]> git.ipfire.org Git - thirdparty/git.git/blob - refs/files-backend.c
ref-cache: rename `find_ref()` to `find_ref_entry()`
[thirdparty/git.git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11 char *ref_name;
12 struct lock_file *lk;
13 struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19 * Information used (along with the information in ref_entry) to
20 * describe a single cached reference. This data structure only
21 * occurs embedded in a union in struct ref_entry, and only when
22 * (ref_entry->flag & REF_DIR) is zero.
23 */
24 struct ref_value {
25 /*
26 * The name of the object to which this reference resolves
27 * (which may be a tag object). If REF_ISBROKEN, this is
28 * null. If REF_ISSYMREF, then this is the name of the object
29 * referred to by the last reference in the symlink chain.
30 */
31 struct object_id oid;
32
33 /*
34 * If REF_KNOWS_PEELED, then this field holds the peeled value
35 * of this reference, or null if the reference is known not to
36 * be peelable. See the documentation for peel_ref() for an
37 * exact definition of "peelable".
38 */
39 struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45 * Information used (along with the information in ref_entry) to
46 * describe a level in the hierarchy of references. This data
47 * structure only occurs embedded in a union in struct ref_entry, and
48 * only when (ref_entry.flag & REF_DIR) is set. In that case,
49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50 * in the directory have already been read:
51 *
52 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53 * or packed references, already read.
54 *
55 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56 * references that hasn't been read yet (nor has any of its
57 * subdirectories).
58 *
59 * Entries within a directory are stored within a growable array of
60 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
61 * sorted are sorted by their component name in strcmp() order and the
62 * remaining entries are unsorted.
63 *
64 * Loose references are read lazily, one directory at a time. When a
65 * directory of loose references is read, then all of the references
66 * in that directory are stored, and REF_INCOMPLETE stubs are created
67 * for any subdirectories, but the subdirectories themselves are not
68 * read. The reading is triggered by get_ref_dir().
69 */
70 struct ref_dir {
71 int nr, alloc;
72
73 /*
74 * Entries with index 0 <= i < sorted are sorted by name. New
75 * entries are appended to the list unsorted, and are sorted
76 * only when required; thus we avoid the need to sort the list
77 * after the addition of every reference.
78 */
79 int sorted;
80
81 /* A pointer to the files_ref_store that contains this ref_dir. */
82 struct files_ref_store *ref_store;
83
84 struct ref_entry **entries;
85 };
86
87 /*
88 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90 * public values; see refs.h.
91 */
92
93 /*
94 * The field ref_entry->u.value.peeled of this value entry contains
95 * the correct peeled value for the reference, which might be
96 * null_sha1 if the reference is not a tag or if it is broken.
97 */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104 * Entry has not yet been read from disk (used only for REF_DIR
105 * entries representing loose references)
106 */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110 * A ref_entry represents either a reference or a "subdirectory" of
111 * references.
112 *
113 * Each directory in the reference namespace is represented by a
114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
115 * that holds the entries in that directory that have been read so
116 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
117 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
118 * used for loose reference directories.
119 *
120 * References are represented by a ref_entry with (flags & REF_DIR)
121 * unset and a value member that describes the reference's value. The
122 * flag member is at the ref_entry level, but it is also needed to
123 * interpret the contents of the value field (in other words, a
124 * ref_value object is not very much use without the enclosing
125 * ref_entry).
126 *
127 * Reference names cannot end with slash and directories' names are
128 * always stored with a trailing slash (except for the top-level
129 * directory, which is always denoted by ""). This has two nice
130 * consequences: (1) when the entries in each subdir are sorted
131 * lexicographically by name (as they usually are), the references in
132 * a whole tree can be generated in lexicographic order by traversing
133 * the tree in left-to-right, depth-first order; (2) the names of
134 * references and subdirectories cannot conflict, and therefore the
135 * presence of an empty subdirectory does not block the creation of a
136 * similarly-named reference. (The fact that reference names with the
137 * same leading components can conflict *with each other* is a
138 * separate issue that is regulated by verify_refname_available().)
139 *
140 * Please note that the name field contains the fully-qualified
141 * reference (or subdirectory) name. Space could be saved by only
142 * storing the relative names. But that would require the full names
143 * to be generated on the fly when iterating in do_for_each_ref(), and
144 * would break callback functions, who have always been able to assume
145 * that the name strings that they are passed will not be freed during
146 * the iteration.
147 */
148 struct ref_entry {
149 unsigned char flag; /* ISSYMREF? ISPACKED? */
150 union {
151 struct ref_value value; /* if not (flags&REF_DIR) */
152 struct ref_dir subdir; /* if (flags&REF_DIR) */
153 } u;
154 /*
155 * The full name of the reference (e.g., "refs/heads/master")
156 * or the full name of the directory with a trailing slash
157 * (e.g., "refs/heads/"):
158 */
159 char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165 const char *dirname, size_t len,
166 int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168 static int files_log_ref_write(struct files_ref_store *refs,
169 const char *refname, const unsigned char *old_sha1,
170 const unsigned char *new_sha1, const char *msg,
171 int flags, struct strbuf *err);
172
173 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
174 {
175 struct ref_dir *dir;
176 assert(entry->flag & REF_DIR);
177 dir = &entry->u.subdir;
178 if (entry->flag & REF_INCOMPLETE) {
179 read_loose_refs(entry->name, dir);
180
181 /*
182 * Manually add refs/bisect, which, being
183 * per-worktree, might not appear in the directory
184 * listing for refs/ in the main repo.
185 */
186 if (!strcmp(entry->name, "refs/")) {
187 int pos = search_ref_dir(dir, "refs/bisect/", 12);
188 if (pos < 0) {
189 struct ref_entry *child_entry;
190 child_entry = create_dir_entry(dir->ref_store,
191 "refs/bisect/",
192 12, 1);
193 add_entry_to_dir(dir, child_entry);
194 }
195 }
196 entry->flag &= ~REF_INCOMPLETE;
197 }
198 return dir;
199 }
200
201 static struct ref_entry *create_ref_entry(const char *refname,
202 const unsigned char *sha1, int flag,
203 int check_name)
204 {
205 struct ref_entry *ref;
206
207 if (check_name &&
208 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
209 die("Reference has invalid format: '%s'", refname);
210 FLEX_ALLOC_STR(ref, name, refname);
211 hashcpy(ref->u.value.oid.hash, sha1);
212 oidclr(&ref->u.value.peeled);
213 ref->flag = flag;
214 return ref;
215 }
216
217 static void clear_ref_dir(struct ref_dir *dir);
218
219 static void free_ref_entry(struct ref_entry *entry)
220 {
221 if (entry->flag & REF_DIR) {
222 /*
223 * Do not use get_ref_dir() here, as that might
224 * trigger the reading of loose refs.
225 */
226 clear_ref_dir(&entry->u.subdir);
227 }
228 free(entry);
229 }
230
231 /*
232 * Add a ref_entry to the end of dir (unsorted). Entry is always
233 * stored directly in dir; no recursion into subdirectories is
234 * done.
235 */
236 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
237 {
238 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
239 dir->entries[dir->nr++] = entry;
240 /* optimize for the case that entries are added in order */
241 if (dir->nr == 1 ||
242 (dir->nr == dir->sorted + 1 &&
243 strcmp(dir->entries[dir->nr - 2]->name,
244 dir->entries[dir->nr - 1]->name) < 0))
245 dir->sorted = dir->nr;
246 }
247
248 /*
249 * Clear and free all entries in dir, recursively.
250 */
251 static void clear_ref_dir(struct ref_dir *dir)
252 {
253 int i;
254 for (i = 0; i < dir->nr; i++)
255 free_ref_entry(dir->entries[i]);
256 free(dir->entries);
257 dir->sorted = dir->nr = dir->alloc = 0;
258 dir->entries = NULL;
259 }
260
261 /*
262 * Create a struct ref_entry object for the specified dirname.
263 * dirname is the name of the directory with a trailing slash (e.g.,
264 * "refs/heads/") or "" for the top-level directory.
265 */
266 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
267 const char *dirname, size_t len,
268 int incomplete)
269 {
270 struct ref_entry *direntry;
271 FLEX_ALLOC_MEM(direntry, name, dirname, len);
272 direntry->u.subdir.ref_store = ref_store;
273 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
274 return direntry;
275 }
276
277 static int ref_entry_cmp(const void *a, const void *b)
278 {
279 struct ref_entry *one = *(struct ref_entry **)a;
280 struct ref_entry *two = *(struct ref_entry **)b;
281 return strcmp(one->name, two->name);
282 }
283
284 static void sort_ref_dir(struct ref_dir *dir);
285
286 struct string_slice {
287 size_t len;
288 const char *str;
289 };
290
291 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
292 {
293 const struct string_slice *key = key_;
294 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
295 int cmp = strncmp(key->str, ent->name, key->len);
296 if (cmp)
297 return cmp;
298 return '\0' - (unsigned char)ent->name[key->len];
299 }
300
301 /*
302 * Return the index of the entry with the given refname from the
303 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
304 * no such entry is found. dir must already be complete.
305 */
306 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
307 {
308 struct ref_entry **r;
309 struct string_slice key;
310
311 if (refname == NULL || !dir->nr)
312 return -1;
313
314 sort_ref_dir(dir);
315 key.len = len;
316 key.str = refname;
317 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
318 ref_entry_cmp_sslice);
319
320 if (r == NULL)
321 return -1;
322
323 return r - dir->entries;
324 }
325
326 /*
327 * Search for a directory entry directly within dir (without
328 * recursing). Sort dir if necessary. subdirname must be a directory
329 * name (i.e., end in '/'). If mkdir is set, then create the
330 * directory if it is missing; otherwise, return NULL if the desired
331 * directory cannot be found. dir must already be complete.
332 */
333 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
334 const char *subdirname, size_t len,
335 int mkdir)
336 {
337 int entry_index = search_ref_dir(dir, subdirname, len);
338 struct ref_entry *entry;
339 if (entry_index == -1) {
340 if (!mkdir)
341 return NULL;
342 /*
343 * Since dir is complete, the absence of a subdir
344 * means that the subdir really doesn't exist;
345 * therefore, create an empty record for it but mark
346 * the record complete.
347 */
348 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
349 add_entry_to_dir(dir, entry);
350 } else {
351 entry = dir->entries[entry_index];
352 }
353 return get_ref_dir(entry);
354 }
355
356 /*
357 * If refname is a reference name, find the ref_dir within the dir
358 * tree that should hold refname. If refname is a directory name
359 * (i.e., ends in '/'), then return that ref_dir itself. dir must
360 * represent the top-level directory and must already be complete.
361 * Sort ref_dirs and recurse into subdirectories as necessary. If
362 * mkdir is set, then create any missing directories; otherwise,
363 * return NULL if the desired directory cannot be found.
364 */
365 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
366 const char *refname, int mkdir)
367 {
368 const char *slash;
369 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
370 size_t dirnamelen = slash - refname + 1;
371 struct ref_dir *subdir;
372 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
373 if (!subdir) {
374 dir = NULL;
375 break;
376 }
377 dir = subdir;
378 }
379
380 return dir;
381 }
382
383 /*
384 * Find the value entry with the given name in dir, sorting ref_dirs
385 * and recursing into subdirectories as necessary. If the name is not
386 * found or it corresponds to a directory entry, return NULL.
387 */
388 static struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
389 {
390 int entry_index;
391 struct ref_entry *entry;
392 dir = find_containing_dir(dir, refname, 0);
393 if (!dir)
394 return NULL;
395 entry_index = search_ref_dir(dir, refname, strlen(refname));
396 if (entry_index == -1)
397 return NULL;
398 entry = dir->entries[entry_index];
399 return (entry->flag & REF_DIR) ? NULL : entry;
400 }
401
402 /*
403 * Remove the entry with the given name from dir, recursing into
404 * subdirectories as necessary. If refname is the name of a directory
405 * (i.e., ends with '/'), then remove the directory and its contents.
406 * If the removal was successful, return the number of entries
407 * remaining in the directory entry that contained the deleted entry.
408 * If the name was not found, return -1. Please note that this
409 * function only deletes the entry from the cache; it does not delete
410 * it from the filesystem or ensure that other cache entries (which
411 * might be symbolic references to the removed entry) are updated.
412 * Nor does it remove any containing dir entries that might be made
413 * empty by the removal. dir must represent the top-level directory
414 * and must already be complete.
415 */
416 static int remove_entry(struct ref_dir *dir, const char *refname)
417 {
418 int refname_len = strlen(refname);
419 int entry_index;
420 struct ref_entry *entry;
421 int is_dir = refname[refname_len - 1] == '/';
422 if (is_dir) {
423 /*
424 * refname represents a reference directory. Remove
425 * the trailing slash; otherwise we will get the
426 * directory *representing* refname rather than the
427 * one *containing* it.
428 */
429 char *dirname = xmemdupz(refname, refname_len - 1);
430 dir = find_containing_dir(dir, dirname, 0);
431 free(dirname);
432 } else {
433 dir = find_containing_dir(dir, refname, 0);
434 }
435 if (!dir)
436 return -1;
437 entry_index = search_ref_dir(dir, refname, refname_len);
438 if (entry_index == -1)
439 return -1;
440 entry = dir->entries[entry_index];
441
442 memmove(&dir->entries[entry_index],
443 &dir->entries[entry_index + 1],
444 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
445 );
446 dir->nr--;
447 if (dir->sorted > entry_index)
448 dir->sorted--;
449 free_ref_entry(entry);
450 return dir->nr;
451 }
452
453 /*
454 * Add a ref_entry to the ref_dir (unsorted), recursing into
455 * subdirectories as necessary. dir must represent the top-level
456 * directory. Return 0 on success.
457 */
458 static int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
459 {
460 dir = find_containing_dir(dir, ref->name, 1);
461 if (!dir)
462 return -1;
463 add_entry_to_dir(dir, ref);
464 return 0;
465 }
466
467 /*
468 * Emit a warning and return true iff ref1 and ref2 have the same name
469 * and the same sha1. Die if they have the same name but different
470 * sha1s.
471 */
472 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
473 {
474 if (strcmp(ref1->name, ref2->name))
475 return 0;
476
477 /* Duplicate name; make sure that they don't conflict: */
478
479 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
480 /* This is impossible by construction */
481 die("Reference directory conflict: %s", ref1->name);
482
483 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
484 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
485
486 warning("Duplicated ref: %s", ref1->name);
487 return 1;
488 }
489
490 /*
491 * Sort the entries in dir non-recursively (if they are not already
492 * sorted) and remove any duplicate entries.
493 */
494 static void sort_ref_dir(struct ref_dir *dir)
495 {
496 int i, j;
497 struct ref_entry *last = NULL;
498
499 /*
500 * This check also prevents passing a zero-length array to qsort(),
501 * which is a problem on some platforms.
502 */
503 if (dir->sorted == dir->nr)
504 return;
505
506 QSORT(dir->entries, dir->nr, ref_entry_cmp);
507
508 /* Remove any duplicates: */
509 for (i = 0, j = 0; j < dir->nr; j++) {
510 struct ref_entry *entry = dir->entries[j];
511 if (last && is_dup_ref(last, entry))
512 free_ref_entry(entry);
513 else
514 last = dir->entries[i++] = entry;
515 }
516 dir->sorted = dir->nr = i;
517 }
518
519 /*
520 * Return true if refname, which has the specified oid and flags, can
521 * be resolved to an object in the database. If the referred-to object
522 * does not exist, emit a warning and return false.
523 */
524 static int ref_resolves_to_object(const char *refname,
525 const struct object_id *oid,
526 unsigned int flags)
527 {
528 if (flags & REF_ISBROKEN)
529 return 0;
530 if (!has_sha1_file(oid->hash)) {
531 error("%s does not point to a valid object!", refname);
532 return 0;
533 }
534 return 1;
535 }
536
537 /*
538 * Return true if the reference described by entry can be resolved to
539 * an object in the database; otherwise, emit a warning and return
540 * false.
541 */
542 static int entry_resolves_to_object(struct ref_entry *entry)
543 {
544 return ref_resolves_to_object(entry->name,
545 &entry->u.value.oid, entry->flag);
546 }
547
548 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
549
550 /*
551 * Call fn for each reference in dir that has index in the range
552 * offset <= index < dir->nr. Recurse into subdirectories that are in
553 * that index range, sorting them before iterating. This function
554 * does not sort dir itself; it should be sorted beforehand. fn is
555 * called for all references, including broken ones.
556 */
557 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
558 each_ref_entry_fn fn, void *cb_data)
559 {
560 int i;
561 assert(dir->sorted == dir->nr);
562 for (i = offset; i < dir->nr; i++) {
563 struct ref_entry *entry = dir->entries[i];
564 int retval;
565 if (entry->flag & REF_DIR) {
566 struct ref_dir *subdir = get_ref_dir(entry);
567 sort_ref_dir(subdir);
568 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
569 } else {
570 retval = fn(entry, cb_data);
571 }
572 if (retval)
573 return retval;
574 }
575 return 0;
576 }
577
578 /*
579 * Load all of the refs from the dir into our in-memory cache. The hard work
580 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
581 * through all of the sub-directories. We do not even need to care about
582 * sorting, as traversal order does not matter to us.
583 */
584 static void prime_ref_dir(struct ref_dir *dir)
585 {
586 int i;
587 for (i = 0; i < dir->nr; i++) {
588 struct ref_entry *entry = dir->entries[i];
589 if (entry->flag & REF_DIR)
590 prime_ref_dir(get_ref_dir(entry));
591 }
592 }
593
594 /*
595 * A level in the reference hierarchy that is currently being iterated
596 * through.
597 */
598 struct cache_ref_iterator_level {
599 /*
600 * The ref_dir being iterated over at this level. The ref_dir
601 * is sorted before being stored here.
602 */
603 struct ref_dir *dir;
604
605 /*
606 * The index of the current entry within dir (which might
607 * itself be a directory). If index == -1, then the iteration
608 * hasn't yet begun. If index == dir->nr, then the iteration
609 * through this level is over.
610 */
611 int index;
612 };
613
614 /*
615 * Represent an iteration through a ref_dir in the memory cache. The
616 * iteration recurses through subdirectories.
617 */
618 struct cache_ref_iterator {
619 struct ref_iterator base;
620
621 /*
622 * The number of levels currently on the stack. This is always
623 * at least 1, because when it becomes zero the iteration is
624 * ended and this struct is freed.
625 */
626 size_t levels_nr;
627
628 /* The number of levels that have been allocated on the stack */
629 size_t levels_alloc;
630
631 /*
632 * A stack of levels. levels[0] is the uppermost level that is
633 * being iterated over in this iteration. (This is not
634 * necessary the top level in the references hierarchy. If we
635 * are iterating through a subtree, then levels[0] will hold
636 * the ref_dir for that subtree, and subsequent levels will go
637 * on from there.)
638 */
639 struct cache_ref_iterator_level *levels;
640 };
641
642 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
643 {
644 struct cache_ref_iterator *iter =
645 (struct cache_ref_iterator *)ref_iterator;
646
647 while (1) {
648 struct cache_ref_iterator_level *level =
649 &iter->levels[iter->levels_nr - 1];
650 struct ref_dir *dir = level->dir;
651 struct ref_entry *entry;
652
653 if (level->index == -1)
654 sort_ref_dir(dir);
655
656 if (++level->index == level->dir->nr) {
657 /* This level is exhausted; pop up a level */
658 if (--iter->levels_nr == 0)
659 return ref_iterator_abort(ref_iterator);
660
661 continue;
662 }
663
664 entry = dir->entries[level->index];
665
666 if (entry->flag & REF_DIR) {
667 /* push down a level */
668 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
669 iter->levels_alloc);
670
671 level = &iter->levels[iter->levels_nr++];
672 level->dir = get_ref_dir(entry);
673 level->index = -1;
674 } else {
675 iter->base.refname = entry->name;
676 iter->base.oid = &entry->u.value.oid;
677 iter->base.flags = entry->flag;
678 return ITER_OK;
679 }
680 }
681 }
682
683 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
684
685 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
686 struct object_id *peeled)
687 {
688 struct cache_ref_iterator *iter =
689 (struct cache_ref_iterator *)ref_iterator;
690 struct cache_ref_iterator_level *level;
691 struct ref_entry *entry;
692
693 level = &iter->levels[iter->levels_nr - 1];
694
695 if (level->index == -1)
696 die("BUG: peel called before advance for cache iterator");
697
698 entry = level->dir->entries[level->index];
699
700 if (peel_entry(entry, 0))
701 return -1;
702 oidcpy(peeled, &entry->u.value.peeled);
703 return 0;
704 }
705
706 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
707 {
708 struct cache_ref_iterator *iter =
709 (struct cache_ref_iterator *)ref_iterator;
710
711 free(iter->levels);
712 base_ref_iterator_free(ref_iterator);
713 return ITER_DONE;
714 }
715
716 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
717 cache_ref_iterator_advance,
718 cache_ref_iterator_peel,
719 cache_ref_iterator_abort
720 };
721
722 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
723 {
724 struct cache_ref_iterator *iter;
725 struct ref_iterator *ref_iterator;
726 struct cache_ref_iterator_level *level;
727
728 iter = xcalloc(1, sizeof(*iter));
729 ref_iterator = &iter->base;
730 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
731 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
732
733 iter->levels_nr = 1;
734 level = &iter->levels[0];
735 level->index = -1;
736 level->dir = dir;
737
738 return ref_iterator;
739 }
740
741 struct packed_ref_cache {
742 struct ref_entry *root;
743
744 /*
745 * Count of references to the data structure in this instance,
746 * including the pointer from files_ref_store::packed if any.
747 * The data will not be freed as long as the reference count
748 * is nonzero.
749 */
750 unsigned int referrers;
751
752 /*
753 * Iff the packed-refs file associated with this instance is
754 * currently locked for writing, this points at the associated
755 * lock (which is owned by somebody else). The referrer count
756 * is also incremented when the file is locked and decremented
757 * when it is unlocked.
758 */
759 struct lock_file *lock;
760
761 /* The metadata from when this packed-refs cache was read */
762 struct stat_validity validity;
763 };
764
765 /*
766 * Future: need to be in "struct repository"
767 * when doing a full libification.
768 */
769 struct files_ref_store {
770 struct ref_store base;
771 unsigned int store_flags;
772
773 char *gitdir;
774 char *gitcommondir;
775 char *packed_refs_path;
776
777 struct ref_entry *loose;
778 struct packed_ref_cache *packed;
779 };
780
781 /* Lock used for the main packed-refs file: */
782 static struct lock_file packlock;
783
784 /*
785 * Increment the reference count of *packed_refs.
786 */
787 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
788 {
789 packed_refs->referrers++;
790 }
791
792 /*
793 * Decrease the reference count of *packed_refs. If it goes to zero,
794 * free *packed_refs and return true; otherwise return false.
795 */
796 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
797 {
798 if (!--packed_refs->referrers) {
799 free_ref_entry(packed_refs->root);
800 stat_validity_clear(&packed_refs->validity);
801 free(packed_refs);
802 return 1;
803 } else {
804 return 0;
805 }
806 }
807
808 static void clear_packed_ref_cache(struct files_ref_store *refs)
809 {
810 if (refs->packed) {
811 struct packed_ref_cache *packed_refs = refs->packed;
812
813 if (packed_refs->lock)
814 die("internal error: packed-ref cache cleared while locked");
815 refs->packed = NULL;
816 release_packed_ref_cache(packed_refs);
817 }
818 }
819
820 static void clear_loose_ref_cache(struct files_ref_store *refs)
821 {
822 if (refs->loose) {
823 free_ref_entry(refs->loose);
824 refs->loose = NULL;
825 }
826 }
827
828 /*
829 * Create a new submodule ref cache and add it to the internal
830 * set of caches.
831 */
832 static struct ref_store *files_ref_store_create(const char *gitdir,
833 unsigned int flags)
834 {
835 struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
836 struct ref_store *ref_store = (struct ref_store *)refs;
837 struct strbuf sb = STRBUF_INIT;
838
839 base_ref_store_init(ref_store, &refs_be_files);
840 refs->store_flags = flags;
841
842 refs->gitdir = xstrdup(gitdir);
843 get_common_dir_noenv(&sb, gitdir);
844 refs->gitcommondir = strbuf_detach(&sb, NULL);
845 strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
846 refs->packed_refs_path = strbuf_detach(&sb, NULL);
847
848 return ref_store;
849 }
850
851 /*
852 * Die if refs is not the main ref store. caller is used in any
853 * necessary error messages.
854 */
855 static void files_assert_main_repository(struct files_ref_store *refs,
856 const char *caller)
857 {
858 if (refs->store_flags & REF_STORE_MAIN)
859 return;
860
861 die("BUG: operation %s only allowed for main ref store", caller);
862 }
863
864 /*
865 * Downcast ref_store to files_ref_store. Die if ref_store is not a
866 * files_ref_store. required_flags is compared with ref_store's
867 * store_flags to ensure the ref_store has all required capabilities.
868 * "caller" is used in any necessary error messages.
869 */
870 static struct files_ref_store *files_downcast(struct ref_store *ref_store,
871 unsigned int required_flags,
872 const char *caller)
873 {
874 struct files_ref_store *refs;
875
876 if (ref_store->be != &refs_be_files)
877 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
878 ref_store->be->name, caller);
879
880 refs = (struct files_ref_store *)ref_store;
881
882 if ((refs->store_flags & required_flags) != required_flags)
883 die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
884 caller, required_flags, refs->store_flags);
885
886 return refs;
887 }
888
889 /* The length of a peeled reference line in packed-refs, including EOL: */
890 #define PEELED_LINE_LENGTH 42
891
892 /*
893 * The packed-refs header line that we write out. Perhaps other
894 * traits will be added later. The trailing space is required.
895 */
896 static const char PACKED_REFS_HEADER[] =
897 "# pack-refs with: peeled fully-peeled \n";
898
899 /*
900 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
901 * Return a pointer to the refname within the line (null-terminated),
902 * or NULL if there was a problem.
903 */
904 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
905 {
906 const char *ref;
907
908 /*
909 * 42: the answer to everything.
910 *
911 * In this case, it happens to be the answer to
912 * 40 (length of sha1 hex representation)
913 * +1 (space in between hex and name)
914 * +1 (newline at the end of the line)
915 */
916 if (line->len <= 42)
917 return NULL;
918
919 if (get_sha1_hex(line->buf, sha1) < 0)
920 return NULL;
921 if (!isspace(line->buf[40]))
922 return NULL;
923
924 ref = line->buf + 41;
925 if (isspace(*ref))
926 return NULL;
927
928 if (line->buf[line->len - 1] != '\n')
929 return NULL;
930 line->buf[--line->len] = 0;
931
932 return ref;
933 }
934
935 /*
936 * Read f, which is a packed-refs file, into dir.
937 *
938 * A comment line of the form "# pack-refs with: " may contain zero or
939 * more traits. We interpret the traits as follows:
940 *
941 * No traits:
942 *
943 * Probably no references are peeled. But if the file contains a
944 * peeled value for a reference, we will use it.
945 *
946 * peeled:
947 *
948 * References under "refs/tags/", if they *can* be peeled, *are*
949 * peeled in this file. References outside of "refs/tags/" are
950 * probably not peeled even if they could have been, but if we find
951 * a peeled value for such a reference we will use it.
952 *
953 * fully-peeled:
954 *
955 * All references in the file that can be peeled are peeled.
956 * Inversely (and this is more important), any references in the
957 * file for which no peeled value is recorded is not peelable. This
958 * trait should typically be written alongside "peeled" for
959 * compatibility with older clients, but we do not require it
960 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
961 */
962 static void read_packed_refs(FILE *f, struct ref_dir *dir)
963 {
964 struct ref_entry *last = NULL;
965 struct strbuf line = STRBUF_INIT;
966 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
967
968 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
969 unsigned char sha1[20];
970 const char *refname;
971 const char *traits;
972
973 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
974 if (strstr(traits, " fully-peeled "))
975 peeled = PEELED_FULLY;
976 else if (strstr(traits, " peeled "))
977 peeled = PEELED_TAGS;
978 /* perhaps other traits later as well */
979 continue;
980 }
981
982 refname = parse_ref_line(&line, sha1);
983 if (refname) {
984 int flag = REF_ISPACKED;
985
986 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
987 if (!refname_is_safe(refname))
988 die("packed refname is dangerous: %s", refname);
989 hashclr(sha1);
990 flag |= REF_BAD_NAME | REF_ISBROKEN;
991 }
992 last = create_ref_entry(refname, sha1, flag, 0);
993 if (peeled == PEELED_FULLY ||
994 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
995 last->flag |= REF_KNOWS_PEELED;
996 add_ref_entry(dir, last);
997 continue;
998 }
999 if (last &&
1000 line.buf[0] == '^' &&
1001 line.len == PEELED_LINE_LENGTH &&
1002 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1003 !get_sha1_hex(line.buf + 1, sha1)) {
1004 hashcpy(last->u.value.peeled.hash, sha1);
1005 /*
1006 * Regardless of what the file header said,
1007 * we definitely know the value of *this*
1008 * reference:
1009 */
1010 last->flag |= REF_KNOWS_PEELED;
1011 }
1012 }
1013
1014 strbuf_release(&line);
1015 }
1016
1017 static const char *files_packed_refs_path(struct files_ref_store *refs)
1018 {
1019 return refs->packed_refs_path;
1020 }
1021
1022 static void files_reflog_path(struct files_ref_store *refs,
1023 struct strbuf *sb,
1024 const char *refname)
1025 {
1026 if (!refname) {
1027 /*
1028 * FIXME: of course this is wrong in multi worktree
1029 * setting. To be fixed real soon.
1030 */
1031 strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1032 return;
1033 }
1034
1035 switch (ref_type(refname)) {
1036 case REF_TYPE_PER_WORKTREE:
1037 case REF_TYPE_PSEUDOREF:
1038 strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1039 break;
1040 case REF_TYPE_NORMAL:
1041 strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1042 break;
1043 default:
1044 die("BUG: unknown ref type %d of ref %s",
1045 ref_type(refname), refname);
1046 }
1047 }
1048
1049 static void files_ref_path(struct files_ref_store *refs,
1050 struct strbuf *sb,
1051 const char *refname)
1052 {
1053 switch (ref_type(refname)) {
1054 case REF_TYPE_PER_WORKTREE:
1055 case REF_TYPE_PSEUDOREF:
1056 strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1057 break;
1058 case REF_TYPE_NORMAL:
1059 strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1060 break;
1061 default:
1062 die("BUG: unknown ref type %d of ref %s",
1063 ref_type(refname), refname);
1064 }
1065 }
1066
1067 /*
1068 * Get the packed_ref_cache for the specified files_ref_store,
1069 * creating it if necessary.
1070 */
1071 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1072 {
1073 const char *packed_refs_file = files_packed_refs_path(refs);
1074
1075 if (refs->packed &&
1076 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1077 clear_packed_ref_cache(refs);
1078
1079 if (!refs->packed) {
1080 FILE *f;
1081
1082 refs->packed = xcalloc(1, sizeof(*refs->packed));
1083 acquire_packed_ref_cache(refs->packed);
1084 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1085 f = fopen(packed_refs_file, "r");
1086 if (f) {
1087 stat_validity_update(&refs->packed->validity, fileno(f));
1088 read_packed_refs(f, get_ref_dir(refs->packed->root));
1089 fclose(f);
1090 }
1091 }
1092 return refs->packed;
1093 }
1094
1095 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1096 {
1097 return get_ref_dir(packed_ref_cache->root);
1098 }
1099
1100 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1101 {
1102 return get_packed_ref_dir(get_packed_ref_cache(refs));
1103 }
1104
1105 /*
1106 * Add a reference to the in-memory packed reference cache. This may
1107 * only be called while the packed-refs file is locked (see
1108 * lock_packed_refs()). To actually write the packed-refs file, call
1109 * commit_packed_refs().
1110 */
1111 static void add_packed_ref(struct files_ref_store *refs,
1112 const char *refname, const unsigned char *sha1)
1113 {
1114 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1115
1116 if (!packed_ref_cache->lock)
1117 die("internal error: packed refs not locked");
1118 add_ref_entry(get_packed_ref_dir(packed_ref_cache),
1119 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1120 }
1121
1122 /*
1123 * Read the loose references from the namespace dirname into dir
1124 * (without recursing). dirname must end with '/'. dir must be the
1125 * directory entry corresponding to dirname.
1126 */
1127 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1128 {
1129 struct files_ref_store *refs = dir->ref_store;
1130 DIR *d;
1131 struct dirent *de;
1132 int dirnamelen = strlen(dirname);
1133 struct strbuf refname;
1134 struct strbuf path = STRBUF_INIT;
1135 size_t path_baselen;
1136
1137 files_ref_path(refs, &path, dirname);
1138 path_baselen = path.len;
1139
1140 d = opendir(path.buf);
1141 if (!d) {
1142 strbuf_release(&path);
1143 return;
1144 }
1145
1146 strbuf_init(&refname, dirnamelen + 257);
1147 strbuf_add(&refname, dirname, dirnamelen);
1148
1149 while ((de = readdir(d)) != NULL) {
1150 unsigned char sha1[20];
1151 struct stat st;
1152 int flag;
1153
1154 if (de->d_name[0] == '.')
1155 continue;
1156 if (ends_with(de->d_name, ".lock"))
1157 continue;
1158 strbuf_addstr(&refname, de->d_name);
1159 strbuf_addstr(&path, de->d_name);
1160 if (stat(path.buf, &st) < 0) {
1161 ; /* silently ignore */
1162 } else if (S_ISDIR(st.st_mode)) {
1163 strbuf_addch(&refname, '/');
1164 add_entry_to_dir(dir,
1165 create_dir_entry(refs, refname.buf,
1166 refname.len, 1));
1167 } else {
1168 if (!refs_resolve_ref_unsafe(&refs->base,
1169 refname.buf,
1170 RESOLVE_REF_READING,
1171 sha1, &flag)) {
1172 hashclr(sha1);
1173 flag |= REF_ISBROKEN;
1174 } else if (is_null_sha1(sha1)) {
1175 /*
1176 * It is so astronomically unlikely
1177 * that NULL_SHA1 is the SHA-1 of an
1178 * actual object that we consider its
1179 * appearance in a loose reference
1180 * file to be repo corruption
1181 * (probably due to a software bug).
1182 */
1183 flag |= REF_ISBROKEN;
1184 }
1185
1186 if (check_refname_format(refname.buf,
1187 REFNAME_ALLOW_ONELEVEL)) {
1188 if (!refname_is_safe(refname.buf))
1189 die("loose refname is dangerous: %s", refname.buf);
1190 hashclr(sha1);
1191 flag |= REF_BAD_NAME | REF_ISBROKEN;
1192 }
1193 add_entry_to_dir(dir,
1194 create_ref_entry(refname.buf, sha1, flag, 0));
1195 }
1196 strbuf_setlen(&refname, dirnamelen);
1197 strbuf_setlen(&path, path_baselen);
1198 }
1199 strbuf_release(&refname);
1200 strbuf_release(&path);
1201 closedir(d);
1202 }
1203
1204 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1205 {
1206 if (!refs->loose) {
1207 /*
1208 * Mark the top-level directory complete because we
1209 * are about to read the only subdirectory that can
1210 * hold references:
1211 */
1212 refs->loose = create_dir_entry(refs, "", 0, 0);
1213 /*
1214 * Create an incomplete entry for "refs/":
1215 */
1216 add_entry_to_dir(get_ref_dir(refs->loose),
1217 create_dir_entry(refs, "refs/", 5, 1));
1218 }
1219 return get_ref_dir(refs->loose);
1220 }
1221
1222 /*
1223 * Return the ref_entry for the given refname from the packed
1224 * references. If it does not exist, return NULL.
1225 */
1226 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1227 const char *refname)
1228 {
1229 return find_ref_entry(get_packed_refs(refs), refname);
1230 }
1231
1232 /*
1233 * A loose ref file doesn't exist; check for a packed ref.
1234 */
1235 static int resolve_packed_ref(struct files_ref_store *refs,
1236 const char *refname,
1237 unsigned char *sha1, unsigned int *flags)
1238 {
1239 struct ref_entry *entry;
1240
1241 /*
1242 * The loose reference file does not exist; check for a packed
1243 * reference.
1244 */
1245 entry = get_packed_ref(refs, refname);
1246 if (entry) {
1247 hashcpy(sha1, entry->u.value.oid.hash);
1248 *flags |= REF_ISPACKED;
1249 return 0;
1250 }
1251 /* refname is not a packed reference. */
1252 return -1;
1253 }
1254
1255 static int files_read_raw_ref(struct ref_store *ref_store,
1256 const char *refname, unsigned char *sha1,
1257 struct strbuf *referent, unsigned int *type)
1258 {
1259 struct files_ref_store *refs =
1260 files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1261 struct strbuf sb_contents = STRBUF_INIT;
1262 struct strbuf sb_path = STRBUF_INIT;
1263 const char *path;
1264 const char *buf;
1265 struct stat st;
1266 int fd;
1267 int ret = -1;
1268 int save_errno;
1269 int remaining_retries = 3;
1270
1271 *type = 0;
1272 strbuf_reset(&sb_path);
1273
1274 files_ref_path(refs, &sb_path, refname);
1275
1276 path = sb_path.buf;
1277
1278 stat_ref:
1279 /*
1280 * We might have to loop back here to avoid a race
1281 * condition: first we lstat() the file, then we try
1282 * to read it as a link or as a file. But if somebody
1283 * changes the type of the file (file <-> directory
1284 * <-> symlink) between the lstat() and reading, then
1285 * we don't want to report that as an error but rather
1286 * try again starting with the lstat().
1287 *
1288 * We'll keep a count of the retries, though, just to avoid
1289 * any confusing situation sending us into an infinite loop.
1290 */
1291
1292 if (remaining_retries-- <= 0)
1293 goto out;
1294
1295 if (lstat(path, &st) < 0) {
1296 if (errno != ENOENT)
1297 goto out;
1298 if (resolve_packed_ref(refs, refname, sha1, type)) {
1299 errno = ENOENT;
1300 goto out;
1301 }
1302 ret = 0;
1303 goto out;
1304 }
1305
1306 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1307 if (S_ISLNK(st.st_mode)) {
1308 strbuf_reset(&sb_contents);
1309 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1310 if (errno == ENOENT || errno == EINVAL)
1311 /* inconsistent with lstat; retry */
1312 goto stat_ref;
1313 else
1314 goto out;
1315 }
1316 if (starts_with(sb_contents.buf, "refs/") &&
1317 !check_refname_format(sb_contents.buf, 0)) {
1318 strbuf_swap(&sb_contents, referent);
1319 *type |= REF_ISSYMREF;
1320 ret = 0;
1321 goto out;
1322 }
1323 /*
1324 * It doesn't look like a refname; fall through to just
1325 * treating it like a non-symlink, and reading whatever it
1326 * points to.
1327 */
1328 }
1329
1330 /* Is it a directory? */
1331 if (S_ISDIR(st.st_mode)) {
1332 /*
1333 * Even though there is a directory where the loose
1334 * ref is supposed to be, there could still be a
1335 * packed ref:
1336 */
1337 if (resolve_packed_ref(refs, refname, sha1, type)) {
1338 errno = EISDIR;
1339 goto out;
1340 }
1341 ret = 0;
1342 goto out;
1343 }
1344
1345 /*
1346 * Anything else, just open it and try to use it as
1347 * a ref
1348 */
1349 fd = open(path, O_RDONLY);
1350 if (fd < 0) {
1351 if (errno == ENOENT && !S_ISLNK(st.st_mode))
1352 /* inconsistent with lstat; retry */
1353 goto stat_ref;
1354 else
1355 goto out;
1356 }
1357 strbuf_reset(&sb_contents);
1358 if (strbuf_read(&sb_contents, fd, 256) < 0) {
1359 int save_errno = errno;
1360 close(fd);
1361 errno = save_errno;
1362 goto out;
1363 }
1364 close(fd);
1365 strbuf_rtrim(&sb_contents);
1366 buf = sb_contents.buf;
1367 if (starts_with(buf, "ref:")) {
1368 buf += 4;
1369 while (isspace(*buf))
1370 buf++;
1371
1372 strbuf_reset(referent);
1373 strbuf_addstr(referent, buf);
1374 *type |= REF_ISSYMREF;
1375 ret = 0;
1376 goto out;
1377 }
1378
1379 /*
1380 * Please note that FETCH_HEAD has additional
1381 * data after the sha.
1382 */
1383 if (get_sha1_hex(buf, sha1) ||
1384 (buf[40] != '\0' && !isspace(buf[40]))) {
1385 *type |= REF_ISBROKEN;
1386 errno = EINVAL;
1387 goto out;
1388 }
1389
1390 ret = 0;
1391
1392 out:
1393 save_errno = errno;
1394 strbuf_release(&sb_path);
1395 strbuf_release(&sb_contents);
1396 errno = save_errno;
1397 return ret;
1398 }
1399
1400 static void unlock_ref(struct ref_lock *lock)
1401 {
1402 /* Do not free lock->lk -- atexit() still looks at them */
1403 if (lock->lk)
1404 rollback_lock_file(lock->lk);
1405 free(lock->ref_name);
1406 free(lock);
1407 }
1408
1409 /*
1410 * Lock refname, without following symrefs, and set *lock_p to point
1411 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1412 * and type similarly to read_raw_ref().
1413 *
1414 * The caller must verify that refname is a "safe" reference name (in
1415 * the sense of refname_is_safe()) before calling this function.
1416 *
1417 * If the reference doesn't already exist, verify that refname doesn't
1418 * have a D/F conflict with any existing references. extras and skip
1419 * are passed to refs_verify_refname_available() for this check.
1420 *
1421 * If mustexist is not set and the reference is not found or is
1422 * broken, lock the reference anyway but clear sha1.
1423 *
1424 * Return 0 on success. On failure, write an error message to err and
1425 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1426 *
1427 * Implementation note: This function is basically
1428 *
1429 * lock reference
1430 * read_raw_ref()
1431 *
1432 * but it includes a lot more code to
1433 * - Deal with possible races with other processes
1434 * - Avoid calling refs_verify_refname_available() when it can be
1435 * avoided, namely if we were successfully able to read the ref
1436 * - Generate informative error messages in the case of failure
1437 */
1438 static int lock_raw_ref(struct files_ref_store *refs,
1439 const char *refname, int mustexist,
1440 const struct string_list *extras,
1441 const struct string_list *skip,
1442 struct ref_lock **lock_p,
1443 struct strbuf *referent,
1444 unsigned int *type,
1445 struct strbuf *err)
1446 {
1447 struct ref_lock *lock;
1448 struct strbuf ref_file = STRBUF_INIT;
1449 int attempts_remaining = 3;
1450 int ret = TRANSACTION_GENERIC_ERROR;
1451
1452 assert(err);
1453 files_assert_main_repository(refs, "lock_raw_ref");
1454
1455 *type = 0;
1456
1457 /* First lock the file so it can't change out from under us. */
1458
1459 *lock_p = lock = xcalloc(1, sizeof(*lock));
1460
1461 lock->ref_name = xstrdup(refname);
1462 files_ref_path(refs, &ref_file, refname);
1463
1464 retry:
1465 switch (safe_create_leading_directories(ref_file.buf)) {
1466 case SCLD_OK:
1467 break; /* success */
1468 case SCLD_EXISTS:
1469 /*
1470 * Suppose refname is "refs/foo/bar". We just failed
1471 * to create the containing directory, "refs/foo",
1472 * because there was a non-directory in the way. This
1473 * indicates a D/F conflict, probably because of
1474 * another reference such as "refs/foo". There is no
1475 * reason to expect this error to be transitory.
1476 */
1477 if (refs_verify_refname_available(&refs->base, refname,
1478 extras, skip, err)) {
1479 if (mustexist) {
1480 /*
1481 * To the user the relevant error is
1482 * that the "mustexist" reference is
1483 * missing:
1484 */
1485 strbuf_reset(err);
1486 strbuf_addf(err, "unable to resolve reference '%s'",
1487 refname);
1488 } else {
1489 /*
1490 * The error message set by
1491 * refs_verify_refname_available() is
1492 * OK.
1493 */
1494 ret = TRANSACTION_NAME_CONFLICT;
1495 }
1496 } else {
1497 /*
1498 * The file that is in the way isn't a loose
1499 * reference. Report it as a low-level
1500 * failure.
1501 */
1502 strbuf_addf(err, "unable to create lock file %s.lock; "
1503 "non-directory in the way",
1504 ref_file.buf);
1505 }
1506 goto error_return;
1507 case SCLD_VANISHED:
1508 /* Maybe another process was tidying up. Try again. */
1509 if (--attempts_remaining > 0)
1510 goto retry;
1511 /* fall through */
1512 default:
1513 strbuf_addf(err, "unable to create directory for %s",
1514 ref_file.buf);
1515 goto error_return;
1516 }
1517
1518 if (!lock->lk)
1519 lock->lk = xcalloc(1, sizeof(struct lock_file));
1520
1521 if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1522 if (errno == ENOENT && --attempts_remaining > 0) {
1523 /*
1524 * Maybe somebody just deleted one of the
1525 * directories leading to ref_file. Try
1526 * again:
1527 */
1528 goto retry;
1529 } else {
1530 unable_to_lock_message(ref_file.buf, errno, err);
1531 goto error_return;
1532 }
1533 }
1534
1535 /*
1536 * Now we hold the lock and can read the reference without
1537 * fear that its value will change.
1538 */
1539
1540 if (files_read_raw_ref(&refs->base, refname,
1541 lock->old_oid.hash, referent, type)) {
1542 if (errno == ENOENT) {
1543 if (mustexist) {
1544 /* Garden variety missing reference. */
1545 strbuf_addf(err, "unable to resolve reference '%s'",
1546 refname);
1547 goto error_return;
1548 } else {
1549 /*
1550 * Reference is missing, but that's OK. We
1551 * know that there is not a conflict with
1552 * another loose reference because
1553 * (supposing that we are trying to lock
1554 * reference "refs/foo/bar"):
1555 *
1556 * - We were successfully able to create
1557 * the lockfile refs/foo/bar.lock, so we
1558 * know there cannot be a loose reference
1559 * named "refs/foo".
1560 *
1561 * - We got ENOENT and not EISDIR, so we
1562 * know that there cannot be a loose
1563 * reference named "refs/foo/bar/baz".
1564 */
1565 }
1566 } else if (errno == EISDIR) {
1567 /*
1568 * There is a directory in the way. It might have
1569 * contained references that have been deleted. If
1570 * we don't require that the reference already
1571 * exists, try to remove the directory so that it
1572 * doesn't cause trouble when we want to rename the
1573 * lockfile into place later.
1574 */
1575 if (mustexist) {
1576 /* Garden variety missing reference. */
1577 strbuf_addf(err, "unable to resolve reference '%s'",
1578 refname);
1579 goto error_return;
1580 } else if (remove_dir_recursively(&ref_file,
1581 REMOVE_DIR_EMPTY_ONLY)) {
1582 if (refs_verify_refname_available(
1583 &refs->base, refname,
1584 extras, skip, err)) {
1585 /*
1586 * The error message set by
1587 * verify_refname_available() is OK.
1588 */
1589 ret = TRANSACTION_NAME_CONFLICT;
1590 goto error_return;
1591 } else {
1592 /*
1593 * We can't delete the directory,
1594 * but we also don't know of any
1595 * references that it should
1596 * contain.
1597 */
1598 strbuf_addf(err, "there is a non-empty directory '%s' "
1599 "blocking reference '%s'",
1600 ref_file.buf, refname);
1601 goto error_return;
1602 }
1603 }
1604 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1605 strbuf_addf(err, "unable to resolve reference '%s': "
1606 "reference broken", refname);
1607 goto error_return;
1608 } else {
1609 strbuf_addf(err, "unable to resolve reference '%s': %s",
1610 refname, strerror(errno));
1611 goto error_return;
1612 }
1613
1614 /*
1615 * If the ref did not exist and we are creating it,
1616 * make sure there is no existing ref that conflicts
1617 * with refname:
1618 */
1619 if (refs_verify_refname_available(
1620 &refs->base, refname,
1621 extras, skip, err))
1622 goto error_return;
1623 }
1624
1625 ret = 0;
1626 goto out;
1627
1628 error_return:
1629 unlock_ref(lock);
1630 *lock_p = NULL;
1631
1632 out:
1633 strbuf_release(&ref_file);
1634 return ret;
1635 }
1636
1637 /*
1638 * Peel the entry (if possible) and return its new peel_status. If
1639 * repeel is true, re-peel the entry even if there is an old peeled
1640 * value that is already stored in it.
1641 *
1642 * It is OK to call this function with a packed reference entry that
1643 * might be stale and might even refer to an object that has since
1644 * been garbage-collected. In such a case, if the entry has
1645 * REF_KNOWS_PEELED then leave the status unchanged and return
1646 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1647 */
1648 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1649 {
1650 enum peel_status status;
1651
1652 if (entry->flag & REF_KNOWS_PEELED) {
1653 if (repeel) {
1654 entry->flag &= ~REF_KNOWS_PEELED;
1655 oidclr(&entry->u.value.peeled);
1656 } else {
1657 return is_null_oid(&entry->u.value.peeled) ?
1658 PEEL_NON_TAG : PEEL_PEELED;
1659 }
1660 }
1661 if (entry->flag & REF_ISBROKEN)
1662 return PEEL_BROKEN;
1663 if (entry->flag & REF_ISSYMREF)
1664 return PEEL_IS_SYMREF;
1665
1666 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1667 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1668 entry->flag |= REF_KNOWS_PEELED;
1669 return status;
1670 }
1671
1672 static int files_peel_ref(struct ref_store *ref_store,
1673 const char *refname, unsigned char *sha1)
1674 {
1675 struct files_ref_store *refs =
1676 files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1677 "peel_ref");
1678 int flag;
1679 unsigned char base[20];
1680
1681 if (current_ref_iter && current_ref_iter->refname == refname) {
1682 struct object_id peeled;
1683
1684 if (ref_iterator_peel(current_ref_iter, &peeled))
1685 return -1;
1686 hashcpy(sha1, peeled.hash);
1687 return 0;
1688 }
1689
1690 if (refs_read_ref_full(ref_store, refname,
1691 RESOLVE_REF_READING, base, &flag))
1692 return -1;
1693
1694 /*
1695 * If the reference is packed, read its ref_entry from the
1696 * cache in the hope that we already know its peeled value.
1697 * We only try this optimization on packed references because
1698 * (a) forcing the filling of the loose reference cache could
1699 * be expensive and (b) loose references anyway usually do not
1700 * have REF_KNOWS_PEELED.
1701 */
1702 if (flag & REF_ISPACKED) {
1703 struct ref_entry *r = get_packed_ref(refs, refname);
1704 if (r) {
1705 if (peel_entry(r, 0))
1706 return -1;
1707 hashcpy(sha1, r->u.value.peeled.hash);
1708 return 0;
1709 }
1710 }
1711
1712 return peel_object(base, sha1);
1713 }
1714
1715 struct files_ref_iterator {
1716 struct ref_iterator base;
1717
1718 struct packed_ref_cache *packed_ref_cache;
1719 struct ref_iterator *iter0;
1720 unsigned int flags;
1721 };
1722
1723 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1724 {
1725 struct files_ref_iterator *iter =
1726 (struct files_ref_iterator *)ref_iterator;
1727 int ok;
1728
1729 while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1730 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1731 ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1732 continue;
1733
1734 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1735 !ref_resolves_to_object(iter->iter0->refname,
1736 iter->iter0->oid,
1737 iter->iter0->flags))
1738 continue;
1739
1740 iter->base.refname = iter->iter0->refname;
1741 iter->base.oid = iter->iter0->oid;
1742 iter->base.flags = iter->iter0->flags;
1743 return ITER_OK;
1744 }
1745
1746 iter->iter0 = NULL;
1747 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1748 ok = ITER_ERROR;
1749
1750 return ok;
1751 }
1752
1753 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1754 struct object_id *peeled)
1755 {
1756 struct files_ref_iterator *iter =
1757 (struct files_ref_iterator *)ref_iterator;
1758
1759 return ref_iterator_peel(iter->iter0, peeled);
1760 }
1761
1762 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1763 {
1764 struct files_ref_iterator *iter =
1765 (struct files_ref_iterator *)ref_iterator;
1766 int ok = ITER_DONE;
1767
1768 if (iter->iter0)
1769 ok = ref_iterator_abort(iter->iter0);
1770
1771 release_packed_ref_cache(iter->packed_ref_cache);
1772 base_ref_iterator_free(ref_iterator);
1773 return ok;
1774 }
1775
1776 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1777 files_ref_iterator_advance,
1778 files_ref_iterator_peel,
1779 files_ref_iterator_abort
1780 };
1781
1782 static struct ref_iterator *files_ref_iterator_begin(
1783 struct ref_store *ref_store,
1784 const char *prefix, unsigned int flags)
1785 {
1786 struct files_ref_store *refs;
1787 struct ref_dir *loose_dir, *packed_dir;
1788 struct ref_iterator *loose_iter, *packed_iter;
1789 struct files_ref_iterator *iter;
1790 struct ref_iterator *ref_iterator;
1791
1792 if (ref_paranoia < 0)
1793 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1794 if (ref_paranoia)
1795 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1796
1797 refs = files_downcast(ref_store,
1798 REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1799 "ref_iterator_begin");
1800
1801 iter = xcalloc(1, sizeof(*iter));
1802 ref_iterator = &iter->base;
1803 base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1804
1805 /*
1806 * We must make sure that all loose refs are read before
1807 * accessing the packed-refs file; this avoids a race
1808 * condition if loose refs are migrated to the packed-refs
1809 * file by a simultaneous process, but our in-memory view is
1810 * from before the migration. We ensure this as follows:
1811 * First, we call prime_ref_dir(), which pre-reads the loose
1812 * references for the subtree into the cache. (If they've
1813 * already been read, that's OK; we only need to guarantee
1814 * that they're read before the packed refs, not *how much*
1815 * before.) After that, we call get_packed_ref_cache(), which
1816 * internally checks whether the packed-ref cache is up to
1817 * date with what is on disk, and re-reads it if not.
1818 */
1819
1820 loose_dir = get_loose_refs(refs);
1821
1822 if (prefix && *prefix)
1823 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1824
1825 if (loose_dir) {
1826 prime_ref_dir(loose_dir);
1827 loose_iter = cache_ref_iterator_begin(loose_dir);
1828 } else {
1829 /* There's nothing to iterate over. */
1830 loose_iter = empty_ref_iterator_begin();
1831 }
1832
1833 iter->packed_ref_cache = get_packed_ref_cache(refs);
1834 acquire_packed_ref_cache(iter->packed_ref_cache);
1835 packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1836
1837 if (prefix && *prefix)
1838 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1839
1840 if (packed_dir) {
1841 packed_iter = cache_ref_iterator_begin(packed_dir);
1842 } else {
1843 /* There's nothing to iterate over. */
1844 packed_iter = empty_ref_iterator_begin();
1845 }
1846
1847 iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1848 iter->flags = flags;
1849
1850 return ref_iterator;
1851 }
1852
1853 /*
1854 * Verify that the reference locked by lock has the value old_sha1.
1855 * Fail if the reference doesn't exist and mustexist is set. Return 0
1856 * on success. On error, write an error message to err, set errno, and
1857 * return a negative value.
1858 */
1859 static int verify_lock(struct ref_store *ref_store, struct ref_lock *lock,
1860 const unsigned char *old_sha1, int mustexist,
1861 struct strbuf *err)
1862 {
1863 assert(err);
1864
1865 if (refs_read_ref_full(ref_store, lock->ref_name,
1866 mustexist ? RESOLVE_REF_READING : 0,
1867 lock->old_oid.hash, NULL)) {
1868 if (old_sha1) {
1869 int save_errno = errno;
1870 strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
1871 errno = save_errno;
1872 return -1;
1873 } else {
1874 oidclr(&lock->old_oid);
1875 return 0;
1876 }
1877 }
1878 if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
1879 strbuf_addf(err, "ref '%s' is at %s but expected %s",
1880 lock->ref_name,
1881 oid_to_hex(&lock->old_oid),
1882 sha1_to_hex(old_sha1));
1883 errno = EBUSY;
1884 return -1;
1885 }
1886 return 0;
1887 }
1888
1889 static int remove_empty_directories(struct strbuf *path)
1890 {
1891 /*
1892 * we want to create a file but there is a directory there;
1893 * if that is an empty directory (or a directory that contains
1894 * only empty directories), remove them.
1895 */
1896 return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
1897 }
1898
1899 static int create_reflock(const char *path, void *cb)
1900 {
1901 struct lock_file *lk = cb;
1902
1903 return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
1904 }
1905
1906 /*
1907 * Locks a ref returning the lock on success and NULL on failure.
1908 * On failure errno is set to something meaningful.
1909 */
1910 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
1911 const char *refname,
1912 const unsigned char *old_sha1,
1913 const struct string_list *extras,
1914 const struct string_list *skip,
1915 unsigned int flags, int *type,
1916 struct strbuf *err)
1917 {
1918 struct strbuf ref_file = STRBUF_INIT;
1919 struct ref_lock *lock;
1920 int last_errno = 0;
1921 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1922 int resolve_flags = RESOLVE_REF_NO_RECURSE;
1923 int resolved;
1924
1925 files_assert_main_repository(refs, "lock_ref_sha1_basic");
1926 assert(err);
1927
1928 lock = xcalloc(1, sizeof(struct ref_lock));
1929
1930 if (mustexist)
1931 resolve_flags |= RESOLVE_REF_READING;
1932 if (flags & REF_DELETING)
1933 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
1934
1935 files_ref_path(refs, &ref_file, refname);
1936 resolved = !!refs_resolve_ref_unsafe(&refs->base,
1937 refname, resolve_flags,
1938 lock->old_oid.hash, type);
1939 if (!resolved && errno == EISDIR) {
1940 /*
1941 * we are trying to lock foo but we used to
1942 * have foo/bar which now does not exist;
1943 * it is normal for the empty directory 'foo'
1944 * to remain.
1945 */
1946 if (remove_empty_directories(&ref_file)) {
1947 last_errno = errno;
1948 if (!refs_verify_refname_available(
1949 &refs->base,
1950 refname, extras, skip, err))
1951 strbuf_addf(err, "there are still refs under '%s'",
1952 refname);
1953 goto error_return;
1954 }
1955 resolved = !!refs_resolve_ref_unsafe(&refs->base,
1956 refname, resolve_flags,
1957 lock->old_oid.hash, type);
1958 }
1959 if (!resolved) {
1960 last_errno = errno;
1961 if (last_errno != ENOTDIR ||
1962 !refs_verify_refname_available(&refs->base, refname,
1963 extras, skip, err))
1964 strbuf_addf(err, "unable to resolve reference '%s': %s",
1965 refname, strerror(last_errno));
1966
1967 goto error_return;
1968 }
1969
1970 /*
1971 * If the ref did not exist and we are creating it, make sure
1972 * there is no existing packed ref whose name begins with our
1973 * refname, nor a packed ref whose name is a proper prefix of
1974 * our refname.
1975 */
1976 if (is_null_oid(&lock->old_oid) &&
1977 refs_verify_refname_available(&refs->base, refname,
1978 extras, skip, err)) {
1979 last_errno = ENOTDIR;
1980 goto error_return;
1981 }
1982
1983 lock->lk = xcalloc(1, sizeof(struct lock_file));
1984
1985 lock->ref_name = xstrdup(refname);
1986
1987 if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
1988 last_errno = errno;
1989 unable_to_lock_message(ref_file.buf, errno, err);
1990 goto error_return;
1991 }
1992
1993 if (verify_lock(&refs->base, lock, old_sha1, mustexist, err)) {
1994 last_errno = errno;
1995 goto error_return;
1996 }
1997 goto out;
1998
1999 error_return:
2000 unlock_ref(lock);
2001 lock = NULL;
2002
2003 out:
2004 strbuf_release(&ref_file);
2005 errno = last_errno;
2006 return lock;
2007 }
2008
2009 /*
2010 * Write an entry to the packed-refs file for the specified refname.
2011 * If peeled is non-NULL, write it as the entry's peeled value.
2012 */
2013 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2014 unsigned char *peeled)
2015 {
2016 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2017 if (peeled)
2018 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2019 }
2020
2021 /*
2022 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2023 */
2024 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2025 {
2026 enum peel_status peel_status = peel_entry(entry, 0);
2027
2028 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2029 error("internal error: %s is not a valid packed reference!",
2030 entry->name);
2031 write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2032 peel_status == PEEL_PEELED ?
2033 entry->u.value.peeled.hash : NULL);
2034 return 0;
2035 }
2036
2037 /*
2038 * Lock the packed-refs file for writing. Flags is passed to
2039 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2040 * errno appropriately and return a nonzero value.
2041 */
2042 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2043 {
2044 static int timeout_configured = 0;
2045 static int timeout_value = 1000;
2046 struct packed_ref_cache *packed_ref_cache;
2047
2048 files_assert_main_repository(refs, "lock_packed_refs");
2049
2050 if (!timeout_configured) {
2051 git_config_get_int("core.packedrefstimeout", &timeout_value);
2052 timeout_configured = 1;
2053 }
2054
2055 if (hold_lock_file_for_update_timeout(
2056 &packlock, files_packed_refs_path(refs),
2057 flags, timeout_value) < 0)
2058 return -1;
2059 /*
2060 * Get the current packed-refs while holding the lock. If the
2061 * packed-refs file has been modified since we last read it,
2062 * this will automatically invalidate the cache and re-read
2063 * the packed-refs file.
2064 */
2065 packed_ref_cache = get_packed_ref_cache(refs);
2066 packed_ref_cache->lock = &packlock;
2067 /* Increment the reference count to prevent it from being freed: */
2068 acquire_packed_ref_cache(packed_ref_cache);
2069 return 0;
2070 }
2071
2072 /*
2073 * Write the current version of the packed refs cache from memory to
2074 * disk. The packed-refs file must already be locked for writing (see
2075 * lock_packed_refs()). Return zero on success. On errors, set errno
2076 * and return a nonzero value
2077 */
2078 static int commit_packed_refs(struct files_ref_store *refs)
2079 {
2080 struct packed_ref_cache *packed_ref_cache =
2081 get_packed_ref_cache(refs);
2082 int error = 0;
2083 int save_errno = 0;
2084 FILE *out;
2085
2086 files_assert_main_repository(refs, "commit_packed_refs");
2087
2088 if (!packed_ref_cache->lock)
2089 die("internal error: packed-refs not locked");
2090
2091 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2092 if (!out)
2093 die_errno("unable to fdopen packed-refs descriptor");
2094
2095 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2096 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2097 0, write_packed_entry_fn, out);
2098
2099 if (commit_lock_file(packed_ref_cache->lock)) {
2100 save_errno = errno;
2101 error = -1;
2102 }
2103 packed_ref_cache->lock = NULL;
2104 release_packed_ref_cache(packed_ref_cache);
2105 errno = save_errno;
2106 return error;
2107 }
2108
2109 /*
2110 * Rollback the lockfile for the packed-refs file, and discard the
2111 * in-memory packed reference cache. (The packed-refs file will be
2112 * read anew if it is needed again after this function is called.)
2113 */
2114 static void rollback_packed_refs(struct files_ref_store *refs)
2115 {
2116 struct packed_ref_cache *packed_ref_cache =
2117 get_packed_ref_cache(refs);
2118
2119 files_assert_main_repository(refs, "rollback_packed_refs");
2120
2121 if (!packed_ref_cache->lock)
2122 die("internal error: packed-refs not locked");
2123 rollback_lock_file(packed_ref_cache->lock);
2124 packed_ref_cache->lock = NULL;
2125 release_packed_ref_cache(packed_ref_cache);
2126 clear_packed_ref_cache(refs);
2127 }
2128
2129 struct ref_to_prune {
2130 struct ref_to_prune *next;
2131 unsigned char sha1[20];
2132 char name[FLEX_ARRAY];
2133 };
2134
2135 struct pack_refs_cb_data {
2136 unsigned int flags;
2137 struct ref_dir *packed_refs;
2138 struct ref_to_prune *ref_to_prune;
2139 };
2140
2141 /*
2142 * An each_ref_entry_fn that is run over loose references only. If
2143 * the loose reference can be packed, add an entry in the packed ref
2144 * cache. If the reference should be pruned, also add it to
2145 * ref_to_prune in the pack_refs_cb_data.
2146 */
2147 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2148 {
2149 struct pack_refs_cb_data *cb = cb_data;
2150 enum peel_status peel_status;
2151 struct ref_entry *packed_entry;
2152 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2153
2154 /* Do not pack per-worktree refs: */
2155 if (ref_type(entry->name) != REF_TYPE_NORMAL)
2156 return 0;
2157
2158 /* ALWAYS pack tags */
2159 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2160 return 0;
2161
2162 /* Do not pack symbolic or broken refs: */
2163 if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2164 return 0;
2165
2166 /* Add a packed ref cache entry equivalent to the loose entry. */
2167 peel_status = peel_entry(entry, 1);
2168 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2169 die("internal error peeling reference %s (%s)",
2170 entry->name, oid_to_hex(&entry->u.value.oid));
2171 packed_entry = find_ref_entry(cb->packed_refs, entry->name);
2172 if (packed_entry) {
2173 /* Overwrite existing packed entry with info from loose entry */
2174 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2175 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2176 } else {
2177 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2178 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2179 add_ref_entry(cb->packed_refs, packed_entry);
2180 }
2181 oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2182
2183 /* Schedule the loose reference for pruning if requested. */
2184 if ((cb->flags & PACK_REFS_PRUNE)) {
2185 struct ref_to_prune *n;
2186 FLEX_ALLOC_STR(n, name, entry->name);
2187 hashcpy(n->sha1, entry->u.value.oid.hash);
2188 n->next = cb->ref_to_prune;
2189 cb->ref_to_prune = n;
2190 }
2191 return 0;
2192 }
2193
2194 enum {
2195 REMOVE_EMPTY_PARENTS_REF = 0x01,
2196 REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2197 };
2198
2199 /*
2200 * Remove empty parent directories associated with the specified
2201 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2202 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2203 * REMOVE_EMPTY_PARENTS_REFLOG.
2204 */
2205 static void try_remove_empty_parents(struct files_ref_store *refs,
2206 const char *refname,
2207 unsigned int flags)
2208 {
2209 struct strbuf buf = STRBUF_INIT;
2210 struct strbuf sb = STRBUF_INIT;
2211 char *p, *q;
2212 int i;
2213
2214 strbuf_addstr(&buf, refname);
2215 p = buf.buf;
2216 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2217 while (*p && *p != '/')
2218 p++;
2219 /* tolerate duplicate slashes; see check_refname_format() */
2220 while (*p == '/')
2221 p++;
2222 }
2223 q = buf.buf + buf.len;
2224 while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2225 while (q > p && *q != '/')
2226 q--;
2227 while (q > p && *(q-1) == '/')
2228 q--;
2229 if (q == p)
2230 break;
2231 strbuf_setlen(&buf, q - buf.buf);
2232
2233 strbuf_reset(&sb);
2234 files_ref_path(refs, &sb, buf.buf);
2235 if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2236 flags &= ~REMOVE_EMPTY_PARENTS_REF;
2237
2238 strbuf_reset(&sb);
2239 files_reflog_path(refs, &sb, buf.buf);
2240 if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2241 flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2242 }
2243 strbuf_release(&buf);
2244 strbuf_release(&sb);
2245 }
2246
2247 /* make sure nobody touched the ref, and unlink */
2248 static void prune_ref(struct files_ref_store *refs, struct ref_to_prune *r)
2249 {
2250 struct ref_transaction *transaction;
2251 struct strbuf err = STRBUF_INIT;
2252
2253 if (check_refname_format(r->name, 0))
2254 return;
2255
2256 transaction = ref_store_transaction_begin(&refs->base, &err);
2257 if (!transaction ||
2258 ref_transaction_delete(transaction, r->name, r->sha1,
2259 REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2260 ref_transaction_commit(transaction, &err)) {
2261 ref_transaction_free(transaction);
2262 error("%s", err.buf);
2263 strbuf_release(&err);
2264 return;
2265 }
2266 ref_transaction_free(transaction);
2267 strbuf_release(&err);
2268 }
2269
2270 static void prune_refs(struct files_ref_store *refs, struct ref_to_prune *r)
2271 {
2272 while (r) {
2273 prune_ref(refs, r);
2274 r = r->next;
2275 }
2276 }
2277
2278 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2279 {
2280 struct files_ref_store *refs =
2281 files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2282 "pack_refs");
2283 struct pack_refs_cb_data cbdata;
2284
2285 memset(&cbdata, 0, sizeof(cbdata));
2286 cbdata.flags = flags;
2287
2288 lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2289 cbdata.packed_refs = get_packed_refs(refs);
2290
2291 do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2292 pack_if_possible_fn, &cbdata);
2293
2294 if (commit_packed_refs(refs))
2295 die_errno("unable to overwrite old ref-pack file");
2296
2297 prune_refs(refs, cbdata.ref_to_prune);
2298 return 0;
2299 }
2300
2301 /*
2302 * Rewrite the packed-refs file, omitting any refs listed in
2303 * 'refnames'. On error, leave packed-refs unchanged, write an error
2304 * message to 'err', and return a nonzero value.
2305 *
2306 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2307 */
2308 static int repack_without_refs(struct files_ref_store *refs,
2309 struct string_list *refnames, struct strbuf *err)
2310 {
2311 struct ref_dir *packed;
2312 struct string_list_item *refname;
2313 int ret, needs_repacking = 0, removed = 0;
2314
2315 files_assert_main_repository(refs, "repack_without_refs");
2316 assert(err);
2317
2318 /* Look for a packed ref */
2319 for_each_string_list_item(refname, refnames) {
2320 if (get_packed_ref(refs, refname->string)) {
2321 needs_repacking = 1;
2322 break;
2323 }
2324 }
2325
2326 /* Avoid locking if we have nothing to do */
2327 if (!needs_repacking)
2328 return 0; /* no refname exists in packed refs */
2329
2330 if (lock_packed_refs(refs, 0)) {
2331 unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2332 return -1;
2333 }
2334 packed = get_packed_refs(refs);
2335
2336 /* Remove refnames from the cache */
2337 for_each_string_list_item(refname, refnames)
2338 if (remove_entry(packed, refname->string) != -1)
2339 removed = 1;
2340 if (!removed) {
2341 /*
2342 * All packed entries disappeared while we were
2343 * acquiring the lock.
2344 */
2345 rollback_packed_refs(refs);
2346 return 0;
2347 }
2348
2349 /* Write what remains */
2350 ret = commit_packed_refs(refs);
2351 if (ret)
2352 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2353 strerror(errno));
2354 return ret;
2355 }
2356
2357 static int files_delete_refs(struct ref_store *ref_store,
2358 struct string_list *refnames, unsigned int flags)
2359 {
2360 struct files_ref_store *refs =
2361 files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2362 struct strbuf err = STRBUF_INIT;
2363 int i, result = 0;
2364
2365 if (!refnames->nr)
2366 return 0;
2367
2368 result = repack_without_refs(refs, refnames, &err);
2369 if (result) {
2370 /*
2371 * If we failed to rewrite the packed-refs file, then
2372 * it is unsafe to try to remove loose refs, because
2373 * doing so might expose an obsolete packed value for
2374 * a reference that might even point at an object that
2375 * has been garbage collected.
2376 */
2377 if (refnames->nr == 1)
2378 error(_("could not delete reference %s: %s"),
2379 refnames->items[0].string, err.buf);
2380 else
2381 error(_("could not delete references: %s"), err.buf);
2382
2383 goto out;
2384 }
2385
2386 for (i = 0; i < refnames->nr; i++) {
2387 const char *refname = refnames->items[i].string;
2388
2389 if (refs_delete_ref(&refs->base, NULL, refname, NULL, flags))
2390 result |= error(_("could not remove reference %s"), refname);
2391 }
2392
2393 out:
2394 strbuf_release(&err);
2395 return result;
2396 }
2397
2398 /*
2399 * People using contrib's git-new-workdir have .git/logs/refs ->
2400 * /some/other/path/.git/logs/refs, and that may live on another device.
2401 *
2402 * IOW, to avoid cross device rename errors, the temporary renamed log must
2403 * live into logs/refs.
2404 */
2405 #define TMP_RENAMED_LOG "refs/.tmp-renamed-log"
2406
2407 struct rename_cb {
2408 const char *tmp_renamed_log;
2409 int true_errno;
2410 };
2411
2412 static int rename_tmp_log_callback(const char *path, void *cb_data)
2413 {
2414 struct rename_cb *cb = cb_data;
2415
2416 if (rename(cb->tmp_renamed_log, path)) {
2417 /*
2418 * rename(a, b) when b is an existing directory ought
2419 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2420 * Sheesh. Record the true errno for error reporting,
2421 * but report EISDIR to raceproof_create_file() so
2422 * that it knows to retry.
2423 */
2424 cb->true_errno = errno;
2425 if (errno == ENOTDIR)
2426 errno = EISDIR;
2427 return -1;
2428 } else {
2429 return 0;
2430 }
2431 }
2432
2433 static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2434 {
2435 struct strbuf path = STRBUF_INIT;
2436 struct strbuf tmp = STRBUF_INIT;
2437 struct rename_cb cb;
2438 int ret;
2439
2440 files_reflog_path(refs, &path, newrefname);
2441 files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2442 cb.tmp_renamed_log = tmp.buf;
2443 ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2444 if (ret) {
2445 if (errno == EISDIR)
2446 error("directory not empty: %s", path.buf);
2447 else
2448 error("unable to move logfile %s to %s: %s",
2449 tmp.buf, path.buf,
2450 strerror(cb.true_errno));
2451 }
2452
2453 strbuf_release(&path);
2454 strbuf_release(&tmp);
2455 return ret;
2456 }
2457
2458 static int write_ref_to_lockfile(struct ref_lock *lock,
2459 const unsigned char *sha1, struct strbuf *err);
2460 static int commit_ref_update(struct files_ref_store *refs,
2461 struct ref_lock *lock,
2462 const unsigned char *sha1, const char *logmsg,
2463 struct strbuf *err);
2464
2465 static int files_rename_ref(struct ref_store *ref_store,
2466 const char *oldrefname, const char *newrefname,
2467 const char *logmsg)
2468 {
2469 struct files_ref_store *refs =
2470 files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2471 unsigned char sha1[20], orig_sha1[20];
2472 int flag = 0, logmoved = 0;
2473 struct ref_lock *lock;
2474 struct stat loginfo;
2475 struct strbuf sb_oldref = STRBUF_INIT;
2476 struct strbuf sb_newref = STRBUF_INIT;
2477 struct strbuf tmp_renamed_log = STRBUF_INIT;
2478 int log, ret;
2479 struct strbuf err = STRBUF_INIT;
2480
2481 files_reflog_path(refs, &sb_oldref, oldrefname);
2482 files_reflog_path(refs, &sb_newref, newrefname);
2483 files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2484
2485 log = !lstat(sb_oldref.buf, &loginfo);
2486 if (log && S_ISLNK(loginfo.st_mode)) {
2487 ret = error("reflog for %s is a symlink", oldrefname);
2488 goto out;
2489 }
2490
2491 if (!refs_resolve_ref_unsafe(&refs->base, oldrefname,
2492 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2493 orig_sha1, &flag)) {
2494 ret = error("refname %s not found", oldrefname);
2495 goto out;
2496 }
2497
2498 if (flag & REF_ISSYMREF) {
2499 ret = error("refname %s is a symbolic ref, renaming it is not supported",
2500 oldrefname);
2501 goto out;
2502 }
2503 if (!refs_rename_ref_available(&refs->base, oldrefname, newrefname)) {
2504 ret = 1;
2505 goto out;
2506 }
2507
2508 if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2509 ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2510 oldrefname, strerror(errno));
2511 goto out;
2512 }
2513
2514 if (refs_delete_ref(&refs->base, logmsg, oldrefname,
2515 orig_sha1, REF_NODEREF)) {
2516 error("unable to delete old %s", oldrefname);
2517 goto rollback;
2518 }
2519
2520 /*
2521 * Since we are doing a shallow lookup, sha1 is not the
2522 * correct value to pass to delete_ref as old_sha1. But that
2523 * doesn't matter, because an old_sha1 check wouldn't add to
2524 * the safety anyway; we want to delete the reference whatever
2525 * its current value.
2526 */
2527 if (!refs_read_ref_full(&refs->base, newrefname,
2528 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2529 sha1, NULL) &&
2530 refs_delete_ref(&refs->base, NULL, newrefname,
2531 NULL, REF_NODEREF)) {
2532 if (errno == EISDIR) {
2533 struct strbuf path = STRBUF_INIT;
2534 int result;
2535
2536 files_ref_path(refs, &path, newrefname);
2537 result = remove_empty_directories(&path);
2538 strbuf_release(&path);
2539
2540 if (result) {
2541 error("Directory not empty: %s", newrefname);
2542 goto rollback;
2543 }
2544 } else {
2545 error("unable to delete existing %s", newrefname);
2546 goto rollback;
2547 }
2548 }
2549
2550 if (log && rename_tmp_log(refs, newrefname))
2551 goto rollback;
2552
2553 logmoved = log;
2554
2555 lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2556 REF_NODEREF, NULL, &err);
2557 if (!lock) {
2558 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2559 strbuf_release(&err);
2560 goto rollback;
2561 }
2562 hashcpy(lock->old_oid.hash, orig_sha1);
2563
2564 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2565 commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2566 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2567 strbuf_release(&err);
2568 goto rollback;
2569 }
2570
2571 ret = 0;
2572 goto out;
2573
2574 rollback:
2575 lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2576 REF_NODEREF, NULL, &err);
2577 if (!lock) {
2578 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2579 strbuf_release(&err);
2580 goto rollbacklog;
2581 }
2582
2583 flag = log_all_ref_updates;
2584 log_all_ref_updates = LOG_REFS_NONE;
2585 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2586 commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2587 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2588 strbuf_release(&err);
2589 }
2590 log_all_ref_updates = flag;
2591
2592 rollbacklog:
2593 if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2594 error("unable to restore logfile %s from %s: %s",
2595 oldrefname, newrefname, strerror(errno));
2596 if (!logmoved && log &&
2597 rename(tmp_renamed_log.buf, sb_oldref.buf))
2598 error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2599 oldrefname, strerror(errno));
2600 ret = 1;
2601 out:
2602 strbuf_release(&sb_newref);
2603 strbuf_release(&sb_oldref);
2604 strbuf_release(&tmp_renamed_log);
2605
2606 return ret;
2607 }
2608
2609 static int close_ref(struct ref_lock *lock)
2610 {
2611 if (close_lock_file(lock->lk))
2612 return -1;
2613 return 0;
2614 }
2615
2616 static int commit_ref(struct ref_lock *lock)
2617 {
2618 char *path = get_locked_file_path(lock->lk);
2619 struct stat st;
2620
2621 if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2622 /*
2623 * There is a directory at the path we want to rename
2624 * the lockfile to. Hopefully it is empty; try to
2625 * delete it.
2626 */
2627 size_t len = strlen(path);
2628 struct strbuf sb_path = STRBUF_INIT;
2629
2630 strbuf_attach(&sb_path, path, len, len);
2631
2632 /*
2633 * If this fails, commit_lock_file() will also fail
2634 * and will report the problem.
2635 */
2636 remove_empty_directories(&sb_path);
2637 strbuf_release(&sb_path);
2638 } else {
2639 free(path);
2640 }
2641
2642 if (commit_lock_file(lock->lk))
2643 return -1;
2644 return 0;
2645 }
2646
2647 static int open_or_create_logfile(const char *path, void *cb)
2648 {
2649 int *fd = cb;
2650
2651 *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2652 return (*fd < 0) ? -1 : 0;
2653 }
2654
2655 /*
2656 * Create a reflog for a ref. If force_create = 0, only create the
2657 * reflog for certain refs (those for which should_autocreate_reflog
2658 * returns non-zero). Otherwise, create it regardless of the reference
2659 * name. If the logfile already existed or was created, return 0 and
2660 * set *logfd to the file descriptor opened for appending to the file.
2661 * If no logfile exists and we decided not to create one, return 0 and
2662 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2663 * return -1.
2664 */
2665 static int log_ref_setup(struct files_ref_store *refs,
2666 const char *refname, int force_create,
2667 int *logfd, struct strbuf *err)
2668 {
2669 struct strbuf logfile_sb = STRBUF_INIT;
2670 char *logfile;
2671
2672 files_reflog_path(refs, &logfile_sb, refname);
2673 logfile = strbuf_detach(&logfile_sb, NULL);
2674
2675 if (force_create || should_autocreate_reflog(refname)) {
2676 if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2677 if (errno == ENOENT)
2678 strbuf_addf(err, "unable to create directory for '%s': "
2679 "%s", logfile, strerror(errno));
2680 else if (errno == EISDIR)
2681 strbuf_addf(err, "there are still logs under '%s'",
2682 logfile);
2683 else
2684 strbuf_addf(err, "unable to append to '%s': %s",
2685 logfile, strerror(errno));
2686
2687 goto error;
2688 }
2689 } else {
2690 *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2691 if (*logfd < 0) {
2692 if (errno == ENOENT || errno == EISDIR) {
2693 /*
2694 * The logfile doesn't already exist,
2695 * but that is not an error; it only
2696 * means that we won't write log
2697 * entries to it.
2698 */
2699 ;
2700 } else {
2701 strbuf_addf(err, "unable to append to '%s': %s",
2702 logfile, strerror(errno));
2703 goto error;
2704 }
2705 }
2706 }
2707
2708 if (*logfd >= 0)
2709 adjust_shared_perm(logfile);
2710
2711 free(logfile);
2712 return 0;
2713
2714 error:
2715 free(logfile);
2716 return -1;
2717 }
2718
2719 static int files_create_reflog(struct ref_store *ref_store,
2720 const char *refname, int force_create,
2721 struct strbuf *err)
2722 {
2723 struct files_ref_store *refs =
2724 files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2725 int fd;
2726
2727 if (log_ref_setup(refs, refname, force_create, &fd, err))
2728 return -1;
2729
2730 if (fd >= 0)
2731 close(fd);
2732
2733 return 0;
2734 }
2735
2736 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2737 const unsigned char *new_sha1,
2738 const char *committer, const char *msg)
2739 {
2740 int msglen, written;
2741 unsigned maxlen, len;
2742 char *logrec;
2743
2744 msglen = msg ? strlen(msg) : 0;
2745 maxlen = strlen(committer) + msglen + 100;
2746 logrec = xmalloc(maxlen);
2747 len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2748 sha1_to_hex(old_sha1),
2749 sha1_to_hex(new_sha1),
2750 committer);
2751 if (msglen)
2752 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2753
2754 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2755 free(logrec);
2756 if (written != len)
2757 return -1;
2758
2759 return 0;
2760 }
2761
2762 static int files_log_ref_write(struct files_ref_store *refs,
2763 const char *refname, const unsigned char *old_sha1,
2764 const unsigned char *new_sha1, const char *msg,
2765 int flags, struct strbuf *err)
2766 {
2767 int logfd, result;
2768
2769 if (log_all_ref_updates == LOG_REFS_UNSET)
2770 log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2771
2772 result = log_ref_setup(refs, refname,
2773 flags & REF_FORCE_CREATE_REFLOG,
2774 &logfd, err);
2775
2776 if (result)
2777 return result;
2778
2779 if (logfd < 0)
2780 return 0;
2781 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2782 git_committer_info(0), msg);
2783 if (result) {
2784 struct strbuf sb = STRBUF_INIT;
2785 int save_errno = errno;
2786
2787 files_reflog_path(refs, &sb, refname);
2788 strbuf_addf(err, "unable to append to '%s': %s",
2789 sb.buf, strerror(save_errno));
2790 strbuf_release(&sb);
2791 close(logfd);
2792 return -1;
2793 }
2794 if (close(logfd)) {
2795 struct strbuf sb = STRBUF_INIT;
2796 int save_errno = errno;
2797
2798 files_reflog_path(refs, &sb, refname);
2799 strbuf_addf(err, "unable to append to '%s': %s",
2800 sb.buf, strerror(save_errno));
2801 strbuf_release(&sb);
2802 return -1;
2803 }
2804 return 0;
2805 }
2806
2807 /*
2808 * Write sha1 into the open lockfile, then close the lockfile. On
2809 * errors, rollback the lockfile, fill in *err and
2810 * return -1.
2811 */
2812 static int write_ref_to_lockfile(struct ref_lock *lock,
2813 const unsigned char *sha1, struct strbuf *err)
2814 {
2815 static char term = '\n';
2816 struct object *o;
2817 int fd;
2818
2819 o = parse_object(sha1);
2820 if (!o) {
2821 strbuf_addf(err,
2822 "trying to write ref '%s' with nonexistent object %s",
2823 lock->ref_name, sha1_to_hex(sha1));
2824 unlock_ref(lock);
2825 return -1;
2826 }
2827 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2828 strbuf_addf(err,
2829 "trying to write non-commit object %s to branch '%s'",
2830 sha1_to_hex(sha1), lock->ref_name);
2831 unlock_ref(lock);
2832 return -1;
2833 }
2834 fd = get_lock_file_fd(lock->lk);
2835 if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2836 write_in_full(fd, &term, 1) != 1 ||
2837 close_ref(lock) < 0) {
2838 strbuf_addf(err,
2839 "couldn't write '%s'", get_lock_file_path(lock->lk));
2840 unlock_ref(lock);
2841 return -1;
2842 }
2843 return 0;
2844 }
2845
2846 /*
2847 * Commit a change to a loose reference that has already been written
2848 * to the loose reference lockfile. Also update the reflogs if
2849 * necessary, using the specified lockmsg (which can be NULL).
2850 */
2851 static int commit_ref_update(struct files_ref_store *refs,
2852 struct ref_lock *lock,
2853 const unsigned char *sha1, const char *logmsg,
2854 struct strbuf *err)
2855 {
2856 files_assert_main_repository(refs, "commit_ref_update");
2857
2858 clear_loose_ref_cache(refs);
2859 if (files_log_ref_write(refs, lock->ref_name,
2860 lock->old_oid.hash, sha1,
2861 logmsg, 0, err)) {
2862 char *old_msg = strbuf_detach(err, NULL);
2863 strbuf_addf(err, "cannot update the ref '%s': %s",
2864 lock->ref_name, old_msg);
2865 free(old_msg);
2866 unlock_ref(lock);
2867 return -1;
2868 }
2869
2870 if (strcmp(lock->ref_name, "HEAD") != 0) {
2871 /*
2872 * Special hack: If a branch is updated directly and HEAD
2873 * points to it (may happen on the remote side of a push
2874 * for example) then logically the HEAD reflog should be
2875 * updated too.
2876 * A generic solution implies reverse symref information,
2877 * but finding all symrefs pointing to the given branch
2878 * would be rather costly for this rare event (the direct
2879 * update of a branch) to be worth it. So let's cheat and
2880 * check with HEAD only which should cover 99% of all usage
2881 * scenarios (even 100% of the default ones).
2882 */
2883 unsigned char head_sha1[20];
2884 int head_flag;
2885 const char *head_ref;
2886
2887 head_ref = refs_resolve_ref_unsafe(&refs->base, "HEAD",
2888 RESOLVE_REF_READING,
2889 head_sha1, &head_flag);
2890 if (head_ref && (head_flag & REF_ISSYMREF) &&
2891 !strcmp(head_ref, lock->ref_name)) {
2892 struct strbuf log_err = STRBUF_INIT;
2893 if (files_log_ref_write(refs, "HEAD",
2894 lock->old_oid.hash, sha1,
2895 logmsg, 0, &log_err)) {
2896 error("%s", log_err.buf);
2897 strbuf_release(&log_err);
2898 }
2899 }
2900 }
2901
2902 if (commit_ref(lock)) {
2903 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
2904 unlock_ref(lock);
2905 return -1;
2906 }
2907
2908 unlock_ref(lock);
2909 return 0;
2910 }
2911
2912 static int create_ref_symlink(struct ref_lock *lock, const char *target)
2913 {
2914 int ret = -1;
2915 #ifndef NO_SYMLINK_HEAD
2916 char *ref_path = get_locked_file_path(lock->lk);
2917 unlink(ref_path);
2918 ret = symlink(target, ref_path);
2919 free(ref_path);
2920
2921 if (ret)
2922 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2923 #endif
2924 return ret;
2925 }
2926
2927 static void update_symref_reflog(struct files_ref_store *refs,
2928 struct ref_lock *lock, const char *refname,
2929 const char *target, const char *logmsg)
2930 {
2931 struct strbuf err = STRBUF_INIT;
2932 unsigned char new_sha1[20];
2933 if (logmsg &&
2934 !refs_read_ref_full(&refs->base, target,
2935 RESOLVE_REF_READING, new_sha1, NULL) &&
2936 files_log_ref_write(refs, refname, lock->old_oid.hash,
2937 new_sha1, logmsg, 0, &err)) {
2938 error("%s", err.buf);
2939 strbuf_release(&err);
2940 }
2941 }
2942
2943 static int create_symref_locked(struct files_ref_store *refs,
2944 struct ref_lock *lock, const char *refname,
2945 const char *target, const char *logmsg)
2946 {
2947 if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
2948 update_symref_reflog(refs, lock, refname, target, logmsg);
2949 return 0;
2950 }
2951
2952 if (!fdopen_lock_file(lock->lk, "w"))
2953 return error("unable to fdopen %s: %s",
2954 lock->lk->tempfile.filename.buf, strerror(errno));
2955
2956 update_symref_reflog(refs, lock, refname, target, logmsg);
2957
2958 /* no error check; commit_ref will check ferror */
2959 fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
2960 if (commit_ref(lock) < 0)
2961 return error("unable to write symref for %s: %s", refname,
2962 strerror(errno));
2963 return 0;
2964 }
2965
2966 static int files_create_symref(struct ref_store *ref_store,
2967 const char *refname, const char *target,
2968 const char *logmsg)
2969 {
2970 struct files_ref_store *refs =
2971 files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
2972 struct strbuf err = STRBUF_INIT;
2973 struct ref_lock *lock;
2974 int ret;
2975
2976 lock = lock_ref_sha1_basic(refs, refname, NULL,
2977 NULL, NULL, REF_NODEREF, NULL,
2978 &err);
2979 if (!lock) {
2980 error("%s", err.buf);
2981 strbuf_release(&err);
2982 return -1;
2983 }
2984
2985 ret = create_symref_locked(refs, lock, refname, target, logmsg);
2986 unlock_ref(lock);
2987 return ret;
2988 }
2989
2990 int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
2991 {
2992 /*
2993 * FIXME: this obviously will not work well for future refs
2994 * backends. This function needs to die.
2995 */
2996 struct files_ref_store *refs =
2997 files_downcast(get_main_ref_store(),
2998 REF_STORE_WRITE,
2999 "set_head_symref");
3000
3001 static struct lock_file head_lock;
3002 struct ref_lock *lock;
3003 struct strbuf head_path = STRBUF_INIT;
3004 const char *head_rel;
3005 int ret;
3006
3007 strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3008 if (hold_lock_file_for_update(&head_lock, head_path.buf,
3009 LOCK_NO_DEREF) < 0) {
3010 struct strbuf err = STRBUF_INIT;
3011 unable_to_lock_message(head_path.buf, errno, &err);
3012 error("%s", err.buf);
3013 strbuf_release(&err);
3014 strbuf_release(&head_path);
3015 return -1;
3016 }
3017
3018 /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3019 linked trees */
3020 head_rel = remove_leading_path(head_path.buf,
3021 absolute_path(get_git_common_dir()));
3022 /* to make use of create_symref_locked(), initialize ref_lock */
3023 lock = xcalloc(1, sizeof(struct ref_lock));
3024 lock->lk = &head_lock;
3025 lock->ref_name = xstrdup(head_rel);
3026
3027 ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3028
3029 unlock_ref(lock); /* will free lock */
3030 strbuf_release(&head_path);
3031 return ret;
3032 }
3033
3034 static int files_reflog_exists(struct ref_store *ref_store,
3035 const char *refname)
3036 {
3037 struct files_ref_store *refs =
3038 files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3039 struct strbuf sb = STRBUF_INIT;
3040 struct stat st;
3041 int ret;
3042
3043 files_reflog_path(refs, &sb, refname);
3044 ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3045 strbuf_release(&sb);
3046 return ret;
3047 }
3048
3049 static int files_delete_reflog(struct ref_store *ref_store,
3050 const char *refname)
3051 {
3052 struct files_ref_store *refs =
3053 files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3054 struct strbuf sb = STRBUF_INIT;
3055 int ret;
3056
3057 files_reflog_path(refs, &sb, refname);
3058 ret = remove_path(sb.buf);
3059 strbuf_release(&sb);
3060 return ret;
3061 }
3062
3063 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3064 {
3065 struct object_id ooid, noid;
3066 char *email_end, *message;
3067 unsigned long timestamp;
3068 int tz;
3069 const char *p = sb->buf;
3070
3071 /* old SP new SP name <email> SP time TAB msg LF */
3072 if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3073 parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3074 parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3075 !(email_end = strchr(p, '>')) ||
3076 email_end[1] != ' ' ||
3077 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3078 !message || message[0] != ' ' ||
3079 (message[1] != '+' && message[1] != '-') ||
3080 !isdigit(message[2]) || !isdigit(message[3]) ||
3081 !isdigit(message[4]) || !isdigit(message[5]))
3082 return 0; /* corrupt? */
3083 email_end[1] = '\0';
3084 tz = strtol(message + 1, NULL, 10);
3085 if (message[6] != '\t')
3086 message += 6;
3087 else
3088 message += 7;
3089 return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3090 }
3091
3092 static char *find_beginning_of_line(char *bob, char *scan)
3093 {
3094 while (bob < scan && *(--scan) != '\n')
3095 ; /* keep scanning backwards */
3096 /*
3097 * Return either beginning of the buffer, or LF at the end of
3098 * the previous line.
3099 */
3100 return scan;
3101 }
3102
3103 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3104 const char *refname,
3105 each_reflog_ent_fn fn,
3106 void *cb_data)
3107 {
3108 struct files_ref_store *refs =
3109 files_downcast(ref_store, REF_STORE_READ,
3110 "for_each_reflog_ent_reverse");
3111 struct strbuf sb = STRBUF_INIT;
3112 FILE *logfp;
3113 long pos;
3114 int ret = 0, at_tail = 1;
3115
3116 files_reflog_path(refs, &sb, refname);
3117 logfp = fopen(sb.buf, "r");
3118 strbuf_release(&sb);
3119 if (!logfp)
3120 return -1;
3121
3122 /* Jump to the end */
3123 if (fseek(logfp, 0, SEEK_END) < 0)
3124 return error("cannot seek back reflog for %s: %s",
3125 refname, strerror(errno));
3126 pos = ftell(logfp);
3127 while (!ret && 0 < pos) {
3128 int cnt;
3129 size_t nread;
3130 char buf[BUFSIZ];
3131 char *endp, *scanp;
3132
3133 /* Fill next block from the end */
3134 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3135 if (fseek(logfp, pos - cnt, SEEK_SET))
3136 return error("cannot seek back reflog for %s: %s",
3137 refname, strerror(errno));
3138 nread = fread(buf, cnt, 1, logfp);
3139 if (nread != 1)
3140 return error("cannot read %d bytes from reflog for %s: %s",
3141 cnt, refname, strerror(errno));
3142 pos -= cnt;
3143
3144 scanp = endp = buf + cnt;
3145 if (at_tail && scanp[-1] == '\n')
3146 /* Looking at the final LF at the end of the file */
3147 scanp--;
3148 at_tail = 0;
3149
3150 while (buf < scanp) {
3151 /*
3152 * terminating LF of the previous line, or the beginning
3153 * of the buffer.
3154 */
3155 char *bp;
3156
3157 bp = find_beginning_of_line(buf, scanp);
3158
3159 if (*bp == '\n') {
3160 /*
3161 * The newline is the end of the previous line,
3162 * so we know we have complete line starting
3163 * at (bp + 1). Prefix it onto any prior data
3164 * we collected for the line and process it.
3165 */
3166 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3167 scanp = bp;
3168 endp = bp + 1;
3169 ret = show_one_reflog_ent(&sb, fn, cb_data);
3170 strbuf_reset(&sb);
3171 if (ret)
3172 break;
3173 } else if (!pos) {
3174 /*
3175 * We are at the start of the buffer, and the
3176 * start of the file; there is no previous
3177 * line, and we have everything for this one.
3178 * Process it, and we can end the loop.
3179 */
3180 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3181 ret = show_one_reflog_ent(&sb, fn, cb_data);
3182 strbuf_reset(&sb);
3183 break;
3184 }
3185
3186 if (bp == buf) {
3187 /*
3188 * We are at the start of the buffer, and there
3189 * is more file to read backwards. Which means
3190 * we are in the middle of a line. Note that we
3191 * may get here even if *bp was a newline; that
3192 * just means we are at the exact end of the
3193 * previous line, rather than some spot in the
3194 * middle.
3195 *
3196 * Save away what we have to be combined with
3197 * the data from the next read.
3198 */
3199 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3200 break;
3201 }
3202 }
3203
3204 }
3205 if (!ret && sb.len)
3206 die("BUG: reverse reflog parser had leftover data");
3207
3208 fclose(logfp);
3209 strbuf_release(&sb);
3210 return ret;
3211 }
3212
3213 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3214 const char *refname,
3215 each_reflog_ent_fn fn, void *cb_data)
3216 {
3217 struct files_ref_store *refs =
3218 files_downcast(ref_store, REF_STORE_READ,
3219 "for_each_reflog_ent");
3220 FILE *logfp;
3221 struct strbuf sb = STRBUF_INIT;
3222 int ret = 0;
3223
3224 files_reflog_path(refs, &sb, refname);
3225 logfp = fopen(sb.buf, "r");
3226 strbuf_release(&sb);
3227 if (!logfp)
3228 return -1;
3229
3230 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3231 ret = show_one_reflog_ent(&sb, fn, cb_data);
3232 fclose(logfp);
3233 strbuf_release(&sb);
3234 return ret;
3235 }
3236
3237 struct files_reflog_iterator {
3238 struct ref_iterator base;
3239
3240 struct ref_store *ref_store;
3241 struct dir_iterator *dir_iterator;
3242 struct object_id oid;
3243 };
3244
3245 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3246 {
3247 struct files_reflog_iterator *iter =
3248 (struct files_reflog_iterator *)ref_iterator;
3249 struct dir_iterator *diter = iter->dir_iterator;
3250 int ok;
3251
3252 while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3253 int flags;
3254
3255 if (!S_ISREG(diter->st.st_mode))
3256 continue;
3257 if (diter->basename[0] == '.')
3258 continue;
3259 if (ends_with(diter->basename, ".lock"))
3260 continue;
3261
3262 if (refs_read_ref_full(iter->ref_store,
3263 diter->relative_path, 0,
3264 iter->oid.hash, &flags)) {
3265 error("bad ref for %s", diter->path.buf);
3266 continue;
3267 }
3268
3269 iter->base.refname = diter->relative_path;
3270 iter->base.oid = &iter->oid;
3271 iter->base.flags = flags;
3272 return ITER_OK;
3273 }
3274
3275 iter->dir_iterator = NULL;
3276 if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3277 ok = ITER_ERROR;
3278 return ok;
3279 }
3280
3281 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3282 struct object_id *peeled)
3283 {
3284 die("BUG: ref_iterator_peel() called for reflog_iterator");
3285 }
3286
3287 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3288 {
3289 struct files_reflog_iterator *iter =
3290 (struct files_reflog_iterator *)ref_iterator;
3291 int ok = ITER_DONE;
3292
3293 if (iter->dir_iterator)
3294 ok = dir_iterator_abort(iter->dir_iterator);
3295
3296 base_ref_iterator_free(ref_iterator);
3297 return ok;
3298 }
3299
3300 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3301 files_reflog_iterator_advance,
3302 files_reflog_iterator_peel,
3303 files_reflog_iterator_abort
3304 };
3305
3306 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3307 {
3308 struct files_ref_store *refs =
3309 files_downcast(ref_store, REF_STORE_READ,
3310 "reflog_iterator_begin");
3311 struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3312 struct ref_iterator *ref_iterator = &iter->base;
3313 struct strbuf sb = STRBUF_INIT;
3314
3315 base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3316 files_reflog_path(refs, &sb, NULL);
3317 iter->dir_iterator = dir_iterator_begin(sb.buf);
3318 iter->ref_store = ref_store;
3319 strbuf_release(&sb);
3320 return ref_iterator;
3321 }
3322
3323 static int ref_update_reject_duplicates(struct string_list *refnames,
3324 struct strbuf *err)
3325 {
3326 int i, n = refnames->nr;
3327
3328 assert(err);
3329
3330 for (i = 1; i < n; i++)
3331 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3332 strbuf_addf(err,
3333 "multiple updates for ref '%s' not allowed.",
3334 refnames->items[i].string);
3335 return 1;
3336 }
3337 return 0;
3338 }
3339
3340 /*
3341 * If update is a direct update of head_ref (the reference pointed to
3342 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3343 */
3344 static int split_head_update(struct ref_update *update,
3345 struct ref_transaction *transaction,
3346 const char *head_ref,
3347 struct string_list *affected_refnames,
3348 struct strbuf *err)
3349 {
3350 struct string_list_item *item;
3351 struct ref_update *new_update;
3352
3353 if ((update->flags & REF_LOG_ONLY) ||
3354 (update->flags & REF_ISPRUNING) ||
3355 (update->flags & REF_UPDATE_VIA_HEAD))
3356 return 0;
3357
3358 if (strcmp(update->refname, head_ref))
3359 return 0;
3360
3361 /*
3362 * First make sure that HEAD is not already in the
3363 * transaction. This insertion is O(N) in the transaction
3364 * size, but it happens at most once per transaction.
3365 */
3366 item = string_list_insert(affected_refnames, "HEAD");
3367 if (item->util) {
3368 /* An entry already existed */
3369 strbuf_addf(err,
3370 "multiple updates for 'HEAD' (including one "
3371 "via its referent '%s') are not allowed",
3372 update->refname);
3373 return TRANSACTION_NAME_CONFLICT;
3374 }
3375
3376 new_update = ref_transaction_add_update(
3377 transaction, "HEAD",
3378 update->flags | REF_LOG_ONLY | REF_NODEREF,
3379 update->new_sha1, update->old_sha1,
3380 update->msg);
3381
3382 item->util = new_update;
3383
3384 return 0;
3385 }
3386
3387 /*
3388 * update is for a symref that points at referent and doesn't have
3389 * REF_NODEREF set. Split it into two updates:
3390 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3391 * - A new, separate update for the referent reference
3392 * Note that the new update will itself be subject to splitting when
3393 * the iteration gets to it.
3394 */
3395 static int split_symref_update(struct files_ref_store *refs,
3396 struct ref_update *update,
3397 const char *referent,
3398 struct ref_transaction *transaction,
3399 struct string_list *affected_refnames,
3400 struct strbuf *err)
3401 {
3402 struct string_list_item *item;
3403 struct ref_update *new_update;
3404 unsigned int new_flags;
3405
3406 /*
3407 * First make sure that referent is not already in the
3408 * transaction. This insertion is O(N) in the transaction
3409 * size, but it happens at most once per symref in a
3410 * transaction.
3411 */
3412 item = string_list_insert(affected_refnames, referent);
3413 if (item->util) {
3414 /* An entry already existed */
3415 strbuf_addf(err,
3416 "multiple updates for '%s' (including one "
3417 "via symref '%s') are not allowed",
3418 referent, update->refname);
3419 return TRANSACTION_NAME_CONFLICT;
3420 }
3421
3422 new_flags = update->flags;
3423 if (!strcmp(update->refname, "HEAD")) {
3424 /*
3425 * Record that the new update came via HEAD, so that
3426 * when we process it, split_head_update() doesn't try
3427 * to add another reflog update for HEAD. Note that
3428 * this bit will be propagated if the new_update
3429 * itself needs to be split.
3430 */
3431 new_flags |= REF_UPDATE_VIA_HEAD;
3432 }
3433
3434 new_update = ref_transaction_add_update(
3435 transaction, referent, new_flags,
3436 update->new_sha1, update->old_sha1,
3437 update->msg);
3438
3439 new_update->parent_update = update;
3440
3441 /*
3442 * Change the symbolic ref update to log only. Also, it
3443 * doesn't need to check its old SHA-1 value, as that will be
3444 * done when new_update is processed.
3445 */
3446 update->flags |= REF_LOG_ONLY | REF_NODEREF;
3447 update->flags &= ~REF_HAVE_OLD;
3448
3449 item->util = new_update;
3450
3451 return 0;
3452 }
3453
3454 /*
3455 * Return the refname under which update was originally requested.
3456 */
3457 static const char *original_update_refname(struct ref_update *update)
3458 {
3459 while (update->parent_update)
3460 update = update->parent_update;
3461
3462 return update->refname;
3463 }
3464
3465 /*
3466 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3467 * are consistent with oid, which is the reference's current value. If
3468 * everything is OK, return 0; otherwise, write an error message to
3469 * err and return -1.
3470 */
3471 static int check_old_oid(struct ref_update *update, struct object_id *oid,
3472 struct strbuf *err)
3473 {
3474 if (!(update->flags & REF_HAVE_OLD) ||
3475 !hashcmp(oid->hash, update->old_sha1))
3476 return 0;
3477
3478 if (is_null_sha1(update->old_sha1))
3479 strbuf_addf(err, "cannot lock ref '%s': "
3480 "reference already exists",
3481 original_update_refname(update));
3482 else if (is_null_oid(oid))
3483 strbuf_addf(err, "cannot lock ref '%s': "
3484 "reference is missing but expected %s",
3485 original_update_refname(update),
3486 sha1_to_hex(update->old_sha1));
3487 else
3488 strbuf_addf(err, "cannot lock ref '%s': "
3489 "is at %s but expected %s",
3490 original_update_refname(update),
3491 oid_to_hex(oid),
3492 sha1_to_hex(update->old_sha1));
3493
3494 return -1;
3495 }
3496
3497 /*
3498 * Prepare for carrying out update:
3499 * - Lock the reference referred to by update.
3500 * - Read the reference under lock.
3501 * - Check that its old SHA-1 value (if specified) is correct, and in
3502 * any case record it in update->lock->old_oid for later use when
3503 * writing the reflog.
3504 * - If it is a symref update without REF_NODEREF, split it up into a
3505 * REF_LOG_ONLY update of the symref and add a separate update for
3506 * the referent to transaction.
3507 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3508 * update of HEAD.
3509 */
3510 static int lock_ref_for_update(struct files_ref_store *refs,
3511 struct ref_update *update,
3512 struct ref_transaction *transaction,
3513 const char *head_ref,
3514 struct string_list *affected_refnames,
3515 struct strbuf *err)
3516 {
3517 struct strbuf referent = STRBUF_INIT;
3518 int mustexist = (update->flags & REF_HAVE_OLD) &&
3519 !is_null_sha1(update->old_sha1);
3520 int ret;
3521 struct ref_lock *lock;
3522
3523 files_assert_main_repository(refs, "lock_ref_for_update");
3524
3525 if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3526 update->flags |= REF_DELETING;
3527
3528 if (head_ref) {
3529 ret = split_head_update(update, transaction, head_ref,
3530 affected_refnames, err);
3531 if (ret)
3532 return ret;
3533 }
3534
3535 ret = lock_raw_ref(refs, update->refname, mustexist,
3536 affected_refnames, NULL,
3537 &lock, &referent,
3538 &update->type, err);
3539 if (ret) {
3540 char *reason;
3541
3542 reason = strbuf_detach(err, NULL);
3543 strbuf_addf(err, "cannot lock ref '%s': %s",
3544 original_update_refname(update), reason);
3545 free(reason);
3546 return ret;
3547 }
3548
3549 update->backend_data = lock;
3550
3551 if (update->type & REF_ISSYMREF) {
3552 if (update->flags & REF_NODEREF) {
3553 /*
3554 * We won't be reading the referent as part of
3555 * the transaction, so we have to read it here
3556 * to record and possibly check old_sha1:
3557 */
3558 if (refs_read_ref_full(&refs->base,
3559 referent.buf, 0,
3560 lock->old_oid.hash, NULL)) {
3561 if (update->flags & REF_HAVE_OLD) {
3562 strbuf_addf(err, "cannot lock ref '%s': "
3563 "error reading reference",
3564 original_update_refname(update));
3565 return -1;
3566 }
3567 } else if (check_old_oid(update, &lock->old_oid, err)) {
3568 return TRANSACTION_GENERIC_ERROR;
3569 }
3570 } else {
3571 /*
3572 * Create a new update for the reference this
3573 * symref is pointing at. Also, we will record
3574 * and verify old_sha1 for this update as part
3575 * of processing the split-off update, so we
3576 * don't have to do it here.
3577 */
3578 ret = split_symref_update(refs, update,
3579 referent.buf, transaction,
3580 affected_refnames, err);
3581 if (ret)
3582 return ret;
3583 }
3584 } else {
3585 struct ref_update *parent_update;
3586
3587 if (check_old_oid(update, &lock->old_oid, err))
3588 return TRANSACTION_GENERIC_ERROR;
3589
3590 /*
3591 * If this update is happening indirectly because of a
3592 * symref update, record the old SHA-1 in the parent
3593 * update:
3594 */
3595 for (parent_update = update->parent_update;
3596 parent_update;
3597 parent_update = parent_update->parent_update) {
3598 struct ref_lock *parent_lock = parent_update->backend_data;
3599 oidcpy(&parent_lock->old_oid, &lock->old_oid);
3600 }
3601 }
3602
3603 if ((update->flags & REF_HAVE_NEW) &&
3604 !(update->flags & REF_DELETING) &&
3605 !(update->flags & REF_LOG_ONLY)) {
3606 if (!(update->type & REF_ISSYMREF) &&
3607 !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3608 /*
3609 * The reference already has the desired
3610 * value, so we don't need to write it.
3611 */
3612 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3613 err)) {
3614 char *write_err = strbuf_detach(err, NULL);
3615
3616 /*
3617 * The lock was freed upon failure of
3618 * write_ref_to_lockfile():
3619 */
3620 update->backend_data = NULL;
3621 strbuf_addf(err,
3622 "cannot update ref '%s': %s",
3623 update->refname, write_err);
3624 free(write_err);
3625 return TRANSACTION_GENERIC_ERROR;
3626 } else {
3627 update->flags |= REF_NEEDS_COMMIT;
3628 }
3629 }
3630 if (!(update->flags & REF_NEEDS_COMMIT)) {
3631 /*
3632 * We didn't call write_ref_to_lockfile(), so
3633 * the lockfile is still open. Close it to
3634 * free up the file descriptor:
3635 */
3636 if (close_ref(lock)) {
3637 strbuf_addf(err, "couldn't close '%s.lock'",
3638 update->refname);
3639 return TRANSACTION_GENERIC_ERROR;
3640 }
3641 }
3642 return 0;
3643 }
3644
3645 static int files_transaction_commit(struct ref_store *ref_store,
3646 struct ref_transaction *transaction,
3647 struct strbuf *err)
3648 {
3649 struct files_ref_store *refs =
3650 files_downcast(ref_store, REF_STORE_WRITE,
3651 "ref_transaction_commit");
3652 int ret = 0, i;
3653 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3654 struct string_list_item *ref_to_delete;
3655 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3656 char *head_ref = NULL;
3657 int head_type;
3658 struct object_id head_oid;
3659 struct strbuf sb = STRBUF_INIT;
3660
3661 assert(err);
3662
3663 if (transaction->state != REF_TRANSACTION_OPEN)
3664 die("BUG: commit called for transaction that is not open");
3665
3666 if (!transaction->nr) {
3667 transaction->state = REF_TRANSACTION_CLOSED;
3668 return 0;
3669 }
3670
3671 /*
3672 * Fail if a refname appears more than once in the
3673 * transaction. (If we end up splitting up any updates using
3674 * split_symref_update() or split_head_update(), those
3675 * functions will check that the new updates don't have the
3676 * same refname as any existing ones.)
3677 */
3678 for (i = 0; i < transaction->nr; i++) {
3679 struct ref_update *update = transaction->updates[i];
3680 struct string_list_item *item =
3681 string_list_append(&affected_refnames, update->refname);
3682
3683 /*
3684 * We store a pointer to update in item->util, but at
3685 * the moment we never use the value of this field
3686 * except to check whether it is non-NULL.
3687 */
3688 item->util = update;
3689 }
3690 string_list_sort(&affected_refnames);
3691 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3692 ret = TRANSACTION_GENERIC_ERROR;
3693 goto cleanup;
3694 }
3695
3696 /*
3697 * Special hack: If a branch is updated directly and HEAD
3698 * points to it (may happen on the remote side of a push
3699 * for example) then logically the HEAD reflog should be
3700 * updated too.
3701 *
3702 * A generic solution would require reverse symref lookups,
3703 * but finding all symrefs pointing to a given branch would be
3704 * rather costly for this rare event (the direct update of a
3705 * branch) to be worth it. So let's cheat and check with HEAD
3706 * only, which should cover 99% of all usage scenarios (even
3707 * 100% of the default ones).
3708 *
3709 * So if HEAD is a symbolic reference, then record the name of
3710 * the reference that it points to. If we see an update of
3711 * head_ref within the transaction, then split_head_update()
3712 * arranges for the reflog of HEAD to be updated, too.
3713 */
3714 head_ref = refs_resolve_refdup(ref_store, "HEAD",
3715 RESOLVE_REF_NO_RECURSE,
3716 head_oid.hash, &head_type);
3717
3718 if (head_ref && !(head_type & REF_ISSYMREF)) {
3719 free(head_ref);
3720 head_ref = NULL;
3721 }
3722
3723 /*
3724 * Acquire all locks, verify old values if provided, check
3725 * that new values are valid, and write new values to the
3726 * lockfiles, ready to be activated. Only keep one lockfile
3727 * open at a time to avoid running out of file descriptors.
3728 */
3729 for (i = 0; i < transaction->nr; i++) {
3730 struct ref_update *update = transaction->updates[i];
3731
3732 ret = lock_ref_for_update(refs, update, transaction,
3733 head_ref, &affected_refnames, err);
3734 if (ret)
3735 goto cleanup;
3736 }
3737
3738 /* Perform updates first so live commits remain referenced */
3739 for (i = 0; i < transaction->nr; i++) {
3740 struct ref_update *update = transaction->updates[i];
3741 struct ref_lock *lock = update->backend_data;
3742
3743 if (update->flags & REF_NEEDS_COMMIT ||
3744 update->flags & REF_LOG_ONLY) {
3745 if (files_log_ref_write(refs,
3746 lock->ref_name,
3747 lock->old_oid.hash,
3748 update->new_sha1,
3749 update->msg, update->flags,
3750 err)) {
3751 char *old_msg = strbuf_detach(err, NULL);
3752
3753 strbuf_addf(err, "cannot update the ref '%s': %s",
3754 lock->ref_name, old_msg);
3755 free(old_msg);
3756 unlock_ref(lock);
3757 update->backend_data = NULL;
3758 ret = TRANSACTION_GENERIC_ERROR;
3759 goto cleanup;
3760 }
3761 }
3762 if (update->flags & REF_NEEDS_COMMIT) {
3763 clear_loose_ref_cache(refs);
3764 if (commit_ref(lock)) {
3765 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3766 unlock_ref(lock);
3767 update->backend_data = NULL;
3768 ret = TRANSACTION_GENERIC_ERROR;
3769 goto cleanup;
3770 }
3771 }
3772 }
3773 /* Perform deletes now that updates are safely completed */
3774 for (i = 0; i < transaction->nr; i++) {
3775 struct ref_update *update = transaction->updates[i];
3776 struct ref_lock *lock = update->backend_data;
3777
3778 if (update->flags & REF_DELETING &&
3779 !(update->flags & REF_LOG_ONLY)) {
3780 if (!(update->type & REF_ISPACKED) ||
3781 update->type & REF_ISSYMREF) {
3782 /* It is a loose reference. */
3783 strbuf_reset(&sb);
3784 files_ref_path(refs, &sb, lock->ref_name);
3785 if (unlink_or_msg(sb.buf, err)) {
3786 ret = TRANSACTION_GENERIC_ERROR;
3787 goto cleanup;
3788 }
3789 update->flags |= REF_DELETED_LOOSE;
3790 }
3791
3792 if (!(update->flags & REF_ISPRUNING))
3793 string_list_append(&refs_to_delete,
3794 lock->ref_name);
3795 }
3796 }
3797
3798 if (repack_without_refs(refs, &refs_to_delete, err)) {
3799 ret = TRANSACTION_GENERIC_ERROR;
3800 goto cleanup;
3801 }
3802
3803 /* Delete the reflogs of any references that were deleted: */
3804 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3805 strbuf_reset(&sb);
3806 files_reflog_path(refs, &sb, ref_to_delete->string);
3807 if (!unlink_or_warn(sb.buf))
3808 try_remove_empty_parents(refs, ref_to_delete->string,
3809 REMOVE_EMPTY_PARENTS_REFLOG);
3810 }
3811
3812 clear_loose_ref_cache(refs);
3813
3814 cleanup:
3815 strbuf_release(&sb);
3816 transaction->state = REF_TRANSACTION_CLOSED;
3817
3818 for (i = 0; i < transaction->nr; i++) {
3819 struct ref_update *update = transaction->updates[i];
3820 struct ref_lock *lock = update->backend_data;
3821
3822 if (lock)
3823 unlock_ref(lock);
3824
3825 if (update->flags & REF_DELETED_LOOSE) {
3826 /*
3827 * The loose reference was deleted. Delete any
3828 * empty parent directories. (Note that this
3829 * can only work because we have already
3830 * removed the lockfile.)
3831 */
3832 try_remove_empty_parents(refs, update->refname,
3833 REMOVE_EMPTY_PARENTS_REF);
3834 }
3835 }
3836
3837 string_list_clear(&refs_to_delete, 0);
3838 free(head_ref);
3839 string_list_clear(&affected_refnames, 0);
3840
3841 return ret;
3842 }
3843
3844 static int ref_present(const char *refname,
3845 const struct object_id *oid, int flags, void *cb_data)
3846 {
3847 struct string_list *affected_refnames = cb_data;
3848
3849 return string_list_has_string(affected_refnames, refname);
3850 }
3851
3852 static int files_initial_transaction_commit(struct ref_store *ref_store,
3853 struct ref_transaction *transaction,
3854 struct strbuf *err)
3855 {
3856 struct files_ref_store *refs =
3857 files_downcast(ref_store, REF_STORE_WRITE,
3858 "initial_ref_transaction_commit");
3859 int ret = 0, i;
3860 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3861
3862 assert(err);
3863
3864 if (transaction->state != REF_TRANSACTION_OPEN)
3865 die("BUG: commit called for transaction that is not open");
3866
3867 /* Fail if a refname appears more than once in the transaction: */
3868 for (i = 0; i < transaction->nr; i++)
3869 string_list_append(&affected_refnames,
3870 transaction->updates[i]->refname);
3871 string_list_sort(&affected_refnames);
3872 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3873 ret = TRANSACTION_GENERIC_ERROR;
3874 goto cleanup;
3875 }
3876
3877 /*
3878 * It's really undefined to call this function in an active
3879 * repository or when there are existing references: we are
3880 * only locking and changing packed-refs, so (1) any
3881 * simultaneous processes might try to change a reference at
3882 * the same time we do, and (2) any existing loose versions of
3883 * the references that we are setting would have precedence
3884 * over our values. But some remote helpers create the remote
3885 * "HEAD" and "master" branches before calling this function,
3886 * so here we really only check that none of the references
3887 * that we are creating already exists.
3888 */
3889 if (refs_for_each_rawref(&refs->base, ref_present,
3890 &affected_refnames))
3891 die("BUG: initial ref transaction called with existing refs");
3892
3893 for (i = 0; i < transaction->nr; i++) {
3894 struct ref_update *update = transaction->updates[i];
3895
3896 if ((update->flags & REF_HAVE_OLD) &&
3897 !is_null_sha1(update->old_sha1))
3898 die("BUG: initial ref transaction with old_sha1 set");
3899 if (refs_verify_refname_available(&refs->base, update->refname,
3900 &affected_refnames, NULL,
3901 err)) {
3902 ret = TRANSACTION_NAME_CONFLICT;
3903 goto cleanup;
3904 }
3905 }
3906
3907 if (lock_packed_refs(refs, 0)) {
3908 strbuf_addf(err, "unable to lock packed-refs file: %s",
3909 strerror(errno));
3910 ret = TRANSACTION_GENERIC_ERROR;
3911 goto cleanup;
3912 }
3913
3914 for (i = 0; i < transaction->nr; i++) {
3915 struct ref_update *update = transaction->updates[i];
3916
3917 if ((update->flags & REF_HAVE_NEW) &&
3918 !is_null_sha1(update->new_sha1))
3919 add_packed_ref(refs, update->refname, update->new_sha1);
3920 }
3921
3922 if (commit_packed_refs(refs)) {
3923 strbuf_addf(err, "unable to commit packed-refs file: %s",
3924 strerror(errno));
3925 ret = TRANSACTION_GENERIC_ERROR;
3926 goto cleanup;
3927 }
3928
3929 cleanup:
3930 transaction->state = REF_TRANSACTION_CLOSED;
3931 string_list_clear(&affected_refnames, 0);
3932 return ret;
3933 }
3934
3935 struct expire_reflog_cb {
3936 unsigned int flags;
3937 reflog_expiry_should_prune_fn *should_prune_fn;
3938 void *policy_cb;
3939 FILE *newlog;
3940 struct object_id last_kept_oid;
3941 };
3942
3943 static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
3944 const char *email, unsigned long timestamp, int tz,
3945 const char *message, void *cb_data)
3946 {
3947 struct expire_reflog_cb *cb = cb_data;
3948 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3949
3950 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3951 ooid = &cb->last_kept_oid;
3952
3953 if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
3954 message, policy_cb)) {
3955 if (!cb->newlog)
3956 printf("would prune %s", message);
3957 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3958 printf("prune %s", message);
3959 } else {
3960 if (cb->newlog) {
3961 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
3962 oid_to_hex(ooid), oid_to_hex(noid),
3963 email, timestamp, tz, message);
3964 oidcpy(&cb->last_kept_oid, noid);
3965 }
3966 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3967 printf("keep %s", message);
3968 }
3969 return 0;
3970 }
3971
3972 static int files_reflog_expire(struct ref_store *ref_store,
3973 const char *refname, const unsigned char *sha1,
3974 unsigned int flags,
3975 reflog_expiry_prepare_fn prepare_fn,
3976 reflog_expiry_should_prune_fn should_prune_fn,
3977 reflog_expiry_cleanup_fn cleanup_fn,
3978 void *policy_cb_data)
3979 {
3980 struct files_ref_store *refs =
3981 files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
3982 static struct lock_file reflog_lock;
3983 struct expire_reflog_cb cb;
3984 struct ref_lock *lock;
3985 struct strbuf log_file_sb = STRBUF_INIT;
3986 char *log_file;
3987 int status = 0;
3988 int type;
3989 struct strbuf err = STRBUF_INIT;
3990
3991 memset(&cb, 0, sizeof(cb));
3992 cb.flags = flags;
3993 cb.policy_cb = policy_cb_data;
3994 cb.should_prune_fn = should_prune_fn;
3995
3996 /*
3997 * The reflog file is locked by holding the lock on the
3998 * reference itself, plus we might need to update the
3999 * reference if --updateref was specified:
4000 */
4001 lock = lock_ref_sha1_basic(refs, refname, sha1,
4002 NULL, NULL, REF_NODEREF,
4003 &type, &err);
4004 if (!lock) {
4005 error("cannot lock ref '%s': %s", refname, err.buf);
4006 strbuf_release(&err);
4007 return -1;
4008 }
4009 if (!refs_reflog_exists(ref_store, refname)) {
4010 unlock_ref(lock);
4011 return 0;
4012 }
4013
4014 files_reflog_path(refs, &log_file_sb, refname);
4015 log_file = strbuf_detach(&log_file_sb, NULL);
4016 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4017 /*
4018 * Even though holding $GIT_DIR/logs/$reflog.lock has
4019 * no locking implications, we use the lock_file
4020 * machinery here anyway because it does a lot of the
4021 * work we need, including cleaning up if the program
4022 * exits unexpectedly.
4023 */
4024 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4025 struct strbuf err = STRBUF_INIT;
4026 unable_to_lock_message(log_file, errno, &err);
4027 error("%s", err.buf);
4028 strbuf_release(&err);
4029 goto failure;
4030 }
4031 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4032 if (!cb.newlog) {
4033 error("cannot fdopen %s (%s)",
4034 get_lock_file_path(&reflog_lock), strerror(errno));
4035 goto failure;
4036 }
4037 }
4038
4039 (*prepare_fn)(refname, sha1, cb.policy_cb);
4040 refs_for_each_reflog_ent(ref_store, refname, expire_reflog_ent, &cb);
4041 (*cleanup_fn)(cb.policy_cb);
4042
4043 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4044 /*
4045 * It doesn't make sense to adjust a reference pointed
4046 * to by a symbolic ref based on expiring entries in
4047 * the symbolic reference's reflog. Nor can we update
4048 * a reference if there are no remaining reflog
4049 * entries.
4050 */
4051 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4052 !(type & REF_ISSYMREF) &&
4053 !is_null_oid(&cb.last_kept_oid);
4054
4055 if (close_lock_file(&reflog_lock)) {
4056 status |= error("couldn't write %s: %s", log_file,
4057 strerror(errno));
4058 } else if (update &&
4059 (write_in_full(get_lock_file_fd(lock->lk),
4060 oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4061 write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4062 close_ref(lock) < 0)) {
4063 status |= error("couldn't write %s",
4064 get_lock_file_path(lock->lk));
4065 rollback_lock_file(&reflog_lock);
4066 } else if (commit_lock_file(&reflog_lock)) {
4067 status |= error("unable to write reflog '%s' (%s)",
4068 log_file, strerror(errno));
4069 } else if (update && commit_ref(lock)) {
4070 status |= error("couldn't set %s", lock->ref_name);
4071 }
4072 }
4073 free(log_file);
4074 unlock_ref(lock);
4075 return status;
4076
4077 failure:
4078 rollback_lock_file(&reflog_lock);
4079 free(log_file);
4080 unlock_ref(lock);
4081 return -1;
4082 }
4083
4084 static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4085 {
4086 struct files_ref_store *refs =
4087 files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4088 struct strbuf sb = STRBUF_INIT;
4089
4090 /*
4091 * Create .git/refs/{heads,tags}
4092 */
4093 files_ref_path(refs, &sb, "refs/heads");
4094 safe_create_dir(sb.buf, 1);
4095
4096 strbuf_reset(&sb);
4097 files_ref_path(refs, &sb, "refs/tags");
4098 safe_create_dir(sb.buf, 1);
4099
4100 strbuf_release(&sb);
4101 return 0;
4102 }
4103
4104 struct ref_storage_be refs_be_files = {
4105 NULL,
4106 "files",
4107 files_ref_store_create,
4108 files_init_db,
4109 files_transaction_commit,
4110 files_initial_transaction_commit,
4111
4112 files_pack_refs,
4113 files_peel_ref,
4114 files_create_symref,
4115 files_delete_refs,
4116 files_rename_ref,
4117
4118 files_ref_iterator_begin,
4119 files_read_raw_ref,
4120
4121 files_reflog_iterator_begin,
4122 files_for_each_reflog_ent,
4123 files_for_each_reflog_ent_reverse,
4124 files_reflog_exists,
4125 files_create_reflog,
4126 files_delete_reflog,
4127 files_reflog_expire
4128 };