' : arg_len = 8; break;
347 case 'f' : arg_len = 4; break;
348 case 'g' : arg_len = 8; break;
349 case 'h' : arg_len = 16; break;
350 case 'l' : arg_len = 4; break;
351 case 'o' : arg_len = 16; break;
352 case 'w' : arg_len = 2; break;
353 case 'q' : arg_len = 8; break;
354 default : abort ();
355 }
356
357 /* Branches have no mode byte. */
358 if (d[0] == 'b')
359 {
360 unsigned char *p = p0;
361
362 if (arg_len == 1)
363 (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
364 else
365 (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
366
367 return p - p0;
368 }
369
370 return print_insn_mode (d, arg_len, p0, addr, info);
371 }
372
373 /* Print the vax instruction at address MEMADDR in debugged memory,
374 on INFO->STREAM. Returns length of the instruction, in bytes. */
375
376 int
377 print_insn_vax (bfd_vma memaddr, disassemble_info *info)
378 {
379 static bfd_boolean parsed_disassembler_options = FALSE;
380 const struct vot *votp;
381 const char *argp;
382 unsigned char *arg;
383 struct private priv;
384 bfd_byte *buffer = priv.the_buffer;
385
386 info->private_data = & priv;
387 priv.max_fetched = priv.the_buffer;
388 priv.insn_start = memaddr;
389
390 if (! parsed_disassembler_options
391 && info->disassembler_options != NULL)
392 {
393 parse_disassembler_options (info->disassembler_options);
394
395 /* To avoid repeated parsing of these options. */
396 parsed_disassembler_options = TRUE;
397 }
398
399 if (setjmp (priv.bailout) != 0)
400 /* Error return. */
401 return -1;
402
403 argp = NULL;
404 /* Check if the info buffer has more than one byte left since
405 the last opcode might be a single byte with no argument data. */
406 if (info->buffer_length - (memaddr - info->buffer_vma) > 1)
407 {
408 FETCH_DATA (info, buffer + 2);
409 }
410 else
411 {
412 FETCH_DATA (info, buffer + 1);
413 buffer[1] = 0;
414 }
415
416 /* Decode function entry mask. */
417 if (is_function_entry (info, memaddr))
418 {
419 int i = 0;
420 int register_mask = buffer[1] << 8 | buffer[0];
421
422 (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
423 register_mask);
424
425 for (i = 15; i >= 0; i--)
426 if (register_mask & (1 << i))
427 (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
428
429 (*info->fprintf_func) (info->stream, " >");
430
431 return 2;
432 }
433
434 /* Decode PLT entry offset longword. */
435 if (is_plt_tail (info, memaddr))
436 {
437 int offset;
438
439 FETCH_DATA (info, buffer + 4);
440 offset = buffer[3] << 24 | buffer[2] << 16 | buffer[1] << 8 | buffer[0];
441 (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
442
443 return 4;
444 }
445
446 for (votp = &votstrs[0]; votp->name[0]; votp++)
447 {
448 vax_opcodeT opcode = votp->detail.code;
449
450 /* 2 byte codes match 2 buffer pos. */
451 if ((bfd_byte) opcode == buffer[0]
452 && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
453 {
454 argp = votp->detail.args;
455 break;
456 }
457 }
458 if (argp == NULL)
459 {
460 /* Handle undefined instructions. */
461 (*info->fprintf_func) (info->stream, ".word 0x%x",
462 (buffer[0] << 8) + buffer[1]);
463 return 2;
464 }
465
466 /* Point at first byte of argument data, and at descriptor for first
467 argument. */
468 arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
469
470 /* Make sure we have it in mem */
471 FETCH_DATA (info, arg);
472
473 (*info->fprintf_func) (info->stream, "%s", votp->name);
474 if (*argp)
475 (*info->fprintf_func) (info->stream, " ");
476
477 while (*argp)
478 {
479 arg += print_insn_arg (argp, arg, memaddr + arg - buffer, info);
480 argp += 2;
481 if (*argp)
482 (*info->fprintf_func) (info->stream, ",");
483 }
484
485 return arg - buffer;
486 }
487