]> git.ipfire.org Git - thirdparty/git.git/blob - refs/packed-backend.c
alloc.h: move ALLOC_GROW() functions from cache.h
[thirdparty/git.git] / refs / packed-backend.c
1 #include "../git-compat-util.h"
2 #include "../alloc.h"
3 #include "../config.h"
4 #include "../refs.h"
5 #include "refs-internal.h"
6 #include "packed-backend.h"
7 #include "../iterator.h"
8 #include "../lockfile.h"
9 #include "../chdir-notify.h"
10
11 enum mmap_strategy {
12 /*
13 * Don't use mmap() at all for reading `packed-refs`.
14 */
15 MMAP_NONE,
16
17 /*
18 * Can use mmap() for reading `packed-refs`, but the file must
19 * not remain mmapped. This is the usual option on Windows,
20 * where you cannot rename a new version of a file onto a file
21 * that is currently mmapped.
22 */
23 MMAP_TEMPORARY,
24
25 /*
26 * It is OK to leave the `packed-refs` file mmapped while
27 * arbitrary other code is running.
28 */
29 MMAP_OK
30 };
31
32 #if defined(NO_MMAP)
33 static enum mmap_strategy mmap_strategy = MMAP_NONE;
34 #elif defined(MMAP_PREVENTS_DELETE)
35 static enum mmap_strategy mmap_strategy = MMAP_TEMPORARY;
36 #else
37 static enum mmap_strategy mmap_strategy = MMAP_OK;
38 #endif
39
40 struct packed_ref_store;
41
42 /*
43 * A `snapshot` represents one snapshot of a `packed-refs` file.
44 *
45 * Normally, this will be a mmapped view of the contents of the
46 * `packed-refs` file at the time the snapshot was created. However,
47 * if the `packed-refs` file was not sorted, this might point at heap
48 * memory holding the contents of the `packed-refs` file with its
49 * records sorted by refname.
50 *
51 * `snapshot` instances are reference counted (via
52 * `acquire_snapshot()` and `release_snapshot()`). This is to prevent
53 * an instance from disappearing while an iterator is still iterating
54 * over it. Instances are garbage collected when their `referrers`
55 * count goes to zero.
56 *
57 * The most recent `snapshot`, if available, is referenced by the
58 * `packed_ref_store`. Its freshness is checked whenever
59 * `get_snapshot()` is called; if the existing snapshot is obsolete, a
60 * new snapshot is taken.
61 */
62 struct snapshot {
63 /*
64 * A back-pointer to the packed_ref_store with which this
65 * snapshot is associated:
66 */
67 struct packed_ref_store *refs;
68
69 /* Is the `packed-refs` file currently mmapped? */
70 int mmapped;
71
72 /*
73 * The contents of the `packed-refs` file:
74 *
75 * - buf -- a pointer to the start of the memory
76 * - start -- a pointer to the first byte of actual references
77 * (i.e., after the header line, if one is present)
78 * - eof -- a pointer just past the end of the reference
79 * contents
80 *
81 * If the `packed-refs` file was already sorted, `buf` points
82 * at the mmapped contents of the file. If not, it points at
83 * heap-allocated memory containing the contents, sorted. If
84 * there were no contents (e.g., because the file didn't
85 * exist), `buf`, `start`, and `eof` are all NULL.
86 */
87 char *buf, *start, *eof;
88
89 /*
90 * What is the peeled state of the `packed-refs` file that
91 * this snapshot represents? (This is usually determined from
92 * the file's header.)
93 */
94 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled;
95
96 /*
97 * Count of references to this instance, including the pointer
98 * from `packed_ref_store::snapshot`, if any. The instance
99 * will not be freed as long as the reference count is
100 * nonzero.
101 */
102 unsigned int referrers;
103
104 /*
105 * The metadata of the `packed-refs` file from which this
106 * snapshot was created, used to tell if the file has been
107 * replaced since we read it.
108 */
109 struct stat_validity validity;
110 };
111
112 /*
113 * A `ref_store` representing references stored in a `packed-refs`
114 * file. It implements the `ref_store` interface, though it has some
115 * limitations:
116 *
117 * - It cannot store symbolic references.
118 *
119 * - It cannot store reflogs.
120 *
121 * - It does not support reference renaming (though it could).
122 *
123 * On the other hand, it can be locked outside of a reference
124 * transaction. In that case, it remains locked even after the
125 * transaction is done and the new `packed-refs` file is activated.
126 */
127 struct packed_ref_store {
128 struct ref_store base;
129
130 unsigned int store_flags;
131
132 /* The path of the "packed-refs" file: */
133 char *path;
134
135 /*
136 * A snapshot of the values read from the `packed-refs` file,
137 * if it might still be current; otherwise, NULL.
138 */
139 struct snapshot *snapshot;
140
141 /*
142 * Lock used for the "packed-refs" file. Note that this (and
143 * thus the enclosing `packed_ref_store`) must not be freed.
144 */
145 struct lock_file lock;
146
147 /*
148 * Temporary file used when rewriting new contents to the
149 * "packed-refs" file. Note that this (and thus the enclosing
150 * `packed_ref_store`) must not be freed.
151 */
152 struct tempfile *tempfile;
153 };
154
155 /*
156 * Increment the reference count of `*snapshot`.
157 */
158 static void acquire_snapshot(struct snapshot *snapshot)
159 {
160 snapshot->referrers++;
161 }
162
163 /*
164 * If the buffer in `snapshot` is active, then either munmap the
165 * memory and close the file, or free the memory. Then set the buffer
166 * pointers to NULL.
167 */
168 static void clear_snapshot_buffer(struct snapshot *snapshot)
169 {
170 if (snapshot->mmapped) {
171 if (munmap(snapshot->buf, snapshot->eof - snapshot->buf))
172 die_errno("error ummapping packed-refs file %s",
173 snapshot->refs->path);
174 snapshot->mmapped = 0;
175 } else {
176 free(snapshot->buf);
177 }
178 snapshot->buf = snapshot->start = snapshot->eof = NULL;
179 }
180
181 /*
182 * Decrease the reference count of `*snapshot`. If it goes to zero,
183 * free `*snapshot` and return true; otherwise return false.
184 */
185 static int release_snapshot(struct snapshot *snapshot)
186 {
187 if (!--snapshot->referrers) {
188 stat_validity_clear(&snapshot->validity);
189 clear_snapshot_buffer(snapshot);
190 free(snapshot);
191 return 1;
192 } else {
193 return 0;
194 }
195 }
196
197 struct ref_store *packed_ref_store_create(struct repository *repo,
198 const char *gitdir,
199 unsigned int store_flags)
200 {
201 struct packed_ref_store *refs = xcalloc(1, sizeof(*refs));
202 struct ref_store *ref_store = (struct ref_store *)refs;
203 struct strbuf sb = STRBUF_INIT;
204
205 base_ref_store_init(ref_store, repo, gitdir, &refs_be_packed);
206 refs->store_flags = store_flags;
207
208 strbuf_addf(&sb, "%s/packed-refs", gitdir);
209 refs->path = strbuf_detach(&sb, NULL);
210 chdir_notify_reparent("packed-refs", &refs->path);
211 return ref_store;
212 }
213
214 /*
215 * Downcast `ref_store` to `packed_ref_store`. Die if `ref_store` is
216 * not a `packed_ref_store`. Also die if `packed_ref_store` doesn't
217 * support at least the flags specified in `required_flags`. `caller`
218 * is used in any necessary error messages.
219 */
220 static struct packed_ref_store *packed_downcast(struct ref_store *ref_store,
221 unsigned int required_flags,
222 const char *caller)
223 {
224 struct packed_ref_store *refs;
225
226 if (ref_store->be != &refs_be_packed)
227 BUG("ref_store is type \"%s\" not \"packed\" in %s",
228 ref_store->be->name, caller);
229
230 refs = (struct packed_ref_store *)ref_store;
231
232 if ((refs->store_flags & required_flags) != required_flags)
233 BUG("unallowed operation (%s), requires %x, has %x\n",
234 caller, required_flags, refs->store_flags);
235
236 return refs;
237 }
238
239 static void clear_snapshot(struct packed_ref_store *refs)
240 {
241 if (refs->snapshot) {
242 struct snapshot *snapshot = refs->snapshot;
243
244 refs->snapshot = NULL;
245 release_snapshot(snapshot);
246 }
247 }
248
249 static NORETURN void die_unterminated_line(const char *path,
250 const char *p, size_t len)
251 {
252 if (len < 80)
253 die("unterminated line in %s: %.*s", path, (int)len, p);
254 else
255 die("unterminated line in %s: %.75s...", path, p);
256 }
257
258 static NORETURN void die_invalid_line(const char *path,
259 const char *p, size_t len)
260 {
261 const char *eol = memchr(p, '\n', len);
262
263 if (!eol)
264 die_unterminated_line(path, p, len);
265 else if (eol - p < 80)
266 die("unexpected line in %s: %.*s", path, (int)(eol - p), p);
267 else
268 die("unexpected line in %s: %.75s...", path, p);
269
270 }
271
272 struct snapshot_record {
273 const char *start;
274 size_t len;
275 };
276
277 static int cmp_packed_ref_records(const void *v1, const void *v2)
278 {
279 const struct snapshot_record *e1 = v1, *e2 = v2;
280 const char *r1 = e1->start + the_hash_algo->hexsz + 1;
281 const char *r2 = e2->start + the_hash_algo->hexsz + 1;
282
283 while (1) {
284 if (*r1 == '\n')
285 return *r2 == '\n' ? 0 : -1;
286 if (*r1 != *r2) {
287 if (*r2 == '\n')
288 return 1;
289 else
290 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
291 }
292 r1++;
293 r2++;
294 }
295 }
296
297 /*
298 * Compare a snapshot record at `rec` to the specified NUL-terminated
299 * refname.
300 */
301 static int cmp_record_to_refname(const char *rec, const char *refname)
302 {
303 const char *r1 = rec + the_hash_algo->hexsz + 1;
304 const char *r2 = refname;
305
306 while (1) {
307 if (*r1 == '\n')
308 return *r2 ? -1 : 0;
309 if (!*r2)
310 return 1;
311 if (*r1 != *r2)
312 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
313 r1++;
314 r2++;
315 }
316 }
317
318 /*
319 * `snapshot->buf` is not known to be sorted. Check whether it is, and
320 * if not, sort it into new memory and munmap/free the old storage.
321 */
322 static void sort_snapshot(struct snapshot *snapshot)
323 {
324 struct snapshot_record *records = NULL;
325 size_t alloc = 0, nr = 0;
326 int sorted = 1;
327 const char *pos, *eof, *eol;
328 size_t len, i;
329 char *new_buffer, *dst;
330
331 pos = snapshot->start;
332 eof = snapshot->eof;
333
334 if (pos == eof)
335 return;
336
337 len = eof - pos;
338
339 /*
340 * Initialize records based on a crude estimate of the number
341 * of references in the file (we'll grow it below if needed):
342 */
343 ALLOC_GROW(records, len / 80 + 20, alloc);
344
345 while (pos < eof) {
346 eol = memchr(pos, '\n', eof - pos);
347 if (!eol)
348 /* The safety check should prevent this. */
349 BUG("unterminated line found in packed-refs");
350 if (eol - pos < the_hash_algo->hexsz + 2)
351 die_invalid_line(snapshot->refs->path,
352 pos, eof - pos);
353 eol++;
354 if (eol < eof && *eol == '^') {
355 /*
356 * Keep any peeled line together with its
357 * reference:
358 */
359 const char *peeled_start = eol;
360
361 eol = memchr(peeled_start, '\n', eof - peeled_start);
362 if (!eol)
363 /* The safety check should prevent this. */
364 BUG("unterminated peeled line found in packed-refs");
365 eol++;
366 }
367
368 ALLOC_GROW(records, nr + 1, alloc);
369 records[nr].start = pos;
370 records[nr].len = eol - pos;
371 nr++;
372
373 if (sorted &&
374 nr > 1 &&
375 cmp_packed_ref_records(&records[nr - 2],
376 &records[nr - 1]) >= 0)
377 sorted = 0;
378
379 pos = eol;
380 }
381
382 if (sorted)
383 goto cleanup;
384
385 /* We need to sort the memory. First we sort the records array: */
386 QSORT(records, nr, cmp_packed_ref_records);
387
388 /*
389 * Allocate a new chunk of memory, and copy the old memory to
390 * the new in the order indicated by `records` (not bothering
391 * with the header line):
392 */
393 new_buffer = xmalloc(len);
394 for (dst = new_buffer, i = 0; i < nr; i++) {
395 memcpy(dst, records[i].start, records[i].len);
396 dst += records[i].len;
397 }
398
399 /*
400 * Now munmap the old buffer and use the sorted buffer in its
401 * place:
402 */
403 clear_snapshot_buffer(snapshot);
404 snapshot->buf = snapshot->start = new_buffer;
405 snapshot->eof = new_buffer + len;
406
407 cleanup:
408 free(records);
409 }
410
411 /*
412 * Return a pointer to the start of the record that contains the
413 * character `*p` (which must be within the buffer). If no other
414 * record start is found, return `buf`.
415 */
416 static const char *find_start_of_record(const char *buf, const char *p)
417 {
418 while (p > buf && (p[-1] != '\n' || p[0] == '^'))
419 p--;
420 return p;
421 }
422
423 /*
424 * Return a pointer to the start of the record following the record
425 * that contains `*p`. If none is found before `end`, return `end`.
426 */
427 static const char *find_end_of_record(const char *p, const char *end)
428 {
429 while (++p < end && (p[-1] != '\n' || p[0] == '^'))
430 ;
431 return p;
432 }
433
434 /*
435 * We want to be able to compare mmapped reference records quickly,
436 * without totally parsing them. We can do so because the records are
437 * LF-terminated, and the refname should start exactly (GIT_SHA1_HEXSZ
438 * + 1) bytes past the beginning of the record.
439 *
440 * But what if the `packed-refs` file contains garbage? We're willing
441 * to tolerate not detecting the problem, as long as we don't produce
442 * totally garbled output (we can't afford to check the integrity of
443 * the whole file during every Git invocation). But we do want to be
444 * sure that we never read past the end of the buffer in memory and
445 * perform an illegal memory access.
446 *
447 * Guarantee that minimum level of safety by verifying that the last
448 * record in the file is LF-terminated, and that it has at least
449 * (GIT_SHA1_HEXSZ + 1) characters before the LF. Die if either of
450 * these checks fails.
451 */
452 static void verify_buffer_safe(struct snapshot *snapshot)
453 {
454 const char *start = snapshot->start;
455 const char *eof = snapshot->eof;
456 const char *last_line;
457
458 if (start == eof)
459 return;
460
461 last_line = find_start_of_record(start, eof - 1);
462 if (*(eof - 1) != '\n' || eof - last_line < the_hash_algo->hexsz + 2)
463 die_invalid_line(snapshot->refs->path,
464 last_line, eof - last_line);
465 }
466
467 #define SMALL_FILE_SIZE (32*1024)
468
469 /*
470 * Depending on `mmap_strategy`, either mmap or read the contents of
471 * the `packed-refs` file into the snapshot. Return 1 if the file
472 * existed and was read, or 0 if the file was absent or empty. Die on
473 * errors.
474 */
475 static int load_contents(struct snapshot *snapshot)
476 {
477 int fd;
478 struct stat st;
479 size_t size;
480 ssize_t bytes_read;
481
482 fd = open(snapshot->refs->path, O_RDONLY);
483 if (fd < 0) {
484 if (errno == ENOENT) {
485 /*
486 * This is OK; it just means that no
487 * "packed-refs" file has been written yet,
488 * which is equivalent to it being empty,
489 * which is its state when initialized with
490 * zeros.
491 */
492 return 0;
493 } else {
494 die_errno("couldn't read %s", snapshot->refs->path);
495 }
496 }
497
498 stat_validity_update(&snapshot->validity, fd);
499
500 if (fstat(fd, &st) < 0)
501 die_errno("couldn't stat %s", snapshot->refs->path);
502 size = xsize_t(st.st_size);
503
504 if (!size) {
505 close(fd);
506 return 0;
507 } else if (mmap_strategy == MMAP_NONE || size <= SMALL_FILE_SIZE) {
508 snapshot->buf = xmalloc(size);
509 bytes_read = read_in_full(fd, snapshot->buf, size);
510 if (bytes_read < 0 || bytes_read != size)
511 die_errno("couldn't read %s", snapshot->refs->path);
512 snapshot->mmapped = 0;
513 } else {
514 snapshot->buf = xmmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
515 snapshot->mmapped = 1;
516 }
517 close(fd);
518
519 snapshot->start = snapshot->buf;
520 snapshot->eof = snapshot->buf + size;
521
522 return 1;
523 }
524
525 /*
526 * Find the place in `snapshot->buf` where the start of the record for
527 * `refname` starts. If `mustexist` is true and the reference doesn't
528 * exist, then return NULL. If `mustexist` is false and the reference
529 * doesn't exist, then return the point where that reference would be
530 * inserted, or `snapshot->eof` (which might be NULL) if it would be
531 * inserted at the end of the file. In the latter mode, `refname`
532 * doesn't have to be a proper reference name; for example, one could
533 * search for "refs/replace/" to find the start of any replace
534 * references.
535 *
536 * The record is sought using a binary search, so `snapshot->buf` must
537 * be sorted.
538 */
539 static const char *find_reference_location(struct snapshot *snapshot,
540 const char *refname, int mustexist)
541 {
542 /*
543 * This is not *quite* a garden-variety binary search, because
544 * the data we're searching is made up of records, and we
545 * always need to find the beginning of a record to do a
546 * comparison. A "record" here is one line for the reference
547 * itself and zero or one peel lines that start with '^'. Our
548 * loop invariant is described in the next two comments.
549 */
550
551 /*
552 * A pointer to the character at the start of a record whose
553 * preceding records all have reference names that come
554 * *before* `refname`.
555 */
556 const char *lo = snapshot->start;
557
558 /*
559 * A pointer to a the first character of a record whose
560 * reference name comes *after* `refname`.
561 */
562 const char *hi = snapshot->eof;
563
564 while (lo != hi) {
565 const char *mid, *rec;
566 int cmp;
567
568 mid = lo + (hi - lo) / 2;
569 rec = find_start_of_record(lo, mid);
570 cmp = cmp_record_to_refname(rec, refname);
571 if (cmp < 0) {
572 lo = find_end_of_record(mid, hi);
573 } else if (cmp > 0) {
574 hi = rec;
575 } else {
576 return rec;
577 }
578 }
579
580 if (mustexist)
581 return NULL;
582 else
583 return lo;
584 }
585
586 /*
587 * Create a newly-allocated `snapshot` of the `packed-refs` file in
588 * its current state and return it. The return value will already have
589 * its reference count incremented.
590 *
591 * A comment line of the form "# pack-refs with: " may contain zero or
592 * more traits. We interpret the traits as follows:
593 *
594 * Neither `peeled` nor `fully-peeled`:
595 *
596 * Probably no references are peeled. But if the file contains a
597 * peeled value for a reference, we will use it.
598 *
599 * `peeled`:
600 *
601 * References under "refs/tags/", if they *can* be peeled, *are*
602 * peeled in this file. References outside of "refs/tags/" are
603 * probably not peeled even if they could have been, but if we find
604 * a peeled value for such a reference we will use it.
605 *
606 * `fully-peeled`:
607 *
608 * All references in the file that can be peeled are peeled.
609 * Inversely (and this is more important), any references in the
610 * file for which no peeled value is recorded is not peelable. This
611 * trait should typically be written alongside "peeled" for
612 * compatibility with older clients, but we do not require it
613 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
614 *
615 * `sorted`:
616 *
617 * The references in this file are known to be sorted by refname.
618 */
619 static struct snapshot *create_snapshot(struct packed_ref_store *refs)
620 {
621 struct snapshot *snapshot = xcalloc(1, sizeof(*snapshot));
622 int sorted = 0;
623
624 snapshot->refs = refs;
625 acquire_snapshot(snapshot);
626 snapshot->peeled = PEELED_NONE;
627
628 if (!load_contents(snapshot))
629 return snapshot;
630
631 /* If the file has a header line, process it: */
632 if (snapshot->buf < snapshot->eof && *snapshot->buf == '#') {
633 char *tmp, *p, *eol;
634 struct string_list traits = STRING_LIST_INIT_NODUP;
635
636 eol = memchr(snapshot->buf, '\n',
637 snapshot->eof - snapshot->buf);
638 if (!eol)
639 die_unterminated_line(refs->path,
640 snapshot->buf,
641 snapshot->eof - snapshot->buf);
642
643 tmp = xmemdupz(snapshot->buf, eol - snapshot->buf);
644
645 if (!skip_prefix(tmp, "# pack-refs with:", (const char **)&p))
646 die_invalid_line(refs->path,
647 snapshot->buf,
648 snapshot->eof - snapshot->buf);
649
650 string_list_split_in_place(&traits, p, ' ', -1);
651
652 if (unsorted_string_list_has_string(&traits, "fully-peeled"))
653 snapshot->peeled = PEELED_FULLY;
654 else if (unsorted_string_list_has_string(&traits, "peeled"))
655 snapshot->peeled = PEELED_TAGS;
656
657 sorted = unsorted_string_list_has_string(&traits, "sorted");
658
659 /* perhaps other traits later as well */
660
661 /* The "+ 1" is for the LF character. */
662 snapshot->start = eol + 1;
663
664 string_list_clear(&traits, 0);
665 free(tmp);
666 }
667
668 verify_buffer_safe(snapshot);
669
670 if (!sorted) {
671 sort_snapshot(snapshot);
672
673 /*
674 * Reordering the records might have moved a short one
675 * to the end of the buffer, so verify the buffer's
676 * safety again:
677 */
678 verify_buffer_safe(snapshot);
679 }
680
681 if (mmap_strategy != MMAP_OK && snapshot->mmapped) {
682 /*
683 * We don't want to leave the file mmapped, so we are
684 * forced to make a copy now:
685 */
686 size_t size = snapshot->eof - snapshot->start;
687 char *buf_copy = xmalloc(size);
688
689 memcpy(buf_copy, snapshot->start, size);
690 clear_snapshot_buffer(snapshot);
691 snapshot->buf = snapshot->start = buf_copy;
692 snapshot->eof = buf_copy + size;
693 }
694
695 return snapshot;
696 }
697
698 /*
699 * Check that `refs->snapshot` (if present) still reflects the
700 * contents of the `packed-refs` file. If not, clear the snapshot.
701 */
702 static void validate_snapshot(struct packed_ref_store *refs)
703 {
704 if (refs->snapshot &&
705 !stat_validity_check(&refs->snapshot->validity, refs->path))
706 clear_snapshot(refs);
707 }
708
709 /*
710 * Get the `snapshot` for the specified packed_ref_store, creating and
711 * populating it if it hasn't been read before or if the file has been
712 * changed (according to its `validity` field) since it was last read.
713 * On the other hand, if we hold the lock, then assume that the file
714 * hasn't been changed out from under us, so skip the extra `stat()`
715 * call in `stat_validity_check()`. This function does *not* increase
716 * the snapshot's reference count on behalf of the caller.
717 */
718 static struct snapshot *get_snapshot(struct packed_ref_store *refs)
719 {
720 if (!is_lock_file_locked(&refs->lock))
721 validate_snapshot(refs);
722
723 if (!refs->snapshot)
724 refs->snapshot = create_snapshot(refs);
725
726 return refs->snapshot;
727 }
728
729 static int packed_read_raw_ref(struct ref_store *ref_store, const char *refname,
730 struct object_id *oid, struct strbuf *referent UNUSED,
731 unsigned int *type, int *failure_errno)
732 {
733 struct packed_ref_store *refs =
734 packed_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
735 struct snapshot *snapshot = get_snapshot(refs);
736 const char *rec;
737
738 *type = 0;
739
740 rec = find_reference_location(snapshot, refname, 1);
741
742 if (!rec) {
743 /* refname is not a packed reference. */
744 *failure_errno = ENOENT;
745 return -1;
746 }
747
748 if (get_oid_hex(rec, oid))
749 die_invalid_line(refs->path, rec, snapshot->eof - rec);
750
751 *type = REF_ISPACKED;
752 return 0;
753 }
754
755 /*
756 * This value is set in `base.flags` if the peeled value of the
757 * current reference is known. In that case, `peeled` contains the
758 * correct peeled value for the reference, which might be `null_oid`
759 * if the reference is not a tag or if it is broken.
760 */
761 #define REF_KNOWS_PEELED 0x40
762
763 /*
764 * An iterator over a snapshot of a `packed-refs` file.
765 */
766 struct packed_ref_iterator {
767 struct ref_iterator base;
768
769 struct snapshot *snapshot;
770
771 /* The current position in the snapshot's buffer: */
772 const char *pos;
773
774 /* The end of the part of the buffer that will be iterated over: */
775 const char *eof;
776
777 /* Scratch space for current values: */
778 struct object_id oid, peeled;
779 struct strbuf refname_buf;
780
781 struct repository *repo;
782 unsigned int flags;
783 };
784
785 /*
786 * Move the iterator to the next record in the snapshot, without
787 * respect for whether the record is actually required by the current
788 * iteration. Adjust the fields in `iter` and return `ITER_OK` or
789 * `ITER_DONE`. This function does not free the iterator in the case
790 * of `ITER_DONE`.
791 */
792 static int next_record(struct packed_ref_iterator *iter)
793 {
794 const char *p = iter->pos, *eol;
795
796 strbuf_reset(&iter->refname_buf);
797
798 if (iter->pos == iter->eof)
799 return ITER_DONE;
800
801 iter->base.flags = REF_ISPACKED;
802
803 if (iter->eof - p < the_hash_algo->hexsz + 2 ||
804 parse_oid_hex(p, &iter->oid, &p) ||
805 !isspace(*p++))
806 die_invalid_line(iter->snapshot->refs->path,
807 iter->pos, iter->eof - iter->pos);
808
809 eol = memchr(p, '\n', iter->eof - p);
810 if (!eol)
811 die_unterminated_line(iter->snapshot->refs->path,
812 iter->pos, iter->eof - iter->pos);
813
814 strbuf_add(&iter->refname_buf, p, eol - p);
815 iter->base.refname = iter->refname_buf.buf;
816
817 if (check_refname_format(iter->base.refname, REFNAME_ALLOW_ONELEVEL)) {
818 if (!refname_is_safe(iter->base.refname))
819 die("packed refname is dangerous: %s",
820 iter->base.refname);
821 oidclr(&iter->oid);
822 iter->base.flags |= REF_BAD_NAME | REF_ISBROKEN;
823 }
824 if (iter->snapshot->peeled == PEELED_FULLY ||
825 (iter->snapshot->peeled == PEELED_TAGS &&
826 starts_with(iter->base.refname, "refs/tags/")))
827 iter->base.flags |= REF_KNOWS_PEELED;
828
829 iter->pos = eol + 1;
830
831 if (iter->pos < iter->eof && *iter->pos == '^') {
832 p = iter->pos + 1;
833 if (iter->eof - p < the_hash_algo->hexsz + 1 ||
834 parse_oid_hex(p, &iter->peeled, &p) ||
835 *p++ != '\n')
836 die_invalid_line(iter->snapshot->refs->path,
837 iter->pos, iter->eof - iter->pos);
838 iter->pos = p;
839
840 /*
841 * Regardless of what the file header said, we
842 * definitely know the value of *this* reference. But
843 * we suppress it if the reference is broken:
844 */
845 if ((iter->base.flags & REF_ISBROKEN)) {
846 oidclr(&iter->peeled);
847 iter->base.flags &= ~REF_KNOWS_PEELED;
848 } else {
849 iter->base.flags |= REF_KNOWS_PEELED;
850 }
851 } else {
852 oidclr(&iter->peeled);
853 }
854
855 return ITER_OK;
856 }
857
858 static int packed_ref_iterator_advance(struct ref_iterator *ref_iterator)
859 {
860 struct packed_ref_iterator *iter =
861 (struct packed_ref_iterator *)ref_iterator;
862 int ok;
863
864 while ((ok = next_record(iter)) == ITER_OK) {
865 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
866 !is_per_worktree_ref(iter->base.refname))
867 continue;
868
869 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
870 !ref_resolves_to_object(iter->base.refname, iter->repo,
871 &iter->oid, iter->flags))
872 continue;
873
874 return ITER_OK;
875 }
876
877 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
878 ok = ITER_ERROR;
879
880 return ok;
881 }
882
883 static int packed_ref_iterator_peel(struct ref_iterator *ref_iterator,
884 struct object_id *peeled)
885 {
886 struct packed_ref_iterator *iter =
887 (struct packed_ref_iterator *)ref_iterator;
888
889 if (iter->repo != the_repository)
890 BUG("peeling for non-the_repository is not supported");
891
892 if ((iter->base.flags & REF_KNOWS_PEELED)) {
893 oidcpy(peeled, &iter->peeled);
894 return is_null_oid(&iter->peeled) ? -1 : 0;
895 } else if ((iter->base.flags & (REF_ISBROKEN | REF_ISSYMREF))) {
896 return -1;
897 } else {
898 return peel_object(&iter->oid, peeled) ? -1 : 0;
899 }
900 }
901
902 static int packed_ref_iterator_abort(struct ref_iterator *ref_iterator)
903 {
904 struct packed_ref_iterator *iter =
905 (struct packed_ref_iterator *)ref_iterator;
906 int ok = ITER_DONE;
907
908 strbuf_release(&iter->refname_buf);
909 release_snapshot(iter->snapshot);
910 base_ref_iterator_free(ref_iterator);
911 return ok;
912 }
913
914 static struct ref_iterator_vtable packed_ref_iterator_vtable = {
915 .advance = packed_ref_iterator_advance,
916 .peel = packed_ref_iterator_peel,
917 .abort = packed_ref_iterator_abort
918 };
919
920 static struct ref_iterator *packed_ref_iterator_begin(
921 struct ref_store *ref_store,
922 const char *prefix, unsigned int flags)
923 {
924 struct packed_ref_store *refs;
925 struct snapshot *snapshot;
926 const char *start;
927 struct packed_ref_iterator *iter;
928 struct ref_iterator *ref_iterator;
929 unsigned int required_flags = REF_STORE_READ;
930
931 if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN))
932 required_flags |= REF_STORE_ODB;
933 refs = packed_downcast(ref_store, required_flags, "ref_iterator_begin");
934
935 /*
936 * Note that `get_snapshot()` internally checks whether the
937 * snapshot is up to date with what is on disk, and re-reads
938 * it if not.
939 */
940 snapshot = get_snapshot(refs);
941
942 if (prefix && *prefix)
943 start = find_reference_location(snapshot, prefix, 0);
944 else
945 start = snapshot->start;
946
947 if (start == snapshot->eof)
948 return empty_ref_iterator_begin();
949
950 CALLOC_ARRAY(iter, 1);
951 ref_iterator = &iter->base;
952 base_ref_iterator_init(ref_iterator, &packed_ref_iterator_vtable, 1);
953
954 iter->snapshot = snapshot;
955 acquire_snapshot(snapshot);
956
957 iter->pos = start;
958 iter->eof = snapshot->eof;
959 strbuf_init(&iter->refname_buf, 0);
960
961 iter->base.oid = &iter->oid;
962
963 iter->repo = ref_store->repo;
964 iter->flags = flags;
965
966 if (prefix && *prefix)
967 /* Stop iteration after we've gone *past* prefix: */
968 ref_iterator = prefix_ref_iterator_begin(ref_iterator, prefix, 0);
969
970 return ref_iterator;
971 }
972
973 /*
974 * Write an entry to the packed-refs file for the specified refname.
975 * If peeled is non-NULL, write it as the entry's peeled value. On
976 * error, return a nonzero value and leave errno set at the value left
977 * by the failing call to `fprintf()`.
978 */
979 static int write_packed_entry(FILE *fh, const char *refname,
980 const struct object_id *oid,
981 const struct object_id *peeled)
982 {
983 if (fprintf(fh, "%s %s\n", oid_to_hex(oid), refname) < 0 ||
984 (peeled && fprintf(fh, "^%s\n", oid_to_hex(peeled)) < 0))
985 return -1;
986
987 return 0;
988 }
989
990 int packed_refs_lock(struct ref_store *ref_store, int flags, struct strbuf *err)
991 {
992 struct packed_ref_store *refs =
993 packed_downcast(ref_store, REF_STORE_WRITE | REF_STORE_MAIN,
994 "packed_refs_lock");
995 static int timeout_configured = 0;
996 static int timeout_value = 1000;
997
998 if (!timeout_configured) {
999 git_config_get_int("core.packedrefstimeout", &timeout_value);
1000 timeout_configured = 1;
1001 }
1002
1003 /*
1004 * Note that we close the lockfile immediately because we
1005 * don't write new content to it, but rather to a separate
1006 * tempfile.
1007 */
1008 if (hold_lock_file_for_update_timeout(
1009 &refs->lock,
1010 refs->path,
1011 flags, timeout_value) < 0) {
1012 unable_to_lock_message(refs->path, errno, err);
1013 return -1;
1014 }
1015
1016 if (close_lock_file_gently(&refs->lock)) {
1017 strbuf_addf(err, "unable to close %s: %s", refs->path, strerror(errno));
1018 rollback_lock_file(&refs->lock);
1019 return -1;
1020 }
1021
1022 /*
1023 * There is a stat-validity problem might cause `update-ref -d`
1024 * lost the newly commit of a ref, because a new `packed-refs`
1025 * file might has the same on-disk file attributes such as
1026 * timestamp, file size and inode value, but has a changed
1027 * ref value.
1028 *
1029 * This could happen with a very small chance when
1030 * `update-ref -d` is called and at the same time another
1031 * `pack-refs --all` process is running.
1032 *
1033 * Now that we hold the `packed-refs` lock, it is important
1034 * to make sure we could read the latest version of
1035 * `packed-refs` file no matter we have just mmap it or not.
1036 * So what need to do is clear the snapshot if we hold it
1037 * already.
1038 */
1039 clear_snapshot(refs);
1040
1041 /*
1042 * Now make sure that the packed-refs file as it exists in the
1043 * locked state is loaded into the snapshot:
1044 */
1045 get_snapshot(refs);
1046 return 0;
1047 }
1048
1049 void packed_refs_unlock(struct ref_store *ref_store)
1050 {
1051 struct packed_ref_store *refs = packed_downcast(
1052 ref_store,
1053 REF_STORE_READ | REF_STORE_WRITE,
1054 "packed_refs_unlock");
1055
1056 if (!is_lock_file_locked(&refs->lock))
1057 BUG("packed_refs_unlock() called when not locked");
1058 rollback_lock_file(&refs->lock);
1059 }
1060
1061 int packed_refs_is_locked(struct ref_store *ref_store)
1062 {
1063 struct packed_ref_store *refs = packed_downcast(
1064 ref_store,
1065 REF_STORE_READ | REF_STORE_WRITE,
1066 "packed_refs_is_locked");
1067
1068 return is_lock_file_locked(&refs->lock);
1069 }
1070
1071 /*
1072 * The packed-refs header line that we write out. Perhaps other traits
1073 * will be added later.
1074 *
1075 * Note that earlier versions of Git used to parse these traits by
1076 * looking for " trait " in the line. For this reason, the space after
1077 * the colon and the trailing space are required.
1078 */
1079 static const char PACKED_REFS_HEADER[] =
1080 "# pack-refs with: peeled fully-peeled sorted \n";
1081
1082 static int packed_init_db(struct ref_store *ref_store UNUSED,
1083 struct strbuf *err UNUSED)
1084 {
1085 /* Nothing to do. */
1086 return 0;
1087 }
1088
1089 /*
1090 * Write the packed refs from the current snapshot to the packed-refs
1091 * tempfile, incorporating any changes from `updates`. `updates` must
1092 * be a sorted string list whose keys are the refnames and whose util
1093 * values are `struct ref_update *`. On error, rollback the tempfile,
1094 * write an error message to `err`, and return a nonzero value.
1095 *
1096 * The packfile must be locked before calling this function and will
1097 * remain locked when it is done.
1098 */
1099 static int write_with_updates(struct packed_ref_store *refs,
1100 struct string_list *updates,
1101 struct strbuf *err)
1102 {
1103 struct ref_iterator *iter = NULL;
1104 size_t i;
1105 int ok;
1106 FILE *out;
1107 struct strbuf sb = STRBUF_INIT;
1108 char *packed_refs_path;
1109
1110 if (!is_lock_file_locked(&refs->lock))
1111 BUG("write_with_updates() called while unlocked");
1112
1113 /*
1114 * If packed-refs is a symlink, we want to overwrite the
1115 * symlinked-to file, not the symlink itself. Also, put the
1116 * staging file next to it:
1117 */
1118 packed_refs_path = get_locked_file_path(&refs->lock);
1119 strbuf_addf(&sb, "%s.new", packed_refs_path);
1120 free(packed_refs_path);
1121 refs->tempfile = create_tempfile(sb.buf);
1122 if (!refs->tempfile) {
1123 strbuf_addf(err, "unable to create file %s: %s",
1124 sb.buf, strerror(errno));
1125 strbuf_release(&sb);
1126 return -1;
1127 }
1128 strbuf_release(&sb);
1129
1130 out = fdopen_tempfile(refs->tempfile, "w");
1131 if (!out) {
1132 strbuf_addf(err, "unable to fdopen packed-refs tempfile: %s",
1133 strerror(errno));
1134 goto error;
1135 }
1136
1137 if (fprintf(out, "%s", PACKED_REFS_HEADER) < 0)
1138 goto write_error;
1139
1140 /*
1141 * We iterate in parallel through the current list of refs and
1142 * the list of updates, processing an entry from at least one
1143 * of the lists each time through the loop. When the current
1144 * list of refs is exhausted, set iter to NULL. When the list
1145 * of updates is exhausted, leave i set to updates->nr.
1146 */
1147 iter = packed_ref_iterator_begin(&refs->base, "",
1148 DO_FOR_EACH_INCLUDE_BROKEN);
1149 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1150 iter = NULL;
1151
1152 i = 0;
1153
1154 while (iter || i < updates->nr) {
1155 struct ref_update *update = NULL;
1156 int cmp;
1157
1158 if (i >= updates->nr) {
1159 cmp = -1;
1160 } else {
1161 update = updates->items[i].util;
1162
1163 if (!iter)
1164 cmp = +1;
1165 else
1166 cmp = strcmp(iter->refname, update->refname);
1167 }
1168
1169 if (!cmp) {
1170 /*
1171 * There is both an old value and an update
1172 * for this reference. Check the old value if
1173 * necessary:
1174 */
1175 if ((update->flags & REF_HAVE_OLD)) {
1176 if (is_null_oid(&update->old_oid)) {
1177 strbuf_addf(err, "cannot update ref '%s': "
1178 "reference already exists",
1179 update->refname);
1180 goto error;
1181 } else if (!oideq(&update->old_oid, iter->oid)) {
1182 strbuf_addf(err, "cannot update ref '%s': "
1183 "is at %s but expected %s",
1184 update->refname,
1185 oid_to_hex(iter->oid),
1186 oid_to_hex(&update->old_oid));
1187 goto error;
1188 }
1189 }
1190
1191 /* Now figure out what to use for the new value: */
1192 if ((update->flags & REF_HAVE_NEW)) {
1193 /*
1194 * The update takes precedence. Skip
1195 * the iterator over the unneeded
1196 * value.
1197 */
1198 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1199 iter = NULL;
1200 cmp = +1;
1201 } else {
1202 /*
1203 * The update doesn't actually want to
1204 * change anything. We're done with it.
1205 */
1206 i++;
1207 cmp = -1;
1208 }
1209 } else if (cmp > 0) {
1210 /*
1211 * There is no old value but there is an
1212 * update for this reference. Make sure that
1213 * the update didn't expect an existing value:
1214 */
1215 if ((update->flags & REF_HAVE_OLD) &&
1216 !is_null_oid(&update->old_oid)) {
1217 strbuf_addf(err, "cannot update ref '%s': "
1218 "reference is missing but expected %s",
1219 update->refname,
1220 oid_to_hex(&update->old_oid));
1221 goto error;
1222 }
1223 }
1224
1225 if (cmp < 0) {
1226 /* Pass the old reference through. */
1227
1228 struct object_id peeled;
1229 int peel_error = ref_iterator_peel(iter, &peeled);
1230
1231 if (write_packed_entry(out, iter->refname,
1232 iter->oid,
1233 peel_error ? NULL : &peeled))
1234 goto write_error;
1235
1236 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1237 iter = NULL;
1238 } else if (is_null_oid(&update->new_oid)) {
1239 /*
1240 * The update wants to delete the reference,
1241 * and the reference either didn't exist or we
1242 * have already skipped it. So we're done with
1243 * the update (and don't have to write
1244 * anything).
1245 */
1246 i++;
1247 } else {
1248 struct object_id peeled;
1249 int peel_error = peel_object(&update->new_oid,
1250 &peeled);
1251
1252 if (write_packed_entry(out, update->refname,
1253 &update->new_oid,
1254 peel_error ? NULL : &peeled))
1255 goto write_error;
1256
1257 i++;
1258 }
1259 }
1260
1261 if (ok != ITER_DONE) {
1262 strbuf_addstr(err, "unable to write packed-refs file: "
1263 "error iterating over old contents");
1264 goto error;
1265 }
1266
1267 if (fflush(out) ||
1268 fsync_component(FSYNC_COMPONENT_REFERENCE, get_tempfile_fd(refs->tempfile)) ||
1269 close_tempfile_gently(refs->tempfile)) {
1270 strbuf_addf(err, "error closing file %s: %s",
1271 get_tempfile_path(refs->tempfile),
1272 strerror(errno));
1273 strbuf_release(&sb);
1274 delete_tempfile(&refs->tempfile);
1275 return -1;
1276 }
1277
1278 return 0;
1279
1280 write_error:
1281 strbuf_addf(err, "error writing to %s: %s",
1282 get_tempfile_path(refs->tempfile), strerror(errno));
1283
1284 error:
1285 if (iter)
1286 ref_iterator_abort(iter);
1287
1288 delete_tempfile(&refs->tempfile);
1289 return -1;
1290 }
1291
1292 int is_packed_transaction_needed(struct ref_store *ref_store,
1293 struct ref_transaction *transaction)
1294 {
1295 struct packed_ref_store *refs = packed_downcast(
1296 ref_store,
1297 REF_STORE_READ,
1298 "is_packed_transaction_needed");
1299 struct strbuf referent = STRBUF_INIT;
1300 size_t i;
1301 int ret;
1302
1303 if (!is_lock_file_locked(&refs->lock))
1304 BUG("is_packed_transaction_needed() called while unlocked");
1305
1306 /*
1307 * We're only going to bother returning false for the common,
1308 * trivial case that references are only being deleted, their
1309 * old values are not being checked, and the old `packed-refs`
1310 * file doesn't contain any of those reference(s). This gives
1311 * false positives for some other cases that could
1312 * theoretically be optimized away:
1313 *
1314 * 1. It could be that the old value is being verified without
1315 * setting a new value. In this case, we could verify the
1316 * old value here and skip the update if it agrees. If it
1317 * disagrees, we could either let the update go through
1318 * (the actual commit would re-detect and report the
1319 * problem), or come up with a way of reporting such an
1320 * error to *our* caller.
1321 *
1322 * 2. It could be that a new value is being set, but that it
1323 * is identical to the current packed value of the
1324 * reference.
1325 *
1326 * Neither of these cases will come up in the current code,
1327 * because the only caller of this function passes to it a
1328 * transaction that only includes `delete` updates with no
1329 * `old_id`. Even if that ever changes, false positives only
1330 * cause an optimization to be missed; they do not affect
1331 * correctness.
1332 */
1333
1334 /*
1335 * Start with the cheap checks that don't require old
1336 * reference values to be read:
1337 */
1338 for (i = 0; i < transaction->nr; i++) {
1339 struct ref_update *update = transaction->updates[i];
1340
1341 if (update->flags & REF_HAVE_OLD)
1342 /* Have to check the old value -> needed. */
1343 return 1;
1344
1345 if ((update->flags & REF_HAVE_NEW) && !is_null_oid(&update->new_oid))
1346 /* Have to set a new value -> needed. */
1347 return 1;
1348 }
1349
1350 /*
1351 * The transaction isn't checking any old values nor is it
1352 * setting any nonzero new values, so it still might be able
1353 * to be skipped. Now do the more expensive check: the update
1354 * is needed if any of the updates is a delete, and the old
1355 * `packed-refs` file contains a value for that reference.
1356 */
1357 ret = 0;
1358 for (i = 0; i < transaction->nr; i++) {
1359 struct ref_update *update = transaction->updates[i];
1360 int failure_errno;
1361 unsigned int type;
1362 struct object_id oid;
1363
1364 if (!(update->flags & REF_HAVE_NEW))
1365 /*
1366 * This reference isn't being deleted -> not
1367 * needed.
1368 */
1369 continue;
1370
1371 if (!refs_read_raw_ref(ref_store, update->refname, &oid,
1372 &referent, &type, &failure_errno) ||
1373 failure_errno != ENOENT) {
1374 /*
1375 * We have to actually delete that reference
1376 * -> this transaction is needed.
1377 */
1378 ret = 1;
1379 break;
1380 }
1381 }
1382
1383 strbuf_release(&referent);
1384 return ret;
1385 }
1386
1387 struct packed_transaction_backend_data {
1388 /* True iff the transaction owns the packed-refs lock. */
1389 int own_lock;
1390
1391 struct string_list updates;
1392 };
1393
1394 static void packed_transaction_cleanup(struct packed_ref_store *refs,
1395 struct ref_transaction *transaction)
1396 {
1397 struct packed_transaction_backend_data *data = transaction->backend_data;
1398
1399 if (data) {
1400 string_list_clear(&data->updates, 0);
1401
1402 if (is_tempfile_active(refs->tempfile))
1403 delete_tempfile(&refs->tempfile);
1404
1405 if (data->own_lock && is_lock_file_locked(&refs->lock)) {
1406 packed_refs_unlock(&refs->base);
1407 data->own_lock = 0;
1408 }
1409
1410 free(data);
1411 transaction->backend_data = NULL;
1412 }
1413
1414 transaction->state = REF_TRANSACTION_CLOSED;
1415 }
1416
1417 static int packed_transaction_prepare(struct ref_store *ref_store,
1418 struct ref_transaction *transaction,
1419 struct strbuf *err)
1420 {
1421 struct packed_ref_store *refs = packed_downcast(
1422 ref_store,
1423 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1424 "ref_transaction_prepare");
1425 struct packed_transaction_backend_data *data;
1426 size_t i;
1427 int ret = TRANSACTION_GENERIC_ERROR;
1428
1429 /*
1430 * Note that we *don't* skip transactions with zero updates,
1431 * because such a transaction might be executed for the side
1432 * effect of ensuring that all of the references are peeled or
1433 * ensuring that the `packed-refs` file is sorted. If the
1434 * caller wants to optimize away empty transactions, it should
1435 * do so itself.
1436 */
1437
1438 CALLOC_ARRAY(data, 1);
1439 string_list_init_nodup(&data->updates);
1440
1441 transaction->backend_data = data;
1442
1443 /*
1444 * Stick the updates in a string list by refname so that we
1445 * can sort them:
1446 */
1447 for (i = 0; i < transaction->nr; i++) {
1448 struct ref_update *update = transaction->updates[i];
1449 struct string_list_item *item =
1450 string_list_append(&data->updates, update->refname);
1451
1452 /* Store a pointer to update in item->util: */
1453 item->util = update;
1454 }
1455 string_list_sort(&data->updates);
1456
1457 if (ref_update_reject_duplicates(&data->updates, err))
1458 goto failure;
1459
1460 if (!is_lock_file_locked(&refs->lock)) {
1461 if (packed_refs_lock(ref_store, 0, err))
1462 goto failure;
1463 data->own_lock = 1;
1464 }
1465
1466 if (write_with_updates(refs, &data->updates, err))
1467 goto failure;
1468
1469 transaction->state = REF_TRANSACTION_PREPARED;
1470 return 0;
1471
1472 failure:
1473 packed_transaction_cleanup(refs, transaction);
1474 return ret;
1475 }
1476
1477 static int packed_transaction_abort(struct ref_store *ref_store,
1478 struct ref_transaction *transaction,
1479 struct strbuf *err UNUSED)
1480 {
1481 struct packed_ref_store *refs = packed_downcast(
1482 ref_store,
1483 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1484 "ref_transaction_abort");
1485
1486 packed_transaction_cleanup(refs, transaction);
1487 return 0;
1488 }
1489
1490 static int packed_transaction_finish(struct ref_store *ref_store,
1491 struct ref_transaction *transaction,
1492 struct strbuf *err)
1493 {
1494 struct packed_ref_store *refs = packed_downcast(
1495 ref_store,
1496 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1497 "ref_transaction_finish");
1498 int ret = TRANSACTION_GENERIC_ERROR;
1499 char *packed_refs_path;
1500
1501 clear_snapshot(refs);
1502
1503 packed_refs_path = get_locked_file_path(&refs->lock);
1504 if (rename_tempfile(&refs->tempfile, packed_refs_path)) {
1505 strbuf_addf(err, "error replacing %s: %s",
1506 refs->path, strerror(errno));
1507 goto cleanup;
1508 }
1509
1510 ret = 0;
1511
1512 cleanup:
1513 free(packed_refs_path);
1514 packed_transaction_cleanup(refs, transaction);
1515 return ret;
1516 }
1517
1518 static int packed_initial_transaction_commit(struct ref_store *ref_store UNUSED,
1519 struct ref_transaction *transaction,
1520 struct strbuf *err)
1521 {
1522 return ref_transaction_commit(transaction, err);
1523 }
1524
1525 static int packed_delete_refs(struct ref_store *ref_store, const char *msg,
1526 struct string_list *refnames, unsigned int flags)
1527 {
1528 struct packed_ref_store *refs =
1529 packed_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
1530 struct strbuf err = STRBUF_INIT;
1531 struct ref_transaction *transaction;
1532 struct string_list_item *item;
1533 int ret;
1534
1535 (void)refs; /* We need the check above, but don't use the variable */
1536
1537 if (!refnames->nr)
1538 return 0;
1539
1540 /*
1541 * Since we don't check the references' old_oids, the
1542 * individual updates can't fail, so we can pack all of the
1543 * updates into a single transaction.
1544 */
1545
1546 transaction = ref_store_transaction_begin(ref_store, &err);
1547 if (!transaction)
1548 return -1;
1549
1550 for_each_string_list_item(item, refnames) {
1551 if (ref_transaction_delete(transaction, item->string, NULL,
1552 flags, msg, &err)) {
1553 warning(_("could not delete reference %s: %s"),
1554 item->string, err.buf);
1555 strbuf_reset(&err);
1556 }
1557 }
1558
1559 ret = ref_transaction_commit(transaction, &err);
1560
1561 if (ret) {
1562 if (refnames->nr == 1)
1563 error(_("could not delete reference %s: %s"),
1564 refnames->items[0].string, err.buf);
1565 else
1566 error(_("could not delete references: %s"), err.buf);
1567 }
1568
1569 ref_transaction_free(transaction);
1570 strbuf_release(&err);
1571 return ret;
1572 }
1573
1574 static int packed_pack_refs(struct ref_store *ref_store UNUSED,
1575 unsigned int flags UNUSED)
1576 {
1577 /*
1578 * Packed refs are already packed. It might be that loose refs
1579 * are packed *into* a packed refs store, but that is done by
1580 * updating the packed references via a transaction.
1581 */
1582 return 0;
1583 }
1584
1585 static struct ref_iterator *packed_reflog_iterator_begin(struct ref_store *ref_store UNUSED)
1586 {
1587 return empty_ref_iterator_begin();
1588 }
1589
1590 struct ref_storage_be refs_be_packed = {
1591 .next = NULL,
1592 .name = "packed",
1593 .init = packed_ref_store_create,
1594 .init_db = packed_init_db,
1595 .transaction_prepare = packed_transaction_prepare,
1596 .transaction_finish = packed_transaction_finish,
1597 .transaction_abort = packed_transaction_abort,
1598 .initial_transaction_commit = packed_initial_transaction_commit,
1599
1600 .pack_refs = packed_pack_refs,
1601 .create_symref = NULL,
1602 .delete_refs = packed_delete_refs,
1603 .rename_ref = NULL,
1604 .copy_ref = NULL,
1605
1606 .iterator_begin = packed_ref_iterator_begin,
1607 .read_raw_ref = packed_read_raw_ref,
1608 .read_symbolic_ref = NULL,
1609
1610 .reflog_iterator_begin = packed_reflog_iterator_begin,
1611 .for_each_reflog_ent = NULL,
1612 .for_each_reflog_ent_reverse = NULL,
1613 .reflog_exists = NULL,
1614 .create_reflog = NULL,
1615 .delete_reflog = NULL,
1616 .reflog_expire = NULL,
1617 };