]> git.ipfire.org Git - thirdparty/git.git/blob - refs/files-backend.c
refs: make delete_refs() virtual
[thirdparty/git.git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11 char *ref_name;
12 struct lock_file *lk;
13 struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19 * Information used (along with the information in ref_entry) to
20 * describe a single cached reference. This data structure only
21 * occurs embedded in a union in struct ref_entry, and only when
22 * (ref_entry->flag & REF_DIR) is zero.
23 */
24 struct ref_value {
25 /*
26 * The name of the object to which this reference resolves
27 * (which may be a tag object). If REF_ISBROKEN, this is
28 * null. If REF_ISSYMREF, then this is the name of the object
29 * referred to by the last reference in the symlink chain.
30 */
31 struct object_id oid;
32
33 /*
34 * If REF_KNOWS_PEELED, then this field holds the peeled value
35 * of this reference, or null if the reference is known not to
36 * be peelable. See the documentation for peel_ref() for an
37 * exact definition of "peelable".
38 */
39 struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45 * Information used (along with the information in ref_entry) to
46 * describe a level in the hierarchy of references. This data
47 * structure only occurs embedded in a union in struct ref_entry, and
48 * only when (ref_entry.flag & REF_DIR) is set. In that case,
49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50 * in the directory have already been read:
51 *
52 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53 * or packed references, already read.
54 *
55 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56 * references that hasn't been read yet (nor has any of its
57 * subdirectories).
58 *
59 * Entries within a directory are stored within a growable array of
60 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
61 * sorted are sorted by their component name in strcmp() order and the
62 * remaining entries are unsorted.
63 *
64 * Loose references are read lazily, one directory at a time. When a
65 * directory of loose references is read, then all of the references
66 * in that directory are stored, and REF_INCOMPLETE stubs are created
67 * for any subdirectories, but the subdirectories themselves are not
68 * read. The reading is triggered by get_ref_dir().
69 */
70 struct ref_dir {
71 int nr, alloc;
72
73 /*
74 * Entries with index 0 <= i < sorted are sorted by name. New
75 * entries are appended to the list unsorted, and are sorted
76 * only when required; thus we avoid the need to sort the list
77 * after the addition of every reference.
78 */
79 int sorted;
80
81 /* A pointer to the files_ref_store that contains this ref_dir. */
82 struct files_ref_store *ref_store;
83
84 struct ref_entry **entries;
85 };
86
87 /*
88 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90 * public values; see refs.h.
91 */
92
93 /*
94 * The field ref_entry->u.value.peeled of this value entry contains
95 * the correct peeled value for the reference, which might be
96 * null_sha1 if the reference is not a tag or if it is broken.
97 */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104 * Entry has not yet been read from disk (used only for REF_DIR
105 * entries representing loose references)
106 */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110 * A ref_entry represents either a reference or a "subdirectory" of
111 * references.
112 *
113 * Each directory in the reference namespace is represented by a
114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
115 * that holds the entries in that directory that have been read so
116 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
117 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
118 * used for loose reference directories.
119 *
120 * References are represented by a ref_entry with (flags & REF_DIR)
121 * unset and a value member that describes the reference's value. The
122 * flag member is at the ref_entry level, but it is also needed to
123 * interpret the contents of the value field (in other words, a
124 * ref_value object is not very much use without the enclosing
125 * ref_entry).
126 *
127 * Reference names cannot end with slash and directories' names are
128 * always stored with a trailing slash (except for the top-level
129 * directory, which is always denoted by ""). This has two nice
130 * consequences: (1) when the entries in each subdir are sorted
131 * lexicographically by name (as they usually are), the references in
132 * a whole tree can be generated in lexicographic order by traversing
133 * the tree in left-to-right, depth-first order; (2) the names of
134 * references and subdirectories cannot conflict, and therefore the
135 * presence of an empty subdirectory does not block the creation of a
136 * similarly-named reference. (The fact that reference names with the
137 * same leading components can conflict *with each other* is a
138 * separate issue that is regulated by verify_refname_available().)
139 *
140 * Please note that the name field contains the fully-qualified
141 * reference (or subdirectory) name. Space could be saved by only
142 * storing the relative names. But that would require the full names
143 * to be generated on the fly when iterating in do_for_each_ref(), and
144 * would break callback functions, who have always been able to assume
145 * that the name strings that they are passed will not be freed during
146 * the iteration.
147 */
148 struct ref_entry {
149 unsigned char flag; /* ISSYMREF? ISPACKED? */
150 union {
151 struct ref_value value; /* if not (flags&REF_DIR) */
152 struct ref_dir subdir; /* if (flags&REF_DIR) */
153 } u;
154 /*
155 * The full name of the reference (e.g., "refs/heads/master")
156 * or the full name of the directory with a trailing slash
157 * (e.g., "refs/heads/"):
158 */
159 char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165 const char *dirname, size_t len,
166 int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168
169 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
170 {
171 struct ref_dir *dir;
172 assert(entry->flag & REF_DIR);
173 dir = &entry->u.subdir;
174 if (entry->flag & REF_INCOMPLETE) {
175 read_loose_refs(entry->name, dir);
176
177 /*
178 * Manually add refs/bisect, which, being
179 * per-worktree, might not appear in the directory
180 * listing for refs/ in the main repo.
181 */
182 if (!strcmp(entry->name, "refs/")) {
183 int pos = search_ref_dir(dir, "refs/bisect/", 12);
184 if (pos < 0) {
185 struct ref_entry *child_entry;
186 child_entry = create_dir_entry(dir->ref_store,
187 "refs/bisect/",
188 12, 1);
189 add_entry_to_dir(dir, child_entry);
190 read_loose_refs("refs/bisect",
191 &child_entry->u.subdir);
192 }
193 }
194 entry->flag &= ~REF_INCOMPLETE;
195 }
196 return dir;
197 }
198
199 static struct ref_entry *create_ref_entry(const char *refname,
200 const unsigned char *sha1, int flag,
201 int check_name)
202 {
203 struct ref_entry *ref;
204
205 if (check_name &&
206 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
207 die("Reference has invalid format: '%s'", refname);
208 FLEX_ALLOC_STR(ref, name, refname);
209 hashcpy(ref->u.value.oid.hash, sha1);
210 oidclr(&ref->u.value.peeled);
211 ref->flag = flag;
212 return ref;
213 }
214
215 static void clear_ref_dir(struct ref_dir *dir);
216
217 static void free_ref_entry(struct ref_entry *entry)
218 {
219 if (entry->flag & REF_DIR) {
220 /*
221 * Do not use get_ref_dir() here, as that might
222 * trigger the reading of loose refs.
223 */
224 clear_ref_dir(&entry->u.subdir);
225 }
226 free(entry);
227 }
228
229 /*
230 * Add a ref_entry to the end of dir (unsorted). Entry is always
231 * stored directly in dir; no recursion into subdirectories is
232 * done.
233 */
234 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
235 {
236 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
237 dir->entries[dir->nr++] = entry;
238 /* optimize for the case that entries are added in order */
239 if (dir->nr == 1 ||
240 (dir->nr == dir->sorted + 1 &&
241 strcmp(dir->entries[dir->nr - 2]->name,
242 dir->entries[dir->nr - 1]->name) < 0))
243 dir->sorted = dir->nr;
244 }
245
246 /*
247 * Clear and free all entries in dir, recursively.
248 */
249 static void clear_ref_dir(struct ref_dir *dir)
250 {
251 int i;
252 for (i = 0; i < dir->nr; i++)
253 free_ref_entry(dir->entries[i]);
254 free(dir->entries);
255 dir->sorted = dir->nr = dir->alloc = 0;
256 dir->entries = NULL;
257 }
258
259 /*
260 * Create a struct ref_entry object for the specified dirname.
261 * dirname is the name of the directory with a trailing slash (e.g.,
262 * "refs/heads/") or "" for the top-level directory.
263 */
264 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
265 const char *dirname, size_t len,
266 int incomplete)
267 {
268 struct ref_entry *direntry;
269 FLEX_ALLOC_MEM(direntry, name, dirname, len);
270 direntry->u.subdir.ref_store = ref_store;
271 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
272 return direntry;
273 }
274
275 static int ref_entry_cmp(const void *a, const void *b)
276 {
277 struct ref_entry *one = *(struct ref_entry **)a;
278 struct ref_entry *two = *(struct ref_entry **)b;
279 return strcmp(one->name, two->name);
280 }
281
282 static void sort_ref_dir(struct ref_dir *dir);
283
284 struct string_slice {
285 size_t len;
286 const char *str;
287 };
288
289 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
290 {
291 const struct string_slice *key = key_;
292 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
293 int cmp = strncmp(key->str, ent->name, key->len);
294 if (cmp)
295 return cmp;
296 return '\0' - (unsigned char)ent->name[key->len];
297 }
298
299 /*
300 * Return the index of the entry with the given refname from the
301 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
302 * no such entry is found. dir must already be complete.
303 */
304 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
305 {
306 struct ref_entry **r;
307 struct string_slice key;
308
309 if (refname == NULL || !dir->nr)
310 return -1;
311
312 sort_ref_dir(dir);
313 key.len = len;
314 key.str = refname;
315 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
316 ref_entry_cmp_sslice);
317
318 if (r == NULL)
319 return -1;
320
321 return r - dir->entries;
322 }
323
324 /*
325 * Search for a directory entry directly within dir (without
326 * recursing). Sort dir if necessary. subdirname must be a directory
327 * name (i.e., end in '/'). If mkdir is set, then create the
328 * directory if it is missing; otherwise, return NULL if the desired
329 * directory cannot be found. dir must already be complete.
330 */
331 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
332 const char *subdirname, size_t len,
333 int mkdir)
334 {
335 int entry_index = search_ref_dir(dir, subdirname, len);
336 struct ref_entry *entry;
337 if (entry_index == -1) {
338 if (!mkdir)
339 return NULL;
340 /*
341 * Since dir is complete, the absence of a subdir
342 * means that the subdir really doesn't exist;
343 * therefore, create an empty record for it but mark
344 * the record complete.
345 */
346 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
347 add_entry_to_dir(dir, entry);
348 } else {
349 entry = dir->entries[entry_index];
350 }
351 return get_ref_dir(entry);
352 }
353
354 /*
355 * If refname is a reference name, find the ref_dir within the dir
356 * tree that should hold refname. If refname is a directory name
357 * (i.e., ends in '/'), then return that ref_dir itself. dir must
358 * represent the top-level directory and must already be complete.
359 * Sort ref_dirs and recurse into subdirectories as necessary. If
360 * mkdir is set, then create any missing directories; otherwise,
361 * return NULL if the desired directory cannot be found.
362 */
363 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
364 const char *refname, int mkdir)
365 {
366 const char *slash;
367 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
368 size_t dirnamelen = slash - refname + 1;
369 struct ref_dir *subdir;
370 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
371 if (!subdir) {
372 dir = NULL;
373 break;
374 }
375 dir = subdir;
376 }
377
378 return dir;
379 }
380
381 /*
382 * Find the value entry with the given name in dir, sorting ref_dirs
383 * and recursing into subdirectories as necessary. If the name is not
384 * found or it corresponds to a directory entry, return NULL.
385 */
386 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
387 {
388 int entry_index;
389 struct ref_entry *entry;
390 dir = find_containing_dir(dir, refname, 0);
391 if (!dir)
392 return NULL;
393 entry_index = search_ref_dir(dir, refname, strlen(refname));
394 if (entry_index == -1)
395 return NULL;
396 entry = dir->entries[entry_index];
397 return (entry->flag & REF_DIR) ? NULL : entry;
398 }
399
400 /*
401 * Remove the entry with the given name from dir, recursing into
402 * subdirectories as necessary. If refname is the name of a directory
403 * (i.e., ends with '/'), then remove the directory and its contents.
404 * If the removal was successful, return the number of entries
405 * remaining in the directory entry that contained the deleted entry.
406 * If the name was not found, return -1. Please note that this
407 * function only deletes the entry from the cache; it does not delete
408 * it from the filesystem or ensure that other cache entries (which
409 * might be symbolic references to the removed entry) are updated.
410 * Nor does it remove any containing dir entries that might be made
411 * empty by the removal. dir must represent the top-level directory
412 * and must already be complete.
413 */
414 static int remove_entry(struct ref_dir *dir, const char *refname)
415 {
416 int refname_len = strlen(refname);
417 int entry_index;
418 struct ref_entry *entry;
419 int is_dir = refname[refname_len - 1] == '/';
420 if (is_dir) {
421 /*
422 * refname represents a reference directory. Remove
423 * the trailing slash; otherwise we will get the
424 * directory *representing* refname rather than the
425 * one *containing* it.
426 */
427 char *dirname = xmemdupz(refname, refname_len - 1);
428 dir = find_containing_dir(dir, dirname, 0);
429 free(dirname);
430 } else {
431 dir = find_containing_dir(dir, refname, 0);
432 }
433 if (!dir)
434 return -1;
435 entry_index = search_ref_dir(dir, refname, refname_len);
436 if (entry_index == -1)
437 return -1;
438 entry = dir->entries[entry_index];
439
440 memmove(&dir->entries[entry_index],
441 &dir->entries[entry_index + 1],
442 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
443 );
444 dir->nr--;
445 if (dir->sorted > entry_index)
446 dir->sorted--;
447 free_ref_entry(entry);
448 return dir->nr;
449 }
450
451 /*
452 * Add a ref_entry to the ref_dir (unsorted), recursing into
453 * subdirectories as necessary. dir must represent the top-level
454 * directory. Return 0 on success.
455 */
456 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
457 {
458 dir = find_containing_dir(dir, ref->name, 1);
459 if (!dir)
460 return -1;
461 add_entry_to_dir(dir, ref);
462 return 0;
463 }
464
465 /*
466 * Emit a warning and return true iff ref1 and ref2 have the same name
467 * and the same sha1. Die if they have the same name but different
468 * sha1s.
469 */
470 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
471 {
472 if (strcmp(ref1->name, ref2->name))
473 return 0;
474
475 /* Duplicate name; make sure that they don't conflict: */
476
477 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
478 /* This is impossible by construction */
479 die("Reference directory conflict: %s", ref1->name);
480
481 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
482 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
483
484 warning("Duplicated ref: %s", ref1->name);
485 return 1;
486 }
487
488 /*
489 * Sort the entries in dir non-recursively (if they are not already
490 * sorted) and remove any duplicate entries.
491 */
492 static void sort_ref_dir(struct ref_dir *dir)
493 {
494 int i, j;
495 struct ref_entry *last = NULL;
496
497 /*
498 * This check also prevents passing a zero-length array to qsort(),
499 * which is a problem on some platforms.
500 */
501 if (dir->sorted == dir->nr)
502 return;
503
504 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
505
506 /* Remove any duplicates: */
507 for (i = 0, j = 0; j < dir->nr; j++) {
508 struct ref_entry *entry = dir->entries[j];
509 if (last && is_dup_ref(last, entry))
510 free_ref_entry(entry);
511 else
512 last = dir->entries[i++] = entry;
513 }
514 dir->sorted = dir->nr = i;
515 }
516
517 /*
518 * Return true if refname, which has the specified oid and flags, can
519 * be resolved to an object in the database. If the referred-to object
520 * does not exist, emit a warning and return false.
521 */
522 static int ref_resolves_to_object(const char *refname,
523 const struct object_id *oid,
524 unsigned int flags)
525 {
526 if (flags & REF_ISBROKEN)
527 return 0;
528 if (!has_sha1_file(oid->hash)) {
529 error("%s does not point to a valid object!", refname);
530 return 0;
531 }
532 return 1;
533 }
534
535 /*
536 * Return true if the reference described by entry can be resolved to
537 * an object in the database; otherwise, emit a warning and return
538 * false.
539 */
540 static int entry_resolves_to_object(struct ref_entry *entry)
541 {
542 return ref_resolves_to_object(entry->name,
543 &entry->u.value.oid, entry->flag);
544 }
545
546 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
547
548 /*
549 * Call fn for each reference in dir that has index in the range
550 * offset <= index < dir->nr. Recurse into subdirectories that are in
551 * that index range, sorting them before iterating. This function
552 * does not sort dir itself; it should be sorted beforehand. fn is
553 * called for all references, including broken ones.
554 */
555 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
556 each_ref_entry_fn fn, void *cb_data)
557 {
558 int i;
559 assert(dir->sorted == dir->nr);
560 for (i = offset; i < dir->nr; i++) {
561 struct ref_entry *entry = dir->entries[i];
562 int retval;
563 if (entry->flag & REF_DIR) {
564 struct ref_dir *subdir = get_ref_dir(entry);
565 sort_ref_dir(subdir);
566 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
567 } else {
568 retval = fn(entry, cb_data);
569 }
570 if (retval)
571 return retval;
572 }
573 return 0;
574 }
575
576 /*
577 * Load all of the refs from the dir into our in-memory cache. The hard work
578 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
579 * through all of the sub-directories. We do not even need to care about
580 * sorting, as traversal order does not matter to us.
581 */
582 static void prime_ref_dir(struct ref_dir *dir)
583 {
584 int i;
585 for (i = 0; i < dir->nr; i++) {
586 struct ref_entry *entry = dir->entries[i];
587 if (entry->flag & REF_DIR)
588 prime_ref_dir(get_ref_dir(entry));
589 }
590 }
591
592 /*
593 * A level in the reference hierarchy that is currently being iterated
594 * through.
595 */
596 struct cache_ref_iterator_level {
597 /*
598 * The ref_dir being iterated over at this level. The ref_dir
599 * is sorted before being stored here.
600 */
601 struct ref_dir *dir;
602
603 /*
604 * The index of the current entry within dir (which might
605 * itself be a directory). If index == -1, then the iteration
606 * hasn't yet begun. If index == dir->nr, then the iteration
607 * through this level is over.
608 */
609 int index;
610 };
611
612 /*
613 * Represent an iteration through a ref_dir in the memory cache. The
614 * iteration recurses through subdirectories.
615 */
616 struct cache_ref_iterator {
617 struct ref_iterator base;
618
619 /*
620 * The number of levels currently on the stack. This is always
621 * at least 1, because when it becomes zero the iteration is
622 * ended and this struct is freed.
623 */
624 size_t levels_nr;
625
626 /* The number of levels that have been allocated on the stack */
627 size_t levels_alloc;
628
629 /*
630 * A stack of levels. levels[0] is the uppermost level that is
631 * being iterated over in this iteration. (This is not
632 * necessary the top level in the references hierarchy. If we
633 * are iterating through a subtree, then levels[0] will hold
634 * the ref_dir for that subtree, and subsequent levels will go
635 * on from there.)
636 */
637 struct cache_ref_iterator_level *levels;
638 };
639
640 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
641 {
642 struct cache_ref_iterator *iter =
643 (struct cache_ref_iterator *)ref_iterator;
644
645 while (1) {
646 struct cache_ref_iterator_level *level =
647 &iter->levels[iter->levels_nr - 1];
648 struct ref_dir *dir = level->dir;
649 struct ref_entry *entry;
650
651 if (level->index == -1)
652 sort_ref_dir(dir);
653
654 if (++level->index == level->dir->nr) {
655 /* This level is exhausted; pop up a level */
656 if (--iter->levels_nr == 0)
657 return ref_iterator_abort(ref_iterator);
658
659 continue;
660 }
661
662 entry = dir->entries[level->index];
663
664 if (entry->flag & REF_DIR) {
665 /* push down a level */
666 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
667 iter->levels_alloc);
668
669 level = &iter->levels[iter->levels_nr++];
670 level->dir = get_ref_dir(entry);
671 level->index = -1;
672 } else {
673 iter->base.refname = entry->name;
674 iter->base.oid = &entry->u.value.oid;
675 iter->base.flags = entry->flag;
676 return ITER_OK;
677 }
678 }
679 }
680
681 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
682
683 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
684 struct object_id *peeled)
685 {
686 struct cache_ref_iterator *iter =
687 (struct cache_ref_iterator *)ref_iterator;
688 struct cache_ref_iterator_level *level;
689 struct ref_entry *entry;
690
691 level = &iter->levels[iter->levels_nr - 1];
692
693 if (level->index == -1)
694 die("BUG: peel called before advance for cache iterator");
695
696 entry = level->dir->entries[level->index];
697
698 if (peel_entry(entry, 0))
699 return -1;
700 hashcpy(peeled->hash, entry->u.value.peeled.hash);
701 return 0;
702 }
703
704 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
705 {
706 struct cache_ref_iterator *iter =
707 (struct cache_ref_iterator *)ref_iterator;
708
709 free(iter->levels);
710 base_ref_iterator_free(ref_iterator);
711 return ITER_DONE;
712 }
713
714 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
715 cache_ref_iterator_advance,
716 cache_ref_iterator_peel,
717 cache_ref_iterator_abort
718 };
719
720 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
721 {
722 struct cache_ref_iterator *iter;
723 struct ref_iterator *ref_iterator;
724 struct cache_ref_iterator_level *level;
725
726 iter = xcalloc(1, sizeof(*iter));
727 ref_iterator = &iter->base;
728 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
729 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
730
731 iter->levels_nr = 1;
732 level = &iter->levels[0];
733 level->index = -1;
734 level->dir = dir;
735
736 return ref_iterator;
737 }
738
739 struct nonmatching_ref_data {
740 const struct string_list *skip;
741 const char *conflicting_refname;
742 };
743
744 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
745 {
746 struct nonmatching_ref_data *data = vdata;
747
748 if (data->skip && string_list_has_string(data->skip, entry->name))
749 return 0;
750
751 data->conflicting_refname = entry->name;
752 return 1;
753 }
754
755 /*
756 * Return 0 if a reference named refname could be created without
757 * conflicting with the name of an existing reference in dir.
758 * See verify_refname_available for more information.
759 */
760 static int verify_refname_available_dir(const char *refname,
761 const struct string_list *extras,
762 const struct string_list *skip,
763 struct ref_dir *dir,
764 struct strbuf *err)
765 {
766 const char *slash;
767 const char *extra_refname;
768 int pos;
769 struct strbuf dirname = STRBUF_INIT;
770 int ret = -1;
771
772 /*
773 * For the sake of comments in this function, suppose that
774 * refname is "refs/foo/bar".
775 */
776
777 assert(err);
778
779 strbuf_grow(&dirname, strlen(refname) + 1);
780 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
781 /* Expand dirname to the new prefix, not including the trailing slash: */
782 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
783
784 /*
785 * We are still at a leading dir of the refname (e.g.,
786 * "refs/foo"; if there is a reference with that name,
787 * it is a conflict, *unless* it is in skip.
788 */
789 if (dir) {
790 pos = search_ref_dir(dir, dirname.buf, dirname.len);
791 if (pos >= 0 &&
792 (!skip || !string_list_has_string(skip, dirname.buf))) {
793 /*
794 * We found a reference whose name is
795 * a proper prefix of refname; e.g.,
796 * "refs/foo", and is not in skip.
797 */
798 strbuf_addf(err, "'%s' exists; cannot create '%s'",
799 dirname.buf, refname);
800 goto cleanup;
801 }
802 }
803
804 if (extras && string_list_has_string(extras, dirname.buf) &&
805 (!skip || !string_list_has_string(skip, dirname.buf))) {
806 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
807 refname, dirname.buf);
808 goto cleanup;
809 }
810
811 /*
812 * Otherwise, we can try to continue our search with
813 * the next component. So try to look up the
814 * directory, e.g., "refs/foo/". If we come up empty,
815 * we know there is nothing under this whole prefix,
816 * but even in that case we still have to continue the
817 * search for conflicts with extras.
818 */
819 strbuf_addch(&dirname, '/');
820 if (dir) {
821 pos = search_ref_dir(dir, dirname.buf, dirname.len);
822 if (pos < 0) {
823 /*
824 * There was no directory "refs/foo/",
825 * so there is nothing under this
826 * whole prefix. So there is no need
827 * to continue looking for conflicting
828 * references. But we need to continue
829 * looking for conflicting extras.
830 */
831 dir = NULL;
832 } else {
833 dir = get_ref_dir(dir->entries[pos]);
834 }
835 }
836 }
837
838 /*
839 * We are at the leaf of our refname (e.g., "refs/foo/bar").
840 * There is no point in searching for a reference with that
841 * name, because a refname isn't considered to conflict with
842 * itself. But we still need to check for references whose
843 * names are in the "refs/foo/bar/" namespace, because they
844 * *do* conflict.
845 */
846 strbuf_addstr(&dirname, refname + dirname.len);
847 strbuf_addch(&dirname, '/');
848
849 if (dir) {
850 pos = search_ref_dir(dir, dirname.buf, dirname.len);
851
852 if (pos >= 0) {
853 /*
854 * We found a directory named "$refname/"
855 * (e.g., "refs/foo/bar/"). It is a problem
856 * iff it contains any ref that is not in
857 * "skip".
858 */
859 struct nonmatching_ref_data data;
860
861 data.skip = skip;
862 data.conflicting_refname = NULL;
863 dir = get_ref_dir(dir->entries[pos]);
864 sort_ref_dir(dir);
865 if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
866 strbuf_addf(err, "'%s' exists; cannot create '%s'",
867 data.conflicting_refname, refname);
868 goto cleanup;
869 }
870 }
871 }
872
873 extra_refname = find_descendant_ref(dirname.buf, extras, skip);
874 if (extra_refname)
875 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
876 refname, extra_refname);
877 else
878 ret = 0;
879
880 cleanup:
881 strbuf_release(&dirname);
882 return ret;
883 }
884
885 struct packed_ref_cache {
886 struct ref_entry *root;
887
888 /*
889 * Count of references to the data structure in this instance,
890 * including the pointer from files_ref_store::packed if any.
891 * The data will not be freed as long as the reference count
892 * is nonzero.
893 */
894 unsigned int referrers;
895
896 /*
897 * Iff the packed-refs file associated with this instance is
898 * currently locked for writing, this points at the associated
899 * lock (which is owned by somebody else). The referrer count
900 * is also incremented when the file is locked and decremented
901 * when it is unlocked.
902 */
903 struct lock_file *lock;
904
905 /* The metadata from when this packed-refs cache was read */
906 struct stat_validity validity;
907 };
908
909 /*
910 * Future: need to be in "struct repository"
911 * when doing a full libification.
912 */
913 struct files_ref_store {
914 struct ref_store base;
915 struct ref_entry *loose;
916 struct packed_ref_cache *packed;
917 };
918
919 /* Lock used for the main packed-refs file: */
920 static struct lock_file packlock;
921
922 /*
923 * Increment the reference count of *packed_refs.
924 */
925 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
926 {
927 packed_refs->referrers++;
928 }
929
930 /*
931 * Decrease the reference count of *packed_refs. If it goes to zero,
932 * free *packed_refs and return true; otherwise return false.
933 */
934 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
935 {
936 if (!--packed_refs->referrers) {
937 free_ref_entry(packed_refs->root);
938 stat_validity_clear(&packed_refs->validity);
939 free(packed_refs);
940 return 1;
941 } else {
942 return 0;
943 }
944 }
945
946 static void clear_packed_ref_cache(struct files_ref_store *refs)
947 {
948 if (refs->packed) {
949 struct packed_ref_cache *packed_refs = refs->packed;
950
951 if (packed_refs->lock)
952 die("internal error: packed-ref cache cleared while locked");
953 refs->packed = NULL;
954 release_packed_ref_cache(packed_refs);
955 }
956 }
957
958 static void clear_loose_ref_cache(struct files_ref_store *refs)
959 {
960 if (refs->loose) {
961 free_ref_entry(refs->loose);
962 refs->loose = NULL;
963 }
964 }
965
966 /*
967 * Create a new submodule ref cache and add it to the internal
968 * set of caches.
969 */
970 static struct ref_store *files_ref_store_create(const char *submodule)
971 {
972 struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
973 struct ref_store *ref_store = (struct ref_store *)refs;
974
975 base_ref_store_init(ref_store, &refs_be_files, submodule);
976
977 return ref_store;
978 }
979
980 /*
981 * Downcast ref_store to files_ref_store. Die if ref_store is not a
982 * files_ref_store. If submodule_allowed is not true, then also die if
983 * files_ref_store is for a submodule (i.e., not for the main
984 * repository). caller is used in any necessary error messages.
985 */
986 static struct files_ref_store *files_downcast(
987 struct ref_store *ref_store, int submodule_allowed,
988 const char *caller)
989 {
990 if (ref_store->be != &refs_be_files)
991 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
992 ref_store->be->name, caller);
993
994 if (!submodule_allowed)
995 assert_main_repository(ref_store, caller);
996
997 return (struct files_ref_store *)ref_store;
998 }
999
1000 /*
1001 * Return a pointer to the reference store for the specified
1002 * submodule. For the main repository, use submodule==NULL; such a
1003 * call cannot fail. For a submodule, the submodule must exist and be
1004 * a nonbare repository, otherwise return NULL. Verify that the
1005 * reference store is a files_ref_store, and cast it to that type
1006 * before returning it.
1007 */
1008 static struct files_ref_store *get_files_ref_store(const char *submodule,
1009 const char *caller)
1010 {
1011 struct ref_store *refs = get_ref_store(submodule);
1012
1013 return refs ? files_downcast(refs, 1, caller) : NULL;
1014 }
1015
1016 /* The length of a peeled reference line in packed-refs, including EOL: */
1017 #define PEELED_LINE_LENGTH 42
1018
1019 /*
1020 * The packed-refs header line that we write out. Perhaps other
1021 * traits will be added later. The trailing space is required.
1022 */
1023 static const char PACKED_REFS_HEADER[] =
1024 "# pack-refs with: peeled fully-peeled \n";
1025
1026 /*
1027 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1028 * Return a pointer to the refname within the line (null-terminated),
1029 * or NULL if there was a problem.
1030 */
1031 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1032 {
1033 const char *ref;
1034
1035 /*
1036 * 42: the answer to everything.
1037 *
1038 * In this case, it happens to be the answer to
1039 * 40 (length of sha1 hex representation)
1040 * +1 (space in between hex and name)
1041 * +1 (newline at the end of the line)
1042 */
1043 if (line->len <= 42)
1044 return NULL;
1045
1046 if (get_sha1_hex(line->buf, sha1) < 0)
1047 return NULL;
1048 if (!isspace(line->buf[40]))
1049 return NULL;
1050
1051 ref = line->buf + 41;
1052 if (isspace(*ref))
1053 return NULL;
1054
1055 if (line->buf[line->len - 1] != '\n')
1056 return NULL;
1057 line->buf[--line->len] = 0;
1058
1059 return ref;
1060 }
1061
1062 /*
1063 * Read f, which is a packed-refs file, into dir.
1064 *
1065 * A comment line of the form "# pack-refs with: " may contain zero or
1066 * more traits. We interpret the traits as follows:
1067 *
1068 * No traits:
1069 *
1070 * Probably no references are peeled. But if the file contains a
1071 * peeled value for a reference, we will use it.
1072 *
1073 * peeled:
1074 *
1075 * References under "refs/tags/", if they *can* be peeled, *are*
1076 * peeled in this file. References outside of "refs/tags/" are
1077 * probably not peeled even if they could have been, but if we find
1078 * a peeled value for such a reference we will use it.
1079 *
1080 * fully-peeled:
1081 *
1082 * All references in the file that can be peeled are peeled.
1083 * Inversely (and this is more important), any references in the
1084 * file for which no peeled value is recorded is not peelable. This
1085 * trait should typically be written alongside "peeled" for
1086 * compatibility with older clients, but we do not require it
1087 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1088 */
1089 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1090 {
1091 struct ref_entry *last = NULL;
1092 struct strbuf line = STRBUF_INIT;
1093 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1094
1095 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1096 unsigned char sha1[20];
1097 const char *refname;
1098 const char *traits;
1099
1100 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1101 if (strstr(traits, " fully-peeled "))
1102 peeled = PEELED_FULLY;
1103 else if (strstr(traits, " peeled "))
1104 peeled = PEELED_TAGS;
1105 /* perhaps other traits later as well */
1106 continue;
1107 }
1108
1109 refname = parse_ref_line(&line, sha1);
1110 if (refname) {
1111 int flag = REF_ISPACKED;
1112
1113 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1114 if (!refname_is_safe(refname))
1115 die("packed refname is dangerous: %s", refname);
1116 hashclr(sha1);
1117 flag |= REF_BAD_NAME | REF_ISBROKEN;
1118 }
1119 last = create_ref_entry(refname, sha1, flag, 0);
1120 if (peeled == PEELED_FULLY ||
1121 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1122 last->flag |= REF_KNOWS_PEELED;
1123 add_ref(dir, last);
1124 continue;
1125 }
1126 if (last &&
1127 line.buf[0] == '^' &&
1128 line.len == PEELED_LINE_LENGTH &&
1129 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1130 !get_sha1_hex(line.buf + 1, sha1)) {
1131 hashcpy(last->u.value.peeled.hash, sha1);
1132 /*
1133 * Regardless of what the file header said,
1134 * we definitely know the value of *this*
1135 * reference:
1136 */
1137 last->flag |= REF_KNOWS_PEELED;
1138 }
1139 }
1140
1141 strbuf_release(&line);
1142 }
1143
1144 /*
1145 * Get the packed_ref_cache for the specified files_ref_store,
1146 * creating it if necessary.
1147 */
1148 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1149 {
1150 char *packed_refs_file;
1151
1152 if (*refs->base.submodule)
1153 packed_refs_file = git_pathdup_submodule(refs->base.submodule,
1154 "packed-refs");
1155 else
1156 packed_refs_file = git_pathdup("packed-refs");
1157
1158 if (refs->packed &&
1159 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1160 clear_packed_ref_cache(refs);
1161
1162 if (!refs->packed) {
1163 FILE *f;
1164
1165 refs->packed = xcalloc(1, sizeof(*refs->packed));
1166 acquire_packed_ref_cache(refs->packed);
1167 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1168 f = fopen(packed_refs_file, "r");
1169 if (f) {
1170 stat_validity_update(&refs->packed->validity, fileno(f));
1171 read_packed_refs(f, get_ref_dir(refs->packed->root));
1172 fclose(f);
1173 }
1174 }
1175 free(packed_refs_file);
1176 return refs->packed;
1177 }
1178
1179 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1180 {
1181 return get_ref_dir(packed_ref_cache->root);
1182 }
1183
1184 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1185 {
1186 return get_packed_ref_dir(get_packed_ref_cache(refs));
1187 }
1188
1189 /*
1190 * Add a reference to the in-memory packed reference cache. This may
1191 * only be called while the packed-refs file is locked (see
1192 * lock_packed_refs()). To actually write the packed-refs file, call
1193 * commit_packed_refs().
1194 */
1195 static void add_packed_ref(struct files_ref_store *refs,
1196 const char *refname, const unsigned char *sha1)
1197 {
1198 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1199
1200 if (!packed_ref_cache->lock)
1201 die("internal error: packed refs not locked");
1202 add_ref(get_packed_ref_dir(packed_ref_cache),
1203 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1204 }
1205
1206 /*
1207 * Read the loose references from the namespace dirname into dir
1208 * (without recursing). dirname must end with '/'. dir must be the
1209 * directory entry corresponding to dirname.
1210 */
1211 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1212 {
1213 struct files_ref_store *refs = dir->ref_store;
1214 DIR *d;
1215 struct dirent *de;
1216 int dirnamelen = strlen(dirname);
1217 struct strbuf refname;
1218 struct strbuf path = STRBUF_INIT;
1219 size_t path_baselen;
1220
1221 if (*refs->base.submodule)
1222 strbuf_git_path_submodule(&path, refs->base.submodule, "%s", dirname);
1223 else
1224 strbuf_git_path(&path, "%s", dirname);
1225 path_baselen = path.len;
1226
1227 d = opendir(path.buf);
1228 if (!d) {
1229 strbuf_release(&path);
1230 return;
1231 }
1232
1233 strbuf_init(&refname, dirnamelen + 257);
1234 strbuf_add(&refname, dirname, dirnamelen);
1235
1236 while ((de = readdir(d)) != NULL) {
1237 unsigned char sha1[20];
1238 struct stat st;
1239 int flag;
1240
1241 if (de->d_name[0] == '.')
1242 continue;
1243 if (ends_with(de->d_name, ".lock"))
1244 continue;
1245 strbuf_addstr(&refname, de->d_name);
1246 strbuf_addstr(&path, de->d_name);
1247 if (stat(path.buf, &st) < 0) {
1248 ; /* silently ignore */
1249 } else if (S_ISDIR(st.st_mode)) {
1250 strbuf_addch(&refname, '/');
1251 add_entry_to_dir(dir,
1252 create_dir_entry(refs, refname.buf,
1253 refname.len, 1));
1254 } else {
1255 int read_ok;
1256
1257 if (*refs->base.submodule) {
1258 hashclr(sha1);
1259 flag = 0;
1260 read_ok = !resolve_gitlink_ref(refs->base.submodule,
1261 refname.buf, sha1);
1262 } else {
1263 read_ok = !read_ref_full(refname.buf,
1264 RESOLVE_REF_READING,
1265 sha1, &flag);
1266 }
1267
1268 if (!read_ok) {
1269 hashclr(sha1);
1270 flag |= REF_ISBROKEN;
1271 } else if (is_null_sha1(sha1)) {
1272 /*
1273 * It is so astronomically unlikely
1274 * that NULL_SHA1 is the SHA-1 of an
1275 * actual object that we consider its
1276 * appearance in a loose reference
1277 * file to be repo corruption
1278 * (probably due to a software bug).
1279 */
1280 flag |= REF_ISBROKEN;
1281 }
1282
1283 if (check_refname_format(refname.buf,
1284 REFNAME_ALLOW_ONELEVEL)) {
1285 if (!refname_is_safe(refname.buf))
1286 die("loose refname is dangerous: %s", refname.buf);
1287 hashclr(sha1);
1288 flag |= REF_BAD_NAME | REF_ISBROKEN;
1289 }
1290 add_entry_to_dir(dir,
1291 create_ref_entry(refname.buf, sha1, flag, 0));
1292 }
1293 strbuf_setlen(&refname, dirnamelen);
1294 strbuf_setlen(&path, path_baselen);
1295 }
1296 strbuf_release(&refname);
1297 strbuf_release(&path);
1298 closedir(d);
1299 }
1300
1301 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1302 {
1303 if (!refs->loose) {
1304 /*
1305 * Mark the top-level directory complete because we
1306 * are about to read the only subdirectory that can
1307 * hold references:
1308 */
1309 refs->loose = create_dir_entry(refs, "", 0, 0);
1310 /*
1311 * Create an incomplete entry for "refs/":
1312 */
1313 add_entry_to_dir(get_ref_dir(refs->loose),
1314 create_dir_entry(refs, "refs/", 5, 1));
1315 }
1316 return get_ref_dir(refs->loose);
1317 }
1318
1319 /*
1320 * Return the ref_entry for the given refname from the packed
1321 * references. If it does not exist, return NULL.
1322 */
1323 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1324 const char *refname)
1325 {
1326 return find_ref(get_packed_refs(refs), refname);
1327 }
1328
1329 /*
1330 * A loose ref file doesn't exist; check for a packed ref.
1331 */
1332 static int resolve_packed_ref(struct files_ref_store *refs,
1333 const char *refname,
1334 unsigned char *sha1, unsigned int *flags)
1335 {
1336 struct ref_entry *entry;
1337
1338 /*
1339 * The loose reference file does not exist; check for a packed
1340 * reference.
1341 */
1342 entry = get_packed_ref(refs, refname);
1343 if (entry) {
1344 hashcpy(sha1, entry->u.value.oid.hash);
1345 *flags |= REF_ISPACKED;
1346 return 0;
1347 }
1348 /* refname is not a packed reference. */
1349 return -1;
1350 }
1351
1352 static int files_read_raw_ref(struct ref_store *ref_store,
1353 const char *refname, unsigned char *sha1,
1354 struct strbuf *referent, unsigned int *type)
1355 {
1356 struct files_ref_store *refs =
1357 files_downcast(ref_store, 1, "read_raw_ref");
1358 struct strbuf sb_contents = STRBUF_INIT;
1359 struct strbuf sb_path = STRBUF_INIT;
1360 const char *path;
1361 const char *buf;
1362 struct stat st;
1363 int fd;
1364 int ret = -1;
1365 int save_errno;
1366
1367 *type = 0;
1368 strbuf_reset(&sb_path);
1369
1370 if (*refs->base.submodule)
1371 strbuf_git_path_submodule(&sb_path, refs->base.submodule, "%s", refname);
1372 else
1373 strbuf_git_path(&sb_path, "%s", refname);
1374
1375 path = sb_path.buf;
1376
1377 stat_ref:
1378 /*
1379 * We might have to loop back here to avoid a race
1380 * condition: first we lstat() the file, then we try
1381 * to read it as a link or as a file. But if somebody
1382 * changes the type of the file (file <-> directory
1383 * <-> symlink) between the lstat() and reading, then
1384 * we don't want to report that as an error but rather
1385 * try again starting with the lstat().
1386 */
1387
1388 if (lstat(path, &st) < 0) {
1389 if (errno != ENOENT)
1390 goto out;
1391 if (resolve_packed_ref(refs, refname, sha1, type)) {
1392 errno = ENOENT;
1393 goto out;
1394 }
1395 ret = 0;
1396 goto out;
1397 }
1398
1399 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1400 if (S_ISLNK(st.st_mode)) {
1401 strbuf_reset(&sb_contents);
1402 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1403 if (errno == ENOENT || errno == EINVAL)
1404 /* inconsistent with lstat; retry */
1405 goto stat_ref;
1406 else
1407 goto out;
1408 }
1409 if (starts_with(sb_contents.buf, "refs/") &&
1410 !check_refname_format(sb_contents.buf, 0)) {
1411 strbuf_swap(&sb_contents, referent);
1412 *type |= REF_ISSYMREF;
1413 ret = 0;
1414 goto out;
1415 }
1416 }
1417
1418 /* Is it a directory? */
1419 if (S_ISDIR(st.st_mode)) {
1420 /*
1421 * Even though there is a directory where the loose
1422 * ref is supposed to be, there could still be a
1423 * packed ref:
1424 */
1425 if (resolve_packed_ref(refs, refname, sha1, type)) {
1426 errno = EISDIR;
1427 goto out;
1428 }
1429 ret = 0;
1430 goto out;
1431 }
1432
1433 /*
1434 * Anything else, just open it and try to use it as
1435 * a ref
1436 */
1437 fd = open(path, O_RDONLY);
1438 if (fd < 0) {
1439 if (errno == ENOENT)
1440 /* inconsistent with lstat; retry */
1441 goto stat_ref;
1442 else
1443 goto out;
1444 }
1445 strbuf_reset(&sb_contents);
1446 if (strbuf_read(&sb_contents, fd, 256) < 0) {
1447 int save_errno = errno;
1448 close(fd);
1449 errno = save_errno;
1450 goto out;
1451 }
1452 close(fd);
1453 strbuf_rtrim(&sb_contents);
1454 buf = sb_contents.buf;
1455 if (starts_with(buf, "ref:")) {
1456 buf += 4;
1457 while (isspace(*buf))
1458 buf++;
1459
1460 strbuf_reset(referent);
1461 strbuf_addstr(referent, buf);
1462 *type |= REF_ISSYMREF;
1463 ret = 0;
1464 goto out;
1465 }
1466
1467 /*
1468 * Please note that FETCH_HEAD has additional
1469 * data after the sha.
1470 */
1471 if (get_sha1_hex(buf, sha1) ||
1472 (buf[40] != '\0' && !isspace(buf[40]))) {
1473 *type |= REF_ISBROKEN;
1474 errno = EINVAL;
1475 goto out;
1476 }
1477
1478 ret = 0;
1479
1480 out:
1481 save_errno = errno;
1482 strbuf_release(&sb_path);
1483 strbuf_release(&sb_contents);
1484 errno = save_errno;
1485 return ret;
1486 }
1487
1488 static void unlock_ref(struct ref_lock *lock)
1489 {
1490 /* Do not free lock->lk -- atexit() still looks at them */
1491 if (lock->lk)
1492 rollback_lock_file(lock->lk);
1493 free(lock->ref_name);
1494 free(lock);
1495 }
1496
1497 /*
1498 * Lock refname, without following symrefs, and set *lock_p to point
1499 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1500 * and type similarly to read_raw_ref().
1501 *
1502 * The caller must verify that refname is a "safe" reference name (in
1503 * the sense of refname_is_safe()) before calling this function.
1504 *
1505 * If the reference doesn't already exist, verify that refname doesn't
1506 * have a D/F conflict with any existing references. extras and skip
1507 * are passed to verify_refname_available_dir() for this check.
1508 *
1509 * If mustexist is not set and the reference is not found or is
1510 * broken, lock the reference anyway but clear sha1.
1511 *
1512 * Return 0 on success. On failure, write an error message to err and
1513 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1514 *
1515 * Implementation note: This function is basically
1516 *
1517 * lock reference
1518 * read_raw_ref()
1519 *
1520 * but it includes a lot more code to
1521 * - Deal with possible races with other processes
1522 * - Avoid calling verify_refname_available_dir() when it can be
1523 * avoided, namely if we were successfully able to read the ref
1524 * - Generate informative error messages in the case of failure
1525 */
1526 static int lock_raw_ref(struct files_ref_store *refs,
1527 const char *refname, int mustexist,
1528 const struct string_list *extras,
1529 const struct string_list *skip,
1530 struct ref_lock **lock_p,
1531 struct strbuf *referent,
1532 unsigned int *type,
1533 struct strbuf *err)
1534 {
1535 struct ref_lock *lock;
1536 struct strbuf ref_file = STRBUF_INIT;
1537 int attempts_remaining = 3;
1538 int ret = TRANSACTION_GENERIC_ERROR;
1539
1540 assert(err);
1541 assert_main_repository(&refs->base, "lock_raw_ref");
1542
1543 *type = 0;
1544
1545 /* First lock the file so it can't change out from under us. */
1546
1547 *lock_p = lock = xcalloc(1, sizeof(*lock));
1548
1549 lock->ref_name = xstrdup(refname);
1550 strbuf_git_path(&ref_file, "%s", refname);
1551
1552 retry:
1553 switch (safe_create_leading_directories(ref_file.buf)) {
1554 case SCLD_OK:
1555 break; /* success */
1556 case SCLD_EXISTS:
1557 /*
1558 * Suppose refname is "refs/foo/bar". We just failed
1559 * to create the containing directory, "refs/foo",
1560 * because there was a non-directory in the way. This
1561 * indicates a D/F conflict, probably because of
1562 * another reference such as "refs/foo". There is no
1563 * reason to expect this error to be transitory.
1564 */
1565 if (verify_refname_available(refname, extras, skip, err)) {
1566 if (mustexist) {
1567 /*
1568 * To the user the relevant error is
1569 * that the "mustexist" reference is
1570 * missing:
1571 */
1572 strbuf_reset(err);
1573 strbuf_addf(err, "unable to resolve reference '%s'",
1574 refname);
1575 } else {
1576 /*
1577 * The error message set by
1578 * verify_refname_available_dir() is OK.
1579 */
1580 ret = TRANSACTION_NAME_CONFLICT;
1581 }
1582 } else {
1583 /*
1584 * The file that is in the way isn't a loose
1585 * reference. Report it as a low-level
1586 * failure.
1587 */
1588 strbuf_addf(err, "unable to create lock file %s.lock; "
1589 "non-directory in the way",
1590 ref_file.buf);
1591 }
1592 goto error_return;
1593 case SCLD_VANISHED:
1594 /* Maybe another process was tidying up. Try again. */
1595 if (--attempts_remaining > 0)
1596 goto retry;
1597 /* fall through */
1598 default:
1599 strbuf_addf(err, "unable to create directory for %s",
1600 ref_file.buf);
1601 goto error_return;
1602 }
1603
1604 if (!lock->lk)
1605 lock->lk = xcalloc(1, sizeof(struct lock_file));
1606
1607 if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1608 if (errno == ENOENT && --attempts_remaining > 0) {
1609 /*
1610 * Maybe somebody just deleted one of the
1611 * directories leading to ref_file. Try
1612 * again:
1613 */
1614 goto retry;
1615 } else {
1616 unable_to_lock_message(ref_file.buf, errno, err);
1617 goto error_return;
1618 }
1619 }
1620
1621 /*
1622 * Now we hold the lock and can read the reference without
1623 * fear that its value will change.
1624 */
1625
1626 if (files_read_raw_ref(&refs->base, refname,
1627 lock->old_oid.hash, referent, type)) {
1628 if (errno == ENOENT) {
1629 if (mustexist) {
1630 /* Garden variety missing reference. */
1631 strbuf_addf(err, "unable to resolve reference '%s'",
1632 refname);
1633 goto error_return;
1634 } else {
1635 /*
1636 * Reference is missing, but that's OK. We
1637 * know that there is not a conflict with
1638 * another loose reference because
1639 * (supposing that we are trying to lock
1640 * reference "refs/foo/bar"):
1641 *
1642 * - We were successfully able to create
1643 * the lockfile refs/foo/bar.lock, so we
1644 * know there cannot be a loose reference
1645 * named "refs/foo".
1646 *
1647 * - We got ENOENT and not EISDIR, so we
1648 * know that there cannot be a loose
1649 * reference named "refs/foo/bar/baz".
1650 */
1651 }
1652 } else if (errno == EISDIR) {
1653 /*
1654 * There is a directory in the way. It might have
1655 * contained references that have been deleted. If
1656 * we don't require that the reference already
1657 * exists, try to remove the directory so that it
1658 * doesn't cause trouble when we want to rename the
1659 * lockfile into place later.
1660 */
1661 if (mustexist) {
1662 /* Garden variety missing reference. */
1663 strbuf_addf(err, "unable to resolve reference '%s'",
1664 refname);
1665 goto error_return;
1666 } else if (remove_dir_recursively(&ref_file,
1667 REMOVE_DIR_EMPTY_ONLY)) {
1668 if (verify_refname_available_dir(
1669 refname, extras, skip,
1670 get_loose_refs(refs),
1671 err)) {
1672 /*
1673 * The error message set by
1674 * verify_refname_available() is OK.
1675 */
1676 ret = TRANSACTION_NAME_CONFLICT;
1677 goto error_return;
1678 } else {
1679 /*
1680 * We can't delete the directory,
1681 * but we also don't know of any
1682 * references that it should
1683 * contain.
1684 */
1685 strbuf_addf(err, "there is a non-empty directory '%s' "
1686 "blocking reference '%s'",
1687 ref_file.buf, refname);
1688 goto error_return;
1689 }
1690 }
1691 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1692 strbuf_addf(err, "unable to resolve reference '%s': "
1693 "reference broken", refname);
1694 goto error_return;
1695 } else {
1696 strbuf_addf(err, "unable to resolve reference '%s': %s",
1697 refname, strerror(errno));
1698 goto error_return;
1699 }
1700
1701 /*
1702 * If the ref did not exist and we are creating it,
1703 * make sure there is no existing packed ref whose
1704 * name begins with our refname, nor a packed ref
1705 * whose name is a proper prefix of our refname.
1706 */
1707 if (verify_refname_available_dir(
1708 refname, extras, skip,
1709 get_packed_refs(refs),
1710 err)) {
1711 goto error_return;
1712 }
1713 }
1714
1715 ret = 0;
1716 goto out;
1717
1718 error_return:
1719 unlock_ref(lock);
1720 *lock_p = NULL;
1721
1722 out:
1723 strbuf_release(&ref_file);
1724 return ret;
1725 }
1726
1727 /*
1728 * Peel the entry (if possible) and return its new peel_status. If
1729 * repeel is true, re-peel the entry even if there is an old peeled
1730 * value that is already stored in it.
1731 *
1732 * It is OK to call this function with a packed reference entry that
1733 * might be stale and might even refer to an object that has since
1734 * been garbage-collected. In such a case, if the entry has
1735 * REF_KNOWS_PEELED then leave the status unchanged and return
1736 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1737 */
1738 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1739 {
1740 enum peel_status status;
1741
1742 if (entry->flag & REF_KNOWS_PEELED) {
1743 if (repeel) {
1744 entry->flag &= ~REF_KNOWS_PEELED;
1745 oidclr(&entry->u.value.peeled);
1746 } else {
1747 return is_null_oid(&entry->u.value.peeled) ?
1748 PEEL_NON_TAG : PEEL_PEELED;
1749 }
1750 }
1751 if (entry->flag & REF_ISBROKEN)
1752 return PEEL_BROKEN;
1753 if (entry->flag & REF_ISSYMREF)
1754 return PEEL_IS_SYMREF;
1755
1756 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1757 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1758 entry->flag |= REF_KNOWS_PEELED;
1759 return status;
1760 }
1761
1762 static int files_peel_ref(struct ref_store *ref_store,
1763 const char *refname, unsigned char *sha1)
1764 {
1765 struct files_ref_store *refs = files_downcast(ref_store, 0, "peel_ref");
1766 int flag;
1767 unsigned char base[20];
1768
1769 if (current_ref_iter && current_ref_iter->refname == refname) {
1770 struct object_id peeled;
1771
1772 if (ref_iterator_peel(current_ref_iter, &peeled))
1773 return -1;
1774 hashcpy(sha1, peeled.hash);
1775 return 0;
1776 }
1777
1778 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1779 return -1;
1780
1781 /*
1782 * If the reference is packed, read its ref_entry from the
1783 * cache in the hope that we already know its peeled value.
1784 * We only try this optimization on packed references because
1785 * (a) forcing the filling of the loose reference cache could
1786 * be expensive and (b) loose references anyway usually do not
1787 * have REF_KNOWS_PEELED.
1788 */
1789 if (flag & REF_ISPACKED) {
1790 struct ref_entry *r = get_packed_ref(refs, refname);
1791 if (r) {
1792 if (peel_entry(r, 0))
1793 return -1;
1794 hashcpy(sha1, r->u.value.peeled.hash);
1795 return 0;
1796 }
1797 }
1798
1799 return peel_object(base, sha1);
1800 }
1801
1802 struct files_ref_iterator {
1803 struct ref_iterator base;
1804
1805 struct packed_ref_cache *packed_ref_cache;
1806 struct ref_iterator *iter0;
1807 unsigned int flags;
1808 };
1809
1810 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1811 {
1812 struct files_ref_iterator *iter =
1813 (struct files_ref_iterator *)ref_iterator;
1814 int ok;
1815
1816 while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1817 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1818 !ref_resolves_to_object(iter->iter0->refname,
1819 iter->iter0->oid,
1820 iter->iter0->flags))
1821 continue;
1822
1823 iter->base.refname = iter->iter0->refname;
1824 iter->base.oid = iter->iter0->oid;
1825 iter->base.flags = iter->iter0->flags;
1826 return ITER_OK;
1827 }
1828
1829 iter->iter0 = NULL;
1830 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1831 ok = ITER_ERROR;
1832
1833 return ok;
1834 }
1835
1836 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1837 struct object_id *peeled)
1838 {
1839 struct files_ref_iterator *iter =
1840 (struct files_ref_iterator *)ref_iterator;
1841
1842 return ref_iterator_peel(iter->iter0, peeled);
1843 }
1844
1845 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1846 {
1847 struct files_ref_iterator *iter =
1848 (struct files_ref_iterator *)ref_iterator;
1849 int ok = ITER_DONE;
1850
1851 if (iter->iter0)
1852 ok = ref_iterator_abort(iter->iter0);
1853
1854 release_packed_ref_cache(iter->packed_ref_cache);
1855 base_ref_iterator_free(ref_iterator);
1856 return ok;
1857 }
1858
1859 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1860 files_ref_iterator_advance,
1861 files_ref_iterator_peel,
1862 files_ref_iterator_abort
1863 };
1864
1865 static struct ref_iterator *files_ref_iterator_begin(
1866 struct ref_store *ref_store,
1867 const char *prefix, unsigned int flags)
1868 {
1869 struct files_ref_store *refs =
1870 files_downcast(ref_store, 1, "ref_iterator_begin");
1871 struct ref_dir *loose_dir, *packed_dir;
1872 struct ref_iterator *loose_iter, *packed_iter;
1873 struct files_ref_iterator *iter;
1874 struct ref_iterator *ref_iterator;
1875
1876 if (!refs)
1877 return empty_ref_iterator_begin();
1878
1879 if (ref_paranoia < 0)
1880 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1881 if (ref_paranoia)
1882 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1883
1884 iter = xcalloc(1, sizeof(*iter));
1885 ref_iterator = &iter->base;
1886 base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1887
1888 /*
1889 * We must make sure that all loose refs are read before
1890 * accessing the packed-refs file; this avoids a race
1891 * condition if loose refs are migrated to the packed-refs
1892 * file by a simultaneous process, but our in-memory view is
1893 * from before the migration. We ensure this as follows:
1894 * First, we call prime_ref_dir(), which pre-reads the loose
1895 * references for the subtree into the cache. (If they've
1896 * already been read, that's OK; we only need to guarantee
1897 * that they're read before the packed refs, not *how much*
1898 * before.) After that, we call get_packed_ref_cache(), which
1899 * internally checks whether the packed-ref cache is up to
1900 * date with what is on disk, and re-reads it if not.
1901 */
1902
1903 loose_dir = get_loose_refs(refs);
1904
1905 if (prefix && *prefix)
1906 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1907
1908 if (loose_dir) {
1909 prime_ref_dir(loose_dir);
1910 loose_iter = cache_ref_iterator_begin(loose_dir);
1911 } else {
1912 /* There's nothing to iterate over. */
1913 loose_iter = empty_ref_iterator_begin();
1914 }
1915
1916 iter->packed_ref_cache = get_packed_ref_cache(refs);
1917 acquire_packed_ref_cache(iter->packed_ref_cache);
1918 packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1919
1920 if (prefix && *prefix)
1921 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1922
1923 if (packed_dir) {
1924 packed_iter = cache_ref_iterator_begin(packed_dir);
1925 } else {
1926 /* There's nothing to iterate over. */
1927 packed_iter = empty_ref_iterator_begin();
1928 }
1929
1930 iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1931 iter->flags = flags;
1932
1933 return ref_iterator;
1934 }
1935
1936 /*
1937 * Verify that the reference locked by lock has the value old_sha1.
1938 * Fail if the reference doesn't exist and mustexist is set. Return 0
1939 * on success. On error, write an error message to err, set errno, and
1940 * return a negative value.
1941 */
1942 static int verify_lock(struct ref_lock *lock,
1943 const unsigned char *old_sha1, int mustexist,
1944 struct strbuf *err)
1945 {
1946 assert(err);
1947
1948 if (read_ref_full(lock->ref_name,
1949 mustexist ? RESOLVE_REF_READING : 0,
1950 lock->old_oid.hash, NULL)) {
1951 if (old_sha1) {
1952 int save_errno = errno;
1953 strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
1954 errno = save_errno;
1955 return -1;
1956 } else {
1957 hashclr(lock->old_oid.hash);
1958 return 0;
1959 }
1960 }
1961 if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
1962 strbuf_addf(err, "ref '%s' is at %s but expected %s",
1963 lock->ref_name,
1964 sha1_to_hex(lock->old_oid.hash),
1965 sha1_to_hex(old_sha1));
1966 errno = EBUSY;
1967 return -1;
1968 }
1969 return 0;
1970 }
1971
1972 static int remove_empty_directories(struct strbuf *path)
1973 {
1974 /*
1975 * we want to create a file but there is a directory there;
1976 * if that is an empty directory (or a directory that contains
1977 * only empty directories), remove them.
1978 */
1979 return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
1980 }
1981
1982 /*
1983 * Locks a ref returning the lock on success and NULL on failure.
1984 * On failure errno is set to something meaningful.
1985 */
1986 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
1987 const char *refname,
1988 const unsigned char *old_sha1,
1989 const struct string_list *extras,
1990 const struct string_list *skip,
1991 unsigned int flags, int *type,
1992 struct strbuf *err)
1993 {
1994 struct strbuf ref_file = STRBUF_INIT;
1995 struct ref_lock *lock;
1996 int last_errno = 0;
1997 int lflags = LOCK_NO_DEREF;
1998 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1999 int resolve_flags = RESOLVE_REF_NO_RECURSE;
2000 int attempts_remaining = 3;
2001 int resolved;
2002
2003 assert_main_repository(&refs->base, "lock_ref_sha1_basic");
2004 assert(err);
2005
2006 lock = xcalloc(1, sizeof(struct ref_lock));
2007
2008 if (mustexist)
2009 resolve_flags |= RESOLVE_REF_READING;
2010 if (flags & REF_DELETING)
2011 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2012
2013 strbuf_git_path(&ref_file, "%s", refname);
2014 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2015 lock->old_oid.hash, type);
2016 if (!resolved && errno == EISDIR) {
2017 /*
2018 * we are trying to lock foo but we used to
2019 * have foo/bar which now does not exist;
2020 * it is normal for the empty directory 'foo'
2021 * to remain.
2022 */
2023 if (remove_empty_directories(&ref_file)) {
2024 last_errno = errno;
2025 if (!verify_refname_available_dir(
2026 refname, extras, skip,
2027 get_loose_refs(refs), err))
2028 strbuf_addf(err, "there are still refs under '%s'",
2029 refname);
2030 goto error_return;
2031 }
2032 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2033 lock->old_oid.hash, type);
2034 }
2035 if (!resolved) {
2036 last_errno = errno;
2037 if (last_errno != ENOTDIR ||
2038 !verify_refname_available_dir(
2039 refname, extras, skip,
2040 get_loose_refs(refs), err))
2041 strbuf_addf(err, "unable to resolve reference '%s': %s",
2042 refname, strerror(last_errno));
2043
2044 goto error_return;
2045 }
2046
2047 /*
2048 * If the ref did not exist and we are creating it, make sure
2049 * there is no existing packed ref whose name begins with our
2050 * refname, nor a packed ref whose name is a proper prefix of
2051 * our refname.
2052 */
2053 if (is_null_oid(&lock->old_oid) &&
2054 verify_refname_available_dir(refname, extras, skip,
2055 get_packed_refs(refs),
2056 err)) {
2057 last_errno = ENOTDIR;
2058 goto error_return;
2059 }
2060
2061 lock->lk = xcalloc(1, sizeof(struct lock_file));
2062
2063 lock->ref_name = xstrdup(refname);
2064
2065 retry:
2066 switch (safe_create_leading_directories_const(ref_file.buf)) {
2067 case SCLD_OK:
2068 break; /* success */
2069 case SCLD_VANISHED:
2070 if (--attempts_remaining > 0)
2071 goto retry;
2072 /* fall through */
2073 default:
2074 last_errno = errno;
2075 strbuf_addf(err, "unable to create directory for '%s'",
2076 ref_file.buf);
2077 goto error_return;
2078 }
2079
2080 if (hold_lock_file_for_update(lock->lk, ref_file.buf, lflags) < 0) {
2081 last_errno = errno;
2082 if (errno == ENOENT && --attempts_remaining > 0)
2083 /*
2084 * Maybe somebody just deleted one of the
2085 * directories leading to ref_file. Try
2086 * again:
2087 */
2088 goto retry;
2089 else {
2090 unable_to_lock_message(ref_file.buf, errno, err);
2091 goto error_return;
2092 }
2093 }
2094 if (verify_lock(lock, old_sha1, mustexist, err)) {
2095 last_errno = errno;
2096 goto error_return;
2097 }
2098 goto out;
2099
2100 error_return:
2101 unlock_ref(lock);
2102 lock = NULL;
2103
2104 out:
2105 strbuf_release(&ref_file);
2106 errno = last_errno;
2107 return lock;
2108 }
2109
2110 /*
2111 * Write an entry to the packed-refs file for the specified refname.
2112 * If peeled is non-NULL, write it as the entry's peeled value.
2113 */
2114 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2115 unsigned char *peeled)
2116 {
2117 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2118 if (peeled)
2119 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2120 }
2121
2122 /*
2123 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2124 */
2125 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2126 {
2127 enum peel_status peel_status = peel_entry(entry, 0);
2128
2129 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2130 error("internal error: %s is not a valid packed reference!",
2131 entry->name);
2132 write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2133 peel_status == PEEL_PEELED ?
2134 entry->u.value.peeled.hash : NULL);
2135 return 0;
2136 }
2137
2138 /*
2139 * Lock the packed-refs file for writing. Flags is passed to
2140 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2141 * errno appropriately and return a nonzero value.
2142 */
2143 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2144 {
2145 static int timeout_configured = 0;
2146 static int timeout_value = 1000;
2147 struct packed_ref_cache *packed_ref_cache;
2148
2149 assert_main_repository(&refs->base, "lock_packed_refs");
2150
2151 if (!timeout_configured) {
2152 git_config_get_int("core.packedrefstimeout", &timeout_value);
2153 timeout_configured = 1;
2154 }
2155
2156 if (hold_lock_file_for_update_timeout(
2157 &packlock, git_path("packed-refs"),
2158 flags, timeout_value) < 0)
2159 return -1;
2160 /*
2161 * Get the current packed-refs while holding the lock. If the
2162 * packed-refs file has been modified since we last read it,
2163 * this will automatically invalidate the cache and re-read
2164 * the packed-refs file.
2165 */
2166 packed_ref_cache = get_packed_ref_cache(refs);
2167 packed_ref_cache->lock = &packlock;
2168 /* Increment the reference count to prevent it from being freed: */
2169 acquire_packed_ref_cache(packed_ref_cache);
2170 return 0;
2171 }
2172
2173 /*
2174 * Write the current version of the packed refs cache from memory to
2175 * disk. The packed-refs file must already be locked for writing (see
2176 * lock_packed_refs()). Return zero on success. On errors, set errno
2177 * and return a nonzero value
2178 */
2179 static int commit_packed_refs(struct files_ref_store *refs)
2180 {
2181 struct packed_ref_cache *packed_ref_cache =
2182 get_packed_ref_cache(refs);
2183 int error = 0;
2184 int save_errno = 0;
2185 FILE *out;
2186
2187 assert_main_repository(&refs->base, "commit_packed_refs");
2188
2189 if (!packed_ref_cache->lock)
2190 die("internal error: packed-refs not locked");
2191
2192 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2193 if (!out)
2194 die_errno("unable to fdopen packed-refs descriptor");
2195
2196 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2197 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2198 0, write_packed_entry_fn, out);
2199
2200 if (commit_lock_file(packed_ref_cache->lock)) {
2201 save_errno = errno;
2202 error = -1;
2203 }
2204 packed_ref_cache->lock = NULL;
2205 release_packed_ref_cache(packed_ref_cache);
2206 errno = save_errno;
2207 return error;
2208 }
2209
2210 /*
2211 * Rollback the lockfile for the packed-refs file, and discard the
2212 * in-memory packed reference cache. (The packed-refs file will be
2213 * read anew if it is needed again after this function is called.)
2214 */
2215 static void rollback_packed_refs(struct files_ref_store *refs)
2216 {
2217 struct packed_ref_cache *packed_ref_cache =
2218 get_packed_ref_cache(refs);
2219
2220 assert_main_repository(&refs->base, "rollback_packed_refs");
2221
2222 if (!packed_ref_cache->lock)
2223 die("internal error: packed-refs not locked");
2224 rollback_lock_file(packed_ref_cache->lock);
2225 packed_ref_cache->lock = NULL;
2226 release_packed_ref_cache(packed_ref_cache);
2227 clear_packed_ref_cache(refs);
2228 }
2229
2230 struct ref_to_prune {
2231 struct ref_to_prune *next;
2232 unsigned char sha1[20];
2233 char name[FLEX_ARRAY];
2234 };
2235
2236 struct pack_refs_cb_data {
2237 unsigned int flags;
2238 struct ref_dir *packed_refs;
2239 struct ref_to_prune *ref_to_prune;
2240 };
2241
2242 /*
2243 * An each_ref_entry_fn that is run over loose references only. If
2244 * the loose reference can be packed, add an entry in the packed ref
2245 * cache. If the reference should be pruned, also add it to
2246 * ref_to_prune in the pack_refs_cb_data.
2247 */
2248 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2249 {
2250 struct pack_refs_cb_data *cb = cb_data;
2251 enum peel_status peel_status;
2252 struct ref_entry *packed_entry;
2253 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2254
2255 /* Do not pack per-worktree refs: */
2256 if (ref_type(entry->name) != REF_TYPE_NORMAL)
2257 return 0;
2258
2259 /* ALWAYS pack tags */
2260 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2261 return 0;
2262
2263 /* Do not pack symbolic or broken refs: */
2264 if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2265 return 0;
2266
2267 /* Add a packed ref cache entry equivalent to the loose entry. */
2268 peel_status = peel_entry(entry, 1);
2269 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2270 die("internal error peeling reference %s (%s)",
2271 entry->name, oid_to_hex(&entry->u.value.oid));
2272 packed_entry = find_ref(cb->packed_refs, entry->name);
2273 if (packed_entry) {
2274 /* Overwrite existing packed entry with info from loose entry */
2275 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2276 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2277 } else {
2278 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2279 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2280 add_ref(cb->packed_refs, packed_entry);
2281 }
2282 oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2283
2284 /* Schedule the loose reference for pruning if requested. */
2285 if ((cb->flags & PACK_REFS_PRUNE)) {
2286 struct ref_to_prune *n;
2287 FLEX_ALLOC_STR(n, name, entry->name);
2288 hashcpy(n->sha1, entry->u.value.oid.hash);
2289 n->next = cb->ref_to_prune;
2290 cb->ref_to_prune = n;
2291 }
2292 return 0;
2293 }
2294
2295 /*
2296 * Remove empty parents, but spare refs/ and immediate subdirs.
2297 * Note: munges *name.
2298 */
2299 static void try_remove_empty_parents(char *name)
2300 {
2301 char *p, *q;
2302 int i;
2303 p = name;
2304 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2305 while (*p && *p != '/')
2306 p++;
2307 /* tolerate duplicate slashes; see check_refname_format() */
2308 while (*p == '/')
2309 p++;
2310 }
2311 for (q = p; *q; q++)
2312 ;
2313 while (1) {
2314 while (q > p && *q != '/')
2315 q--;
2316 while (q > p && *(q-1) == '/')
2317 q--;
2318 if (q == p)
2319 break;
2320 *q = '\0';
2321 if (rmdir(git_path("%s", name)))
2322 break;
2323 }
2324 }
2325
2326 /* make sure nobody touched the ref, and unlink */
2327 static void prune_ref(struct ref_to_prune *r)
2328 {
2329 struct ref_transaction *transaction;
2330 struct strbuf err = STRBUF_INIT;
2331
2332 if (check_refname_format(r->name, 0))
2333 return;
2334
2335 transaction = ref_transaction_begin(&err);
2336 if (!transaction ||
2337 ref_transaction_delete(transaction, r->name, r->sha1,
2338 REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2339 ref_transaction_commit(transaction, &err)) {
2340 ref_transaction_free(transaction);
2341 error("%s", err.buf);
2342 strbuf_release(&err);
2343 return;
2344 }
2345 ref_transaction_free(transaction);
2346 strbuf_release(&err);
2347 try_remove_empty_parents(r->name);
2348 }
2349
2350 static void prune_refs(struct ref_to_prune *r)
2351 {
2352 while (r) {
2353 prune_ref(r);
2354 r = r->next;
2355 }
2356 }
2357
2358 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2359 {
2360 struct files_ref_store *refs =
2361 files_downcast(ref_store, 0, "pack_refs");
2362 struct pack_refs_cb_data cbdata;
2363
2364 memset(&cbdata, 0, sizeof(cbdata));
2365 cbdata.flags = flags;
2366
2367 lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2368 cbdata.packed_refs = get_packed_refs(refs);
2369
2370 do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2371 pack_if_possible_fn, &cbdata);
2372
2373 if (commit_packed_refs(refs))
2374 die_errno("unable to overwrite old ref-pack file");
2375
2376 prune_refs(cbdata.ref_to_prune);
2377 return 0;
2378 }
2379
2380 /*
2381 * Rewrite the packed-refs file, omitting any refs listed in
2382 * 'refnames'. On error, leave packed-refs unchanged, write an error
2383 * message to 'err', and return a nonzero value.
2384 *
2385 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2386 */
2387 static int repack_without_refs(struct files_ref_store *refs,
2388 struct string_list *refnames, struct strbuf *err)
2389 {
2390 struct ref_dir *packed;
2391 struct string_list_item *refname;
2392 int ret, needs_repacking = 0, removed = 0;
2393
2394 assert_main_repository(&refs->base, "repack_without_refs");
2395 assert(err);
2396
2397 /* Look for a packed ref */
2398 for_each_string_list_item(refname, refnames) {
2399 if (get_packed_ref(refs, refname->string)) {
2400 needs_repacking = 1;
2401 break;
2402 }
2403 }
2404
2405 /* Avoid locking if we have nothing to do */
2406 if (!needs_repacking)
2407 return 0; /* no refname exists in packed refs */
2408
2409 if (lock_packed_refs(refs, 0)) {
2410 unable_to_lock_message(git_path("packed-refs"), errno, err);
2411 return -1;
2412 }
2413 packed = get_packed_refs(refs);
2414
2415 /* Remove refnames from the cache */
2416 for_each_string_list_item(refname, refnames)
2417 if (remove_entry(packed, refname->string) != -1)
2418 removed = 1;
2419 if (!removed) {
2420 /*
2421 * All packed entries disappeared while we were
2422 * acquiring the lock.
2423 */
2424 rollback_packed_refs(refs);
2425 return 0;
2426 }
2427
2428 /* Write what remains */
2429 ret = commit_packed_refs(refs);
2430 if (ret)
2431 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2432 strerror(errno));
2433 return ret;
2434 }
2435
2436 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2437 {
2438 assert(err);
2439
2440 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2441 /*
2442 * loose. The loose file name is the same as the
2443 * lockfile name, minus ".lock":
2444 */
2445 char *loose_filename = get_locked_file_path(lock->lk);
2446 int res = unlink_or_msg(loose_filename, err);
2447 free(loose_filename);
2448 if (res)
2449 return 1;
2450 }
2451 return 0;
2452 }
2453
2454 static int files_delete_refs(struct ref_store *ref_store,
2455 struct string_list *refnames, unsigned int flags)
2456 {
2457 struct files_ref_store *refs =
2458 files_downcast(ref_store, 0, "delete_refs");
2459 struct strbuf err = STRBUF_INIT;
2460 int i, result = 0;
2461
2462 if (!refnames->nr)
2463 return 0;
2464
2465 result = repack_without_refs(refs, refnames, &err);
2466 if (result) {
2467 /*
2468 * If we failed to rewrite the packed-refs file, then
2469 * it is unsafe to try to remove loose refs, because
2470 * doing so might expose an obsolete packed value for
2471 * a reference that might even point at an object that
2472 * has been garbage collected.
2473 */
2474 if (refnames->nr == 1)
2475 error(_("could not delete reference %s: %s"),
2476 refnames->items[0].string, err.buf);
2477 else
2478 error(_("could not delete references: %s"), err.buf);
2479
2480 goto out;
2481 }
2482
2483 for (i = 0; i < refnames->nr; i++) {
2484 const char *refname = refnames->items[i].string;
2485
2486 if (delete_ref(refname, NULL, flags))
2487 result |= error(_("could not remove reference %s"), refname);
2488 }
2489
2490 out:
2491 strbuf_release(&err);
2492 return result;
2493 }
2494
2495 /*
2496 * People using contrib's git-new-workdir have .git/logs/refs ->
2497 * /some/other/path/.git/logs/refs, and that may live on another device.
2498 *
2499 * IOW, to avoid cross device rename errors, the temporary renamed log must
2500 * live into logs/refs.
2501 */
2502 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2503
2504 static int rename_tmp_log(const char *newrefname)
2505 {
2506 int attempts_remaining = 4;
2507 struct strbuf path = STRBUF_INIT;
2508 int ret = -1;
2509
2510 retry:
2511 strbuf_reset(&path);
2512 strbuf_git_path(&path, "logs/%s", newrefname);
2513 switch (safe_create_leading_directories_const(path.buf)) {
2514 case SCLD_OK:
2515 break; /* success */
2516 case SCLD_VANISHED:
2517 if (--attempts_remaining > 0)
2518 goto retry;
2519 /* fall through */
2520 default:
2521 error("unable to create directory for %s", newrefname);
2522 goto out;
2523 }
2524
2525 if (rename(git_path(TMP_RENAMED_LOG), path.buf)) {
2526 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2527 /*
2528 * rename(a, b) when b is an existing
2529 * directory ought to result in ISDIR, but
2530 * Solaris 5.8 gives ENOTDIR. Sheesh.
2531 */
2532 if (remove_empty_directories(&path)) {
2533 error("Directory not empty: logs/%s", newrefname);
2534 goto out;
2535 }
2536 goto retry;
2537 } else if (errno == ENOENT && --attempts_remaining > 0) {
2538 /*
2539 * Maybe another process just deleted one of
2540 * the directories in the path to newrefname.
2541 * Try again from the beginning.
2542 */
2543 goto retry;
2544 } else {
2545 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2546 newrefname, strerror(errno));
2547 goto out;
2548 }
2549 }
2550 ret = 0;
2551 out:
2552 strbuf_release(&path);
2553 return ret;
2554 }
2555
2556 static int files_verify_refname_available(struct ref_store *ref_store,
2557 const char *newname,
2558 const struct string_list *extras,
2559 const struct string_list *skip,
2560 struct strbuf *err)
2561 {
2562 struct files_ref_store *refs =
2563 files_downcast(ref_store, 1, "verify_refname_available");
2564 struct ref_dir *packed_refs = get_packed_refs(refs);
2565 struct ref_dir *loose_refs = get_loose_refs(refs);
2566
2567 if (verify_refname_available_dir(newname, extras, skip,
2568 packed_refs, err) ||
2569 verify_refname_available_dir(newname, extras, skip,
2570 loose_refs, err))
2571 return -1;
2572
2573 return 0;
2574 }
2575
2576 static int write_ref_to_lockfile(struct ref_lock *lock,
2577 const unsigned char *sha1, struct strbuf *err);
2578 static int commit_ref_update(struct files_ref_store *refs,
2579 struct ref_lock *lock,
2580 const unsigned char *sha1, const char *logmsg,
2581 struct strbuf *err);
2582
2583 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2584 {
2585 struct files_ref_store *refs = get_files_ref_store(NULL, "rename_ref");
2586 unsigned char sha1[20], orig_sha1[20];
2587 int flag = 0, logmoved = 0;
2588 struct ref_lock *lock;
2589 struct stat loginfo;
2590 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2591 struct strbuf err = STRBUF_INIT;
2592
2593 if (log && S_ISLNK(loginfo.st_mode))
2594 return error("reflog for %s is a symlink", oldrefname);
2595
2596 if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2597 orig_sha1, &flag))
2598 return error("refname %s not found", oldrefname);
2599
2600 if (flag & REF_ISSYMREF)
2601 return error("refname %s is a symbolic ref, renaming it is not supported",
2602 oldrefname);
2603 if (!rename_ref_available(oldrefname, newrefname))
2604 return 1;
2605
2606 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2607 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2608 oldrefname, strerror(errno));
2609
2610 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2611 error("unable to delete old %s", oldrefname);
2612 goto rollback;
2613 }
2614
2615 /*
2616 * Since we are doing a shallow lookup, sha1 is not the
2617 * correct value to pass to delete_ref as old_sha1. But that
2618 * doesn't matter, because an old_sha1 check wouldn't add to
2619 * the safety anyway; we want to delete the reference whatever
2620 * its current value.
2621 */
2622 if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2623 sha1, NULL) &&
2624 delete_ref(newrefname, NULL, REF_NODEREF)) {
2625 if (errno==EISDIR) {
2626 struct strbuf path = STRBUF_INIT;
2627 int result;
2628
2629 strbuf_git_path(&path, "%s", newrefname);
2630 result = remove_empty_directories(&path);
2631 strbuf_release(&path);
2632
2633 if (result) {
2634 error("Directory not empty: %s", newrefname);
2635 goto rollback;
2636 }
2637 } else {
2638 error("unable to delete existing %s", newrefname);
2639 goto rollback;
2640 }
2641 }
2642
2643 if (log && rename_tmp_log(newrefname))
2644 goto rollback;
2645
2646 logmoved = log;
2647
2648 lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2649 REF_NODEREF, NULL, &err);
2650 if (!lock) {
2651 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2652 strbuf_release(&err);
2653 goto rollback;
2654 }
2655 hashcpy(lock->old_oid.hash, orig_sha1);
2656
2657 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2658 commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2659 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2660 strbuf_release(&err);
2661 goto rollback;
2662 }
2663
2664 return 0;
2665
2666 rollback:
2667 lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2668 REF_NODEREF, NULL, &err);
2669 if (!lock) {
2670 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2671 strbuf_release(&err);
2672 goto rollbacklog;
2673 }
2674
2675 flag = log_all_ref_updates;
2676 log_all_ref_updates = 0;
2677 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2678 commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2679 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2680 strbuf_release(&err);
2681 }
2682 log_all_ref_updates = flag;
2683
2684 rollbacklog:
2685 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2686 error("unable to restore logfile %s from %s: %s",
2687 oldrefname, newrefname, strerror(errno));
2688 if (!logmoved && log &&
2689 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2690 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2691 oldrefname, strerror(errno));
2692
2693 return 1;
2694 }
2695
2696 static int close_ref(struct ref_lock *lock)
2697 {
2698 if (close_lock_file(lock->lk))
2699 return -1;
2700 return 0;
2701 }
2702
2703 static int commit_ref(struct ref_lock *lock)
2704 {
2705 char *path = get_locked_file_path(lock->lk);
2706 struct stat st;
2707
2708 if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2709 /*
2710 * There is a directory at the path we want to rename
2711 * the lockfile to. Hopefully it is empty; try to
2712 * delete it.
2713 */
2714 size_t len = strlen(path);
2715 struct strbuf sb_path = STRBUF_INIT;
2716
2717 strbuf_attach(&sb_path, path, len, len);
2718
2719 /*
2720 * If this fails, commit_lock_file() will also fail
2721 * and will report the problem.
2722 */
2723 remove_empty_directories(&sb_path);
2724 strbuf_release(&sb_path);
2725 } else {
2726 free(path);
2727 }
2728
2729 if (commit_lock_file(lock->lk))
2730 return -1;
2731 return 0;
2732 }
2733
2734 /*
2735 * Create a reflog for a ref. If force_create = 0, the reflog will
2736 * only be created for certain refs (those for which
2737 * should_autocreate_reflog returns non-zero. Otherwise, create it
2738 * regardless of the ref name. Fill in *err and return -1 on failure.
2739 */
2740 static int log_ref_setup(const char *refname, struct strbuf *logfile, struct strbuf *err, int force_create)
2741 {
2742 int logfd, oflags = O_APPEND | O_WRONLY;
2743
2744 strbuf_git_path(logfile, "logs/%s", refname);
2745 if (force_create || should_autocreate_reflog(refname)) {
2746 if (safe_create_leading_directories(logfile->buf) < 0) {
2747 strbuf_addf(err, "unable to create directory for '%s': "
2748 "%s", logfile->buf, strerror(errno));
2749 return -1;
2750 }
2751 oflags |= O_CREAT;
2752 }
2753
2754 logfd = open(logfile->buf, oflags, 0666);
2755 if (logfd < 0) {
2756 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2757 return 0;
2758
2759 if (errno == EISDIR) {
2760 if (remove_empty_directories(logfile)) {
2761 strbuf_addf(err, "there are still logs under "
2762 "'%s'", logfile->buf);
2763 return -1;
2764 }
2765 logfd = open(logfile->buf, oflags, 0666);
2766 }
2767
2768 if (logfd < 0) {
2769 strbuf_addf(err, "unable to append to '%s': %s",
2770 logfile->buf, strerror(errno));
2771 return -1;
2772 }
2773 }
2774
2775 adjust_shared_perm(logfile->buf);
2776 close(logfd);
2777 return 0;
2778 }
2779
2780
2781 static int files_create_reflog(struct ref_store *ref_store,
2782 const char *refname, int force_create,
2783 struct strbuf *err)
2784 {
2785 int ret;
2786 struct strbuf sb = STRBUF_INIT;
2787
2788 /* Check validity (but we don't need the result): */
2789 files_downcast(ref_store, 0, "create_reflog");
2790
2791 ret = log_ref_setup(refname, &sb, err, force_create);
2792 strbuf_release(&sb);
2793 return ret;
2794 }
2795
2796 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2797 const unsigned char *new_sha1,
2798 const char *committer, const char *msg)
2799 {
2800 int msglen, written;
2801 unsigned maxlen, len;
2802 char *logrec;
2803
2804 msglen = msg ? strlen(msg) : 0;
2805 maxlen = strlen(committer) + msglen + 100;
2806 logrec = xmalloc(maxlen);
2807 len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2808 sha1_to_hex(old_sha1),
2809 sha1_to_hex(new_sha1),
2810 committer);
2811 if (msglen)
2812 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2813
2814 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2815 free(logrec);
2816 if (written != len)
2817 return -1;
2818
2819 return 0;
2820 }
2821
2822 static int log_ref_write_1(const char *refname, const unsigned char *old_sha1,
2823 const unsigned char *new_sha1, const char *msg,
2824 struct strbuf *logfile, int flags,
2825 struct strbuf *err)
2826 {
2827 int logfd, result, oflags = O_APPEND | O_WRONLY;
2828
2829 if (log_all_ref_updates < 0)
2830 log_all_ref_updates = !is_bare_repository();
2831
2832 result = log_ref_setup(refname, logfile, err, flags & REF_FORCE_CREATE_REFLOG);
2833
2834 if (result)
2835 return result;
2836
2837 logfd = open(logfile->buf, oflags);
2838 if (logfd < 0)
2839 return 0;
2840 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2841 git_committer_info(0), msg);
2842 if (result) {
2843 strbuf_addf(err, "unable to append to '%s': %s", logfile->buf,
2844 strerror(errno));
2845 close(logfd);
2846 return -1;
2847 }
2848 if (close(logfd)) {
2849 strbuf_addf(err, "unable to append to '%s': %s", logfile->buf,
2850 strerror(errno));
2851 return -1;
2852 }
2853 return 0;
2854 }
2855
2856 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2857 const unsigned char *new_sha1, const char *msg,
2858 int flags, struct strbuf *err)
2859 {
2860 return files_log_ref_write(refname, old_sha1, new_sha1, msg, flags,
2861 err);
2862 }
2863
2864 int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
2865 const unsigned char *new_sha1, const char *msg,
2866 int flags, struct strbuf *err)
2867 {
2868 struct strbuf sb = STRBUF_INIT;
2869 int ret = log_ref_write_1(refname, old_sha1, new_sha1, msg, &sb, flags,
2870 err);
2871 strbuf_release(&sb);
2872 return ret;
2873 }
2874
2875 /*
2876 * Write sha1 into the open lockfile, then close the lockfile. On
2877 * errors, rollback the lockfile, fill in *err and
2878 * return -1.
2879 */
2880 static int write_ref_to_lockfile(struct ref_lock *lock,
2881 const unsigned char *sha1, struct strbuf *err)
2882 {
2883 static char term = '\n';
2884 struct object *o;
2885 int fd;
2886
2887 o = parse_object(sha1);
2888 if (!o) {
2889 strbuf_addf(err,
2890 "trying to write ref '%s' with nonexistent object %s",
2891 lock->ref_name, sha1_to_hex(sha1));
2892 unlock_ref(lock);
2893 return -1;
2894 }
2895 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2896 strbuf_addf(err,
2897 "trying to write non-commit object %s to branch '%s'",
2898 sha1_to_hex(sha1), lock->ref_name);
2899 unlock_ref(lock);
2900 return -1;
2901 }
2902 fd = get_lock_file_fd(lock->lk);
2903 if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2904 write_in_full(fd, &term, 1) != 1 ||
2905 close_ref(lock) < 0) {
2906 strbuf_addf(err,
2907 "couldn't write '%s'", get_lock_file_path(lock->lk));
2908 unlock_ref(lock);
2909 return -1;
2910 }
2911 return 0;
2912 }
2913
2914 /*
2915 * Commit a change to a loose reference that has already been written
2916 * to the loose reference lockfile. Also update the reflogs if
2917 * necessary, using the specified lockmsg (which can be NULL).
2918 */
2919 static int commit_ref_update(struct files_ref_store *refs,
2920 struct ref_lock *lock,
2921 const unsigned char *sha1, const char *logmsg,
2922 struct strbuf *err)
2923 {
2924 assert_main_repository(&refs->base, "commit_ref_update");
2925
2926 clear_loose_ref_cache(refs);
2927 if (log_ref_write(lock->ref_name, lock->old_oid.hash, sha1, logmsg, 0, err)) {
2928 char *old_msg = strbuf_detach(err, NULL);
2929 strbuf_addf(err, "cannot update the ref '%s': %s",
2930 lock->ref_name, old_msg);
2931 free(old_msg);
2932 unlock_ref(lock);
2933 return -1;
2934 }
2935
2936 if (strcmp(lock->ref_name, "HEAD") != 0) {
2937 /*
2938 * Special hack: If a branch is updated directly and HEAD
2939 * points to it (may happen on the remote side of a push
2940 * for example) then logically the HEAD reflog should be
2941 * updated too.
2942 * A generic solution implies reverse symref information,
2943 * but finding all symrefs pointing to the given branch
2944 * would be rather costly for this rare event (the direct
2945 * update of a branch) to be worth it. So let's cheat and
2946 * check with HEAD only which should cover 99% of all usage
2947 * scenarios (even 100% of the default ones).
2948 */
2949 unsigned char head_sha1[20];
2950 int head_flag;
2951 const char *head_ref;
2952
2953 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
2954 head_sha1, &head_flag);
2955 if (head_ref && (head_flag & REF_ISSYMREF) &&
2956 !strcmp(head_ref, lock->ref_name)) {
2957 struct strbuf log_err = STRBUF_INIT;
2958 if (log_ref_write("HEAD", lock->old_oid.hash, sha1,
2959 logmsg, 0, &log_err)) {
2960 error("%s", log_err.buf);
2961 strbuf_release(&log_err);
2962 }
2963 }
2964 }
2965
2966 if (commit_ref(lock)) {
2967 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
2968 unlock_ref(lock);
2969 return -1;
2970 }
2971
2972 unlock_ref(lock);
2973 return 0;
2974 }
2975
2976 static int create_ref_symlink(struct ref_lock *lock, const char *target)
2977 {
2978 int ret = -1;
2979 #ifndef NO_SYMLINK_HEAD
2980 char *ref_path = get_locked_file_path(lock->lk);
2981 unlink(ref_path);
2982 ret = symlink(target, ref_path);
2983 free(ref_path);
2984
2985 if (ret)
2986 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2987 #endif
2988 return ret;
2989 }
2990
2991 static void update_symref_reflog(struct ref_lock *lock, const char *refname,
2992 const char *target, const char *logmsg)
2993 {
2994 struct strbuf err = STRBUF_INIT;
2995 unsigned char new_sha1[20];
2996 if (logmsg && !read_ref(target, new_sha1) &&
2997 log_ref_write(refname, lock->old_oid.hash, new_sha1, logmsg, 0, &err)) {
2998 error("%s", err.buf);
2999 strbuf_release(&err);
3000 }
3001 }
3002
3003 static int create_symref_locked(struct ref_lock *lock, const char *refname,
3004 const char *target, const char *logmsg)
3005 {
3006 if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3007 update_symref_reflog(lock, refname, target, logmsg);
3008 return 0;
3009 }
3010
3011 if (!fdopen_lock_file(lock->lk, "w"))
3012 return error("unable to fdopen %s: %s",
3013 lock->lk->tempfile.filename.buf, strerror(errno));
3014
3015 update_symref_reflog(lock, refname, target, logmsg);
3016
3017 /* no error check; commit_ref will check ferror */
3018 fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3019 if (commit_ref(lock) < 0)
3020 return error("unable to write symref for %s: %s", refname,
3021 strerror(errno));
3022 return 0;
3023 }
3024
3025 static int files_create_symref(struct ref_store *ref_store,
3026 const char *refname, const char *target,
3027 const char *logmsg)
3028 {
3029 struct files_ref_store *refs =
3030 files_downcast(ref_store, 0, "create_symref");
3031 struct strbuf err = STRBUF_INIT;
3032 struct ref_lock *lock;
3033 int ret;
3034
3035 lock = lock_ref_sha1_basic(refs, refname, NULL,
3036 NULL, NULL, REF_NODEREF, NULL,
3037 &err);
3038 if (!lock) {
3039 error("%s", err.buf);
3040 strbuf_release(&err);
3041 return -1;
3042 }
3043
3044 ret = create_symref_locked(lock, refname, target, logmsg);
3045 unlock_ref(lock);
3046 return ret;
3047 }
3048
3049 int set_worktree_head_symref(const char *gitdir, const char *target)
3050 {
3051 static struct lock_file head_lock;
3052 struct ref_lock *lock;
3053 struct strbuf head_path = STRBUF_INIT;
3054 const char *head_rel;
3055 int ret;
3056
3057 strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3058 if (hold_lock_file_for_update(&head_lock, head_path.buf,
3059 LOCK_NO_DEREF) < 0) {
3060 struct strbuf err = STRBUF_INIT;
3061 unable_to_lock_message(head_path.buf, errno, &err);
3062 error("%s", err.buf);
3063 strbuf_release(&err);
3064 strbuf_release(&head_path);
3065 return -1;
3066 }
3067
3068 /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3069 linked trees */
3070 head_rel = remove_leading_path(head_path.buf,
3071 absolute_path(get_git_common_dir()));
3072 /* to make use of create_symref_locked(), initialize ref_lock */
3073 lock = xcalloc(1, sizeof(struct ref_lock));
3074 lock->lk = &head_lock;
3075 lock->ref_name = xstrdup(head_rel);
3076
3077 ret = create_symref_locked(lock, head_rel, target, NULL);
3078
3079 unlock_ref(lock); /* will free lock */
3080 strbuf_release(&head_path);
3081 return ret;
3082 }
3083
3084 static int files_reflog_exists(struct ref_store *ref_store,
3085 const char *refname)
3086 {
3087 struct stat st;
3088
3089 /* Check validity (but we don't need the result): */
3090 files_downcast(ref_store, 0, "reflog_exists");
3091
3092 return !lstat(git_path("logs/%s", refname), &st) &&
3093 S_ISREG(st.st_mode);
3094 }
3095
3096 static int files_delete_reflog(struct ref_store *ref_store,
3097 const char *refname)
3098 {
3099 /* Check validity (but we don't need the result): */
3100 files_downcast(ref_store, 0, "delete_reflog");
3101
3102 return remove_path(git_path("logs/%s", refname));
3103 }
3104
3105 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3106 {
3107 unsigned char osha1[20], nsha1[20];
3108 char *email_end, *message;
3109 unsigned long timestamp;
3110 int tz;
3111
3112 /* old SP new SP name <email> SP time TAB msg LF */
3113 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3114 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3115 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3116 !(email_end = strchr(sb->buf + 82, '>')) ||
3117 email_end[1] != ' ' ||
3118 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3119 !message || message[0] != ' ' ||
3120 (message[1] != '+' && message[1] != '-') ||
3121 !isdigit(message[2]) || !isdigit(message[3]) ||
3122 !isdigit(message[4]) || !isdigit(message[5]))
3123 return 0; /* corrupt? */
3124 email_end[1] = '\0';
3125 tz = strtol(message + 1, NULL, 10);
3126 if (message[6] != '\t')
3127 message += 6;
3128 else
3129 message += 7;
3130 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3131 }
3132
3133 static char *find_beginning_of_line(char *bob, char *scan)
3134 {
3135 while (bob < scan && *(--scan) != '\n')
3136 ; /* keep scanning backwards */
3137 /*
3138 * Return either beginning of the buffer, or LF at the end of
3139 * the previous line.
3140 */
3141 return scan;
3142 }
3143
3144 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3145 const char *refname,
3146 each_reflog_ent_fn fn,
3147 void *cb_data)
3148 {
3149 struct strbuf sb = STRBUF_INIT;
3150 FILE *logfp;
3151 long pos;
3152 int ret = 0, at_tail = 1;
3153
3154 /* Check validity (but we don't need the result): */
3155 files_downcast(ref_store, 0, "for_each_reflog_ent_reverse");
3156
3157 logfp = fopen(git_path("logs/%s", refname), "r");
3158 if (!logfp)
3159 return -1;
3160
3161 /* Jump to the end */
3162 if (fseek(logfp, 0, SEEK_END) < 0)
3163 return error("cannot seek back reflog for %s: %s",
3164 refname, strerror(errno));
3165 pos = ftell(logfp);
3166 while (!ret && 0 < pos) {
3167 int cnt;
3168 size_t nread;
3169 char buf[BUFSIZ];
3170 char *endp, *scanp;
3171
3172 /* Fill next block from the end */
3173 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3174 if (fseek(logfp, pos - cnt, SEEK_SET))
3175 return error("cannot seek back reflog for %s: %s",
3176 refname, strerror(errno));
3177 nread = fread(buf, cnt, 1, logfp);
3178 if (nread != 1)
3179 return error("cannot read %d bytes from reflog for %s: %s",
3180 cnt, refname, strerror(errno));
3181 pos -= cnt;
3182
3183 scanp = endp = buf + cnt;
3184 if (at_tail && scanp[-1] == '\n')
3185 /* Looking at the final LF at the end of the file */
3186 scanp--;
3187 at_tail = 0;
3188
3189 while (buf < scanp) {
3190 /*
3191 * terminating LF of the previous line, or the beginning
3192 * of the buffer.
3193 */
3194 char *bp;
3195
3196 bp = find_beginning_of_line(buf, scanp);
3197
3198 if (*bp == '\n') {
3199 /*
3200 * The newline is the end of the previous line,
3201 * so we know we have complete line starting
3202 * at (bp + 1). Prefix it onto any prior data
3203 * we collected for the line and process it.
3204 */
3205 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3206 scanp = bp;
3207 endp = bp + 1;
3208 ret = show_one_reflog_ent(&sb, fn, cb_data);
3209 strbuf_reset(&sb);
3210 if (ret)
3211 break;
3212 } else if (!pos) {
3213 /*
3214 * We are at the start of the buffer, and the
3215 * start of the file; there is no previous
3216 * line, and we have everything for this one.
3217 * Process it, and we can end the loop.
3218 */
3219 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3220 ret = show_one_reflog_ent(&sb, fn, cb_data);
3221 strbuf_reset(&sb);
3222 break;
3223 }
3224
3225 if (bp == buf) {
3226 /*
3227 * We are at the start of the buffer, and there
3228 * is more file to read backwards. Which means
3229 * we are in the middle of a line. Note that we
3230 * may get here even if *bp was a newline; that
3231 * just means we are at the exact end of the
3232 * previous line, rather than some spot in the
3233 * middle.
3234 *
3235 * Save away what we have to be combined with
3236 * the data from the next read.
3237 */
3238 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3239 break;
3240 }
3241 }
3242
3243 }
3244 if (!ret && sb.len)
3245 die("BUG: reverse reflog parser had leftover data");
3246
3247 fclose(logfp);
3248 strbuf_release(&sb);
3249 return ret;
3250 }
3251
3252 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3253 const char *refname,
3254 each_reflog_ent_fn fn, void *cb_data)
3255 {
3256 FILE *logfp;
3257 struct strbuf sb = STRBUF_INIT;
3258 int ret = 0;
3259
3260 /* Check validity (but we don't need the result): */
3261 files_downcast(ref_store, 0, "for_each_reflog_ent");
3262
3263 logfp = fopen(git_path("logs/%s", refname), "r");
3264 if (!logfp)
3265 return -1;
3266
3267 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3268 ret = show_one_reflog_ent(&sb, fn, cb_data);
3269 fclose(logfp);
3270 strbuf_release(&sb);
3271 return ret;
3272 }
3273
3274 struct files_reflog_iterator {
3275 struct ref_iterator base;
3276
3277 struct dir_iterator *dir_iterator;
3278 struct object_id oid;
3279 };
3280
3281 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3282 {
3283 struct files_reflog_iterator *iter =
3284 (struct files_reflog_iterator *)ref_iterator;
3285 struct dir_iterator *diter = iter->dir_iterator;
3286 int ok;
3287
3288 while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3289 int flags;
3290
3291 if (!S_ISREG(diter->st.st_mode))
3292 continue;
3293 if (diter->basename[0] == '.')
3294 continue;
3295 if (ends_with(diter->basename, ".lock"))
3296 continue;
3297
3298 if (read_ref_full(diter->relative_path, 0,
3299 iter->oid.hash, &flags)) {
3300 error("bad ref for %s", diter->path.buf);
3301 continue;
3302 }
3303
3304 iter->base.refname = diter->relative_path;
3305 iter->base.oid = &iter->oid;
3306 iter->base.flags = flags;
3307 return ITER_OK;
3308 }
3309
3310 iter->dir_iterator = NULL;
3311 if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3312 ok = ITER_ERROR;
3313 return ok;
3314 }
3315
3316 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3317 struct object_id *peeled)
3318 {
3319 die("BUG: ref_iterator_peel() called for reflog_iterator");
3320 }
3321
3322 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3323 {
3324 struct files_reflog_iterator *iter =
3325 (struct files_reflog_iterator *)ref_iterator;
3326 int ok = ITER_DONE;
3327
3328 if (iter->dir_iterator)
3329 ok = dir_iterator_abort(iter->dir_iterator);
3330
3331 base_ref_iterator_free(ref_iterator);
3332 return ok;
3333 }
3334
3335 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3336 files_reflog_iterator_advance,
3337 files_reflog_iterator_peel,
3338 files_reflog_iterator_abort
3339 };
3340
3341 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3342 {
3343 struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3344 struct ref_iterator *ref_iterator = &iter->base;
3345
3346 /* Check validity (but we don't need the result): */
3347 files_downcast(ref_store, 0, "reflog_iterator_begin");
3348
3349 base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3350 iter->dir_iterator = dir_iterator_begin(git_path("logs"));
3351 return ref_iterator;
3352 }
3353
3354 static int ref_update_reject_duplicates(struct string_list *refnames,
3355 struct strbuf *err)
3356 {
3357 int i, n = refnames->nr;
3358
3359 assert(err);
3360
3361 for (i = 1; i < n; i++)
3362 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3363 strbuf_addf(err,
3364 "multiple updates for ref '%s' not allowed.",
3365 refnames->items[i].string);
3366 return 1;
3367 }
3368 return 0;
3369 }
3370
3371 /*
3372 * If update is a direct update of head_ref (the reference pointed to
3373 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3374 */
3375 static int split_head_update(struct ref_update *update,
3376 struct ref_transaction *transaction,
3377 const char *head_ref,
3378 struct string_list *affected_refnames,
3379 struct strbuf *err)
3380 {
3381 struct string_list_item *item;
3382 struct ref_update *new_update;
3383
3384 if ((update->flags & REF_LOG_ONLY) ||
3385 (update->flags & REF_ISPRUNING) ||
3386 (update->flags & REF_UPDATE_VIA_HEAD))
3387 return 0;
3388
3389 if (strcmp(update->refname, head_ref))
3390 return 0;
3391
3392 /*
3393 * First make sure that HEAD is not already in the
3394 * transaction. This insertion is O(N) in the transaction
3395 * size, but it happens at most once per transaction.
3396 */
3397 item = string_list_insert(affected_refnames, "HEAD");
3398 if (item->util) {
3399 /* An entry already existed */
3400 strbuf_addf(err,
3401 "multiple updates for 'HEAD' (including one "
3402 "via its referent '%s') are not allowed",
3403 update->refname);
3404 return TRANSACTION_NAME_CONFLICT;
3405 }
3406
3407 new_update = ref_transaction_add_update(
3408 transaction, "HEAD",
3409 update->flags | REF_LOG_ONLY | REF_NODEREF,
3410 update->new_sha1, update->old_sha1,
3411 update->msg);
3412
3413 item->util = new_update;
3414
3415 return 0;
3416 }
3417
3418 /*
3419 * update is for a symref that points at referent and doesn't have
3420 * REF_NODEREF set. Split it into two updates:
3421 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3422 * - A new, separate update for the referent reference
3423 * Note that the new update will itself be subject to splitting when
3424 * the iteration gets to it.
3425 */
3426 static int split_symref_update(struct files_ref_store *refs,
3427 struct ref_update *update,
3428 const char *referent,
3429 struct ref_transaction *transaction,
3430 struct string_list *affected_refnames,
3431 struct strbuf *err)
3432 {
3433 struct string_list_item *item;
3434 struct ref_update *new_update;
3435 unsigned int new_flags;
3436
3437 /*
3438 * First make sure that referent is not already in the
3439 * transaction. This insertion is O(N) in the transaction
3440 * size, but it happens at most once per symref in a
3441 * transaction.
3442 */
3443 item = string_list_insert(affected_refnames, referent);
3444 if (item->util) {
3445 /* An entry already existed */
3446 strbuf_addf(err,
3447 "multiple updates for '%s' (including one "
3448 "via symref '%s') are not allowed",
3449 referent, update->refname);
3450 return TRANSACTION_NAME_CONFLICT;
3451 }
3452
3453 new_flags = update->flags;
3454 if (!strcmp(update->refname, "HEAD")) {
3455 /*
3456 * Record that the new update came via HEAD, so that
3457 * when we process it, split_head_update() doesn't try
3458 * to add another reflog update for HEAD. Note that
3459 * this bit will be propagated if the new_update
3460 * itself needs to be split.
3461 */
3462 new_flags |= REF_UPDATE_VIA_HEAD;
3463 }
3464
3465 new_update = ref_transaction_add_update(
3466 transaction, referent, new_flags,
3467 update->new_sha1, update->old_sha1,
3468 update->msg);
3469
3470 new_update->parent_update = update;
3471
3472 /*
3473 * Change the symbolic ref update to log only. Also, it
3474 * doesn't need to check its old SHA-1 value, as that will be
3475 * done when new_update is processed.
3476 */
3477 update->flags |= REF_LOG_ONLY | REF_NODEREF;
3478 update->flags &= ~REF_HAVE_OLD;
3479
3480 item->util = new_update;
3481
3482 return 0;
3483 }
3484
3485 /*
3486 * Return the refname under which update was originally requested.
3487 */
3488 static const char *original_update_refname(struct ref_update *update)
3489 {
3490 while (update->parent_update)
3491 update = update->parent_update;
3492
3493 return update->refname;
3494 }
3495
3496 /*
3497 * Prepare for carrying out update:
3498 * - Lock the reference referred to by update.
3499 * - Read the reference under lock.
3500 * - Check that its old SHA-1 value (if specified) is correct, and in
3501 * any case record it in update->lock->old_oid for later use when
3502 * writing the reflog.
3503 * - If it is a symref update without REF_NODEREF, split it up into a
3504 * REF_LOG_ONLY update of the symref and add a separate update for
3505 * the referent to transaction.
3506 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3507 * update of HEAD.
3508 */
3509 static int lock_ref_for_update(struct files_ref_store *refs,
3510 struct ref_update *update,
3511 struct ref_transaction *transaction,
3512 const char *head_ref,
3513 struct string_list *affected_refnames,
3514 struct strbuf *err)
3515 {
3516 struct strbuf referent = STRBUF_INIT;
3517 int mustexist = (update->flags & REF_HAVE_OLD) &&
3518 !is_null_sha1(update->old_sha1);
3519 int ret;
3520 struct ref_lock *lock;
3521
3522 assert_main_repository(&refs->base, "lock_ref_for_update");
3523
3524 if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3525 update->flags |= REF_DELETING;
3526
3527 if (head_ref) {
3528 ret = split_head_update(update, transaction, head_ref,
3529 affected_refnames, err);
3530 if (ret)
3531 return ret;
3532 }
3533
3534 ret = lock_raw_ref(refs, update->refname, mustexist,
3535 affected_refnames, NULL,
3536 &update->lock, &referent,
3537 &update->type, err);
3538
3539 if (ret) {
3540 char *reason;
3541
3542 reason = strbuf_detach(err, NULL);
3543 strbuf_addf(err, "cannot lock ref '%s': %s",
3544 update->refname, reason);
3545 free(reason);
3546 return ret;
3547 }
3548
3549 lock = update->lock;
3550
3551 if (update->type & REF_ISSYMREF) {
3552 if (update->flags & REF_NODEREF) {
3553 /*
3554 * We won't be reading the referent as part of
3555 * the transaction, so we have to read it here
3556 * to record and possibly check old_sha1:
3557 */
3558 if (read_ref_full(update->refname,
3559 mustexist ? RESOLVE_REF_READING : 0,
3560 lock->old_oid.hash, NULL)) {
3561 if (update->flags & REF_HAVE_OLD) {
3562 strbuf_addf(err, "cannot lock ref '%s': "
3563 "can't resolve old value",
3564 update->refname);
3565 return TRANSACTION_GENERIC_ERROR;
3566 } else {
3567 hashclr(lock->old_oid.hash);
3568 }
3569 }
3570 if ((update->flags & REF_HAVE_OLD) &&
3571 hashcmp(lock->old_oid.hash, update->old_sha1)) {
3572 strbuf_addf(err, "cannot lock ref '%s': "
3573 "is at %s but expected %s",
3574 update->refname,
3575 sha1_to_hex(lock->old_oid.hash),
3576 sha1_to_hex(update->old_sha1));
3577 return TRANSACTION_GENERIC_ERROR;
3578 }
3579
3580 } else {
3581 /*
3582 * Create a new update for the reference this
3583 * symref is pointing at. Also, we will record
3584 * and verify old_sha1 for this update as part
3585 * of processing the split-off update, so we
3586 * don't have to do it here.
3587 */
3588 ret = split_symref_update(refs, update,
3589 referent.buf, transaction,
3590 affected_refnames, err);
3591 if (ret)
3592 return ret;
3593 }
3594 } else {
3595 struct ref_update *parent_update;
3596
3597 /*
3598 * If this update is happening indirectly because of a
3599 * symref update, record the old SHA-1 in the parent
3600 * update:
3601 */
3602 for (parent_update = update->parent_update;
3603 parent_update;
3604 parent_update = parent_update->parent_update) {
3605 oidcpy(&parent_update->lock->old_oid, &lock->old_oid);
3606 }
3607
3608 if ((update->flags & REF_HAVE_OLD) &&
3609 hashcmp(lock->old_oid.hash, update->old_sha1)) {
3610 if (is_null_sha1(update->old_sha1))
3611 strbuf_addf(err, "cannot lock ref '%s': reference already exists",
3612 original_update_refname(update));
3613 else
3614 strbuf_addf(err, "cannot lock ref '%s': is at %s but expected %s",
3615 original_update_refname(update),
3616 sha1_to_hex(lock->old_oid.hash),
3617 sha1_to_hex(update->old_sha1));
3618
3619 return TRANSACTION_GENERIC_ERROR;
3620 }
3621 }
3622
3623 if ((update->flags & REF_HAVE_NEW) &&
3624 !(update->flags & REF_DELETING) &&
3625 !(update->flags & REF_LOG_ONLY)) {
3626 if (!(update->type & REF_ISSYMREF) &&
3627 !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3628 /*
3629 * The reference already has the desired
3630 * value, so we don't need to write it.
3631 */
3632 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3633 err)) {
3634 char *write_err = strbuf_detach(err, NULL);
3635
3636 /*
3637 * The lock was freed upon failure of
3638 * write_ref_to_lockfile():
3639 */
3640 update->lock = NULL;
3641 strbuf_addf(err,
3642 "cannot update the ref '%s': %s",
3643 update->refname, write_err);
3644 free(write_err);
3645 return TRANSACTION_GENERIC_ERROR;
3646 } else {
3647 update->flags |= REF_NEEDS_COMMIT;
3648 }
3649 }
3650 if (!(update->flags & REF_NEEDS_COMMIT)) {
3651 /*
3652 * We didn't call write_ref_to_lockfile(), so
3653 * the lockfile is still open. Close it to
3654 * free up the file descriptor:
3655 */
3656 if (close_ref(lock)) {
3657 strbuf_addf(err, "couldn't close '%s.lock'",
3658 update->refname);
3659 return TRANSACTION_GENERIC_ERROR;
3660 }
3661 }
3662 return 0;
3663 }
3664
3665 static int files_transaction_commit(struct ref_store *ref_store,
3666 struct ref_transaction *transaction,
3667 struct strbuf *err)
3668 {
3669 struct files_ref_store *refs =
3670 files_downcast(ref_store, 0, "ref_transaction_commit");
3671 int ret = 0, i;
3672 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3673 struct string_list_item *ref_to_delete;
3674 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3675 char *head_ref = NULL;
3676 int head_type;
3677 struct object_id head_oid;
3678
3679 assert(err);
3680
3681 if (transaction->state != REF_TRANSACTION_OPEN)
3682 die("BUG: commit called for transaction that is not open");
3683
3684 if (!transaction->nr) {
3685 transaction->state = REF_TRANSACTION_CLOSED;
3686 return 0;
3687 }
3688
3689 /*
3690 * Fail if a refname appears more than once in the
3691 * transaction. (If we end up splitting up any updates using
3692 * split_symref_update() or split_head_update(), those
3693 * functions will check that the new updates don't have the
3694 * same refname as any existing ones.)
3695 */
3696 for (i = 0; i < transaction->nr; i++) {
3697 struct ref_update *update = transaction->updates[i];
3698 struct string_list_item *item =
3699 string_list_append(&affected_refnames, update->refname);
3700
3701 /*
3702 * We store a pointer to update in item->util, but at
3703 * the moment we never use the value of this field
3704 * except to check whether it is non-NULL.
3705 */
3706 item->util = update;
3707 }
3708 string_list_sort(&affected_refnames);
3709 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3710 ret = TRANSACTION_GENERIC_ERROR;
3711 goto cleanup;
3712 }
3713
3714 /*
3715 * Special hack: If a branch is updated directly and HEAD
3716 * points to it (may happen on the remote side of a push
3717 * for example) then logically the HEAD reflog should be
3718 * updated too.
3719 *
3720 * A generic solution would require reverse symref lookups,
3721 * but finding all symrefs pointing to a given branch would be
3722 * rather costly for this rare event (the direct update of a
3723 * branch) to be worth it. So let's cheat and check with HEAD
3724 * only, which should cover 99% of all usage scenarios (even
3725 * 100% of the default ones).
3726 *
3727 * So if HEAD is a symbolic reference, then record the name of
3728 * the reference that it points to. If we see an update of
3729 * head_ref within the transaction, then split_head_update()
3730 * arranges for the reflog of HEAD to be updated, too.
3731 */
3732 head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3733 head_oid.hash, &head_type);
3734
3735 if (head_ref && !(head_type & REF_ISSYMREF)) {
3736 free(head_ref);
3737 head_ref = NULL;
3738 }
3739
3740 /*
3741 * Acquire all locks, verify old values if provided, check
3742 * that new values are valid, and write new values to the
3743 * lockfiles, ready to be activated. Only keep one lockfile
3744 * open at a time to avoid running out of file descriptors.
3745 */
3746 for (i = 0; i < transaction->nr; i++) {
3747 struct ref_update *update = transaction->updates[i];
3748
3749 ret = lock_ref_for_update(refs, update, transaction,
3750 head_ref, &affected_refnames, err);
3751 if (ret)
3752 goto cleanup;
3753 }
3754
3755 /* Perform updates first so live commits remain referenced */
3756 for (i = 0; i < transaction->nr; i++) {
3757 struct ref_update *update = transaction->updates[i];
3758 struct ref_lock *lock = update->lock;
3759
3760 if (update->flags & REF_NEEDS_COMMIT ||
3761 update->flags & REF_LOG_ONLY) {
3762 if (log_ref_write(lock->ref_name, lock->old_oid.hash,
3763 update->new_sha1,
3764 update->msg, update->flags, err)) {
3765 char *old_msg = strbuf_detach(err, NULL);
3766
3767 strbuf_addf(err, "cannot update the ref '%s': %s",
3768 lock->ref_name, old_msg);
3769 free(old_msg);
3770 unlock_ref(lock);
3771 update->lock = NULL;
3772 ret = TRANSACTION_GENERIC_ERROR;
3773 goto cleanup;
3774 }
3775 }
3776 if (update->flags & REF_NEEDS_COMMIT) {
3777 clear_loose_ref_cache(refs);
3778 if (commit_ref(lock)) {
3779 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3780 unlock_ref(lock);
3781 update->lock = NULL;
3782 ret = TRANSACTION_GENERIC_ERROR;
3783 goto cleanup;
3784 }
3785 }
3786 }
3787 /* Perform deletes now that updates are safely completed */
3788 for (i = 0; i < transaction->nr; i++) {
3789 struct ref_update *update = transaction->updates[i];
3790
3791 if (update->flags & REF_DELETING &&
3792 !(update->flags & REF_LOG_ONLY)) {
3793 if (delete_ref_loose(update->lock, update->type, err)) {
3794 ret = TRANSACTION_GENERIC_ERROR;
3795 goto cleanup;
3796 }
3797
3798 if (!(update->flags & REF_ISPRUNING))
3799 string_list_append(&refs_to_delete,
3800 update->lock->ref_name);
3801 }
3802 }
3803
3804 if (repack_without_refs(refs, &refs_to_delete, err)) {
3805 ret = TRANSACTION_GENERIC_ERROR;
3806 goto cleanup;
3807 }
3808 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3809 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3810 clear_loose_ref_cache(refs);
3811
3812 cleanup:
3813 transaction->state = REF_TRANSACTION_CLOSED;
3814
3815 for (i = 0; i < transaction->nr; i++)
3816 if (transaction->updates[i]->lock)
3817 unlock_ref(transaction->updates[i]->lock);
3818 string_list_clear(&refs_to_delete, 0);
3819 free(head_ref);
3820 string_list_clear(&affected_refnames, 0);
3821
3822 return ret;
3823 }
3824
3825 static int ref_present(const char *refname,
3826 const struct object_id *oid, int flags, void *cb_data)
3827 {
3828 struct string_list *affected_refnames = cb_data;
3829
3830 return string_list_has_string(affected_refnames, refname);
3831 }
3832
3833 static int files_initial_transaction_commit(struct ref_store *ref_store,
3834 struct ref_transaction *transaction,
3835 struct strbuf *err)
3836 {
3837 struct files_ref_store *refs =
3838 files_downcast(ref_store, 0, "initial_ref_transaction_commit");
3839 int ret = 0, i;
3840 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3841
3842 assert(err);
3843
3844 if (transaction->state != REF_TRANSACTION_OPEN)
3845 die("BUG: commit called for transaction that is not open");
3846
3847 /* Fail if a refname appears more than once in the transaction: */
3848 for (i = 0; i < transaction->nr; i++)
3849 string_list_append(&affected_refnames,
3850 transaction->updates[i]->refname);
3851 string_list_sort(&affected_refnames);
3852 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3853 ret = TRANSACTION_GENERIC_ERROR;
3854 goto cleanup;
3855 }
3856
3857 /*
3858 * It's really undefined to call this function in an active
3859 * repository or when there are existing references: we are
3860 * only locking and changing packed-refs, so (1) any
3861 * simultaneous processes might try to change a reference at
3862 * the same time we do, and (2) any existing loose versions of
3863 * the references that we are setting would have precedence
3864 * over our values. But some remote helpers create the remote
3865 * "HEAD" and "master" branches before calling this function,
3866 * so here we really only check that none of the references
3867 * that we are creating already exists.
3868 */
3869 if (for_each_rawref(ref_present, &affected_refnames))
3870 die("BUG: initial ref transaction called with existing refs");
3871
3872 for (i = 0; i < transaction->nr; i++) {
3873 struct ref_update *update = transaction->updates[i];
3874
3875 if ((update->flags & REF_HAVE_OLD) &&
3876 !is_null_sha1(update->old_sha1))
3877 die("BUG: initial ref transaction with old_sha1 set");
3878 if (verify_refname_available(update->refname,
3879 &affected_refnames, NULL,
3880 err)) {
3881 ret = TRANSACTION_NAME_CONFLICT;
3882 goto cleanup;
3883 }
3884 }
3885
3886 if (lock_packed_refs(refs, 0)) {
3887 strbuf_addf(err, "unable to lock packed-refs file: %s",
3888 strerror(errno));
3889 ret = TRANSACTION_GENERIC_ERROR;
3890 goto cleanup;
3891 }
3892
3893 for (i = 0; i < transaction->nr; i++) {
3894 struct ref_update *update = transaction->updates[i];
3895
3896 if ((update->flags & REF_HAVE_NEW) &&
3897 !is_null_sha1(update->new_sha1))
3898 add_packed_ref(refs, update->refname, update->new_sha1);
3899 }
3900
3901 if (commit_packed_refs(refs)) {
3902 strbuf_addf(err, "unable to commit packed-refs file: %s",
3903 strerror(errno));
3904 ret = TRANSACTION_GENERIC_ERROR;
3905 goto cleanup;
3906 }
3907
3908 cleanup:
3909 transaction->state = REF_TRANSACTION_CLOSED;
3910 string_list_clear(&affected_refnames, 0);
3911 return ret;
3912 }
3913
3914 struct expire_reflog_cb {
3915 unsigned int flags;
3916 reflog_expiry_should_prune_fn *should_prune_fn;
3917 void *policy_cb;
3918 FILE *newlog;
3919 unsigned char last_kept_sha1[20];
3920 };
3921
3922 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
3923 const char *email, unsigned long timestamp, int tz,
3924 const char *message, void *cb_data)
3925 {
3926 struct expire_reflog_cb *cb = cb_data;
3927 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3928
3929 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3930 osha1 = cb->last_kept_sha1;
3931
3932 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
3933 message, policy_cb)) {
3934 if (!cb->newlog)
3935 printf("would prune %s", message);
3936 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3937 printf("prune %s", message);
3938 } else {
3939 if (cb->newlog) {
3940 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
3941 sha1_to_hex(osha1), sha1_to_hex(nsha1),
3942 email, timestamp, tz, message);
3943 hashcpy(cb->last_kept_sha1, nsha1);
3944 }
3945 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3946 printf("keep %s", message);
3947 }
3948 return 0;
3949 }
3950
3951 static int files_reflog_expire(struct ref_store *ref_store,
3952 const char *refname, const unsigned char *sha1,
3953 unsigned int flags,
3954 reflog_expiry_prepare_fn prepare_fn,
3955 reflog_expiry_should_prune_fn should_prune_fn,
3956 reflog_expiry_cleanup_fn cleanup_fn,
3957 void *policy_cb_data)
3958 {
3959 struct files_ref_store *refs =
3960 files_downcast(ref_store, 0, "reflog_expire");
3961 static struct lock_file reflog_lock;
3962 struct expire_reflog_cb cb;
3963 struct ref_lock *lock;
3964 char *log_file;
3965 int status = 0;
3966 int type;
3967 struct strbuf err = STRBUF_INIT;
3968
3969 memset(&cb, 0, sizeof(cb));
3970 cb.flags = flags;
3971 cb.policy_cb = policy_cb_data;
3972 cb.should_prune_fn = should_prune_fn;
3973
3974 /*
3975 * The reflog file is locked by holding the lock on the
3976 * reference itself, plus we might need to update the
3977 * reference if --updateref was specified:
3978 */
3979 lock = lock_ref_sha1_basic(refs, refname, sha1,
3980 NULL, NULL, REF_NODEREF,
3981 &type, &err);
3982 if (!lock) {
3983 error("cannot lock ref '%s': %s", refname, err.buf);
3984 strbuf_release(&err);
3985 return -1;
3986 }
3987 if (!reflog_exists(refname)) {
3988 unlock_ref(lock);
3989 return 0;
3990 }
3991
3992 log_file = git_pathdup("logs/%s", refname);
3993 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
3994 /*
3995 * Even though holding $GIT_DIR/logs/$reflog.lock has
3996 * no locking implications, we use the lock_file
3997 * machinery here anyway because it does a lot of the
3998 * work we need, including cleaning up if the program
3999 * exits unexpectedly.
4000 */
4001 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4002 struct strbuf err = STRBUF_INIT;
4003 unable_to_lock_message(log_file, errno, &err);
4004 error("%s", err.buf);
4005 strbuf_release(&err);
4006 goto failure;
4007 }
4008 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4009 if (!cb.newlog) {
4010 error("cannot fdopen %s (%s)",
4011 get_lock_file_path(&reflog_lock), strerror(errno));
4012 goto failure;
4013 }
4014 }
4015
4016 (*prepare_fn)(refname, sha1, cb.policy_cb);
4017 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4018 (*cleanup_fn)(cb.policy_cb);
4019
4020 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4021 /*
4022 * It doesn't make sense to adjust a reference pointed
4023 * to by a symbolic ref based on expiring entries in
4024 * the symbolic reference's reflog. Nor can we update
4025 * a reference if there are no remaining reflog
4026 * entries.
4027 */
4028 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4029 !(type & REF_ISSYMREF) &&
4030 !is_null_sha1(cb.last_kept_sha1);
4031
4032 if (close_lock_file(&reflog_lock)) {
4033 status |= error("couldn't write %s: %s", log_file,
4034 strerror(errno));
4035 } else if (update &&
4036 (write_in_full(get_lock_file_fd(lock->lk),
4037 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4038 write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4039 close_ref(lock) < 0)) {
4040 status |= error("couldn't write %s",
4041 get_lock_file_path(lock->lk));
4042 rollback_lock_file(&reflog_lock);
4043 } else if (commit_lock_file(&reflog_lock)) {
4044 status |= error("unable to write reflog '%s' (%s)",
4045 log_file, strerror(errno));
4046 } else if (update && commit_ref(lock)) {
4047 status |= error("couldn't set %s", lock->ref_name);
4048 }
4049 }
4050 free(log_file);
4051 unlock_ref(lock);
4052 return status;
4053
4054 failure:
4055 rollback_lock_file(&reflog_lock);
4056 free(log_file);
4057 unlock_ref(lock);
4058 return -1;
4059 }
4060
4061 struct ref_storage_be refs_be_files = {
4062 NULL,
4063 "files",
4064 files_ref_store_create,
4065 files_transaction_commit,
4066 files_initial_transaction_commit,
4067
4068 files_pack_refs,
4069 files_peel_ref,
4070 files_create_symref,
4071 files_delete_refs,
4072
4073 files_ref_iterator_begin,
4074 files_read_raw_ref,
4075 files_verify_refname_available,
4076
4077 files_reflog_iterator_begin,
4078 files_for_each_reflog_ent,
4079 files_for_each_reflog_ent_reverse,
4080 files_reflog_exists,
4081 files_create_reflog,
4082 files_delete_reflog,
4083 files_reflog_expire
4084 };