]> git.ipfire.org Git - thirdparty/git.git/blob - refs/packed-backend.c
repo-settings: rename the traditional default fetch.negotiationAlgorithm
[thirdparty/git.git] / refs / packed-backend.c
1 #include "../cache.h"
2 #include "../config.h"
3 #include "../refs.h"
4 #include "refs-internal.h"
5 #include "packed-backend.h"
6 #include "../iterator.h"
7 #include "../lockfile.h"
8 #include "../chdir-notify.h"
9
10 enum mmap_strategy {
11 /*
12 * Don't use mmap() at all for reading `packed-refs`.
13 */
14 MMAP_NONE,
15
16 /*
17 * Can use mmap() for reading `packed-refs`, but the file must
18 * not remain mmapped. This is the usual option on Windows,
19 * where you cannot rename a new version of a file onto a file
20 * that is currently mmapped.
21 */
22 MMAP_TEMPORARY,
23
24 /*
25 * It is OK to leave the `packed-refs` file mmapped while
26 * arbitrary other code is running.
27 */
28 MMAP_OK
29 };
30
31 #if defined(NO_MMAP)
32 static enum mmap_strategy mmap_strategy = MMAP_NONE;
33 #elif defined(MMAP_PREVENTS_DELETE)
34 static enum mmap_strategy mmap_strategy = MMAP_TEMPORARY;
35 #else
36 static enum mmap_strategy mmap_strategy = MMAP_OK;
37 #endif
38
39 struct packed_ref_store;
40
41 /*
42 * A `snapshot` represents one snapshot of a `packed-refs` file.
43 *
44 * Normally, this will be a mmapped view of the contents of the
45 * `packed-refs` file at the time the snapshot was created. However,
46 * if the `packed-refs` file was not sorted, this might point at heap
47 * memory holding the contents of the `packed-refs` file with its
48 * records sorted by refname.
49 *
50 * `snapshot` instances are reference counted (via
51 * `acquire_snapshot()` and `release_snapshot()`). This is to prevent
52 * an instance from disappearing while an iterator is still iterating
53 * over it. Instances are garbage collected when their `referrers`
54 * count goes to zero.
55 *
56 * The most recent `snapshot`, if available, is referenced by the
57 * `packed_ref_store`. Its freshness is checked whenever
58 * `get_snapshot()` is called; if the existing snapshot is obsolete, a
59 * new snapshot is taken.
60 */
61 struct snapshot {
62 /*
63 * A back-pointer to the packed_ref_store with which this
64 * snapshot is associated:
65 */
66 struct packed_ref_store *refs;
67
68 /* Is the `packed-refs` file currently mmapped? */
69 int mmapped;
70
71 /*
72 * The contents of the `packed-refs` file:
73 *
74 * - buf -- a pointer to the start of the memory
75 * - start -- a pointer to the first byte of actual references
76 * (i.e., after the header line, if one is present)
77 * - eof -- a pointer just past the end of the reference
78 * contents
79 *
80 * If the `packed-refs` file was already sorted, `buf` points
81 * at the mmapped contents of the file. If not, it points at
82 * heap-allocated memory containing the contents, sorted. If
83 * there were no contents (e.g., because the file didn't
84 * exist), `buf`, `start`, and `eof` are all NULL.
85 */
86 char *buf, *start, *eof;
87
88 /*
89 * What is the peeled state of the `packed-refs` file that
90 * this snapshot represents? (This is usually determined from
91 * the file's header.)
92 */
93 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled;
94
95 /*
96 * Count of references to this instance, including the pointer
97 * from `packed_ref_store::snapshot`, if any. The instance
98 * will not be freed as long as the reference count is
99 * nonzero.
100 */
101 unsigned int referrers;
102
103 /*
104 * The metadata of the `packed-refs` file from which this
105 * snapshot was created, used to tell if the file has been
106 * replaced since we read it.
107 */
108 struct stat_validity validity;
109 };
110
111 /*
112 * A `ref_store` representing references stored in a `packed-refs`
113 * file. It implements the `ref_store` interface, though it has some
114 * limitations:
115 *
116 * - It cannot store symbolic references.
117 *
118 * - It cannot store reflogs.
119 *
120 * - It does not support reference renaming (though it could).
121 *
122 * On the other hand, it can be locked outside of a reference
123 * transaction. In that case, it remains locked even after the
124 * transaction is done and the new `packed-refs` file is activated.
125 */
126 struct packed_ref_store {
127 struct ref_store base;
128
129 unsigned int store_flags;
130
131 /* The path of the "packed-refs" file: */
132 char *path;
133
134 /*
135 * A snapshot of the values read from the `packed-refs` file,
136 * if it might still be current; otherwise, NULL.
137 */
138 struct snapshot *snapshot;
139
140 /*
141 * Lock used for the "packed-refs" file. Note that this (and
142 * thus the enclosing `packed_ref_store`) must not be freed.
143 */
144 struct lock_file lock;
145
146 /*
147 * Temporary file used when rewriting new contents to the
148 * "packed-refs" file. Note that this (and thus the enclosing
149 * `packed_ref_store`) must not be freed.
150 */
151 struct tempfile *tempfile;
152 };
153
154 /*
155 * Increment the reference count of `*snapshot`.
156 */
157 static void acquire_snapshot(struct snapshot *snapshot)
158 {
159 snapshot->referrers++;
160 }
161
162 /*
163 * If the buffer in `snapshot` is active, then either munmap the
164 * memory and close the file, or free the memory. Then set the buffer
165 * pointers to NULL.
166 */
167 static void clear_snapshot_buffer(struct snapshot *snapshot)
168 {
169 if (snapshot->mmapped) {
170 if (munmap(snapshot->buf, snapshot->eof - snapshot->buf))
171 die_errno("error ummapping packed-refs file %s",
172 snapshot->refs->path);
173 snapshot->mmapped = 0;
174 } else {
175 free(snapshot->buf);
176 }
177 snapshot->buf = snapshot->start = snapshot->eof = NULL;
178 }
179
180 /*
181 * Decrease the reference count of `*snapshot`. If it goes to zero,
182 * free `*snapshot` and return true; otherwise return false.
183 */
184 static int release_snapshot(struct snapshot *snapshot)
185 {
186 if (!--snapshot->referrers) {
187 stat_validity_clear(&snapshot->validity);
188 clear_snapshot_buffer(snapshot);
189 free(snapshot);
190 return 1;
191 } else {
192 return 0;
193 }
194 }
195
196 struct ref_store *packed_ref_store_create(struct repository *repo,
197 const char *path,
198 unsigned int store_flags)
199 {
200 struct packed_ref_store *refs = xcalloc(1, sizeof(*refs));
201 struct ref_store *ref_store = (struct ref_store *)refs;
202
203 base_ref_store_init(ref_store, &refs_be_packed);
204 ref_store->repo = repo;
205 ref_store->gitdir = xstrdup(path);
206 refs->store_flags = store_flags;
207
208 refs->path = xstrdup(path);
209 chdir_notify_reparent("packed-refs", &refs->path);
210
211 return ref_store;
212 }
213
214 /*
215 * Downcast `ref_store` to `packed_ref_store`. Die if `ref_store` is
216 * not a `packed_ref_store`. Also die if `packed_ref_store` doesn't
217 * support at least the flags specified in `required_flags`. `caller`
218 * is used in any necessary error messages.
219 */
220 static struct packed_ref_store *packed_downcast(struct ref_store *ref_store,
221 unsigned int required_flags,
222 const char *caller)
223 {
224 struct packed_ref_store *refs;
225
226 if (ref_store->be != &refs_be_packed)
227 BUG("ref_store is type \"%s\" not \"packed\" in %s",
228 ref_store->be->name, caller);
229
230 refs = (struct packed_ref_store *)ref_store;
231
232 if ((refs->store_flags & required_flags) != required_flags)
233 BUG("unallowed operation (%s), requires %x, has %x\n",
234 caller, required_flags, refs->store_flags);
235
236 return refs;
237 }
238
239 static void clear_snapshot(struct packed_ref_store *refs)
240 {
241 if (refs->snapshot) {
242 struct snapshot *snapshot = refs->snapshot;
243
244 refs->snapshot = NULL;
245 release_snapshot(snapshot);
246 }
247 }
248
249 static NORETURN void die_unterminated_line(const char *path,
250 const char *p, size_t len)
251 {
252 if (len < 80)
253 die("unterminated line in %s: %.*s", path, (int)len, p);
254 else
255 die("unterminated line in %s: %.75s...", path, p);
256 }
257
258 static NORETURN void die_invalid_line(const char *path,
259 const char *p, size_t len)
260 {
261 const char *eol = memchr(p, '\n', len);
262
263 if (!eol)
264 die_unterminated_line(path, p, len);
265 else if (eol - p < 80)
266 die("unexpected line in %s: %.*s", path, (int)(eol - p), p);
267 else
268 die("unexpected line in %s: %.75s...", path, p);
269
270 }
271
272 struct snapshot_record {
273 const char *start;
274 size_t len;
275 };
276
277 static int cmp_packed_ref_records(const void *v1, const void *v2)
278 {
279 const struct snapshot_record *e1 = v1, *e2 = v2;
280 const char *r1 = e1->start + the_hash_algo->hexsz + 1;
281 const char *r2 = e2->start + the_hash_algo->hexsz + 1;
282
283 while (1) {
284 if (*r1 == '\n')
285 return *r2 == '\n' ? 0 : -1;
286 if (*r1 != *r2) {
287 if (*r2 == '\n')
288 return 1;
289 else
290 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
291 }
292 r1++;
293 r2++;
294 }
295 }
296
297 /*
298 * Compare a snapshot record at `rec` to the specified NUL-terminated
299 * refname.
300 */
301 static int cmp_record_to_refname(const char *rec, const char *refname)
302 {
303 const char *r1 = rec + the_hash_algo->hexsz + 1;
304 const char *r2 = refname;
305
306 while (1) {
307 if (*r1 == '\n')
308 return *r2 ? -1 : 0;
309 if (!*r2)
310 return 1;
311 if (*r1 != *r2)
312 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
313 r1++;
314 r2++;
315 }
316 }
317
318 /*
319 * `snapshot->buf` is not known to be sorted. Check whether it is, and
320 * if not, sort it into new memory and munmap/free the old storage.
321 */
322 static void sort_snapshot(struct snapshot *snapshot)
323 {
324 struct snapshot_record *records = NULL;
325 size_t alloc = 0, nr = 0;
326 int sorted = 1;
327 const char *pos, *eof, *eol;
328 size_t len, i;
329 char *new_buffer, *dst;
330
331 pos = snapshot->start;
332 eof = snapshot->eof;
333
334 if (pos == eof)
335 return;
336
337 len = eof - pos;
338
339 /*
340 * Initialize records based on a crude estimate of the number
341 * of references in the file (we'll grow it below if needed):
342 */
343 ALLOC_GROW(records, len / 80 + 20, alloc);
344
345 while (pos < eof) {
346 eol = memchr(pos, '\n', eof - pos);
347 if (!eol)
348 /* The safety check should prevent this. */
349 BUG("unterminated line found in packed-refs");
350 if (eol - pos < the_hash_algo->hexsz + 2)
351 die_invalid_line(snapshot->refs->path,
352 pos, eof - pos);
353 eol++;
354 if (eol < eof && *eol == '^') {
355 /*
356 * Keep any peeled line together with its
357 * reference:
358 */
359 const char *peeled_start = eol;
360
361 eol = memchr(peeled_start, '\n', eof - peeled_start);
362 if (!eol)
363 /* The safety check should prevent this. */
364 BUG("unterminated peeled line found in packed-refs");
365 eol++;
366 }
367
368 ALLOC_GROW(records, nr + 1, alloc);
369 records[nr].start = pos;
370 records[nr].len = eol - pos;
371 nr++;
372
373 if (sorted &&
374 nr > 1 &&
375 cmp_packed_ref_records(&records[nr - 2],
376 &records[nr - 1]) >= 0)
377 sorted = 0;
378
379 pos = eol;
380 }
381
382 if (sorted)
383 goto cleanup;
384
385 /* We need to sort the memory. First we sort the records array: */
386 QSORT(records, nr, cmp_packed_ref_records);
387
388 /*
389 * Allocate a new chunk of memory, and copy the old memory to
390 * the new in the order indicated by `records` (not bothering
391 * with the header line):
392 */
393 new_buffer = xmalloc(len);
394 for (dst = new_buffer, i = 0; i < nr; i++) {
395 memcpy(dst, records[i].start, records[i].len);
396 dst += records[i].len;
397 }
398
399 /*
400 * Now munmap the old buffer and use the sorted buffer in its
401 * place:
402 */
403 clear_snapshot_buffer(snapshot);
404 snapshot->buf = snapshot->start = new_buffer;
405 snapshot->eof = new_buffer + len;
406
407 cleanup:
408 free(records);
409 }
410
411 /*
412 * Return a pointer to the start of the record that contains the
413 * character `*p` (which must be within the buffer). If no other
414 * record start is found, return `buf`.
415 */
416 static const char *find_start_of_record(const char *buf, const char *p)
417 {
418 while (p > buf && (p[-1] != '\n' || p[0] == '^'))
419 p--;
420 return p;
421 }
422
423 /*
424 * Return a pointer to the start of the record following the record
425 * that contains `*p`. If none is found before `end`, return `end`.
426 */
427 static const char *find_end_of_record(const char *p, const char *end)
428 {
429 while (++p < end && (p[-1] != '\n' || p[0] == '^'))
430 ;
431 return p;
432 }
433
434 /*
435 * We want to be able to compare mmapped reference records quickly,
436 * without totally parsing them. We can do so because the records are
437 * LF-terminated, and the refname should start exactly (GIT_SHA1_HEXSZ
438 * + 1) bytes past the beginning of the record.
439 *
440 * But what if the `packed-refs` file contains garbage? We're willing
441 * to tolerate not detecting the problem, as long as we don't produce
442 * totally garbled output (we can't afford to check the integrity of
443 * the whole file during every Git invocation). But we do want to be
444 * sure that we never read past the end of the buffer in memory and
445 * perform an illegal memory access.
446 *
447 * Guarantee that minimum level of safety by verifying that the last
448 * record in the file is LF-terminated, and that it has at least
449 * (GIT_SHA1_HEXSZ + 1) characters before the LF. Die if either of
450 * these checks fails.
451 */
452 static void verify_buffer_safe(struct snapshot *snapshot)
453 {
454 const char *start = snapshot->start;
455 const char *eof = snapshot->eof;
456 const char *last_line;
457
458 if (start == eof)
459 return;
460
461 last_line = find_start_of_record(start, eof - 1);
462 if (*(eof - 1) != '\n' || eof - last_line < the_hash_algo->hexsz + 2)
463 die_invalid_line(snapshot->refs->path,
464 last_line, eof - last_line);
465 }
466
467 #define SMALL_FILE_SIZE (32*1024)
468
469 /*
470 * Depending on `mmap_strategy`, either mmap or read the contents of
471 * the `packed-refs` file into the snapshot. Return 1 if the file
472 * existed and was read, or 0 if the file was absent or empty. Die on
473 * errors.
474 */
475 static int load_contents(struct snapshot *snapshot)
476 {
477 int fd;
478 struct stat st;
479 size_t size;
480 ssize_t bytes_read;
481
482 fd = open(snapshot->refs->path, O_RDONLY);
483 if (fd < 0) {
484 if (errno == ENOENT) {
485 /*
486 * This is OK; it just means that no
487 * "packed-refs" file has been written yet,
488 * which is equivalent to it being empty,
489 * which is its state when initialized with
490 * zeros.
491 */
492 return 0;
493 } else {
494 die_errno("couldn't read %s", snapshot->refs->path);
495 }
496 }
497
498 stat_validity_update(&snapshot->validity, fd);
499
500 if (fstat(fd, &st) < 0)
501 die_errno("couldn't stat %s", snapshot->refs->path);
502 size = xsize_t(st.st_size);
503
504 if (!size) {
505 close(fd);
506 return 0;
507 } else if (mmap_strategy == MMAP_NONE || size <= SMALL_FILE_SIZE) {
508 snapshot->buf = xmalloc(size);
509 bytes_read = read_in_full(fd, snapshot->buf, size);
510 if (bytes_read < 0 || bytes_read != size)
511 die_errno("couldn't read %s", snapshot->refs->path);
512 snapshot->mmapped = 0;
513 } else {
514 snapshot->buf = xmmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
515 snapshot->mmapped = 1;
516 }
517 close(fd);
518
519 snapshot->start = snapshot->buf;
520 snapshot->eof = snapshot->buf + size;
521
522 return 1;
523 }
524
525 /*
526 * Find the place in `snapshot->buf` where the start of the record for
527 * `refname` starts. If `mustexist` is true and the reference doesn't
528 * exist, then return NULL. If `mustexist` is false and the reference
529 * doesn't exist, then return the point where that reference would be
530 * inserted, or `snapshot->eof` (which might be NULL) if it would be
531 * inserted at the end of the file. In the latter mode, `refname`
532 * doesn't have to be a proper reference name; for example, one could
533 * search for "refs/replace/" to find the start of any replace
534 * references.
535 *
536 * The record is sought using a binary search, so `snapshot->buf` must
537 * be sorted.
538 */
539 static const char *find_reference_location(struct snapshot *snapshot,
540 const char *refname, int mustexist)
541 {
542 /*
543 * This is not *quite* a garden-variety binary search, because
544 * the data we're searching is made up of records, and we
545 * always need to find the beginning of a record to do a
546 * comparison. A "record" here is one line for the reference
547 * itself and zero or one peel lines that start with '^'. Our
548 * loop invariant is described in the next two comments.
549 */
550
551 /*
552 * A pointer to the character at the start of a record whose
553 * preceding records all have reference names that come
554 * *before* `refname`.
555 */
556 const char *lo = snapshot->start;
557
558 /*
559 * A pointer to a the first character of a record whose
560 * reference name comes *after* `refname`.
561 */
562 const char *hi = snapshot->eof;
563
564 while (lo != hi) {
565 const char *mid, *rec;
566 int cmp;
567
568 mid = lo + (hi - lo) / 2;
569 rec = find_start_of_record(lo, mid);
570 cmp = cmp_record_to_refname(rec, refname);
571 if (cmp < 0) {
572 lo = find_end_of_record(mid, hi);
573 } else if (cmp > 0) {
574 hi = rec;
575 } else {
576 return rec;
577 }
578 }
579
580 if (mustexist)
581 return NULL;
582 else
583 return lo;
584 }
585
586 /*
587 * Create a newly-allocated `snapshot` of the `packed-refs` file in
588 * its current state and return it. The return value will already have
589 * its reference count incremented.
590 *
591 * A comment line of the form "# pack-refs with: " may contain zero or
592 * more traits. We interpret the traits as follows:
593 *
594 * Neither `peeled` nor `fully-peeled`:
595 *
596 * Probably no references are peeled. But if the file contains a
597 * peeled value for a reference, we will use it.
598 *
599 * `peeled`:
600 *
601 * References under "refs/tags/", if they *can* be peeled, *are*
602 * peeled in this file. References outside of "refs/tags/" are
603 * probably not peeled even if they could have been, but if we find
604 * a peeled value for such a reference we will use it.
605 *
606 * `fully-peeled`:
607 *
608 * All references in the file that can be peeled are peeled.
609 * Inversely (and this is more important), any references in the
610 * file for which no peeled value is recorded is not peelable. This
611 * trait should typically be written alongside "peeled" for
612 * compatibility with older clients, but we do not require it
613 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
614 *
615 * `sorted`:
616 *
617 * The references in this file are known to be sorted by refname.
618 */
619 static struct snapshot *create_snapshot(struct packed_ref_store *refs)
620 {
621 struct snapshot *snapshot = xcalloc(1, sizeof(*snapshot));
622 int sorted = 0;
623
624 snapshot->refs = refs;
625 acquire_snapshot(snapshot);
626 snapshot->peeled = PEELED_NONE;
627
628 if (!load_contents(snapshot))
629 return snapshot;
630
631 /* If the file has a header line, process it: */
632 if (snapshot->buf < snapshot->eof && *snapshot->buf == '#') {
633 char *tmp, *p, *eol;
634 struct string_list traits = STRING_LIST_INIT_NODUP;
635
636 eol = memchr(snapshot->buf, '\n',
637 snapshot->eof - snapshot->buf);
638 if (!eol)
639 die_unterminated_line(refs->path,
640 snapshot->buf,
641 snapshot->eof - snapshot->buf);
642
643 tmp = xmemdupz(snapshot->buf, eol - snapshot->buf);
644
645 if (!skip_prefix(tmp, "# pack-refs with:", (const char **)&p))
646 die_invalid_line(refs->path,
647 snapshot->buf,
648 snapshot->eof - snapshot->buf);
649
650 string_list_split_in_place(&traits, p, ' ', -1);
651
652 if (unsorted_string_list_has_string(&traits, "fully-peeled"))
653 snapshot->peeled = PEELED_FULLY;
654 else if (unsorted_string_list_has_string(&traits, "peeled"))
655 snapshot->peeled = PEELED_TAGS;
656
657 sorted = unsorted_string_list_has_string(&traits, "sorted");
658
659 /* perhaps other traits later as well */
660
661 /* The "+ 1" is for the LF character. */
662 snapshot->start = eol + 1;
663
664 string_list_clear(&traits, 0);
665 free(tmp);
666 }
667
668 verify_buffer_safe(snapshot);
669
670 if (!sorted) {
671 sort_snapshot(snapshot);
672
673 /*
674 * Reordering the records might have moved a short one
675 * to the end of the buffer, so verify the buffer's
676 * safety again:
677 */
678 verify_buffer_safe(snapshot);
679 }
680
681 if (mmap_strategy != MMAP_OK && snapshot->mmapped) {
682 /*
683 * We don't want to leave the file mmapped, so we are
684 * forced to make a copy now:
685 */
686 size_t size = snapshot->eof - snapshot->start;
687 char *buf_copy = xmalloc(size);
688
689 memcpy(buf_copy, snapshot->start, size);
690 clear_snapshot_buffer(snapshot);
691 snapshot->buf = snapshot->start = buf_copy;
692 snapshot->eof = buf_copy + size;
693 }
694
695 return snapshot;
696 }
697
698 /*
699 * Check that `refs->snapshot` (if present) still reflects the
700 * contents of the `packed-refs` file. If not, clear the snapshot.
701 */
702 static void validate_snapshot(struct packed_ref_store *refs)
703 {
704 if (refs->snapshot &&
705 !stat_validity_check(&refs->snapshot->validity, refs->path))
706 clear_snapshot(refs);
707 }
708
709 /*
710 * Get the `snapshot` for the specified packed_ref_store, creating and
711 * populating it if it hasn't been read before or if the file has been
712 * changed (according to its `validity` field) since it was last read.
713 * On the other hand, if we hold the lock, then assume that the file
714 * hasn't been changed out from under us, so skip the extra `stat()`
715 * call in `stat_validity_check()`. This function does *not* increase
716 * the snapshot's reference count on behalf of the caller.
717 */
718 static struct snapshot *get_snapshot(struct packed_ref_store *refs)
719 {
720 if (!is_lock_file_locked(&refs->lock))
721 validate_snapshot(refs);
722
723 if (!refs->snapshot)
724 refs->snapshot = create_snapshot(refs);
725
726 return refs->snapshot;
727 }
728
729 static int packed_read_raw_ref(struct ref_store *ref_store, const char *refname,
730 struct object_id *oid, struct strbuf *referent,
731 unsigned int *type, int *failure_errno)
732 {
733 struct packed_ref_store *refs =
734 packed_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
735 struct snapshot *snapshot = get_snapshot(refs);
736 const char *rec;
737
738 *type = 0;
739
740 rec = find_reference_location(snapshot, refname, 1);
741
742 if (!rec) {
743 /* refname is not a packed reference. */
744 *failure_errno = ENOENT;
745 return -1;
746 }
747
748 if (get_oid_hex(rec, oid))
749 die_invalid_line(refs->path, rec, snapshot->eof - rec);
750
751 *type = REF_ISPACKED;
752 return 0;
753 }
754
755 /*
756 * This value is set in `base.flags` if the peeled value of the
757 * current reference is known. In that case, `peeled` contains the
758 * correct peeled value for the reference, which might be `null_oid`
759 * if the reference is not a tag or if it is broken.
760 */
761 #define REF_KNOWS_PEELED 0x40
762
763 /*
764 * An iterator over a snapshot of a `packed-refs` file.
765 */
766 struct packed_ref_iterator {
767 struct ref_iterator base;
768
769 struct snapshot *snapshot;
770
771 /* The current position in the snapshot's buffer: */
772 const char *pos;
773
774 /* The end of the part of the buffer that will be iterated over: */
775 const char *eof;
776
777 /* Scratch space for current values: */
778 struct object_id oid, peeled;
779 struct strbuf refname_buf;
780
781 struct repository *repo;
782 unsigned int flags;
783 };
784
785 /*
786 * Move the iterator to the next record in the snapshot, without
787 * respect for whether the record is actually required by the current
788 * iteration. Adjust the fields in `iter` and return `ITER_OK` or
789 * `ITER_DONE`. This function does not free the iterator in the case
790 * of `ITER_DONE`.
791 */
792 static int next_record(struct packed_ref_iterator *iter)
793 {
794 const char *p = iter->pos, *eol;
795
796 strbuf_reset(&iter->refname_buf);
797
798 if (iter->pos == iter->eof)
799 return ITER_DONE;
800
801 iter->base.flags = REF_ISPACKED;
802
803 if (iter->eof - p < the_hash_algo->hexsz + 2 ||
804 parse_oid_hex(p, &iter->oid, &p) ||
805 !isspace(*p++))
806 die_invalid_line(iter->snapshot->refs->path,
807 iter->pos, iter->eof - iter->pos);
808
809 eol = memchr(p, '\n', iter->eof - p);
810 if (!eol)
811 die_unterminated_line(iter->snapshot->refs->path,
812 iter->pos, iter->eof - iter->pos);
813
814 strbuf_add(&iter->refname_buf, p, eol - p);
815 iter->base.refname = iter->refname_buf.buf;
816
817 if (check_refname_format(iter->base.refname, REFNAME_ALLOW_ONELEVEL)) {
818 if (!refname_is_safe(iter->base.refname))
819 die("packed refname is dangerous: %s",
820 iter->base.refname);
821 oidclr(&iter->oid);
822 iter->base.flags |= REF_BAD_NAME | REF_ISBROKEN;
823 }
824 if (iter->snapshot->peeled == PEELED_FULLY ||
825 (iter->snapshot->peeled == PEELED_TAGS &&
826 starts_with(iter->base.refname, "refs/tags/")))
827 iter->base.flags |= REF_KNOWS_PEELED;
828
829 iter->pos = eol + 1;
830
831 if (iter->pos < iter->eof && *iter->pos == '^') {
832 p = iter->pos + 1;
833 if (iter->eof - p < the_hash_algo->hexsz + 1 ||
834 parse_oid_hex(p, &iter->peeled, &p) ||
835 *p++ != '\n')
836 die_invalid_line(iter->snapshot->refs->path,
837 iter->pos, iter->eof - iter->pos);
838 iter->pos = p;
839
840 /*
841 * Regardless of what the file header said, we
842 * definitely know the value of *this* reference. But
843 * we suppress it if the reference is broken:
844 */
845 if ((iter->base.flags & REF_ISBROKEN)) {
846 oidclr(&iter->peeled);
847 iter->base.flags &= ~REF_KNOWS_PEELED;
848 } else {
849 iter->base.flags |= REF_KNOWS_PEELED;
850 }
851 } else {
852 oidclr(&iter->peeled);
853 }
854
855 return ITER_OK;
856 }
857
858 static int packed_ref_iterator_advance(struct ref_iterator *ref_iterator)
859 {
860 struct packed_ref_iterator *iter =
861 (struct packed_ref_iterator *)ref_iterator;
862 int ok;
863
864 while ((ok = next_record(iter)) == ITER_OK) {
865 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
866 ref_type(iter->base.refname) != REF_TYPE_PER_WORKTREE)
867 continue;
868
869 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
870 !ref_resolves_to_object(iter->base.refname, iter->repo,
871 &iter->oid, iter->flags))
872 continue;
873
874 return ITER_OK;
875 }
876
877 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
878 ok = ITER_ERROR;
879
880 return ok;
881 }
882
883 static int packed_ref_iterator_peel(struct ref_iterator *ref_iterator,
884 struct object_id *peeled)
885 {
886 struct packed_ref_iterator *iter =
887 (struct packed_ref_iterator *)ref_iterator;
888
889 if (iter->repo != the_repository)
890 BUG("peeling for non-the_repository is not supported");
891
892 if ((iter->base.flags & REF_KNOWS_PEELED)) {
893 oidcpy(peeled, &iter->peeled);
894 return is_null_oid(&iter->peeled) ? -1 : 0;
895 } else if ((iter->base.flags & (REF_ISBROKEN | REF_ISSYMREF))) {
896 return -1;
897 } else {
898 return peel_object(&iter->oid, peeled) ? -1 : 0;
899 }
900 }
901
902 static int packed_ref_iterator_abort(struct ref_iterator *ref_iterator)
903 {
904 struct packed_ref_iterator *iter =
905 (struct packed_ref_iterator *)ref_iterator;
906 int ok = ITER_DONE;
907
908 strbuf_release(&iter->refname_buf);
909 release_snapshot(iter->snapshot);
910 base_ref_iterator_free(ref_iterator);
911 return ok;
912 }
913
914 static struct ref_iterator_vtable packed_ref_iterator_vtable = {
915 packed_ref_iterator_advance,
916 packed_ref_iterator_peel,
917 packed_ref_iterator_abort
918 };
919
920 static struct ref_iterator *packed_ref_iterator_begin(
921 struct ref_store *ref_store,
922 const char *prefix, unsigned int flags)
923 {
924 struct packed_ref_store *refs;
925 struct snapshot *snapshot;
926 const char *start;
927 struct packed_ref_iterator *iter;
928 struct ref_iterator *ref_iterator;
929 unsigned int required_flags = REF_STORE_READ;
930
931 if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN))
932 required_flags |= REF_STORE_ODB;
933 refs = packed_downcast(ref_store, required_flags, "ref_iterator_begin");
934
935 /*
936 * Note that `get_snapshot()` internally checks whether the
937 * snapshot is up to date with what is on disk, and re-reads
938 * it if not.
939 */
940 snapshot = get_snapshot(refs);
941
942 if (prefix && *prefix)
943 start = find_reference_location(snapshot, prefix, 0);
944 else
945 start = snapshot->start;
946
947 if (start == snapshot->eof)
948 return empty_ref_iterator_begin();
949
950 CALLOC_ARRAY(iter, 1);
951 ref_iterator = &iter->base;
952 base_ref_iterator_init(ref_iterator, &packed_ref_iterator_vtable, 1);
953
954 iter->snapshot = snapshot;
955 acquire_snapshot(snapshot);
956
957 iter->pos = start;
958 iter->eof = snapshot->eof;
959 strbuf_init(&iter->refname_buf, 0);
960
961 iter->base.oid = &iter->oid;
962
963 iter->repo = ref_store->repo;
964 iter->flags = flags;
965
966 if (prefix && *prefix)
967 /* Stop iteration after we've gone *past* prefix: */
968 ref_iterator = prefix_ref_iterator_begin(ref_iterator, prefix, 0);
969
970 return ref_iterator;
971 }
972
973 /*
974 * Write an entry to the packed-refs file for the specified refname.
975 * If peeled is non-NULL, write it as the entry's peeled value. On
976 * error, return a nonzero value and leave errno set at the value left
977 * by the failing call to `fprintf()`.
978 */
979 static int write_packed_entry(FILE *fh, const char *refname,
980 const struct object_id *oid,
981 const struct object_id *peeled)
982 {
983 if (fprintf(fh, "%s %s\n", oid_to_hex(oid), refname) < 0 ||
984 (peeled && fprintf(fh, "^%s\n", oid_to_hex(peeled)) < 0))
985 return -1;
986
987 return 0;
988 }
989
990 int packed_refs_lock(struct ref_store *ref_store, int flags, struct strbuf *err)
991 {
992 struct packed_ref_store *refs =
993 packed_downcast(ref_store, REF_STORE_WRITE | REF_STORE_MAIN,
994 "packed_refs_lock");
995 static int timeout_configured = 0;
996 static int timeout_value = 1000;
997
998 if (!timeout_configured) {
999 git_config_get_int("core.packedrefstimeout", &timeout_value);
1000 timeout_configured = 1;
1001 }
1002
1003 /*
1004 * Note that we close the lockfile immediately because we
1005 * don't write new content to it, but rather to a separate
1006 * tempfile.
1007 */
1008 if (hold_lock_file_for_update_timeout(
1009 &refs->lock,
1010 refs->path,
1011 flags, timeout_value) < 0) {
1012 unable_to_lock_message(refs->path, errno, err);
1013 return -1;
1014 }
1015
1016 if (close_lock_file_gently(&refs->lock)) {
1017 strbuf_addf(err, "unable to close %s: %s", refs->path, strerror(errno));
1018 rollback_lock_file(&refs->lock);
1019 return -1;
1020 }
1021
1022 /*
1023 * There is a stat-validity problem might cause `update-ref -d`
1024 * lost the newly commit of a ref, because a new `packed-refs`
1025 * file might has the same on-disk file attributes such as
1026 * timestamp, file size and inode value, but has a changed
1027 * ref value.
1028 *
1029 * This could happen with a very small chance when
1030 * `update-ref -d` is called and at the same time another
1031 * `pack-refs --all` process is running.
1032 *
1033 * Now that we hold the `packed-refs` lock, it is important
1034 * to make sure we could read the latest version of
1035 * `packed-refs` file no matter we have just mmap it or not.
1036 * So what need to do is clear the snapshot if we hold it
1037 * already.
1038 */
1039 clear_snapshot(refs);
1040
1041 /*
1042 * Now make sure that the packed-refs file as it exists in the
1043 * locked state is loaded into the snapshot:
1044 */
1045 get_snapshot(refs);
1046 return 0;
1047 }
1048
1049 void packed_refs_unlock(struct ref_store *ref_store)
1050 {
1051 struct packed_ref_store *refs = packed_downcast(
1052 ref_store,
1053 REF_STORE_READ | REF_STORE_WRITE,
1054 "packed_refs_unlock");
1055
1056 if (!is_lock_file_locked(&refs->lock))
1057 BUG("packed_refs_unlock() called when not locked");
1058 rollback_lock_file(&refs->lock);
1059 }
1060
1061 int packed_refs_is_locked(struct ref_store *ref_store)
1062 {
1063 struct packed_ref_store *refs = packed_downcast(
1064 ref_store,
1065 REF_STORE_READ | REF_STORE_WRITE,
1066 "packed_refs_is_locked");
1067
1068 return is_lock_file_locked(&refs->lock);
1069 }
1070
1071 /*
1072 * The packed-refs header line that we write out. Perhaps other traits
1073 * will be added later.
1074 *
1075 * Note that earlier versions of Git used to parse these traits by
1076 * looking for " trait " in the line. For this reason, the space after
1077 * the colon and the trailing space are required.
1078 */
1079 static const char PACKED_REFS_HEADER[] =
1080 "# pack-refs with: peeled fully-peeled sorted \n";
1081
1082 static int packed_init_db(struct ref_store *ref_store, struct strbuf *err)
1083 {
1084 /* Nothing to do. */
1085 return 0;
1086 }
1087
1088 /*
1089 * Write the packed refs from the current snapshot to the packed-refs
1090 * tempfile, incorporating any changes from `updates`. `updates` must
1091 * be a sorted string list whose keys are the refnames and whose util
1092 * values are `struct ref_update *`. On error, rollback the tempfile,
1093 * write an error message to `err`, and return a nonzero value.
1094 *
1095 * The packfile must be locked before calling this function and will
1096 * remain locked when it is done.
1097 */
1098 static int write_with_updates(struct packed_ref_store *refs,
1099 struct string_list *updates,
1100 struct strbuf *err)
1101 {
1102 struct ref_iterator *iter = NULL;
1103 size_t i;
1104 int ok;
1105 FILE *out;
1106 struct strbuf sb = STRBUF_INIT;
1107 char *packed_refs_path;
1108
1109 if (!is_lock_file_locked(&refs->lock))
1110 BUG("write_with_updates() called while unlocked");
1111
1112 /*
1113 * If packed-refs is a symlink, we want to overwrite the
1114 * symlinked-to file, not the symlink itself. Also, put the
1115 * staging file next to it:
1116 */
1117 packed_refs_path = get_locked_file_path(&refs->lock);
1118 strbuf_addf(&sb, "%s.new", packed_refs_path);
1119 free(packed_refs_path);
1120 refs->tempfile = create_tempfile(sb.buf);
1121 if (!refs->tempfile) {
1122 strbuf_addf(err, "unable to create file %s: %s",
1123 sb.buf, strerror(errno));
1124 strbuf_release(&sb);
1125 return -1;
1126 }
1127 strbuf_release(&sb);
1128
1129 out = fdopen_tempfile(refs->tempfile, "w");
1130 if (!out) {
1131 strbuf_addf(err, "unable to fdopen packed-refs tempfile: %s",
1132 strerror(errno));
1133 goto error;
1134 }
1135
1136 if (fprintf(out, "%s", PACKED_REFS_HEADER) < 0)
1137 goto write_error;
1138
1139 /*
1140 * We iterate in parallel through the current list of refs and
1141 * the list of updates, processing an entry from at least one
1142 * of the lists each time through the loop. When the current
1143 * list of refs is exhausted, set iter to NULL. When the list
1144 * of updates is exhausted, leave i set to updates->nr.
1145 */
1146 iter = packed_ref_iterator_begin(&refs->base, "",
1147 DO_FOR_EACH_INCLUDE_BROKEN);
1148 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1149 iter = NULL;
1150
1151 i = 0;
1152
1153 while (iter || i < updates->nr) {
1154 struct ref_update *update = NULL;
1155 int cmp;
1156
1157 if (i >= updates->nr) {
1158 cmp = -1;
1159 } else {
1160 update = updates->items[i].util;
1161
1162 if (!iter)
1163 cmp = +1;
1164 else
1165 cmp = strcmp(iter->refname, update->refname);
1166 }
1167
1168 if (!cmp) {
1169 /*
1170 * There is both an old value and an update
1171 * for this reference. Check the old value if
1172 * necessary:
1173 */
1174 if ((update->flags & REF_HAVE_OLD)) {
1175 if (is_null_oid(&update->old_oid)) {
1176 strbuf_addf(err, "cannot update ref '%s': "
1177 "reference already exists",
1178 update->refname);
1179 goto error;
1180 } else if (!oideq(&update->old_oid, iter->oid)) {
1181 strbuf_addf(err, "cannot update ref '%s': "
1182 "is at %s but expected %s",
1183 update->refname,
1184 oid_to_hex(iter->oid),
1185 oid_to_hex(&update->old_oid));
1186 goto error;
1187 }
1188 }
1189
1190 /* Now figure out what to use for the new value: */
1191 if ((update->flags & REF_HAVE_NEW)) {
1192 /*
1193 * The update takes precedence. Skip
1194 * the iterator over the unneeded
1195 * value.
1196 */
1197 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1198 iter = NULL;
1199 cmp = +1;
1200 } else {
1201 /*
1202 * The update doesn't actually want to
1203 * change anything. We're done with it.
1204 */
1205 i++;
1206 cmp = -1;
1207 }
1208 } else if (cmp > 0) {
1209 /*
1210 * There is no old value but there is an
1211 * update for this reference. Make sure that
1212 * the update didn't expect an existing value:
1213 */
1214 if ((update->flags & REF_HAVE_OLD) &&
1215 !is_null_oid(&update->old_oid)) {
1216 strbuf_addf(err, "cannot update ref '%s': "
1217 "reference is missing but expected %s",
1218 update->refname,
1219 oid_to_hex(&update->old_oid));
1220 goto error;
1221 }
1222 }
1223
1224 if (cmp < 0) {
1225 /* Pass the old reference through. */
1226
1227 struct object_id peeled;
1228 int peel_error = ref_iterator_peel(iter, &peeled);
1229
1230 if (write_packed_entry(out, iter->refname,
1231 iter->oid,
1232 peel_error ? NULL : &peeled))
1233 goto write_error;
1234
1235 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1236 iter = NULL;
1237 } else if (is_null_oid(&update->new_oid)) {
1238 /*
1239 * The update wants to delete the reference,
1240 * and the reference either didn't exist or we
1241 * have already skipped it. So we're done with
1242 * the update (and don't have to write
1243 * anything).
1244 */
1245 i++;
1246 } else {
1247 struct object_id peeled;
1248 int peel_error = peel_object(&update->new_oid,
1249 &peeled);
1250
1251 if (write_packed_entry(out, update->refname,
1252 &update->new_oid,
1253 peel_error ? NULL : &peeled))
1254 goto write_error;
1255
1256 i++;
1257 }
1258 }
1259
1260 if (ok != ITER_DONE) {
1261 strbuf_addstr(err, "unable to write packed-refs file: "
1262 "error iterating over old contents");
1263 goto error;
1264 }
1265
1266 if (close_tempfile_gently(refs->tempfile)) {
1267 strbuf_addf(err, "error closing file %s: %s",
1268 get_tempfile_path(refs->tempfile),
1269 strerror(errno));
1270 strbuf_release(&sb);
1271 delete_tempfile(&refs->tempfile);
1272 return -1;
1273 }
1274
1275 return 0;
1276
1277 write_error:
1278 strbuf_addf(err, "error writing to %s: %s",
1279 get_tempfile_path(refs->tempfile), strerror(errno));
1280
1281 error:
1282 if (iter)
1283 ref_iterator_abort(iter);
1284
1285 delete_tempfile(&refs->tempfile);
1286 return -1;
1287 }
1288
1289 int is_packed_transaction_needed(struct ref_store *ref_store,
1290 struct ref_transaction *transaction)
1291 {
1292 struct packed_ref_store *refs = packed_downcast(
1293 ref_store,
1294 REF_STORE_READ,
1295 "is_packed_transaction_needed");
1296 struct strbuf referent = STRBUF_INIT;
1297 size_t i;
1298 int ret;
1299
1300 if (!is_lock_file_locked(&refs->lock))
1301 BUG("is_packed_transaction_needed() called while unlocked");
1302
1303 /*
1304 * We're only going to bother returning false for the common,
1305 * trivial case that references are only being deleted, their
1306 * old values are not being checked, and the old `packed-refs`
1307 * file doesn't contain any of those reference(s). This gives
1308 * false positives for some other cases that could
1309 * theoretically be optimized away:
1310 *
1311 * 1. It could be that the old value is being verified without
1312 * setting a new value. In this case, we could verify the
1313 * old value here and skip the update if it agrees. If it
1314 * disagrees, we could either let the update go through
1315 * (the actual commit would re-detect and report the
1316 * problem), or come up with a way of reporting such an
1317 * error to *our* caller.
1318 *
1319 * 2. It could be that a new value is being set, but that it
1320 * is identical to the current packed value of the
1321 * reference.
1322 *
1323 * Neither of these cases will come up in the current code,
1324 * because the only caller of this function passes to it a
1325 * transaction that only includes `delete` updates with no
1326 * `old_id`. Even if that ever changes, false positives only
1327 * cause an optimization to be missed; they do not affect
1328 * correctness.
1329 */
1330
1331 /*
1332 * Start with the cheap checks that don't require old
1333 * reference values to be read:
1334 */
1335 for (i = 0; i < transaction->nr; i++) {
1336 struct ref_update *update = transaction->updates[i];
1337
1338 if (update->flags & REF_HAVE_OLD)
1339 /* Have to check the old value -> needed. */
1340 return 1;
1341
1342 if ((update->flags & REF_HAVE_NEW) && !is_null_oid(&update->new_oid))
1343 /* Have to set a new value -> needed. */
1344 return 1;
1345 }
1346
1347 /*
1348 * The transaction isn't checking any old values nor is it
1349 * setting any nonzero new values, so it still might be able
1350 * to be skipped. Now do the more expensive check: the update
1351 * is needed if any of the updates is a delete, and the old
1352 * `packed-refs` file contains a value for that reference.
1353 */
1354 ret = 0;
1355 for (i = 0; i < transaction->nr; i++) {
1356 struct ref_update *update = transaction->updates[i];
1357 unsigned int type;
1358 struct object_id oid;
1359
1360 if (!(update->flags & REF_HAVE_NEW))
1361 /*
1362 * This reference isn't being deleted -> not
1363 * needed.
1364 */
1365 continue;
1366
1367 if (!refs_read_raw_ref(ref_store, update->refname,
1368 &oid, &referent, &type) ||
1369 errno != ENOENT) {
1370 /*
1371 * We have to actually delete that reference
1372 * -> this transaction is needed.
1373 */
1374 ret = 1;
1375 break;
1376 }
1377 }
1378
1379 strbuf_release(&referent);
1380 return ret;
1381 }
1382
1383 struct packed_transaction_backend_data {
1384 /* True iff the transaction owns the packed-refs lock. */
1385 int own_lock;
1386
1387 struct string_list updates;
1388 };
1389
1390 static void packed_transaction_cleanup(struct packed_ref_store *refs,
1391 struct ref_transaction *transaction)
1392 {
1393 struct packed_transaction_backend_data *data = transaction->backend_data;
1394
1395 if (data) {
1396 string_list_clear(&data->updates, 0);
1397
1398 if (is_tempfile_active(refs->tempfile))
1399 delete_tempfile(&refs->tempfile);
1400
1401 if (data->own_lock && is_lock_file_locked(&refs->lock)) {
1402 packed_refs_unlock(&refs->base);
1403 data->own_lock = 0;
1404 }
1405
1406 free(data);
1407 transaction->backend_data = NULL;
1408 }
1409
1410 transaction->state = REF_TRANSACTION_CLOSED;
1411 }
1412
1413 static int packed_transaction_prepare(struct ref_store *ref_store,
1414 struct ref_transaction *transaction,
1415 struct strbuf *err)
1416 {
1417 struct packed_ref_store *refs = packed_downcast(
1418 ref_store,
1419 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1420 "ref_transaction_prepare");
1421 struct packed_transaction_backend_data *data;
1422 size_t i;
1423 int ret = TRANSACTION_GENERIC_ERROR;
1424
1425 /*
1426 * Note that we *don't* skip transactions with zero updates,
1427 * because such a transaction might be executed for the side
1428 * effect of ensuring that all of the references are peeled or
1429 * ensuring that the `packed-refs` file is sorted. If the
1430 * caller wants to optimize away empty transactions, it should
1431 * do so itself.
1432 */
1433
1434 CALLOC_ARRAY(data, 1);
1435 string_list_init_nodup(&data->updates);
1436
1437 transaction->backend_data = data;
1438
1439 /*
1440 * Stick the updates in a string list by refname so that we
1441 * can sort them:
1442 */
1443 for (i = 0; i < transaction->nr; i++) {
1444 struct ref_update *update = transaction->updates[i];
1445 struct string_list_item *item =
1446 string_list_append(&data->updates, update->refname);
1447
1448 /* Store a pointer to update in item->util: */
1449 item->util = update;
1450 }
1451 string_list_sort(&data->updates);
1452
1453 if (ref_update_reject_duplicates(&data->updates, err))
1454 goto failure;
1455
1456 if (!is_lock_file_locked(&refs->lock)) {
1457 if (packed_refs_lock(ref_store, 0, err))
1458 goto failure;
1459 data->own_lock = 1;
1460 }
1461
1462 if (write_with_updates(refs, &data->updates, err))
1463 goto failure;
1464
1465 transaction->state = REF_TRANSACTION_PREPARED;
1466 return 0;
1467
1468 failure:
1469 packed_transaction_cleanup(refs, transaction);
1470 return ret;
1471 }
1472
1473 static int packed_transaction_abort(struct ref_store *ref_store,
1474 struct ref_transaction *transaction,
1475 struct strbuf *err)
1476 {
1477 struct packed_ref_store *refs = packed_downcast(
1478 ref_store,
1479 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1480 "ref_transaction_abort");
1481
1482 packed_transaction_cleanup(refs, transaction);
1483 return 0;
1484 }
1485
1486 static int packed_transaction_finish(struct ref_store *ref_store,
1487 struct ref_transaction *transaction,
1488 struct strbuf *err)
1489 {
1490 struct packed_ref_store *refs = packed_downcast(
1491 ref_store,
1492 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1493 "ref_transaction_finish");
1494 int ret = TRANSACTION_GENERIC_ERROR;
1495 char *packed_refs_path;
1496
1497 clear_snapshot(refs);
1498
1499 packed_refs_path = get_locked_file_path(&refs->lock);
1500 if (rename_tempfile(&refs->tempfile, packed_refs_path)) {
1501 strbuf_addf(err, "error replacing %s: %s",
1502 refs->path, strerror(errno));
1503 goto cleanup;
1504 }
1505
1506 ret = 0;
1507
1508 cleanup:
1509 free(packed_refs_path);
1510 packed_transaction_cleanup(refs, transaction);
1511 return ret;
1512 }
1513
1514 static int packed_initial_transaction_commit(struct ref_store *ref_store,
1515 struct ref_transaction *transaction,
1516 struct strbuf *err)
1517 {
1518 return ref_transaction_commit(transaction, err);
1519 }
1520
1521 static int packed_delete_refs(struct ref_store *ref_store, const char *msg,
1522 struct string_list *refnames, unsigned int flags)
1523 {
1524 struct packed_ref_store *refs =
1525 packed_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
1526 struct strbuf err = STRBUF_INIT;
1527 struct ref_transaction *transaction;
1528 struct string_list_item *item;
1529 int ret;
1530
1531 (void)refs; /* We need the check above, but don't use the variable */
1532
1533 if (!refnames->nr)
1534 return 0;
1535
1536 /*
1537 * Since we don't check the references' old_oids, the
1538 * individual updates can't fail, so we can pack all of the
1539 * updates into a single transaction.
1540 */
1541
1542 transaction = ref_store_transaction_begin(ref_store, &err);
1543 if (!transaction)
1544 return -1;
1545
1546 for_each_string_list_item(item, refnames) {
1547 if (ref_transaction_delete(transaction, item->string, NULL,
1548 flags, msg, &err)) {
1549 warning(_("could not delete reference %s: %s"),
1550 item->string, err.buf);
1551 strbuf_reset(&err);
1552 }
1553 }
1554
1555 ret = ref_transaction_commit(transaction, &err);
1556
1557 if (ret) {
1558 if (refnames->nr == 1)
1559 error(_("could not delete reference %s: %s"),
1560 refnames->items[0].string, err.buf);
1561 else
1562 error(_("could not delete references: %s"), err.buf);
1563 }
1564
1565 ref_transaction_free(transaction);
1566 strbuf_release(&err);
1567 return ret;
1568 }
1569
1570 static int packed_pack_refs(struct ref_store *ref_store, unsigned int flags)
1571 {
1572 /*
1573 * Packed refs are already packed. It might be that loose refs
1574 * are packed *into* a packed refs store, but that is done by
1575 * updating the packed references via a transaction.
1576 */
1577 return 0;
1578 }
1579
1580 static int packed_create_symref(struct ref_store *ref_store,
1581 const char *refname, const char *target,
1582 const char *logmsg)
1583 {
1584 BUG("packed reference store does not support symrefs");
1585 }
1586
1587 static int packed_rename_ref(struct ref_store *ref_store,
1588 const char *oldrefname, const char *newrefname,
1589 const char *logmsg)
1590 {
1591 BUG("packed reference store does not support renaming references");
1592 }
1593
1594 static int packed_copy_ref(struct ref_store *ref_store,
1595 const char *oldrefname, const char *newrefname,
1596 const char *logmsg)
1597 {
1598 BUG("packed reference store does not support copying references");
1599 }
1600
1601 static struct ref_iterator *packed_reflog_iterator_begin(struct ref_store *ref_store)
1602 {
1603 return empty_ref_iterator_begin();
1604 }
1605
1606 static int packed_for_each_reflog_ent(struct ref_store *ref_store,
1607 const char *refname,
1608 each_reflog_ent_fn fn, void *cb_data)
1609 {
1610 BUG("packed reference store does not support reflogs");
1611 return 0;
1612 }
1613
1614 static int packed_for_each_reflog_ent_reverse(struct ref_store *ref_store,
1615 const char *refname,
1616 each_reflog_ent_fn fn,
1617 void *cb_data)
1618 {
1619 BUG("packed reference store does not support reflogs");
1620 return 0;
1621 }
1622
1623 static int packed_reflog_exists(struct ref_store *ref_store,
1624 const char *refname)
1625 {
1626 BUG("packed reference store does not support reflogs");
1627 return 0;
1628 }
1629
1630 static int packed_create_reflog(struct ref_store *ref_store,
1631 const char *refname, int force_create,
1632 struct strbuf *err)
1633 {
1634 BUG("packed reference store does not support reflogs");
1635 }
1636
1637 static int packed_delete_reflog(struct ref_store *ref_store,
1638 const char *refname)
1639 {
1640 BUG("packed reference store does not support reflogs");
1641 return 0;
1642 }
1643
1644 static int packed_reflog_expire(struct ref_store *ref_store,
1645 const char *refname,
1646 unsigned int flags,
1647 reflog_expiry_prepare_fn prepare_fn,
1648 reflog_expiry_should_prune_fn should_prune_fn,
1649 reflog_expiry_cleanup_fn cleanup_fn,
1650 void *policy_cb_data)
1651 {
1652 BUG("packed reference store does not support reflogs");
1653 return 0;
1654 }
1655
1656 struct ref_storage_be refs_be_packed = {
1657 NULL,
1658 "packed",
1659 packed_ref_store_create,
1660 packed_init_db,
1661 packed_transaction_prepare,
1662 packed_transaction_finish,
1663 packed_transaction_abort,
1664 packed_initial_transaction_commit,
1665
1666 packed_pack_refs,
1667 packed_create_symref,
1668 packed_delete_refs,
1669 packed_rename_ref,
1670 packed_copy_ref,
1671
1672 packed_ref_iterator_begin,
1673 packed_read_raw_ref,
1674
1675 packed_reflog_iterator_begin,
1676 packed_for_each_reflog_ent,
1677 packed_for_each_reflog_ent_reverse,
1678 packed_reflog_exists,
1679 packed_create_reflog,
1680 packed_delete_reflog,
1681 packed_reflog_expire
1682 };